WorldWideScience

Sample records for oligolactic acid plasticizers

  1. Development of starch biofilms using different carboxylic acids as plasticizers

    International Nuclear Information System (INIS)

    Cruz, L.C.; Miranda, C.S.; Santos, W.J. dos; Goncalves, A.P.B.; Oliveira, J.C.; Jose, N.M.

    2014-01-01

    Biodegradable films have become a widely exploited issue among scientists because of their positive environmental impact, besides their potential to promote better food conservation and an increase in shelf life. Starch has been studied in this field due to its availability, low cost and biodegradability. However, starch films tend to be brittle and they need addition of a plasticizer to enable their usage. In this work, starch films were synthesized with different carboxylic acids as plasticizers, aiming to observe the effect of the acids chain size in the final films properties. The acids used were: oxalic, succinic and adipic. The materials were produced by casting and characterized by DSC, TG, DRX e FTIR. It was observed that the acids chain size influenced on the thermal and structural properties of the films. (author)

  2. Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid

    OpenAIRE

    Burgos, Nuria; Martino, Verónica P.; Jiménez, Alfonso

    2013-01-01

    Poly(lactic acid) (PLA) was melt-blended with a bio-based oligomeric lactic acid (OLA) plasticizer at different concentrations between 15 wt% and 25 wt% in order to enhance PLA ductility and to get a fully biodegradable material with potential application in films manufacturing. OLA was an efficient plasticizer for PLA, as it caused a significant decrease on glass transition temperature (Tg) while improving considerably ductile properties. Only one Tg value was observed in all cases and no ap...

  3. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  4. MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour

    OpenAIRE

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence

    2014-01-01

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were inc...

  5. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    Science.gov (United States)

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  6. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    Science.gov (United States)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  7. The Effects of plasticizers and palmitic acid toward the properties of the carrageenan Film

    Science.gov (United States)

    Heru Wibowo, Atmanto; Listiyawati, Oktaviana; Purnawan, Candra

    2016-02-01

    Varied plasticizers and palmitic acid additive have been added in the carrageenan film. The film was made by mixing of the carrageenan and plasticizers (glycerol, polyethylene glycol, polyvinyl alcohol) with composition of 92:3, 90:6, 87:9, 84:12, 81:15(%w/w) and in the presence of palmitic acid as additive with 1%, 2%, 3%, 4%, 5% of total weight. Casting method was used for the film molding and drying at 60oC with the oven for 12 hours. To investigate the effects of plasticizers and additive, some mechanical tests on film were performed. The test result concludes that plasticizers in the film decreased the tensile strength and increased the elongation break of the carrageenan film. The additive of palmitic acid decreased the tensile strength of the carrageenan film and also decreased the-the water absorbance of the film. The highest tensile strength of films made was with the formulation of carrageenan: PEG with composition of 92:3 (% w/w). The highest elongation break of the film was for carrageenan:PVA with the composition of 81: 15 (%w/w) and carrageenan:palmitic acid:PEG with the composition of 92: 3: 1 (%w/w). The lowest water absorption of the film was achieved for carrageenan:PVA:palmitic acid with the composition of 87: 3: 5 (%w/w).

  8. Epoxidized Vegetable Oils Plasticized Poly(lactic acid Biocomposites: Mechanical, Thermal and Morphology Properties

    Directory of Open Access Journals (Sweden)

    Buong Woei Chieng

    2014-10-01

    Full Text Available Plasticized poly(lactic acid PLA with epoxidized vegetable oils (EVO were prepared using a melt blending method to improve the ductility of PLA. The plasticization of the PLA with EVO lowers the Tg as well as cold-crystallization temperature. The tensile properties demonstrated that the addition of EVO to PLA led to an increase of elongation at break, but a decrease of tensile modulus. Plasticized PLA showed improvement in the elongation at break by 2058% and 4060% with the addition of 5 wt % epoxidized palm oil (EPO and mixture of epoxidized palm oil and soybean oil (EPSO, respectively. An increase in the tensile strength was also observed in the plasticized PLA with 1 wt % EPO and EPSO. The use of EVO increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The SEM micrograph of the plasticized PLA showed good compatible morphologies without voids resulting from good interfacial adhesion between PLA and EVO. Based on the results of this study, EVO may be used as an environmentally friendly plasticizer that can improve the overall properties of PLA.

  9. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    Science.gov (United States)

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers

    DEFF Research Database (Denmark)

    Enders, Kristina; Lenz, Robin; Beer, Sabrina

    2017-01-01

    particles of various polymer types. In the present study we report that a digestion protocol recently recommended by ICES using nitric and perchloric acid has strong detrimental effects on several common plastic polymers, in particular polyamide and polyurethane and to a lesser degree acrylonitrile...

  11. The effects of exogenous fatty acids and niacin on human monocyte-macrophage plasticity.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Rodriguez, Dolores; Cardelo, Magdalena P; Naranjo, Maria C; Bermudez, Beatriz; Abia, Rocio; Muriana, Francisco J G; Lopez, Sergio

    2017-08-01

    Macrophage plasticity allows adapting to different environments, having a dual activity in inflammatory-related diseases. Our hypothesis is that the type of dietary fatty acids into human postprandial triglyceride-rich lipoproteins (TRLs), alone or in combination with niacin (vitamin B3), could modulate the plasticity of monocytes-macrophages. We isolated TRLs at the postprandial peak from blood samples of healthy volunteers after the ingestion of a meal rich in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated fatty acids (LCPUFAs). Autologous monocytes isolated at fasting were first induced to differentiate into naïve macrophages. We observed that postprandial TRL-MUFAs, particularly in combination with niacin, enhance competence to monocytes to differentiate and polarise into M2 macrophages. Postprandial TRL-SFAs made polarised macrophages prone to an M1 phenotype. In contrast to dietary SFAs, dietary MUFAs in the meals plus immediate-release niacin primed circulating monocytes for a reduced postprandial pro-inflammatory profile. Our study underlines a role of postprandial TRLs as a metabolic entity in regulating the plasticity of the monocyte-macrophage lineage and also brings an understanding of the mechanisms by which dietary fatty acids are environmental factors fostering the innate immune responsiveness in humans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xuetao Shi

    2015-01-01

    Full Text Available The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid (PDLA acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young’s modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization.

  13. MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour.

    Science.gov (United States)

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence Arockiasamy

    2014-10-31

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %), with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC), tensile test, and thermo gravimetric analysis (TGA). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME) in the resulting nanocomposite was investigated by a fold-deploy "U"-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.

  14. MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour

    Directory of Open Access Journals (Sweden)

    Javed Alam

    2014-10-01

    Full Text Available A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA was first plasticized by epoxidized linseed oil (ELO in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %, with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC, tensile test, and thermo gravimetric analysis (TGA. Scanning electron microscopy (SEM and atomic force microscopy (AFM were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME in the resulting nanocomposite was investigated by a fold-deploy “U”-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.

  15. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation

    Directory of Open Access Journals (Sweden)

    Ali Ahmed Mahmoud Abdelhaleem

    2015-06-01

    Full Text Available This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ and various carboxylic acid plasticizers (CAPs. The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2 showed the highest dissolution percentage (> 95 % in 20 minutes compared to pure crystalline CZ (56 %. Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism.

  16. Carbon dioxide induced plasticity of branchial acid-base pathways in an estuarine teleost

    Science.gov (United States)

    Allmon, Elizabeth B.; Esbaugh, Andrew J.

    2017-04-01

    Anthropogenic CO2 is expected to drive ocean pCO2 above 1,000 μatm by 2100 - inducing respiratory acidosis in fish that must be corrected through branchial ion transport. This study examined the time course and plasticity of branchial metabolic compensation in response to varying levels of CO2 in an estuarine fish, the red drum, which regularly encounters elevated CO2 and may therefore have intrinsic resilience. Under control conditions fish exhibited net base excretion; however, CO2 exposure resulted in a dose dependent increase in acid excretion during the initial 2 h. This returned to baseline levels during the second 2 h interval for exposures up to 5,000 μatm, but remained elevated for exposures above 15,000 μatm. Plasticity was assessed via gene expression in three CO2 treatments: environmentally realistic 1,000 and 6,000 μatm exposures, and a proof-of-principle 30,000 μatm exposure. Few differences were observed at 1,000 or 6,000 μatm however, 30,000 μatm stimulated widespread up-regulation. Translocation of V-type ATPase after 1 h of exposure to 30,000 μatm was also assessed; however, no evidence of translocation was found. These results indicate that red drum can quickly compensate to environmentally relevant acid-base disturbances using baseline cellular machinery, yet are capable of plasticity in response to extreme acid-base challenges.

  17. Raman study of the molecular motions of pivalic acid: the liquid—plastic phase transition

    Science.gov (United States)

    Balevičius, V.; Orel, B.; Hadži, D.

    Raman spectra of pivalic acid in the plastic and liquid phase have been measured. The reorientational correlation times have been evaluated from the ν asCH, νCO and νCC bands as a function of temperature. The reorientational correlation time corresponding to ν as CH and νCC bands is τ 4ps ( T = 20°C). The calculated activation energy is 26 KJ mol -1. The reorientation of the carboxylic groups which may be assisted by the proton transfer along the hydrogen bonds in dimers is discussed.

  18. Using microcantilever sensors to measure poly(lactic-co-glycolic acid) plasticization by moisture uptake

    DEFF Research Database (Denmark)

    Alves, Gustavo Marcati A.; Bose-Goswami, Sanjukta; Mansano, Ronaldo D.

    2018-01-01

    Polymeric materials absorb water when exposed to humidity or in contact with aqueous solutions. The polymer and water molecules interact, changing the physicochemical parameters of the material; the most noticeable effect is a decreased glass transition temperature (Tg), known as plasticization. We...... used microcantilever sensors to measure the Tg versus moisture content in poly(lactic-co-glycolic acid) (PLGA), a biodegradable polymer used in implants and as a drug carrier. We demonstrate a concomitant measurement of the mass absorption and Tg using nanograms of material and an inexpensive setup...

  19. Hyperbranched polyester polyol modified with polylactic acid as a compatibilizer for plasticized tapioca starch/polylactic acid blends

    Directory of Open Access Journals (Sweden)

    Ricardo Mesias

    2018-03-01

    Full Text Available Abstract A hyperbranched polyester polyol of the second generation (HBP2 was modified with polylactic acid (HBP2-g-PLA and employed as a compatibilizer for plasticized tapioca starch (TPS/polylactic acid (PLA blends. The effect of the compatibilizer HBP2- g-PLA was evaluated in comparison to the control sample (TPS/PLA blend without HBP2-g-PLA. The torque value of the TPS/PLA blends with HBP2- g-PLA was lower than that of the control sample, while thermal stability and crystallinity followed opposite behavior. The glass transition temperature (Tg and degree of crystallinity of the TPS/PLA blends with HBP2-g-PLA decreased with increasing mass fraction of HBP2-g-PLA. By scanning electron microscopy (SEM, it was observed that the morphology of the TPS/PLA blends with HBP2-g -PLA was more homogeneous than that of the control sample, confirming that HBP2- g-PLA acted as a compatibilizer and plasticizing agent to the TPS/PLA blends. Rheological analysis of the compatibilized TPS/PLA blends indicated the presence of microstructure.

  20. Conditional RARα Knockout Mice Reveal Acute Requirement for Retinoic Acid and RARα in Homeostatic Plasticity

    Directory of Open Access Journals (Sweden)

    Federica eSarti

    2012-02-01

    Full Text Available All-trans retinoic acid (RA plays important roles in brain development through regulating gene transcription. Recently, a novel postdevelopmental role of RA in mature brain was proposed. Specifically, RA rapidly enhanced excitatory synaptic transmission independent of transcriptional regulation. RA synthesis was induced when excitatory synaptic transmission was chronically blocked, and RA then activated dendritic protein synthesis and synaptic insertion of homomeric GluA1 AMPA receptors, thereby compensating for the loss of neuronal activity in a homeostatic fashion. This action of RA was suggested to be mediated by its canonical receptor RARα but no genetic evidence was available. Thus, we here tested the fundamental requirement of RARα in homeostatic plasticity using conditional RARα knockout mice, and additionally performed a structure-function analysis of RARα. We show that acutely deleting RARα in neurons eliminated RA’s effect on excitatory synaptic transmission, and inhibited activity blockade-induced homeostatic synaptic plasticity. By expressing various RARα rescue constructs in RARα knockout neurons, we found that the DNA-binding domain of RARα was dispensable for its role in regulating synaptic strength, further supporting the notion that RA and RARα act in a non-transcriptional manner in this context. By contrast, the ligand-binding domain (LBD and the mRNA-binding domain (F-domain are both necessary and sufficient for the function of RARα in homeostatic plasticity. Furthermore, we found that homeostatic regulation performed by the LBD/F domains leads to insertion of calcium-permeable AMPA receptors. Our results confirm with unequivocal genetic approaches that RA and RARα perform essential non-transcriptional functions in regulating synaptic strength, and establish a functional link between the various domains of RARα and their involvement in regulating protein synthesis and excitatory synaptic transmission during

  1. Preparation of Grinding Aid Using Waste Acid Residue from Plasticizer Plant

    Science.gov (United States)

    Li, Lingxiao; Feng, Yanchao; Liu, Manchao; Zhao, Fengqing

    2017-09-01

    The grinding aid for granulated blast-furnace slag were prepared from waste acid residue from plasticizer plant through neutralization, de-methanol and granulation process. In this process, sulfuric acid was transformed into gypsum which has much contribution for grinding effect by combined use with the glycerol and poly glycerin in the waste. Fly ash was used for granulation for the composite grinding aid. Methanol can be recycled in the process. The result showed that the suitable addition of grinding aid is 0.03 % of granulated blast-furnace slag (mass). In this case, the specific surface area is 14% higher than that of the blank. Compared with the common grinding aids, it has excellent performance and low cost.

  2. Enhanced long term microcircuit plasticity in the valproic acid animal model of autism

    Directory of Open Access Journals (Sweden)

    Guilherme T Silva

    2009-06-01

    Full Text Available A single intra-peritoneal injection of valproic acid (VPA on embryonic day (ED 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a mini-column (<50μm. In the present study, we explored whether Long Term Microcircuit Plasticity (LTMP was altered in this animal model. We performed multi-neuron patch-clamp recordings on clusters of layer V pyramidal cells in somatosensory cortex brain slices (PN 12-15, mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism.

  3. Plasticity of crassulacean acid metabolism at subtropical latitudes: a pineapple case study.

    Science.gov (United States)

    Rainha, Nuno; Medeiros, Violante P; Câmara, Mariana; Faustino, Hélder; Leite, João P; Barreto, Maria do Carmo; Cruz, Cristina; Pacheco, Carlos A; Ponte, Duarte; Bernardes da Silva, Anabela

    2016-01-01

    Plants with the crassulacean acid metabolism (CAM) express high-metabolic plasticity, to adjust to environmental stresses. This article hypothesizes that irradiance and nocturnal temperatures are the major limitations for CAM at higher latitudes such as the Azores (37°45'N). Circadian CAM expression in Ananas comosus L. Merr. (pineapple) was assessed by the diurnal pattern of leaf carbon fixation into l-malate at the solstices and equinoxes, and confirmed by determining maximal phosphoenolpyruvate carboxylase (PEPC) activity in plant material. Metabolic adjustments to environmental conditions were confirmed by gas exchange measurements, and integrated with environmental data to determine CAM's limiting factors: light and temperature. CAM plasticity was observed at the equinoxes, under similar photoperiods, but different environmental conditions. In spring, CAM expression was similar between vegetative and flowering plants, while in autumn, flowering (before anthesis) and fructifying (with fully developed fruit before ripening) plants accumulated more l-malate. Below 100 µmol m(-2) s(-1) , CAM phase I was extended, reducing CAM phase III during the day. Carbon fixation inhibition may occur by two major pathways: nocturnal temperature (pineapple to survive in environments not suitable for high productivity. © 2015 Scandinavian Plant Physiology Society.

  4. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  5. Suicide by plastic bag suffocation combined with the mixture of citric acid and baking soda in an adolescent.

    Science.gov (United States)

    Murakami, Keishu; Kawaguchi, Takashi; Hashizume, Yumiko; Kitamura, Kengo; Okada, Misato; Okumoto, Kohei; Sakamoto, Shoich; Ishida, Yuko; Nosaka, Mizuho; Kimura, Akihiko; Takatsu, Akihiro; Kondo, Toshikazu

    2018-05-22

    We describe a case of suicidal asphyxiation using a plastic bag combined with carbon dioxide (CO 2 ) gas. A 20-year-old male, whose head was covered with a plastic bag, was found dead in his room. In the plastic bag, there were two glass-made cups containing liquid-like substance. Through crime scene investigation by police staffs, a bottle of citric acid and a box of baking soda were also discovered in his room. The forensic autopsy revealed that there were neither lesions nor injuries in all of the organs. Moreover, any drugs and poisons could not be detected in blood samples. Based on autopsy findings and crime scene investigation, the cause of death was diagnosed as acute asphyxia due to CO 2 intoxication by the mixture of citric acid with baking soda in the plastic bag. To the best of our knowledge, there are no medical literatures describing plastic bag suffocation combined with CO 2 gas generated from citric acid and baking soda, which has been widely distributed as suicidal means through websites. This case report promotes forensic pathologists and medical coroners to emphasize that the Internet has a crucial role on a source of suicidal information or a promoter of suicide all over the world.

  6. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem.

    Science.gov (United States)

    Zhang, Wei; Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Eshbaugh, Robert; Chen, Fang; Atwell, Susana; Kliebenstein, Daniel J

    2017-11-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana - Botrytis cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1 , individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. © 2017 American Society of Plant Biologists. All rights reserved.

  7. Collagen-chitosan scaffold - Lauric acid plasticizer for skin tissue engineering on burn cases

    Science.gov (United States)

    Widiyanti, Prihartini; Setyadi, Ewing Dian; Rudyardjo, Djony Izak

    2017-02-01

    The prevalence of burns in the world is more than 800 cases per one million people each year and this is the second highest cause of death due to trauma after traffic accident. Many studies are turning to skin substitute methods of tissue engineering. The purpose of this study is to determine the composition of the collagen, chitosan, and lauric acid scaffold, as well as knowing the results of the characterization of the scaffold. The synthesis of chitosan collagen lauric acid scaffold as a skin tissue was engineered using freeze dried method. Results from making of collagen chitosan lauric acid scaffold was characterized physically, biologically and mechanically by SEM, cytotoxicity, biodegradation, and tensile strength. From the morphology test, the result obtained is that pore diameter size ranges from 94.11 to 140.1 µm for samples A,B,C,D, which are in the range of normal pore size 63-150 µm, while sample E has value below the standard which is about 37.87 to 47.36 µm. From cytotoxicity assay, the result obtained is the percentage value of living cells between 20.11 to 21.51%. This value is below 50% the standard value of living cells. Incompatibility is made possible because of human error mainly the replication of washing process over the standard. Degradation testing obtained values of 19.44% - 40% by weight which are degraded during the 7 days of observation. Tensile test results obtained a range of values of 0.192 - 3.53 MPa. Only sample A (3.53 MPa) and B (1.935 MPa) meet the standard values of skin tissue scaffold that is 1-24 MPa. Based on the results of the characteristics of this study, composite chitosan collagen scaffold with lauric acid plasticizer has a potential candidate for skin tissue engineering for skin burns cases.

  8. BIODEGRADABLE PLASTICS FROM A MIXTURE OF LOW DENSITY POLYETHYLENE (LDPE AND CASSAVA STARCH WITH THE ADDITION OF ACRYLIC ACID

    Directory of Open Access Journals (Sweden)

    Susilawati Susilawati

    2013-05-01

    Full Text Available A research of preparation biodegradable plastics, from LDPE and cassava starch mixture with the addition of acrylic acid, had been conducted. This research purpose to  studied compatibility properties of the material and percent weight loss during the biodegradation test. Optimum weight loss (59,26% was showed after 60 days witches LDPE and starch composition ratio 6 : 4 (w/w  while tensile strength  equal to 0,38 Kgf/mm2.  SEM characterization showed that biodegradation has occurred by  formation of hole in the biodegradable plastic surface. DTA test gave Tg = 130 °C, Tm = 230 °C and Td = 370-450 °C while FT-IR analysis showed that the biodegradable plastics have a chemistry interaction.

  9. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils.

    Science.gov (United States)

    Ali, M A; Louche, J; Legname, E; Duchemin, M; Plassard, C

    2009-12-01

    Young seedlings of maritime pine (Pinus pinaster Soland in Aït.) were grown in rhizoboxes using intact spodosol soil samples from the southwest of France, in Landes of Gascogne, presenting a large variation of phosphorus (P) availability. Soils were collected from a 93-year-old unfertilized stand and a 13-year-old P. pinaster stand with regular annual fertilization of either only P or P and nitrogen (N). After 6 months of culture in controlled conditions, different morphotypes of ectomycorrhiza (ECM) were used for the measurements of acid phosphatase activity and molecular identification of fungal species using amplification of the ITS region. Total biomass, N and P contents were measured in roots and shoots of plants. Bicarbonate- and NaOH-available inorganic P (Pi), organic P (Po) and ergosterol concentrations were measured in bulk and rhizosphere soil. The results showed that bulk soil from the 93-year-old forest stand presented the highest Po levels, but relatively higher bicarbonate-extractable Pi levels compared to 13-year-old unfertilized stand. Fertilizers significantly increased the concentrations of inorganic P fractions in bulk soil. Ergosterol contents in rhizosphere soil were increased by fertilizer application. The dominant fungal species was Rhizopogon luteolus forming 66.6% of analysed ECM tips. Acid phosphatase activity was highly variable and varied inversely with bicarbonate-extractable Pi levels in the rhizosphere soil. Total P or total N in plants was linearly correlated with total plant biomass, but the slope was steep only between total P and biomass in fertilized soil samples. In spite of high phosphatase activity in ECM tips, P availability remained a limiting nutrient in soil samples from unfertilized stands. Nevertheless young P. pinaster seedlings showed a high plasticity for biomass production at low P availability in soils.

  10. Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism.

    Science.gov (United States)

    Silva, Guilherme Testa; Le Bé, Jean-Vincent; Riachi, Imad; Rinaldi, Tania; Markram, Kamila; Markram, Henry

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (brain slices (PN 12-15), mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100 μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism.

  11. Plasticization of poly(lactic acid) using different molecular weight of Poly(ethylene glycol)

    Science.gov (United States)

    Septevani, Athanasia Amanda; Bhakri, Samsul

    2017-11-01

    Poly (lactic acid) (PLA) has been known as an excellent candidate for developing the future bioplastic due to its biodegradability and competitive price. However, inherent brittleness and low thermal stability of PLA have limited its applications. Considerable studies have been developed to improve the flexibility of PLA, in which blending PLA with various plasticizers has been identified as a cost-effective way to lower glass-transition temperature (Tg) and thus improve its elongation property. In this study, PLA was modified by incorporating poly(ethylene glycol) as a plasticizer with different molecular weights (M¯w 400, 1000, and 6000, called respectively as PEG 400, PEG 1000, and PEG 6000) via a solvent-casting blend method. FTIR was used for analyzing the chemical interaction while TGA and DSC measured the thermal behavior of PLA/PEG. The results indicated that the addition of lower M¯w (PEG 400 and PEG 1000) could reduce the Tg due to the enhancement of chain mobility of PLA with PEG and so driving into a more amorphous states resulted reduction of melting temperature (Tm) compared to the neat PLA. Further, at a higher M¯w of PEG 6000, the longer chain of ethylene glycol, in contrast, resulted a gradual increase in the Tg as well as Tm where the value went back to the point of neat PLA compared to the other lower molecular weight of PLA. This was due to the decrease in polymer miscibility with the increasing of M¯w. In terms of thermal stability, the addition of PEG exhibited two step degradation behavior while the neat PLA only possessed single step degradation. The presence of PEG could act as a protective barrier layer that could hinder the permeability of the volatile compound and product during decomposition reaction and thus could eventually delay and slower the degradation process. It was observed that the addition of PEG at higher M¯w (PEG1000 and PEG 6000) exhibited a higher second degradation temperature up to 380 °C.

  12. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation.

    Science.gov (United States)

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R St J

    2013-06-01

    There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5M) dissolved in either dimethyl sulfoxide or water (at ca. 23°C and heated to ca. 105°C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Studies on performance evaluation of a green plasticizer made by enzymatic esterification of furfuryl alcohol and castor oil fatty acid.

    Science.gov (United States)

    Mukherjee, Sohini; Ghosh, Mahua

    2017-02-10

    The esterification of furfuryl alcohol (FA) and castor oil fatty acid (COFA) at 3:1 molar ratio, by immobilized Candida antarctica Lipase B (NS 435 from Novozyme) in a solvent free system gave a maximum yield of 88.64% (%w/w) at 5h. Performance of the FA-COFA ester plasticized Ethyl Cellulose (EC) films were evaluated by surface morphologies, XRD analysis, mechanical properties,thermal properties, water vapor permeability and migration stability test. It was an effective plasticizer with better mechanical properties and thermal stability at the increasing concentration of FA-COFA ester (15-25%) containing EC film, than the traditional plasticizer, i.e; dibutyl phthalate (DBP) in producing good quality films. Chemical structure and the intermolecular interactions between FA-COFA ester and ethyl cellulose chains were the causative agents of these outstanding performances. Therefore, this FA-COFA ester, with significant plasticizing property, at a certain concentration, can be a substitute of DBP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The synthesis and characterization of hydrogel chitosan-alginate with the addition of plasticizer lauric acid for wound dressing application

    Science.gov (United States)

    Izak Rudyardjo, Djony; Wijayanto, Setiawan

    2017-05-01

    The writers conducted a study about the synthesis and characterization of hydrogel chitosan-alginate by addition plasticizer lauric acid for wound dressing application. The purpose was to find out the impact of lauric acid concentration variation on hydrogel chitosan-alginate to get the best mechanical and physical properties to be applied as wound dressing in accordance with existing standards. This study used commercially chitosan from extract of shells crab, commercially-available alginate from the extract of sargassum sp, and commercial lauric acid from palm starch. The addition of lauric acid was aimed to repair mechanical properties of hydrogel. The composition of chitosan-alginate is 4:1 (v/v), while the lauric acid concentration variations are 0%, 1%, 2%, 3%, 4%, and 5% w/v. The characterization of mechanical properties test (Tensile strength and Elongation at break) at hydrogel showed the hydrogel chitosan-alginate-lauric acid have the characteristic which meets the standard of mechanical properties for human skin. The best performance of hydrogel chitosan-alginate-lauric acid was obtained by increasing luric acid concentration by 4%, which has a thickness value of 125.46±0.63 µm, elongation 28.89±1.01 %, tensile strength (9.01±0.65) MPa, and ability to absorb liquids (601.45 ±1.24) %.

  15. Composition dependence of the synergistic effect of nucleating agent and plasticizer in poly(lactic acid: A Mixture Design study

    Directory of Open Access Journals (Sweden)

    M. K. Fehri

    2016-04-01

    Full Text Available Blends consisting of commercial poly(lactic acid (PLA, poly(lactic acid oligomer (OLA8 as plasticizer and a sulfonic salt of a phthalic ester and poly(D-lactic acid as nucleating agents were prepared by melt extrusion, following a Mixture Design approach, in order to systematically study mechanical and thermal properties as a function of composition. The full investigation was carried out by differential scanning calorimetry (DSC, dynamic mechanical thermal analysis (DMTA and tensile tests. The crystallization half-time was also studied at 105 °C as a function of the blends composition. A range of compositions in which the plasticizer and the nucleation agent minimized the crystallization half-time in a synergistic way was clearly identified thanks to the application of the Mixture Design approach. The results allowed also the identification of a composition range to maximize the crystallinity developed during the rapid cooling below glass transition temperature in injection moulding, thus allowing an easier processing of PLA based materials. Moreover the mechanical properties were discussed by correlating them to the chemical structural features and thermal behaviour of blends.

  16. Effect of cellulose nanocrystals (CNC) addition and citric acid as co-plasticizer on physical properties of sago starch biocomposite

    Science.gov (United States)

    Nasution, Halimatuddahliana; Afandy, Yayang; Al-fath, M. Thoriq

    2018-04-01

    Cellulose has potential applications in new high-performance materials with low environmental impact. Rattan biomass is a fiber waste from processing industry of rattan which contains 37,6% cellulose. The high cellulose contents of rattan biomass make it a source of cellulose nanocrystals as a filler in biocomposite. Isolation of alpha cellulose from biomass rattan was prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3,5% HNO3 and NaNO2, precipitated with 17,5% NaOH, bleaching process with 10% H2O2. Nanocrystals obtained through the hydrolysis of alpha cellulose using 45% H2SO4 and followed by mechanical processes of ultrasonication, centrifugation, and filtration with a dialysis membrane. Sago starch biocomposites were prepared using a solution casting method, which includes 1-4 wt % cellulose nanocrystals rattan biomass as fillers, 10-40 wt% citric acid as co-plasticizer and 30 wt% glycerol as plasticizer. The results of TEM and FTIR characteristic of cellulose nanocrystals show spherical like shape FTIR and chemical composition analysis demonstrated that lignin and hemicellulose structures were successfully removed. Biocomposite characteristic consists of density and water absorption. The results showed the highest density values were 0,266 gram/cm3 obtained at an additional of 3% cellulose nanocrystals rattan biomass and 30% citric acid. The lowest water absorption was 7,893% obtained at an additional of 4% cellulose nanocrystals rattan biomass and 10% citric acid.

  17. Wood-plastic composites using thermomechanical pulp made from oxalic acid-pretreated red pine chips

    Science.gov (United States)

    J.E. Winandy; N.M. Stark; E. Horn

    2008-01-01

    The characteristics and properties of wood fiber is one of many factors of critical importance to the performance of wood-plastic composites. In commercial thermo-mechanical pulping (TMP) of wood chips to produce fibers, high temperatures (>100°C) are used to separate the fibers during TMP refining. These mechanical pressures and temperatures are usually modulated...

  18. Plasticization of Poly (lactic) acid Film as a Potential Coating Material

    Science.gov (United States)

    Yang, Ping; Li, Hua; Liu, Qingsong; Dong, Hongbiao; Duan, Yafei; Zhang, Jiasong

    2018-01-01

    PLA-based composite films with different plasticizers, such as polyethylene glycol (PEG) and Tributyl citrate (TBC), were prepared using a solvent casting method and their machanical, water absorbency and NO3 --N permeability properties were tested. Tensile strength, elongation at break, water absorbency and NO3 --N permeability of neat PLA film were 1.99 ± 0.04 MPa, 2.7 ± 0.46%, 29.33 ± 0.3% and 216.03 ± 19.92 mg·L-1·m-2·h-1, respectively. After the addition of plasticizers the tensile strength were decreased, tensile strength of flims added 40wt% TBC and PEG decreased by 59.3% and 52.26%. While the elongation at break of the PLA film gradually increased. The elongation at break reached the value of 23.96±0.48% and 38.55±1.66% for the films added PEG and TBC respectively at the concentration of 40wt%. Water absorbency decreased as the increase of plasticizers. The NO3 --N permeability attained a maximum of 300.05±10.47 and 270.97±14.54 mg·L-1·m-2·h-1 for films added PEG and TBC at the concentration of 10 wt % respectively. Considered the NO3 --N permeability, PEG at 10wt% seemed the better plasticizer for PLA used in control release of fertilizer.

  19. The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata.

    Science.gov (United States)

    Seemann, J; Sawall, Y; Auel, H; Richter, C

    2013-03-01

    Following up on previous investigations on the stress resistance of corals, this study assessed the trophic plasticity of the coral Stylophora subseriata in the Spermonde Archipelago (Indonesia) along an eutrophication gradient. Trophic plasticity was assessed in terms of lipid content and fatty acid composition in the holobiont relative to its plankton (50-300 μm) food as well as the zooxanthellae density, lipid, FA and chlorophyll a content. A cross-transplantation experiment was carried out for 1.5 months in order to assess the trophic potential of corals. Corals, which live in the eutrophied nearshore area showed higher zooxanthellae and chlorophyll a values and higher amounts of the dinoflagellate biomarker FA 18:4n-3. Their lipid contents were maintained at similar to levels from specimens further away from the anthropogenic impact source going up to 14.9 ± 0.9 %. A similarity percentage analysis of the groups holobiont, zooxanthellae and plankton >55 μm found that differences between the FA composition of the holobiont and zooxanthellae symbionts were more distinct in the site closer to the shore, thus heterotrophic feeding became more important. Transplanted corals attained very similar zooxanthellae, chlorophyll a and lipid values at all sites as the specimens originating from those sites, which indicates a high potential for trophic plasticity in the case of a change in food sources, which makes this species competitive and resistant to eutrophication.

  20. Effects of Graphene Nanoplatelets and Reduced Graphene Oxide on Poly(lactic acid and Plasticized Poly(lactic acid: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Buong Woei Chieng

    2014-08-01

    Full Text Available The superlative mechanical properties of graphene-based materials make them the ideal filler materials for polymer composites reinforcement. Two types of graphene-based materials, graphene nanoplatelets (xGnP and reduced graphene oxide (rGO, were used as nanofiller in poly(lactic acid (PLA polymer matrix, as well as plasticized PLA. The addition of rGO into PLA or plasticized PLA substantially enhanced the tensile strength without deteriorating elasticity, compared to xGnP nanocomposites. In addition, the investigation of the thermal properties has found that the presence of rGO in the system is very beneficial for improving thermal stability of the PLA or plasticized PLA. Scanning electron microscope (SEM images of the rGO nanocomposites display homogenous and good uniformity morphology. Transmission electron microscopy (TEM images revealed that the rGO remained intact as graphene sheet layers and were dispersed well into the polymer matrix, and it was confirmed by X-ray diffraction (XRD results, which shows no graphitic peak in the XRD pattern.

  1. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism

    Directory of Open Access Journals (Sweden)

    Tania Rinaldi

    2008-10-01

    Full Text Available The prefrontal cortex has been extensively implicated in autism to explain deficits in executive and other higher-order functions related to cognition, language, sociability and emotion. The possible changes at the level of the neuronal microcircuit are however not known. We studied microcircuit alterations in the prefrontal cortex in the valproic acid rat model of autism and found that the layer 5 pyramidal neurons are connected to significantly more neighbouring neurons than in controls. These excitatory connections are more plastic displaying enhanced long-term potentiation of the strength of synapses. The microcircuit alterations found in the prefrontal cortex are therefore similar to the alterations previously found in the somatosensory cortex. Hyper-connectivity and hyper-plasticity in the prefrontal cortex implies hyper-functionality of one of the highest order processing regions in the brain, and stands in contrast to the hypo-functionality that is normally proposed in this region to explain some of the autistic symptoms. We propose that a number of deficits in autism such as sociability, attention, multi-tasking and repetitive behaviours, should be re-interpreted in the light of a hyper-functional prefrontal cortex.

  2. Potential toxicity of phthalic acid esters plasticizer: interaction of dimethyl phthalate with trypsin in vitro.

    Science.gov (United States)

    Wang, Yaping; Zhang, Guowen; Wang, Langhong

    2015-01-14

    Dimethyl phthalate (DMP) is widely used as a plasticizer in industrial processes and has been reported to possess potential toxicity to the human body. In this study, the interaction between DMP and trypsin in vitro was investigated. The results of fluorescence, UV–vis, circular dichroism, and Fourier transform infrared spectra along with cyclic voltammetric measurements indicated that the remarkable fluorescence quenching and conformational changes of trypsin resulted from the formation of a DMP–trypsin complex, which was driven mainly by hydrophobic interactions. The molecular docking and trypsin activity assay showed that DMP primarily interacted with the catalytic triad of trypsin and led to the inhibition of trypsin activity. The dimensions of the individual trypsin molecules were found to become larger after binding with DMP by atomic force microscopy imaging. This study offers a comprehensive picture of DMP–trypsin interaction, which is expected to provide insights into the toxicological effect of DMP.

  3. Development of starch biofilms using different carboxylic acids as plasticizers; Desenvolvimento de biofilmes de amido utilizando como plastificantes diferentes acidos carboxilicos

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, L.C.; Miranda, C.S.; Santos, W.J. dos; Goncalves, A.P.B.; Oliveira, J.C.; Jose, N.M., E-mail: uanaconceicaocruz@gmail.com [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Grupo de Energia e Ciencias dos Materiais

    2014-07-01

    Biodegradable films have become a widely exploited issue among scientists because of their positive environmental impact, besides their potential to promote better food conservation and an increase in shelf life. Starch has been studied in this field due to its availability, low cost and biodegradability. However, starch films tend to be brittle and they need addition of a plasticizer to enable their usage. In this work, starch films were synthesized with different carboxylic acids as plasticizers, aiming to observe the effect of the acids chain size in the final films properties. The acids used were: oxalic, succinic and adipic. The materials were produced by casting and characterized by DSC, TG, DRX e FTIR. It was observed that the acids chain size influenced on the thermal and structural properties of the films. (author)

  4. Abscisic acid metabolite profiling as indicators of plastic responses to drought in grasses from arid Patagonian Monte (Argentina).

    Science.gov (United States)

    Cenzano, Ana M; Masciarelli, O; Luna, M Virginia

    2014-10-01

    The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Enhanced long term microcircuit plasticity in the valproic acid animal model of autism

    NARCIS (Netherlands)

    Silva, G.; Le Bé, J.-V.; Riachi, I.; Rinaldi, T.; Markram, K.; Markram, H.

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and

  6. Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.

    Science.gov (United States)

    Cheng, Xingqun; Redanz, Sylvio; Cullin, Nyssa; Zhou, Xuedong; Xu, Xin; Joshi, Vrushali; Koley, Dipankar; Merritt, Justin; Kreth, Jens

    2018-01-15

    Commensal Streptococcus sanguinis and Streptococcus gordonii are pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H 2 O 2 , which is crucial for inhibiting competing biofilm members, especially the cariogenic species Streptococcus mutans H 2 O 2 production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H 2 O 2 production by S. sanguinis and S. gordonii S. sanguinis H 2 O 2 production was not found to be affected by moderate changes in environmental pH, whereas S. gordonii H 2 O 2 production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H 2 O 2 or lactic acid production, revealed increased lactic acid levels for S. gordonii at pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival of S. gordonii at low pH and seems to constitute part of the acid tolerance response of S. gordonii Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H 2 O 2 IMPORTANCE Oral biofilms are subject to frequent and dramatic changes in pH. S. sanguinis and S. gordonii can compete with caries- and periodontitis-associated pathogens by generating H 2 O 2 Therefore, it is crucial to understand how S. sanguinis and S. gordonii adapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival

  7. Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging

    OpenAIRE

    Burgos, Nuria; Armentano, Ilaria; Fortunati, Elena; Dominici, Franco; Luzi, Francesca; Fiori, Stefano; Cristofaro, Francesco; Visai, Livia; Jiménez, Alfonso; Kenny, José María

    2017-01-01

    Fully bio-based and biodegradable active films based on poly(lactic acid) (PLA) blended with poly(3-hydroxybutyrate) (PHB) and incorporating lactic acid oligomers (OLA) as plasticizers and carvacrol as active agent were extruded and fully characterized in their functional properties for antimicrobial active packaging. PLA_PHB films showed good barrier to water vapor, while the resistance to oxygen diffusion decreased with the addition of OLA and carvacrol. Their overall migration in aqueous f...

  8. Age-dependent modulation of synaptic plasticity and insulin mimetic effect of lipoic acid on a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Harsh Sancheti

    Full Text Available Alzheimer's disease is a progressive neurodegenerative disease that entails impairments of memory, thinking and behavior and culminates into brain atrophy. Impaired glucose uptake (accumulating into energy deficits and synaptic plasticity have been shown to be affected in the early stages of Alzheimer's disease. This study examines the ability of lipoic acid to increase brain glucose uptake and lead to improvements in synaptic plasticity on a triple transgenic mouse model of Alzheimer's disease (3xTg-AD that shows progression of pathology as a function of age; two age groups: 6 months (young and 12 months (old were used in this study. 3xTg-AD mice fed 0.23% w/v lipoic acid in drinking water for 4 weeks showed an insulin mimetic effect that consisted of increased brain glucose uptake, activation of the insulin receptor substrate and of the PI3K/Akt signaling pathway. Lipoic acid supplementation led to important changes in synaptic function as shown by increased input/output (I/O and long term potentiation (LTP (measured by electrophysiology. Lipoic acid was more effective in stimulating an insulin-like effect and reversing the impaired synaptic plasticity in the old mice, wherein the impairment of insulin signaling and synaptic plasticity was more pronounced than those in young mice.

  9. Recycling of plastic wastes with poly (ethylene-co-methacrylic acid) copolymer as compatibilizer and their conversion into high-end product.

    Science.gov (United States)

    Rajasekaran, Divya; Maji, Pradip K

    2018-04-01

    This paper deals with the utilization of plastic wastes to a useful product. The major plastic pollutants that are considered to be in maximum use i.e. PET bottle and PE bags have been taken for consideration for recycling. As these two plastic wastes are not compatible, poly (ethylene-co-methacrylic acid) copolymer has been used as compatibilizer to process these two plastic wastes. Effect of dose of poly (ethylene-co-methacrylic acid) copolymer as compatibilizer has been studied here. It has been shown that only 3 wt% of poly (ethylene-co-methacrylic acid) copolymer is sufficient to make 3:1 mass ratio of PET bottle and polyethylene bags compatible. Compatibility has been examined through mechanical testing, thermal and morphological analysis. After analysing the property of recyclates, better mechanical and thermal property has been observed. Almost 500% of tensile property has been improved by addition of 3 wt% of poly (ethylene-co-methacrylic acid) copolymer in 3:1 mass ratio blend of PET bottle and PE bags than that of pristine blend. Morphological analysis by FESEM and AFM has also confirmed the compatibility of the blend. Experimental data showed better performance than available recycling process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The effect of cellulose nanocrystal (CNC) from rattan biomass as filler and citric acid as co-plasticizer on tensile properties of sago starch biocomposite

    Science.gov (United States)

    Nasution, Halimatuddahliana; Harahap, Hamidah; Afandy, Yayang; Fath, M. Thoriq Al

    2017-11-01

    Biocomposite containing cellulose nanocrystals (CNC) from rattan biomass as fillers and citric acid as co-plasticizer. Rattan biomass is a fiber waste from processing industry of rattan which contains 37.6% cellulose. Isolation of alpha cellulose from rattan biomass was prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3.5% HNO3 and NaNO2, precipitated with 17.5% NaOH, bleaching process with 10% H2O2. The preparation of CNC includes acid hydrolysis using 45% H2SO4 and followed by mechanical processes of ultrasonication, centrifugation, and filtration with a dialysis membrane. Biocomposite was prepared using a solution casting method, which includes 1-4 wt % CNC as fillers, 10-40 wt% citric acid as co-plasticizer and 30 wt% glycerol as plasticizer. The results of TGA, SEM and XRD characteristic of CNC show that CNC has low residue mass, rod like and network like shape with crystallinity index 84.46%. Biocomposite characteristic consists of SEM, tensile strength and elongation at break. The resultshows that biocomposites by addition of CNC and citric acid have a smooth surface and homogeneous distribution of fillers. The tensile strength of biocomposites was increased by addition CNC and citric acid. The addition of CNC decreases the elongation at break but by addition of citric acid, the elongation at break was increased.

  11. Evaluation of peracetic acid permeation during flash sterilization through pharmaceutical plastic polymers used in cytotoxic reconstitution units.

    Science.gov (United States)

    Havard, Laurent; Fellous-Jerome, Joelle; Bonan, Brigitte; Pradeau, Dominique; Prognon, Patrice

    2005-01-01

    Peracetic acid (PAA) permeation in flash sterilization was studied using three different plastic infusion bags made of polypropylene and polyethylene, filled with glucose 5% or NaCl 0.9%. The pH was measured and acetic acid (AA) and PAA concentrations were made by reverse phase high-performance liquid chromatography (RP-HPLC). PAA was derivatized by oxidation of methyl tolyl sulfide (MTS) into methyl tolyl sulfoxide (MTSO) detected by ultraviolet (UV) absorbance at 230 nm. The technique has a sensitivity of 0.3 microg x L(-1) and was highly specific. Results showed that pH measurements remain constant and demonstrated the absence of PAA permeation, which was confirmed by the absence of AA permeation regardless of the brand tested, with both unwrapped and overwrapped infusion bags, when flash sterilization is applied. These results allow flash sterilization to be performed with unwrapped infusion bags without any risk of drug degradation by PAA. This makes compounding safer and easier, which improves productivity.

  12. Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism

    DEFF Research Database (Denmark)

    Silva, Guilherme Testa; Le Bé, Jean-Vincent; Riachi, Imad

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and ...... and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (...

  13. Plasticized Biodegradable Poly(lactic acid) Based Composites Containing Cellulose in Micro- and Nanosize

    OpenAIRE

    Halász, Katalin; Csóka, Levente

    2013-01-01

    The aim of this work was to study the characteristics of thermal processed poly(lactic acid) composites. Poly(ethylene glycol) (PEG400), microcrystalline cellulose (MCC), and ultrasound-treated microcrystalline cellulose (USMCC) were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorim...

  14. Enhanced long term microcircuit plasticity in the valproic acid animal model of autism

    OpenAIRE

    Guilherme T Silva; Guilherme T Silva; Jean-Vincent Le Bé; Imad Riachi; Tania Rinaldi; Kamila Markram; Henry Markram

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a mini-column (<50μm). In the present study, we explored whether Long Term Microcircuit ...

  15. Enhanced Long-Term Microcircuit Plasticity in the Valproic Acid Animal Model of Autism

    OpenAIRE

    Silva, Guilherme Testa; Le Bé, Jean-Vincent; Riachi, Imad; Rinaldi, Tania; Markram, Kamila; Markram, Henry

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (

  16. Plasticized Biodegradable Poly(lactic acid Based Composites Containing Cellulose in Micro- and Nanosize

    Directory of Open Access Journals (Sweden)

    Katalin Halász

    2013-01-01

    Full Text Available The aim of this work was to study the characteristics of thermal processed poly(lactic acid composites. Poly(ethylene glycol (PEG400, microcrystalline cellulose (MCC, and ultrasound-treated microcrystalline cellulose (USMCC were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, wide angle X-ray diffraction (WAXD, and degradation test.

  17. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    Science.gov (United States)

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.

  18. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding.

    Science.gov (United States)

    Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong

    2017-01-01

    Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure

    Directory of Open Access Journals (Sweden)

    Cameron David A

    2011-08-01

    Full Text Available Abstract Background Retinoic acid (RA is important for vertebrate eye morphogenesis and is a regulator of photoreceptor development in the retina. In the zebrafish, RA treatment of postmitotic photoreceptor precursors has been shown to promote the differentiation of rods and red-sensitive cones while inhibiting the differentiation of blue- and UV-sensitive cones. The roles played by RA and its receptors in modifying photoreceptor fate remain to be determined. Results Treatment of zebrafish embryos with RA, beginning at the time of retinal progenitor cell proliferation and prior to photoreceptor terminal mitosis, resulted in a significant alteration of rod and cone mosaic patterns, suggesting an increase in the production of rods at the expense of red cones. Quantitative pattern analyses documented increased density of rod photoreceptors and reduced local spacing between rod cells, suggesting rods were appearing in locations normally occupied by cone photoreceptors. Cone densities were correspondingly reduced and cone photoreceptor mosaics displayed expanded and less regular spacing. These results were consistent with replacement of approximately 25% of positions normally occupied by red-sensitive cones, with additional rods. Analysis of embryos from a RA-signaling reporter line determined that multiple retinal cell types, including mitotic cells and differentiating rods and cones, are capable of directly responding to RA. The RA receptors RXRγ and RARαb are expressed in patterns consistent with mediating the effects of RA on photoreceptors. Selective knockdown of RARαb expression resulted in a reduction in endogenous RA signaling in the retina. Knockdown of RARαb also caused a reduced production of rods that was not restored by simultaneous treatments with RA. Conclusions These data suggest that developing retinal cells have a dynamic sensitivity to RA during retinal neurogenesis. In zebrafish RA may influence the rod vs. cone cell fate

  20. Comparative Study of Chemical, Mechanical, Thermal, and Barrier Properties of Poly(Lactic Acid Plasticized with Epoxidized Soybean Oil and Epoxidized Palm Oil

    Directory of Open Access Journals (Sweden)

    Yee Bond Tee

    2015-12-01

    Full Text Available To investigate epoxidized palm oil’s (EPO potential as plasticizer for poly(lactic acid (PLA, its plasticizing effect was compared with commercialized epoxidized soybean oil (ESO. The plasticizers were respectively melt-compounded into PLA at 3, 5, 10, and 15 wt.%. As it was aimed for the blends to be characterized towards packaging appropriate for food products, they were hot-pressed into ~0.3-mm sheets, which is the approximate thickness of clamshell packaging. Fourier transform infrared spectroscopy (FTIR confirmed the plasticizers’ compatibility with PLA. At similar loadings, EPO was superior in reinforcing elongation at break (EAB, thermal, and barrier properties of PLA. The ductility of PLA was notably improved to 50.0% with addition of 3 wt.% of EPO. From thermogravimetric analysis (TGA, PLA/EPO5 improved PLA’s thermal stability, while all PLA/ESO blends reported reduced thermal stability. From differential scanning calorimetry (DSC, the increase in crystallinity and the shifts in enthalpy of fusions in all plasticized blends denoted facilitation of PLA to form thermally stable α-form crystals. The addition of EPO enabled PLA to become highly impermeable to oxygen, which can extend its potential in packaging extensive range of oxygen sensitive food.

  1. Plastic Surgery

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Plastic Surgery KidsHealth / For Teens / Plastic Surgery What's in ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  2. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    Science.gov (United States)

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods.

  3. Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency.

    Science.gov (United States)

    García-Macías, Paulina; Ordidge, Matthew; Vysini, Eleni; Waroonphan, Saran; Battey, Nicholas H; Gordon, Michael H; Hadley, Paul; John, Philip; Lovegrove, Julie A; Wagstaffe, Alexandra

    2007-12-12

    Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxidant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxidant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 micromol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 micromol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 microg/g), quercetin (ranging from 196 to 880 microg/g), and luteolin (ranging from 19 to 152 microg/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

  4. X-ray detection capabilities of plastic scintillators incorporated with hafnium oxide nanoparticles surface-modified with phenyl propionic acid

    Science.gov (United States)

    Hiyama, Fumiyuki; Noguchi, Takio; Koshimizu, Masanori; Kishimoto, Shunji; Haruki, Rie; Nishikido, Fumihiko; Yanagida, Takayuki; Fujimoto, Yutaka; Aida, Tsutomu; Takami, Seiichi; Adschiri, Tadafumi; Asai, Keisuke

    2018-01-01

    We synthesized plastic scintillators incorporated with HfO2 nanoparticles as detectors for X-ray synchrotron radiation. Nanoparticles with sizes of less than 10 nm were synthesized with the subcritical hydrothermal method. The detection efficiency of high-energy X-ray photons improved by up to 3.3 times because of the addition of the nanoparticles. Nanosecond time resolution was successfully achieved for all the scintillators. These results indicate that this method is applicable for the preparation of plastic scintillators to detect X-ray synchrotron radiation.

  5. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  6. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic Acid animal model of autism

    DEFF Research Database (Denmark)

    Rinaldi, Tania; Perrodin, Catherine; Markram, Henry

    2008-01-01

    of synapses. The microcircuit alterations found in the prefrontal cortex are therefore similar to the alterations previously found in the somatosensory cortex. Hyper-connectivity and hyper-plasticity in the prefrontal cortex implies hyper-functionality of one of the highest order processing regions...

  7. Alternative plasticizer, 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester, for blood containers with protective effects on red blood cells and improved cold resistance.

    Science.gov (United States)

    Morishita, Yuki; Nomura, Yusuke; Fukui, Chie; Fujisawa, Ayano; Watanabe, Kayo; Fujimaki, Hideo; Kumada, Hidefumi; Inoue, Kaoru; Morikawa, Tomomi; Takahashi, Miwa; Kawakami, Tsuyoshi; Sakoda, Hideyuki; Mukai, Tomokazu; Yuba, Toshiyasu; Inamura, Ken-Ichi; Tanoue, Akito; Miyazaki, Ken-Ichi; Chung, Ung-Il; Ogawa, Kumiko; Yoshida, Midori; Haishima, Yuji

    2018-04-01

    Di (2-ethylhexyl) phthalate (DEHP), a typical plasticizer used for polyvinyl chloride (PVC), is eluted from PVC-made blood containers and protects against red blood cell (RBC) hemolysis. However, concerns have arisen regarding the reproductive and developmental risks of DEHP in humans, and the use of alternative plasticizers for medical devices has been recommended worldwide. In this study, we propose that the use of a novel plasticizer, 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester (DL9TH), could help produce more useful and safe blood containers. PVC sheet containing DL9TH and di (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate (DOTH) provides comparable or superior protective effects to RBCs relative to PVC sheet containing DEHP or di-isononyl-cyclohexane-1,2-dicarboxylate (DINCH ® , an alternative plasticizer that has been used in PVC sheets for blood containers). The total amount of plasticizer eluted from DOTH/DL9TH-PVC sheets is nearly the same as that eluted from DEHP-PVC sheets. In addition, DOTH/DL9TH-PVC has better cold resistance than DEHP- and DINCH ® -PVC sheets. In vitro and in vivo tests for biological safety based on International Organization for Standardization guidelines (10993 series) suggest that the DOTH/DL9TH-PVC sheet can be used safely. Subchronic toxicity testing of DL9TH in male rats in accordance with the principles of Organisation for Economic Co-operation and Development Test Guideline 408 showed that DL9TH did not induce adverse effects up to the highest dose level tested (717 mg/kg body weight/day). There were no effects on testicular histopathology and sperm counts, and no indications of endocrine effects: testosterone, thyroid-stimulating hormone, follicle-stimulating hormone, and 17β-estradiol were unchanged by the treatment, compared with the control group. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1052-1063, 2018. © 2017 Wiley Periodicals, Inc.

  8. Preparation of Polyvinyl Alcohol/Xylan Blending Films with 1,2,3,4-Butane Tetracarboxylic Acid as a New Plasticizer

    Directory of Open Access Journals (Sweden)

    Cun-dian Gao

    2014-01-01

    Full Text Available Miscible, biodegradable polyvinyl alcohol (PVA/xylan blending films were firstly prepared in the range of the PVA/xylan weight ratio from 1 : 2 to 3 : 1 by casting method using 1,2,3,4-butane tetracarboxylic acid (BTCA as a new plasticizer. The properties of blending films as functions of PVA/xylan weight ratio and BTCA amount were discussed. XRD and FT-IR were applied to characterize the blending films. Experimental results indicated that tensile strength (TS and elongation at break (EAB of blending films decreased along with the decrease of the PVA/xylan weight ratio. Both of TS and EAB firstly increased and then decreased as the amount of BTCA was increased. More importantly, blending films were biodegraded almost by 41% with an addition of 10% BTCA in blending films within 30 days in soil. For all hydroxyl functionalized polymers (xylan and PVA, their molecular interactions and miscibility with BTCA endowed blending films with the biocompatibility and biodegradability. Therefore, these blending films are environmentally friendly materials which could be applied as biodegradable plastics for food packaging and agricultural applications.

  9. Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications.

    Science.gov (United States)

    Arrieta, Marina Patricia; Castro-López, María del Mar; Rayón, Emilio; Barral-Losada, Luis Fernando; López-Vilariño, José Manuel; López, Juan; González-Rodríguez, María Victoria

    2014-10-15

    Active biobased packaging materials based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends were prepared by melt blending and fully characterized. Catechin incorporation, as antioxidant compound, enhanced the thermal stability, whereas its release was improved by the addition of acetyl(tributyl citrate) (ATBC) as plasticizer. Whereas the incorporation of ATBC resulted in a reduction of elastic modulus and hardness, catechin addition produced more rigid materials due to hydrogen-bonding interactions between catechin hydroxyl groups and carbonyl groups of PLA and PHB. The quantification of catechin released into a fatty food simulant and the antioxidant effectiveness after the release process were demonstrated. The effect of the materials' exposure to a food simulant was also investigated. PHB-added materials maintained their structural and mechanical properties after 10 days in a test medium that represents the worst foreseeable conditions of the intended use. Thus, plasticized PLA-PHB blends with catechin show their potential as biobased active packaging for fatty food.

  10. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Hyper-Connectivity and Hyper-Plasticity in the Medial Prefrontal Cortex in the Valproic Acid Animal Model of Autism

    OpenAIRE

    Rinaldi, Tania; Perrodin, Catherine; Markram, Henry

    2008-01-01

    The prefrontal cortex has been extensively implicated in autism to explain deficits in executive and other higher-order functions related to cognition, language, sociability and emotion. The possible changes at the level of the neuronal microcircuit are however not known. We studied microcircuit alterations in the prefrontal cortex in the valproic acid rat model of autism and found that the layer 5 pyramidal neurons are connected to significantly more neighbouring neurons than in controls. Th...

  12. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions

    OpenAIRE

    Carné Sánchez, Arnau; Collinson, Simon R.

    2011-01-01

    The glycolysis of postconsumer polyethylene terephthalate (PET) waste was evaluated with catalysts of zinc acetate, zinc stearate and zinc sulfate, showing that zinc acetate was the most soluble and effective. The chemical recycling by solvolysis of polylactic acid (PLA) and PET waste in either methanol or ethanol was investigated. Zinc acetate as a catalyst was found to be necessary to yield an effective depolymerization of waste PLA giving lactate esters, while with the same reaction condit...

  13. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  14. PLASTIC SURGERY

    African Journals Online (AJOL)

    Department of Plastic and Reconstructive Surgery Sefako Makgatho Health Science University, ... We report on a pilot study on the use of a circumareolar excision and the use of .... and 1 gynecomastia patient) requested reduction in NAC size.

  15. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  16. Fabrication of Microfibrous and Nano-/Microfibrous Scaffolds: Melt and Hybrid Electrospinning and Surface Modification of Poly(L-lactic acid with Plasticizer

    Directory of Open Access Journals (Sweden)

    Young Il Yoon

    2013-01-01

    Full Text Available Biodegradable poly(L-lactic acid (PLA fibrous scaffolds were prepared by electrospinning from a PLA melt containing poly(ethylene glycol (PEG as a plasticizer to obtain thinner fibers. The effects of PEG on the melt electrospinning of PLA were examined in terms of the melt viscosity and fiber diameter. Among the parameters, the content of PEG had a more significant effect on the average fiber diameter and its distribution than those of the spinning temperature. Furthermore, nano-/microfibrous silk fibroin (SF/PLA and PLA/PLA composite scaffolds were fabricated by hybrid electrospinning, which involved a combination of solution electrospinning and melt electrospinning. The SF/PLA (20/80 scaffolds consisted of a randomly oriented structure of PLA microfibers (average fiber diameter = 8.9 µm and SF nanofibers (average fiber diameter = 820 nm. The PLA nano-/microfiber (20/80 scaffolds were found to have similar pore parameters to the PLA microfiber scaffolds. The PLA scaffolds were treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. This approach of controlling the surface properties and diameter of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering.

  17. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis.

    Science.gov (United States)

    Harding, K G; Dennis, J S; von Blottnitz, H; Harrison, S T L

    2007-05-31

    Polymers based on olefins have wide commercial applicability. However, they are made from non-renewable resources and are characterised by difficulty in disposal where recycle and re-use is not feasible. Poly-beta-hydroxybutyric acid (PHB) provides one example of a polymer made from renewable resources. Before motivating its widespread use, the advantages of a renewable polymer must be weighed against the environmental aspects of its production. Previous studies relating the environmental impacts of petroleum-based and bio-plastics have centred on the impact categories of global warming and fossil fuel depletion. Cradle-to-grave studies report equivalent or reduced global warming impacts, in comparison to equivalent polyolefin processes. This stems from a perceived CO(2) neutral status of the renewable resource. Indeed, no previous work has reported the results of a life cycle assessment (LCA) giving the environmental impacts in all major categories. This study investigates a cradle-to-gate LCA of PHB production taking into account net CO(2) generation and all major impact categories. It compares the findings with similar studies of polypropylene (PP) and polyethylene (PE). It is found that, in all of the life cycle categories, PHB is superior to PP. Energy requirements are slightly lower than previously observed and significantly lower than those for polyolefin production. PE impacts are lower than PHB values in acidification and eutrophication.

  18. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  19. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  20. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  1. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  2. Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste.

    Science.gov (United States)

    Kwan, Tsz Him; Pleissner, Daniel; Lau, Kin Yan; Venus, Joachim; Pommeret, Aude; Lin, Carol Sze Ki

    2015-12-01

    A techno-economic study of food waste valorization via fungal hydrolysis, microalgae cultivation and production of plasticizer, lactic acid and animal feed was simulated and evaluated by Super-Pro Designer®. A pilot-scale plant was designed with a capacity of 1 metric ton day(-1) of food waste with 20 years lifetime. Two scenarios were proposed with different products: Scenario (I) plasticizer & lactic acid, Scenario (II) plasticizer & animal feed. It was found that only Scenario I was economically feasible. The annual net profits, net present value, payback period and internal rate of return were US$ 422,699, US$ 3,028,000, 7.56 years and 18.98%, respectively. Scenario II was not economic viable due to a deficit of US$ 42,632 per year. Sensitivity analysis showed that the price of lactic acid was the largest determinant of the profitability in Scenario I, while the impact of the variables was very close in Scenario II. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Magical Engineering Plastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Ung

    1988-01-15

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  4. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  5. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  6. Pervasive plastic

    Science.gov (United States)

    2018-05-01

    Human manipulation of hydrocarbons — as fuel and raw materials for modern society — has changed our world and the indelible imprint we will leave in the rock record. Plastics alone have permeated our lives and every corner of our planet.

  7. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  8. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  9. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  10. Migration of DEHP from plastic to food simulants under microwave heating

    Science.gov (United States)

    Zhu, X.; Li, F.; Qiu, Z. Z.; Huang, J. W.

    2017-05-01

    The migration of plasticizer DEHP from the plastic products (4 kinds of commonly used plastic food containers under microwave heating: plastic wrap, food bags, ordinary plastic boxes, microwave special plastic boxes) through food contact materials to food simulants (isooctane, 10% ethanol-water solution (v/v), 3% acetic acid-water solution (w/w) and distilled water) was studied under microwave heating (power levels of 400 W). The results shows that the DEHP mobility increases with the increase of microwave heating time, DEHP mobility in isooctane and 3% acetic acid-water solution (w/w) is significantly greater than in 10% ethanol-water solution (v/v) and distilled water; the order of DEHP mobility in isooctane is plastic wrap>food bag>common plastic box>microwave-safe plastic box, while in 3% acetic acid (w/w), the order is food bag>common plastic box>microwave-safe plastic box>plastic wrap.

  11. Plastic scintillator

    International Nuclear Information System (INIS)

    Andreeshchev, E.A.; Kilin, S.F.; Kavyrzina, K.A.

    1978-01-01

    A plastic scintillator for ionizing radiation detectors with high time resolution is suggested. To decrease the scintillation pulse width and to maintain a high light yield, the 4 1 , 4 5 -dibromo-2 1 , 2 5 , 5 1 , 5 5 -tetramethyl-n-quinquiphenyl (Br 2 Me 4 Ph) in combination with n-terphenyl (Ph 3 ) or 2, 5-diphenyloxadiazol-1, 3, 4 (PPD) is used as a luminescent addition. Taking into consideration the results of a special study, it is shown, that the following ratio of ingradients is the optimum one: 3-4 mass% Ph 3 or 4-7 mas% PPD + 2-5 mass% Br 2 Me 4 Ph + + polymeric base. The suggested scintillator on the basis of polystyrene has the light yield of 0.23-0.26 arbitrary units and the scintillation pulse duration at half-height is 0.74-0.84 ns

  12. Toxicological Threats of Plastic

    Science.gov (United States)

    Plastics pose both physical (e.g., entanglement, gastrointestinal blockage, reef destruction) and chemical threats (e.g., bioaccumulation of the chemical ingredients of plastic or toxic chemicals sorbed to plastics) to wildlife and the marine ecosystem.

  13. Filmes plásticos e ácido ascórbico na qualidade de araticum minimamente processado Plastic packaging film and ascorbic acid treatment on the quality of fresh cut araticum

    Directory of Open Access Journals (Sweden)

    Manoel Soares Soares Júnior

    2007-12-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos do ácido ascórbico e do tipo de filme plástico como embalagem na qualidade do araticum minimamente processado e mantido sob refrigeração. O ácido ascórbico não evitou o escurecimento do araticum minimamente processado. Independentemente do tipo de embalagem, a acidez titulável aumentou com o tempo. A embalagem de policloreto de vinila ou polietileno de baixa densidade promoveu uma significativa perda de massa se comparada com a a laminada a vácuo. A embalagem laminada a vácuo propiciou vida-de-prateleira mais longa ao produto, o qual permaneceu com aparência adequada e qualidade comercial até o sétimo dia do armazenamento. A vida-de-prateleira dos demais tratamentos alcançou somente três dias.This study was aimed at evaluating the effect of ascorbic acid and type of plastic packaging film on the quality of refrigerated fresh cut araticum. Ascorbic acid did not prevent fresh cut araticum from darkening. Regardless of the type of plastic packaging, the fruit titrable acidity increased with time. Packing with polyvynil chloride or with low density polyethylene promoted a significant mass loss compared to laminate vacuum packaging. Laminate vacuum packaging increased the shelf life of the product up 7 days, maintaining its commercial quality and appearance. The shelf life of the other treatments reached 3 days only.

  14. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like...

  15. New polyvinylchloride plasticizers

    Directory of Open Access Journals (Sweden)

    MAZITOVA Aliya Karamovna

    2017-11-01

    Full Text Available One of the main large-capacity polymers of modern chemical industry is polyvinylchloride (PVC. Polyvinylchloride is characterized by many useful engineering properties – chemical firmness in different environments, good electric properties, etc. It explains immensely various use of materials on the basis of PVC in different engineering industries. It is cable, building, light industries, mechanical engineering and automotive industry where PVC is widely applied. One of the reasons why PVC production is dramatically growing is that there is no yet other polymer which could be subjected to such various modifying as it is done with PVC. However under normal temperature this polymer is fragile and isn't elastic that limits the field of its application. Rapid growth of production of polyvinylchloride is explained by its ability to modify properties, due to introduction of special additives when processing. Introduction of plasticizers – mostlly esters of organic and inorganic acids – into PVC allows significant changing properties of polymer. Plasticizers facilitate process of receiving polymeric composition, increase flexibility and elasticity of the final polymeric product due to internal modification of polymeric molecule.

  16. Discoloration of plasticized PVC upon irradiation

    International Nuclear Information System (INIS)

    Kojima, Keiichi; Ueno, Keiji; Kumafuji, Hisao.

    1981-01-01

    The effects of the factors on the discoloration of PVC cross-linked by electron irradiation, such as irradiation dose, the polymerization degree of PVC resin, plasticizers and stabilizers, were studied. The composition of the plasticized PVC used for the experiment was 100 PHR of PVC, 50 PHR of plasticizer, 5 PHR of stabilizer and 5 PHR of cross-linking agent (TMPMA). Three samples with the different degree of polymerization of the PVC resin were used, namely 750, 1050 and 2600. As the plasticizers, phthalic acid esters (DBP, DOP, DIDP), trimellitic acid esters (TOTM, n-TOTM), fatty acid esters (DOS, DOZ), polyester and epoxy group plasticizers were used. The irradiation dose for the test was 3, 6 and 12 Mrad. The experimental results are summarized as follows. As the electron irradiation dose was higher, the resultant discoloration was more remarkable, and the optimum irradiation dose was below 6 Mrad. The degree of polymerization of the PVC resin did not affect the irradiation discoloration. However it was noticed that the cross-linking efficiency was better as the degree of polymerization was higher. The cross-linking efficiency was better as the content of plasticizer was more. The fatty acid esters and epoxy groups showed less discoloration and better cross-linking efficiency. Tin and barium-zinc stabilizers were good. (Kako, I.)

  17. Plastic for indicating a radiation dose

    International Nuclear Information System (INIS)

    Hori, Y.; Yoshikawa, N.; Ohmori, S.

    1975-01-01

    A plastic film suitable for indicating radiation dose contains a chlorine polymer, at least one acid sensitive coloring agent and a plasticizer. The film undergoes a distinct change of color in response to a given radiation dose, the degree of change proportional to the total change. These films may be stored for a long period without loss of sensitivity, and have good color stability after irradiation. (auth)

  18. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    OpenAIRE

    Ammar F. Abbas

    2016-01-01

    Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect ...

  19. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  20. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups ...

  1. Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells.

    Science.gov (United States)

    Panagiotopoulou, Maria; Kunath, Stephanie; Medina-Rangel, Paulina Ximena; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-02-15

    Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  3. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  4. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  5. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  6. Smart film actuators using biomass plastic

    International Nuclear Information System (INIS)

    Yoneyama, Satoshi; Tanaka, Nobuo

    2011-01-01

    This paper presents a novel smart film actuator based on the use of a biomass plastic as a piezoelectric film. Conventional polymeric smart sensors and actuators have been based upon synthetic piezoelectric polymer films such as PVDF. Almost all synthetic polymers are made from nearly depleted oil resources. In addition combustion of their materials releases carbon dioxide, thereby contributing to global warming. Thus at least two important sustainability principles are violated when employing synthetic polymers: avoiding depletable resources and avoiding ecosystem destruction. To overcome such problems, industrial plastic products made from synthetic polymers were developed to replace oil-based plastics with biomass plastics. This paper applies a biomass plastic with piezoelectricity such as poly-L-lactic acid (PLLA). As a result, PLLA film becomes a distributed parameter actuator per se, hence an environmentally conscious smart film actuator is developed. Firstly, this paper overviews the fundamental properties of piezoelectric synthetic polymers and biopolymers. The concept of carbon neutrality using biopolymers is mentioned. Then a two-dimensional modal actuator for exciting a specific structural mode is proposed. Furthermore, a biomass plastic-based cantilever beam with the capability of modal actuation is developed, the validity of the proposed smart film actuator based upon a biomass plastic being analytically as well as experimentally verified

  7. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  8. Our plastic age.

    Science.gov (United States)

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  9. Our plastic age

    Science.gov (United States)

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  10. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  11. ENVIRONMENTAL ISSUE-PLASTIC

    OpenAIRE

    Sunita Shakle

    2017-01-01

    Polythene is the most common plastic, the annual global production is approximately 60 million tones, and its primary use is in packing. Plastic bags pollute soil and waters and kill thousands of marine generalize plastic bags are not biodegradable they clog water ways, spoil the land scape and end up in landfills. Where they may take 1000 year or more to break down into ever smaller particals that continue to pollution the soil and water.

  12. Our plastic age

    OpenAIRE

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste pl...

  13. All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells: ROLE OF NOTCH1 AND TRANSFORMING GROWTH FACTOR (TGFβ).

    Science.gov (United States)

    Zanetti, Adriana; Affatato, Roberta; Centritto, Floriana; Fratelli, Maddalena; Kurosaki, Mami; Barzago, Maria Monica; Bolis, Marco; Terao, Mineko; Garattini, Enrico; Paroni, Gabriela

    2015-07-17

    All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Plasticity: modeling & computation

    National Research Council Canada - National Science Library

    Borja, Ronaldo Israel

    2013-01-01

    .... "Plasticity Modeling & Computation" is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids...

  15. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  16. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  17. Impact of Bio-Based Plastics on Current Recycling of Plastics

    Directory of Open Access Journals (Sweden)

    Luc Alaerts

    2018-05-01

    Full Text Available Bio-based plastics are increasingly appearing in a range of consumption products, and after use they often end up in technical recycling chains. Bio-based plastics are different from fossil-based ones and could disturb the current recycling of plastics and hence inhibit the closure of plastic cycles, which is undesirable given the current focus on a transition towards a circular economy. In this paper, this risk has been assessed via three elaborated case studies using data and information retrieved through an extended literature search. No overall risks were revealed for bio-based plastics as a group; rather, every bio-based plastic is to be considered as a potential separate source of contamination in current recycling practices. For PLA (polylactic acid, a severe incompatibility with PET (polyethylene terephthalate recycling is known; hence, future risks are assessed by measuring amounts of PLA ending up in PET waste streams. For PHA (polyhydroxy alkanoate there is no risk currently, but it will be crucial to monitor future application development. For PEF (polyethylene furanoate, a particular approach for contamination-related issues has been included in the upcoming market introduction. With respect to developing policy, it is important that any introduction of novel plastics is well guided from a system perspective and with a particular eye on incompatibilities with current and upcoming practices in the recycling of plastics.

  18. Diacylglycerol kinases in the coordination of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Dongwon Lee

    2016-08-01

    Full Text Available Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP and long-term depression (LTD. Recent evidence indicate that DAG kinases (DGKs, which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins.

  19. Urinary concentrations of cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester, a metabolite of the non-phthalate plasticizer di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), and markers of ovarian response among women attending a fertility center

    Energy Technology Data Exchange (ETDEWEB)

    Mínguez-Alarcón, Lidia, E-mail: lminguez@hsph.harvard.edu [Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston (United States); Souter, Irene [Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston (United States); Chiu, Yu-Han [Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston (United States); Williams, Paige L. [Department of Epidemiology, and Harvard T.H. Chan School of Public Health, Boston (United States); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston (United States); Ford, Jennifer B. [Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston (United States); Ye, Xiaoyun; Calafat, Antonia M. [National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta (United States); Hauser, Russ [Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston (United States); Department of Epidemiology, and Harvard T.H. Chan School of Public Health, Boston (United States); Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston (United States)

    2016-11-15

    Di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), a non-phthalate plasticizer, was introduced commercially in 2002 as an alternative to ortho-phthalate esters because of its favorable toxicological profile. However, the potential health effects from DINCH exposure remain largely unknown. We explored the associations between urinary concentrations of metabolites of DINCH on markers of ovarian response among women undergoing in vitro fertilization (IVF) treatments. Between 2011 and 2015, 113 women enrolled a prospective cohort study at the Massachusetts General Hospital Fertility Center and provided up to two urine samples prior to oocyte retrieval. The urinary concentrations of two DINCH metabolites, cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH) and cyclohexane-1,2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH), were quantified by isotope dilution tandem mass spectrometry. We used generalized linear mixed models to evaluate the association between urinary metabolite concentrations and markers of ovarian response, accounting for multiple IVF cycles per woman via random intercepts. On average, women with detectable urinary MHiNCH concentrations, as compared to those below LOD, had a lower estradiol levels (−325 pmol/l, p=0.09) and number of retrieved oocytes (−1.8, p=0.08), with a stronger association among older women. However, urinary MHiNCH concentrations were unrelated to mature oocyte yield and endometrial wall thickness. In conclusion, we found suggestive negative associations between urinary MHiNCH concentrations and peak estradiol levels and number of total oocyte yields. This is the first study evaluating the effect of DINCH exposure on human reproductive health and raises the need for further experimental and epidemiological studies to better understand the potential effects of this chemical on health. - Highlights: • Women with detectable urinary MHiNCH concentrations had a lower estradiol levels and number of retrieved

  20. Urinary concentrations of cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester, a metabolite of the non-phthalate plasticizer di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), and markers of ovarian response among women attending a fertility center

    International Nuclear Information System (INIS)

    Mínguez-Alarcón, Lidia; Souter, Irene; Chiu, Yu-Han; Williams, Paige L.; Ford, Jennifer B.; Ye, Xiaoyun; Calafat, Antonia M.; Hauser, Russ

    2016-01-01

    Di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), a non-phthalate plasticizer, was introduced commercially in 2002 as an alternative to ortho-phthalate esters because of its favorable toxicological profile. However, the potential health effects from DINCH exposure remain largely unknown. We explored the associations between urinary concentrations of metabolites of DINCH on markers of ovarian response among women undergoing in vitro fertilization (IVF) treatments. Between 2011 and 2015, 113 women enrolled a prospective cohort study at the Massachusetts General Hospital Fertility Center and provided up to two urine samples prior to oocyte retrieval. The urinary concentrations of two DINCH metabolites, cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH) and cyclohexane-1,2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH), were quantified by isotope dilution tandem mass spectrometry. We used generalized linear mixed models to evaluate the association between urinary metabolite concentrations and markers of ovarian response, accounting for multiple IVF cycles per woman via random intercepts. On average, women with detectable urinary MHiNCH concentrations, as compared to those below LOD, had a lower estradiol levels (−325 pmol/l, p=0.09) and number of retrieved oocytes (−1.8, p=0.08), with a stronger association among older women. However, urinary MHiNCH concentrations were unrelated to mature oocyte yield and endometrial wall thickness. In conclusion, we found suggestive negative associations between urinary MHiNCH concentrations and peak estradiol levels and number of total oocyte yields. This is the first study evaluating the effect of DINCH exposure on human reproductive health and raises the need for further experimental and epidemiological studies to better understand the potential effects of this chemical on health. - Highlights: • Women with detectable urinary MHiNCH concentrations had a lower estradiol levels and number of retrieved

  1. SYNTHESIS AND CHARACTERIZATION OF BIODEGRDABLE PLASTIC FROM CASAVA STARCH AND ALOE VERA EXTRACT WITH GLYCEROL PLASTICIZER

    Directory of Open Access Journals (Sweden)

    Mery Apriyani

    2016-05-01

    Full Text Available Synthesis and characterizations of Biodegradable Plastic made of Cassava Waste Starch, glycerol, acetic acid and Aloe vera extract has done. The aims of this research are to study the influence of addition of aloe vera extract in plastics mechanics properties, water vapor transmission rate and biodegradation. There are five main steps in this research, extraction of aloe vera, cassava starch preparation from cassava waste, preparations, characterization and biodegradability study of biodegradable plastic. The addition variations of aloe vera extract that used in this research are 0.01; 0.03; 0.05; 0.07 and 0.14 grams. Results showed that the addition of aloe Vera tends to increased biodegrable plastic thickness to 0.01 mm and elongation to 32.07%. However, biodegradable plastic tensile strength tends to decreased to 23.95 Mpa. Optimum tensile strength is 3.90 Mpa and elongation is 34.43%. Optimum water vapor transmission rate is 2.40 g/m2hours. Biodegradation study of biodegradable plastic showed that addition of aloe vera extract doesn’t significantly influence in plastic degradations.

  2. Stem cell plasticity.

    Science.gov (United States)

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  3. Plastics and environment

    International Nuclear Information System (INIS)

    Avenas, P.

    1996-01-01

    Synthetic organic polymers, such as plastics, PVC, polyamides etc are considered less ecological than natural materials such as wood. Other artificial materials such as metals, glass or biodegradable plastics have also a better image than petroleum products. This short paper demonstrates that the manufacturing or the transport of every material uses energy and that the complete energy balance sheet of a plastic bottle, for instance, is more favourable than the one of a glass bottle. Plastic materials are also easily valorized and recycled and part of the energy spent during manufacturing can be recovered during incineration for district heating. During the life-cycle of such a synthetic material, the same petroleum quantity can be used twice which leads to less negative effects on the environment. Finally, the paper focusses on the problem of biodegradable materials which are not degradable when buried under several meters of wastes and which are a nuisance to recycling. (J.S.)

  4. Plastics: Friend or foe?

    Directory of Open Access Journals (Sweden)

    O P Gupta

    2018-01-01

    Full Text Available Plastics has been playing a very significant role in our life. Being light weight, inexpensive and heving good insulating properties it is being used in all aspects of life, from clothes to contact lenses and from mobile phones to automobiles as well as in medical equipments, However it is not biodegradable, and while degrading to fragments it gets converted in to microplastics and nanoplastics The plastic waste is being recognized as an environmental hazard, since these micr- and nanoplastics find way from landfills to water and foods, It is said that we are not only using, but we are eating, drinking and even braething the plastics. These microplastics in body release certain hazardous chemicals and found to be disrupting functions of certain endocrine organs. Whether the rising prevalence of Diabetes, thyroid disorders or infirtility etc., are realated to the plastics?

  5. Recycling of plastics

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, W; Menzel, J; Sinn, H

    1976-01-01

    Considering the shortage of raw materials and environmental pollution, the recycling of plastic waste is a very important topic. Pilot plants for research in Funabashi Japan, Franklin (Ohio) U.S.A., and the R 80-process of Krauss Maffei, W. Germany, have demonstrated the possibility of reclaiming plastics from refuse. Old tires and waste from the plastic producing and manufacturing industries are readily available. The pyrolysis of plastic yields gaseous and liquid products, and the exploitation of this cracking reaction has been demonstrated by pilot plants in Japan and Great Britain. Further laboratory scale experiments are taking place in W. Germany. In continuous fluidized beds and in molten salts, polyethylene, polypropylene, polyvinylchloride, polystyrene and rubber are pyrolysed and better than 98 percent conversion is obtained. Up to 40 percent of the feed can be obtained as aromatic compounds, and a pilot plant is under construction. As a first step PVC-containing material can be almost quantitatively dehydrochlorinated.

  6. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  7. Art and Plastic Surgery.

    Science.gov (United States)

    Fernandes, Julio Wilson; Metka, Susanne

    2016-04-01

    The roots of science and art of plastic surgery are very antique. Anatomy, drawing, painting, and sculpting have been very important to the surgery and medicine development over the centuries. Artistic skills besides shape, volume, and lines perception can be a practical aid to the plastic surgeons' daily work. An overview about the interactions between art and plastic surgery is presented, with a few applications to rhinoplasty, cleft lip, and other reconstructive plastic surgeries. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  8. DEVELOPMENT OF PLASTIC SURGERY.

    Science.gov (United States)

    Pećanac, Marija Đ

    2015-01-01

    Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  9. Recycling of packing plastics

    International Nuclear Information System (INIS)

    Gintenreiter-Koegl, S.

    2001-05-01

    The ordinance on the avoidance of packaging waste was a serious intervention in the public and private waste management in Austria. Above all the high expenses for an overall packaging waste collection and the recycling of packaging plastics were criticized. The landfill ordinance comes into force in 2004 and this means another major change in the Austrian waste management system. In the course of this change the overall collection and the recycling and recovery of waste streams, especially of the high caloric plastics waste, have to be discussed again. The goal of this work was on the one hand to develop and adapt the hydrocracking process for the recovery of mixed plastics waste and to show a possible application in Austria. On the other hand the work shows the technical, ecological and economical conditions for packaging plastics recycling and recovery in order to find optimum applications for the processes and to examine their contribution to a sustainable development. A hydrocracking test plant for the processing of mixed plastic wastes was built and had been running for about three years. The tests were carried out successfully and the suitability of the technology for the recovery of packaging plastics could be shown. Results show at least a 35 % yield of fuel. The hydrocracking technology is quite common in the oil industries and therefore an integration on a refinery site is suggested. (author)

  10. Effect of boron compounds on the thermal and combustion properties of wood-plastic composites

    OpenAIRE

    Altuntaş, Ertuğrul; Karaoğul, Eyyup; Alma, Mehmet Hakkı

    2017-01-01

    In this study, the thermal properties and fire resistancesof the wood plastic composites produced with waste lignocellulosic materialswere investigated. For this purpose, lignocellulosic waste, high densitypolyethylene, (HDPE) sodium borate (borax) and boric acid was used to producethe wood-plastic composites. A twin-screw extruder was used during theproduction of the wood plastic composites. The produced composite granule waspressed at 175 °C hot press. The effects of boric acid and borax ad...

  11. A Conservative Formulation for Plasticity

    Science.gov (United States)

    1992-01-01

    concepts that apply to a broad class of macroscopic models: plastic deformation and plastic flow rule. CONSERVATIVE PLASTICITY 469 3a. Plastic Defrrnation...temperature. We illustrate these concepts with a model that has been used to describe high strain-rate plastic flow in metals [11, 31, 32]. In the case...JOURDREN, AND P. VEYSSEYRE. Un Modele ttyperelastique- Plastique Euldrien Applicable aux Grandes Dtformations: Que/ques R~sultats 1-D. preprint, 1991. 2. P

  12. Properties of plastic filtration material

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, W.

    1988-01-01

    Discusses properties of filters made of thermoplastic granulated material. The granulated plastic has a specific density of 10.3-10.6 kN/m/sup 3/ and a bulk density of about 6 kN/m/sup 3/. Its chemical resistance to acids, bases and salts is high but is it soluble in organic solvents. Filters made of this material are characterized by a porosity coefficient of 36.5% and a bulk density of 5.7-6.8 kN/m/sup 3/. Physical and mechanical properties of filter samples made of thermoplastic granulated material (50x50x50 mm) were investigated under laboratory conditions. Compression strength and influencing factors were analyzed (ambient temperature, manufacturing technology). Tests show that this filtration material developed by Poltegor is superior to other filtration materials used in Poland.

  13. The plasticity of clays

    Science.gov (United States)

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  14. Plastics control paraffin buildup

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-01

    Paraffin buildup in producing oil wells has been virtually eliminated by the use of plastic-coated sucker rods. The payout of the plasticing process is generally reached in less than a year, and the paraffin buildup may be inhibited for 10 yr or longer. Most of the plants applying plastic coatings to sucker rods are now fully automated, though a few still offer the hand-sprayed coating that some operators prefer. The several steps involved are described. The ideal plastic for the job is resistant to chemicals at high and low temperatures, flexible, has good adhesion, abrasion resistance, impact resistance, and a smooth glossy finish. The phenol aldehyde and epoxy resins presently offered by the industry fulfill these specifications very well; the multicoating and multibaking techniques improve their performance. Due to wide variations in the severity of the paraffin problem from one oil field to another, there is no general rule to estimate the possible savings from using plastic-coated sucker rods. The process, however, does appear to do a remarkable job in controlling paraffin buildup wherever it is a problem in producing oil by pump.

  15. Investigation into Plastic Cards

    Directory of Open Access Journals (Sweden)

    Neringa Stašelytė

    2015-03-01

    Full Text Available The article examines the strength of laminating plastic cards at different lamination temperatures. For investigation purposes, two types of plastic substrate and films have been used. Laminate strength has been tested (CMYK to establish the impact of colours on the strength of laminate. The paper compares inks supplied by two different producers. The colour characteristics of CIE L*a*b* space before and after the lamination process have been found. According to lamination strength and characteristics of the colours, the most suitable inks, temperature and films have been chosen.

  16. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  17. Elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Simpson, L.A.

    1978-07-01

    The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)

  18. Gelatin films plasticized with a simulated biodiesel coproduct stream

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In order to explore the possibility of substituting an unrefined biodiesel coproduct stream (BCS for refined glycerol as a polymer plasticizer we have prepared cast gelatin films plasticized with a simulated BCS, i.e., mixtures of glycerol and some of the typical components found in BCS (methyl linoleate, methyl oleate, linoleic acid, and oleic acid. We measured the tensile properties as a function of plasticizer composition, and analyzed the specific effect of each individual component on tensile properties. We found that it is the unrecovered alkyl esters that largely determine the tensile properties, and that BCS can be successfully used to plasticize cast gelatin films as long as the BCS contains 11 parts by weight, or less, of unrecovered alkyl esters per 100 parts glycerol.

  19. Plastic flashtube chambers

    International Nuclear Information System (INIS)

    Frisken, W.R.

    1977-01-01

    A brief discussion is given of the use and operation of plastic flashtube chambers. Gas leaks, electric pulsing, the glow discharge, and readout methods are considered. Three distinct problems with high rate applications deal with resolving time, dead time, and polarization/neutralization of the chamber

  20. Plastic Surgery: Tackling Misconceptions

    African Journals Online (AJOL)

    will succeed. First impressions tend to last, and if young people's first impression of plastic surgeons is that they spend much of their time doing cosmetic surgery then this is a first impression that might be long ... Res 2014;4 Suppl S3:169‑70. Access this article online. Quick Response Code: Website: www.amhsr.org. DOI:.

  1. Biobased Plastics 2012

    NARCIS (Netherlands)

    Bolck, C.H.; Ravenstijn, J.; Molenveld, K.; Harmsen, P.F.H.

    2011-01-01

    Dit boek geeft inzicht in de huidige op de markt verkrijgbare biobased plastics en de te verwachten ontwikkelingen. Er wordt gekeken naar zowel thermoplastische als thermohardende materialen. Het boek biedt inzicht in de productie, verwerking en eigenschappen van de verschillende types. Daarnaast

  2. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  3. Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    1989-01-01

    In the paper it is shown how upper and lower bounds for the reliability of plastic slabs can be determined. For the fundamental case it is shown that optimal bounds of a deterministic and a stochastic analysis are obtained on the basis of the same failure mechanisms and the same stress fields....

  4. Individual differences in behavioural plasticities.

    Science.gov (United States)

    Stamps, Judy A

    2016-05-01

    Interest in individual differences in animal behavioural plasticities has surged in recent years, but research in this area has been hampered by semantic confusion as different investigators use the same terms (e.g. plasticity, flexibility, responsiveness) to refer to different phenomena. The first goal of this review is to suggest a framework for categorizing the many different types of behavioural plasticities, describe examples of each, and indicate why using reversibility as a criterion for categorizing behavioural plasticities is problematic. This framework is then used to address a number of timely questions about individual differences in behavioural plasticities. One set of questions concerns the experimental designs that can be used to study individual differences in various types of behavioural plasticities. Although within-individual designs are the default option for empirical studies of many types of behavioural plasticities, in some situations (e.g. when experience at an early age affects the behaviour expressed at subsequent ages), 'replicate individual' designs can provide useful insights into individual differences in behavioural plasticities. To date, researchers using within-individual and replicate individual designs have documented individual differences in all of the major categories of behavioural plasticities described herein. Another important question is whether and how different types of behavioural plasticities are related to one another. Currently there is empirical evidence that many behavioural plasticities [e.g. contextual plasticity, learning rates, IIV (intra-individual variability), endogenous plasticities, ontogenetic plasticities) can themselves vary as a function of experiences earlier in life, that is, many types of behavioural plasticity are themselves developmentally plastic. These findings support the assumption that differences among individuals in prior experiences may contribute to individual differences in behavioural

  5. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar F. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained.The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy.A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide.

  6. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar S. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production. PET plastic waste converting to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained. The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy. A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide. Normal 0 false false false EN-US X-NONE AR-SA

  7. Plasticity characteristic obtained by indentation

    International Nuclear Information System (INIS)

    Mil'man, Yu.V.; Chugunova, S.I.; Goncharova, I.V.

    2011-01-01

    Methods for determination plasticity characteristic δH in the measurement of hardness and nanohardness are considered. Parameter δH characterizes the plasticity of a material by the part of plastic deformation in the total elastic-plastic deformation. The value of δH is defined for metals with different types of crystal lattice, covalent and partially covalent crystals, intermetallics, metallic glasses and quasicrystals. It is discussed the dependence of the plasticity characteristic δH on structural factors and temperature. Parameter δH allows to analyze and compare the plasticity of materials which are brittle at standard mechanical tests. The combination of hardness H, as the strength characteristic, and the plasticity characteristic δH makes possible the better characterization of mechanical behavior of materials than only the hardness H. The examples of plasticity characteristic δH application are represented.

  8. Plastic pollutants in water environment

    OpenAIRE

    Mrowiec Bożena

    2017-01-01

    Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm). Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment....

  9. Introduction to Computational Plasticity

    International Nuclear Information System (INIS)

    Hartley, P

    2006-01-01

    The focus of the book on computational plasticity embodies techniques of relevance not only to academic researchers, but also of interest to industrialists engaged in the production of components using bulk or sheet forming processes. Of particular interest is the guidance on how to create modules for use with the commercial system Abaqus for specific types of material behaviour. The book is in two parts, the first of which contains six chapters, starting with microplasticity, but predominantly on continuum plasticity. The first chapter on microplasticty gives a brief description of the grain structure of metals and the existence of slip systems within the grains. This provides an introduction to the concept of incompressibility during plastic deformation, the nature of plastic yield and the importance of the critically resolved shear stress on the slip planes (Schmid's law). Some knowledge of the notation commonly used to describe slip systems is assumed, which will be familiar to students of metallurgy, but anyone with a more general engineering background may need to undertake additional reading to understand the various descriptions. Chapter two introduces one of several yield criteria, that normally attributed to von Mises (though historians of mechanics might argue over who was first to develop the theory of yielding associated with strain energy density), and its two or three-dimensional representation as a yield surface. The expansion of the yield surface during plastic deformation, its translation due to kinematic hardening and the Bauschinger effect in reversed loading are described with a direct link to the material stress-strain curve. The assumption, that the increment of strain is normal to the yield surface, the normality principle, is introduced. Uniaxial loading of an elastic-plastic material is used as an example in which to develop expressions to describe increments in stress and strain. The full presentation of numerous expressions, tensors and

  10. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  11. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  12. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  13. Compensatory plasticity: time matters

    Directory of Open Access Journals (Sweden)

    Latifa eLazzouni

    2014-06-01

    Full Text Available Plasticity in the human and animal brain is the rule, the base for development, and the way to deal effectively with the environment for making the most efficient use of all the senses. When the brain is deprived of one sensory modality, plasticity becomes compensatory: the exception that invalidates the general loss hypothesis giving the opportunity of effective change. Sensory deprivation comes with massive alterations in brain structure and function, behavioural outcomes, and neural interactions. Blind individuals do as good as the sighted and even more, show superior abilities in auditory, tactile and olfactory processing. This behavioural enhancement is accompanied with changes in occipital cortex function, where visual areas at different levels become responsive to non-visual information. The intact senses are in general used more efficiently in the blind but are also used more exclusively. New findings are disentangling these two aspects of compensatory plasticity. What is due to visual deprivation and what is dependent on the extended use of spared modalities? The latter seems to contribute highly to compensatory changes in the congenitally blind. Short term deprivation through the use of blindfolds shows that cortical excitability of the visual cortex is likely to show rapid modulatory changes after few minutes of light deprivation and therefore changes are possible in adulthood. However, reorganization remains more pronounced in the congenitally blind. Cortico-cortical pathways between visual areas and the areas of preserved sensory modalities are inhibited in the presence of vision, but are unmasked after loss of vision or blindfolding as a mechanism likely to drive cross-modal information to the deafferented visual cortex. Plasticity in the blind is also accompanied with neurochemical and morphological changes; both intrinsic connectivity and functional coupling at rest are altered but are likewise dependent on different sensory

  14. Mesocycles in conserving plastics

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2016-01-01

    driven by the need to balance the requirements for reversibility in conservation practices with the artist’s intent and significance. Developments within each of the three mesocycles from the 1990s to date are discussed in this article. Environmental science and toxicology of waste plastics offer a novel...... source of information about real time degradation in terrestrial and marine microenvironments that seems likely to contribute to the conservation of similar materials in contemporary artworks....

  15. Plastic footwear for leprosy.

    Science.gov (United States)

    Antia, N H

    1990-03-01

    The anaesthetic foot in leprosy poses the most major problem in the rehabilitation of its patients. Various attempts have been made to produce protective footwear such as the microcellular rubber-car-tyre sandals. Unfortunately these attempts have had little success on a large scale because of the inability to produce them in large numbers and the stigma attached to such unusual footwear. While such footwear may be superior to the 'tennis' shoe in protecting the foot from injury by the penetration of sharp objects, it fails to distribute the weight-bearing forces which is the major cause of plantar damage and ulceration in the anaesthetic foot. This can be achieved by providing rigidity to the sole, as demonstrated by the healing of ulcers in plaster of paris casts or the rigid wooden clog. A new type of moulded plastic footwear has been evolved in conjunction with the plastic footwear industry which provides footwear that can be mass produced at a low price and which overcomes the stigma of leprosy. Controlled rigidity is provided by the incorporation of a spring steel shank between the sponge insole and the hard wearing plastic sole. Trials have demonstrated both the acceptability of the footwear and its protective effects as well as its hard wearing properties.

  16. Plastic waste disposal apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kito, S

    1972-05-01

    A test plant plastic incinerator was constructed by the Takuma Boiler Manufacturing Co. for Sekisui Chemical Industries, and the use of a continuous feed spreader was found to be most effective for prevention of black smoke, and the use of a venturi scrubber proved to be effective for elimination of hydrogen chloride gas. The incinerator was designed for combustion of polyvinyl chloride exclusively, but it is also applicable for combustion of other plastics. When burning polyethylene, polypropylene, or polystyrene, (those plastics which do not produce toxic gases), the incinerator requires no scrubber for the combustion gas. The system may or may not have a pretreatment apparatus. For an incinerator with a pretreatment system, the flow chart comprises a pit, a supply crane, a vibration feeder, a metal eliminator, a rotation shredder, a continuous screw feeder with a quantitative supply hopper, a pretreatment chamber (300 C dry distillation), a quantitative supply hopper, and the incinerator. The incinerator is a flat non-grid type combustion chamber with an oil burner and many air nozzles. From the incinerator, ashes are sent by an ash conveyor to an ash bunker. The combustion gas goes to the boiler, and the water supplied the boiler water pump creates steam. The heat from the gas is sent back to the pretreatment system through a heat exchanger. The gas then goes to a venturi scrubber and goes out from a stack.

  17. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  19. Plastic solidification method for radioactive waste

    International Nuclear Information System (INIS)

    Tomita, Toshihide; Inakuma, Masahiko.

    1992-01-01

    Condensed liquid wastes in radioactive wastes are formed by mixing and condensing several kinds of liquid wastes such as liquid wastes upon regeneration of ion exchange resins, floor draining liquid wastes and equipment draining liquid wastes. Accordingly, various materials are contained, and it is found that polymerization reaction of plastics is inhibited especially when reductive material, such as sodium nitrite is present. Then, in the present invention, upon mixing thermosetting resins to radioactive wastes containing reducing materials, an alkaline material is admixed to an unstaturated polyester resin. This can inactivate the terminal groups of unsaturated polyester chain, to prevent the dissociation of the reducing agent such as sodium nitrite. Further, if an unsaturated polyester resin of low acid value and a polymerization initiator for high temperature are used in addition to the alkaline material, the effect is further enhanced, thereby enabling to obtain a strong plastic solidification products. (T.M.)

  20. Plasticized chitosan/polyolefin films produced by extrusion.

    Science.gov (United States)

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  2. Plastics in the Marine Environment

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  3. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  4. Diet and cognition: interplay between cell metabolism and neuronal plasticity.

    Science.gov (United States)

    Gomez-Pinilla, Fernando; Tyagi, Ethika

    2013-11-01

    To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long-term neuronal plasticity. The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid docosahexenoic acid, disrupting neuronal signaling. Thus, dietary docosahexenoic acid seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation.

  5. Plastics pipe couplings

    International Nuclear Information System (INIS)

    Glover, J.B.

    1980-07-01

    A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)

  6. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  7. Bio-based methacrylic acid via catalytic decarboxylation of itaconic and citric acids

    Science.gov (United States)

    Methacrylic acid is an important commodity monomer for the plastics industry that is produced industrially from acetone, hydrogen cyanide and concentrated sulfuric acid via the acetone cyanohydrin (ACH) process. Disadvantages to the ACH process include nonrenewable starting materials, stoichiometric...

  8. Americium behaviour in plastic vessels

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.; Idoeta, R.; Abelairas, A.

    2010-01-01

    The adsorption of 241 Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of 241 Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of 241 Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  9. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  10. Americium behaviour in plastic vessels.

    Science.gov (United States)

    Legarda, F; Herranz, M; Idoeta, R; Abelairas, A

    2010-01-01

    The adsorption of (241)Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of (241)Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of (241)Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Evaluation of the Levels of phthalate Ester Plasticizers in Surface ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Gas chromatography (GC) coupled with mass ... Key words: phthalates, acid esters, plasticizers, Ethiope River, surface water, pollution ... waste and emissions arising from burning of refuse ... deepest inland waterways in Africa, is known for its ..... carbon nitride nanocomposites for the solid-phase extraction of phthalate ...

  12. Effect of plasticizer and fumed silica on ionic conductivity behaviour ...

    Indian Academy of Sciences (India)

    behaviour of proton conducting polymer electrolytes containing different concentrations of hexafluorophosphoric acid (HPF6) in polyethylene oxide ... Polymer electrolytes; ionic conductivity; polyethylene oxide; plasticizer; fumed silica. 1. Introduction ..... is a rapid weight loss which could be due to the degradation of polymer ...

  13. Migration of toxicants from plastics into drinking water during storage ...

    African Journals Online (AJOL)

    In this study, migration of toxicants, such as, manufacturing additives and previously adsorbed materials into drinking water stored inside plastic containers was investigated. The study considered virgin containers as well as those previously used to store sulphuric acid, calcium hypochlorite, methyl ethyl ketone (MEK) and ...

  14. PENGARUH PLASTICIZER PADA KARAKTERISTIK EDIBLE FILM DARI PEKTIN

    Directory of Open Access Journals (Sweden)

    Sang Kompiang Wirawan

    2012-05-01

    Full Text Available EFFECT OF PLASTICIzER ON THE PECTINIC EDIBLE FILM CHARACTERISTICS. The peel of Balinese Citrus contains high concentration of pectin which can be further processed to be edible films. The edible films can be utilized as a food coating which protects the food from any external mass transports such as humid, oxygen, and soluble material and can be served as a carrier to improve the mechanical-handing properties of the food. Edible films made of organic polymers tend to be brittle and thus addition of a plasticizer is required during the process. The work studies the effect of the type and the concentration of plasticizers on the tensile strength, the elongation of break, and the water vapor permeabilty of the edible film. Sorbitol and glycerol were used as plasticizers. Albedo from the citrus was hydrolized with hydrochloride acid 0.1 N to get pectinate substance. Pectin was then dissolved in water dan mixed with the plasticizers and CaCl2.2H2O solution. The concentrations of the plasticizers were 0, 0.03, 0.05, 0.1, and 0.15 mL/mL of solution. The results showed that increasing the concentration of plasticizers will decrease the tensile strength, but increase the elongation and film permeability. Sorbitol-plasticized films are more brittle, however exhibited higher tensile strength and water vapor permeability than of glycerol-plasticized film. The results suggested that glycerol is better plasticizer than sorbitol.  Kulit jeruk bali banyak mengandung pektin yang dapat dimanfaatkan sebagai bahan baku edible film. Edible film bisa digunakan untuk melapisi bahan makanan, melindungi makanan dari transfer massa eksternal seperti kelembaban, oksigen, dan zat terlarut, serta dapat digunakan sebagai carrier untuk meningkatkan penanganan mekanik produk makanan. Film yang terbuat dari bahan polimer organik ini cenderung rapuh sehingga diperlukan penambahan plasticizer. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh kadar dan jenis

  15. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Yiu Chung Tse

    Full Text Available Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs, which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP and long-term depression (LTD within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1-2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.

  16. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  17. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  18. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste”

    PhD Candidate: Xiaoyun Bing

    Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower

  19. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  20. Lead contamination of inexpensive plastic jewelry

    Energy Technology Data Exchange (ETDEWEB)

    Yost, Jamie L. [Department of Chemistry, Ashland University, Ashland, Ohio (United States); Weidenhamer, Jeffrey D. [Department of Chemistry, Ashland University, Ashland, Ohio (United States)], E-mail: jweiden@ashland.edu

    2008-04-15

    The neurological hazards of lead to children are well-known. As a result of recent documented cases of lead poisoning, regulatory attention in the United States has focused on the lead content of children's metal jewelry. By contrast, little is known about the possible hazards of plastic jewelry items. The objective of this study was to determine whether inexpensive plastic jewelry is a possible source of toxic lead for children. Samples of more than 100 inexpensive plastic jewelry items were analyzed for lead content. Beads were screened by soaking in 1 M nitric acid. Nine items found to release more than 30 {mu}g of lead per bead were further tested for accessible lead, and scrapings of the bead coatings were analyzed for total lead content. The maximum accessible lead found was 49 {mu}g per bead, which is below the current US Consumer Product Safety Commission limit of 175 {mu}g. However, when the number of beads in each item was taken into account, six of the nine leaded samples contained more than 175 {mu}g accessible lead per item. The lead in these items appears to be associated with lead-based paints used to produce glossy coatings on imitation pearls and similar items. Coatings obtained by scraping individual beads contained 3.5-23% lead, which far exceeds the US regulatory limit of 0.06% lead in paints on items intended for children. Our results demonstrate that plastic jewelry items merit the attention of public health and consumer protection agencies seeking to limit the exposure of children to lead.

  1. Lead contamination of inexpensive plastic jewelry

    International Nuclear Information System (INIS)

    Yost, Jamie L.; Weidenhamer, Jeffrey D.

    2008-01-01

    The neurological hazards of lead to children are well-known. As a result of recent documented cases of lead poisoning, regulatory attention in the United States has focused on the lead content of children's metal jewelry. By contrast, little is known about the possible hazards of plastic jewelry items. The objective of this study was to determine whether inexpensive plastic jewelry is a possible source of toxic lead for children. Samples of more than 100 inexpensive plastic jewelry items were analyzed for lead content. Beads were screened by soaking in 1 M nitric acid. Nine items found to release more than 30 μg of lead per bead were further tested for accessible lead, and scrapings of the bead coatings were analyzed for total lead content. The maximum accessible lead found was 49 μg per bead, which is below the current US Consumer Product Safety Commission limit of 175 μg. However, when the number of beads in each item was taken into account, six of the nine leaded samples contained more than 175 μg accessible lead per item. The lead in these items appears to be associated with lead-based paints used to produce glossy coatings on imitation pearls and similar items. Coatings obtained by scraping individual beads contained 3.5-23% lead, which far exceeds the US regulatory limit of 0.06% lead in paints on items intended for children. Our results demonstrate that plastic jewelry items merit the attention of public health and consumer protection agencies seeking to limit the exposure of children to lead

  2. Nigerian Journal of Plastic Surgery

    African Journals Online (AJOL)

    The Nigerian Journal of Plastic Surgery has its objectives in publishing original articles about developments in all areas related to plastic and reconstructive surgery as well as to trauma surgery. It also serves as a means of providing a forum for correspondence, information and discussion. It also accepts review articles that ...

  3. Architecture of European Plastic Surgery

    NARCIS (Netherlands)

    Nicolai, J. -P. A.; Banic, A.; Molea, G.; Mazzola, R.; Poell, J. G.

    2006-01-01

    The architecture of European Plastic Surgery was published in 1996 [Nicolai JPA, Scuderi N. Plastic surgical Europe in an organogram. Eur J Plast Surg 1996; 19: 253-6.] It is the objective of this paper to update information of that article. Continuing medical education (CME), science, training,

  4. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  5. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  6. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  7. Grain Interactions in Crystal Plasticity

    International Nuclear Information System (INIS)

    Boyle, K.P.; Curtin, W.A.

    2005-01-01

    The plastic response of a sheet metal is governed by the collective response of the underlying grains. Intragranular plasticity depends on intrinsic variables such as crystallographic orientation and on extrinsic variables such as grain interactions; however, the role of the latter is not well understood. A finite element crystal plasticity formulation is used to investigate the importance of grain interactions on intragranular plastic deformation in initially untextured polycrystalline aggregates. A statistical analysis reveals that grain interactions are of equal (or more) importance for determining the average intragranular deviations from the applied strain as compared to the orientation of the grain itself. Furthermore, the influence of the surrounding grains is found to extend past nearest neighbor interactions. It is concluded that the stochastic nature of the mesoscale environment must be considered for a proper understanding of the plastic response of sheet metals at the grain-scale

  8. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  9. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  10. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    Science.gov (United States)

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synthesis of copolymer from lactic acid-polyethylene terephthalate ...

    African Journals Online (AJOL)

    Bio-plastic has been a need of the hour for the past few decades and the usage of lactic acid (LA) in the production of bio plastic opens a new ... of the environment and also helping in the production of bio-degradable plastics in the run.

  12. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    Science.gov (United States)

    Xanthos, Dirk; Walker, Tony R

    2017-05-15

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Water Vapor Permeation in Plastics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.

  14. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  15. Space Plastic Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot's proposed Space Plastic Recycler (SPR) is an automated closed loop plastic recycling system that allows the automated conversion of disposable ISS...

  16. Durability of wood plastic composites manufactured from recycled plastic

    Directory of Open Access Journals (Sweden)

    Irina Turku

    2018-03-01

    Full Text Available The influence of accelerated weathering, xenon-arc light and freeze-thaw cycling on wood plastic composites extruded from a recycled plastic was studied. The results showed that, in general, weathering had a stronger impact on samples made from plastic waste compared to a sample made from virgin material. After weathering, the mechanical properties, tensile and flexural, were reduced by 2–30%, depending on the plastic source. Wettability of the samples was shown to play a significant role in their stability. Chemical analysis with infrared spectroscopy and surface observation with a scan electron microscope confirmed the mechanical test results. Incorporation of carbon black retained the properties during weathering, reducing the wettability of the sample, diminishing the change of mechanical properties, and improving color stability. Keywords: Environmental science, Mechanical engineering, Materials science

  17. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  18. Developmental plasticity: Friend or foe?

    Science.gov (United States)

    Michels, Karin B

    2017-01-01

    Developmental plasticity - the concept that adaptation to changing and unfavorable environmental conditions are possible but may come at the price of compromised health potentials - has evolutionary grounding as it facilitates survival but dissents with fundamental evolutionary principles in that it may advance the lesser fit. It is an important cornerstone of the Developmental Origins of Health and Disease (DOHaD). Unlike evolutionary adaptation developmental plasticity may be short-lived and restricted to one or few generations and inheritance is uncertain. Potential mechanisms include epigenetic modifications adopted in utero which may not transmit to the next generation; future insights may allow adjustments of the outcomes of developmental plasticity.

  19. Radiation damage in plastic scintillators

    International Nuclear Information System (INIS)

    Majewski, S.

    1990-01-01

    Results of radiation damage studies in plastic scintillators are reviewed and critically analyzed from the point of view of applications of plastic scintillators in calorimetric detectors for the SSC. Damage to transmission and to fluorescent yield in different conditions is discussed. New directions in R ampersand D are outlined. Several examples are given of the most recent data on the new scintillating materials made with old and new plastics and fluors, which are exhibiting significantly improved radiation resistance. With a present rate of a vigorous R D programme, the survival limits in the vicinity of 100 MRad seem to be feasible within a couple of years

  20. Plastics recycling: challenges and opportunities

    OpenAIRE

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to pro...

  1. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  2. Wood plastic combination

    International Nuclear Information System (INIS)

    Cunanan, S.A.; Bonoan, L.S.; Verceluz, F.P.; Azucena, E.A.

    1976-03-01

    The purpose of this study is to improve the physical and mechaniproperties of local inferior quality wood species by radiation-induced graft polymerization with plastic monomers. The process involves the following: 1) Preparation of sample; 2) Impregnation of sample with the monomers; 3) Irradiation of the impregnated sample with the use of 20,000 curie Co-60 as gamma-source; 4) Drying of irradiated sample to remove the unpolymerized monomer. Experimentation on different wood species were undertaken and the results given. From the results obtained, it can be concluded that the monomers systems MMA, MMA-USP, and styrene-USP are suitable for graft polymerization with the wood species almon, apitong, bagtikan, mayapis, red lauan, and tanguile. This is shown by their maximum conversion value which range from 86% to 96% with the optimum dose range of 1 to 2 Mrads. However, in the application of WPC process, properties that are required in a given wood product must be considered, thus aid in the selection of the monomer system to be used with a particular wood species. Some promising applications of WPC is in the manufacture of picker sticks, shuttles, and bobbins for the textile industry. However, there is a need for a pilot plant scale study so that an economic assessment of the commercial feasibility of this process can be made

  3. Helene: A Plastic Model

    Science.gov (United States)

    Umurhan, O. M.; Moore, J. M.; Howard, A. D.; Schenk, P.; White, O. L.

    2014-12-01

    Helene, the Saturnian L4 Trojan satellite co-orbiting Dionne and sitting within the E-ring, possesses an unusual morphology characteristic of broad km-scale basins and depressions and a generally smooth surface patterned with streaks and grooves which are indicative of non-typical mass transport. Elevation angles do not appear to exceed 10o at most. The nature and origin of the surface materials forming these grooved patterns is unknown. Given the low surface gravity (plastic-like flow like a Bingham fluid, we setup and test a number of likely scenarios to explain the observations. The numerical results qualitatively indicate that treating the mass-wasting materials as a Bingham material reproduces many of the qualitative features observed. We also find that in those simulations in which accretion is concomitant with Bingham mass-wasting, the long time-evolution of the surface flow shows intermittency in the total surface activity (defined as total surface integral of the absolute magnitude of the mass-flux). Detailed analyses identify the locations where this activity is most pronounced and we will discuss these and its implications in further detail.

  4. Energy recovery from plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baur, A; Atzger, J

    1983-07-01

    The conversion of plastic wastes to energy is suggested as a practicable and advantageous alternative to recycling. A two-stage pilot gasification plant for the pyrolysis of wastes is described and the utilization of the resulting fuel gas discussed.

  5. Plasticity and creep of metals

    CERN Document Server

    Rusinko, Andrew

    2011-01-01

    Here is a systematic presentation of the postulates, theorems and principles of mathematical theories of plasticity and creep in metals, and their applications. Special attention is paid to analysis of the advantages and shortcomings of the classical theories.

  6. Neuromodulation, development and synaptic plasticity.

    Science.gov (United States)

    Foehring, R C; Lorenzon, N M

    1999-03-01

    We discuss parallels in the mechanisms underlying use-dependent synaptic plasticity during development and long-term potentiation (LTP) and long-term depression (LTD) in neocortical synapses. Neuromodulators, such as norepinephrine, serotonin, and acetylcholine have also been implicated in regulating both developmental plasticity and LTP/LTD. There are many potential levels of interaction between neuromodulators and plasticity. Ion channels are substrates for modulation in many cell types. We discuss examples of modulation of voltage-gated Ca2+ channels and Ca(2+)-dependent K+ channels and the consequences for neocortical pyramidal cell firing behaviour. At the time when developmental plasticity is most evident in rat cortex, the substrate for modulation is changing as the densities and relative proportions of various ion channels types are altered during ontogeny. We discuss examples of changes in K+ and Ca2+ channels and the consequence for modulation of neuronal activity.

  7. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    Science.gov (United States)

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  8. Soft plastic bread packaging: lead content and reuse by families.

    Science.gov (United States)

    Weisel, C; Demak, M; Marcus, S; Goldstein, B D

    1991-06-01

    The presence of lead in labels painted on soft plastic bread packaging was evaluated. Lead was detected on the outside of 17 of 18 soft plastic bread bags that were analyzed, with an average of 26 +/- 6 mg per bag with lead. Of 106 families questioned, 16 percent of respondents reported turning the bags inside out before reusing for food storage, thus putting food in contact with the lead paint. We estimate that a weak acid, such as vinegar, could readily leach 100 micrograms of lead from a painted plastic bag within 10 minutes. Further, lead and other metals painted on food packaging of any type becomes part of the municipal waste stream subject to incineration and to land-filling. The use of lead in packaging presents an unnecessary risk to public health.

  9. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  10. Biocide Usage in Plastic Products

    OpenAIRE

    Kavak, Nergizhan; Çakır, Ayşegül; Koltuk, Fatmagül; Uzun, Utku

    2015-01-01

    People’s demand of improving their life quality caused to the term of hygiene become popular and increased the tendency to use more reliable and healthy products. This tendency makes the continuous developments in the properties of the materials used in manufactured goods compulsory. It is possible to create anti-bacterial plastic products by adding biocidal additives to plastic materials which have a wide-range of application in the areas such as health (medicine), food and many other indust...

  11. Interhemispheric plasticity in humans.

    Science.gov (United States)

    Hortobágyi, Tibor; Richardson, Sarah Pirio; Lomarev, Mikhael; Shamim, Ejaz; Meunier, Sabine; Russman, Heike; Dang, Nguyet; Hallett, Mark

    2011-07-01

    Chronic unimanual motor practice increases the motor output not only in the trained but also in the nonexercised homologous muscle in the opposite limb. We examined the hypothesis that adaptations in motor cortical excitability of the nontrained primary motor cortex (iM1) and in interhemispheric inhibition from the trained to the nontrained M1 mediate this interlimb cross education. Healthy, young volunteers (n=12) performed 1000 submaximal voluntary contractions (MVC) of the right first dorsal interosseus (FDI) at 80% MVC during 20 sessions. Trained FDI's MVC increased 49.9%, and the untrained FDI's MVC increased 28.1%. Although corticospinal excitability in iM1, measured with transcranial magnetic stimulation (TMS) before and after every fifth session, increased 6% at rest, these changes, as those in intracortical inhibition and facilitation, did not correlate with cross education. When weak and strong TMS of iM1 were delivered on a background of a weak and strong muscle contraction, respectively, of the right FDI, excitability of iM1 increased dramatically after 20 sessions. Interhemispheric inhibition decreased 8.9% acutely within sessions and 30.9% chronically during 20 sessions and these chronic reductions progressively became more strongly associated with cross education. There were no changes in force or TMS measures in the trained group's left abductor minimi digiti and there were no changes in the nonexercising control group (n=8). The findings provide the first evidence for plasticity of interhemispheric connections to mediate cross education produced by a simple motor task.

  12. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    OpenAIRE

    Mangal Gogte

    2009-01-01

    This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  13. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  14. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  15. Photodegradable plastics useful for global environment conservation. Chikyu ni yasashii hikaribunkaisei plastic

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, T. (Harima Kasei K.K., Osaka (Japan))

    1991-10-11

    Photodegradable plastics and their additives were explained.Two methods are used to manufacture photodegradable plastics.The first method is made by using a copolymer and a monomer containing a functional group and the second method is made by adding a photodegradable agent to an undecomposable plastics.The copolymer based on ethylene and carbon monoxide is included in the first type. The copolymer based on the vinyl ketone to which the carboxyl group is introduced, and ethylene or styrene is also included in this type. A metal dithiocarbamate is included in the second additive type, for which several methods to improve weak points of the pigment compounding system have been proposed later. Benzophenone derivatives, transition metal salts of organic acids and anatase type titanium dioxide are also included in the second type. Any additives are usually supplied as the masterbatch. The performance evaluation and degrading mechanism of ferric tri(2-(methylbenzoyl)benzoate) of adittion type additives were explained. 8 refs., 3 figs., 1 tab.

  16. Plastic zonder olie : lesmodule voor nieuwe scheikunde

    OpenAIRE

    Langejan, B.; Klein Douwel, C.; Horst, ter, J.J.; Tijdink, K.; Marle, van, N.; Klaasen, P.; Coolen, R.; Assenbergh, van, P.; Sijbers, J.P.J.; Mast, A.

    2013-01-01

    Lesmodule voor nieuwe scheikunde voor leerlingen uit 5 en 6 vwo. Bioplastics worden gemaakt uit natuurlijke grondstoffen. Als ze de synthetische plastics vervangen kan de voorraad aardolie ontzien worden. Omdat veel bioplastics afbreekbaar zijn, kan ook de berg plastic afval krimpen. Maar zijn bioplastics in staat om ons de reguliere plastics te doen vergeten? Hoe maken we bioplastics met dezelfde veelzijdige eigenschappen als plastic? Waar komen de uiteenlopende eigenschappen van plastics ei...

  17. Elimination of Plastic Polymers in Natural Environments

    OpenAIRE

    Ramirez-Ekner, Sofia; Bidstrup, Marie Juliane Svea; Brusen, Nicklas Hald; Rugaard-Morgan, Zsa-Zsa Sophie Oona Ophelia

    2017-01-01

    Plastic production and consumption continues to rise and subsequently plastic waste continues to accumulates in natural environments, causing harm to ecosystems.The aim of this paper was to come up with a way to utilize organisms, that have been identified to produce plastic degrading enzymes, as a waste disposal technology. This review includes accounts of plastic production rates, the occurrence of plastic in natural environments and the current waste management systems to create an underst...

  18. Toxicity characterization of waste mobile phone plastics

    International Nuclear Information System (INIS)

    Nnorom, I.C.; Osibanjo, O.

    2009-01-01

    Waste plastic housing units (N = 60) of mobile phones (of different models, and brands), were collected and analyzed for lead, cadmium, nickel and silver using atomic absorption spectrophotometry after acid digestion using a 1:1 mixture of H 2 SO 4 and HNO 3 . The mean (±S.D.) and range of the results are 58.3 ± 50.4 mg/kg (5.0-340 mg/kg) for Pb, 69.9 ± 145 mg/kg (4.6-1005 mg/kg) for Cd, 432 ± 1905 mg/kg (5.0-11,000 mg/kg) for Ni, and 403 ± 1888 mg/kg (5.0-12,500 mg/kg) for Ag. Approximately 90% of the results for the various metals were ≤100 mg/kg. Results greater than 300 mg/kg were generally less than 7% for each metal and could be attributed to exogenous contamination of the samples. These results suggest that there may not be any immediate danger from end-of-life (EoL) mobile phone plastic housing if appropriately treated/managed. However, considering the large quantities generated and the present low-end management practices in most developing countries, such as open burning, there appears a genuine concern over the potential for environmental pollution and toxicity to man and the ecology

  19. Toxicity characterization of waste mobile phone plastics.

    Science.gov (United States)

    Nnorom, I C; Osibanjo, O

    2009-01-15

    Waste plastic housing units (N=60) of mobile phones (of different models, and brands), were collected and analyzed for lead, cadmium, nickel and silver using atomic absorption spectrophotometry after acid digestion using a 1:1 mixture of H2SO4 and HNO3. The mean (+/-S.D.) and range of the results are 58.3+/-50.4mg/kg (5.0-340mg/kg) for Pb, 69.9+/-145mg/kg (4.6-1005mg/kg) for Cd, 432+/-1905mg/kg (5.0-11,000mg/kg) for Ni, and 403+/-1888mg/kg (5.0-12,500mg/kg) for Ag. Approximately 90% of the results for the various metals were plastic housing if appropriately treated/managed. However, considering the large quantities generated and the present low-end management practices in most developing countries, such as open burning, there appears a genuine concern over the potential for environmental pollution and toxicity to man and the ecology.

  20. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species.

    Science.gov (United States)

    Mathieu-Denoncourt, Justine; Wallace, Sarah J; de Solla, Shane R; Langlois, Valerie S

    2015-08-01

    Due to their versatility, robustness, and low production costs, plastics are used in a wide variety of applications. Plasticizers are mixed with polymers to increase flexibility of plastics. However, plasticizers are not covalently bound to plastics, and thus leach from products into the environment. Several studies have reported that two common plasticizers, bisphenol A (BPA) and phthalates, induce adverse health effects in vertebrates; however few studies have addressed their toxicity to non-mammalian species. The aim of this review is to compare the effects of plasticizers in animals, with a focus on aquatic species. In summary, we identified three main chains of events that occur in animals exposed to BPA and phthalates. Firstly, plasticizers affect development by altering both the thyroid hormone and growth hormone axes. Secondly, these chemicals interfere with reproduction by decreasing cholesterol transport through the mitochondrial membrane, leading to reduced steroidogenesis. Lastly, exposure to plasticizers leads to the activation of peroxisome proliferator-activated receptors, the increase of fatty acid oxidation, and the reduction in the ability to cope with the augmented oxidative stress leading to reproductive organ malformations, reproductive defects, and decreased fertility. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Avalanches and plastic flow in crystal plasticity: an overview

    Science.gov (United States)

    Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr

    2018-01-01

    Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.

  2. Processing and characterization of biodegradable soy plastics: Effects of crosslinking with glyoxal and thermal treatment

    NARCIS (Netherlands)

    Vaz, C.M.; Doeveren, van P.F.N.M.; Yilmaz, G.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2005-01-01

    Processing and modification routes to produce and to improve properties of biodegradable plastics from soy isolate were studied. Soy isolate, acid-treated and crosslinked soy were subsequently compounded, extruded, and injection molded. Acetic acid and glyoxal were examined concerning their

  3. Reinforced plastics and aerogels by nanocrystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T., E-mail: john.luong@cnrc-nrc.gc.ca [National Research Council Canada (Canada)

    2013-05-15

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  4. Injury to crops by gas as produced from plastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Inden, T; Tachibana, S

    1971-01-01

    The effects of gas formations of phthalate and epoxy plasticizers on crops were studied at room temperature and 100 to 200 C. The materials were tested either alone Or as products including polyvinyl chloride and a stabilizer. At room temperature, dioctylphthalate (DOP) did not injure the cucumber leaves, whereas diisobutyl phthalate (DIBF) injured 74.1%, and dibutyl phthalate injured 36.5% of the surface of the leaves. Among many stabilizers tested, triphenyl phosphite injured 80% of the surface area of cucumber leaves. At 100 C to 200 C for 48 hours DIBP and CLP injured the Chinese cabbage leaves most, about 80% of the surface area. The following chemicals for the manufacturing of the plasticizers were also found to injure Chinese cabbage leaves, isobutanol 18.3%, 2-ethyl-hexanol 98.3%, isodecanol 98.5%, phthalic acid 40.0, and adipic acid 6.6%.

  5. Plasticity characteristic obtained by indentation

    International Nuclear Information System (INIS)

    Milman, Yu V

    2008-01-01

    A dimensionless parameter δ H = ε p /ε t (where ε p and ε t are the average values of plastic and total deformation of material on the contact area indenter-specimen) may be used as the plasticity characteristic of materials, which made it possible to characterize the plasticity of materials that are brittle in standard mechanical tests. δ H may be calculated from the values of microhardness HM, Young's modulus E and Poisson's ratio ν. In instrumented indentation the plasticity characteristic δ A = A p /A t (A p and A t are the work of plastic and total deformation during indentation) may be calculated. δ A ∼ δ H for materials with δ H > 0.5, i.e. for all metals and the majority of ceramic materials. In this case, the theoretical equation δ A ∼ δ H = 1-10.2 · (1 - ν - 2ν 2 )(HM/E) is satisfied in experiments with the Berkovich indenter. The influence of the temperature and structural parameters (dislocation density and grain size including nanostructured materials) on δ H is discussed

  6. Mechanisms of GABAergic Homeostatic Plasticity

    Directory of Open Access Journals (Sweden)

    Peter Wenner

    2011-01-01

    Full Text Available Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons. Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections. We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons: following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition. Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule. We consider potential reasons for these discrepancies.

  7. Neurogenomic mechanisms of social plasticity.

    Science.gov (United States)

    Cardoso, Sara D; Teles, Magda C; Oliveira, Rui F

    2015-01-01

    Group-living animals must adjust the expression of their social behaviour to changes in their social environment and to transitions between life-history stages, and this social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. Here, we propose a conceptual framework for understanding the neuromolecular mechanisms of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of a neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different genomic and epigenetic states of this brain network correspond to different behavioural states, and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. Different types of social plasticity can be recognized based on the observed patterns of inter- versus intra-individual occurrence, time scale and reversibility. It is proposed that these different types of social plasticity rely on different proximate mechanisms at the physiological, neural and genomic level. © 2015. Published by The Company of Biologists Ltd.

  8. Smartphones and the plastic surgeon.

    Science.gov (United States)

    Al-Hadithy, Nada; Ghosh, Sudip

    2013-06-01

    Surgical trainees are facing limited training opportunities since the introduction of the European Working Time Directive. Smartphone sales are increasing and have usurped computer sales for the first time. In this context, smartphones are an important portable reference and educational tool, already in the possession of the majority of surgeons in training. Technology in the palm of our hands has led to a revolution of accessible information for the plastic surgery trainee and surgeon. This article reviews the uses of smartphones and applications for plastic surgeons in education, telemedicine and global health. A comprehensive guide to existing and upcoming learning materials and clinical tools for the plastic surgeon is included. E-books, podcasts, educational videos, guidelines, work-based assessment tools and online logbooks are presented. In the limited resource setting of modern clinical practice, savvy plastic surgeons can select technological tools to democratise access to education and best clinical care. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Biodegradable plastics from Sinorhizobium meliloti as plastics compatible with the environment and human health

    Directory of Open Access Journals (Sweden)

    Mehrdad Hashemi Beidokhti

    2016-03-01

    Full Text Available Introduction: Polyhydroxyalkanoates (PHAs are natural polyesters and biodegradable plastics that are stored as intracellular inclusion bodies by a great variety of bacteria. The aim of this study was to extract polyhydroxyalkanoate from native Sinorhizobium meliloti in Iran. Materials and methods: Sinorhizobium meliloti isolates were collected from roots of alfalfa plants and were identified by Gram staining, biochemical experiments and amplification of 1500 bp fragment of 16Sr DNA gene. PHA granules were detected by microscopic examination. PHA production was evaluated in nutrient deficient medium and its amount was determined by conversion of PHA into crotonic acid by sulphuric acid treatment. The effect of various temperatures, agitation rate and carbon source (sucrose, mannitol, and maltose were evaluated on dry cell weight and polyhydroxybutyrate (PHB production. Results: The maximum amount of polymer production (43.10% was seen in basal mineral medium at 29°C, pH~7 and 215 revolutions per minute (rpm. The results of this research showed that the S5 isolate was capable to produce maximum poly3- hydroxybutyrate. The produced polymer was analyzed for its purity by GC- mass (gas chromatography- mass spectroscopy and confirmed to be PHB compared with the standard polymer. Discussion and conclusion: Native strains of Sinorhizobium can be used in the production of biodegradable plastics and the results of present study showed that S. meliloti S5 was capable to produce maximum PHB at 29°C, agitation rate of 215 rpm, and pH~7. 

  10. Exercise and plasticize the brain

    DEFF Research Database (Denmark)

    Mala, Hana; Wilms, Inge

    Neuroscientific studies continue to shed light on brain’s plasticity and its innate mechanisms to recover. The recovery process includes re-wiring of the existing circuitry, establishment of new connections, and recruitment of peri-lesional and homologous areas in the opposite hemisphere....... The plasticity of the brain can be stimulated and enhanced through training, which serves as a fundamental element of neurorehabilitative strategies. For instance, intensive cognitive and physical training promote the activation of processes that may help the brain to adapt to new conditions and needs. However...... neurorehabilitation is to understand and define how to stimulate the injured brain to elicit the desired adaptation. Research focuses on uncovering specific elements relevant for training planning and execution in order to create an environment that stimulates and maximizes the exploitation of the brain’s plastic...

  11. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  12. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  13. Plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Moriyama, Noboru

    1981-01-01

    Over 20 years have elapsed after the start of nuclear power development, and the nuclear power generation in Japan now exceeds the level of 10,000 MW. In order to meet the energy demands, the problem of the treatment and disposal of radioactive wastes produced in nuclear power stations must be solved. The purpose of the plastic solidification of such wastes is to immobilize the contained radionuclides, same as other solidification methods, to provide the first barrier against their move into the environment. The following matters are described: the nuclear power generation in Japan, the radioactive wastes from LWR plants, the position of plastic solidification, the status of plastic solidification in overseas countries and in Japan, the solidification process for radioactive wastes with polyethylene, and the properties of solidified products, and the leachability of radionuclides in asphalt solids. (J.P.N.)

  14. Constraints on the evolution of phenotypic plasticity

    DEFF Research Database (Denmark)

    Murren, Courtney J; Auld, Josh R.; Callahan, Hilary S

    2015-01-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce...... an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits...... to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently...

  15. Nutrient-mediated architectural plasticity of a predatory trap.

    Science.gov (United States)

    Blamires, Sean J; Tso, I-Min

    2013-01-01

    Nutrients such as protein may be actively sought by foraging animals. Many predators exhibit foraging plasticity, but how their foraging strategies are affected when faced with nutrient deprivation is largely unknown. In spiders, the assimilation of protein into silk may be in conflict with somatic processes so we predicted web building to be affected under protein depletion. To assess the influence of protein intake on foraging plasticity we fed the orb-web spiders Argiope aemula and Cyclosa mulmeinensis high, low or no protein solutions over 10 days and allowed them to build webs. We compared post-feeding web architectural components and major ampullate (MA) silk amino acid compositions. We found that the number of radii in webs increased in both species when fed high protein solutions. Mesh size increased in A. aemula when fed a high protein solution. MA silk proline and alanine compositions varied in each species with contrasting variations in alanine between the two species. Glycine compositions only varied in C. mulmeinensis silk. No spiders significantly lost or gained mass on any feeding treatment, so they did not sacrifice somatic maintenance for amino acid investment in silk. Our results show that the amount of protein taken in significantly affects the foraging decisions of trap-building predators, such as orb web spiders. Nevertheless, the subtle differences found between species in the association between protein intake, the amino acids invested in silk and web architectural plasticity show that the influence of protein deprivation on specific foraging strategies differs among different spiders.

  16. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    a safe and statically admissible stress distribution is established. The plasticity solutions are compared with tests carried out at the Engineering Academy of Denmark, Lyngby, in the early nineties, and old fillet weld tests. The new failure conditions are in very good agreement with the yield load......This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...... tests, but not so good agreement with the old failure load tests....

  17. The Plastic Tension Field Method

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    This paper describes a calculation method for steel plate girders with transverse web stiffeners subjected to shear. It may be used for predicting the failure load or, as a design method, to determine the optimal amount of internal web stiffeners. The new method is called the plastic tension field...... method. The method is based on the theory of plasticity and is analogous to the so-called diagonal compression field method developed for reinforced concrete beams with transverse stirrups, which is adopted in the common European concrete code (Eurocode 2). Many other theories have been developed...

  18. Preparation of coloured wood plastics

    International Nuclear Information System (INIS)

    Lebedev, V.T.; Filippova, T.G.; Rajchuk, F.Z.

    1977-01-01

    A study has been made into the possibility of using fat, as well as alcohol- and water-soluble dyes for radiation-chemical dying of polymers and plastics filled with wood. The use of fat-soluble azo and anthraquinone dyes permits obtaining intensely colored wood-plastic materials based on methyl methacrylate by way of gamma radiation with doses of up to 3 Mrad. At a dose above 5 Mrad, a marked tarnishing of the dye or a change in color and stains are observed. Dyes in styrene withstand higher radiation doses without any significant destruction

  19. A work criterion for plastic collapse

    International Nuclear Information System (INIS)

    Muscat, Martin; Mackenzie, Donald; Hamilton, Robert

    2003-01-01

    A new criterion for evaluating limit and plastic loads in pressure vessel design by analysis is presented. The proposed criterion is based on the plastic work dissipated in the structure as loading progresses and may be used for structures subject to a single load or a combination of multiple loads. Example analyses show that limit and plastic loads given by the plastic work criterion are robust and consistent. The limit and plastic loads are determined purely by the inelastic response of the structure and are not influenced by the initial elastic response: a problem with some established plastic criteria

  20. Rheological characterization of plasticized corn proteins for fused deposition modeling

    Science.gov (United States)

    Chaunier, Laurent; Dalgalarrondo, Michèle; Della Valle, Guy; Lourdin, Denis; Marion, Didier; Leroy, Eric

    2017-10-01

    Additive Manufacturing (AM) of tailored natural biopolymer-based objects by Fused Deposition Modeling (FDM) opens new perspectives for applications such as biomedical temporary devices, or pharmaceutical tablets. This exploits the biocompatibility, resorbability and edibility properties of biopolymers. When adequately plasticized, zeins, storage proteins from endosperm of maize kernels, displayed thermomechanical properties possibly matching FDM processing requirements at a convenient temperature Tprinting=130°C. Indeed, with 20% glycerol added (Tg=42°C), plasticized zeins present a high modulus, E'>1GPa, at ambient conditions, which drops below 0.6 MPa at the processing temperature T=130°C, before flowing in the molten state. The rheological characterization shows that the processing window is limited by a progressive increase of viscosity linked to proteins aggregation and crosslinking by S-S bonding between cysteine amino acid residues, which can lead to gelation. However, for short residence time typical of FDM, the viscosity of plasticized zeins is comparable to the one of standard polymers, like ABS or PLA in their FDM processing conditions: indeed, in presence of glycerol, the molten zeins show a shear-thinning behavior with |η*|≈3kPa.s at 1s-1, decreasing to |η*|≈0.3kPa.s at 100s-1, at 130°C. Moreover, zeins presenting both hydrophilic and hydrophobic domains, amphiphilic plasticizers can be used supplementary to tune their rheological behavior. With 20% oleic acid added to the previous composition, the viscosity is divided down to a ratio about 1/2 at 100s-1 at 130°C, below the value of a standard polymer as PLA at its printing temperature. These results show the possible enhancement of the printability of zein-based materials in the molten state, by combining polar and amphiphilic plasticizers.

  1. Body dysmorphia and plastic surgery.

    Science.gov (United States)

    Kyle, Allison

    2012-01-01

    Body dysmorphic disorder is a mental disorder characterized by a preoccupation with some aspect of one's appearance. In cosmetic surgery, this preoccupation can be overlooked by practitioners resulting in a discrepancy between expected and realistic outcome. Identifying the characteristics of this disorder may be crucial to the practitioner-patient relationship in the plastic surgery setting.

  2. Ways of Viewing Pictorial Plasticity

    NARCIS (Netherlands)

    Wijntjes, M.W.A.

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim

  3. Ways of Viewing Pictorial Plasticity

    Directory of Open Access Journals (Sweden)

    Maarten W. A. Wijntjes

    2017-03-01

    Full Text Available The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter. By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  4. Ways of Viewing Pictorial Plasticity.

    Science.gov (United States)

    Wijntjes, Maarten W A

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter). By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  5. Electron beam micromachining of plastics

    Czech Academy of Sciences Publication Activity Database

    Dupák, Libor

    2014-01-01

    Roč. 49, 5-6 (2014), s. 310-314 ISSN 0861-4717 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : micromachining of plastics * Electron beam Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  6. Field based plastic contamination sensing

    Science.gov (United States)

    The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...

  7. Recycling of plastics in Germany

    International Nuclear Information System (INIS)

    Thienen, N. von; Patel, M.

    1999-01-01

    This article deals with the waste management of post-consumer plastics in Germany and its potential to save fossil fuels and reduce CO 2 emissions. Since most experience is available for packaging, the paper first gives an overview of the legislative background and the material flows for this sector. Then recycling and recovery processes for plastics waste from all sectors are assessed in terms of their contribution to energy saving and CO 2 abatement. Practically all the options studied show a better performance than waste treatment in an average incinerator which has been chosen as the reference case. High ecological benefits can be achieved by mechanical recycling if virgin polymers are substituted. The paper then presents different scenarios for managing plastic waste in Germany in 1995: considerable savings can be made by strongly enhancing the efficiency of waste incinerators. Under these conditions the distribution of plastics waste among mechanical recycling, feedstock recycling and energy recovery has a comparatively mall impact on the overall results. The maximum savings amount to 74 PJ of energy, i.e, 9% of the chemical sector energy demand in 1995 and 7.0 Mt CO 2 , representing 13% of the sector's emissions. The assessment does not support a general recommendation of energy recovery due to the large difference between the German average and the best available municipal waste-to-energy facilities and also due to new technological developments in the field of mechanical recycling

  8. Transformation plasticity and hot pressing

    International Nuclear Information System (INIS)

    Chaklader, A.C.D.

    1975-01-01

    The transformation plasticity during the phase transition of quartz to cristobalite, monoclinic reversible tetragonal of zirconia, metakaolin to a spinel phase, and brucite to periclase was investigated by studying their compaction characteristics. Viscous flow was found to be the predominant mechanism of mass transport (after an initial particle rearrangement stage) in the case of quartz to cristobalite phase change where the transformation was associated with the formation of an intermediate amorphous silica phase. The results on the monoclinic reversible tetragonal transformation of zirconia indicated that it is most likely controlled by internal strain induced by the stress associated with the volume change (ΔV/V) and the flow stress of the weaker phase. Particle movement and deformation of the weaker phase (possibly tetragonal) may be the manifestation of this plasticity. The plasticity in the case of metakaolin to a spinel phase appeared to start before the exothermic reaction (generally encountered in a dta plot) and may be diffusion controlled. The plasticity encountered during brucite to periclase transformation may be the combined effect of disintegration of precursor particles, vapor-phase lubrication and some deformability of freshly formed very fine MgO particles

  9. Plastics and beaches: A degrading relationship

    International Nuclear Information System (INIS)

    Corcoran, Patricia L.; Biesinger, Mark C.; Grifi, Meriem

    2009-01-01

    Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth

  10. Toward Modeling Limited Plasticity in Ceramic Materials

    National Research Council Canada - National Science Library

    Grinfeld, Michael; Schoenfeld, Scott E; Wright, Tim W

    2008-01-01

    The characteristic features of many armor-related ceramic materials are the anisotropy on the micro-scale level and the very limited, though non-vanishing, plasticity due to limited number of the planes for plastic slip...

  11. Antireflection coatings on plastics deposited by plasma ...

    Indian Academy of Sciences (India)

    In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses ... Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. ... Bulletin of Materials Science | News.

  12. Mechanical behaviour of nanoparticles: Elasticity and plastic ...

    Indian Academy of Sciences (India)

    2015-06-03

    Jun 3, 2015 ... Mechanical behaviour of nanoparticles: Elasticity and plastic deformation mechanisms ... The main results in terms of elasticity and plastic deformation mechanisms are then reported ... Pramana – Journal of Physics | News.

  13. Electron beam processed plasticized epoxy coatings for surface protection

    International Nuclear Information System (INIS)

    Ibrahim, Mervat S.; Mohamed, Heba A.; Kandile, Nadia G.; Said, Hossam M.; Mohamed, Issa M.

    2011-01-01

    Highlights: · Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass -1 irradiation dose showed the best adhesion and passed bending tests. · The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. · The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass -1 ) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass -1 irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion protection for carbon steel and compete the

  14. Recycling plastic bottles in a creative way

    OpenAIRE

    Pavlin, Suzana

    2016-01-01

    Beside other plastic products, plastic bottles represent a true environmental disaster in the last few years. We assume that hardly anyone asks what happens after they drink that last drop of water out of it. Just like most municipal waste, a plastic bottle can be reused, recycled, burned or deposited into landfill. When the Environment Protection Act is not respected, plastic bottle ends up in the nature, very often in the sea, where it decomposes very slowly and has negative influence on th...

  15. Plastic Accumulation in the Mediterranean Sea

    OpenAIRE

    C?zar, Andr?s; Sanz-Mart?n, Marina; Mart?, Elisa; Gonz?lez-Gordillo, J. Ignacio; Ubeda, B?rbara; G?lvez, Jos? ?.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Copyright: © 2015 Cózar et al. Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by ...

  16. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    Directory of Open Access Journals (Sweden)

    Mangal Gogte

    2009-12-01

    Full Text Available This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  17. PLASTIC ANALYSIS OF STEEL FRAME STRUCTURE

    Directory of Open Access Journals (Sweden)

    M. Rogac

    2013-05-01

    Full Text Available This paper presents the plastic analysis of steel frame structure loaded by gravity loads. By applying the cinematic theorem of ultimate analysis, the ultimate load for the case of elastic - ideally plastic material is calculated. The identical structure was treated in the computer program SAP2000 where the zone of material reinforcement in the plastic area was covered. Keywords: Steel frame structure, plastic analysis, ultimate gravity load, material reinforcement.

  18. Plastic heat exchangers: a state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D; Holtz, R E; Koopman, R N; Marciniak, T J; MacFarlane, D R

    1979-07-01

    Significant increases in energy utilization efficiency can be achieved through the recovery of low-temperature rejected heat. This energy conserving possibility provides incentive for the development of heat exchangers which could be employed in applications where conventional units cannot be used. Some unique anticorrosion and nonstick characteristics of plastics make this material very attractive for heat recovery where condensation, especially sulfuric acid, and fouling occur. Some of the unique characteristics of plastics led to the commercial success of DuPont's heat exchangers utilizing polytetrafluoroethylene (trade name Teflon) tubes. Attributes which were exploited in this application were the extreme chemical inertness of the material and its flexibility, which enabled utilization in odd-shaped spaces. The wide variety of polymeric materials available ensures chemical inertness for almost any application. Lower cost, compoundability with fillers to improve thermal/mechanical properties, and versatile fabrication methods are incentives for many uses. Also, since many plastics resist corrosion, they can be employed in lower temperature applications (< 436 K), where condensation can occur and metal units have been unable to function. It is clear that if application and design can be merged to produce a cost-effective alternate to present methods of handling low-temperature rejected heat, then there is significant incentive for plastic heat exchangers, to replace traditional metallic heat exchangers or to be used in services where metals are totally unsuited.

  19. Short-term ionic plasticity at GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2012-10-01

    Full Text Available Fast synaptic inhibition in the brain is mediated by the pre-synaptic release of the neurotransmitter γ-Aminobutyric acid (GABA and the post-synaptic activation of GABA-sensitive ionotropic receptors. As with excitatory synapses, it is being increasinly appreciated that a variety of plastic processes occur at inhibitory synapses, which operate over a range of timescales. Here we examine a form of activity-dependent plasticity that is somewhat unique to GABAergic transmission. This involves short-lasting changes to the ionic driving force for the postsynaptic receptors, a process referred to as short-term ionic plasticity. These changes are directly related to the history of activity at inhibitory synapses and are influenced by a variety of factors including the location of the synapse and the post-synaptic cell’s ion regulation mechanisms. We explore the processes underlying this form of plasticity, when and where it can occur, and how it is likely to impact network activity.

  20. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during...

  1. 7 CFR 58.326 - Plastic cream.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the quality...

  2. Use of Plastic Mulch for Vegetable Production

    OpenAIRE

    Maughan, Tiffany; Drost, Dan

    2016-01-01

    Plastic mulches are used commercially for both vegetables and small fruit crops. Vegetable crops well suited for production with plastic mulch are typically high value row crops. This fact sheet describes the advantages, disadvantages, installation, and planting considerations. It includes sources for plastic and equipment.

  3. The evolution of age-dependent plasticity

    NARCIS (Netherlands)

    Fischer, Barbara; van Doorn, G. Sander; Dieckmann, Ulf; Taborsky, Barbara

    2014-01-01

    When organisms encounter environments that are heterogeneous in time, phenotypic plasticity is often favored by selection. The degree of such plasticity can vary during an organism''s lifetime, but the factors promoting differential plastic responses at different ages or life stages remain poorly

  4. Plastic Debris Is a Human Health Issue

    NARCIS (Netherlands)

    Vethaak, A.D.; Leslie, H.A.

    2016-01-01

    The global threat of highly persistent plastic waste accumulating and fragmenting in the world’s oceans, inland waters and terrestrial environments is becoming increasingly evident.1−3 Humans are being exposed to both plastic particles and chemical additives being released from the plastic debris of

  5. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully

  6. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large...... recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...

  7. Combustion products of plastics as indicators for refuse burning in the atmosphere.

    Science.gov (United States)

    Simoneit, Bernd R T; Medeiros, Patricia M; Didyk, Borys M

    2005-09-15

    Despite all of the economic problems and environmental discussions on the dangers and hazards of plastic materials, plastic production worldwide is growing at a rate of about 5% per year. Increasing techniques for recycling polymeric materials have been developed during the last few years; however, a large fraction of plastics are still being discarded in landfills or subjected to intentional or incidental open-fire burning. To identify specific tracer compounds generated during such open-fire combustion, both smoke particles from burning and plastic materials from shopping bags, roadside trash, and landfill garbage were extracted for gas chromatography-mass spectrometry analyses. Samples were collected in Concón, Chile, an area frequently affected by wildfire incidents and garbage burning, and the United States for comparison. Atmospheric samples from various aerosol sampling programs are also presented as supportive data. The major components of plastic extracts were even-carbon-chain n-alkanes (C16-C40), the plasticizer di-2-ethylhexyl phthalate, and the antioxidants and lubricants/antiadhesives Irganox 1076, Irgafos 168, and its oxidation product tris(2,4-di-tertbutylphenyl) phosphate. Major compounds in smoke from burning plastics include the non-source-specific n-alkanes (mainly even predominance), terephthalic acid, phthalates, and 4-hydroxybenzoic acid, with minor amounts of polycyclic aromatic hydrocarbons (including triphenylbenzenes) and tris(2,4-di-tert-butylphenyl)phosphate. 1,3,5-Triphenylbenzene and tris(2,4-di-tert-butylphenyl)- phosphate were found in detectable amounts in atmospheric samples where plastics and refuse were burned in open fires, and thus we propose these two compounds as specific tracers for the open-burning of plastics.

  8. Plastic waste as a resource. Strategies for reduction and utilization of plastic waste

    OpenAIRE

    Pasqual i Camprubí, Gemma

    2010-01-01

    Plastic materials have experienced a spectacular rate of growth in recent decades, consequently, production of plastics, and likewise their consumption, has increased markedly since 1950. Moreover, they are lightweight and durable, as well as can be moulded into a variety of products that can be manufactured in many different types of plastic and in a wide range of applications. Inevitably, continually increasing amounts of used plastic are originating daily, resulting in a plastic waste prob...

  9. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  10. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  11. Alternative Diesel from Waste Plastics

    Directory of Open Access Journals (Sweden)

    Stella Bezergianni

    2017-10-01

    Full Text Available The long term ambition of energy security and solidarity, coupled with the environmental concerns of problematic waste accumulation, is addressed via the proposed waste-to-fuel technology. Plastic waste is converted into automotive diesel fuel via a two-step thermochemical process based on pyrolysis and hydrotreatment. Plastic waste was pyrolyzed in a South East Asia plant rendering pyrolysis oil, which mostly consisted of middle-distillate (naphtha and diesel hydrocarbons. The diesel fraction (170–370 °C was fractionated, and its further upgrade was assessed in a hydroprocessing pilot plant at the Centre for Research and Technology Hellas (CERTH in Greece. The final fuel was evaluated with respect to the diesel fuel quality specifications EN 590, which characterized it as a promising alternative diesel pool component with excellent ignition quality characteristics and low back end volatility.

  12. Polishing compound for plastic surfaces

    Science.gov (United States)

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  13. Temperature dependence of plastic scintillators

    Science.gov (United States)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  14. Vascular plasticity in cerebrovascular disorders

    DEFF Research Database (Denmark)

    Edvinsson, Lars I H; Povlsen, Gro Klitgaard

    2011-01-01

    Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries and micr......Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries...... therapeutic target for prevention of vasoconstrictor receptor upregulation after stroke. Together, those findings provide new perspectives on the pathophysiology of ischemic stroke and point toward a novel way of reducing vasoconstriction, neuronal cell death, and thus neurologic deficits after stroke....

  15. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  16. Learning and plasticity in adolescence

    OpenAIRE

    Fuhrmann, Delia Ute Dorothea

    2017-01-01

    Adolescence is the period of life between puberty and relative independence. It is a time during which the human brain undergoes protracted changes - particularly in the frontal, parietal and temporal cortices. These changes have been linked to improvements in cognitive performance; and are thought to render adolescence a period of relatively high levels of plasticity, during which the environment has a heightened impact on brain development and behaviour. This thesis investigates learning an...

  17. Studies of novel plastic scintillators

    International Nuclear Information System (INIS)

    McInally, I.D.

    1979-08-01

    The general aim of this study was to synthesize fluorescent compounds which are capable of polymerisation, to prepare polymers and co-polymers from these compounds and to study the photophysical properties of these materials. In this way it is hoped to produce plastic scintillators exhibiting improved energy transfer efficiency. Materials studied included POS(2-phenyl-5-(p vinyl) phenyloxazole) vinyl naphthalene, methyl anthracene terminated poly vinyl toluene) and derivatives of BuPBD. (author)

  18. Ways of Viewing Pictorial Plasticity

    OpenAIRE

    Maarten W. A. Wijntjes

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we...

  19. The Plastic Surgery Hand Curriculum.

    Science.gov (United States)

    Silvestre, Jason; Levin, L Scott; Serletti, Joseph M; Chang, Benjamin

    2015-12-01

    Designing an effective hand rotation for plastic surgery residents is difficult. The authors address this limitation by elucidating the critical components of the hand curriculum during plastic surgery residency. Hand questions on the Plastic Surgery In-Service Training Exam for six consecutive years (2008 to 2013) were characterized by presence of imaging, vignette setting, question taxonomy, answer domain, anatomy, and topic. Answer references were quantified by source and year of publication. Two hundred sixty-six questions were related to hand surgery (22.7 percent of all questions; 44.3 per year) and 61 were accompanied by an image (22.9 percent). Vignettes tended to be clinic- (50.0 percent) and emergency room-based (35.3 percent) (p < 0.001). Questions required decision-making (60.5 percent) over interpretation (25.9 percent) and recall skills (13.5 percent) (p < 0.001). Answers focused on interventions (57.5 percent) over anatomy/pathology (25.2 percent) and diagnoses (17.3 percent) (p < 0.001). Nearly half of the questions focused on the digits. The highest yield topics were trauma (35.3 percent), reconstruction (24.4 percent), and aesthetic and functional problems (14.2 percent). The Journal of Hand Surgery (American volume) (20.5 percent) and Plastic and Reconstructive Surgery (18.0 percent) were the most-cited journals, and the median publication lag was 7 years. Green's Operative Hand Surgery was the most-referenced textbook (41.8 percent). These results will enable trainees to study hand surgery topics with greater efficiency. Faculty can use these results to ensure that tested topics are covered during residency training. Thus, a benchmark is established to improve didactic, clinical, and operative experiences in hand surgery.

  20. Processing of plastic track detectors

    International Nuclear Information System (INIS)

    Somogyi, G.

    1977-01-01

    A survey of some actual problems of the track processing methods available at this time for plastics is presented. In the case of the conventional chemical track-etching technique, mainly the etching situations related to detector geometry, and the relationship between registration sensitivity and the etching parameters are considered. Special attention is paid to the behaviour of track-revealing by means of electrochemical etching. Finally, some properties of a promising new track processing method based on graft polymerization are discussed. (author)

  1. Processing of plastic track detectors

    International Nuclear Information System (INIS)

    Somogyi, G.

    1976-01-01

    A survey of some actual problems of the track processing methods available at this time for plastics is presented. In the case of the conventional chemical track etching technique mainly the etching situations related to detector geometry and the relationship of registration sensitivity and the etching parameters are considered. A special attention is paid to the behaviour of track revealing by means of electrochemical etching. Finally, some properties of a promising new track processing method based on graft polymerization is discussed. (orig.) [de

  2. Vocal plasticity in a reptile.

    Science.gov (United States)

    Brumm, Henrik; Zollinger, Sue Anne

    2017-05-31

    Sophisticated vocal communication systems of birds and mammals, including human speech, are characterized by a high degree of plasticity in which signals are individually adjusted in response to changes in the environment. Here, we present, to our knowledge, the first evidence for vocal plasticity in a reptile. Like birds and mammals, tokay geckos ( Gekko gecko ) increased the duration of brief call notes in the presence of broadcast noise compared to quiet conditions, a behaviour that facilitates signal detection by receivers. By contrast, they did not adjust the amplitudes of their call syllables in noise (the Lombard effect), which is in line with the hypothesis that the Lombard effect has evolved independently in birds and mammals. However, the geckos used a different strategy to increase signal-to-noise ratios: instead of increasing the amplitude of a given call type when exposed to noise, the subjects produced more high-amplitude syllable types from their repertoire. Our findings demonstrate that reptile vocalizations are much more flexible than previously thought, including elaborate vocal plasticity that is also important for the complex signalling systems of birds and mammals. We suggest that signal detection constraints are one of the major forces driving the evolution of animal communication systems across different taxa. © 2017 The Author(s).

  3. Plastic buckling of cylindrical shells

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-01-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  4. Plastic solid waste utilization technologies: A Review

    Science.gov (United States)

    Awasthi, Arun Kumar; Shivashankar, Murugesh; Majumder, Suman

    2017-11-01

    Plastics are used in more number of applications in worldwide and it becomes essential part of our daily life. In Indian cities and villages people use the plastics in buying vegetable as a carry bag, drinking water bottle, use of plastic furniture in home, plastics objects uses in kitchen, plastic drums in packing and storage of the different chemicals for industrial use, use plastic utensils in home and many more uses. After usage of plastics it will become part of waste garbage and create pollution due to presence of toxic chemicals and it will be spread diseases and give birth to uncontrolled issues in social society. In current scenario consumption of plastic waste increasing day by day and it is very difficult to manage the plastic waste. There are limited methodologies available for reutilization of plastic waste again. Such examples are recycling, landfill, incineration, gasification and hydrogenation. In this paper we will review the existing methodologies of utilization of plastic waste in current scenario

  5. Applications and societal benefits of plastics.

    Science.gov (United States)

    Andrady, Anthony L; Neal, Mike A

    2009-07-27

    This article explains the history, from 1600 BC to 2008, of materials that are today termed 'plastics'. It includes production volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride, polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential applications of plastic over the next 20 years.

  6. Fate in humans of the plasticizer, DI (2-ethylhexyl) phthalate, arising from transfusion of platelets stored in vinyl plastic bags. [plasticizer migration into human blood from vinyl plastic bags during transfusion

    Science.gov (United States)

    Rubin, R. J.; Schiffer, C. A.

    1975-01-01

    Platelet concentrates were shown to contain 18-38 mg/100 ml of a phthalate plasticizer (DEHP) which arose by migration from the vinyl plastic packs in which the plateletes were prepared and stored. Transfusion of these platelets into 6 adult patients with leukemia resulted in peak blood plasma levels of DEHP ranging from 0.34 - 0.83 mg/100 ml. The blood levels fell mono-exponentially with a mean rate of 2.83 percent per minute and a half-life of 28.0 minutes. Urine was assayed by a method that would measure unchanged DEHP as well as all phthalic acid-containing metabolities. In two patients, at most 60 and 90% of the infused dose, respectively, was excreted in the urine collected for 24 hours post-transfusion. These estimates, however, could be high due to the simultaneous excretion of DEHP remaining from previous transfusions or arising from uncontrolled environmental exposures.

  7. Key Metabolic Enzymes Underlying Astrocytic Upregulation of GABAergic Plasticity

    Directory of Open Access Journals (Sweden)

    Przemysław T. Kaczor

    2017-05-01

    Full Text Available GABAergic plasticity is recognized as a key mechanism of shaping the activity of the neuronal networks. However, its description is challenging because of numerous neuron-specific mechanisms. In particular, while essential role of glial cells in the excitatory plasticity is well established, their involvement in GABAergic plasticity only starts to emerge. To address this problem, we used two models: neuronal cell culture (NC and astrocyte-neuronal co-culture (ANCC, where we chemically induced long-term potentiation at inhibitory synapses (iLTP. iLTP could be induced both in NC and ANCC but in ANCC its extent was larger. Importantly, this functional iLTP manifestation was accompanied by an increase in gephyrin puncta size. Furthermore, blocking astrocyte Krebs cycle with fluoroacetate (FA in ANCC prevented enhancement of both mIPSC amplitude and gephyrin puncta size but this effect was not observed in NC, indicating a key role in neuron-astrocyte cross-talk. Blockade of monocarboxylate transport with α-Cyano-4-hydroxycinnamic acid (4CIN abolished iLTP both in NC and ANCC and in the latter model prevented also enlargement of gephyrin puncta. Similarly, blockade of glycogen phosphorylase with BAYU6751 prevented enlargement of gephyrin puncta upon iLTP induction. Finally, block of glutamine synthetase with methionine sulfoxide (MSO nearly abolished mIPSC increase in both NMDA stimulated cell groups but did not prevent enlargement of gephyrin puncta. In conclusion, we provide further evidence that GABAergic plasticity is strongly regulated by astrocytes and the underlying mechanisms involve key metabolic enzymes. Considering the strategic role of GABAergic interneurons, the plasticity described here indicates possible mechanism whereby metabolism regulates the network activity.

  8. Is the holy grail plastic? Radiation identification from plastic scintillators

    International Nuclear Information System (INIS)

    Butchins, L. J. C.; Gosling, J. M.; Hogbin, M. R. W.; Jones, D. C.; Lacey, R. J.; Stearn, J. G.

    2009-01-01

    Thousands of shipping containers containing Naturally Occurring Radioactive Materials (NORM) made from ceramics, stoneware and other natural products are transported worldwide on a daily basis. Some of these NORM loads are sufficiently radioactive to trigger alarms from plastic scintillator detectors which have limited ability to also identify the radionuclides present thus necessitating secondary inspection which increases the operational overhead. Previous studies have been carried out to ascertain if radionuclide discrimination using plastic scintillators is possible with a variety of approaches including deconvolution and computer learning. In this paper, a two stage algorithm is described. An example implementation of the algorithm is presented, applied to operational data, and has been installed in real time operation on a polyvinyl-toluene (PVT) detector. The approach requires the collection of a large library of spectra using examples of the detectors to be deployed. In this study, data from both actual freight loads passing through a port and predefined freight containing various radionuclides were collected. The library represents freight loads that may contain industrial, medical, nuclear, and NORM radionuclides. The radionuclides in the predefined freight were placed in various orientations and in various amounts of shielding to mimic many different scenarios. Preliminary results on an initial subset of data containing industrial and NORM sources show the number of mis-classifications to be less than 1% of the total test data. Good initial results were obtained even for low energy radionuclides such as 241 Am. Where discrimination is not possible, and principle components overlap, this region or 'cloud' of the n-dimensional plot can be put aside. Those spectra that fall in the 'cloud' can be regarded as suspect and in these cases, some secondary screening will still be necessary. It is predicted that the algorithm will enable recognition of NORM loads

  9. FY 1995 report on the results of the R and D of biodegradable plastics; 1995 nendo seibunkaisei plastic kenkyu kaihatsu seika hokokusho. Ippan kokaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the development of biodegradable plastics, the paper made studies on the following items: 1) development of biodegradable plastics through the cultivation of plastic-like polymer producing micro-organisms; 2) development of biodegradable plastics using polysaccharides; 3) development of biodegradable plastics using molecular design/precise polymerization technology. In 1), P of 4HB fraction 10% was biosynthesized in 5L scale and in one stage by giving to fungus body the {gamma}-butyrolactone which was heated/hydrolyzed. In the study of PHB production by gene recombination of algae, the promoter is improved, and it was confirmed that PHB synthetic genes were surely introduced. PHB could be produced 25% by cultivation of acetic acid. In 2), using alkali protease as enzyme catalyst, sugar ester monomer was synthesized from glucose, sucrose and maltose. In 3), effects were grasped of polymerization conditions of succinic acid/1,4-butane diol/carbonate on the molecular weight and reaction velocity. A test on degradability was conducted by the enzyme method to study the structure of olygomer, in particular. Biodegradation of polyurethane was assessed by soil suspension. (NEDO)

  10. Improving the circular economy via hydrothermal processing of high-density waste plastics.

    Science.gov (United States)

    Helmer Pedersen, Thomas; Conti, Federica

    2017-10-01

    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies. This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical compounds. The outlook presents conversion yields, carbon balances, and chemical details on the products obtained. It is found that all the investigated resins are prone to hydrothermal treatment, and that high yields of monomers and high value compounds (up to nearly 100%), suitable for chemicals and fuels applications, can be obtained. For instance, for polycarbonate, styrene-butadiene, poly(lactic acid), poly(ethylene terephthalate), and poly(butylene terephthalate), original monomeric compounds can be reclaimed for manufacturing new resins. The promising results presented demonstrate that hydrothermal processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  12. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...... product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications...

  13. Characterization of plastic blends made from mixed plastics waste of different sources.

    Science.gov (United States)

    Turku, Irina; Kärki, Timo; Rinne, Kimmo; Puurtinen, Ari

    2017-02-01

    This paper studies the recyclability of construction and household plastic waste collected from local landfills. Samples were processed from mixed plastic waste by injection moulding. In addition, blends of pure plastics, polypropylene and polyethylene were processed as a reference set. Reference samples with known plastic ratio were used as the calibration set for quantitative analysis of plastic fractions in recycled blends. The samples were tested for the tensile properties; scanning electron microscope-energy-dispersive X-ray spectroscopy was used for elemental analysis of the blend surfaces and Fourier transform infrared (FTIR) analysis was used for the quantification of plastics contents.

  14. "Oriental anthropometry" in plastic surgery

    Directory of Open Access Journals (Sweden)

    Senna-Fernandes Vasco

    2008-01-01

    Full Text Available Background : According to Chinese medicine, the acupuncture-points′ (acupoints locations are proportionally and symmetrically distributed in well-defined compartment zones on the human body surface Oriental Anthropometry" (OA. Acupoints, if considered as aesthetic-loci, might be useful as reference guides in plastic surgery (PS. Aim: This study aimed to use aesthetic-loci as anatomical reference in surgical marking of Aesthetic Plastic Surgery. Method: This was an observational study based on aesthetic surgeries performed in private clinic. This study was based on 106 cases, comprising of 102 women and 4 men, with ages varying from 07 to 73 years, and with heights of between 1.34 m and 1.80 m. Patients were submitted to aesthetic surgical planning by relating aesthetic-loci to conventional surgical marking, including breast surgeries, abdominoplasty, rhytidoplasty, blepharoplasty, and hair implant. The aesthetic-surgical-outcome (ASO of the patients was assessed by a team of plastic surgeons (who were not involved in the surgical procedures over a follow-up period of one year by using a numeric-rating-scale in percentage (% terms. A four-point-verbal-rating-scale was used to record the patients′ opinion of therapeutic-satisfaction (TS. Results: ASO was 75.3 ± 9.4% and TS indicated that most patients (58.5% obtained "good" results. Of the remainder, 38.7% found the results "excellent", and 2.8% found them "fair". Discussion and Conclusion : The data suggested that the use of aesthetic-loci may be a useful tool for PS as an anatomical reference for surgical marking. However, further investigation is required to assess the efficacy of the OA by providing the patients more reliable balance and harmony in facial and body contours surgeries.

  15. Dislocation Dynamics During Plastic Deformation

    CERN Document Server

    Messerschmidt, Ulrich

    2010-01-01

    The book gives an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail. Finally, examples are described of the processes in different classes of materials, i.e. semiconductors, ceramics, metals, intermetallic materials, and quasicrystals. The processes are illustrated by many electron micrographs of dislocations under stress and by video clips taken during in situ straining experiments in a high-voltage electron microscope showing moving dislocations. Thus, the users of the book also obtain an immediate impression and understanding of dislocation dynamics.

  16. A miniaturized plastic dilution refrigerator

    International Nuclear Information System (INIS)

    Bindilatti, V.; Oliveira, N.F.Jr.; Martin, R.V.; Frossati, G.

    1996-01-01

    We have built and tested a miniaturized dilution refrigerator, completely contained (still, heat exchanger and mixing chamber) inside a plastic (PVC) tube of 10 mm diameter and 170 mm length. With a 25 cm 2 CuNi heat exchanger, it reached temperatures below 50 mK, for circulation rates below 70 μmol/s. The cooling power at 100 mK and 63 μmol/s was 45 μW. The experimental space could accommodate samples up to 6 mm in diameter. (author)

  17. Synaptic plasticity in drug reward circuitry.

    Science.gov (United States)

    Winder, Danny G; Egli, Regula E; Schramm, Nicole L; Matthews, Robert T

    2002-11-01

    Drug addiction is a major public health issue worldwide. The persistence of drug craving coupled with the known recruitment of learning and memory centers in the brain has led investigators to hypothesize that the alterations in glutamatergic synaptic efficacy brought on by synaptic plasticity may play key roles in the addiction process. Here we review the present literature, examining the properties of synaptic plasticity within drug reward circuitry, and the effects that drugs of abuse have on these forms of plasticity. Interestingly, multiple forms of synaptic plasticity can be induced at glutamatergic synapses within the dorsal striatum, its ventral extension the nucleus accumbens, and the ventral tegmental area, and at least some of these forms of plasticity are regulated by behaviorally meaningful administration of cocaine and/or amphetamine. Thus, the present data suggest that regulation of synaptic plasticity in reward circuits is a tractable candidate mechanism underlying aspects of addiction.

  18. River plastic emissions to the world's oceans

    Science.gov (United States)

    Lebreton, Laurent C. M.; van der Zwet, Joost; Damsteeg, Jan-Willem; Slat, Boyan; Andrady, Anthony; Reisser, Julia

    2017-06-01

    Plastics in the marine environment have become a major concern because of their persistence at sea, and adverse consequences to marine life and potentially human health. Implementing mitigation strategies requires an understanding and quantification of marine plastic sources, taking spatial and temporal variability into account. Here we present a global model of plastic inputs from rivers into oceans based on waste management, population density and hydrological information. Our model is calibrated against measurements available in the literature. We estimate that between 1.15 and 2.41 million tonnes of plastic waste currently enters the ocean every year from rivers, with over 74% of emissions occurring between May and October. The top 20 polluting rivers, mostly located in Asia, account for 67% of the global total. The findings of this study provide baseline data for ocean plastic mass balance exercises, and assist in prioritizing future plastic debris monitoring and mitigation strategies.

  19. Biodegradability of Plastics: Challenges and Misconceptions.

    Science.gov (United States)

    Kubowicz, Stephan; Booth, Andy M

    2017-11-07

    Plastics are one of the most widely used materials and, in most cases, they are designed to have long life times. Thus, plastics contain a complex blend of stabilizers that prevent them from degrading too quickly. Unfortunately, many of the most advantageous properties of plastics such as their chemical, physical and biological inertness and durability present challenges when plastic is released into the environment. Common plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) are extremely persistent in the environment, where they undergo very slow fragmentation (projected to take centuries) into small particles through photo-, physical, and biological degradation processes 1 . The fragmentation of the material into increasingly smaller pieces is an unavoidable stage of the degradation process. Ultimately, plastic materials degrade to micron-sized particles (microplastics), which are persistent in the environment and present a potential source of harm for organisms.

  20. Nutrient-mediated architectural plasticity of a predatory trap.

    Directory of Open Access Journals (Sweden)

    Sean J Blamires

    Full Text Available BACKGROUND: Nutrients such as protein may be actively sought by foraging animals. Many predators exhibit foraging plasticity, but how their foraging strategies are affected when faced with nutrient deprivation is largely unknown. In spiders, the assimilation of protein into silk may be in conflict with somatic processes so we predicted web building to be affected under protein depletion. METHODOLOGY/PRINCIPAL FINDINGS: To assess the influence of protein intake on foraging plasticity we fed the orb-web spiders Argiope aemula and Cyclosa mulmeinensis high, low or no protein solutions over 10 days and allowed them to build webs. We compared post-feeding web architectural components and major ampullate (MA silk amino acid compositions. We found that the number of radii in webs increased in both species when fed high protein solutions. Mesh size increased in A. aemula when fed a high protein solution. MA silk proline and alanine compositions varied in each species with contrasting variations in alanine between the two species. Glycine compositions only varied in C. mulmeinensis silk. No spiders significantly lost or gained mass on any feeding treatment, so they did not sacrifice somatic maintenance for amino acid investment in silk. CONCLUSIONS/SIGNIFICANCE: Our results show that the amount of protein taken in significantly affects the foraging decisions of trap-building predators, such as orb web spiders. Nevertheless, the subtle differences found between species in the association between protein intake, the amino acids invested in silk and web architectural plasticity show that the influence of protein deprivation on specific foraging strategies differs among different spiders.

  1. Phyllosphere yeasts rapidly break down biodegradable plastics

    OpenAIRE

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily ...

  2. Plastic Recycling Experiments in Materials Education

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  3. Ocular Dominance Plasticity after Stroke Was Preserved in PSD-95 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Franziska Greifzu

    Full Text Available Neuronal plasticity is essential to enable rehabilitation when the brain suffers from injury, such as following a stroke. One of the most established models to study cortical plasticity is ocular dominance (OD plasticity in the primary visual cortex (V1 of the mammalian brain induced by monocular deprivation (MD. We have previously shown that OD-plasticity in adult mouse V1 is absent after a photothrombotic (PT stroke lesion in the adjacent primary somatosensory cortex (S1. Exposing lesioned mice to conditions which reduce the inhibitory tone in V1, such as raising animals in an enriched environment or short-term dark exposure, preserved OD-plasticity after an S1-lesion. Here we tested whether modification of excitatory circuits can also be beneficial for preserving V1-plasticity after stroke. Mice lacking postsynaptic density protein-95 (PSD-95, a signaling scaffold present at mature excitatory synapses, have lifelong juvenile-like OD-plasticity caused by an increased number of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid -silent synapses in V1 but unaltered inhibitory tone. In fact, using intrinsic signal optical imaging, we show here that OD-plasticity was preserved in V1 of adult PSD-95 KO mice after an S1-lesion but not in PSD-95 wildtype (WT-mice. In addition, experience-enabled enhancement of the optomotor reflex of the open eye after MD was compromised in both lesioned PSD-95 KO and PSD-95 WT mice. Basic V1-activation and retinotopic map quality were, however, not different between lesioned PSD-95 KO mice and their WT littermates. The preserved OD-plasticity in the PSD-95 KO mice indicates that V1-plasticity after a distant stroke can be promoted by either changes in excitatory circuitry or by lowering the inhibitory tone in V1 as previously shown. Furthermore, the present data indicate that an increased number of AMPA-silent synapses preserves OD-plasticity not only in the healthy brain, but also in another experimental

  4. Development of a synthetic pathway for a sustainable plasticizer

    DEFF Research Database (Denmark)

    Søndergaard, Helle

    monooleate originating from sunflower oil. Sunflower oil is less expensive and more accessible compared to castor oil and the SNS-A has been tested to have the same plasticizing effect and non-toxic effects as SNS. However, a sustainable and cheap way of synthesizing SNS-A has not been developed. The aim...... and three different catalysts, known to be efficient in CTH reactions. However, no satisfying results were obtained using CTH as a hydrogenation method. Using molecular hydrogen gas for hydrogenation also resulted in problems. The hydrogenation of the epoxide obtained from epoxidation with peracetic acid...

  5. Radiation resistance of plastic solid

    International Nuclear Information System (INIS)

    Moriyama, Noboru; Dojiri, Shigeru; Wadachi, Yoshiki

    1985-01-01

    The radiation from nucleides contained in solidified wates have some effects on the degradation of the solidification materials. This report deals with effects of such radiation on the mechanical strength of waste-plastics composites and on the generation of gasses. It is shown that the mechanical strength of polyethylene and polyester solids will not decrease at a total absorbed dose of 10 6 rad, a dose which a low-level waste composite is expected to receive during an infinite period of time. Rather, it increases in the case of polyethylene. The amount of gas generated from degraded polyethylene is about three times as large as that from polyester, namely, about 6 l per 200 l drum can at 10 6 rad. Hydrogen accounts for about 80 % of the total gas generated from polyethylene. On the other hand, the gas from polyester solid mainly contains hydrogen, carbon dioxide, carbon monoxide and methane, with a composition greatly dependent on the type of the waste contained. It is concluded from these results that plastic materials can serve satisfactorily as for as the effects of radiation on their mechanical strength and gas generation are concerned. A more important problem still remaining to be solved is the effects of radiation on the leaching of radioactive nuclides. (Nogami, K.)

  6. Waste product profile: Plastic film and bags

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C. [Environmental Industry Associations, Washington, DC (United States)

    1996-10-01

    Plastic film is recycled by being pelletized following a granulation or densifying process. Manufacturing and converting plants are the major sources of plastic film for recycling because they can supply sufficient amounts of clean raw material of a known resin type. Post-consumer collection programs are more recent. They tend to focus on businesses such as grocery stores that are large generators of plastic bags. In this case, the recycling process is more complex, requiring sorting, washing, and removal of contaminants as a first step. Curbside collection of plastic bags is rare.

  7. Extruded plastic scintillator for MINERvA

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alan D.; FermilabRykalin, Victor V.; Wood, Brian M.; NICADD, DeKalb

    2005-01-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here

  8. Leaching of plastic additives to marine organisms

    International Nuclear Information System (INIS)

    Koelmans, Albert A.; Besseling, Ellen; Foekema, Edwin M.

    2014-01-01

    It is often assumed that ingestion of microplastics by aquatic species leads to increased exposure to plastic additives. However, experimental data or model based evidence is lacking. Here we assess the potential of leaching of nonylphenol (NP) and bisphenol A (BPA) in the intestinal tracts of Arenicola marina (lugworm) and Gadus morhua (North Sea cod). We use a biodynamic model that allows calculations of the relative contribution of plastic ingestion to total exposure of aquatic species to chemicals residing in the ingested plastic. Uncertainty in the most crucial parameters is accounted for by probabilistic modeling. Our conservative analysis shows that plastic ingestion by the lugworm yields NP and BPA concentrations that stay below the lower ends of global NP and BPA concentration ranges, and therefore are not likely to constitute a relevant exposure pathway. For cod, plastic ingestion appears to be a negligible pathway for exposure to NP and BPA. - Highlights: • Uptake of plastic additives after plastic ingestion was modeled for worms and fish. • This was done for bisphenol A and nonylphenol. • Uncertainty was accounted for by Monte Carlo simulations. • It appeared that exposure by plastic ingestion was negligible for fish. • Plastic ingestion may occasionally be relevant for marine worms. - Leaching of nonylphenol and bisphenol A from ingested microplastic may be relevant for the lugworm, but is irrelevant for fish like cod

  9. Environment friendly solutions of plastics waste management

    International Nuclear Information System (INIS)

    Pirzada, F.N.; Riffat, T.; Pirzada, M.D.S.

    1997-01-01

    The use of plastics is growing worldwide. Consequently, the volume of plastic waste is also increasing. Presently, more than 100 million tons per year of plastic is being produced globally. In U.S. alone more than 10 million tons of plastic is being dumped in landfills as waste, where it can persist for decades. This has resulted in exhausting old landfills. Public awareness on environment is also making it difficult to find new sites for landfills. This has led to increased emphasis on treatment and recycling of plastic wastes. Volume reduction of plastic waste has some unique problems. They arise from the intrinsic chemical inertness of polymeric materials and toxic nature of their degradation byproducts. The paper reviews the present state of plastic waste management including land filling, incineration and recycling technologies. The technical problems associated with each of these processes have been discussed. There is also brief description of ongoing R and D for finding improved methods of plastic waste handling with their promises and problems. The role of tougher legislation in developing better recycling methods and degradable plastics has also been evaluated. The claims made by the proponents of degradable polymers have also been critically reviewed. (authors)

  10. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    Science.gov (United States)

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  11. Pathways for degradation of plastic polymers floating in the marine environment.

    Science.gov (United States)

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids.

  12. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  13. Some Limitations in the Use of Plastic and Dyed Plastic Dosimeters

    DEFF Research Database (Denmark)

    Miller, Arne; Bjergbakke, Erling; McLaughlin, W. L.

    1975-01-01

    Several practical plastic and dyed plastic dosimeters were examined under irradiation conditions similar to those used for radiation processing of materials. Cellulose triacetate, polymethyl methacrylate, polyvinyl chloride, dyed polymethyl methacrylate, dyed Cellophane and dyed Nylon were given...

  14. Decay resistance of wood-plastic composites reinforced with extracted or delignified wood flour

    Science.gov (United States)

    Rebecca E. Ibach; Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Yongming Fan; Jianmin Gao

    2014-01-01

    The moisture and decay resistance of wood-plastic composites (WPCs) reinforced with extracted or delignified wood flour (WF) was investigated. Three different extractions were preformed: toluene/ethanol (TE), acetone/water (AW), and hot water (HW). Delignification (DL) was performed using a sodium chlorite/acetic acid solution. All WPCs specimens were made with 50% by...

  15. Properties of wood-plastic composites (WPCs) reinforced with extracted and delignified wood flour

    Science.gov (United States)

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    The water sorption and mechanical properties of wood-plastic composites (WPCs) made of extracted and delignified wood flour (WF) has been investigated. WF was prepared by extraction with the solvent systems toluene/ethanol (TE), acetone/water (AW), and hot water (HW), and its delignification was conducted by means of sodium chlorite/acetic acid (AA) solution. A 2 4...

  16. Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells

    NARCIS (Netherlands)

    Neugebauer, H.; Brabec, C.; Hummelen, J.C.; Sariciftci, N.S.

    2000-01-01

    Degradation studies of poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene) (MDMO-PPV), fullerenes ((6,6)-phenyl C-61-butyric acid methyl ester (PCBM) and C-60), and mixtures, which are the photoactive components in plastic solar cells, are shown. The degradation processes of the

  17. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends

    Science.gov (United States)

    A blend of poly(lactic acid) (PLA) (75% by weight) and poly(3-hydroxybutyrate) (PHB) (25% by weight) with a polyester plasticizer (Lapol 108) at two different concentrations (5 and 7% by weight per 100 parts of the blends) were investigated by TGA, DSC, XRD, SEM, mechanical testing and biodegradatio...

  18. Moisture Performance of wood-plastic composites reinforced with extracted and delignified wood flour

    Science.gov (United States)

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    This study investigated the effect of using extracted and delignified wood flour on water sorption properties of wood–plastic composites. Wood flour (WF) extraction was performed with three solvent systems: toluene/ethanol (TE), acetone/water (AW), and hot water (HW); delignification was conducted using sodium chlorite/acetic acid solution. A 24 full-factorial...

  19. A Coupled Plastic Damage Model for Concrete considering the Effect of Damage on Plastic Flow

    OpenAIRE

    Zhou, Feng; Cheng, Guangxu

    2015-01-01

    A coupled plastic damage model with two damage scalars is proposed to describe the nonlinear features of concrete. The constitutive formulations are developed by assuming that damage can be represented effectively in the material compliance tensor. Damage evolution law and plastic damage coupling are described using the framework of irreversible thermodynamics. The plasticity part is developed without using the effective stress concept. A plastic yield function based on the true stress is ado...

  20. Improvement in properties of plastic teeth by electron beam irradiation

    International Nuclear Information System (INIS)

    Sano, Yuko; Ishikawa, Shun-ichi; Seguchi, Tadao

    2011-01-01

    Improvement of the comfort and esthetics of artificial plastic teeth is desirable for the recently increasing numbers of elderly in society. Plastic teeth made of polycarbonate (PC) were modified by electron beam (EB) irradiation under specific conditions, and the change in the chemical properties of the PC was investigated. The water absorption, glucose attachment, level of bis-phenol-A (BPA) extraction, maltose adhesion, and mucin adhesion on the PC teeth were measured before and after EB irradiation. EB irradiation to a dose of 3.5 kGy at 150 o C in a nitrogen gas atmosphere reduced the water absorption by 20%, glucose absorption by 40%, maltose adhesion by 20%, and the amount of various amino acids, formed as the hydrolysis products of mucin, adhering on the PC teeth were reduced by 60-99%. The BPA content was lower than the detection limit for analysis of both the original and the EB irradiated PC teeth. - Highlights: → Radiation improvement of polycarbonate for plastic teeth by EB irradiation 3.5 kGy at 150 o C in inert gas. → Water and glucose absorption and maltose adhesion on PC teeth were much reduced. → Bis-phenol-A content from PC teeth was lower than the detection limit after irradiation.

  1. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  2. Melting the Plastic Ceiling: Overcoming Obstacles to Foster Leadership in Women Plastic Surgeons.

    Science.gov (United States)

    Silva, Amanda K; Preminger, Aviva; Slezak, Sheri; Phillips, Linda G; Johnson, Debra J

    2016-09-01

    The underrepresentation of women leaders in plastic surgery echoes a phenomenon throughout society. The importance of female leadership is presented, and barriers to gender equality in plastic surgery, both intrinsic and extrinsic, are discussed. Strategies for fostering women in leadership on an individual level and for the specialty of plastic surgery are presented.

  3. Views of college students on plastic surgery.

    Science.gov (United States)

    Ahmad, Muhammad; Mohmand, Humayun; Ahmad, Nabila

    2013-06-01

    Various studies have been conducted in many countries to determine the perception/awareness about plastic surgery. The present study assessed the views of college students about plastic surgery. A questionnaire consisted of nine questions regarding the basic knowledge about plastic surgery was randomly distributed among college students. The students were given 20 minutes to fill out the forms. A total of 250 male and 250 female college students were randomly included in the study. The mean age of the male students was 21.1 years as compared to 20.7 years of female students. The top five conditions named were related to hair (89.8%) followed by face scars (88%). The most common procedure named by the students was liposuction (88.2%) followed by hair transplantation. 80.2% of the students opted not to be a plastic surgeon if given an opportunity to select the profession. 33.8% of the students had seen some kinds of plastic surgery operation. Only 5.6% of the students (3.4% male and 2.2% female) had seen some kinds of plastic surgery procedure. 68% of male students and 48% of female students wished to have a plastic surgery procedure sometime in their lives. Majority of the students (88%) got the information from the internet. The second most common source was magazines (85.2%). Majority of the students (53.4%) had an idea of an invisible scar as a result of having a plastic surgery procedure. Only 22% thought to have no scar. Late Michael Jackson was at the top of the list of celebrities having a plastic surgery procedure (97.8%) followed by Nawaz Shariff (92.4%). Despite the rapid growth of plastic surgery in the last two decades, a large portion of population remains unaware of the spatiality. It is essential to institute programs to educate healthcare consumers and providers about the plastic surgery.

  4. Motor cortical plasticity in Parkinson's disease.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  5. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; Gupta, Krishna M.; Hü lsey, Max J.; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M.; Beckham, Gregg T.; Dyson, Paul J.; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye; Yan, Ning

    2018-01-01

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient

  6. Protective Mechanisms of Nitrone Antioxidants in Kainic Acid Induced Neurodegeneration

    National Research Council Canada - National Science Library

    Bing, Guoying

    2001-01-01

    .... This model has been widely used as a model for studying human temporal lobe epilepsy. The delayed neuronal degeneration induced by kainic acid resembles CNS neuronal injury, repair, and plasticity...

  7. Protective Mechanisms of Nitrone Antioxidants in Kainic Acid Induced Neurodegeneration

    National Research Council Canada - National Science Library

    Bing, Guoying

    2000-01-01

    .... This model has been widely used as a model for studying human temporal lobe epilepsy. The delayed neuronal degeneration induced by kainic acid resembles CNS neuronal injury, repair, and plasticity...

  8. ECM remodeling and its plasticity

    Science.gov (United States)

    Feng, Jingchen; Jones, Christopher A. R.; Cibula, Matthew; Mao, Xiaoming; Sander, Leonard M.; Levine, Herbert; Sun, Bo

    The mechanical interactions between cells and Extracellular Matrix (ECM) are of great importance in many cellular processes. These interactions are reciprocal, i.e. contracting cells pull and reorganize the surrounding matrix, while the remodeled matrix feeds back to regulate cell activities. Recent experiments show in collagen gels with densely distributed cells, aligned fiber bundles are formed in the direction between neighboring cells. Fibers flow into the center region between contracting cell pairs in this process, which causes the concentration of fibers in the fiber bundles to become significantly enhanced. Using an extended lattice-based model, we show that viscoelasticity plays an essential role in ECM remodeling and contributes to the enhanced concentration in fiber bundles. We further characterize ECM plasticity within our model and verify our results with rheometer experiments.

  9. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  10. Vascular plasticity in cerebrovascular disorders

    DEFF Research Database (Denmark)

    Edvinsson, Lars I H; Povlsen, Gro Klitgaard

    2011-01-01

    and microvessels that takes place after different types of stroke. Receptors like the endothelin type B, angiotensin type 1, and 5-hydroxytryptamine type 1B/1D receptors are upregulated in the smooth muscle layer of cerebral arteries after different types of ischemic stroke as well as after subarachnoid hemorrhage......Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries...... therapeutic target for prevention of vasoconstrictor receptor upregulation after stroke. Together, those findings provide new perspectives on the pathophysiology of ischemic stroke and point toward a novel way of reducing vasoconstriction, neuronal cell death, and thus neurologic deficits after stroke....

  11. AUGMENTATION-RELATED BRAIN PLASTICITY

    Directory of Open Access Journals (Sweden)

    Giovanni eDi Pino

    2014-06-01

    Full Text Available Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyzes the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain.Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools.Augmentation modifies function and structure of a number of areas, i.e. primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the

  12. Cyclic Plastic Deformation and Welding Simulation

    NARCIS (Netherlands)

    Ten Horn, C.H.L.J.

    2003-01-01

    One of the concerns of a fitness for purpose analysis is the quantification of the relevant material properties. It is known from experiments that the mechanical properties of a material can change due to a monotonic plastic deformation or a cyclic plastic deformation. For a fitness for purpose

  13. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  14. Plastic Accumulation in the Mediterranean Sea

    KAUST Repository

    Có zar, André s; Sanz-Martí n, Marina; Martí , Elisa; Gonzá lez-Gordillo, J. Ignacio; Ubeda, Bá rbara; Gá lvez, José Á .; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  15. Mixed gas plasticization phenomena in asymmetric membranes

    NARCIS (Netherlands)

    Visser, Tymen

    2006-01-01

    This thesis describes the thorough investigation of mixed gas transport behavior of asymmetric membranes in the separation of feed streams containing plasticizing gases in order to gain more insights into the complicated behavior of plasticization. To successfully employ gas separation membranes in

  16. Candidate genes in ocular dominance plasticity

    NARCIS (Netherlands)

    Rietman, M.L.; Sommeijer, J.-P.; Levelt, C.N.; Heimel, J.A.; Brussaard, A.B.; Borst, J.G.G.; Elgersma, Y.; Galjart, N.; van der Horst, G.T.; Pennartz, C.M.; Smit, A.B.; Spruijt, B.M.; Verhage, M.; de Zeeuw, C.I.

    2012-01-01

    Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated

  17. Plastic accumulation in the Mediterranean sea.

    Directory of Open Access Journals (Sweden)

    Andrés Cózar

    Full Text Available Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2, as well as its frequency of occurrence (100% of the sites sampled, are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  18. Residual stresses in plastic random systems

    NARCIS (Netherlands)

    Alava, M.J.; Karttunen, M.E.J.; Niskanen, K.J.

    1995-01-01

    We show that yielding in elastic plastic materials creates residual stresses when local disorder is present. The intensity of these stresses grows with the external stress and degree of initial disorder. The one-dimensional model we employ also yields a discontinuous transition to perfect plasticity

  19. Plastic biliary stents for malignant biliary diseases

    NARCIS (Netherlands)

    Huibregtse, Inge; Fockens, Paul

    2011-01-01

    Plastic biliary endoprostheses have not changed much since their introduction more than 3 decades ago. Although their use has been challenged by the introduction of metal stents, plastic stents still remain commonly used. Much work has been done to improve the problem of stent obstruction but

  20. Plastic soep komt op ons bord

    NARCIS (Netherlands)

    Franeker, van J.A.

    2011-01-01

    De wereldwijd verspreide 'soep' van kleine plastic deeltjes in zeeën en oceanen vormt een omvangrijk mondiaal milieuprobleem. Niet alleen leidt het plastic tot verstrikking en verstopping bij vogels en vissen, ook brengt de giftigheid van de materie de voedselketen in gevaar. Om te voorkomen dat die

  1. Undergraduate Plastic Surgery Education: Problems, Challenges ...

    African Journals Online (AJOL)

    based on principles rather than limited procedures, with surgical interventions ranging from complex microsurgery-based reconstructions to aesthetic procedures. However, medical students' perceptions of the field of plastic surgery are limited and underestimate the versatility of services offered by plastic surgeons.[1,2] In ...

  2. Plastic collapse load of corroded steel plates

    Indian Academy of Sciences (India)

    Keywords. Corroded steel plate; plastic collapse; FEM; rough surface. ... The main aim of present work is to study plastic collapse load of corroded steel plates with irregular surfaces under tension. Non-linear finite element method ... Department of Ocean Engineering, AmirKabir University of Technology, 15914 Tehran, Iran ...

  3. Liquid crystal displays with plastic substrates

    Science.gov (United States)

    Lueder, Ernst H.

    1998-04-01

    Plastic substrates for the cells of displays exhibit only 1/6 of the weight of glass substrates; they are virtually unbreakable; their flexibility allows the designer to give them a shape suppressing reflections, to realize a display board on a curved surface or meeting the requirements for an appealing styling; displays with plastics are thinner which provides a wider viewing angle. These features render them attractive for displays in portable systems such as mobile phones, pagers, smart cards, personal digital assistants (PDAs) and portable computers. Reflective displays are especially attractive as they don't need a back light. The most important requirements are the protection of plastics against gas permeation and chemical agents, the prevention of layers on plastics to crack or peel off when the plastic is bent and the development of low temperature thin film processes because the plastics, as a rule, only tolerate temperatures below 150 degrees Celsius. Bistable reflective FLC- and PSCT-displays with plastic substrates will be introduced. Special sputtered SiO2-orientation layers preserve the displayed information even if pressure or torsion is applied. MIM-addressed PDLC-displays require additional Al- or Ti-layers which provide the necessary ductility. Sputtered or PECVD-generated TFTs can be fabricated on plastics at temperatures below 150 degrees Celsius.

  4. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    Science.gov (United States)

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  5. Biological degradation of plastics: a comprehensive review.

    Science.gov (United States)

    Shah, Aamer Ali; Hasan, Fariha; Hameed, Abdul; Ahmed, Safia

    2008-01-01

    Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the excessive use of plastics and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. Biodegradation is necessary for water-soluble or water-immiscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. This paper reviews the current research on the biodegradation of biodegradable and also the conventional synthetic plastics and also use of various techniques for the analysis of degradation in vitro.

  6. Marine Debris and Plastic Source Reduction Toolkit

    Science.gov (United States)

    Many plastic food service ware items originate on college and university campuses—in cafeterias, snack rooms, cafés, and eateries with take-out dining options. This Campus Toolkit is a detailed “how to” guide for reducing plastic waste on college campuses.

  7. Studies of elastic-plastic instabilities

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1999-01-01

    Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formati...

  8. 49 CFR 192.59 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe...

  9. Do dwarf chameleons ( Bradypodion ) show developmental plasticity?

    African Journals Online (AJOL)

    It has been hypothesized that B. melanocephalum and B. thamnobates may be phenotypically plastic populations of the same species, since environmental conditions, the driving force behind developmental plasticity, varies between the distributions of these two allopatric taxa.We raised juveniles of both species under ...

  10. Plastic zonder olie : lesmodule voor nieuwe scheikunde

    NARCIS (Netherlands)

    Langejan, B.; Klein Douwel, C.; Horst, ter J.J.; Tijdink, K.; Marle, van N.; Klaasen, P.; Coolen, R.; Assenbergh, van P.; Sijbers, J.P.J.; Mast, A.

    2013-01-01

    Lesmodule voor nieuwe scheikunde voor leerlingen uit 5 en 6 vwo. Bioplastics worden gemaakt uit natuurlijke grondstoffen. Als ze de synthetische plastics vervangen kan de voorraad aardolie ontzien worden. Omdat veel bioplastics afbreekbaar zijn, kan ook de berg plastic afval krimpen. Maar zijn

  11. Integrating Hebbian and homeostatic plasticity: introduction.

    Science.gov (United States)

    Fox, Kevin; Stryker, Michael

    2017-03-05

    Hebbian plasticity is widely considered to be the mechanism by which information can be coded and retained in neurons in the brain. Homeostatic plasticity moves the neuron back towards its original state following a perturbation, including perturbations produced by Hebbian plasticity. How then does homeostatic plasticity avoid erasing the Hebbian coded information? To understand how plasticity works in the brain, and therefore to understand learning, memory, sensory adaptation, development and recovery from injury, requires development of a theory of plasticity that integrates both forms of plasticity into a whole. In April 2016, a group of computational and experimental neuroscientists met in London at a discussion meeting hosted by the Royal Society to identify the critical questions in the field and to frame the research agenda for the next steps. Here, we provide a brief introduction to the papers arising from the meeting and highlight some of the themes to have emerged from the discussions.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'. © 2017 The Author(s).

  12. Robust Return Algorithm for Anisotropic Plasticity Models

    DEFF Research Database (Denmark)

    Tidemann, L.; Krenk, Steen

    2017-01-01

    Plasticity models can be defined by an energy potential, a plastic flow potential and a yield surface. The energy potential defines the relation between the observable elastic strains ϒe and the energy conjugate stresses Τe and between the non-observable internal strains i and the energy conjugat...

  13. Demonstrating Fluorescence with Neon Paper and Plastic

    Science.gov (United States)

    Birriel, Jennifer J.; Roe, Clarissa

    2015-01-01

    Several papers in this journal have dealt with the fluorescence in orange neon plastic, olive oil, and soda. In each case, the fluorescent emission was excited by either green or violet-blue laser light. In this paper, we examine the fluorescent emission spectra of so-called neon colored papers and plastic clipboards available in department and…

  14. 7 CFR 58.348 - Plastic cream.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Plastic cream. 58.348 Section 58.348 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Products Bearing Usda Official Identification § 58.348 Plastic cream. The flavor shall be sweet, pleasing...

  15. What is behind the plastic strain rate?

    NARCIS (Netherlands)

    Hütter, M.; Grmela, M.; Öttinger, H.C.

    2009-01-01

    The plastic strain rate plays a central role in macroscopic models on elasto-viscoplasticity. In order to discuss the concept behind this quantity, we propose, first, a kinetic toy model to describe the dynamics of sliding layers representative of plastic deformation of single crystalline metals.

  16. Plastic Accumulation in the Mediterranean Sea

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J. Ignacio; Ubeda, Bárbara; Gálvez, José Á.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region. PMID:25831129

  17. Plastic Accumulation in the Mediterranean Sea

    KAUST Repository

    Cózar, Andrés

    2015-04-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  18. Allergic contact dermatitis to plastic banknotes.

    Science.gov (United States)

    Mohamed, M; Delaney, T A; Horton, J J

    1999-08-01

    Allergic contact dermatitis to ultraviolet (UV) cured acrylates occurs predominantly in occupationally exposed workers. Two men presented with dermatitis coinciding with the location of banknotes in their pockets. Patch testing confirmed allergic contact dermatitis to multiple acrylates and Australian plastic banknotes. This is the first report of contact allergy to acrylates present in Australian plastic banknotes.

  19. Industrial plastics waste: Identification and segregation

    Science.gov (United States)

    Widener, Edward L.

    1990-01-01

    Throwaway plastic products, mainly packaging, are inundating our landfills and incinerators. Most are ethenic thermoplastics, which can be recycled as new products or fossil-fuels. Lab experiments are described, involving destructive and non-destructive tests for identifying and using plastics. The burn-test, with simple apparatus and familiar samples, is recommended as quick, cheap and effective.

  20. Plastic accumulation in the Mediterranean sea.

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J Ignacio; Ubeda, Bárbara; Gálvez, José Á; Irigoien, Xabier; Duarte, Carlos M

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  1. Tiny plastic lung mimics human pulmonary function

    Science.gov (United States)

    Careers Inclusion & Diversity Work-Life Balance Career Resources Apply for a Job Postdocs Students Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Releases - 2016 » April » Tiny plastic lung mimics human pulmonary function Tiny plastic lung mimics

  2. Plastic crystal phases of simple water models

    International Nuclear Information System (INIS)

    Aragones, J. L.; Vega, C.

    2009-01-01

    We report the appearance of two plastic crystal phases of water at high pressure and temperature using computer simulations. In one of them the oxygen atoms form a body centered cubic structure (bcc) and in the other they form a face centered cubic structure (fcc). In both cases the water molecules were able to rotate almost freely. We have found that the bcc plastic crystal transformed into a fcc plastic crystal via a Martensitic phase transition when heated at constant pressure. We have performed the characterization and localization in the phase diagram of these plastic crystal phases for the SPC/E, TIP4P, and TIP4P/2005 water potential models. For TIP4P/2005 model free energy calculations were carried out for the bcc plastic crystal and fcc plastic crystal using a new method (which is a slight variation of the Einstein crystal method) proposed for these types of solid. The initial coexistence points for the SPC/E and TIP4P models were obtained using Hamiltonian Gibbs–Duhem integration. For all of these models these two plastic crystal phases appear in the high pressure and temperature region of the phase diagram. It would be of interest to study if such plastic crystal phases do indeed exist for real water. This would shed some light on the question of whether these models can describe satisfactorily the high pressure part of the phase diagram of water, and if not, where and why they fail.

  3. Bibliometric trend analyses of plastic surgery research

    NARCIS (Netherlands)

    Loonen, M.P.J.

    2007-01-01

    The present thesis was designed to evaluate the qualitative and quantitative aspects of plastic surgery research by means of a bibliometric citation analysis of plastic surgical presentations and publications. Citations to such published work provides an indication of the impact and the relevance of

  4. A linear model of ductile plastic damage

    International Nuclear Information System (INIS)

    Lemaitre, J.

    1983-01-01

    A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr

  5. Reliability of Elasto-Plastic Structural Systems

    DEFF Research Database (Denmark)

    Delmar, M. V.; Sørensen, John Dalsgaard

    1990-01-01

    This paper proposes a method for generating safety margins and failure mode equations for elasto-plastic structures where interaction of load effects is taken into account. Structural failure is defined by large nodal displacements or plastic collapse. A branch-and-bound technique is used...

  6. Time between plastic displacements of elasto-plastic oscillators subject to Gaussian white noise

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager

    2001-01-01

    A one degree of freedom elasto-plastic oscillator subject to stationary Gaussian white noise has a plastic displacement response process of intermittent character. During shorter or longer time intervals the oscillator vibrates within the elastic domain without undergoing any plastic displacements...... between the clumps of plastic displacements. This is needed for a complete description of the plastic displacement process. A quite accurate fast simulation procedure is presented based on an amplitude model to determine the short waiting times in the transient regime of the elastic vibrations existing...

  7. Mechanically equivalent elastic-plastic deformations and the problem of plastic spin

    Directory of Open Access Journals (Sweden)

    Steigmann David J.

    2011-01-01

    Full Text Available The problem of plastic spin is phrased in terms of a notion of mechanical equivalence among local intermediate configurations of an elastic/ plastic crystalline solid. This idea is used to show that, without further qualification, the plastic spin may be suppressed at the constitutive level. However, the spin is closely tied to an underlying undistorted crystal lattice which, once specified, eliminates the freedom afforded by mechanical equivalence. As a practical matter a constitutive specification of plastic spin is therefore required. Suppression of plastic spin thus emerges as merely one such specification among many. Restrictions on these are derived in the case of rate-independent response.

  8. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission.

    Science.gov (United States)

    Posluszny, Anna; Liguz-Lecznar, Monika; Turzynska, Danuta; Zakrzewska, Renata; Bielecki, Maksymilian; Kossut, Malgorzata

    2015-01-01

    Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.

  9. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    Science.gov (United States)

    Evans, R.J.; Chum, H.L.

    1994-06-14

    A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.

  10. Controlled catalystic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    Science.gov (United States)

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.

  11. [Survey of plasticizers in polyvinyl chloride toys].

    Science.gov (United States)

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Hirahara, Yoshichika; Kawamura, Yoko

    2012-01-01

    Plasticizers in 101 samples of polyvinyl chloride (PVC) toys on the Japanese market were surveyed. No phthalates were detected in designated toys, though bis(2-ethylhexyl)phthalate, diisononyl phthalate, diisobutyl phthalate, dibutyl phthalate, diisodecyl phthalate and benzyl butyl phthalate were detected in more than half of other toys. 2,2,4-Tributyl-1,3-pentanediol diisobutylate, o-acetyl tributyl citrate, adipates and diacetyl lauroyl glycerol, which are alternative plasticizers to phthalates, were detected. The results of structural analysis confirmed the presence of di(2-ethylhexyl)terephthalate, tributyl citrate, diisononyl 1,2-cyclohexanedicarboxylate and neopentyl glycol esters; these have not previonsly been reported in Japan. There appears to be a shift in plasticizers used for designated toys from phthalates to new plasticizers, and the number of different plasticizers is increasing.

  12. Phyllosphere yeasts rapidly break down biodegradable plastics.

    Science.gov (United States)

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  13. Plasticity of pressure-sensitive materials

    CERN Document Server

    Ochsner, Andreas

    2014-01-01

    Classical plasticity theory of metals is independent of the hydrostatic pressure. However, if the metal contains voids or pores or if the structure is composed of cells, this classical assumption is no more valid and the influence of the hydrostatic pressure must be incorporated in the constitutive description. Looking at the microlevel, metal plasticity is connected with the uniform planes of atoms organized with long-range order. Planes may slip past each other along their close-packed directions. The result is a permanent change of shape within the crystal and plastic deformation. The presence of dislocations increases the likelihood of planes slipping. Nowadays, the theory of pressure sensitive plasticity is successfully applied to many other important classes of materials (polymers, concrete, bones etc.) even if the phenomena on the micro-level are different to classical plasticity of metals. The theoretical background of this phenomenological approach based on observations on the macro-level is describe...

  14. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    Science.gov (United States)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  15. Energy recycling of plastic and rubber wastes

    International Nuclear Information System (INIS)

    Hussain, R.

    2003-01-01

    Major areas for applications of plastics and rubbers are building and construction, packaging, transportation, automobiles, furniture, house wares, appliances, electrical and electronics. Approximately 20% of all the plastics produced are utilized by the building and construction industry/sup (1-3)/. Categories of polymers mostly used in the above industries include poly (vinyl chloride), polypropylene, polyethylene, polystyrene phenolics, acrylics and urethanes. Tyres and tubes are almost exclusively made up of rubbers. One third of total consumption of plastics finds applications, like films, bottles and packaging, in food-products that have a maximum life-span of two years, after which these find way to waste dumps. As the polymer industry in Pakistan is set to grow very rapidly in the near future the increase in utilization of plastic products in synchronous with the advent of computers and information technology. About 0.60 Kg per capita of waste generated daily in Lahore /(7.14)/ contains considerable quantity of plastics. (AB)

  16. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    Science.gov (United States)

    Ploykrathok, T.; Chanyotha, S.

    2017-06-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated.

  17. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    International Nuclear Information System (INIS)

    Ploykrathok, T; Chanyotha, S

    2017-01-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated. (paper)

  18. Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation

    International Nuclear Information System (INIS)

    Guney, Ali; Poyraz, M. Ibrahim; Kangal, Olgac; Burat, Firat

    2013-01-01

    Highlights: • Both PET and PVC have nearly the same densities. • The best pH value will be 4 for optimizing pH values. • Malic acid gave the best results for selective separation of PET and PVC. - Abstract: Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each other by flotation method which is useful mineral processing technique with its low cost and simplicity. The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency

  19. Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Guney, Ali; Poyraz, M. Ibrahim; Kangal, Olgac, E-mail: kangal@itu.edu.tr; Burat, Firat

    2013-09-15

    Highlights: • Both PET and PVC have nearly the same densities. • The best pH value will be 4 for optimizing pH values. • Malic acid gave the best results for selective separation of PET and PVC. - Abstract: Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each other by flotation method which is useful mineral processing technique with its low cost and simplicity. The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency.

  20. Investigation on the toxic interaction of typical plasticizers with calf thymus DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaojing [School of Environmental Science and Engineering, China–America CRC for Environment & Health, Shandong University, 27# Shanda South Road, Jinan 250100, Shandong Province (China); Zong, Wansong, E-mail: gaocz@sdu.edu.cn [College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan 250014 (China); Liu, Chunguang; Liu, Yang [School of Environmental Science and Engineering, China–America CRC for Environment & Health, Shandong University, 27# Shanda South Road, Jinan 250100, Shandong Province (China); Gao, Canzhu, E-mail: rutaoliu@sdu.edu.cn [School of Environmental Science and Engineering, China–America CRC for Environment & Health, Shandong University, 27# Shanda South Road, Jinan 250100, Shandong Province (China); Liu, Rutao [School of Environmental Science and Engineering, China–America CRC for Environment & Health, Shandong University, 27# Shanda South Road, Jinan 250100, Shandong Province (China)

    2015-05-15

    The interactions of typical plasticizers dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP) with calf thymus DNA (ctDNA) were investigated by fluorescence spectroscopic techniques and molecular modeling. Experimental results indicated that the characteristic fluorescence intensity of phthalic acid rose with the increase of DNA concentration; while the characteristic fluorescence intensities of plasticizers decreased with the increase of DNA concentration. Experiments on native and denatured DNA determined that plasticizers interacted with DNA both in groove and electrostatic binding mode. The molecular modeling results further illustrated that there is groove binding between them; hydrogen bonding and Van der Waals interactions were the main forces. With the extension of branched-chains, the binding effects between plasticizers and DNA were weakened, which could be related to the increased steric hindrance. - Highlights: • This work established the binding mode of plasticizers with DNA on molecular level. • The mechanism was explored by fluorescence spectroscopic and molecular docking methods. • There are two kinds of binding mode between DMP, DEP, DBP and DNA, electrostatic and groove. • With the branched chain extension, the binding effect of plasticizers and DNA has been weakened.

  1. Vegetative and reproductive evaluation of hot peppers under different plastic mulches in poly/plastic tunnel

    International Nuclear Information System (INIS)

    Iqbal, Q.; Amjad, M.; Ahmad, R.

    2009-01-01

    Since the beginning of civilization, the man has developed technologies to increase the efficiency of food production. The use of plastic mulch in commercial vegetable production is one of these traditional techniques that have been used for centuries. Studies were conducted to assess the efficacy of plastic mulch on growth and yield of two hot pepper hybrids, viz. Sky Red and Maha in poly/plastic tunnel. The treatments were black plastic mulch, clear plastic mulch and bare soil as control. Both hot pepper hybrids mulched with black plastic showed significantly better vegetative growth (plant height, leaf area etc) and fruit yield. Clear plastic mulch significantly increased soil temperature and reduced the number of days to first flower than black plastic mulch and bare soil. However, fruit yield was higher by 39.56 and 36.49% respectively in both hybrids when they were grown on black and clear plastic mulch as compared to bare soil. Overall results indicated that the use of plastic mulch is an ideal option to maximize hot pepper productivity as well as to extend their production season in poly/plastic tunnels. (author)

  2. Plastics and environmental health: the road ahead.

    Science.gov (United States)

    North, Emily J; Halden, Rolf U

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.

  3. Plastics and Environmental Health: The Road Ahead

    Science.gov (United States)

    North, Emily J.; Halden, Rolf U.

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including endocrine-disrupting properties and long-term pollution. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials – such as metal or glass – and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications, such as disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by widespread, unwanted human exposure to endocrine-disrupting bisphenol-A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of ever increasing mass-production of plastic consumer articles. By example of the healthcare sector, this review concentrates on benefits and downsides of plastics and identities opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the healthcare and food industry, and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process. PMID:23337043

  4. Effect of Polylactic Acid-Degradable Film Mulch on Soil Temperature and Cotton Yield

    Directory of Open Access Journals (Sweden)

    ZHANG Ni

    2016-03-01

    Full Text Available Concern on biodegradable plastic film is increasing because of pollution problems caused by the plastic films currently used. The objective of this field experiment is to evaluate the effect of two thicknesses of polyactic acid-degradable film on soil temperature and cotton yield. The results showed that small holes appeared in the polyactic acid-degradable film at 17~22 d after it was installed. Burst period appeared about 60 d after installation. Splits were observed in the polyactic acid-degradable film at 130 d after installation. Soil temperatures rose slowly under polyactic acid-degradable film during the cotton seedling stage. Daytime soil temperatures were 0.8℃ and 6.2℃ lower under 18μm and 15μm thick polyactic acid-degradable film than non-degradable plastic film(CK, respectively. Nighttime soil temperatures under the polyactic acid-degradable film were about 1℃ warmer than CK. There was no significant difference in cotton yields between the 18μm polyactic acid degradable film treatment and CK. In contrast, yields in the 15μm degradable plastic film treatment were 8.9% less than that in CK. This study indicated that 18μm polyactic acid degradable plastic film had good degradability and no negative effect on cotton growth. The 18μm polyactic acid degradable plastic film can replace ordinary plastic film in agricultural production.

  5. A strain gradient plasticity theory with application to wire torsion

    KAUST Repository

    Liu, J. X.; El Sayed, Tamer S.

    2014-01-01

    Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity

  6. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    Science.gov (United States)

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    Science.gov (United States)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  8. Aspartic acid

    Science.gov (United States)

    ... we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps every cell in the body work. It ... release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of ...

  9. Plastic debris in the open ocean

    KAUST Repository

    Cozar, Andres

    2014-06-30

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  10. Plastic debris in the open ocean.

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  11. The future of A-150 TE plastic

    International Nuclear Information System (INIS)

    Goodman, L.J.

    1985-01-01

    For the past 26 years a large number of laboratories have constructed or purchased ionization chambers, proportional counters, and phantoms made of A-150 tissue-equivalent plastic, and they have amassed a considerable amount of data and experience in its properties and uses. The United States National Bureau of Standards is now considering the desirability of supplying A-150 plastic as a research material with a certified homogeneity. We are, however, faced with a problem since the nylon used in A-150 has been discontinued by the manufacturer and the current stock of A-150 has been estimated to be adequate to supply the demand for only the next 2 or 3 years. Thus, it will be necessary to reformulate the plastic mixture we will be using in the future. This situation offers us the opportunity to change the composition of tissue-equivalent plastic to better conform to present-day requirements. To elucidate just what these requirements are, we have conducted a postal survey of the opinions of neutron dosimetrists and the results are presented and discussed. It is concluded that the present A-150 plastic and a future tissue-equivalent plastic formulation should be made research materials, and that a future tissue-equivalent plastic should be made to conform as closely as possible to the soft tissue composition given in ICRU Report 33

  12. Modeling plasticity by non-continuous deformation

    Science.gov (United States)

    Ben-Shmuel, Yaron; Altus, Eli

    2017-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  13. Plastic debris in the open ocean

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  14. Aktau Plastics Plant Explosives Material Report

    Energy Technology Data Exchange (ETDEWEB)

    CASE JR.,ROGER S.

    1999-12-01

    The U.S. Department of Energy (DOE) has been cooperating with the Republic of Kazakhstanin Combined Threat Reduction (CTR) activities at the BN350 reactor located at the Mangyshlak Atomic Energy Complex (MAEC) in the city of Aktau, Kazakhstan since 1994. DOE contract personnel have been stationed at this facility for the last two years and DOE representatives regularly visit this location to oversee the continuing cooperative activities. Continued future cooperation is planned. A Russian news report in September 1999 indicated that 75 metric tons of organic peroxides stored at the Plastics Plant near Aktau were in danger of exploding and killing or injuring nearby residents. To ensure the health and safety of the personnel at the BN350 site, the DOE conducted a study to investigate the potential danger to the BN350 site posed by these materials at the Plastics Plant. The study conclusion was that while the organic peroxides do have hazards associated with them, the BN350 site is a safe distance from the Plastics Plant. Further, because the Plastics Plant and MAEC have cooperative fire-fighting agreements,and the Plastics Plant had exhausted its reserve of fire-fighting foam, there was the possibility of the Plastics Plant depleting the store of fire-fighting foam at the BN350 site. Subsequently, the DOE decided to purchase fire-fighting foam for the Plastics Plant to ensure the availability of free-fighting foam at the BN350 site.

  15. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Methodology for plastic fracture - a progress report

    International Nuclear Information System (INIS)

    Wilkinson, J.P.D.; Smith, R.E.E.

    1977-01-01

    This paper describes the progress of a study to develop a methodology for plastic fracture. Such a fracture mechanics methodology, having application in the plastic region, is required to assess the margin of safety inherent in nuclear reactor pressure vessels. The initiation and growth of flaws in pressure vessels under overload conditions is distinguished by a number of unique features, such as large scale yielding, three-dimensional structural and flaw configurations, and failure instabilities that may be controlled by either toughness or plastic flow. In order to develop a broadly applicable methodology of plastic fracture, these features require the following analytical and experimental studies: development of criteria for crack initiation and growth under large scale yielding; the use of the finite element method to describe elastic-plastic behaviour of both the structure and the crack tip region; and extensive experimental studies on laboratory scale and large scale specimens, which attempt to reproduce the pertinent plastic flow and crack growth phenomena. This discussion centers on progress to date on the selection, through analysis and laboratory experiments, of viable criteria for crack initiation and growth during plastic fracture. (Auth.)

  17. Pregnancy and the Plastic Surgery Resident.

    Science.gov (United States)

    Garza, Rebecca M; Weston, Jane S; Furnas, Heather J

    2017-01-01

    Combining pregnancy with plastic surgery residency has historically been difficult. Two decades ago, 36 percent of plastic surgery program directors surveyed actively discouraged pregnancy among residents, and 33 percent of women plastic surgeons suffered from infertility. Most alarmingly, 26 percent of plastic surgery trainees had had an elective abortion during residency. With increasing numbers of women training in plastic surgery, this historical lack of support for pregnancy deserves further attention. To explore the current accommodations made for the pregnant plastic surgery resident, an electronic survey was sent to 88 plastic surgery program directors in the United States. Fifty-four responded, for a response rate of 61.36 percent. On average, a director trained a total of 7.91 women among 17.28 residents trained over 8.19 years. Of the women residents, 1.43 were pregnant during a director's tenure, with 1.35 of those residents taking maternity leave. An average 1.75 male residents took paternity leave. Approximately one-third of programs had a formal maternity/paternity leave policy (36.54 percent) which, in most cases, was limited to defining allowed weeks of leave, time required to fulfill program requirements, and remuneration during leave. This survey of plastic surgery directors is a first step in defining the challenges training programs face in supporting the pregnant resident. Directors provided comments describing their challenges accommodating an absent resident in a small program and complying with the American Board of Plastic Surgery's required weeks of training per year. A discussion of these challenges is followed by suggested solutions.

  18. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    Science.gov (United States)

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  19. Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel cardanol derived plasticizer

    Science.gov (United States)

    Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.

    2018-01-01

    A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).

  20. Recrystallization induced plasticity in austenite and ferrite

    International Nuclear Information System (INIS)

    Huang Mingxin; Pineau, André; Bouaziz, Olivier; Vu, Trong-Dai

    2012-01-01

    Highlights: ► Plasticity can be induced by recrystallization in austenite and ferrite. ► Strain rate is proportional to recrystallization kinetics. ► Overall atomic flux selects a preferential direction may be the origin. - Abstract: New experimental evidences are provided to demonstrate that plastic strain can be induced by recrystallization in austenite and ferrite under an applied stress much smaller than their yield stresses. Such Recrystallization Induced Plasticity (RIP) phenomenon occurs because the overall atomic flux during recrystallization follows a preferential direction imposed by the applied stress.

  1. New plastic plane stress model for concrete

    International Nuclear Information System (INIS)

    Winnicki, A.; Cichon, Cz.

    1993-01-01

    In the paper a description of concrete behaviour in the plane stress case is given on the basis of the modified bounding surface plasticity theory. Three independent plastic mechanisms have been introduced describing axiatoric and deviatoric plastic strains and their coupling. All the new analytical formulae for material functions being in agreement with experiments and loading/unloading criteria have been proposed. In addition, for the proper description of concrete behaviour in tension a new, separate function of bounding surface shrinkage has been introduced. (author)

  2. Plastic deformation of 2D crumpled wires

    International Nuclear Information System (INIS)

    Gomes, M A F; Donato, C C; Brito, V P; Coelho, A S O

    2008-01-01

    When a single long piece of elastic wire is injected through channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper this packing process is investigated but using plastic wires which give rise to completely irreversible structures of different morphology. In particular, the plastic deformation from circular to oblate configurations of crumpled wires is experimentally studied, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility and very large deformations, scaling is still observed.

  3. Estimation of the Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Pirzada, G. B. : Ph.D.

    In this thesis, work related to fundamental conditions has been extended to non-fundamental or the general case of probabilistic analysis. Finally, using the ss-unzipping technique a door has been opened to system reliability analysis of plastic slabs. An attempt has been made in this thesis...... to give a probabilistic treatment of plastic slabs which is parallel to the deterministic and systematic treatment of plastic slabs by Nielsen (3). The fundamental reason is that in Nielsen (3) the treatment is based on a deterministic modelling of the basic material properties for the reinforced...

  4. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  5. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  6. Plasticity of spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Paul S Cooke

    2015-06-01

    Full Text Available There have been significant breakthroughs over the past decade in the development and use of pluripotent stem cells as a potential source of cells for applications in regenerative medicine. It is likely that this methodology will begin to play an important role in human clinical medicine in the years to come. This review describes the plasticity of one type of pluripotent cell, spermatogonial stem cells (SSCs, and their potential therapeutic applications in regenerative medicine and male infertility. Normally, SSCs give rise to sperm when in the testis. However, both human and murine SSCs can give rise to cells with embryonic stem (ES cell-like characteristics that can be directed to differentiate into tissues of all three embryonic germ layers when placed in an appropriate inductive microenvironment, which is in contrast to other postnatal stem cells. Previous studies have reported that SSCs expressed an intermediate pluripotent phenotype before differentiating into a specific cell type and that extended culture was necessary for this to occur. However, recent studies from our group using a tissue recombination model demonstrated that SSCs differentiated rapidly into another tissue, in this case, prostatic epithelium, without expression of pluripotent ES cell markers before differentiation. These results suggest that SSCs are capable of directly differentiating into other cell types without going through an intermediate ES cell-like stage. Because SSCs do not require reprogramming to achieve a pluripotent state, they are an attractive source of pluripotent cells for use in regenerative medicine.

  7. A Plastic Bottle in Rectosigmoid

    Directory of Open Access Journals (Sweden)

    A. Derakhshanfar

    2007-07-01

    Full Text Available Introduction: Evaluation and treatment of foreign bodies in rectum involves careful history and physical examination. The cases of forced introduction of the objects most commonly are , sexual assault , self – introduced for anal eroticism and accidental insertion.Case Report: We describe a case of a patient with rectal impaction following self administration of a plastic bottle for anal sexual gratification. A 49 years old man was admitted in the emergency department with the history of self introduced a bottle into his rectum physical examination and abdominal X-Ray diagnosed the case as impacted foreign body in rectosigmoid. An attempt was made to deliver the bottle through the rectum but because of high lying big bottle in the sigmoid laporotomy was performed and the bottle was removed though a longitudinal incision on sigmoid colon.Conclusion: Retained rectosigmoid foreign bodies have been encountered more frequently and present a dilemma for management and rarely laporotomy for extraction of foreign bodies was performed.

  8. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    Science.gov (United States)

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning

  9. Measures for recycling plastic wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Cossais, J C [Ministere de l' Industrie et de la Recherche, 75 - Paris (France). Delegation aux Economies de Matieres Premieres

    1978-05-01

    Raw materials crisis and environmental awareness have lead to the question of intensively dealing with the recycling of plastics. Although plastic wastes (residues) industrially occuring have been recycled for a long time, this is certainly not always the case in the subsequent stages. One must particularly give thought to the considerable quantities of agricultural and municipal wastes. Besides the problem of collecting the waste which can only be satisfactorily solved by separate collection or setting up sorting places, it is necessary for the recycling plastic wastes on a large scale to find or develop sellable products. The product for sale is limited by economical aspects and prejudices against recycled materials. The public have taken to a series of measures in France to simplify recycling plastic wastes. Private industry is also beginning to take interest in this new sources of raw materials.

  10. Fundamentals of the theory of plasticity

    CERN Document Server

    Kachanov, L M

    2004-01-01

    Intended for use by advanced engineering students and professionals, this volume focuses on plastic deformation of metals at normal temperatures, as applied to strength of machines and structures. 1971 edition.

  11. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  12. Thermoset plastics for the nuclear track detection

    International Nuclear Information System (INIS)

    Fujii, M.

    1984-01-01

    Characteristics of thermoset plastics for the nuclear track detection have been studied. Some of the samples show good etching properties and will be useful for observations of super heavy primaries. (author)

  13. Plasticity of cortical excitatory-inhibitory balance.

    Science.gov (United States)

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  14. Environmental evaluation of plastic waste management scenarios

    DEFF Research Database (Denmark)

    Rigamonti, L.; Grosso, M.; Møller, Jacob

    2014-01-01

    The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper....... The study confirmed the difficulty to clearly identify an optimal strategy for plastic waste management. In fact none of the examined scenarios emerged univocally as the best option for all impact categories. When moving from the P0 treatment strategy to the other scenarios, substantial improvements can...... is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration...

  15. Venous thromboembolism prophylaxis in plastic surgery

    DEFF Research Database (Denmark)

    Nielsen, Lea Juul; Matzen, Steen H

    2017-01-01

    BACKGROUND: Venous thromboembolism is a well-documented complication of surgery, including plastic surgery. However, few consensus guidelines on thromboembolism prophylaxis exist in plastic surgery and, thus, the different approaches in the public as well as the private clinics in Denmark were...... investigated using a web-based survey. METHODS: Forty-two clinics were contacted and 45% responded. RESULTS: The collected data reveals a lack of consensus in plastic surgery in Denmark, not only regarding the use of mechanical and chemical prophylaxis, but also which type of prophylaxis to apply, the duration...... of prophylaxis, and how to risk stratify the patients. CONCLUSION: The development of a guideline, based on plastic surgical data, using a validated risk assessment model, which combines the surgical risk with the patient related risk and recommends guidelines for mechanical as well as chemoprophylaxis...

  16. Linking Scales in Plastic Deformation and Fracture

    DEFF Research Database (Denmark)

    Martinez-Paneda, Emilio; Niordson, Christian Frithiof; S. Deshpande, Vikram

    2017-01-01

    We investigate crack growth initiation and subsequent resistance in metallic materials by means of an implicit multi-scale approach. Strain gradient plasticity is employed to model the mechanical response of the solid so as to incorporate the role of geometrically necessary dislocations (GNDs......) and accurately capture plasticity at the small scales involved in crack tip deformation. The response ahead of the crack is described by means of a traction-separation law, which is characterized by the cohesive strength and the fracture energy. Results reveal that large gradients of plastic strain accumulatein...... the vicinity of the crack, elevating the dislocation density and the local stress. This stress elevation enhances crack propagation and significantly lowers the steady state fracture toughness with respect to conventional plasticity. Important insight is gained into fracture phenomena that cannot be explained...

  17. Sol-gel antireflective coating on plastics

    Science.gov (United States)

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  18. Construction loads experienced by plastic composite ties.

    Science.gov (United States)

    2014-07-01

    Damage to plastic composite ties during handling and track installation has been reported by a number of railroads. Results from : a survey conducted to identify specific handling issues were used to develop field and laboratory tests to measure the ...

  19. Leaching behavior of solidified plastics radioactive wastes

    International Nuclear Information System (INIS)

    Yook, Chong Chul; Lee, Byung Hun; Jae, Won Mok; Kim, Kyung Eung

    1986-01-01

    It is highly needed to develope the solidification process to dispose safely the radioactive wastes increasing with the growth of the nuclear industry. The leaching mechanisms of the solidified plastic wastes were investigated and the leaching rates of the plastic wastes were also measured among the many solidification processes. In addition, the transport equation based on the diffusion or the diffusion-dissolution was compared with the empirical equation derived from the experimental data by graphical method. Consequently, leaching process of the solidified plastic wastes is quite well agreed with the mass transport theory, but it may be difficult to simulate leaching process by diffusion dissolution mechanism. But the theoretical equation could be applicable to the cumulative amount of radionuclides leached form the plastic wastes disposed into the environment. (Author)

  20. Core Characteristics Deterioration due to Plastic Deformation

    Science.gov (United States)

    Kaido, Chikara; Arai, Satoshi

    This paper discusses the effect of plastic deformation at core manufacturing on the characteristics of cores where non-oriented electrical steel sheets are used as core material. Exciting field and iron loss increase proportionally to plastic deformation in the case of rPeddy currents increase because plastic deformations of crystalline grains are distributed and then the flux distribution is induced. In the case of rP>20, the deterioration tend to saturate, and the increases in magnetic field and iron loss are 1000 to 1500A/m and 2 to 4W/kg. They are related to grain size, and high grade with larger grain may have lager field increase and smaller iron loss increase. Anomalous eddy current losses scarcely increase in this region. In actual motors, the plastic deformation affects iron loss increase although exciting current increases a little.

  1. Pathological Plasticity in Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Brandon S. Martin

    2012-01-01

    Full Text Available Deficits in neuronal plasticity are common hallmarks of many neurodevelopmental disorders. In the case of fragile-X syndrome (FXS, disruption in the function of a single gene, FMR1, results in a variety of neurological consequences directly related to problems with the development, maintenance, and capacity of plastic neuronal networks. In this paper, we discuss current research illustrating the mechanisms underlying plasticity deficits in FXS. These processes include synaptic, cell intrinsic, and homeostatic mechanisms both dependent on and independent of abnormal metabotropic glutamate receptor transmission. We place particular emphasis on how identified deficits may play a role in developmental critical periods to produce neuronal networks with permanently decreased capacity to dynamically respond to changes in activity central to learning, memory, and cognition in patients with FXS. Characterizing early developmental deficits in plasticity is fundamental to develop therapies that not only treat symptoms but also minimize the developmental pathology of the disease.

  2. Use of plastic materials in electrical accumulators. [Comparison of properties of resins

    Energy Technology Data Exchange (ETDEWEB)

    Allievi, G

    1962-05-31

    The uses of plastics in the manufacture of lead, nickel--cadmium, and silver--zinc batteries are reviewed. Nine basic plastics are compared regarding their abilities to withstand strong acids and strong bases. PVC, polyester, and polethylene appear as most suitable. Resins are compared in mechanical and thermal respects, which are tabulated for those favored industrially. ABS made from acrilonitrile--butadiene--styrene is particularly suitable. Fibers in conjunction with resins used for making plate-tubes are best represented by high-density PE (polyester), specific weight 0.94 to 0.96, nonhygroscopic, minimum contraction on cooling. Proprietary applications of the above-mentioned plastics have established themselves as successful alternatives to glass, ebonite, cellulose, and steel in Pb, Ni--Cd and Ag--Zn cells. Specific examples of successful developments in the USA, Germany, England, and Italy are cited.

  3. Plastic debris in the open ocean

    OpenAIRE

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. Howeve...

  4. Development of a Plastic Recycling Machine

    OpenAIRE

    I. A. Daniyan,

    2017-01-01

    Plastics are not degradable materials, therefore improper disposal after use constitute environmental problem. The developed plastic recycler was fabricated using 1.5 mm mild metal sheet punched and rolled into cylindrical form. The outer peeling drum was punched inward and fixed to the machine frame while the inner peeling drum was punched outward. The inner drum was constructed using 1.5 mm galvanized metal sheet while the die was constructed using carbon steel. It has an outer diameter of ...

  5. Molding apparatus. [for thermosetting plastic compositions

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    Apparatus for compression molding of thermosetting plastics compositions including interfitting hollow male and female components is reported. The components are adapted to be compressed to form a rocket nozzle in a cavity. A thermal jacket is provided exteriorly adjacent to the female component for circulating a thermal transfer fluid to effect curing of a thermosetting plastics material being molded. Each of the male and female components is provided with suitable inlets and outlets for circulating a thermal transfer fluid.

  6. Laser direct joining of metal and plastic

    International Nuclear Information System (INIS)

    Katayama, Seiji; Kawahito, Yousuke

    2008-01-01

    We have developed an innovative rapid laser direct joining process of metal and plastic lap plates without adhesives or glues. The joints made between a Type 304 stainless steel plate and a polyethylene terephthalate (PET) plastic sheet of 30 mm width possessed tensile shear loads of about 3000 N. Transmission electron microscope photographs of the joint demonstrated that Type 304 and the PET were bonded on the atomic, molecular or nanostructural level through a Cr oxide film

  7. Banana peels based bio-plastic

    OpenAIRE

    Taodharos, Shady

    2018-01-01

    Every developed country depends on the industry as the main factor of its economy. Lack of exports, depression in both the general economy and the value of the currency are consequences of neglecting the industry. All countries work on increasing the efficiency of their industries by whether working on the input, the output, the cost or the time of the process. Plastic industry is considered one of the most important industries because plastic is an important factor in the making of many usef...

  8. Neuron-glia metabolic coupling and plasticity

    OpenAIRE

    Magistretti PJ

    2011-01-01

    Abstract The focus of the current research projects in my laboratory revolves around the question of metabolic plasticity of neuron glia coupling. Our hypothesis is that behavioural conditions such as for example learning or the sleep wake cycle in which synaptic plasticity is well documented or during specific pathological conditions are accompanied by changes in the regulation of energy metabolism of astrocytes. We have indeed observed that the 'metabolic profile' of astrocytes is modified...

  9. Plastic bowing of the ribs in children

    Energy Technology Data Exchange (ETDEWEB)

    Caro, P.A.; Borden, S. IV

    1988-06-01

    Four cases of plastic bowing of the ribs are presented. In three patients with Werdnig-Hoffman disease, plastic curvatures were associated with chronic pneumonia and atelectasis. We postulate that intrapulmonary retractive forces can deform ribs thinned by muscular atrophy. In turn, thoracic collapse can perpetuate lobar and segmental atelectasis. In one case of osteogenesis imperfecta without pneumonia, we believe normal muscle forces bent ribs weakened by deficiency of normal cortical architecture.

  10. Plastic bowing of the ribs in children

    International Nuclear Information System (INIS)

    Caro, P.A.; Borden, S. IV

    1988-01-01

    Four cases of plastic bowing of the ribs are presented. In three patients with Werdnig-Hoffman disease, plastic curvatures were associated with chronic pneumonia and atelectasis. We postulate that intrapulmonary retractive forces can deform ribs thinned by muscular atrophy. In turn, thoracic collapse can perpetuate lobar and segmental atelectasis. In one case of osteogenesis imperfecta without pneumonia, we believe normal muscle forces bent ribs weakened by deficiency of normal cortical architecture. (orig.)

  11. Treatment of contaminated waste plastics material

    International Nuclear Information System (INIS)

    Sims, J.; Hitchcock, J.W.

    1984-01-01

    Radioactive contaminated plastics material is treated by reducing it to uniform-sized debris and extruding it from a heated extruder into a sealed container in monolithic block form or as an in-fill matrix for other contaminated waste articles to create a substantially void-free sealed mass for disposal. Density adjusting fillers may be included. Extrusion may alternatively take place into a clean sealable plastics tube. (author)

  12. Soil plasticity with a different porosity

    Directory of Open Access Journals (Sweden)

    Klovanych Sergii

    2017-01-01

    Full Text Available The model of soils with different porosity in the framework of the associated theory of plasticity is presented The single analytical function describes the loading surface in the stress space. The deformational hardening/softening and the phenomenon of dilatancy during plastic flow are incorporated in the model. The triaxial compression tests are simulated and compared with the experimental results for different values of the void ratio and initial hydrostatic stresses.

  13. Plastic, Fantastic? What We Make. Science and Technology Education in Philippine Society.

    Science.gov (United States)

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    This module provides information about plastics, focusing on the uses of plastic bags in particular. Topic areas considered include: (1) making plastic bags; (2) transparency of plastic bags; (3) plastic bags and food odors; (4) food containers (before and since plastics); and (5) disposing of plastic bags and other plastic products. The text is…

  14. Elastic-plastic behaviour of thick-walled containers considering plastic compressibility

    International Nuclear Information System (INIS)

    Betten, J.; Frosch, H.G.

    1983-01-01

    In this paper the elastic-plastic behaviour of thick-walled pressure vessels with internal and external pressure is studied. To describe the mechanical behaviour of isotropic, plastic compressible materials we use a plastic potential which is a single-valued function of the principle stresses. For cylinders and spheres an analytic expression for the computation of stresses and residual stresses is specified. Afterwards the strains are calculated by using the finite difference method. Some examples will high-light the influence of the plastic compressibility on the behaviour of pressure vessels. (orig.) [de

  15. Selection of polychlorinated plastics in plastic waste by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Kumasaki, H.; Shinozaki, Y.

    1979-01-01

    The X-ray fluorescence method using a small source of 55 Fe was examined and found to be applicable for the selection of polychlorinated plastics from plastic waste in model areas in Tokyo designated for investigating their content in the waste. The weight ratios of soft and hard polychlorinated plastics to the total plastic waste estimated by this method were found to be 15.6% and 0.29% respectively. These values agree well with the results obtained with the Beilstein method. (author)

  16. Education on the Business of Plastic Surgery During Training: A Survey of Plastic Surgery Residents.

    Science.gov (United States)

    Ovadia, Steven A; Gishen, Kriya; Desai, Urmen; Garcia, Alejandro M; Thaller, Seth R

    2018-06-01

    Entrepreneurial skills are important for physicians, especially plastic surgeons. Nevertheless, these skills are not typically emphasized during residency training. Evaluate the extent of business training at plastic surgery residency programs as well as means of enhancing business training. A 6-question online survey was sent to plastic surgery program directors for distribution to plastic surgery residents. Responses from residents at the PGY2 level and above were included for analysis. Tables were prepared to present survey results. Hundred and sixty-six residents including 147 PGY2 and above residents responded to our survey. Only 43.5% reported inclusion of business training in their plastic surgery residency. A majority of residents reported they do not expect on graduation to be prepared for the business aspects of plastic surgery. Additionally, a majority of residents feel establishment of a formal lecture series on the business of plastic surgery would be beneficial. Results from our survey indicate limited training at plastic surgery programs in necessary business skills. Plastic surgery residency programs should consider incorporating or enhancing elements of business training in their curriculum. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  17. Changing trends in plastic surgery training

    Directory of Open Access Journals (Sweden)

    Ramesh Kumar Sharma

    2014-01-01

    Full Text Available Background: The currently available training models are being put to scrutiny in India today, both by the residents and the teachers. Plastic surgery specialty was created primarily for reconstructive purposes but the society always perceived it from a cosmetic angle, particularly in the post second world war era. As a result, there is a need to redefine the goals of plastic surgery training in the present times so that the plastic surgeon is "future ready" to meet the needs of society and the market forces. Materials and Methods: The author has reviewed the currently available literature on plastic surgery training from India and the western countries. An attempt has been made to study opinions from the teachers and the trainees. The modules currently available in India and abroad have been analyzed and a suggestion has been made for drafting training programs that would meet the demands of the society as well as prepare the resident both for the aesthetic and reconstructive practice. Conclusions: The plastic surgery training needs to be more vibrant and in tune with the changing times. While maintaining its core nature, the current predominantly reconstructive modules need to incorporate the aesthetic content. The evaluation should be both knowledge and competence based. The teachers need to be educated in the various teaching methods that are more applicable to grown up residents. There is a need to find ways to attract talented people in the academic plastic surgery.

  18. Changing trends in plastic surgery training.

    Science.gov (United States)

    Sharma, Ramesh Kumar

    2014-05-01

    The currently available training models are being put to scrutiny in India today, both by the residents and the teachers. Plastic surgery specialty was created primarily for reconstructive purposes but the society always perceived it from a cosmetic angle, particularly in the post second world war era. As a result, there is a need to redefine the goals of plastic surgery training in the present times so that the plastic surgeon is "future ready" to meet the needs of society and the market forces. The author has reviewed the currently available literature on plastic surgery training from India and the western countries. An attempt has been made to study opinions from the teachers and the trainees. The modules currently available in India and abroad have been analyzed and a suggestion has been made for drafting training programs that would meet the demands of the society as well as prepare the resident both for the aesthetic and reconstructive practice. The plastic surgery training needs to be more vibrant and in tune with the changing times. While maintaining its core nature, the current predominantly reconstructive modules need to incorporate the aesthetic content. The evaluation should be both knowledge and competence based. The teachers need to be educated in the various teaching methods that are more applicable to grown up residents. There is a need to find ways to attract talented people in the academic plastic surgery.

  19. Fifty Years of Innovation in Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Richard M Kwasnicki

    2016-03-01

    Full Text Available BackgroundInnovation has molded the current landscape of plastic surgery. However, documentation of this process only exists scattered throughout the literature as individual articles. The few attempts made to profile innovation in plastic surgery have been narrative, and therefore qualitative and inherently biased. Through the implementation of a novel innovation metric, this work aims to identify and characterise the most prevalent innovations in plastic surgery over the last 50 years.MethodsPatents and publications related to plastic surgery (1960 to 2010 were retrieved from patent and MEDLINE databases, respectively. The most active patent codes were identified and grouped into technology areas, which were subsequently plotted graphically against publication data. Expert-derived technologies outside of the top performing patents areas were additionally explored.ResultsBetween 1960 and 2010, 4,651 patents and 43,118 publications related to plastic surgery were identified. The most active patent codes were grouped under reconstructive prostheses, implants, instruments, non-invasive techniques, and tissue engineering. Of these areas and other expert-derived technologies, those currently undergoing growth include surgical instruments, implants, non-invasive practices, transplantation and breast surgery. Innovations related to microvascular surgery, liposuction, tissue engineering, lasers and prostheses have all plateaued.ConclusionsThe application of a novel metric for evaluating innovation quantitatively outlines the natural history of technologies fundamental to the evolution of plastic surgery. Analysis of current innovation trends provides some insight into which technology domains are the most active.

  20. Plastic photochromic eyewear: a status report

    Science.gov (United States)

    Crano, John C.; Elias, Richard C.

    1991-12-01

    An estimated 10 million pairs of photochromic prescription lenses were dispensed in the United States in 1989, essentially all based on a silver halide system suspended in an inorganic glass. A significant trend within the ophthalmic industry has been the growth of light-weight plastic lenses. In the United States market, the percentage of prescription eyewear made of plastic is now greater than 70%. With this increasing market penetration of plastic lenses, the desire for an acceptable plastic photochromic lens has also increased. As with any commercial product, in order to achieve consumer acceptance there exist several technical requirements for a plastic photochromic lens. These include the light transmission and color of the lens in both the unactivated and activated states, the speeds of darkening and fading, and the fatigue resistance or lifetime of the photochromic system. These requirements will be defined along with approaches to achieving them. The properties of the commercially available plastic photochromic lenses will be compared with the defined requirements.

  1. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts

    NARCIS (Netherlands)

    Notre, le J.E.L.; Witte-van Dijk, S.C.M.; Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2014-01-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200–2508C without any external added pressure, conditions

  2. 49 CFR 192.193 - Valve installation in plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the valve...

  3. 49 CFR 178.517 - Standards for plastic boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for plastic boxes. 178.517 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.517 Standards for plastic boxes. (a) The following are identification codes for plastic boxes: (1) 4H1 for an expanded plastic box; and (2) 4H2 for a...

  4. 49 CFR 192.321 - Installation of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  5. 49 CFR 178.519 - Standards for plastic film bags.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for plastic film bags. 178.519 Section... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film...

  6. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  7. DMPD: Developmental plasticity of lymphocytes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18472258 Developmental plasticity of lymphocytes. Cobaleda C, Busslinger M. Curr Op...in Immunol. 2008 Apr;20(2):139-48. Epub 2008 May 9. (.png) (.svg) (.html) (.csml) Show Developmental plastic...ity of lymphocytes. PubmedID 18472258 Title Developmental plasticity of lymphocytes. Authors Cobaleda C, Bus

  8. 49 CFR 192.375 - Service lines: Plastic.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Plastic. 192.375 Section 192.375... § 192.375 Service lines: Plastic. (a) Each plastic service line outside a building must be installed... terminate above ground level and outside the building, if— (i) The above ground level part of the plastic...

  9. 49 CFR 192.191 - Design pressure of plastic fittings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for plastic...

  10. Consumer Exposure to Bisphenol A from Plastic Bottles

    Science.gov (United States)

    Bidabadi, Fatemeh

    2013-01-01

    Bisphenol A (BPA) is a plastic monomer and plasticizer and is a chemical that has one of the highest volume production worldwide, with more than six billion pounds each year. Its primary use is the production of polycarbonate plastics, epoxy resins used to line metal cans in a host of plastic consumer products such as toys, water pipes, drinking…

  11. 21 CFR 872.5470 - Orthodontic plastic bracket.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...

  12. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  13. Plasticity: A New Materialist Approach to Policy and Methodology

    Science.gov (United States)

    Ulmer, Jasmine B.

    2015-01-01

    This article examines Catherine Malabou's philosophical concept of plasticity as a new materialist methodology. Given that plasticity simultaneously maintains the ability to receive, give, and annihilate form, plasticity and plastic readings offer material-discursive possibilities for educational research. This article begins by discussing the…

  14. Finite element analysis of a finite-strain plasticity problem

    International Nuclear Information System (INIS)

    Crose, J.G.; Fong, H.H.

    1984-01-01

    A finite-strain plasticity analysis was performed of an engraving process in a plastic rotating band during the firing of a gun projectile. The aim was to verify a nonlinear feature of the NIFDI/RB code: plastic large deformation analysis of nearly incompressible materials using a deformation theory of plasticity approach and a total Lagrangian scheme. (orig.)

  15. 21 CFR 878.3925 - Plastic surgery kit and accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...

  16. PLASTICITY OF THE BERRY RIPENING PROGRAM IN A WHITE GRAPE VARIETY

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    2016-07-01

    Full Text Available Grapevine (Vitis vinifera L is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices, defined as terroir, which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture and composition. These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation

  17. Mirror trends of plasticity and stability indicators in primate prefrontal cortex.

    Science.gov (United States)

    García-Cabezas, Miguel Á; Joyce, Mary Kate P; John, Yohan J; Zikopoulos, Basilis; Barbas, Helen

    2017-10-01

    Research on plasticity markers in the cerebral cortex has largely focused on their timing of expression and role in shaping circuits during critical and normal periods. By contrast, little attention has been focused on the spatial dimension of plasticity-stability across cortical areas. The rationale for this analysis is based on the systematic variation in cortical structure that parallels functional specialization and raises the possibility of varying levels of plasticity. Here, we investigated in adult rhesus monkeys the expression of markers related to synaptic plasticity or stability in prefrontal limbic and eulaminate areas that vary in laminar structure. Our findings revealed that limbic areas are impoverished in three markers of stability: intracortical myelin, the lectin Wisteria floribunda agglutinin, which labels perineuronal nets, and parvalbumin, which is expressed in a class of strong inhibitory neurons. By contrast, prefrontal limbic areas were enriched in the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), known to enhance plasticity. Eulaminate areas have more elaborate laminar architecture than limbic areas and showed the opposite trend: they were enriched in markers of stability and had lower expression of the plasticity-related marker CaMKII. The expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, was also higher in limbic areas, suggesting that cellular stress correlates with the rate of circuit reshaping. Elevated markers of plasticity may endow limbic areas with flexibility necessary for learning and memory within an affective context, but may also render them vulnerable to abnormal structural changes, as seen in neurologic and psychiatric diseases. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. [Toxicity effects of phthalate substitute plasticizers used in toys].

    Science.gov (United States)

    Hirata-Koizumi, Mutsuko; Takahashi, Mika; Matsumoto, Mariko; Kawamura, Tomoko; Ono, Atsushi; Hirose, Akihiko

    2012-01-01

    Phthalate esters are widely used as plasticizers in polyvinyl chloride products. Because of human health concerns, regulatory authorities in Japan, US, Europe and other countries control the use of di(2-ethylhexyl) phthalate, diisononyl phthalate, di-n-butyl phthalate, butylbenzyl phthalate, diisodecyl phthalate and di-n-octyl phthalate for the toys that can be put directly in infants' mouths. While these regulatory actions will likely reduce the usage of phthalate esters, there is concern that other plasticizers that have not been sufficiently evaluated for safety will be used more frequently. We therefore collected and evaluated the toxicological information on di(2-ethylhexyl) terephthalate (DEHT), 1,2-cyclohexanedicarboxylic acid, diisononyl ester (DINCH), diisononyl adipate (DINA), 2,2,4-trimetyl-1,3-pentanediol diisobutyrate (TXIB), tri-n-butyl citrate (TBC) and acetyl tri-n-butyl citrate (ATBC) which were detected at a relatively high frequency in toys. The collected data have shown that chronic exposure to DEHT affects the eye and nasal turbinate, and DINCH exerts effects on the thyroid and kidney in rats. DINA and TXIB have been reported to have hepatic and renal effects in dogs or rats, and ATBC slightly affected the liver in rats. The NOAELs for repeated dose toxicity are relatively low for DINCH (40 mg/kg bw/day) and TXIB (30 mg/kg bw/day) compared with DEHT, DINA and ATBC. DEHT, TXIB and ATBC have been reported to have reproductive/developmental effects at relatively high doses in rats. For DINA and TBC, available data are insufficient for assessing the hazards, and therefore, adequate toxicity studies should be conducted. In the present review, the toxicity information on 6 alternatives to phthalate plasticizers is summarized, focusing on the effects after oral exposure, which is the route of most concern.

  19. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film

    International Nuclear Information System (INIS)

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-01-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography–mass spectrometry (GC–MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg −1 with a median value of 1.70 mg kg −1 , and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film. -- Highlights: •Phthalate esters in soils from suburban intensive vegetable production systems were investigated. •Phthalate levels and risks of the vegetable soils with different plastic film use modes were examined. •Sources of phthalate esters in vegetable production soils were analyzed. -- PAE contamination of intensively managed vegetable soils varied widely depending on the mode of use of plastic film in different production systems

  20. The Prevalence of Cosmetic Facial Plastic Procedures among Facial Plastic Surgeons.

    Science.gov (United States)

    Moayer, Roxana; Sand, Jordan P; Han, Albert; Nabili, Vishad; Keller, Gregory S

    2018-04-01

    This is the first study to report on the prevalence of cosmetic facial plastic surgery use among facial plastic surgeons. The aim of this study is to determine the frequency with which facial plastic surgeons have cosmetic procedures themselves. A secondary aim is to determine whether trends in usage of cosmetic facial procedures among facial plastic surgeons are similar to that of nonsurgeons. The study design was an anonymous, five-question, Internet survey distributed via email set in a single academic institution. Board-certified members of the American Academy of Facial Plastic and Reconstructive Surgery (AAFPRS) were included in this study. Self-reported history of cosmetic facial plastic surgery or minimally invasive procedures were recorded. The survey also queried participants for demographic data. A total of 216 members of the AAFPRS responded to the questionnaire. Ninety percent of respondents were male ( n  = 192) and 10.3% were female ( n  = 22). Thirty-three percent of respondents were aged 31 to 40 years ( n  = 70), 25% were aged 41 to 50 years ( n  = 53), 21.4% were aged 51 to 60 years ( n  = 46), and 20.5% were older than 60 years ( n  = 44). Thirty-six percent of respondents had a surgical cosmetic facial procedure and 75% has at least one minimally invasive cosmetic facial procedure. Facial plastic surgeons are frequent users of cosmetic facial plastic surgery. This finding may be due to access, knowledge base, values, or attitudes. By better understanding surgeon attitudes toward facial plastic surgery, we can improve communication with patients and delivery of care. This study is a first step in understanding use of facial plastic procedures among facial plastic surgeons. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Synthesis of biodegradable plastic from tapioca with N-Isopropylacrylamid and chitosan using glycerol as plasticizer

    Science.gov (United States)

    Syaubari; Safwani, S.; Riza, M.

    2018-04-01

    One of natural polymers that can be used as raw material in the manufacture of biodegradable plastic is tapioca and chitosan. The addition of other compounds such as glycerol as plasticizer is to improve the characteristics of the plastic that already produced. N- Isopropylacrylamid (NIPAm) is an organic compound that can be synthesized into a polymer or polymer grafting which also biodegradable too. This research aims tostudy the synthesis of biodegradable plastics from tapioca with the addition of chitosan, NIPAm, poly(NIPAm) and analyze the characteristics of biodegradable plastics that already produced. This research was done in three stages, there are (1) polymerization NIPAm, (2) the grafting of chitosan-poly NIPAm and (3) the synthesis of biodegradable plastics from starch mixture with variation of addition chitosan, NIPAm, poly(NIPAm), chitosan-graft-poly(NIPAm) and also variations of glycerol as plasticizer. The results of this research is a thin sheet of plastic which is will get analyzed for the characteristics of functional groups, mechanical, morphological and its biodegradability. FTIR spectra showed the grafting process with the new group formation of CO single-bond at 850 cm-1. Plastic with the addition of NIPAm and 1 ml glycerol has the highest tensile strength value about 31.1 MPa. Plastic with poly(NIPAm) and 4 ml glycerol produces the highest elongation value about 153.72%. Plastic with Chitosan-graft-poly(NIPAm) with 1 ml glycerol has the longest biodegradation because of the small mass-loss for six weeks which is about 6.6%.

  2. Morphology and thermal properties of PLA films plasticized with aliphatic oligoesters

    International Nuclear Information System (INIS)

    Inacio, Erika M.; Dias, Marcos L.; Lima, Maria Celiana P.

    2015-01-01

    The addition of plasticizers to poly(lactic acid) (PLA) is one of the known ways of changing its ductility, making possible the modification of its mechanical and thermal properties. In this work, it was synthesized two biodegradable aliphatic oligoesters: oligo(trimethylene sebacate) (OST) and oligo(trimethylene malonate) (OMT), and these oligomers were used as plasticizer in cast films of commercial film grade PLA at concentrations of 1, 5 and 10 wt% of each plasticizer. X-ray diffraction (XRD) was used to investigate the morphology and differential scanning calorimetry (DSC) was also used aiming the evaluation of the thermal properties of these films. The PLA films containing no plasticizer showed an amorphous behavior, and the addition of PMT on the PLA films acted, simultaneously, decreasing the Tg, and rising the material's crystallinity. In contrast, the increased addition of OST to the PLA films did not change the Tg, and equally, did not have a significant changes in the material's crystallinity. Therefore, it was possible to observe the effect of the concentration of oligomers on the crystallinity of the films as well as the no plasticizer effect of the OST. (author)

  3. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    Science.gov (United States)

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.

  4. Steel Protective Coating Based on Plasticized Epoxy Acrylate Formulation Cured by Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Ibrahim, M.S.; Said, H.M.; Mohamed, I.M.; Mohamed, H.A.; Kandile, N.G.

    2011-01-01

    Electron beam (EB) was used to cure coatings based on epoxy acrylate oligomer (EA) and different plasticizers such as epoxidized soybean oil, glycerol and castor oil. The effect of irradiation doses (10, 25, 50 kGy) on the curing epoxy acrylate formulations containing plasticizers was studied. In the addition, the effect of the different plasticizers on the end use performance properties of epoxy acrylate coatings such as hardness, bending, adhesion, acid and alkali resistance tests were investigated. It was observed that the incorporation of castor oil in epoxy acrylate, diluted by 1,6 hexandiol diacrylate monomer (HD) with a ratio (EA 70%, HD 20%, castor oil 10%) under the dose 10 kGy improved the physical, chemical and mechanical properties of cured films than the other plasticizers. On the other hand, sunflower free fatty acids were epoxidized in-situ under well established conditions and then was subjected to react with aniline in sealed ampoules under inert atmosphere at 140 degree C. The produced adduct was added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was observed that the formula containing 0.4 gm of aniline adduct / 100 gm epoxy acrylate resin gave the best corrosion protection for carbon steel

  5. Dictionary of plastics. 7. rev. ed. Kunststoff-Lexikon

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckhert, K [ed.

    1981-01-01

    The book starts with a list of about 400 acronyms for plastic materials and additives, caoutchouc types, and synthetic fibers. This is followed by a 500-page glossary of plastics and a 200-page appendix listing producers of plastic feedstocks, chemical substances and additives, recoverable materials, processing systems, semi-finished plastic products and end products, machinery, tools and further aids for plastics processing. (HK).

  6. Monitoring the abundance of plastic debris in the marine environment

    OpenAIRE

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infreque...

  7. Behavioral Response to Plastic Bag Legislation in Botswana

    OpenAIRE

    Dikgang, Johane; Visser, Martine

    2010-01-01

    This paper investigates the use of charges and standards in dealing with a common externality, plastic litter from shopping bags in Botswana. The country passed a plastic bag tax (effective 2007) to curb the plastic bag demand. Interestingly, the legislation did not force retailers to charge for plastic bags, which they did voluntarily at different prices. We assessed the environmental effectiveness and efficiency of the plastic bag legislation by analyzing consumers’ sensitivity to the impro...

  8. Are consumers concerned about plastic water bottles environmental impact?

    OpenAIRE

    Caroline Orset; Nicolas Barret; Aurélien Lemaire

    2015-01-01

    Although plastic induces environmental damages, almost all water bottles are made from plastic. However, these damages are more or less significant according to the plastic used. This study evaluates the consumers' willingness to pay (WTP) for different plastics used for water packaging. Successive messages emphasizing the characteristics of plastic are delivered to participants allowing explaining information influence on the consumers' WTP. We find that information has a significant effect ...

  9. Contaminants in northern fulmars (Fulmarus glacialis) exposed to plastic

    OpenAIRE

    Ask, Amalie V.; Anker-Nilssen, Tycho; Herzke, Dorte; Trevail, Alice; Franeker, Jan Andries van; Gabrielsen, Geir Wing

    2016-01-01

    Northern fulmars are seabirds which feed exclusively at sea, and as such, they are useful indicators of ocean health. Marine plastic pollution is an ever-increasing and global issue that affects the northern fulmar as they are frequently found to have ingested plastic. In this report we investigate whether the amount of ingested plastic affects the concentration of certain plastic-adsorbed toxicants in their tissues. Marine plastic pollution is a field of utmost importance. It is our hope tha...

  10. Recent advancements and prospects of plastic surgery

    Directory of Open Access Journals (Sweden)

    Xin XING

    2011-09-01

    Full Text Available Objective To summarize the recent advancements and developmental prospects of plastic surgery worldwide,and to describe the future directions,aims,and highlights of Chinese military plastic surgery.Methods Relevant articles published in the last five years were retrieved through a search in PubMed,Medline,and CMCC.A statistical survey was conducted to summarize the achievements obtained by the Chinese military plastic surgery unit in the last five years.Results Considerable progress has been achieved in both clinical treatment and basic research of plastic surgery in the past five years.Its important role in the early treatment of combat injury and trauma has been recognized and emphasized.Chinese military plastic surgery has achieved considerable accomplishments in the last five years,especially in chronic wound repair;mechanism,prevention,and treatment of explosive soft tissue injuries and seawater immersion wounds;and new remedies of maxillofacial traumatic deformity,composite facial tissue allograft,and so on.Conclusions The repair and reconstruction of tissue defect and deformity caused by war injury and trauma will be the future major research direction of military plastic surgery.Research work should focus on tissue engineering,composite tissue allograft,stem cell therapy,mechanism of abnormal scar formation,among others,to solve the clinical problems of destructive facial injuries,extensive thora-abdominal wall defects,chronic ulcer,abnormal scars,and so on.Furthermore,plastic surgeons should fully utilize their special skills and take active part in the early treatment of war injury and trauma.

  11. Social Media and the Plastic Surgery Patient.

    Science.gov (United States)

    Sorice, Sarah C; Li, Alexander Y; Gilstrap, Jarom; Canales, Francisco L; Furnas, Heather J

    2017-11-01

    Many plastic surgeons use social media as a marketing tool to attract and retain patients, but information about how patients use social media and their preferred types of plastic surgery posts have been lacking. To investigate patients' preferred social media networks and the type of posts they wished to see, a cross-sectional study was conducted in a single aesthetic practice of two plastic surgeons by surveying 100 consecutive patients. The age of the patients averaged 44.4 years (range, 17 to 78 years). Facebook had the greatest patient use and engagement, with YouTube second in use, and Instagram second in number of engaged users. Over half used Pinterest, but with little daily engagement. Only one-fourth used Snapchat, but the percentage of users who were highly engaged was second only to Facebook. The least popular network was Twitter, with the fewest patient users and least engagement. Social media played a minor role compared with the practice's Web site in both influencing patients to choose the practice and providing information on the day of the appointment. Patients most wanted to see posts on a plastic surgeon's social media platform related to practice information, before-and-after photographs, and contests. Articles about plastic surgery held the least interest. Among five types of Web site content, patients expressed most interest in before-and-after photographs. This study is the first to articulate the plastic surgery patient perspective regarding social media. The findings aim to help plastic surgeons maximize their influence on their target audience.

  12. [The role of balneology in plastic surgery].

    Science.gov (United States)

    Correia, N; Binet, A; Caliot, J; Poli Merol, M-L; Bodin, F; François-Fiquet, C

    2016-02-01

    Balneology can be part of the plastic surgery care sector. The objectives of this study were firstly to the state of knowledge about the hydrotherapy and specify the place reserved for hydrotherapy by surgeons as an adjunct in plastic and reconstructive surgery (adult and child). Multicentric national study by poll (Google Drive®) focused at plastic and/or pediatric surgeons. The following information was analyzed: frequency, timing of prescription, indications, the surgeon's feelings towards hydrotherapy and the differences between adult's and children's prescriptions. Fifty-four teams were contacted: 22 responses were received (15 "adult" plastic surgeons, 9 "pediatric" plastic surgeons, 6 pediatric surgeons, with 12 out of 22 working with burnt patients). Eighteen out of 22 prescribed hydrotherapy. Twenty out of 22 thought that hydrotherapy had a role as adjuvant therapy in plastic surgery. The indications were: burns (11/20), skin-graft hypertrophy (10/20), inflammatory and pruritic scar and cutaneous trophic disorders (9/20), psychological (3/20), retractions (2/20), weight loss and smoking (1/20). The timing of the prescription was: 6 months and 1 year (8/20) after surgery/trauma. Twenty out of 22 found a beneficial effect: physical (19/20): reduction of inflammatory signs, pruritus and pain, scar maturation, skin thinning improvement; psychological (14/20): positive for patient/family. Five out of 17 made the difference between child/adult, 10/17 made no difference but only treated adults or children. The respondents in the study are probably more sensitive to the effects of hydrotherapy that non-respondents. It is difficult to assess the real impact of hydrotherapy in plastic surgery because distinguishing spontaneous favorable evolution of a scar from one only due to the hydrotherapy or multidisciplinary management is difficult. However, hydrotherapy seems to have its role among multidisciplinary management. Copyright © 2015 Elsevier Masson SAS. All

  13. Evolutionary plasticity of plasma membrane interaction in DREPP family proteins.

    Science.gov (United States)

    Vosolsobě, Stanislav; Petrášek, Jan; Schwarzerová, Kateřina

    2017-05-01

    The plant-specific DREPP protein family comprises proteins that were shown to regulate the actin and microtubular cytoskeleton in a calcium-dependent manner. Our phylogenetic analysis showed that DREPPs first appeared in ferns and that DREPPs have a rapid and plastic evolutionary history in plants. Arabidopsis DREPP paralogues called AtMDP25/PCaP1 and AtMAP18/PCaP2 are N-myristoylated, which has been reported as a key factor in plasma membrane localization. Here we show that N-myristoylation is neither conserved nor ancestral for the DREPP family. Instead, by using confocal microscopy and a new method for quantitative evaluation of protein membrane localization, we show that DREPPs rely on two mechanisms ensuring their plasma membrane localization. These include N-myristoylation and electrostatic interaction of a polybasic amino acid cluster. We propose that various plasma membrane association mechanisms resulting from the evolutionary plasticity of DREPPs are important for refining plasma membrane interaction of these signalling proteins under various conditions and in various cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Progress on biodegradation of polylactic acid--a review].

    Science.gov (United States)

    Li, Fan; Wang, Sha; Liu, Weifeng; Chen, Guanjun

    2008-02-01

    Polylactic acid is a high molecular-weight polyester made from renewable resources such as corn or starch. It is a promising biodegradable plastic due to its mechanical properties, biocompatibility and biodegradability. To achieve natural recycling of polylactic acid, relative microorganisms and the underlying mechanisms in the biodegradation has become an important issue in biodegradable materials. Up to date, most isolated microbes capable of degrading polylactic acid belong to actinomycetes. Proteases secreted by these microorganisms are responsible for the degradation. However, subtle differences exist between these polylactic acid degrading enzymes and typical proteases with respect to substrate binding and catalysis. Amino acids relative to catalysis are postulated to be highly plastic allowing their catalytic hydrolysis of polylactic acid. In this paper we reviewed current studies on biodegradation of polylactic acid concerning its microbial, enzymatic reactions and the possible mechanisms. We also discussed the probability of biologically recycling PLA by applying highly efficient strains and enzymes.

  15. The plastic rotation effect in an isotropic gradient plasticity model for applications at the meso scale

    NARCIS (Netherlands)

    Poh, Leong Hien; Peerlings, R.H.J.

    2016-01-01

    Although formulated to represent a large system of polycrystals at the macroscopic level, isotropic gradient plasticity models have routinely been adopted at the meso scale. For such purposes, it is crucial to incorporate the plastic rotation effect in order to obtain a reasonable approximation of

  16. Preparing Attitude Scale to Define Students' Attitudes about Environment, Recycling, Plastic and Plastic Waste

    Science.gov (United States)

    Avan, Cagri; Aydinli, Bahattin; Bakar, Fatma; Alboga, Yunus

    2011-01-01

    The aim of this study is to introduce an attitude scale in order to define students? attitudes about environment, recycling, plastics, plastic waste. In this study, 80 attitude sentences according to 5-point Likert-type scale were prepared and applied to 492 students of 6th grade in the Kastamonu city center of Turkey. The scale consists of…

  17. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI... the Anderson, South Carolina location of Plastic Omnium Automotive Exteriors, LLC, working out of Troy... certification to include workers in support of the Anderson, South Carolina facility working out of Troy...

  18. Practical solution of plastic deformation problems in elastic-plastic range

    Science.gov (United States)

    Mendelson, A; Manson, S

    1957-01-01

    A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.

  19. Managing plastic waste in East Africa: Niche innovations in plastic production and solid waste

    NARCIS (Netherlands)

    Ombis, L.O.; Vliet, van B.J.M.; Mol, A.P.J.

    2015-01-01

    This paper assesses the uptake of environmental innovation practices to cope with plastic waste in Kenyan urban centres at the interface of solid waste management and plastic production systems. The Multi Level Perspective on Technological Transitions is used to evaluate 7 innovation pathways of

  20. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    Science.gov (United States)

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  1. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    Full Text Available Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  2. Degradation of plastic carrier bags in the marine environment

    International Nuclear Information System (INIS)

    O'Brine, Tim; Thompson, Richard C.

    2010-01-01

    Research highlights: → There is considerable concern about the hazards that plastic debris presents to wildlife. → Here we investigate breakdown of oxodegradable, compostable and conventional plastic bags. → Compostable plastic disappeared from our test rig between 16 and 24 weeks. → Approximately 98% of the other plastics remained after 40 weeks. → Fouling by marine organisms substantially reduced the amount of UV-light reaching the plastic. - Abstract: There is considerable concern about the hazards that plastic debris presents to wildlife. Use of polymers that degrade more quickly than conventional plastics presents a possible solution to this problem. Here we investigate breakdown of two oxo-biodegradable plastics, compostable plastic and standard polyethylene in the marine environment. Tensile strength of all materials decreased during exposure, but at different rates. Compostable plastic disappeared from our test rig between 16 and 24 weeks whereas approximately 98% of the other plastics remained after 40 weeks. Some plastics require UV light to degrade. Transmittance of UV through oxo-biodegradable and standard polyethylene decreased as a consequence of fouling such that these materials received ∼90% less UV light after 40 weeks. Our data indicate that compostable plastics may degrade relatively quickly compared to oxo-biodegradable and conventional plastics. While degradable polymers offer waste management solutions, there are limitations to their effectiveness in reducing hazards associated with plastic debris.

  3. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    Science.gov (United States)

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  4. Track treeing mechanism and plastic zone in solid Part 1: Initial development of plastic zone

    International Nuclear Information System (INIS)

    Li Boyang

    2008-01-01

    After neutron exposure and chemical etching in advance, latent tracks of recoil nucleon develop into pits on CR39 surface. During electrochemical etching, plastic zone is formed at top of pits. Some pits develop into tree cracks in the initial stage of plastic zone development. Physical and mathematical model of crack and plastic zone is proposed; parameter of development free path of plastic zone is presented. Based on integration of elementary theories the stress analysis is build up; based on analyses of measured parameters, a set of common relations between parameters is obtained. Integrate parameter analysis and stress analysis, depth of plastic zone development, law and phenomenon in experimental data can be interpreted completely

  5. Plastic Surgery Response in Natural Disasters.

    Science.gov (United States)

    Chung, Susan; Zimmerman, Amanda; Gaviria, Andres; Dayicioglu, Deniz

    2015-06-01

    Disasters cause untold damage and are often unpredictable; however, with proper preparation, these events can be better managed. The initial response has the greatest impact on the overall success of the relief effort. A well-trained multidisciplinary network of providers is necessary to ensure coordinated care for the victims of these mass casualty disasters. As members of this network of providers, plastic surgeons have the ability to efficiently address injuries sustained in mass casualty disasters and are a valuable member of the relief effort. The skill set of plastic surgeons includes techniques that can address injuries sustained in large-scale emergencies, such as the management of soft-tissue injury, tissue viability, facial fractures, and extremity salvage. An approach to disaster relief, the types of disasters encountered, the management of injuries related to mass casualty disasters, the role of plastic surgeons in the relief effort, and resource management are discussed. In order to improve preparedness in future mass casualty disasters, plastic surgeons should receive training during residency regarding the utilization of plastic surgery knowledge in the disaster setting.

  6. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  7. Neuron-glia metabolic coupling and plasticity.

    Science.gov (United States)

    Magistretti, Pierre J

    2006-06-01

    The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.

  8. Radiation crosslinking of highly plasticized PVC

    Science.gov (United States)

    Mendizabal, E.; Cruz, L.; Jasso, C. F.; Burillo, G.; Dakin, V. I.

    1996-02-01

    To improve the physical properties of highly plasticized PVC, the polymer was crosslinked by gamma irradiation using a dose rate of 91 kGy/h. The effect of plasticizer type was studied by using three different plasticizers, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB), di(2-ethyl hexyl) phthalate (DOP), and di(2-ethylhexyl terephthalate) (DOTP), and varying irradiation doses. Gel content was determined by soxhlet extraction, tensile measurements were made on a universal testing machine and the mechano-dynamic measurements were made in a dynamic rheometer. It was found that a considerable bonding of plasticizer molecules to macromolelcules takes place along with crosslinking, so that the use of the solvent extraction method for measuring the degree of crosslinking can give erroneous information. Radiation-chemical crosslinking yield ( Gc) and molecular weight of interjunctions chains ( Mc), were calculated for different systems studied. Addition of ethylene glycol dimethacrylate (EGDM) as a crosslinking coagent and dioctyl tin oxide (DOTO) as a stabilizer was also studied. Plasticizers extraction resistance was increased by irradiation treatment.

  9. Radiation crosslinking of highly plasticized PVC

    International Nuclear Information System (INIS)

    Mendizabal, E.; Cruz, L.; Jasso, C.F.; Burillo, G.; Dakin, V.I.

    1996-01-01

    To improve the physical properties of highly plasticized PVC, the polymer was crosslinked by gamma irradiation using a dose rate of 91 kGy/h. The effect of plasticizer type was studied by using three different plasticizers, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB), di(2-ethyl hexyl) phthalate (DOP), and di(2-ethylhexyl terephthalate) (DOTP), and varying irradiation doses. Gel content was determined by soxhlet extraction, tensile measurements were made on a universal testing machine and the mechano-dynamic measurements were made in a dynamic rheometer. It was found that a considerable bonding of plasticizer molecules to macromolecules takes place along with crosslinking, so that the use of the solvent extraction method for measuring the degree of crosslinking can give erroneous information. Radiation-chemical crosslinking yield (G c ) and molecular weight of interjunctions chains (M c ), were calculated for different systems studied. Addition of ethylene glycol dimethyacrylate (EGDM) as a crosslinking coagent and dioctyl tin oxide (DOTO) as a stabilizer was also studied. Plasticizers extraction resistance was increased by irradiation treatment. (author)

  10. The neurophysiologist perspective into MS plasticity

    Directory of Open Access Journals (Sweden)

    Elise eHoudayer

    2015-09-01

    Full Text Available Multiple sclerosis (MS is a frequent, highly debilitating inflammatory demyelinating disease, starting to manifest in early adulthood and presenting a wide variety of symptoms which are often resistant to pharmacological treatments. Cortical dysfunctions have been demonstrated to be key components of MS condition, and plasticity of the corticospinal motor system is highly involved in major MS symptoms, such as fatigue, spasticity or pain. Cortical dysfunction in MS can be studied with neurophysiological tools such as electroencephalography (EEG and related techniques (evoked potentials – EPs or transcranial magnetic stimulation (TMS. These techniques are now widely used to provide essential elements of MS diagnosis and can also be used to modulate plasticity. Indeed the recent development of non-invasive brain stimulation (NIBS techniques able to induce cortical plasticity, such as repetitive TMS or transcranial direct current stimulation (tDCS, has brought promising results as add-on treatments.In this review we will focus on the use of these tools (EEG, TMS to study plasticity in MS and on the major techniques used to modulate plasticity in MS.

  11. The Neurophysiologist Perspective into MS Plasticity.

    Science.gov (United States)

    Houdayer, Elise; Comi, Giancarlo; Leocani, Letizia

    2015-01-01

    Multiple sclerosis (MS) is a frequent, highly debilitating inflammatory demyelinating disease, starting to manifest in early adulthood and presenting a wide variety of symptoms, which are often resistant to pharmacological treatments. Cortical dysfunctions have been demonstrated to be key components of MS condition, and plasticity of the corticospinal motor system is highly involved in major MS symptoms, such as fatigue, spasticity, or pain. Cortical dysfunction in MS can be studied with neurophysiological tools, such as electroencephalography (EEG) and related techniques (evoked potentials) or transcranial magnetic stimulation (TMS). These techniques are now widely used to provide essential elements of MS diagnosis and can also be used to modulate plasticity. Indeed, the recent development of non-invasive brain stimulation techniques able to induce cortical plasticity, such as repetitive TMS or transcranial direct current stimulation, has brought promising results as add-on treatments. In this review, we will focus on the use of these tools (EEG and TMS) to study plasticity in MS and on the major techniques used to modulate plasticity in MS.

  12. Phyllosphere yeasts rapidly break down biodegradable plastics

    Science.gov (United States)

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  13. Role of Plastics on Human Health.

    Science.gov (United States)

    Kumar, Pramod

    2018-05-01

    Plastics, currently the universal workhorse materials of modern economy, because of their low cost and varied functional properties are posing serious threat to environment and consumer's health in many direct and indirect ways. Rising concern about the impact of plastics on environment and human health, has forced the industry to look for alternatives. This review studies current understanding of benefits and concerns surrounding use of plastics, reviews literature about health effects in humans and discusses the current state of evidence, as well as future research trends. There is increasing concern regarding additives in plastics to which most people are exposed, such as phthalates, bisphenol A or polybrominated diphenyl ethers (PBDE), and their detection in humans, leading to harmful impact on health. The studies are divided, among many other issues on the fact of considering these additives as carcinogens or toxicants, but there is a consensus that these chemicals have the ability to alter the endocrine system. Human data are limited compared to large body of experimental evidence documenting reproductive or developmental toxicity in relation to these compounds in animals. The concentrations of these additives in young children, a segment particularly sensitive to exogenous insults, are typically higher, indicating the need to decrease exposure to these compounds. The rapid increase in usage of plastics and increased awareness about its health hazard has lent urgency to the whole issue.

  14. Epigenetic Basis of Neuronal and Synaptic Plasticity.

    Science.gov (United States)

    Karpova, Nina N; Sales, Amanda J; Joca, Samia R

    2017-01-01

    Neuronal network and plasticity change as a function of experience. Altered neural connectivity leads to distinct transcriptional programs of neuronal plasticity-related genes. The environmental challenges throughout life may promote long-lasting reprogramming of gene expression and the development of brain disorders. The modifications in neuronal epigenome mediate gene-environmental interactions and are required for activity-dependent regulation of neuronal differentiation, maturation and plasticity. Here, we highlight the latest advances in understanding the role of the main players of epigenetic machinery (DNA methylation and demethylation, histone modifications, chromatin-remodeling enzymes, transposons, and non-coding RNAs) in activity-dependent and long- term neural and synaptic plasticity. The review focuses on both the transcriptional and post-transcriptional regulation of gene expression levels, including the processes of promoter activation, alternative splicing, regulation of stability of gene transcripts by natural antisense RNAs, and alternative polyadenylation. Further, we discuss the epigenetic aspects of impaired neuronal plasticity and the pathogenesis of neurodevelopmental (Rett syndrome, Fragile X Syndrome, genomic imprinting disorders, schizophrenia, and others), stressrelated (mood disorders) and neurodegenerative Alzheimer's, Parkinson's and Huntington's disorders. The review also highlights the pharmacological compounds that modulate epigenetic programming of gene expression, the potential treatment strategies of discussed brain disorders, and the questions that should be addressed during the development of effective and safe approaches for the treatment of brain disorders.

  15. Optical absorption in recycled waste plastic polyethylene

    Science.gov (United States)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  16. Color change, phenotypic plasticity, and camouflage

    Directory of Open Access Journals (Sweden)

    Martin eStevens

    2016-05-01

    Full Text Available The ability to change appearance over a range of timescales is widespread in nature, existing in many invertebrate and vertebrate groups. This can include color change occurring in seconds, minutes, and hours, to longer term changes associated with phenotypic plasticity and development. A major function is for camouflage against predators because color change and plasticity enables animals to match their surroundings and potentially reduce the risk of predation. Recently, we published findings (Stevens et al. 2014a showing how shore crabs can change their appearance and better match the background to predator vision in the short term. This, coupled with a number of past studies, emphasizes the potential that animals have to modify their appearance for camouflage. However, the majority of studies on camouflage and color plasticity have focused on a small number of species capable of unusually rapid changes. There are many broad questions that remain about the nature, mechanisms, evolution, and adaptive value of color change and plasticity for concealment. Here, I discuss past work and outline six questions relating to color change and plasticity, as well as major avenues for future work.

  17. Understanding the 3-hydroxypropionic acid tolerance mechanism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Juncker, Agnieszka; Hallstrom, Bjorn

    2013-01-01

    3-Hydroxypropionic acid (3HP) is an important platform chemical that can be converted into other valuable chemicals such as acrylic acid and its derivatives that are used in baby diap ers, various plastics, and paints. With the oil and gas resources becoming limiting, biotechnolo gy offers...

  18. Microbial Propionic Acid Production

    Directory of Open Access Journals (Sweden)

    R. Axayacatl Gonzalez-Garcia

    2017-05-01

    Full Text Available Propionic acid (propionate is a commercially valuable carboxylic acid produced through microbial fermentation. Propionic acid is mainly used in the food industry but has recently found applications in the cosmetic, plastics and pharmaceutical industries. Propionate can be produced via various metabolic pathways, which can be classified into three major groups: fermentative pathways, biosynthetic pathways, and amino acid catabolic pathways. The current review provides an in-depth description of the major metabolic routes for propionate production from an energy optimization perspective. Biological propionate production is limited by high downstream purification costs which can be addressed if the target yield, productivity and titre can be achieved. Genome shuffling combined with high throughput omics and metabolic engineering is providing new opportunities, and biological propionate production is likely to enter the market in the not so distant future. In order to realise the full potential of metabolic engineering and heterologous expression, however, a greater understanding of metabolic capabilities of the native producers, the fittest producers, is required.

  19. Acid dip for dosemeter

    International Nuclear Information System (INIS)

    Stewart, J.C.; McWhan, A.F.

    1982-01-01

    Background signal in a PTFE based dosemeter caused by impurities in the PTFE and in the active component such as lithium fluoride is substantially reduced by treating the dosemeter with acid. The optimum treatment involves use of hydrofluoric acid at room temperature for approximately one minute, followed by thorough washing with methanol, and finally drying. This treatment is best applied after the original manufacture of the dosemeters. It may also be applied to existing dosemeters after they have been in use for some time. The treatment produces a permanent effect in reducing both the light induced signal and the non-light induced signal. The process may be applied to all types of dosemeter manufactured from PTFE or other plastics or resins which are able to resist brief exposure to acid. The treatment works particularly well with dosemeters based on PTFE and lithium fluoride. It is also applicable to dosemeters based on calcium sulphate, lithium borate and magnesium borate. Acids which may be used include hydrofluoric, hydrochloric, nitric, phosphoric and sulphuric. (author)

  20. Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications

    OpenAIRE

    Herrera, M. A. (Martha A.); Mathew, A. P. (Aji P.); Oksman, K. (Kristiina)

    2017-01-01

    Abstract Barrier, mechanical and thermal properties of porous paper substrates dip-coated with nanocellulose (NC) were studied. Sorbitol plasticizer was used to improve the toughness, and citric acid cross-linker to improve the moisture stability of the coatings. In general, the addition of sorbitol increased the barrier properties, maximum strength and toughness as well as the thermal stability of the samples when compared to the non-modified NC coatings. The barrier properties significan...