WorldWideScience

Sample records for oligodendrocyte lineage cells

  1. Auraptene induces oligodendrocyte lineage precursor cells in a cuprizone-induced animal model of demyelination.

    Science.gov (United States)

    Nakajima, Mitsunari; Shimizu, Risei; Furuta, Kohei; Sugino, Mami; Watanabe, Takashi; Aoki, Rui; Okuyama, Satoshi; Furukawa, Yoshiko

    2016-05-15

    We investigated the effects of auraptene on mouse oligodendroglial cell lineage in an animal model of demyelination induced by cuprizone. Auraptene, a citrus coumarin, was intraperitoneally administered to mice fed the demyelinating agent cuprizone. Immunohistochemical analysis of the corpus callosum and/or Western blotting analysis of brain extracts revealed that cuprizone reduced immunoreactivity for myelin-basic protein, a marker of myelin, whereas it increased immunoreactivity to platelet derived-growth factor receptor-α, a marker of oligodendrocyte precursor cells. Administration of auraptene enhanced the immunoreactivity to oligodendrocyte transcription factor 2, a marker of oligodendrocyte precursor cells and oligodendrocyte lineage precursor cells, but had no effect on immunoreactivity to myelin-basic protein or platelet-derived growth factor receptor-α. These findings suggest that auraptene promotes the production of oligodendrocyte lineage precursor cells in an animal model of demyelination and may be useful for individuals with demyelinating diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Sox10 directs neural stem cells toward the oligodendrocyte lineage by decreasing Suppressor of Fused expression

    Science.gov (United States)

    Pozniak, Christine D.; Langseth, Abraham J.; Dijkgraaf, Gerrit J. P.; Choe, Youngshik; Werb, Zena; Pleasure, Samuel J.

    2010-01-01

    Oligodendrocyte precursor cells (OPCs) are lineage-restricted progenitors generally limited in vivo to producing oligodendrocytes. Mechanisms controlling genesis of OPCs are of interest because of their importance in myelin development and their potential for regenerative therapies in multiple sclerosis and dysmyelinating syndromes. We show here that the SoxE transcription factors (comprising Sox8, 9, and 10) induce multipotent neural precursor cells (NPCs) from the early postnatal subventricular zone (SVZ) to become OPCs in an autonomous manner. We performed a chromatin immunoprecipitation-based bioinformatic screen and identified Suppressor of Fused (Sufu) as a direct target of repression by Sox10. In vitro, overexpression of Sufu blocked OPC production, whereas RNAi-mediated inhibition augmented OPC production. Furthermore, mice heterozygous for Sufu have increased numbers of OPCs in the telencephalon during development. We conclude that Sox10 acts to restrict the potential of NPCs toward the oligodendrocyte lineage in part by regulating the expression of Sufu. PMID:21098272

  3. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment.

    Science.gov (United States)

    Ravanelli, Andrew M; Appel, Bruce

    2015-12-01

    During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2(+) cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis.

  4. Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length

    DEFF Research Database (Denmark)

    Hamilton, Nicola B; Clarke, Laura E; Arancibia-Carcamo, I Lorena;

    2016-01-01

    Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate the formation of myelin around axons. We now show, ...

  5. Systematic review of the pharmacological properties of oligodendrocyte lineage

    Directory of Open Access Journals (Sweden)

    Carla eMarinelli

    2016-02-01

    Full Text Available OOligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells, and acquire cell surface markers as they mature and respond specifically to factors which regulate proliferation, migration, differentiation, and survival. Loss of myelin underlies a wide range of neurological disorders, some of an autoimmune nature – multiple sclerosis probably being the most prominent. Current therapies are based on the use of immunomodulatory agents which are likely to promote myelin repair (remyelination indirectly by subverting the inflammatory response, aspects of which impair the differentiation of oligodendrocyte precursor cells. Cells of the oligodendrocyte lineage express and are capable of responding to a diverse array of ligand-receptor pairs, including neurotransmitters and nuclear receptors such as gamma-aminobutyric acid, glutamate, ATP, serotonin, acetylcholine, nitric oxide, opioids, prostaglandins, prolactin, cannabinoids and nuclear receptors. The intent of this review is to provide the reader with a synopsis of our present state of knowledge concerning the pharmacological properties of the oligodendrocyte lineage, with particular attention to these receptor-ligand (i.e., neurotransmitters and nuclear receptor interactions that can influence oligodendrocyte migration, proliferation, differentiation, and myelination, and an appraisal of their therapeutic potential. For example, many promising mediators work through Ca2+ signalling, and the balance between Ca2+ influx and efflux can determine the temporal and spatial properties of oligodendrocytes. Moreover, Ca2+ signalling in oligodendrocyte precursor cells can influence not only differentiation and myelination, but also process extension and migration, as

  6. Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage.

    Science.gov (United States)

    Marinelli, Carla; Bertalot, Thomas; Zusso, Morena; Skaper, Stephen D; Giusti, Pietro

    2016-01-01

    Oligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells (OPCs), and acquire cell surface markers as they mature and respond specifically to factors which regulate proliferation, migration, differentiation, and survival. Loss of myelin underlies a wide range of neurological disorders, some of an autoimmune nature-multiple sclerosis probably being the most prominent. Current therapies are based on the use of immunomodulatory agents which are likely to promote myelin repair (remyelination) indirectly by subverting the inflammatory response, aspects of which impair the differentiation of OPCs. Cells of the oligodendrocyte lineage express and are capable of responding to a diverse array of ligand-receptor pairs, including neurotransmitters and nuclear receptors such as γ-aminobutyric acid, glutamate, adenosine triphosphate, serotonin, acetylcholine, nitric oxide, opioids, prostaglandins, prolactin, and cannabinoids. The intent of this review is to provide the reader with a synopsis of our present state of knowledge concerning the pharmacological properties of the oligodendrocyte lineage, with particular attention to these receptor-ligand (i.e., neurotransmitters and nuclear receptor) interactions that can influence oligodendrocyte migration, proliferation, differentiation, and myelination, and an appraisal of their therapeutic potential. For example, many promising mediators work through Ca(2+) signaling, and the balance between Ca(2+) influx and efflux can determine the temporal and spatial properties of oligodendrocytes (OLs). Moreover, Ca(2+) signaling in OPCs can influence not only differentiation and myelination, but also process extension and migration, as well as cell death in mature mouse OLs. There is also evidence

  7. Prox1 Inhibits Proliferation and Is Required for Differentiation of the Oligodendrocyte Cell Lineage in the Mouse.

    Directory of Open Access Journals (Sweden)

    Kentaro Kato

    Full Text Available Central nervous system injury induces a regenerative response in ensheathing glial cells comprising cell proliferation, spontaneous axonal remyelination, and limited functional recovery, but the molecular mechanisms are not fully understood. In Drosophila, this involves the genes prospero and Notch controlling the balance between glial proliferation and differentiation, and manipulating their levels in glia can switch the response to injury from prevention to promotion of repair. In the mouse, Notch1 maintains NG2 oligodendrocyte progenitor cells (OPCs in a progenitor state, but what factor may enable oligodendrocyte (OL differentiation and functional remyelination is not understood. Here, we asked whether the mammalian homologue of prospero, Prox1, is involved. Our data show that Prox1 is distributed in NG2+ OPCs and in OLs in primary cultured cells, and in the mouse spinal cord in vivo. siRNA prox1 knockdown in primary OPCs increased cell proliferation, increased NG2+ OPC cell number and decreased CC1+ OL number. Prox1 conditional knockout in the OL cell lineage in mice increased NG2+ OPC cell number, and decreased CC1+ OL number. Lysolecithin-induced demyelination injury caused a reduction in CC1+ OLs in homozygous Prox1-/- conditional knockout mice compared to controls. Remarkably, Prox1-/- conditional knockout mice had smaller lesions than controls. Altogether, these data show that Prox1 is required to inhibit OPC proliferation and for OL differentiation, and could be a relevant component of the regenerative glial response. Therapeutic uses of glia and stem cells to promote regeneration and repair after central nervous system injury would benefit from manipulating Prox1.

  8. Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage

    Science.gov (United States)

    Marinelli, Carla; Bertalot, Thomas; Zusso, Morena; Skaper, Stephen D.; Giusti, Pietro

    2016-01-01

    Oligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells (OPCs), and acquire cell surface markers as they mature and respond specifically to factors which regulate proliferation, migration, differentiation, and survival. Loss of myelin underlies a wide range of neurological disorders, some of an autoimmune nature—multiple sclerosis probably being the most prominent. Current therapies are based on the use of immunomodulatory agents which are likely to promote myelin repair (remyelination) indirectly by subverting the inflammatory response, aspects of which impair the differentiation of OPCs. Cells of the oligodendrocyte lineage express and are capable of responding to a diverse array of ligand-receptor pairs, including neurotransmitters and nuclear receptors such as γ-aminobutyric acid, glutamate, adenosine triphosphate, serotonin, acetylcholine, nitric oxide, opioids, prostaglandins, prolactin, and cannabinoids. The intent of this review is to provide the reader with a synopsis of our present state of knowledge concerning the pharmacological properties of the oligodendrocyte lineage, with particular attention to these receptor-ligand (i.e., neurotransmitters and nuclear receptor) interactions that can influence oligodendrocyte migration, proliferation, differentiation, and myelination, and an appraisal of their therapeutic potential. For example, many promising mediators work through Ca2+ signaling, and the balance between Ca2+ influx and efflux can determine the temporal and spatial properties of oligodendrocytes (OLs). Moreover, Ca2+ signaling in OPCs can influence not only differentiation and myelination, but also process extension and migration, as well as cell death in mature mouse OLs. There is also evidence

  9. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology

    Science.gov (United States)

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  10. Astrocytes in oligodendrocyte lineage development and white matter pathology

    Directory of Open Access Journals (Sweden)

    Jiasi eLi

    2016-05-01

    Full Text Available White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in grey matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica. In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  11. SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells.

    Science.gov (United States)

    Lee, Hyun Joon; Wu, Junfang; Chung, Jumi; Wrathall, Jean R

    2013-02-01

    The upregulation of genes normally associated with development may occur in the adult after spinal cord injury (SCI). To test this, we performed real-time RT-PCR array analysis of mouse spinal cord mRNAs comparing embryonic day (E)14.5 spinal cord with intact adult and adult cord 1 week after a clinically relevant standardized contusion SCI. We found significantly increased expression of a large number of neural development- and stem cell-associated genes after SCI. These included Sox2 (sex determining region Y-box 2), a transcription factor that regulates self-renewal and potency of embryonic neural stem cells and is one of only a few key factors needed to induce pluripotency. In adult spinal cord of Sox2-EGFP mice, Sox2-EGFP was found mainly in the ependymal cells of the central canal. After SCI, both mRNA and protein levels of Sox2 were significantly increased at and near the injury site. By 1 day, Sox2 was upregulated in NG2(+) oligodendrocyte progenitor cells (OPC) in the spared white matter. By 3 days, Sox2-EGFP ependymal cells had increased proliferation and begun to form multiple layers and clusters of cells in the central lesion zone of the cord. Expression of Sox2 by NG2(+) cells had declined by 1 week, but increased numbers of other Sox2-expressing cells persisted for at least 4 weeks after SCI in both mouse and rat models. Thus, SCI upregulates many genes associated with development and neural stem cells, including the key transcription factor Sox2, which is expressed in a pool of cells that persists for weeks after SCI.

  12. Calcium receptor expression and function in oligodendrocyte commitment and lineage progression: potential impact on reduced myelin basic protein in CaR-null mice

    DEFF Research Database (Denmark)

    Chattopadhyay, N.; Espinosa-Jeffrey, A.; Yano, S.

    2008-01-01

    Oligodendrocytes develop from oligodendrocyte progenitor cells (OPCs), which in turn arise from a subset of neuroepithelial precursor cells during midneurogenesis. Development of the oligodendrocyte lineage involves a plethora of cell-intrinsic and -extrinsic signals. A cell surface calcium......-sensing receptor (CaR) has been shown to be functionally expressed in immature oligodendrocytes. Here, we investigated the expression and function of the CaR during oligodendrocyte development. We show that the order of CaR mRNA expression as assessed by quantitative polymerase chain reaction is mature...... oligodendrocyte > neuron > astrocyte. We next determined the rank order of CaR expression on inducing specification of neural stem cells to the neuronal, oligodendroglial, or astrocytic lineages and found that the relative levels of CaR mRNA expression are OPC > neuron > astrocytes. CaR mRNA expression in cells...

  13. Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells.

    Science.gov (United States)

    Vela, José M; Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Almazán, Guillermina; Guaza, Carmen

    2002-07-01

    Interleukin-1 (IL-1) is a pleiotropic cytokine expressed during normal CNS development and in inflammatory demyelinating diseases, but remarkably little is known about its effect on oligodendroglial cells. In this study we explored the role of IL-1beta in oligodendrocyte progenitors and differentiated oligodendrocytes. The effects of IL-1beta were compared to those of IL-1 receptor antagonist, the specific inhibitor of IL-1 activity, since progenitors and differentiated oligodendrocytes produce IL-1beta and express IL-1 receptors. Unlike other proinflammatory cytokines (TNFalpha and IFNgamma), IL-1beta was not toxic for oligodendrocyte lineage cells. However, this cytokine inhibited proliferation of oligodendrocyte progenitors in the presence of growth factors (PDGF plus bFGF). This was evidenced by a significant decrease in both cells incorporating bromodeoxyuridine (45%) and total cell numbers (57%) after 6 days of treatment. Interestingly, IL-1beta blocked proliferation at the late progenitor/prooligodendrocyte (O4+) stage but did not affect proliferation of early progenitors (A2B5+). Inhibition of proliferation paralleled with promotion of differentiation, as revealed by the increased percentage of R-mab+ cells (6.7-fold). Moreover, when oligodendrocyte progenitors were allowed to differentiate in the absence of growth factors, treatment with IL-1beta promoted maturation to the MBP+ stage (4.2-fold) and survival of differentiating oligodendrocytes (2.1-fold). Regarding intracellular signaling, IL-1beta activated the p38 mitogen-activated protein kinase (MAPK) but not the p42/p44 MAPK and, when combined with growth factors, intensified p38 activation but inhibited the growth-factor-induced p42/p44 activation. IL-1beta also induced a time-dependent inhibition of PFGF-Ralpha gene expression. These results support a role for IL-1beta in promoting mitotic arrest and differentiation of oligodendrocyte progenitors as well as maturation and survival of differentiating

  14. Oligodendrocyte lineage and subventricular zone response to traumatic axonal injury in the corpus callosum.

    Science.gov (United States)

    Sullivan, Genevieve M; Mierzwa, Amanda J; Kijpaisalratana, Naruchorn; Tang, Haiying; Wang, Yong; Song, Sheng-Kwei; Selwyn, Reed; Armstrong, Regina C

    2013-12-01

    Traumatic brain injury frequently causes traumatic axonal injury (TAI) in white matter tracts. Experimental TAI in the corpus callosum of adult mice was used to examine the effects on oligodendrocyte lineage cells and myelin in conjunction with neuroimaging. The injury targeted the corpus callosum over the subventricular zone, a source of neural stem/progenitor cells. Traumatic axonal injury was produced in the rostral body of the corpus callosum by impact onto the skull at the bregma. During the first week after injury, magnetic resonance diffusion tensor imaging showed that axial diffusivity decreased in the corpus callosum and that corresponding regions exhibited significant axon damage accompanied by hypertrophic microglia and reactive astrocytes. Oligodendrocyte progenitor proliferation increased in the subventricular zone and corpus callosum. Oligodendrocytes in the corpus callosum shifted toward upregulation of myelin gene transcription. Plp/CreER(T):R26IAP reporter mice showed normal reporter labeling of myelin sheaths 0 to 2 days after injury but labeling was increased between 2 and 7 days after injury. Electron microscopy revealed axon degeneration, demyelination, and redundant myelin figures. These findings expand the cell types and responses to white matter injuries that inform diffusion tensor imaging evaluation and identify pivotal white matter changes after TAI that may affect axon vulnerability vs. recovery after brain injury.

  15. Calcium receptor expression and function in oligodendrocyte commitment and lineage progression: potential impact on reduced myelin basic protein in CaR-null mice.

    Science.gov (United States)

    Chattopadhyay, Naibedya; Espinosa-Jeffrey, Araceli; Tfelt-Hansen, Jacob; Yano, Shozo; Bandyopadhyay, Sanghamitra; Brown, Edward M; de Vellis, Jean

    2008-08-01

    Oligodendrocytes develop from oligodendrocyte progenitor cells (OPCs), which in turn arise from a subset of neuroepithelial precursor cells during midneurogenesis. Development of the oligodendrocyte lineage involves a plethora of cell-intrinsic and -extrinsic signals. A cell surface calcium-sensing receptor (CaR) has been shown to be functionally expressed in immature oligodendrocytes. Here, we investigated the expression and function of the CaR during oligodendrocyte development. We show that the order of CaR mRNA expression as assessed by quantitative polymerase chain reaction is mature oligodendrocyte > neuron > astrocyte. We next determined the rank order of CaR expression on inducing specification of neural stem cells to the neuronal, oligodendroglial, or astrocytic lineages and found that the relative levels of CaR mRNA expression are OPC > neuron > astrocytes. CaR mRNA expression in cells at various stages of development along the oligodendrocyte lineage revealed that its expression is robustly up-regulated during the OPC stage and remains high until the premyelinating stage, decreasing thereafter by severalfold in the mature oligodendrocyte. In OPCs, high Ca(2+) acting via the CaR promotes cellular proliferation. We further observed that high Ca(2+) stimulates the mRNA levels of myelin basic protein in preoligodendrocytes, which is also CaR mediated. Finally, myelin basic protein levels were significantly reduced in the cerebellum of CaR-null mice during development. Our results show that CaR expression is up-regulated when neural stem cells are specified to the oligodendrocyte lineage and that activation of the receptor results in OPC expansion and differentiation. We conclude that the CaR may be a novel regulator of oligodendroglial development and function.

  16. Alpha-Synuclein Expression in the Oligodendrocyte Lineage: an In Vitro and In Vivo Study Using Rodent and Human Models

    Directory of Open Access Journals (Sweden)

    Mehdi Djelloul

    2015-08-01

    Full Text Available In this study, we sought evidence for alpha-synuclein (ASYN expression in oligodendrocytes, as a possible endogenous source of ASYN to explain its presence in glial inclusions found in multiple system atrophy (MSA and Parkinson’s disease (PD. We identified ASYN in oligodendrocyte lineage progenitors isolated from the rodent brain, in oligodendrocytes generated from embryonic stem cells, and in induced pluripotent stem cells produced from fibroblasts of a healthy individual and patients diagnosed with MSA or PD, in cultures in vitro. Notably, we observed a significant decrease in ΑSYN during oligodendrocyte maturation. Additionally, we show the presence of transcripts in PDGFRΑ/CD140a+ cells and SOX10+ oligodendrocyte lineage nuclei isolated by FACS from rodent and human healthy and diseased brains, respectively. Our work identifies ASYN in oligodendrocyte lineage cells, and it offers additional in vitro cellular models that should provide significant insights of the functional implication of ASYN during oligodendrocyte development and disease.

  17. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation

    Directory of Open Access Journals (Sweden)

    Gokhan Solen

    2010-02-01

    Full Text Available Abstract Background Long non-protein-coding RNAs (ncRNAs are emerging as important regulators of cellular differentiation and are widely expressed in the brain. Results Here we show that many long ncRNAs exhibit dynamic expression patterns during neuronal and oligodendrocyte (OL lineage specification, neuronal-glial fate transitions, and progressive stages of OL lineage elaboration including myelination. Consideration of the genomic context of these dynamically regulated ncRNAs showed they were part of complex transcriptional loci that encompass key neural developmental protein-coding genes, with which they exhibit concordant expression profiles as indicated by both microarray and in situ hybridization analyses. These included ncRNAs associated with differentiation-specific nuclear subdomains such as Gomafu and Neat1, and ncRNAs associated with developmental enhancers and genes encoding important transcription factors and homeotic proteins. We also observed changes in ncRNA expression profiles in response to treatment with trichostatin A, a histone deacetylase inhibitor that prevents the progression of OL progenitors into post-mitotic OLs by altering lineage-specific gene expression programs. Conclusion This is the first report of long ncRNA expression in neuronal and glial cell differentiation and of the modulation of ncRNA expression by modification of chromatin architecture. These observations explicitly link ncRNA dynamics to neural stem cell fate decisions, specification and epigenetic reprogramming and may have important implications for understanding and treating neuropsychiatric diseases.

  18. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation.

    Science.gov (United States)

    Moore, Craig S; Cui, Qiao-Ling; Warsi, Nebras M; Durafourt, Bryce A; Zorko, Nika; Owen, David R; Antel, Jack P; Bar-Or, Amit

    2015-01-15

    In multiple sclerosis, successful remyelination within the injured CNS is largely dependent on the survival and differentiation of oligodendrocyte progenitor cells. During inflammatory injury, oligodendrocytes and oligodendrocyte progenitor cells within lesion sites are exposed to secreted products derived from both infiltrating immune cell subsets and CNS-resident cells. Such products may be considered either proinflammatory or anti-inflammatory and have the potential to contribute to both injury and repair processes. Within the CNS, astrocytes also contribute significantly to oligodendrocyte biology during development and following inflammatory injury. The overall objective of the current study was to determine how functionally distinct proinflammatory and anti-inflammatory human immune cell subsets, implicated in multiple sclerosis, can directly and/or indirectly (via astrocytes) impact human oligodendrocyte progenitor cell survival and differentiation. Proinflammatory T cell (Th1/Th17) and M1-polarized myeloid cell supernatants had a direct cytotoxic effect on human A2B5(+) neural progenitors, resulting in decreased O4(+) and GalC(+) oligodendrocyte lineage cells. Astrocyte-conditioned media collected from astrocytes pre-exposed to the same proinflammatory supernatants also resulted in decreased oligodendrocyte progenitor cell differentiation without an apparent increase in cell death and was mediated through astrocyte-derived CXCL10, yet this decrease in differentiation was not observed in the more differentiated oligodendrocytes. Th2 and M2 macrophage or microglia supernatants had neither a direct nor an indirect impact on oligodendrocyte progenitor cell differentiation. We conclude that proinflammatory immune cell responses can directly and indirectly (through astrocytes) impact the fate of immature oligodendrocyte-lineage cells, with oligodendrocyte progenitor cells more vulnerable to injury compared with mature oligodendrocytes.

  19. How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses.

    Science.gov (United States)

    Tomassy, Giulio Srubek; Fossati, Valentina

    2014-01-01

    Since monumental studies from scientists like His, Ramón y Cajal, Lorente de Nó and many others have put down roots for modern neuroscience, the scientific community has spent a considerable amount of time, and money, investigating any possible aspect of the evolution, development and function of neurons. Today, the complexity and diversity of myriads of neuronal populations, and their progenitors, is still focus of extensive studies in hundreds of laboratories around the world. However, our prevalent neuron-centric perspective has dampened the efforts in understanding glial cells, even though their active participation in the brain physiology and pathophysiology has been increasingly recognized over the years. Among all glial cells of the central nervous system (CNS), oligodendrocytes (OLs) are a particularly specialized type of cells that provide fundamental support to neuronal activity by producing the myelin sheath. Despite their functional relevance, the developmental mechanisms regulating the generation of OLs are still poorly understood. In particular, it is still not known whether these cells share the same degree of heterogeneity of their neuronal companions and whether multiple subtypes exist within the lineage. Here, we will review and discuss current knowledge about OL development and function in the brain and spinal cord. We will try to address some specific questions: do multiple OL subtypes exist in the CNS? What is the evidence for their existence and those against them? What are the functional features that define an oligodendrocyte? We will end our journey by reviewing recent advances in human pluripotent stem cell differentiation towards OLs. This exciting field is still at its earliest days, but it is quickly evolving with improved protocols to generate functional OLs from different spatial origins. As stem cells constitute now an unprecedented source of human OLs, we believe that they will become an increasingly valuable tool for deciphering

  20. How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses.

    Directory of Open Access Journals (Sweden)

    Giulio eSrubek Tomassy

    2014-07-01

    Full Text Available Since monumental studies from scientists like His, Ramón y Cajal, Lorente de Nó and many others have put down roots for modern neuroscience, the scientific community has spent a considerable amount of time, and money, investigating any aspect of the evolution, development and function of neurons. Today, the complexity and diversity of myriads of neuronal populations is still focus of extensive studies in hundreds of laboratories around the world. However, our prevalent neuron-centric perspective has dampened the efforts in understanding glial cells, even though their active participation in the brain physiology and pathophysiology has been increasingly recognized over the years. Among all glial cells of the central nervous system (CNS, oligodendrocytes (OLs are a particularly specialized type of cells that provide fundamental support to neuronal activity by producing the myelin sheath. Despite their functional relevance, the developmental mechanisms regulating the generation of OLs are still poorly understood. In particular, it is still not known whether these cells share the same degree of heterogeneity of their neuronal companions and whether multiple subtypes exist within the lineage. Here, we will review and discuss current knowledge about OL development and function in the brain and spinal cord. We will try to address some specific questions: do multiple OL subtypes exist in the CNS? What is the evidence for their existence and those against them? What are the functional features that define an oligodendrocyte? We will end our journey by reviewing recent advances in human pluripotent stem cell differentiation towards OLs. This exciting field is still at its earliest days, but it is quickly evolving with improved protocols to generate functional OLs from different spatial origins. As stem cells constitute now an unprecedented source of human OLs, we believe that they will become an increasingly valuable tool for deciphering the complexity

  1. Oligodendrocyte differentiation and implantation : new insights for remyelinating cell therapy

    NARCIS (Netherlands)

    Sher, Falak; Balasubramaniyan, Veerakumar; Boddeke, Erik; Copray, Sjef

    2008-01-01

    Purpose of review Recent research on oligodendrocyte development has yielded new insights on the involvement of morphogens and differentiation factors in oligodendrogenesis. This knowledge has improved strategies to control neural stem cell-derived oligodendrocyte differentiation and functional matu

  2. Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation.

    Directory of Open Access Journals (Sweden)

    Joseph J Abrajano

    Full Text Available BACKGROUND: The repressor element-1 (RE1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST. CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation. METHODOLOGY/PRINCIPAL FINDINGS: We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS and oligodendrocyte (OL lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes. CONCLUSIONS/SIGNIFICANCE: Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes

  3. Epigenetic Modulation of Human Induced Pluripotent Stem Cell Differentiation to Oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Panagiotis Douvaras

    2016-04-01

    Full Text Available Pluripotent stem cells provide an invaluable tool for generating human, disease-relevant cells. Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system, characterized by myelin damage. Oligodendrocytes are the myelinating cells of the central nervous system (CNS; they differentiate from progenitor cells, and their membranes ensheath axons, providing trophic support and allowing fast conduction velocity. The current understanding of oligodendrocyte biology was founded by rodent studies, where the establishment of repressive epigenetic marks on histone proteins, followed by activation of myelin genes, leads to lineage progression. To assess whether this epigenetic regulation is conserved across species, we differentiated human embryonic and induced pluripotent stem cells to oligodendrocytes and asked whether similar histone marks and relative enzymatic activities could be detected. The transcriptional levels of enzymes responsible for methylation and acetylation of histone marks were analyzed during oligodendrocyte differentiation, and the post-translational modifications on histones were detected using immunofluorescence. These studies showed that also in human cells, differentiation along the oligodendrocyte lineage is characterized by the acquisition of multiple repressive histone marks, including deacetylation of lysine residues on histone H3 and trimethylation of residues K9 and K27. These data suggest that the epigenetic modulation of oligodendrocyte identity is highly conserved across species.

  4. Negative regulation of miRNA-9 on oligodendrocyte lineage gene 1 during hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Lijun Yang; Hong Cui; Ting Cao

    2014-01-01

    Oligodendrocyte lineage gene 1 plays a key role in hypoxic-ischemic brain damage and myelin repair. miRNA-9 is involved in the occurrence of many related neurological disorders. Bioin-formatics analysis demonstrated that miRNA-9 complementarily, but incompletely, bound oligodendrocyte lineage gene 1, but whether miRNA-9 regulates oligodendrocyte lineage gene 1 remains poorly understood. Whole brain slices of 3-day-old Sprague-Dawley rats were cultured and divided into four groups:control group;oxygen-glucose deprivation group (treatment with 8% O2+ 92%N2 and sugar-free medium for 60 minutes);transfection control group (after oxygen and glucose deprivation for 60 minutes, transfected with control plasmid) and miRNA-9 transfection group (after oxygen and glucose deprivation for 60 minutes, transfected with miRNA-9 plasmid). From the third day of transfection, and with increasing culture days, oligodendrocyte lineage gene 1 expression increased in each group, peaked at 14 days, and then decreased at 21 days. Real-time quantitative PCR results, however, demonstrated that oligoden-drocyte lineage gene 1 expression was lower in the miRNA-9 transfection group than that in the transfection control group at 1, 3, 7, 14, 21 and 28 days after transfection. Results suggested that miRNA-9 possibly negatively regulated oligodendrocyte lineage gene 1 in brain tissues during hypoxic-ischemic brain damage.

  5. Differentiation of rat oligodendrocyte precursor cells in chemical conditional medium in vitro

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective: To investigate in vitro differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes in chemical conditional medium. Methods: The mixed glial cells from cerebral cortices of 48-hour-old Sprague-Dawley (SD) rats were cultured in vitro. The OPCs were separated by shaking procedure around 9-10 d in the primary culture. Then the isolated OPCs were further transferred into the chemical conditional medium for cell differentiation. The pattern of OPCs maturation in vitro was continuously observed with contrast phase microscopy and mature oligodendrocytes were further identified by immunocytochemical assays. Results: OPCs grew well when co-cultured with glial cells and distinct cellular stratification formed about 9-10 d in the primary culture, which indicated the appropriate opportunity for the separation of OPCs. Following cultured in the chemical conditional medium, the OPCs progressively differentiated into the mature oligodendrocytes. These mature oligodendrocytes were also immunostained with the oligodendrocyte lineage-specific antibody, Oligo2. Conclusion: The OPCs isolated from the cerebral cortices of neonatal SD rats can progressively differentiate into mature oligodendrocytes in the chemical conditional medium in vitro.

  6. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    Science.gov (United States)

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype.

  7. Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination.

    Directory of Open Access Journals (Sweden)

    Alireza Pouya

    Full Text Available BACKGROUND: This study aims to differentiate human induced pluripotent stem cells (hiPSCs into oligodendrocyte precursors and assess their recovery potential in a demyelinated optic chiasm model in rats. METHODOLOGY/PRINCIPAL FINDINGS: We generated a cell population of oligodendrocyte progenitors from hiPSCs by using embryoid body formation in a defined medium supplemented with a combination of factors, positive selection and mechanical enrichment. Real-time polymerase chain reaction and immunofluorescence analyses showed that stage-specific markers, Olig2, Sox10, NG2, PDGFRα, O4, A2B5, GalC, and MBP were expressed following the differentiation procedure, and enrichment of the oligodendrocyte lineage. These results are comparable with the expression of stage-specific markers in human embryonic stem cell-derived oligodendrocyte lineage cells. Transplantation of hiPSC-derived oligodendrocyte progenitors into the lysolecithin-induced demyelinated optic chiasm of the rat model resulted in recovery from symptoms, and integration and differentiation into oligodendrocytes were detected by immunohistofluorescence staining against PLP and MBP, and measurements of the visual evoked potentials. CONCLUSIONS/SIGNIFICANCE: These results showed that oligodendrocyte progenitors generated efficiently from hiPSCs can be used in future biomedical studies once safety issues have been overcome.

  8. Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells.

    Science.gov (United States)

    Ogawa, Shin-ichiro; Tokumoto, Yasuhito; Miyake, Jun; Nagamune, Teruyuki

    2011-08-01

    Induced pluripotent stem cells (iPSCs) prepared from somatic cells might become a novel therapeutic tool in regenerative medicine, especially for the central nervous system (CNS). In this study, we attempted to induce O4-positive (O4(+)) oligodendrocytes from adult human fibroblast-derived iPSCs in vitro. We used two adult human iPSC cell lines, 201B7 and 253G1. 201B7 was induced by four-gene transduction (oct4, sox2, klf4, c-myc), and 253G1 was induced by three-gene transduction (oct4, sox2, klf4). We treated these cells with two in vitro oligodendrocyte-directed differentiation protocols that were optimized for human embryonic stem cells. One protocol used platelet-derived growth factor as the major mitogen for oligodendrocyte lineage cells, and the other protocol used epidermal growth factor (EGF) as the mitogen. Although the differentiation efficiency was low (less than 0.01%), we could induce O4(+) oligodendrocytes from 253G1 cells using the EGF-dependent differentiation protocol. This is the first report of the in vitro induction of oligodendrocytes differentiation from human iPSCs.

  9. Enhancement of oligodendrocyte differentiation from murine embryonic stem cells by an activator of gp130 signaling.

    Science.gov (United States)

    Zhang, Peilin; Chebath, Judith; Lonai, Peter; Revel, Michel

    2004-01-01

    Embryonic stem (ES) cells derived from the inner cell mass of blastocyst-stage embryos are a potential large scale source of oligodendrocytes and of their progenitors for transplantation into the central nervous system for the repair of demyelinating lesions. We found previously that interleukin-6 (IL-6) fused to its soluble receptor (IL-6R), a potent activator of the gp130 receptor, induces myelin gene expression in Schwann cells of embryonic dorsal root ganglia. Like leukemia inhibitory factor, IL-6R/IL-6 inhibits the differentiation of murine ES cells into embryoid bodies. In the present study, we show that this recombinant cytokine may be efficiently used to stimulate the differentiation of oligodendrocytes if added to ES cell-derived neural precursors. IL-6R/IL-6 leads to an increase in early chondroitin sulfate proteoglycan positive and late O4 positive progenitors and to a stimulation of maturation into O1 and myelin basic protein expressing oligodendrocytes. Expression of the genes for transcription factor genes Olig-1 and Sox10, which appear early in the oligodendrocyte lineage, was stimulated by IL-6R/IL-6 addition. We conclude that this cytokine can significantly enhance the derivation of oligodendrocytes from ES cells.

  10. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation

    Institute of Scientific and Technical Information of China (English)

    Hong Cui; Weijuan Han; Lijun Yang; Yanzhong Chang

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor 1α or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor 1α and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor 1α, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor 1α levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor 1α can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment.

  11. Oligodendrocyte-like cell transplantation for acute spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yongtao Xu; Anmin Chen; Feng Li; Hougeng Lu

    2011-01-01

    In this study, we used insulin-like growth factor-1 to induce bone marrow mesenchymal stem cells (MSCs) to differentiate into oligodendrocyte-like cells. Cell surface marker identification showed that they expressed myelin basic protein and galactosylceramide, two specific markers of oligodendrocytes. These cells were transplanted into rats with acute spinal cord injury at T10. At 8 weeks post-implantation, oligodendrocyte-like cells were observed to have survived at the injury site. The critical angle of the inclined plane, and Basso, Beattie and Bresnahan scores were all increased. Furthermore, latencies of motion-evoked and somatosensory-evoked potentials were decreased. These results demonstrate that transplantation of oligodendrocytic-induced MSCs promote functional recovery of injured spinal cord.

  12. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination.

    Science.gov (United States)

    Chen, Ying; Wu, Heng; Wang, Shuzong; Koito, Hisami; Li, Jianrong; Ye, Feng; Hoang, Jenny; Escobar, Sabine S; Gow, Alexander; Arnett, Heather A; Trapp, Bruce D; Karandikar, Nitin J; Hsieh, Jenny; Lu, Q Richard

    2009-11-01

    The basic helix-loop-helix transcription factor Olig1 promotes oligodendrocyte maturation and is required for myelin repair. We characterized an Olig1-regulated G protein-coupled receptor, GPR17, whose function is to oppose the action of Olig1. Gpr17 was restricted to oligodendrocyte lineage cells, but was downregulated during the peak period of myelination and in adulthood. Transgenic mice with sustained Gpr17 expression in oligodendrocytes exhibited stereotypic features of myelinating disorders in the CNS. Gpr17 overexpression inhibited oligodendrocyte differentiation and maturation both in vivo and in vitro. Conversely, Gpr17 knockout mice showed early onset of oligodendrocyte myelination. The opposing action of Gpr17 on oligodendrocyte maturation reflects, at least partially, upregulation and nuclear translocation of the potent oligodendrocyte differentiation inhibitors ID2/4. Collectively, these findings suggest that GPR17 orchestrates the transition between immature and myelinating oligodendrocytes via an ID protein-mediated negative regulation and may serve as a potential therapeutic target for CNS myelin repair.

  13. Secretome analysis of human oligodendrocytes derived from neural stem cells.

    Directory of Open Access Journals (Sweden)

    Woo Kyung Kim

    Full Text Available In this study, we investigated the secretome of human oligodendrocytes (F3.Olig2 cells generated from human neural stem cells by transduction with the gene encoding the Olig2 transcription factor. Using mRNA sequencing and protein cytokine arrays, we identified a number of biologically important secretory proteins whose expression has not been previously reported in oligodendrocytes. We found that F3.Olig2 cells secrete IL-6, PDGF-AA, GRO, GM-CSF, and M-CSF, and showed prominent expression of their corresponding receptors. Co-expression of ligands and receptors suggests that autocrine signaling loops may play important roles in both differentiation and maintenance of oligodendrocytes. We also found that F3.Olig2 cells secrete matrix metalloproteinases and matrix metalloproteinase-associated proteins associated with functional competence of oligodendrocytes. The results of our secretome analysis provide insights into the functional and molecular details of human oligodendrocytes. To the best of our knowledge, this is the first systematic analysis of the secretome of oligodendrocytes.

  14. Deletion of Jun proteins in adult oligodendrocytes does not perturb cell survival, or myelin maintenance in vivo.

    Directory of Open Access Journals (Sweden)

    Bettina Schreiner

    Full Text Available Oligodendrocytes, the myelin-forming glial cells of the central nervous system (CNS, are fundamental players in rapid impulse conduction and normal axonal functions. JunB and c-Jun are DNA-binding components of the AP-1 transcription factor, which is known to regulate different processes such as proliferation, differentiation, stress responses and death in several cell types, including cultured oligodendrocyte/lineage cells. By selectively inactivating Jun B and c-Jun in myelinating oligodendrocytes in vivo, we generated mutant mice that developed normally, and within more than 12 months showed normal ageing and survival rates. In the adult CNS, absence of JunB and c-Jun from mature oligodendrocytes caused low-grade glial activation without overt signs of demyelination or secondary leukocyte infiltration into the brain. Even after exposure to toxic or autoimmune oligodendrocyte insults, signs of altered oligodendrocyte viability were mild and detectable only upon cuprizone treatment. We conclude that JunB and c-Jun expression in post-mitotic oligodendrocytes is mostly dispensable for the maintainance of white matter tracts throughout adult life, even under demyelinating conditions.

  15. Oligodendrocyte plasticity with an intact cell body in vitro.

    Directory of Open Access Journals (Sweden)

    Manabu Makinodan

    Full Text Available Demyelination is generally regarded as a consequence of oligodendrocytic cell death. Oligodendrocyte processes that form myelin sheaths may, however, degenerate and regenerate independently of the cell body, in which case cell death does not necessarily occur. We provide here the first evidence of retraction and regeneration of oligodendrocyte processes with no cell death in vitro, using time-lapse imaging. When processes were severed mechanically in vitro, the cells did not undergo cell death and the processes regenerated in 36 h. In a separate experiment, moderate N-methyl-D-aspartate (NMDA stimuli caused process retraction without apparent cell death, and the processes regained their elaborate morphology after NMDA was removed from the culture medium. These results strongly suggest that demyelination and remyelination can take place without concomitant cell death, at least in vitro. Process regeneration may therefore become a target for future therapy of demyelinating disorders.

  16. Adrenomedullin promotes differentiation of oligodendrocyte precursor cells into myelin-basic-protein expressing oligodendrocytes under pathological conditions in vitro.

    Science.gov (United States)

    Maki, Takakuni; Takahashi, Yoko; Miyamoto, Nobukazu; Liang, Anna C; Ihara, Masafumi; Lo, Eng H; Arai, Ken

    2015-07-01

    Oligodendrocytes, which are the main cell type in cerebral white matter, are generated from their precursor cells (oligodendrocyte precursor cells: OPCs). However, the differentiation from OPCs to oligodendrocytes is disturbed under stressed conditions. Therefore, drugs that can improve oligodendrocyte regeneration may be effective for white matter-related diseases. Here we show that a vasoactive peptide adrenomedullin (AM) promotes the in vitro differentiation of OPCs under pathological conditions. Primary OPCs were prepared from neonatal rat brains, and differentiated into myelin-basic-protein expressing oligodendrocytes over time. This in vitro OPC differentiation was inhibited by prolonged chemical hypoxic stress induced by non-lethal CoCl(2) treatment. However, AM promoted the OPC differentiation under the hypoxic stress conditions, and the AM receptor antagonist AM(22-52) canceled the AM-induced OPC differentiation. In addition, AM treatment increased the phosphorylation level of Akt in OPC cultures, and correspondingly, the PI3K/Akt inhibitor LY294002 blocked the AM-induced OPC differentiation. Taken together, AM treatment rescued OPC maturation under pathological conditions via an AM-receptor-PI3K/Akt pathway. Oligodendrocytes play critical roles in white matter by forming myelin sheath. Therefore, AM signaling may be a promising therapeutic target to boost oligodendrocyte regeneration in CNS disorders.

  17. Human Traumatic Brain Injury Results in Oligodendrocyte Death and Increases the Number of Oligodendrocyte Progenitor Cells.

    Science.gov (United States)

    Flygt, Johanna; Gumucio, Astrid; Ingelsson, Martin; Skoglund, Karin; Holm, Jonatan; Alafuzoff, Irina; Marklund, Niklas

    2016-06-01

    Oligodendrocyte (OL) death may contribute to white matter pathology, a common cause of network dysfunction and persistent cognitive problems in patients with traumatic brain injury (TBI). Oligodendrocyte progenitor cells (OPCs) persist throughout the adult CNS and may replace dead OLs. OL death and OPCs were analyzed by immunohistochemistry of human brain tissue samples, surgically removed due to life-threatening contusions and/or focal brain swelling at 60.6 ± 75 hours (range 4-192 hours) postinjury in 10 severe TBI patients (age 51.7 ± 18.5 years). Control brain tissue was obtained postmortem from 5 age-matched patients without CNS disorders. TUNEL and CC1 co-labeling was used to analyze apoptotic OLs, which were increased in injured brain tissue (p number of single-labeled Olig2, A2B5, NG2, and PDGFR-α-positive cells, numbers of Olig2 and A2B5 co-labeled cells were increased in TBI samples (p < 0.05); this was inversely correlated with time from injury to surgery (r = -0.8, p < 0.05). These results indicate that severe focal human TBI results in OL death and increases in OPCs postinjury, which may influence white matter function following TBI.

  18. Multiple Modes of Communication between Neurons and Oligodendrocyte Precursor Cells

    NARCIS (Netherlands)

    Maldonado, Paloma P; Angulo, María Cecilia

    2015-01-01

    The surprising discovery of bona fide synapses between neurons and oligodendrocytes precursor cells (OPCs) 15 years ago placed these progenitors as real partners of neurons in the CNS. The role of these synapses has not been established yet, but a main hypothesis is that neuron-OPC synaptic activity

  19. Role of the cellular prion protein in oligodendrocyte precursor cell proliferation and differentiation in the developing and adult mouse CNS.

    Directory of Open Access Journals (Sweden)

    Ana Bribián

    Full Text Available There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC proliferation and differentiation, although the contribution of the cellular prion protein (PrP(c to this process remains unclear. PrP(c is a glycosyl-phosphatidylinositol (GPI-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS. Here we describe how PrP(c influences oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrP(c proliferate more vigorously at the expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In addition, numerous NG2-positive cells were observed in cortical regions of adult PrP(c knockout mice, although no significant changes in myelination can be seen, probably due to the death of surplus cells.

  20. Neural and Oligodendrocyte Progenitor Cells: Transferrin Effects on Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Lucas Silvestroff

    2013-02-01

    Full Text Available NSC (neural stem cells/NPC (neural progenitor cells are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone of the mammalian CNS (central nervous system. These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres to evaluate the effects of Tf (transferrin on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein, Nestin and Sox2 and the OL (oligodendrocyte progenitor markers NG2 (nerve/glia antigen 2 and PDGFRα (platelet-derived growth factor receptor α. The results of this study indicate that aTf (apoTransferrin is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1. Since OPCs (oligodendrocyte progenitor cells represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs.

  1. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  2. K(V7/KCNQ channels are functionally expressed in oligodendrocyte progenitor cells.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available BACKGROUND: K(V7/KCNQ channels are widely expressed in neurons and they have multiple important functions, including control of excitability, spike afterpotentials, adaptation, and theta resonance. Mutations in KCNQ genes have been demonstrated to associate with human neurological pathologies. However, little is known about whether K(V7/KCNQ channels are expressed in oligodendrocyte lineage cells (OLCs and what their functions in OLCs. METHODS AND FINDINGS: In this study, we characterized K(V7/KCNQ channels expression in rat primary cultured OLCs by RT-PCR, immunostaining and electrophysiology. KCNQ2-5 mRNAs existed in all three developmental stages of rat primary cultured OLCs. K(V7/KCNQ proteins were also detected in oligodendrocyte progenitor cells (OPCs, early developmental stages of OLCs of rat primary cultures and cortex slices. Voltage-clamp recording revealed that the I(M antagonist XE991 significantly reduced K(V7/KCNQ channel current (I(K(Q in OPCs but not in differentiated oligodendrocytes. In addition, inhibition of K(V7/KCNQ channels promoted OPCs motility in vitro. CONCLUSIONS: These findings showed that K(V7/KCNQ channels were functionally expressed in rat primary cultured OLCs and might play an important role in OPCs functioning in physiological or pathological conditions.

  3. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions.

    Science.gov (United States)

    Iijima, Keiya; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Puentes, Sandra; Imai, Hideaki; Yoshimoto, Yuhei; Mikuni, Masahiko; Ishizaki, Yasuki

    2015-11-01

    We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs). These results indicate that MVECs have a survival effect on OPCs, and this effect might contribute to the recovery of the white matter infarct. The conditioned-medium from cultured MVECs reduced apoptosis of cultured OPCs, while the conditioned medium from cultured fibroblasts did not show such effect. These results suggest a possibility that transplanted MVECs increased the number of OPCs through the release of humoral factors that prevent their apoptotic death. Identification of such humoral factors may lead to the new therapeutic strategy against ischemic demyelinating diseases.

  4. Diazoxide promotes oligodendrocyte precursor cell proliferation and myelination.

    Directory of Open Access Journals (Sweden)

    Birgit Fogal

    Full Text Available BACKGROUND: Several clinical conditions are associated with white matter injury, including periventricular white matter injury (PWMI, which is a form of brain injury sustained by preterm infants. It has been suggested that white matter injury in this condition is due to altered oligodendrocyte (OL development or death, resulting in OL loss and hypomyelination. At present drugs are not available that stimulate OL proliferation and promote myelination. Evidence suggests that depolarizing stimuli reduces OL proliferation and differentiation, whereas agents that hyperpolarize OLs stimulate OL proliferation and differentiation. Considering that the drug diazoxide activates K(ATP channels to hyperpolarize cells, we tested if this compound could influence OL proliferation and myelination. METHODOLOGY/FINDINGS: Studies were performed using rat oligodendrocyte precursor cell (OPC cultures, cerebellar slice cultures, and an in vivo model of PWMI in which newborn mice were exposed to chronic sublethal hypoxia (10% O(2. We found that K(ATP channel components Kir 6.1 and 6.2 and SUR2 were expressed in oligodendrocytes. Additionally, diazoxide potently stimulated OPC proliferation, as did other K(ATP activators. Diazoxide also stimulated myelination in cerebellar slice cultures. We also found that diazoxide prevented hypomyelination and ventriculomegaly following chronic sublethal hypoxia. CONCLUSIONS: These results identify KATP channel components in OLs and show that diazoxide can stimulate OL proliferation in vitro. Importantly we find that diazoxide can promote myelination in vivo and prevent hypoxia-induced PWMI.

  5. Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases

    Directory of Open Access Journals (Sweden)

    Takakuni eMaki

    2013-12-01

    Full Text Available White matter dysfunction is an important part of many CNS disorders including multiple sclerosis and vascular dementia. Within injured areas, myelin loss and oligodendrocyte death may trigger endogenous attempts at regeneration. However, during disease progression, remyelination failure may eventually occur due to impaired survival/proliferation, migration/recruitment, and differentiation of oligodendrocyte precursor cells (OPCs. The ventricular-subventricular zone (V-SVZ and the subgranular zone are the main sources of neural stem/progenitor cells (NSPCs, which can give rise to neurons as well as OPCs. Under normal conditions in the adult brain, the V-SVZ progenitors generate a large number of neurons with a small number of oligodendrocyte lineage cells. However, after demyelination, the fate of V-SVZ-derived progenitor cells shifts from neurons to OPCs, and these newly generated OPCs migrate to the demyelinating lesions to ease white matter damage. In this mini-review, we will summarize the recent studies on extrinsic (e.g., vasculature, extracellular matrix, cerebrospinal fluid and intrinsic (e.g., transcription factors, epigenetic modifiers factors, which mediate oligodendrocyte generation from the V-SVZ progenitor cells. A deeper understanding of the mechanisms that regulate the fate of V-SVZ progenitor cells may lead to new therapeutic approaches for ameliorating white matter dysfunction and damage in CNS disorders.

  6. Fyn tyrosine kinase regulates oligodendroglial cell development but is not required for morphological differentiation of oligodendrocytes.

    Science.gov (United States)

    Sperber, B R; McMorris, F A

    2001-02-15

    The non-receptor protein tyrosine kinase Fyn, which is a member of the Src family of kinases, has been shown to be essential for normal myelination and has been suggested to play a role in oligodendrocyte development. However, oligodendrocyte development has not been studied directly in cells lacking Fyn. Additionally, because Fyn is expressed in neurons as well as oligodendrocytes, it is possible that normal myelination requires Fyn expression in neurons but not in oligodendrocytes. To address these issues, we analyzed the development of oligodendrocytes in neuron-free glial cell cultures from fyn(-/-) mice that express no Fyn protein. We observed that oligodendrocytes develop to the stage where they elaborate an extensive network of membranous processes and express the antigenic components of mature oligodendrocytes in the complete absence of Fyn. However, as compared with fyn(+/+) controls, fewer oligodendroglia developed in fyn(-/-) cell cultures, and a smaller proportion of them matured to the stage characterized by a high degree of morphological complexity. In addition, we found that insulin-like growth factor-I, a potent stimulator of oligodendrocyte development, failed to stimulate morphological maturation of fyn(-/-) oligodendroglia. The pyrazolopyrimidine PP2, believed to be a selective inhibitor of Fyn, did not prevent the development of morphologically complex oligodendrocytes. Unexpectedly, however, it was toxic to both fyn(+/+) and fyn(-/-) glial cells, indicating that this class of inhibitors can have significant effects that are independent of Fyn.

  7. MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Brian S Letzen

    Full Text Available BACKGROUND: Cells of the oligodendrocyte (OL lineage play a vital role in the production and maintenance of myelin, a multilamellar membrane which allows for saltatory conduction along axons. These cells may provide immense therapeutic potential for lost sensory and motor function in demyelinating conditions, such as spinal cord injury, multiple sclerosis, and transverse myelitis. However, the molecular mechanisms controlling OL differentiation are largely unknown. MicroRNAs (miRNAs are considered the "micromanagers" of gene expression with suggestive roles in cellular differentiation and maintenance. Although unique patterns of miRNA expression in various cell lineages have been characterized, this is the first report documenting their expression during oligodendrocyte maturation from human embryonic stem (hES cells. Here, we performed a global miRNA analysis to reveal and identify characteristic patterns in the multiple stages leading to OL maturation from hES cells including those targeting factors involved in myelin production. METHODOLOGY/PRINCIPAL FINDINGS: We isolated cells from 8 stages of OL differentiation. Total RNA was subjected to miRNA profiling and validations preformed using real-time qRT-PCR. A comparison of miRNAs from our cultured OLs and OL progenitors showed significant similarities with published results from equivalent cells found in the rat and mouse central nervous system. Principal component analysis revealed four main clusters of miRNA expression corresponding to early, mid, and late progenitors, and mature OLs. These results were supported by correlation analyses between adjacent stages. Interestingly, the highest differentially-expressed miRNAs demonstrated a similar pattern of expression throughout all stages of differentiation, suggesting that they potentially regulate a common target or set of targets in this process. The predicted targets of these miRNAs include those with known or suspected roles in

  8. Transient expression of Olig1 initiates the differentiation of neural stem cells into oligodendrocyte progenitor cells

    NARCIS (Netherlands)

    Balasubramaniyan, [No Value; Timmer, N; Kust, B; Boddeke, E; Copray, S

    2004-01-01

    In order to develop an efficient strategy to induce the in vitro differentiation of neural stem cells (NSCs) into oligodendrocyte progenitor cells (OPCs), NSCs were isolated from E14 mice and grown in medium containing epidermal growth factor and fibroblast growth factor (FGF). Besides supplementing

  9. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  10. In vitro transdifferentiation of human cultured CD34+ stem cells into oligodendrocyte precursors using thyroid hormones.

    Science.gov (United States)

    Venkatesh, Katari; Srikanth, Lokanathan; Vengamma, Bhuma; Chandrasekhar, Chodimella; Prasad, Bodapati Chandra Mouleshwara; Sarma, Potukuchi Venkata Gurunadha Krishna

    2015-02-19

    The extent of myelination on the axon promotes transmission of impulses in the neural network, any disturbances in this process results in the neurodegenerative condition. Transplantation of oligodendrocyte precursors that supports in the regeneration of axons through myelination is an important step in the restoration of damaged neurons. Therefore, in the present study, the differentiation of human CD34+ stem cells into oligodendrocytes was carried out. The pure human CD34+ culture developed from the stem cells obtained from a peripheral blood of a donor were subjected to oligodendrocyte differentiation medium (ODM). The ODM at a concentration of 40ng/ml thyroxine, 40ng/ml 3,3',5-tri-iodo-thyronine showed distinct morphological changes from day 6 to 9 with cells exhibiting conspicuous stellate morphology and extensive foot processes. The real-time PCR analysis showed prominent expression of Olig2, CNPase, PDGFRα and PLP1/DM20 in the differentiated cells confirming the formed cells are oligodendrocyte precursors. The expression of these genes increased from days 6 to 9 corresponding to the morphological changes observed with almost no expression of GFAP+ cells. The distinct CNPase activity was observed in these differentiated cells compared to normal CD34+ stem cells correlating with results of real-time PCR conclusively explains the development of oligodendrocytes from human CD34+ stem cells.

  11. The NG2 Proteoglycan Protects Oligodendrocyte Precursor Cells against Oxidative Stress via Interaction with OMI/HtrA2.

    Directory of Open Access Journals (Sweden)

    Frank Maus

    Full Text Available The NG2 proteoglycan is characteristically expressed by oligodendrocyte progenitor cells (OPC and also by aggressive brain tumours highly resistant to chemo- and radiation therapy. Oligodendrocyte-lineage cells are particularly sensitive to stress resulting in cell death in white matter after hypoxic or ischemic insults of premature infants and destruction of OPC in some types of Multiple Sclerosis lesions. Here we show that the NG2 proteoglycan binds OMI/HtrA2, a mitochondrial serine protease which is released from damaged mitochondria into the cytosol in response to stress. In the cytosol, OMI/HtrA2 initiates apoptosis by proteolytic degradation of anti-apoptotic factors. OPC in which NG2 has been downregulated by siRNA, or OPC from the NG2-knockout mouse show an increased sensitivity to oxidative stress evidenced by increased cell death. The proapoptotic protease activity of OMI/HtrA2 in the cytosol can be reduced by the interaction with NG2. Human glioma expressing high levels of NG2 are less sensitive to oxidative stress than those with lower NG2 expression and reducing NG2 expression by siRNA increases cell death in response to oxidative stress. Binding of NG2 to OMI/HtrA2 may thus help protect cells against oxidative stress-induced cell death. This interaction is likely to contribute to the high chemo- and radioresistance of glioma.

  12. Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate.

    Science.gov (United States)

    Cavaliere, F; Urra, O; Alberdi, E; Matute, C

    2012-02-02

    We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl-D-aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination.

  13. Corticosteroids reverse cytokine-induced block of survival and differentiation of oligodendrocyte progenitor cells from rats

    Directory of Open Access Journals (Sweden)

    Marx Romy

    2008-09-01

    Full Text Available Abstract Background Periventricular leukomalacia (PVL is a frequent complication of preterm delivery. Proinflammatory cytokines, such as interferon-γ (IFN-γ and tumor necrosis factor α (TNF-α released from astrocytes and microglia activated by infection or ischemia have previously been shown to impair survival and maturation of oligodendrocyte progenitors and could thus be considered as potential factors contributing to the generation of this disease. The first goal of the present study was to investigate whether exposure of oligodendrocyte precursors to these cytokines arrests the maturation of ion currents in parallel to its effects on myelin proteins and morphological maturation. Secondly, in the search for agents, that can protect differentiating oligodendrocyte precursor cells from cytokine-induced damage we investigated effects of coapplications of corticosteroids with proinflammatory cytokines on the subsequent survival and differentiation of oligodendrocyte progenitor cells. Methods To exclude influences from factors released from other cell types purified cultures of oligodendrocyte precursors were exposed to cytokines and/or steroids and allowed to differentiate for further 6 days in culture. Changes in membrane surface were investigated with capacitance recordings and Scanning Ion Conductance Microscopy. Na+- and K+- currents were investigated using whole cell patch clamp recordings. The expression of myelin specific proteins was investigated using western blots and the precursor cells were identified using immunostaining with A2B5 antibodies. Results Surviving IFN-γ and TNF-α treated cells continued to maintain voltage-activated Na+- and K+ currents characteristic for the immature cells after 6 days in differentiation medium. Corticosterone, dihydrocorticosterone and, most prominently dexamethasone, counteracted the deleterious effects of IFN-γ and TNF-α on cell survival, A2B5-immunostaining and expression of myelin basic

  14. Axonal degeneration stimulates the formation of NG2+ cells and oligodendrocytes in the mouse

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Drøjdahl, Nina;

    2006-01-01

    Proliferation of the adult NG2-expressing oligodendrocyte precursor cells has traditionally been viewed as a remyelination response ensuing from destruction of myelin and oligodendrocytes, and not to the axonal pathology that is also a characteristic of demyelinating disease. To better understand...... the response of the NG2+ cells to the different components of demyelinating pathology, we investigated the response of adult NG2+ cells to axonal degeneration in the absence of primary myelin or oligodendrocyte pathology. Axonal degeneration was induced in the hippocampal dentate gyrus of adult mice...... by transection of the entorhino-dentate perforant path projection. The acutely induced degeneration of axons and terminals resulted in a prompt response of NG2+ cells, consisting of morphological transformation, cellular proliferation, and upregulation of NG2 expression days 2-3 after surgery. This was followed...

  15. Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse.

    Science.gov (United States)

    Clarke, Laura E; Young, Kaylene M; Hamilton, Nicola B; Li, Huiliang; Richardson, William D; Attwell, David

    2012-06-13

    Oligodendrocyte progenitor cells (OPCs) in the postnatal mouse corpus callosum (CC) and motor cortex (Ctx) reportedly generate only oligodendrocytes (OLs), whereas those in the piriform cortex may also generate neurons. OPCs have also been subdivided based on their expression of voltage-gated ion channels, ability to respond to neuronal activity, and proliferative state. To determine whether OPCs in the piriform cortex have inherently different physiological properties from those in the CC and Ctx, we studied acute brain slices from postnatal transgenic mice in which GFP expression identifies OL lineage cells. We whole-cell patch clamped GFP-expressing (GFP(+)) cells within the CC, Ctx, and anterior piriform cortex (aPC) and used prelabeling with 5-ethynyl-2'-deoxyuridine (EdU) to assess cell proliferation. After recording, slices were immunolabeled and OPCs were defined by strong expression of NG2. NG2(+) OPCs in the white and gray matter proliferated and coexpressed PDGFRα and voltage-gated Na(+) channels (I(Na)). Approximately 70% of OPCs were capable of generating regenerative depolarizations. In addition to OLIG2(+) NG2(+) I(Na)(+) OPCs and OLIG2(+) NG2(neg) I(Na)(neg) OLs, we identified cells with low levels of NG2 limited to the soma or the base of some processes. These cells had a significantly reduced I(Na) and a reduced ability to incorporate EdU when compared with OPCs and probably correspond to early differentiating OLs. By combining EdU labeling and lineage tracing using Pdgfrα-CreER(T2) : R26R-YFP transgenic mice, we double labeled OPCs and traced their fate in the postnatal brain. These OPCs generated OLs but did not generate neurons in the aPC or elsewhere at any time that we examined.

  16. Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation.

    Science.gov (United States)

    Ichihara, Yoshinori; Doi, Toru; Ryu, Youngjae; Nagao, Motoshi; Sawada, Yasuhiro; Ogata, Toru

    2017-05-01

    Oligodendrocyte progenitor cells (OPCs) undergo marked morphological changes to become mature oligodendrocytes, but the metabolic resources for this process have not been fully elucidated. Although lactate, a metabolic derivative of glycogen, has been reported to be consumed in oligodendrocytes as a metabolite, and to ameliorate hypomyelination induced by low glucose conditions, it is not clear about the direct contribution of lactate to cell cycling and differentiation of OPCs, and the source of lactate for remyelination. Therefore, we evaluated the effect of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), an inhibitor of the glycogen catabolic enzyme glycogen phosphorylase, in a mouse cuprizone model. Cuprizone induced demyelination in the corpus callosum and remyelination occurred after cuprizone treatment ceased. This remyelination was inhibited by the administration of DAB. To further examine whether lactate affects proliferation or differentiation of OPCs, we cultured mouse primary OPC-rich cells and analyzed the effect of lactate. Lactate rescued the slowed cell cycling induced by 0.4 mM glucose, as assessed by the BrdU-positive cell ratio. Lactate also promoted OPC differentiation detected by monitoring the mature oligodendrocyte marker myelin basic protein, in the presence of both 36.6 mM and 0.4 mM glucose. Furthermore, these lactate-mediated effects were suppressed by the reported monocarboxylate transporter inhibitor, α-cyano-4-hydroxy-cinnamate. These results suggest that lactate directly promotes the cell cycling rate and differentiation of OPCs, and that glycogen, one of the sources of lactate, contributes to remyelination in vivo. J. Cell. Physiol. 232: 986-995, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  17. Efficient Generation of Myelinating Oligodendrocytes from Primary Progressive Multiple Sclerosis Patients by Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Panagiotis Douvaras

    2014-08-01

    Full Text Available Multiple sclerosis (MS is a chronic demyelinating disease of unknown etiology that affects the CNS. While current therapies are primarily directed against the immune system, the new challenge is to address progressive MS with remyelinating and neuroprotective strategies. Here, we develop a highly reproducible protocol to efficiently derive oligodendrocyte progenitor cells (OPCs and mature oligodendrocytes from induced pluripotent stem cells (iPSCs. Key elements of our protocol include adherent cultures, dual SMAD inhibition, and addition of retinoids from the beginning of differentiation, which lead to increased yields of OLIG2 progenitors and high numbers of OPCs within 75 days. Furthermore, we show the generation of viral and integration-free iPSCs from primary progressive MS (PPMS patients and their efficient differentiation to oligodendrocytes. PPMS OPCs are functional, as demonstrated by in vivo myelination in the shiverer mouse. These results provide encouraging advances toward the development of autologous cell therapies using iPSCs.

  18. Fluoxetine prevents oligodendrocyte cell death by inhibiting microglia activation after spinal cord injury.

    Science.gov (United States)

    Lee, Jee Y; Kang, So R; Yune, Tae Y

    2015-05-01

    Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans.

  19. Effects of lipopolysaccharide on oligodendrocyte progenitor cells are mediated by astrocytes and microglia.

    Science.gov (United States)

    Pang, Y; Cai, Z; Rhodes, P G

    2000-11-15

    Oligodendrocytes are the primary cells injured in periventricular leukomalacia (PVL), a predominant form of brain white matter lesion in preterm infants. To explore the possible linkage between white matter injury and maternal infection, purified rat O-2A progenitor (Oligodendrocyte-type 2 astrocyte progenitor) cell cultures were used as a model in studying the effects of lipopolysaccharide (LPS), an endotoxin, on survival and differentiation of oligodendrocytes and the involvement of other glial cells in the effects of LPS. O-2A progenitor cells were cultured from optic nerves of 7-day-old rat pups in a chemically defined medium (CDM). Astrocyte and microglia cell cultures were prepared from the cortex of 1-day-old rat brains in the CDM. Direct treatment of LPS (1 microg/ml) to O-2A cells had no effect on viability or differentiation of these cells. When O-2A progenitor cells were cultured in the conditioned medium obtained from either astrocyte or microglial cell cultures for 48 hr, survival rate and differentiation of O-2A cells into mature oligodendrocytes were greatly enhanced as measured by the MTT assay and immunocytochemistry. The conditioned medium obtained from astrocytes or microglia treated with LPS for 48 hr, however, failed to show such a promotional effect on viability and differentiation of O-2A cells. When 5 microg/ml LPS was used to stimulate astrocytes or microglia, the conditioned medium from these glial cell cultures caused O-2A cell injury. The overall results indicate that astrocytes and microglia may promote viability and differentiation of O-2A progenitor cells under physiological conditions, but they may also mediate cytotoxic effects of LPS on oligodendrocytes under an infectious disease biochemical environment.

  20. Expression and regulation of versican in neural precursor cells and their lineages

    Institute of Scientific and Technical Information of China (English)

    Wen-li GU; Sai-li FU; Yan-xia WANG; Ying LI; Xiao-fei WANG; Xiao-ming XU; Pei-hua LU

    2007-01-01

    Aim: To have a better understanding of the expression and regulation of versican isoforms in neural precursor cells (NPC) and oligodendrogliogenesis. Methods:By immunocytochemistry, RT-PCR, and real-time PCR, we examined the temporal expression of versican in NPC isolated from embryonic d 16 rats as well as in oligodendrocyte (OL) lineage cells induced to differentiate from NPC,which mimicked the oligodendrogliogenesis in vivo. Results: We found that versican was constitutively expressed in NPC and their lineage cells, including neurons, astrocytes, and OL. In addition, 2 versican isoforms, V1/V0 and V2,were found to express at low levels in NPC, but at significantly higher levels in OL lineage cells. The peak expression of versican V2 was found at the oligodendrocyte precursor cell stage. Furthermore, the treatment of 2 pro-inflammatory cytokines, TNF-α and IFN-γ, enhanced the transcription of versican V2 in NPC in a dose-dependent manner, but showed no effect on V1/V0 expression.Conclusion: Taken together, our results demonstrate that versican, particularly the inhibitory V2 isoform, is increasingly expressed in OL lineage cells induced to differentiate from NPC. An increase in versican V2 expression after cytokine stimulation implies the interplay between the injury-induced upregulation of inflammatory cytokines and chondroitin sulfate proteoglycan-mediated inhibition of axonal regeneration after central nervous system injury.

  1. Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development.

    Science.gov (United States)

    Pang, Y; Campbell, L; Zheng, B; Fan, L; Cai, Z; Rhodes, P

    2010-03-17

    Damage to oligodendrocyte (OL) progenitor cells (OPCs) and hypomyelination are two hallmark features of periventricular leukomalacia (PVL), the most common form of brain damage in premature infants. Clinical and animal studies have linked the incidence of PVL to maternal infection/inflammation, and activated microglia have been proposed to play a central role. However, the precise mechanism of how activated microglia adversely affects the survival and development of OPCs is still not clear. Here we demonstrate that lipopolysaccharide (LPS)-activated microglia are deleterious to OPCs, that is, impeding OL lineage progression, reducing the production of myelin basic protein (MBP), and mediating OPC death. We further demonstrate that LPS-activated microglia mediate OPC death by two distinct mechanisms in a time-dependent manner. The early phase of cell damage occurs within 24 h after LPS treatment, which is mediated by nitric oxide (NO)-dependent oxidative damage and is prevented by N(G)-nitro-l-arginine methyl ester (l-NAME), a general inhibitor of nitric oxide synthase. The delayed cell death is evident at 48 h after LPS treatment, is mediated by cytokines, and is prevented by blocking the activity of tumor necrosis factor-alpha (TNF-alpha) and pro-nerve growth factor (proNGF), but not by l-NAME. Furthermore, microglia-derived insulin-like growth factor-1 (IGF-1) and ciliary neurotrophic factor (CNTF) were significantly suppressed by LPS, and exogenous IGF-1 and CNTF synergistically protected OLs from death induced by LPS-treated microglia conditioned medium, indicating that a deficiency in trophic support may also be involved in OL death. Our finding that LPS-activated microglia not only induce two waves of cell death but also greatly impair OL development may shed some light on the mechanisms underlying selective white matter damage and hypomyelination in PVL.

  2. Exploration of protective strategies against oligodendrocyte cell death in Krabbe disease models

    Directory of Open Access Journals (Sweden)

    Gonzalo Arboleda

    2015-02-01

    Full Text Available Krabbe disease (KD patients accumulate psychosine (galactosylsphingosine, a cytotoxic metabolite for oligodendrocytes, inducing early demyelination. Apoptosis has been suggested that plays an important role in psychosine-induced oligodendrocytes cell death in culture and in brains of Krabbe patients and an animal model of the disease (twitcher mouse. However, the molecular mechanism that triggers the activation of the apoptotic pathway, and hence the development/progression of the disease, still is not well understood. Here we report that silencing GALC gene expression induces cell death of the human derived oligodendrocyte cell line MO3.13. The induction of cell death is associated with the activation of caspase 3 and increase in Bax expression, suggesting that mitochondria is compromise, and decrease in cell survival signaling pathways such as PI3K/AKT, MAPK/ERK and AMPK, as observed by western blot analysis, 2 days after silencing. The data suggests an important psychosine-induced deregulation in apoptotic and anti-apoptotic cellular pathways. Moreover, pre-treatment with insuline-like growth factor (IGF-1 and PPARalfa agonist (WY 14643, significantly provides protection against the psychosine-induced changes described. Our data indicates that oligodendrocytes have a marked susceptibility to endogenous accumulation of psychosine and identified potential compounds that may offer protection against psychosine-induced apoptosis in vivo.

  3. Differential and cell development-dependent localization of myelin mRNAs in oligodendrocytes

    NARCIS (Netherlands)

    deVries, H; deJonge, JC; Schrage, C; vanderHaar, ME; Hoekstra, D

    1997-01-01

    In oligodendrocytes (OLG), the mRNAs for the various myelin proteins localize to different intracellular sites, Whereas the confinement of myelin basic protein (MBP) mRNA to the processes of the cell has been well established, we demonstrate that most other myelin mRNA species are mainly present in

  4. Cytolysis of oligodendrocytes is mediated by killer (K) cells but not by natural killer (NK) cells.

    Science.gov (United States)

    Satoh, J; Kim, S U; Kastrukoff, L F

    1991-03-01

    The cytotoxic activity of killer (K) cells against enriched cultures of bovine oligodendrocytes (BOL) was investigated in multiple sclerosis (MS) and controls. Human K cells mediated cytotoxicity to primary cultures of BOL in the presence of anti-BOL antiserum in all study groups, while BOL were resistant to human natural killer (NK) cells. Cytotoxic activity was significantly reduced in MS when compared to age-matched normal controls but not when compared to other neurologic disease (OND) patients. K cell-mediated lysis of BOL could also be induced with anti-galactocerebroside antibody but not with other antibodies including those specific for OL antigens (myelin basic protein, proteolipid apoprotein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase). Enrichment of the effector population indicated that antibody-dependent cell-mediated cytotoxicity (ADCC) to BOL was mediated by large granular lymphocytes, and the effector population was further characterized by flow cytometry. The effector cells mediating ADCC could be inhibited by protein A of Staphylococcus aureus, and by K562 cells in cold competition assay. These observations indicate that oligodendrocytes are resistant to NK cells but are susceptible to cytolysis mediated by K cells. This may represent a potentially important immune mechanism in the pathogenesis of MS.

  5. Survival and Functionality of Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes in a Nonhuman Primate Model for Multiple Sclerosis

    NARCIS (Netherlands)

    Thiruvalluvan, Arun; Czepiel, Marcin; Kap, Yolanda A; Mantingh-Otter, Ietje; Vainchtein, Ilia; Kuipers, Jeroen; Bijlard, Marjolein; Baron, Wia; Giepmans, Ben; Brück, Wolfgang; 't Hart, Bert A; Boddeke, Erik; Copray, Sjef

    2016-01-01

    : Fast remyelination by endogenous oligodendrocyte precursor cells (OPCs) is essential to prevent axonal and subsequent retrograde neuronal degeneration in demyelinating lesions in multiple sclerosis (MS). In chronic lesions, however, the remyelination capacity of OPCs becomes insufficient. Cell the

  6. Transplantation of human oligodendrocyte progenitor cells in an animal model of diffuse traumatic axonal injury: survival and differentiation.

    Science.gov (United States)

    Xu, Leyan; Ryu, Jiwon; Hiel, Hakim; Menon, Adarsh; Aggarwal, Ayushi; Rha, Elizabeth; Mahairaki, Vasiliki; Cummings, Brian J; Koliatsos, Vassilis E

    2015-05-14

    Diffuse axonal injury is an extremely common type of traumatic brain injury encountered in motor vehicle crashes, sports injuries, and in combat. Although many cases of diffuse axonal injury result in chronic disability, there are no current treatments for this condition. Its basic lesion, traumatic axonal injury, has been aggressively modeled in primate and rodent animal models. The inexorable axonal and perikaryal degeneration and dysmyelination often encountered in traumatic axonal injury calls for regenerative therapies, including therapies based on stem cells and precursors. Here we explore the proof of concept that treatments based on transplants of human oligodendrocyte progenitor cells can replace or remodel myelin and, eventually, contribute to axonal regeneration in traumatic axonal injury. We derived human oligodendrocyte progenitor cells from the human embryonic stem cell line H9, purified and characterized them. We then transplanted these human oligodendrocyte progenitor cells into the deep sensorimotor cortex next to the corpus callosum of nude rats subjected to traumatic axonal injury based on the impact acceleration model of Marmarou. We explored the time course and spatial distribution of differentiation and structural integration of these cells in rat forebrain. At the time of transplantation, over 90 % of human oligodendrocyte progenitor cells expressed A2B5, PDGFR, NG2, O4, Olig2 and Sox10, a profile consistent with their progenitor or early oligodendrocyte status. After transplantation, these cells survived well and migrated massively via the corpus callosum in both injured and uninjured brains. Human oligodendrocyte progenitor cells displayed a striking preference for white matter tracts and were contained almost exclusively in the corpus callosum and external capsule, the striatopallidal striae, and cortical layer 6. Over 3 months, human oligodendrocyte progenitor cells progressively matured into myelin basic protein(+) and adenomatous

  7. Cutting edge: Multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes.

    Science.gov (United States)

    Saxena, Amit; Bauer, Jan; Scheikl, Tanja; Zappulla, Jacques; Audebert, Marc; Desbois, Sabine; Waisman, Ari; Lassmann, Hans; Liblau, Roland S; Mars, Lennart T

    2008-08-01

    CD8 T cells are emerging as important players in multiple sclerosis (MS) pathogenesis, although their direct contribution to tissue damage is still debated. To assess whether autoreactive CD8 T cells can contribute to the pronounced loss of oligodendrocytes observed in MS plaques, we generated mice in which the model Ag influenza hemagglutinin is selectively expressed in oligodendrocytes. Transfer of preactivated hemagglutinin-specific CD8 T cells led to inflammatory lesions in the optic nerve, spinal cord, and brain. These lesions, associating CD8 T cell infiltration with focal loss of oligodendrocytes, demyelination, and microglia activation, were very reminiscent of active MS lesions. Thus, our study demonstrates the potential of CD8 T cells to induce oligodendrocyte lysis in vivo as a likely consequence of direct Ag-recognition. These results provide new insights with regard to CNS tissue damage mediated by CD8 T cells and for understanding the role of CD8 T cells in MS.

  8. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor.

    Science.gov (United States)

    Cervellini, Ilaria; Annenkov, Alexander; Brenton, Thomas; Chernajovsky, Yuti; Ghezzi, Pietro; Mengozzi, Manuela

    2013-08-28

    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.

  9. Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells.

    Directory of Open Access Journals (Sweden)

    Ravi Shankar Akundi

    Full Text Available BACKGROUND: Periventricular white matter injury (PWMI is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro. METHODOLOGY/FINDINGS: Cultures of oligodendrocyte precursor cells (OPCs were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2 or hypoxia (1% or 4% O(2 for up to 7 days. We observed that 1% O(2 lead to an increase in the proportion of myelin basic protein (MBP-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1 and phospho-cdc2, which play a role in OL differentiation, was seen as well. CONCLUSIONS: These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation.

  10. Beta4 tubulin identifies a primitive cell source for oligodendrocytes in the mammalian brain.

    Science.gov (United States)

    Wu, Chuanshen; Chang, Ansi; Smith, Maria C; Won, Roy; Yin, Xinghua; Staugaitis, Susan M; Agamanolis, Dimitri; Kidd, Grahame J; Miller, Robert H; Trapp, Bruce D

    2009-06-17

    We have identified a novel population of cells in the subventricular zone (SVZ) of the mammalian brain that expresses beta4 tubulin (betaT4) and has properties of primitive neuroectodermal cells. betaT4 cells are scattered throughout the SVZ of the lateral ventricles in adult human brain and are significantly increased in the SVZs bordering demyelinated white matter in multiple sclerosis brains. In human fetal brain, betaT4 cell densities peak during the latter stages of gliogenesis, which occurs in the SVZ of the lateral ventricles. betaT4 cells represent 95% of cells in neurospheres treated with the anti-mitotic agent Ara C. betaT4 cells produce oligodendrocytes, neurons, and astrocytes in vitro. We compared the myelinating potential of betaT4-positive cells with A2B5-positive oligodendrocyte progenitor cells after transplantation (25,000 cells) into postnatal day 3 (P3) myelin-deficient rat brains. At P20, the progeny of betaT4 cells myelinated up to 4 mm of the external capsule, which significantly exceeded that of transplanted A2B5-positive progenitor cells. Such extensive and rapid mature CNS cell generation by a relatively small number of transplanted cells provides in vivo support for the therapeutic potential of betaT4 cells. We propose that betaT4 cells are an endogenous cell source that can be recruited to promote neural repair in the adult telencephalon.

  11. Overexpression of Polysialylated Neural Cell Adhesion Molecule Improves the Migration Capacity of Induced Pluripotent Stem Cell-Derived Oligodendrocyte Precursors

    NARCIS (Netherlands)

    Czepiel, Marcin; Leicher, Lasse; Becker, Katja; Boddeke, Erik; Copray, Sjef

    2014-01-01

    Cell replacement therapy aiming at the compensation of lost oligodendrocytes and restoration of myelination in acquired or congenital demyelination disorders has gained considerable interest since the discovery of induced pluripotent stem cells (iPSCs). Patient-derived iPSCs provide an inexhaustible

  12. A Minimally-invasive Blood-derived Biomarker of Oligodendrocyte Cell-loss in Multiple Sclerosis.

    Science.gov (United States)

    Olsen, John A; Kenna, Lauren A; Tipon, Regine C; Spelios, Michael G; Stecker, Mark M; Akirav, Eitan M

    2016-08-01

    Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS). Minimally invasive biomarkers of MS are required for disease diagnosis and treatment. Differentially methylated circulating-free DNA (cfDNA) is a useful biomarker for disease diagnosis and prognosis, and may offer to be a viable approach for understanding MS. Here, methylation-specific primers and quantitative real-time PCR were used to study methylation patterns of the myelin oligodendrocyte glycoprotein (MOG) gene, which is expressed primarily in myelin-producing oligodendrocytes (ODCs). MOG-DNA was demethylated in O4(+) ODCs in mice and in DNA from human oligodendrocyte precursor cells (OPCs) when compared with other cell types. In the cuprizone-fed mouse model of demyelination, ODC derived demethylated MOG cfDNA was increased in serum and was associated with tissue-wide demyelination, demonstrating the utility of demethylated MOG cfDNA as a biomarker of ODC death. Collected sera from patients with active (symptomatic) relapsing-remitting MS (RRMS) demonstrated a higher signature of demethylated MOG cfDNA when compared with patients with inactive disease and healthy controls. Taken together, these results offer a minimally invasive approach to measuring ODC death in the blood of MS patients that may be used to monitor disease progression.

  13. Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling.

    Science.gov (United States)

    Liu, Xiujie; Lu, Yan; Zhang, Yong; Li, Yuanyuan; Zhou, Jiazhen; Yuan, Yimin; Gao, Xiaofei; Su, Zhida; He, Cheng

    2012-05-18

    Oligodendrocyte precursor cells (OPCs) are a unique type of glia that are responsible for the myelination of the central nervous system. OPC migration is important for myelin formation during central nervous system development and repair. However, the precise extracellular and intracellular mechanisms that regulate OPC migration remain elusive. Slits were reported to regulate neurodevelopmental processes such as migration, adhesion, axon guidance, and elongation through binding to roundabout receptors (Robos). However, the potential roles of Slits/Robos in oligodendrocytes remain unknown. In this study, Slit2 was found to be involved in regulating the dispersal of OPCs through the association between Robo1 and Fyn. Initially, we examined the expression of Robos in OPCs both in vitro and in vivo. Subsequently, the Boyden chamber assay showed that Slit2 could inhibit OPC migration. RoboN, a specific inhibitor of Robos, could significantly attenuate this effect. The effects were confirmed through the explant migration assay. Furthermore, treating OPCs with Slit2 protein deactivated Fyn and increased the level of activated RhoA-GTP. Finally, Fyn was found to form complexes with Robo1, but this association was decreased after Slit2 stimulation. Thus, we demonstrate for the first time that Slit2 regulates the dispersal of oligodendrocyte precursor cells through Fyn and RhoA signaling.

  14. NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation

    Directory of Open Access Journals (Sweden)

    Fabio eCavaliere

    2013-12-01

    Full Text Available Multipotent cells from the juvenile subventricular zone (SVZ possess the ability to differentiate into new neural cells. Depending on local signals, SVZ can generate new neurons, astrocytes or oligodendrocytes. We previously demonstrated that activation of NMDA receptors in SVZ progenitors increases the rate of oligodendrocyte differentiation. Here we investigated the mechanisms involved in NMDA receptor-dependent differentiation. Using functional studies performed with the reporter gene luciferase we found that activation of NMDA receptor stimulates PKC. In turn, stimulation of PKC precedes the activation of NADPH oxidase (NOX as demonstrated by translocation of the p67phox subunit to the cellular membrane. We propose that NOX2 is involved in the transduction of the signal from NMDA receptors through PKC activation as the inhibitor gp91 reduced their pro-differentiation effect. In addition, our data and that from other groups suggest that signaling through the NMDA receptor/PKC/NOX2 cascade generates ROS that activate the PI3/mTOR pathway and finally leads to the generation of new oligodendrocytes.

  15. Oligodendrocytes in a nutshell

    Directory of Open Access Journals (Sweden)

    John-Paul eMichalski

    2015-09-01

    Full Text Available Oligodendrocytes are the myelinating cells of the central nervous system (CNS. While the phrase is oft repeated and holds true, the last few years have borne witness to radical change in our understanding of this unique cell type. Once considered static glue, oligodendrocytes are now seen as plastic and adaptive, capable of reacting to a changing CNS. This review is intended as a primer and guide, exploring how the past five years have fundamentally altered our appreciation of oligodendrocyte development and CNS myelination.

  16. Oligodendrocytes in a Nutshell.

    Science.gov (United States)

    Michalski, John-Paul; Kothary, Rashmi

    2015-01-01

    Oligodendrocytes are the myelinating cells of the central nervous system (CNS). While the phrase is oft repeated and holds true, the last few years have borne witness to radical change in our understanding of this unique cell type. Once considered static glue, oligodendrocytes are now seen as plastic and adaptive, capable of reacting to a changing CNS. This review is intended as a primer and guide, exploring how the past 5 years have fundamentally altered our appreciation of oligodendrocyte development and CNS myelination.

  17. Differentiation of Induced Pluripotent Stem Cells Into Functional Oligodendrocytes

    NARCIS (Netherlands)

    Czepiel, Marcin; Balasubramaniyan, Veerakumar; Schaafsma, Wandert; Stancic, Mirjana; Mikkers, Harald; Huisman, Christian; Boddeke, Erik; Copray, Sjef

    2011-01-01

    The technology to generate autologous pluripotent stem cells (iPS cells) from almost any somatic cell type has brought various cell replacement therapies within clinical research. Besides the challenge to optimize iPS protocols to appropriate safety and GMP levels, procedures need to be developed to

  18. Golli myelin basic proteins stimulate oligodendrocyte progenitor cell proliferation and differentiation in remyelinating adult mouse brain.

    Science.gov (United States)

    Paez, Pablo M; Cheli, Veronica T; Ghiani, Cristina A; Spreuer, Vilma; Handley, Vance W; Campagnoni, Anthony T

    2012-07-01

    Golli myelin basic proteins are necessary for normal myelination, acting via voltage and store-dependent Ca(2+) entry at multiple steps during oligodendrocyte progenitor cell (OPC) development. To date nothing is known regarding the role of golli proteins in demyelination or remyelination events. Here the effects of golli ablation and overexpression in myelin loss and recovery were examined using the cuprizone (CPZ) model of demyelination/remyelination. We found severe demyelination in the corpus callosum (CC) of golli-overexpressing mice (JOE) during the CPZ treatment, which was accompanied by an increased number of reactive astrocytes and activation of microglia/macrophages. During demyelination of JOE brains, a significant increase in the number of proliferating OPCs was found in the CC as well as in the subventricular zone, and our data indicate that these progenitors matured and fully remyelinated the CC of JOE animals after CPZ withdrawal. In contrast, in the absence of golli (golli-KO mice) delayed myelin loss associated with a smaller immune response, and a lower number of OPCs was found in these mice during the CPZ treatment. Furthermore, incomplete remyelination was observed after CPZ removal in large areas of the CC of golli-KO mice, reflecting irregular recovery of the oligodendrocyte population and subsequent myelin sheath formation. Our findings demonstrate that golli proteins sensitize mature oligodendrocytes to CPZ-induced demyelination, while at the same time stimulate the proliferation/recruitment of OPCs during demyelination, resulting in accelerated remyelination.

  19. Axonal degeneration stimulates the formation of NG2+ cells and oligodendrocytes in the mouse

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Drøjdahl, Nina

    2006-01-01

    the response of the NG2+ cells to the different components of demyelinating pathology, we investigated the response of adult NG2+ cells to axonal degeneration in the absence of primary myelin or oligodendrocyte pathology. Axonal degeneration was induced in the hippocampal dentate gyrus of adult mice...... by transection of the entorhino-dentate perforant path projection. The acutely induced degeneration of axons and terminals resulted in a prompt response of NG2+ cells, consisting of morphological transformation, cellular proliferation, and upregulation of NG2 expression days 2-3 after surgery. This was followed...

  20. Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage

    Directory of Open Access Journals (Sweden)

    Ben W. Dulken

    2017-01-01

    Full Text Available Neural stem cells (NSCs in the adult mammalian brain serve as a reservoir for the generation of new neurons, oligodendrocytes, and astrocytes. Here, we use single-cell RNA sequencing to characterize adult NSC populations and examine the molecular identities and heterogeneity of in vivo NSC populations. We find that cells in the NSC lineage exist on a continuum through the processes of activation and differentiation. Interestingly, rare intermediate states with distinct molecular profiles can be identified and experimentally validated, and our analysis identifies putative surface markers and key intracellular regulators for these subpopulations of NSCs. Finally, using the power of single-cell profiling, we conduct a meta-analysis to compare in vivo NSCs and in vitro cultures, distinct fluorescence-activated cell sorting strategies, and different neurogenic niches. These data provide a resource for the field and contribute to an integrative understanding of the adult NSC lineage.

  1. DISC1 (disrupted-in-schizophrenia-1 regulates differentiation of oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hattori

    Full Text Available Disrupted-in-schizophrenia 1 (DISC1 is a gene disrupted by a translocation, t(1;11 (q42.1;q14.3, that segregates with major psychiatric disorders, including schizophrenia, recurrent major depression and bipolar affective disorder, in a Scottish family. Here we report that mammalian DISC1 endogenously expressed in oligodendroglial lineage cells negatively regulates differentiation of oligodendrocyte precursor cells into oligodendrocytes. DISC1 expression was detected in oligodendrocytes of the mouse corpus callosum at P14 and P70. DISC1 mRNA was expressed in primary cultured rat cortical oligodendrocyte precursor cells and decreased when oligodendrocyte precursor cells were induced to differentiate by PDGF deprivation. Immunocytochemical analysis showed that overexpressed DISC1 was localized in the cell bodies and processes of oligodendrocyte precursor cells and oligodendrocytes. We show that expression of the myelin related markers, CNPase and MBP, as well as the number of cells with a matured oligodendrocyte morphology, were decreased following full length DISC1 overexpression. Conversely, both expression of CNPase and the number of oligodendrocytes with a mature morphology were increased following knockdown of endogenous DISC1 by RNA interference. Overexpression of a truncated form of DISC1 also resulted in an increase in expression of myelin related proteins and the number of mature oligodendrocytes, potentially acting via a dominant negative mechanism. We also identified involvement of Sox10 and Nkx2.2 in the DISC1 regulatory pathway of oligodendrocyte differentiation, both well-known transcription factors involved in the regulation of myelin genes.

  2. E2F1 Coregulates Cell Cycle Genes and Chromatin Components during the Transition of Oligodendrocyte Progenitors from Proliferation to Differentiation

    Science.gov (United States)

    Magri, Laura; Swiss, Victoria A.; Jablonska, Beata; Lei, Liang; Pedre, Xiomara; Walsh, Martin; Zhang, Weijia; Gallo, Vittorio; Canoll, Peter

    2014-01-01

    Cell cycle exit is an obligatory step for the differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating cells. A key regulator of the transition from proliferation to quiescence is the E2F/Rb pathway, whose activity is highly regulated in physiological conditions and deregulated in tumors. In this paper we report a lineage-specific decline of nuclear E2F1 during differentiation of rodent OPC into oligodendrocytes (OLs) in developing white matter tracts and in cultured cells. Using chromatin immunoprecipitation (ChIP) and deep-sequencing in mouse and rat OPCs, we identified cell cycle genes (i.e., Cdc2) and chromatin components (i.e., Hmgn1, Hmgn2), including those modulating DNA methylation (i.e., Uhrf1), as E2F1 targets. Binding of E2F1 to chromatin on the gene targets was validated and their expression assessed in developing white matter tracts and cultured OPCs. Increased expression of E2F1 gene targets was also detected in mouse gliomas (that were induced by retroviral transformation of OPCs) compared with normal brain. Together, these data identify E2F1 as a key transcription factor modulating the expression of chromatin components in OPC during the transition from proliferation to differentiation. PMID:24453336

  3. Effects of neurotrophin-3 on the differentiation of neural stem cells into neurons and oligodendrocytes

    Institute of Scientific and Technical Information of China (English)

    Guowei Zhu; Chongran Sun; Weiguo Liu

    2012-01-01

    In this study,cells from the cerebral cortex of fetal rats at pregnant 16 days were harvested and cultured with 20 μg/L neurotrophin-3.After 7 days of culture,immunocytochemical staining showed that,22.4% of cells were positive for nestin,10.5% were positive for β-Ⅲ tubulin (neuronal marker),and 60.6% were positive for glial fibrillary acidic protein,but no cells were positive for O4 (oligodendrocytic marker).At 14 days,there were 5.6% nestin-,9.6% β-Ⅲ tubulin-,81.1% glial fibrillary acidic protein-,and 2.2% O4-positive cells.In cells not treated with neurotrophin-3,some were nestin-positive,while the majority showed positive staining for glial fibrillary acidic protein.Our experimental findings indicate that neurotrophin-3 is a crucial factor for inducing neural stem cells differentiation into neurons and oligodendrocytes.

  4. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  5. Raman spectroscopy for discrimination of neural progenitor cells and their lineages (Conference Presentation)

    Science.gov (United States)

    Chen, Keren; Ong, William; Chew, Sing Yian; Liu, Quan

    2017-02-01

    Neurological diseases are one of the leading causes of adult disability and they are estimated to cause more deaths than cancer in the elderly population by 2040. Stem cell therapy has shown great potential in treating neurological diseases. However, before cell therapy can be widely adopted in the long term, a number of challenges need to be addressed, including the fundamental research about cellular development of neural progenitor cells. To facilitate the fundamental research of neural progenitor cells, many methods have been developed to identify neural progenitor cells. Although great progress has been made, there is still lack of an effective method to achieve fast, label-free and noninvasive differentiation of neural progenitor cells and their lineages. As a fast, label-free and noninvasive technique, spontaneous Raman spectroscopy has been conducted to characterize many types of stem cells including neural stem cells. However, to our best knowledge, it has not been studied for the discrimination of neural progenitor cells from specific lineages. Here we report the differentiation of neural progenitor cell from their lineages including astrocytes, oligodendrocytes and neurons using spontaneous Raman spectroscopy. Moreover, we also evaluate the influence of system parameters during spectral acquisition on the quality of measured Raman spectra and the accuracy of classification using the spectra, which yield a set of optimal system parameters facilitating future studies.

  6. Mesenchymal progenitor cells for the osteogenic lineage.

    Science.gov (United States)

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  7. Differential proliferation rhythm of neural progenitor and oligodendrocyte precursor cells in the young adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Yoko Matsumoto

    Full Text Available Oligodendrocyte precursor cells (OPCs are a unique type of glial cells that function as oligodendrocyte progenitors while constantly proliferating in the normal condition from rodents to humans. However, the functional roles they play in the adult brain are largely unknown. In this study, we focus on the manner of OPC proliferation in the hippocampus of the young adult mice. Here we report that there are oscillatory dynamics in OPC proliferation that differ from neurogenesis in the subgranular zone (SGZ; the former showed S-phase and M-phase peaks in the resting and active periods, respectively, while the latter only exhibited M-phase peak in the active period. There is coincidence between different modes of proliferation and expression of cyclin proteins that are crucial for cell cycle; cyclin D1 is expressed in OPCs, while cyclin D2 is observed in neural stem cells. Similar to neurogenesis, the proliferation of hippocampal OPCs was enhanced by voluntary exercise that leads to an increase in neuronal activity in the hippocampus. These data suggest an intriguing control of OPC proliferation in the hippocampus.

  8. Indian hedgehog B function is required for the specification of oligodendrocyte progenitor cells in the zebrafish CNS.

    Science.gov (United States)

    Chung, Ah-Young; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Cha, Young Ryun; Bae, Young-ki; Park, Seung Woo; Lee, Jehee; Park, Hae-Chul

    2013-01-23

    A subset of ventral spinal cord precursors, known as pMN precursor cells, initially generate motor neurons and then oligodendrocyte progenitor cells (OPCs), which migrate and differentiate as myelinating oligodendrocytes in the developing neural tube. The switch between motor neuron and oligodendrocyte production by the pMN neural precursors is an important step in building a functional nervous system. However, the precise mechanism that orchestrates the sequential generation of motor neurons and oligodendrocytes within the common population of pMN precursors is still unclear. The current study demonstrates that Indian Hedgehog b (Ihhb), previously known as Echidna Hedgehog, begins to be expressed in the floor plate cells of the ventral spinal cord at the time of OPC specification in zebrafish embryos. Ihhb loss-of-function analysis revealed that Ihhb function is required for OPC specification from pMN precursors by negatively regulating the proliferation of neural precursors. Finally, results showed that Sonic Hedgehog (Shh) could not replace Ihhb function in OPC specification, suggesting that Ihhb and Shh play separate roles in OPC specification. Altogether, data from the present study suggested a novel mechanism, mediated by Ihhb, for the sequential generation of motor neurons and oligodendrocytes from pMN precursors in the ventral spinal cord of zebrafish embryos.

  9. Determinative developmental cell lineages are robust to cell deaths.

    Directory of Open Access Journals (Sweden)

    Jian-Rong Yang

    2014-07-01

    Full Text Available All forms of life are confronted with environmental and genetic perturbations, making phenotypic robustness an important characteristic of life. Although development has long been viewed as a key component of phenotypic robustness, the underlying mechanism is unclear. Here we report that the determinative developmental cell lineages of two protostomes and one deuterostome are structured such that the resulting cellular compositions of the organisms are only modestly affected by cell deaths. Several features of the cell lineages, including their shallowness, topology, early ontogenic appearances of rare cells, and non-clonality of most cell types, underlie the robustness. Simple simulations of cell lineage evolution demonstrate the possibility that the observed robustness arose as an adaptation in the face of random cell deaths in development. These results reveal general organizing principles of determinative developmental cell lineages and a conceptually new mechanism of phenotypic robustness, both of which have important implications for development and evolution.

  10. Erk1/2 but not PI3K pathway is required for neurotrophin 3-induced oligodendrocyte differentiation of post-natal neural stem cells

    Institute of Scientific and Technical Information of China (English)

    XinhuaHu; LuJin; LinyinFeng

    2005-01-01

    Neurotrophin 3 (NT3) induces mouse cortical stem cells to an asymmetric division from a symmetric division, suggesting that NT3 may work as an early differentiative signal for neural stem cells (NSCs). Here, using cultured post-natal hippocampal stem cells as a model, we demonstrated that NT3-stimulation causes NSCs to differentiate into oligodendrocyte precursors (OLPs) through an extracellular signal-related kinasel/2 (Erkl/2)-dependent pathway. Following the treatment of NT3 for 24h, NSCs differentiated into more OLPs and fewer neurons, whereas the proliferation and survival of OLPs were not affected. NT3 induced a series of intracellular responses including enhancement of phosphorylation of Erk 1/2 or Akt and increase of expression of oligodendrocyte lineage gene (Olig)-1, a transcriptional factor known to participate in oligodendrocyte development. Application of U0126, a specific inhibitor of MEK1/2 which are upstream to Erk1/2, blocked the phosphorylation of Erk1/2, suppressed the expression of Olig-1 and prevented NSC differentiation into OLPs in response to NT3 stimulation. Blockade of TrkC also inhibited the differentiation of NSCs to OLPs induced by NT3. However,administration of LY294002, an inhibitor of phosphatidylinositol 3 kinase (PI3K), blocked the phosphorylation of Akt but did not affect the effect of NT3 on the expression of Olig-1 and on NSC differentiation into OLPs. Taken together, these results suggest that NT3 induce NSCs to differentiate into OLPs by enhancing the expression of Olig-1 through an Erk1/2-dependent pathway.

  11. Oligodendrocytes and the control of myelination in vivo: new insights from the rat anterior medullary velum.

    Science.gov (United States)

    Butt, A M; Berry, M

    2000-02-15

    The rat anterior medullary velum (AMV) is representative of the brain and spinal cord, overall, and provides an almost two-dimensional preparation for investigating axon-glial interactions in vivo. Here, we review some of our findings on axon-oligodendrocyte unit relations in our adult, development, and injury paradigms: (1) adult oligodendrocytes are phenotypically heterogeneous, conforming to Del Rio Hortega's types I-IV, whereby differences in oligodendrocyte morphology, metabolism, myelin sheath radial and longitudinal dimensions, and biochemistry correlate with the diameters of axons in the unit; (2) oligodendrocytes derive from a common premyelinating oligodendrocyte phenotype, and divergence of types I-IV is related to the age they emerge and the presumptive diameter of axons in the unit; (3) during myelination, axon-oligodendrocyte units progress through a sequence of maturation phases, related to axon contact, ensheathment, establishment of internodal myelin sheaths, and finally the radial growth and compaction of the myelin sheath; (4) we provide direct in vivo evidence that platelet-derived growth factor-AA (PDGF-AA), fibroblast growth factor (FGF-2), and insulin-like growth factor-I (IGF-I) differentially regulate these events, by injecting the growth factors into the cerebrospinal fluid of neonatal rat pups; (5) in lesioned adult AMV, transected central nervous system (CNS) axons regenerate through the putatively inhibitory environment of the glial scar, but remyelination by oligodendrocytes is incomplete, indicating that axon-oligodendrocyte interactions are defective; and (6) in the adult AMV, cells expressing the NG2 chondroitin sulphate have a presumptive adult oligodendrocyte progenitor antigenic phenotype, but are highly complex cells and send processes to contact axolemma at nodes of Ranvier, suggesting they subserve a specific perinodal function. Thus, axons and oligodendrocyte lineage cells form interdependent functional units, but

  12. Transplantation of oligodendrocyte precursor cells improves locomotion deficits in rats with spinal cord irradiation injury.

    Directory of Open Access Journals (Sweden)

    Yan Sun

    Full Text Available Demyelination contributes to the functional impairment of irradiation injured spinal cord. One potential therapeutic strategy involves replacing the myelin-forming cells. Here, we asked whether transplantation of Olig2(+-GFP(+-oligodendrocyte precursor cells (OPCs, which are derived from Olig2-GFP-mouse embryonic stem cells (mESCs, could enhance remyelination and functional recovery after spinal cord irradiation injury. We differentiated Olig2-GFP-mESCs into purified Olig2(+-GFP(+-OPCs and transplanted them into the rats' cervical 4-5 dorsal spinal cord level at 4 months after irradiation injury. Eight weeks after transplantation, the Olig2(+-GFP(+-OPCs survived and integrated into the injured spinal cord. Immunofluorescence analysis showed that the grafted Olig2(+-GFP(+-OPCs primarily differentiated into adenomatous polyposis coli (APC(+ oligodendrocytes (54.6±10.5%. The staining with luxol fast blue, hematoxylin & eosin (LFB/H&E and electron microscopy demonstrated that the engrafted Olig2(+-GFP(+-OPCs attenuated the demyelination resulted from the irradiation. More importantly, the recovery of forelimb locomotor function was enhanced in animals receiving grafts of Olig2(+-GFP(+-OPCs. We concluded that OPC transplantation is a feasible therapy to repair the irradiated lesions in the central nervous system (CNS.

  13. An Extract of Chinpi, the Dried Peel of the Citrus Fruit Unshiu, Enhances Axonal Remyelination via Promoting the Proliferation of Oligodendrocyte Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Hideaki Tokunaga

    2016-01-01

    Full Text Available The aging-induced decrease in axonal myelination/remyelination is due to impaired recruitment and differentiation of oligodendrocyte progenitor cells (OPCs. Our previous studies have shown that a monoclonal antibody to DEAD (Asp-Glu-Ala-Asp box polypeptide 54 (Ddx54, a member of the DEAD box family of RNA helicases, (1 specifically labels oligodendrocyte lineages, (2 binds to mRNA and protein isoforms of myelin basic proteins (MBP, and (3 regulates migration of OPCs from ventricular zone to corpus callosum in mice. It has also been demonstrated that specific loss of a 21.5 kDa MBP isoform (MBP21.5 reflects demyelination status, and oral administration of an extract of Chinpi, citrus unshiu peel, reversed the aging-induced demyelination. Here, we report that Chinpi treatment induced a specific increase in the MBP21.5, led to the reappearance of Ddx54-expressing cells in ventricular-subventricular zone and corpus callosum of aged mice, and promoted remyelination. Treatment of in vitro OPC cultures with Chinpi constituents, hesperidin plus narirutin, led to an increase in 5-bromo-2′-deoxyuridine incorporation in Ddx54-expressing OPCs, but not in NG2- or Olig2-expressing cell populations. The present study suggests that Ddx54 plays crucial role in remyelination. Furthermore, Chinpi and Chinpi-containing herbal medicines may be a therapeutic option for the aging-induced demyelination diseases.

  14. Evolution of two prototypic T cell lineages.

    Science.gov (United States)

    Das, Sabyasachi; Li, Jianxu; Hirano, Masayuki; Sutoh, Yoichi; Herrin, Brantley R; Cooper, Max D

    2015-07-01

    Jawless vertebrates, which occupy a unique position in chordate phylogeny, employ leucine-rich repeat (LRR)-based variable lymphocyte receptors (VLR) for antigen recognition. During the assembly of the VLR genes (VLRA, VLRB and VLRC), donor LRR-encoding sequences are copied in a step-wise manner into the incomplete germ-line genes. The assembled VLR genes are differentially expressed by discrete lymphocyte lineages: VLRA- and VLRC-producing cells are T-cell like, whereas VLRB-producing cells are B-cell like. VLRA(+) and VLRC(+) lymphocytes resemble the two principal T-cell lineages of jawed vertebrates that express the αβ or γδ T-cell receptors (TCR). Reminiscent of the interspersed nature of the TCRα/TCRδ locus in jawed vertebrates, the close proximity of the VLRA and VLRC loci facilitates sharing of donor LRR sequences during VLRA and VLRC assembly. Here we discuss the insight these findings provide into vertebrate T- and B-cell evolution, and the alternative types of anticipatory receptors they use for adaptive immunity.

  15. Human umbilical cord Wharton's jelly-derived oligodendrocyte precursor-like cells for axon and myelin sheath regeneration

    Institute of Scientific and Technical Information of China (English)

    Hong Chen; Yan Zhang; Zhijun Yang; Hongtian Zhang

    2013-01-01

    Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.

  16. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  17. Electric Signals Regulate the Directional Migration of Oligodendrocyte Progenitor Cells (OPCs) via β1 Integrin.

    Science.gov (United States)

    Zhu, Bangfu; Nicholls, Matthew; Gu, Yu; Zhang, Gaofeng; Zhao, Chao; Franklin, Robin J M; Song, Bing

    2016-11-22

    The guided migration of neural cells is essential for repair in the central nervous system (CNS). Oligodendrocyte progenitor cells (OPCs) will normally migrate towards an injury site to re-sheath demyelinated axons; however the mechanisms underlying this process are not well understood. Endogenous electric fields (EFs) are known to influence cell migration in vivo, and have been utilised in this study to direct the migration of OPCs isolated from neonatal Sprague-Dawley rats. The OPCs were exposed to physiological levels of electrical stimulation, and displayed a marked electrotactic response that was dependent on β1 integrin, one of the key subunits of integrin receptors. We also observed that F-actin, an important component of the cytoskeleton, was re-distributed towards the leading edge of the migrating cells, and that this asymmetric rearrangement was associated with β1 integrin function.

  18. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress.

    Science.gov (United States)

    Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C

    2012-06-28

    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation.

  19. Involvement of multiple cell lineages in atherogenesis | Ogeng'o ...

    African Journals Online (AJOL)

    Involvement of multiple cell lineages in atherogenesis. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... smooth muscle cells, fibroblasts, stem cells, pericytes, mast cells, dendritic cells, macrophages and immigrant cells usually found in ...

  20. SOX2+ cell population from normal human brain white matter is able to generate mature oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Jorge Oliver-De La Cruz

    Full Text Available OBJECTIVES: A number of neurodegenerative diseases progress with a loss of myelin, which makes them candidate diseases for the development of cell-replacement therapies based on mobilisation or isolation of the endogenous neural/glial progenitor cells, in vitro expansion, and further implantation. Cells expressing A2B5 or PDGFRA/CNP have been isolated within the pool of glial progenitor cells in the subcortical white matter of the normal adult human brain, all of which demonstrate glial progenitor features. However, the heterogeneity and differentiation potential of this pool of cells is not yet well established. METHODS: We used diffusion tensor images, histopathology, and immunostaining analysis to demonstrate normal cytoarchitecture and the absence of abnormalities in human temporal lobe samples from patients with mesial temporal sclerosis. These samples were used to isolate and enrich glial progenitor cells in vitro, and later to detect such cells in vivo. RESULTS: We have identified a subpopulation of SOX2+ cells, most of them co-localising with OLIG2, in the white matter of the normal adult human brain in vivo. These cells can be isolated and enriched in vitro, where they proliferate and generate immature (O4+ and mature (MBP+ oligodendrocytes and, to a lesser extent, astrocytes (GFAP+. CONCLUSION: Our results demonstrate the existence of a new glial progenitor cell subpopulation that expresses SOX2 in the white matter of the normal adult human brain. These cells might be of use for tissue regeneration procedures.

  1. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    Directory of Open Access Journals (Sweden)

    Dae-Kwon Bae

    2016-01-01

    Full Text Available Since multiple sclerosis (MS is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG- induced experimental autoimmune encephalomyelitis (EAE model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP. The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF, ciliary neurotrophic factor (CNTF, and leukemia inhibitory factor (LIF. In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS.

  2. Intestinal lineage commitment of embryonic stem cells.

    Science.gov (United States)

    Cao, Li; Gibson, Jason D; Miyamoto, Shingo; Sail, Vibhavari; Verma, Rajeev; Rosenberg, Daniel W; Nelson, Craig E; Giardina, Charles

    2011-01-01

    Generating lineage-committed intestinal stem cells from embryonic stem cells (ESCs) could provide a tractable experimental system for understanding intestinal differentiation pathways and may ultimately provide cells for regenerating damaged intestinal tissue. We tested a two-step differentiation procedure in which ESCs were first cultured with activin A to favor formation of definitive endoderm, and then treated with fibroblast-conditioned medium with or without Wnt3A. The definitive endoderm expressed a number of genes associated with gut-tube development through mouse embryonic day 8.5 (Sox17, Foxa2, and Gata4 expressed and Id2 silent). The intestinal stem cell marker Lgr5 gene was also activated in the endodermal cells, whereas the Msi1, Ephb2, and Dcamkl1 intestinal stem cell markers were not. Exposure of the endoderm to fibroblast-conditioned medium with Wnt3A resulted in the activation of Id2, the remaining intestinal stem cell markers and the later gut markers Cdx2, Fabp2, and Muc2. Interestingly, genes associated with distal gut-associated mesoderm (Foxf2, Hlx, and Hoxd8) were also simulated by Wnt3A. The two-step differentiation protocol generated gut bodies with crypt-like structures that included regions of Lgr5-expressing proliferating cells and regions of cell differentiation. These gut bodies also had a smooth muscle component and some underwent peristaltic movement. The ability of the definitive endoderm to differentiate into intestinal epithelium was supported by the vivo engraftment of these cells into mouse colonic mucosa. These findings demonstrate that definitive endoderm derived from ESCs can carry out intestinal cell differentiation pathways and may provide cells to restore damaged intestinal tissue.

  3. PDGF is required for remyelination-promoting IgM stimulation of oligodendrocyte progenitor cell proliferation.

    Directory of Open Access Journals (Sweden)

    Jens O Watzlawik

    Full Text Available BACKGROUND: Promotion of remyelination is a major goal in treating demyelinating diseases such as multiple sclerosis (MS. The recombinant human monoclonal IgM, rHIgM22, targets myelin and oligodendrocytes (OLs and promotes remyelination in animal models of MS. It is unclear whether rHIgM22-mediated stimulation of lesion repair is due to promotion of oligodendrocyte progenitor cell (OPC proliferation and survival, OPC differentiation into myelinating OLs or protection of mature OLs. It is also unknown whether astrocytes or microglia play a functional role in IgM-mediated lesion repair. METHODS: We assessed the effect of rHIgM22 on cell proliferation in mixed CNS glial and OPC cultures by tritiated-thymidine uptake and by double-label immunocytochemistry using the proliferation marker, Ki-67. Antibody-mediated signaling events, OPC differentiation and OPC survival were investigated and quantified by Western blots. RESULTS: rHIgM22 stimulates OPC proliferation in mixed glial cultures but not in purified OPCs. There is no proliferative response in astrocytes or microglia. rHIgM22 activates PDGFαR in OPCs in mixed glial cultures. Blocking PDGFR-kinase inhibits rHIgM22-mediated OPC proliferation in mixed glia. We confirm in isolated OPCs that rHIgM22-mediated anti-apoptotic signaling and inhibition of OPC differentiation requires PDGF and FGF-2. We observed no IgM-mediated effect in mature OLs in the absence of PDGF and FGF-2. CONCLUSION: Stimulation of OPC proliferation by rHIgM22 depends on co-stimulatory astrocytic and/or microglial factors. We demonstrate that rHIgM22-mediated activation of PDGFαR is required for stimulation of OPC proliferation. We propose that rHIgM22 lowers the PDGF threshold required for OPC proliferation and protection, which can result in remyelination of CNS lesions.

  4. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness.

    Science.gov (United States)

    Murcia-Belmonte, Verónica; Esteban, Pedro F; Martínez-Hernández, José; Gruart, Agnès; Luján, Rafael; Delgado-García, José María; de Castro, Fernando

    2016-04-01

    During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.

  5. Lineage mapper: A versatile cell and particle tracker

    Science.gov (United States)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary

    2016-11-01

    The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov.

  6. Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue-inducer cell lineage.

    Science.gov (United States)

    Ishizuka, Isabel E; Chea, Sylvestre; Gudjonson, Herman; Constantinides, Michael G; Dinner, Aaron R; Bendelac, Albert; Golub, Rachel

    2016-03-01

    The precise lineage relationship between innate lymphoid cells (ILCs) and lymphoid tissue-inducer (LTi) cells is poorly understood. Using single-cell multiplex transcriptional analysis of 100 lymphoid genes and single-cell cultures of fetal liver precursor cells, we identified the common proximal precursor to these lineages and found that its bifurcation was marked by differential induction of the transcription factors PLZF and TCF1. Acquisition of individual effector programs specific to the ILC subsets ILC1, ILC2 and ILC3 was initiated later, at the common ILC precursor stage, by transient expression of mixed ILC1, ILC2 and ILC3 transcriptional patterns, whereas, in contrast, the development of LTi cells did not go through multilineage priming. Our findings provide insight into the divergent mechanisms of the differentiation of the ILC lineage and LTi cell lineage and establish a high-resolution 'blueprint' of their development.

  7. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    Science.gov (United States)

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-07

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.

  8. Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells

    Directory of Open Access Journals (Sweden)

    Sebastian Werneburg

    2015-05-01

    Full Text Available Oligodendrocyte precursor cells (OPCs are the progenitors of myelinating oligodendrocytes in brain development and repair. Successful myelination depends on the control of adhesiveness during OPC migration and axon contact formation. The decoration of cell surface proteins with the glycan polysialic acid (polySia is a key regulatory element of OPC interactions during development and under pathological conditions. By far the major protein carrier of polySia is the neural cell adhesion molecule NCAM, but recently, polysialylation of the synaptic cell adhesion molecule SynCAM 1 has been detected in the developing mouse brain. In mice, polySia-SynCAM 1 is associated with cells expressing NG2, a marker of a heterogeneous precursor cell population, which is the primary source for oligodendrocytes in development and myelin repair but can also give rise to astrocytes and possibly neurons. It is not yet clear if polySia-SynCAM 1 is expressed by OPCs and its occurrence in humans is elusive. By generating uniform human embryonic stem cell-derived OPC cultures, we demonstrate that polySia is present on human OPCs but down-regulated during differentiation into myelin basic protein-positive oligodendrocytes. PolySia on NCAM resides on the isoforms NCAM-180 and NCAM-140, and SynCAM 1 is identified as a novel polySia acceptor in human OPCs.

  9. CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo.

    Science.gov (United States)

    Talbott, Jason F; Cao, Qilin; Bertram, James; Nkansah, Michael; Benton, Richard L; Lavik, Erin; Whittemore, Scott R

    2007-03-01

    Delivery of factors capable of promoting oligodendrocyte precursor cell (OPC) survival and differentiation in vivo is an important therapeutic strategy for a variety of pathologies in which demyelination is a component, including multiple sclerosis and spinal cord injury. Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine that promotes both survival and maturation of a variety of neuronal and glial cell populations, including oligodendrocytes. Present results suggest that, although CNTF has a potent survival and differentiation promoting effect in vitro on OPCs isolated from the adult spinal cord, CNTF administration in vivo is not sufficient to promote oligodendrocyte remyelination in the glial-depleted environment of unilateral ethidium bromide (EB) lesions.

  10. Differential Effects of Isoxazole-9 on Neural Stem/Progenitor Cells, Oligodendrocyte Precursor Cells, and Endothelial Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Seong-Ho Koh

    Full Text Available Adult mammalian brain can be plastic after injury and disease. Therefore, boosting endogenous repair mechanisms would be a useful therapeutic approach for neurological disorders. Isoxazole-9 (Isx-9 has been reported to enhance neurogenesis from neural stem/progenitor cells (NSPCs. However, the effects of Isx-9 on other types of progenitor/precursor cells remain mostly unknown. In this study, we investigated the effects of Isx-9 on the three major populations of progenitor/precursor cells in brain: NSPCs, oligodendrocyte precursor cells (OPCs, and endothelial progenitor cells (EPCs. Cultured primary NSPCs, OPCs, or EPCs were treated with various concentrations of Isx-9 (6.25, 12.5, 25, 50 μM, and their cell numbers were counted in a blinded manner. Isx-9 slightly increased the number of NSPCs and effectively induced neuronal differentiation of NSPCs. However, Isx-9 significantly decreased OPC number in a concentration-dependent manner, suggesting cytotoxicity. Isx-9 did not affect EPC cell number. But in a matrigel assay of angiogenesis, Isx-9 significantly inhibited tube formation in outgrowth endothelial cells derived from EPCs. This potential anti-tube-formation effect of Isx-9 was confirmed in a brain endothelial cell line. Taken together, our data suggest that mechanisms and targets for promoting stem/progenitor cells in the central nervous system may significantly differ between cell types.

  11. MK-801 treatment affects glycolysis in oligodendrocytes more than in astrocytes and neuronal cells: insights for schizophrenia

    Directory of Open Access Journals (Sweden)

    Paul C Guest

    2015-05-01

    Full Text Available As a multifactorial disease, the underlying causes of schizophrenia require analysis by multiplex methods such as proteomics to allow identification of whole protein networks. Previous post-mortem proteomic studies on brain tissues from schizophrenia patients have demonstrated changes in activation of glycolytic and energy metabolism pathways. However, it is not known whether these changes occur in neurons or in glial cells. To address this question, we treated neuronal, astrocyte and oligodendrocyte cell lines with the NMDA receptor antagonist MK-801 and measured the levels of six glycolytic enzymes by Western blot analysis. MK-801 acts on the glutamatergic system and has been proposed as a pharmacological means of modeling schizophrenia. Treatment with MK-801 resulted in significant changes in the levels of glycolytic enzymes in all cell types. Most of the differences were found in oligodendrocytes, which had altered levels of hexokinase 1 (HK1, enolase 2 (ENO2, phosphoglycerate kinase (PGK and phosphoglycerate mutase 1 (PGAM1 after acute MK-801 treatment (8 hours, and HK1, ENO2, PGK and triosphosphate isomerase (TPI following long term treatment (72 hours. Addition of the antipsychotic clozapine to the cultures resulted in counter-regulatory effects to the MK-801 treatment by normalizing the levels of ENO2 and PGK in both the acute and long term cultures. In astrocytes, MK-801 affected only aldolase C (ALDOC under both acute conditions and HK1 and ALDOC following long term treatment, and TPI was the only enzyme affected under long term conditions in the neuronal cells. In conclusion, MK-801 affects glycolysis in oligodendrocytes to a larger extent than neuronal cells and this may be modulated by antipsychotic treatment. Although cell culture studies do not necessarily reflect the in vivo pathophysiology and drug effects within the brain, these results suggest that neurons, astrocytes and oligodendrocytes are affected differently in

  12. An in vitro study on the involvement of LINGO-1 and Rho GTPases in Nogo-A regulated differentiation of oligodendrocyte precursor cells.

    Science.gov (United States)

    Zhao, Xiang-Hui; Jin, Wei-Lin; Ju, Gong

    2007-10-01

    Nogo-A has been considered as one of the most important myelin-associated axonal regeneration inhibitors in the central nervous system. Recent studies have demonstrated various additional physiological roles of Nogo family members. To understand the possible effect of Nogo-A on the differentiation of oligodendrocytes, antibodies against distinct extracellular domains of Nogo-A were applied in cell cultures. Oligodendrocyte precursor cells from P2 rat cortex were grown in the presence of monoclonal antibody against the N-terminal inhibitory domain of Nogo-A or the C-terminal 66 amino acid loop of Nogo-A for 3 days, and the antibody treatment resulted in stunted process extension and inhibited differentiation of oligodendrocytes. Concomitant with morphology changes, Rho GTPases activity was greatly increased upon the antibody treatment and the expression level of LINGO-1, which was recently shown to be a negative regulator for the oligodendrocyte maturation, was upregulated in the process of antibody treatment. These results indicate that endogenous Nogo-A expressed in oligodendrocyte may act though Rho GTPase and LINGO-1 to influence the morphological differentiation of oligodendrocytes and will help us to understand the physiology role of Nogo-A in oligodendrocyte biology.

  13. What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?

    Directory of Open Access Journals (Sweden)

    Yeung Trevor M

    2011-09-01

    Full Text Available Abstract Background Spinal cord injury is a serious and debilitating condition, affecting millions of people worldwide. Long seen as a permanent injury, recent advances in stem cell research have brought closer the possibility of repairing the spinal cord. One such approach involves injecting oligodendrocyte progenitor cells, derived from human embryonic stem cells, into the injured spinal cord in the hope that they will initiate repair. A phase I clinical trial of this therapy was started in mid 2010 and is currently underway. Discussion The theory underlying this approach is that these myelinating progenitors will phenotypically replace myelin lost during injury whilst helping to promote a repair environment in the lesion. However, the importance of demyelination in the pathogenesis of human spinal cord injury is a contentious issue and a body of literature suggests that it is only a minor factor in the overall injury process. Summary This review examines the validity of the theory underpinning the on-going clinical trial as well as analysing published data from animal models and finally discussing issues surrounding safety and purity in order to assess the potential of this approach to successfully treat acute human spinal cord injury.

  14. Differential Protein Network Analysis of the Immune Cell Lineage

    Directory of Open Access Journals (Sweden)

    Trevor Clancy

    2014-01-01

    Full Text Available Recently, the Immunological Genome Project (ImmGen completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks.

  15. How to make an oligodendrocyte

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Kuypers, Nicholas J.

    2015-01-01

    and cerebral palsy, to multiple sclerosis and white matter stroke. Accordingly, replacing lost oligodendrocytes, whether by transplanting oligodendrocyte progenitor cells (OPCs) or by mobilizing endogenous progenitors, holds great promise as a therapeutic strategy for the diseases of central white matter....... In this Primer, we describe the molecular events regulating oligodendrocyte development and how our understanding of this process has led to the establishment of methods for producing OPCs and oligodendrocytes from embryonic stem cells and induced pluripotent stem cells, as well as directly from somatic cells....... In addition, we will discuss the safety of engrafted stem cell-derived OPCs, as well as approaches by which to modulate their differentiation and myelinogenesis in vivo following transplantation....

  16. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamprianou, Smaragda; Chatzopoulou, Elli; Thomas, Jean-Léon; Bouyain, Samuel; Harroch, Sheila (IP-Korea); (UPMC); (UMKC)

    2013-09-23

    The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.

  17. WIN55,212-2 protects oligodendrocyte precursor cells in stroke penumbra following permanent focal cerebral ischemia in rats

    OpenAIRE

    SUN, JING; Fang, Yin-quan; Ren, Hong; Tao CHEN; Guo, Jing-Jing; Yan, Jun; SONG, SHU; Zhang, Lu-yong; Liao, Hong

    2012-01-01

    Aim: To explore whether the synthetic cannabinoid receptor agonist WIN55,212-2 could protect oligodendrocyte precursor cells (OPCs) in stroke penumbra, thereby providing neuroprotection following permanent focal cerebral ischemia in rats. Methods: Adult male SD rats were subjected to permanent middle cerebral artery occlusion (p-MCAO). The animals were administered WIN55,212-2 at 2 h, and sacrificed at 24 h after the ischemic insult. The infarct volumes and brain swelling were assessed. The e...

  18. PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes.

    Directory of Open Access Journals (Sweden)

    Saravanan Kanakasabai

    Full Text Available Neural stem cells (NSCs are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS. Peroxisome proliferator-activated receptor gamma (PPARγ is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF and basic fibroblast growth factor (bFGF induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA and PPARγ agonist ciglitazone or 15-Deoxy-Δ(12,14-Prostaglandin J(2 (15d-PGJ2 resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3-7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3-7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases.

  19. Regulation of Oligodendrocyte Progenitor Cell Maturation by PPARδ: Effects on Bone Morphogenetic Proteins

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Simonini

    2009-12-01

    Full Text Available In EAE (experimental autoimmune encephalomyelitis, agonists of PPARs (peroxisome proliferator-activated receptors provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells, and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins. We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day, GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.

  20. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration.

    Science.gov (United States)

    Feng, Ji-Feng; Gao, Xiao-Fei; Pu, Ying-Yan; Burnstock, Geoffrey; Xiang, Zhenghua; He, Cheng

    2015-09-01

    Recruitment of oligodendrocyte precursor cells (OPCs) to the lesions is the most important event for remyelination after central nervous system (CNS) injury or in demyelinating diseases. However, the underlying molecular mechanism is not fully understood. In the present study, we found high concentrations of ATP could increase the number of migrating OPCs in vitro, while after pretreatment with oxidized ATP (a P2X7 receptor antagonist), the promotive effect was attenuated. The promotive effect of 2'(3')-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) (a P2X7 receptor agonist) was more potent than ATP. After incubation with BzATP, the activity of Fyn, one member of the Src family of kinases, was enhanced. Moreover, the interaction between P2X7 and Fyn was identified by co-immunoprecipitation. After blocking the activity of Fyn or down-regulating the expression of Fyn, the migration of OPCs induced by BzATP was inhibited. These data indicate that P2X7 receptors/Fyn may mediate ATP-induced OPC migration under pathological conditions.

  1. Bioenergetic Failure in Rat Oligodendrocyte Progenitor Cells Treated with Cerebrospinal Fluid Derived from Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Deepali Mathur

    2017-07-01

    Full Text Available In relapsing-remitting multiple sclerosis (RRMS subtype, the patient’s brain itself is capable of repairing the damage, remyelinating the axon and recovering the neurological function. Cerebrospinal fluid (CSF is in close proximity with brain parenchyma and contains a host of proteins and other molecules, which influence the cellular physiology, that may balance damage and repair of neurons and glial cells. The purpose of this study was to determine the pathophysiological mechanisms underpinning myelin repair in distinct clinical forms of MS and neuromyelitis optica (NMO patients by studying the effect of diseased CSF on glucose metabolism and ATP synthesis. A cellular model with primary cultures of oligodendrocyte progenitor cells (OPCs from rat cerebrum was employed, and cells were treated with CSF from distinct clinical forms of MS, NMO patients and neurological controls. Prior to comprehending mechanisms underlying myelin repair, we determine the best stably expressed reference genes in our experimental condition to accurately normalize our target mRNA transcripts. The GeNorm and NormFinder algorithms showed that mitochondrial ribosomal protein (Mrpl19, hypoxanthine guanine phosphoribosyl transferase (Hprt, microglobulin β2 (B2m, and transferrin receptor (Tfrc were identified as the best reference genes in OPCs treated with MS subjects and were used for normalizing gene transcripts. The main findings on microarray gene expression profiling analysis on CSF treated OPCs cells revealed a disturbed carbohydrate metabolism and ATP synthesis in MS and NMO derived CSF treated OPCs. In addition, using STRING program, we investigate whether gene–gene interaction affected the whole network in our experimental conditions. Our findings revealed downregulated expression of genes involved in carbohydrate metabolism, and that glucose metabolism impairment and reduced ATP availability for cellular damage repair clearly differentiate more benign forms

  2. Electroacupuncture promotes the proliferation of endogenous neural stem cells and oligodendrocytes in the injured spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    Haiying Wu; Min Hu; Dekai Yuan; Yunhui Wang; Jing Wang; Tao Li; Chuanyun Qian

    2012-01-01

    A contusive model of spinal cord injury at spinal segment T8-9 was established in rats. Huantiao (GB30) and Huatuojiaji (Ex-B05) were punctured with needles, and endogenous neural stem cells were labeled with 5-bromo-2'-deoxyuridine (BrdU) and NG2. Double immunofluorescence staining showed that electroacupuncture markedly increased the numbers of BrdU+/NG2+ cells at spinal cord tissue 15 mm away from the injury center in the rostral and caudal directions. The results suggest that electroacupuncture promotes the proliferation of endogenous neural stem cells and oligodendrocytes in rats with spinal cord injury.

  3. Cyclosporin A increases recovery after spinal cord injury but does not improve myelination by oligodendrocyte progenitor cell transplantation

    Directory of Open Access Journals (Sweden)

    Wang Feng-Chao

    2010-10-01

    Full Text Available Abstract Background Transplantation of oligodendrocyte precursor cells (OPCs is an attractive therapy for demyelinating diseases. Cyclosporin A (CsA is one of the foremost immunosuppressive agents and has widespread use in tissue and cell transplantation. However, whether CsA affects survival and differentiation of engrafted OPCs in vivo is unknown. In this study, the effect of CsA on morphological, functional and immunological aspects, as well as survival and differentiation of engrafted OPCs in injured spinal cord was explored. Results We transplanted green fluorescent protein (GFP expressed OPCs (GFP-OPCs into injured spinal cords of rats treated with or without CsA (10 mg/kg. Two weeks after cell transplantation, more GFP-positive cells were found in CsA-treated rats than that in vehicle-treated ones. However, the engrafted cells mostly differentiated into astrocytes, but not oligodendrocytes in both groups. In the CsA-treated group, a significant decrease in spinal cord lesion volume along with increase in spared myelin and neurons were found compared to the control group. Such histological improvement correlated well with an increase in behavioral recovery. Further study suggested that CsA treatment could inhibit infiltration of T cells and activation of resident microglia and/or macrophages derived from infiltrating monocytes in injured spinal cords, which contributes to the survival of engrafted OPCs and repair of spinal cord injury (SCI. Conclusions These results collectively indicate that CsA can promote the survival of engrafted OPCs in injured spinal cords, but has no effect on their differentiation. The engrafted cells mostly differentiated into astrocytes, but not oligodendrocytes. The beneficial effect of CsA on SCI and the survival of engrafted cells may be attributed to its neuroprotective effect.

  4. Cerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Girolamo, Francesco; Ferrara, Giovanni; Strippoli, Maurizio; Rizzi, Marco; Errede, Mariella; Trojano, Maria; Perris, Roberto; Roncali, Luisa; Svelto, Maria; Mennini, Tiziana; Virgintino, Daniela

    2011-09-01

    Experimentally induced autoimmune encephalomyelitis (EAE) in mice provides an animal model that shares many features with human demyelinating diseases such as multiple sclerosis (MS). To what extent the cerebral cortex is affected by the process of demyelination and how the corollary response of the oligodendrocyte lineage is explicated are still not completely known aspects of EAE. By performing a detailed in situ analysis of expression of myelin and oligodendrocyte markers we have identified areas of subpial demyelination in the cerebral cortex of animals with conventionally induced EAE conditions. On EAE-affected cerebral cortices, the distribution and relative abundance of cells of the oligodendrocyte lineage were assessed and compared with control mouse brains. The analysis demonstrated that A2B5(+) glial restricted progenitors (GRPs) and NG2(+)/PDGFR-α(+) oligodendrocyte precursor cells (OPCs) were increased in number during "early" disease, 20 days post MOG immunization, whereas in the "late" disease, 39 days post-immunization, they were strongly diminished, and there was an accompanying reduction in NG2(+)/O4(+) pre-oligodendrocytes and GST-π mature oligodendrocytes. These results, together with the observed steady-state amount of NG2(-)/O4(+) pre-myelinating oligodendrocytes, suggested that oligodendroglial precursors attempted to compensate for the progressive loss of myelin, although these cells appeared to fail to complete the last step of their differentiation program. Our findings confirm that this chronic model of EAE reproduces the features of neocortex pathology in progressive MS and suggest that, despite the proliferative response of the oligodendroglial precursors, the failure to accomplish final differentiation may be a key contributing factor to the impaired remyelination that characterizes these demyelinating conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Protandim Protects Oligodendrocytes against an Oxidative Insult

    Directory of Open Access Journals (Sweden)

    Jamie L. Lim

    2016-09-01

    Full Text Available Oligodendrocyte damage and loss are key features of multiple sclerosis (MS pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS and cytokines, such as tumor necrosis factor-α (TNF, which induce cell death and prevent the differentiation of oligodendrocyte progenitor cells (OPCs. Here, we investigated the efficacy of sulforaphane (SFN, monomethyl fumarate (MMF and Protandim to induce Nrf2-regulated antioxidant enzyme expression, and protect oligodendrocytes against ROS-induced cell death and ROS-and TNF-mediated inhibition of OPC differentiation. OLN-93 cells and primary rat oligodendrocytes were treated with SFN, MMF or Protandim resulting in significant induction of Nrf2-driven (antioxidant proteins heme oygenase-1, nicotinamide adenine dinucleotide phosphate (NADPH: quinone oxidoreductase-1 and p62/SQSTM1, as analysed by Western blotting. After incubation with the compounds, oligodendrocytes were exposed to hydrogen peroxide. Protandim most potently promoted oligodendrocyte cell survival as measured by live/death viability assay. Moreover, OPCs were treated with Protandim or vehicle control prior to exposing them to TNF or hydrogen peroxide for five days, which inhibited OPC differentiation. Protandim significantly promoted OPC differentiation under influence of ROS, but not TNF. Protandim, a combination of five herbal ingredients, potently induces antioxidants in oligodendrocytes and is able to protect oligodendrocytes against oxidative stress by preventing ROS-induced cell death and promoting OPC differentiation.

  6. Polycomb enables primitive endoderm lineage priming in embryonic stem cells

    DEFF Research Database (Denmark)

    Illingworth, Robert S; Hölzenspies, Jurriaan J; Roske, Fabian V

    2016-01-01

    Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver...... polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision....

  7. The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases

    Directory of Open Access Journals (Sweden)

    Diego eClemente

    2013-12-01

    Full Text Available Oligodendrocyte precursor cells (OPCs originate in specific areas of the developing central nervous system (CNS. Once generated, they migrate towards their destinations where they differentiate into mature oligodendrocytes. In the adult, 5-8% of all cells in the CNS are OPCs, cells that retain the capacity to proliferate, migrate and differentiate into oligodendrocytes. Indeed, these endogenous OPCs react to damage in demyelinating diseases, like multiple sclerosis (MS, representing a key element in spontaneous remyelination. In the present work, we review the specific interactions between OPCs and other glial cells (astrocytes, microglia during CNS development and in the pathological scenario of MS. We focus on: i the role of astrocytes in maintaining the homeostasis and spatial distribution of different secreted cues that determine OPC proliferation, migration and differentiation during CNS development; ii the role of microglia and astrocytes in the redistribution of iron, which is crucial for myelin synthesis during CNS development and for myelin repair in MS; iii how microglia secrete different molecules, e.g. growth factors, that favor the recruitment of OPCs in acute phases of MS lesions; and iv how astrocytes modify the extracellular matrix in MS lesions, affecting the ability of OPCs to attempt spontaneous remyelination. Together, these issues demonstrate how both astroglia and microglia influence OPCs in physiological and pathological situations, reinforcing the concept that both development and neural repair are complex and global phenomena. Understanding the molecular and cellular mechanisms that control OPC survival, proliferation, migration and differentiation during development, as well as in the mature CNS, may open new opportunities in the search for reparative therapies in demyelinating diseases like MS.

  8. Cell lineage analysis of the mammalian female germline.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    Full Text Available Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote. We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.

  9. Cell lineage analysis of the mammalian female germline.

    Science.gov (United States)

    Reizel, Yitzhak; Itzkovitz, Shalev; Adar, Rivka; Elbaz, Judith; Jinich, Adrian; Chapal-Ilani, Noa; Maruvka, Yosef E; Nevo, Nava; Marx, Zipora; Horovitz, Inna; Wasserstrom, Adam; Mayo, Avi; Shur, Irena; Benayahu, Dafna; Skorecki, Karl; Segal, Eran; Dekel, Nava; Shapiro, Ehud

    2012-01-01

    Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.

  10. Quiescence of adult oligodendrocyte precursor cells requires thyroid hormone and hypoxia to activate Runx1.

    Science.gov (United States)

    Tokumoto, Yasuhito; Tamaki, Shinpei; Kabe, Yasuaki; Takubo, Keiyo; Suematsu, Makoto

    2017-04-21

    The adult mammalian central nervous system (CNS) contains a population of slowly dividing oligodendrocyte precursor cells (OPCs), i.e., adult OPCs, which supply new oligodendrocytes throughout the life of animal. While adult OPCs develop from rapidly dividing perinatal OPCs, the mechanisms underlying their quiescence remain unknown. Here, we show that perinatal rodent OPCs cultured with thyroid hormone (TH) under hypoxia become quiescent and acquire adult OPCs-like characteristics. The cyclin-dependent kinase inhibitor p15/INK4b plays crucial roles in the TH-dependent cell cycle deceleration in OPCs under hypoxia. Klf9 is a direct target of TH-dependent signaling. Under hypoxic conditions, hypoxia-inducible factors mediates runt-related transcription factor 1 activity to induce G1 arrest in OPCs through enhancing TH-dependent p15/INK4b expression. As adult OPCs display phenotypes of adult somatic stem cells in the CNS, the current results shed light on environmental requirements for the quiescence of adult somatic stem cells during their development from actively proliferating stem/progenitor cells.

  11. Accelerated generation of oligodendrocyte progenitor cells from human induced pluripotent stem cells by forced expression of Sox10 and Olig2.

    Science.gov (United States)

    Li, Pengyan; Li, Mo; Tang, Xihe; Wang, Shuyan; Zhang, Y Alex; Chen, Zhiguo

    2016-11-01

    Oligodendrocyte progenitor cells (OPCs) hold great promise for treatment of dysmyelinating disorders, such as multiple sclerosis and cerebral palsy. Recent studies on generation of human OPCs mainly use human embryonic stem cells (hESCs) or neural stem cells (NSCs) as starter cell sources for the differentiation process. However, NSCs are restricted in availability and the present method for generation of oligodendrocytes (OLs) from ESCs often requires a lengthy period of time. Here, we demonstrated a protocol to efficiently derive OPCs from human induced pluripotent stem cells (hiPSCs) by forced expression of two transcription factors (2TFs), Sox10 and Olig2. With this method, PDGFRα(+) OPCs can be obtained in 14 days and O4(+) OPCs in 56 days. Furthermore, OPCs may be able to differentiate to mature OLs that could ensheath axons when co-cultured with rat cortical neurons. The results have implications in the development of autologous cell therapies.

  12. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans.

    Directory of Open Access Journals (Sweden)

    Eva María Medina-Rodríguez

    Full Text Available During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs, a cell type that is a significant proportion of the total cells (3-8% in the adult central nervous system (CNS of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.

  13. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Angelo H All

    Full Text Available BACKGROUND: Transplantations of human stem cell derivatives have been widely investigated in rodent models for the potential restoration of function of neural pathways after spinal cord injury (SCI. Studies have already demonstrated cells survival following transplantation in SCI. We sought to evaluate survival and potential therapeutic effects of transplanted human embryonic stem (hES cell-derived oligodendrocyte progenitor cells (OPCs in a contusive injury in rats. Bioluminescence imaging was utilized to verify survivability of cells up to 4 weeks, and somatosensory evoked potential (SSEPs were recorded at the cortex to monitor function of sensory pathways throughout the 6-week recovery period. PRINCIPAL FINDINGS: hES cells were transduced with the firefly luciferase gene and differentiated into OPCs. OPCs were transplanted into the lesion epicenter of rat spinal cords 2 hours after inducing a moderate contusive SCI. The hES-treatment group showed improved SSEPs, including increased amplitude and decreased latencies, compared to the control group. The bioluminescence of transplanted OPCs decreased by 97% in the injured spinal cord compared to only 80% when injected into an uninjured spinal cord. Bioluminescence increased in both experimental groups such that by week 3, no statistical difference was detected, signifying that the cells survived and proliferated independent of injury. Post-mortem histology of the spinal cords showed integration of human cells expressing mature oligodendrocyte markers and myelin basic protein without the expression of markers for astrocytes (GFAP or pluripotent cells (OCT4. CONCLUSIONS: hES-derived OPCs transplanted 2 hours after contusive SCI survive and differentiate into OLs that produce MBP. Treated rats demonstrated functional improvements in SSEP amplitudes and latencies compared to controls as early as 1 week post-injury. Finally, the hostile injury microenvironment at 2 hours post-injury initially caused

  14. Stochastic dynamics of interacting haematopoietic stem cell niche lineages.

    Directory of Open Access Journals (Sweden)

    Tamás Székely

    2014-09-01

    Full Text Available Since we still know very little about stem cells in their natural environment, it is useful to explore their dynamics through modelling and simulation, as well as experimentally. Most models of stem cell systems are based on deterministic differential equations that ignore the natural heterogeneity of stem cell populations. This is not appropriate at the level of individual cells and niches, when randomness is more likely to affect dynamics. In this paper, we introduce a fast stochastic method for simulating a metapopulation of stem cell niche lineages, that is, many sub-populations that together form a heterogeneous metapopulation, over time. By selecting the common limiting timestep, our method ensures that the entire metapopulation is simulated synchronously. This is important, as it allows us to introduce interactions between separate niche lineages, which would otherwise be impossible. We expand our method to enable the coupling of many lineages into niche groups, where differentiated cells are pooled within each niche group. Using this method, we explore the dynamics of the haematopoietic system from a demand control system perspective. We find that coupling together niche lineages allows the organism to regulate blood cell numbers as closely as possible to the homeostatic optimum. Furthermore, coupled lineages respond better than uncoupled ones to random perturbations, here the loss of some myeloid cells. This could imply that it is advantageous for an organism to connect together its niche lineages into groups. Our results suggest that a potential fruitful empirical direction will be to understand how stem cell descendants communicate with the niche and how cancer may arise as a result of a failure of such communication.

  15. Lineage-specific reprogramming as a strategy for cell therapy.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2008-06-15

    Embryonic stem (ES) cells are endowed with extensive ability for self renewal and differentiation. These features make them a promising candidate for cell therapy. However, despite the enthusiasm and hype surrounding the potential therapeutic use of human ES cells and more recently induced pluripotent stem (iPS) cells, to date few reports have documented successful therapeutic outcome with ES-derived cell populations. This is probably due to two main caveats associated with ES cells, their capacity to form teratomas and the challenge of isolating the appropriate therapeutic cell population from differentiating ES cells. We have focused our efforts on the derivation of skeletal muscle progenitors from ES cells and here we will discuss the strategy of reprogramming lineage choices by overexpression of a master regulator, which has proven successful for the generation of the skeletal myogenic lineage from mouse ES cells.

  16. Ex vivo differentiation of human bone marrow-derived stem cells into neuronal cell-like lineages

    Directory of Open Access Journals (Sweden)

    Al-Zoubi A

    2016-06-01

    -like cells, whereas culturing of purified CD133+ hBM-SCs in the same media favored their differentiation into neuronal-like cells. Interestingly, coculturing of CD34+ and CD133+ hBM-SCs in the same media enhanced the differentiation into astrocyte-like cells and neuronal-like cells, in addition to oligodendrocyte-like cells. Conclusion: These results suggest that a mixture of purified CD34+ and CD133+ cells may enhance the differentiation into neuronal cell-like lineages and give broader neuronal cell lineages than when each of these cell types is cultured alone. This method opens the window for the utilization of specific populations of hBM-SCs to be delivered in a purified form for the potential treatment of neurodegenerative diseases in the future. Keywords: cell therapy, neurodegenerative disease, neurons, astrocyes, CD34+, CD133+, MACS

  17. Differentiation into Endoderm Lineage: Pancreatic differentiation from Embryonic Stem Cells

    OpenAIRE

    2011-01-01

    The endoderm gives rise to digestive and respiratory tracts, thyroid, liver, and pancreas. Representative disease of endoderm lineages is type 1 diabetes resulting from destruction of the insulin-producing β cells. Generation of functional β cells from human embryonic stem (ES) cells in vitro can be practical, renewable cell source for replacement cell therapy for type 1 diabetes. It has been achieved by progressive instructive differentiation through each of the developmental stages. In this...

  18. Renin Lineage Cells Repopulate the Glomerular Mesangium after Injury

    OpenAIRE

    Starke, Charlotte; Betz, Hannah; Hickmann, Linda; Lachmann, Peter; Neubauer, Björn; Kopp, Jeffrey B.; Sequeira-Lopez, Maria Luisa S; Gomez, R. Ariel; Hohenstein, Bernd; Todorov, Vladimir T.; Hugo, Christian P. M.

    2014-01-01

    Mesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS. In enhanced green fluorescent protein–reporter mice with constitutively labeled renin lineage cells, the size of...

  19. Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage.

    Directory of Open Access Journals (Sweden)

    Cristiana Leite

    Full Text Available Mesenchymal stem cells (MSCs are viewed as safe, readily available and promising adult stem cells, which are currently used in several clinical trials. Additionally, their soluble-factor secretion and multi-lineage differentiation capacities place MSCs in the forefront of stem cell types with expected near-future clinical applications. In the present work MSCs were isolated from the umbilical cord matrix (Wharton's jelly of human umbilical cord samples. The cells were thoroughly characterized and confirmed as bona-fide MSCs, presenting in vitro low generation time, high proliferative and colony-forming unit-fibroblast (CFU-F capacity, typical MSC immunophenotype and osteogenic, chondrogenic and adipogenic differentiation capacity. The cells were additionally subjected to an oligodendroglial-oriented step-wise differentiation protocol in order to test their neural- and oligodendroglial-like differentiation capacity. The results confirmed the neural-like plasticity of MSCs, and suggested that the cells presented an oligodendroglial-like phenotype throughout the differentiation protocol, in several aspects sharing characteristics common to those of bona-fide oligodendrocyte precursor cells and differentiated oligodendrocytes.

  20. Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device.

    Science.gov (United States)

    Didar, Tohid Fatanat; Li, Kebin; Veres, Teodor; Tabrizian, Maryam

    2013-07-01

    Despite the advances made in the field of regenerative medicine, the progress in cutting-edge technologies for separating target therapeutic cells are still at early stage of development. These cells are often rare, such as stem cells or progenitor cells that their overall properties should be maintained during the separation process for their subsequent application in regenerative medicine. This work, presents separation of oligodendrocyte progenitor cells (OPCs) from rat brain primary cultures using an integrated thermoplastic elastomeric (TPE)- based multilayer microfluidic device fabricated using hot-embossing technology. OPCs are frequently used in recovery, repair and regeneration of central nervous system after injuries. Indeed, their ability to differentiate in vitro into myelinating oligodendrocytes, are extremely important for myelin repair. OPCs form 5-10% of the glial cells population. The traditional macroscale techniques for OPCs separation require pre-processing of cells and/or multiple time consuming steps with low efficiency leading very often to alteration of their properties. The proposed methodology implies to separate OPCs based on their smaller size compared to other cells from the brain tissue mixture. Using aforementioned microfluidic chip embedded with a 5 μm membrane pore size and micropumping system, a separation efficiency more than 99% was achieved. This microchip was able to operate at flow rates up to 100 μl/min, capable of separating OPCs from a confluent 75 cm(2) cell culture flask in less than 10 min, which provides us with a high-throughput and highly efficient separation expected from any cell sorting techniques.

  1. Transplantation of PDGF-AA-Overexpressing Oligodendrocyte Precursor Cells Promotes Recovery in Rat Following Spinal Cord Injury

    Science.gov (United States)

    Yao, Zong-Feng; Wang, Ying; Lin, Yu-Hong; Wu, Yan; Zhu, An-You; Wang, Rui; Shen, Lin; Xi, Jin; Qi, Qi; Jiang, Zhi-Quan; Lü, He-Zuo; Hu, Jian-Guo

    2017-01-01

    Our previous study showed that Schwann cells (SCs) promote survival, proliferation and migration of co-transplanted oligodendrocyte progenitor cells (OPCs) and neurological recovery in rats with spinal cord injury (SCI). A subsequent in vitro study confirmed that SCs modulated OPC proliferation and migration by secreting platelet-derived growth factor (PDGF)-AA and fibroblast growth factor-2 (FGF)-2. We also found that PDGF-AA stimulated OPC proliferation and their differentiation into oligodendrocytes (OLs) at later stages. We therefore speculated that PDGF-AA administration can exert the same effect as SC co-transplantation in SCI repair. To test this hypothesis, in this study we investigated the effect of transplanting PDGF-AA-overexpressing OPCs in a rat model of SCI. We found that PDGF-AA overexpression in OPCs promoted their survival, proliferation, and migration and differentiation into OLs in vivo. OPCs overexpressing PDGF-AA were also associated with increased myelination and tissue repair after SCI, leading to the recovery of neurological function. These results indicate that PDGF-AA-overexpressing OPCs may be an effective treatment for SCI.

  2. Improved differentiation of oligodendrocyte precursor cells and neurological function after spinal cord injury in rats by oscillating field stimulation.

    Science.gov (United States)

    Jing, J-H; Qian, J; Zhu, N; Chou, W-B; Huang, X-J

    2015-09-10

    Oscillating field stimulation (OFS) has been used in attempts to treat spinal cord injury (SCI) and has been shown to improve remyelination after SCI in rats. However, some controversies regarding the effects of OFS have been presented in previous papers. Oligodendrocytes (OLs) are the main cell for remyelination and are derived from the differentiation of oligodendrocyte precursor cells (OPCs). To date, it has been unclear whether the differentiation of OPCs can be regulated by OFS. The goal of this study was to determine if OFS can improve the differentiation of OPCs and promote the recovery of neurological function after SCI in rats. Immature and mature OLs were observed in spinal cord slices through immunofluorescence staining. Levels of adenosine triphosphate (ATP) and the cytokine leukemia inhibitory factor (LIF) were detected by enzyme-linked immunosorbent assay (ELISA). Basso-Beattie-Bresnahan (BBB) scores and transcranial magnetic motor-evoked potentials (tcMMEPs) were used to evaluate the locomotor outcomes of rats after SCI. Our results showed a significant improvement in the differentiation of OPCs and the content of ATP and LIF in the injured spinal cord in the OFS group. Furthermore, BBB scores and tcMMEPs were significantly improved in the rats stimulated by OFS. These findings suggest that OFS can improve the differentiation of OPCs and promote the recovery of neurological function following SCI in rats. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Stem cell lineage specification: you become what you eat.

    Science.gov (United States)

    Folmes, Clifford D L; Terzic, Andre

    2014-09-02

    Nutrient availability and intermediate metabolism are increasingly recognized to govern stem cell behavior. Oburoglu et al. (2014) now demonstrate that glutamine- and glucose-dependent nucleotide synthesis segregate erythroid versus myeloid differentiation during hematopoietic stem cell specification, implicating a metabolism-centric regulation of lineage choices.

  4. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly compl

  5. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly compl

  6. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction

    NARCIS (Netherlands)

    Ye, F.; Chen, Y.; Hoang, T.; Montgomery, R.L.; Zhao, X.H.; Bu, H.; Hu, T.; Taketo, M.M.; van Es, J.H.; Clevers, H.; Hsieh, J.; Bassel-Duby, R.; Olson, E.N.; Lu, Q.R.

    2009-01-01

    Oligodendrocyte development is regulated by the interaction of repressors and activators in a complex transcriptional network. We found that two histone-modifying enzymes, HDAC1 and HDAC2, were required for oligodendrocyte formation. Genetic deletion of both Hdac1 and Hdac2 in oligodendrocyte lineag

  7. Independent Stem Cell Lineages Regulate Adipose Organogenesis and Adipose Homeostasis

    Directory of Open Access Journals (Sweden)

    Yuwei Jiang

    2014-11-01

    Full Text Available Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult progenitors are specified during the developmental period and express PPARγ, they have distinct microanatomical, functional, morphogenetic, and molecular profiles. Furthermore, the two compartments derive from different lineages; whereas adult adipose progenitors fate-map from an SMA+ mural lineage, developmental progenitors do not. Remarkably, the adult progenitor compartment appears to be specified earlier than the developmental cells and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide a discrete therapeutic target for childhood and adult obesity.

  8. Protandim Protects Oligodendrocytes against an Oxidative Insult

    NARCIS (Netherlands)

    Lim, Jamie L; van der Pol, Susanne M A; Baron, Wia; McCord, Joe M; de Vries, Helga E; van Horssen, Jack

    2016-01-01

    Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of

  9. Protandim Protects Oligodendrocytes against an Oxidative Insult

    NARCIS (Netherlands)

    Lim, Jamie L; van der Pol, Susanne M A; Baron, Wia; McCord, Joe M; de Vries, Helga E; van Horssen, Jack

    2016-01-01

    Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of oligodendrocy

  10. Slit/Robo Signaling Regulates Cell Fate Decisions in the Intestinal Stem Cell Lineage of Drosophila

    Directory of Open Access Journals (Sweden)

    Benoît Biteau

    2014-06-01

    Full Text Available In order to maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here, we identify a signal from enteroendocrine cells (EEs that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in intestinal stem cells (ISCs that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. Furthermore, we show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage.

  11. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila.

    Science.gov (United States)

    Biteau, Benoît; Jasper, Heinrich

    2014-06-26

    In order to maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here, we identify a signal from enteroendocrine cells (EEs) that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in intestinal stem cells (ISCs) that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. Furthermore, we show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage.

  12. Developmental origin and lineage plasticity of endogenous cardiac stem cells.

    Science.gov (United States)

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P; Kovacic, Jason C

    2016-04-15

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.

  13. In vitro expanded stem cells from the developing retina fail to generate photoreceptors but differentiate into myelinating oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Magdalena Czekaj

    Full Text Available Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive 'retinal stem cells' ('RSCs' can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, 'RSCs', by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, 'RSCs' can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that 'RSCs' expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.

  14. In vitro expanded stem cells from the developing retina fail to generate photoreceptors but differentiate into myelinating oligodendrocytes.

    Science.gov (United States)

    Czekaj, Magdalena; Haas, Jochen; Gebhardt, Marlen; Müller-Reichert, Thomas; Humphries, Peter; Farrar, Jane; Bartsch, Udo; Ader, Marius

    2012-01-01

    Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive 'retinal stem cells' ('RSCs') can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, 'RSCs', by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, 'RSCs' can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that 'RSCs' expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.

  15. Ba2+- and bupivacaine-sensitive background K+ conductances mediate rapid EPSP attenuation in oligodendrocyte precursor cells.

    Science.gov (United States)

    Chan, Chu-Fang; Kuo, Tzu-Wei; Weng, Ju-Yun; Lin, Yen-Chu; Chen, Ting-Yu; Cheng, Jen-Kun; Lien, Cheng-Chang

    2013-10-01

    Glutamatergic transmission onto oligodendrocyte precursor cells (OPCs) may regulate OPC proliferation, migration and differentiation. Dendritic integration of excitatory postsynaptic potentials (EPSPs) is critical for neuronal functions, and mechanisms regulating dendritic propagation and summation of EPSPs are well understood. However, little is known about EPSP attenuation and integration in OPCs. We developed realistic OPC models for synaptic integration, based on passive membrane responses of OPCs obtained by simultaneous dual whole-cell patch-pipette recordings. Compared with neurons, OPCs have a very low value of membrane resistivity, which is largely mediated by Ba(2+)- and bupivacaine-sensitive background K(+) conductances. The very low membrane resistivity not only leads to rapid EPSP attenuation along OPC processes but also sharpens EPSPs and narrows the temporal window for EPSP summation. Thus, background K(+) conductances regulate synaptic responses and integration in OPCs, thereby affecting activity-dependent neuronal control of OPC development and function.

  16. Gene pair signatures in cell type transcriptomes reveal lineage control

    Science.gov (United States)

    Heinäniemi, Merja; Nykter, Matti; Kramer, Roger; Wienecke-Baldacchino, Anke; Sinkkonen, Lasse; Zhou, Joseph Xu; Kreisberg, Richard; Kauffman, Stuart A.; Huang, Sui; Shmulevich, Ilya

    2013-01-01

    The distinct cell types of multicellular organisms arise due to constraints imposed by gene regulatory networks on the collective change of gene expression across the genome, creating self-stabilizing expression states, or attractors. We compiled a resource of curated human expression data comprising 166 cell types and 2,602 transcription regulating genes and developed a data driven method built around the concept of expression reversal defined at the level of gene pairs, such as those participating in toggle switch circuits. This approach allows us to organize the cell types into their ontogenetic lineage-relationships and to reflect regulatory relationships among genes that explain their ability to function as determinants of cell fate. We show that this method identifies genes belonging to regulatory circuits that control neuronal fate, pluripotency and blood cell differentiation, thus offering a novel large-scale perspective on lineage specification. PMID:23603899

  17. Cell lineage analysis in human brain using endogenous retroelements.

    Science.gov (United States)

    Evrony, Gilad D; Lee, Eunjung; Mehta, Bhaven K; Benjamini, Yuval; Johnson, Robert M; Cai, Xuyu; Yang, Lixing; Haseley, Psalm; Lehmann, Hillel S; Park, Peter J; Walsh, Christopher A

    2015-01-07

    Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sublineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Renin Lineage Cells Repopulate the Glomerular Mesangium after Injury

    Science.gov (United States)

    Starke, Charlotte; Betz, Hannah; Hickmann, Linda; Lachmann, Peter; Neubauer, Björn; Kopp, Jeffrey B.; Sequeira-Lopez, Maria Luisa S.; Gomez, R. Ariel; Hohenstein, Bernd; Hugo, Christian P.M.

    2015-01-01

    Mesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS. In enhanced green fluorescent protein–reporter mice with constitutively labeled renin lineage cells, the size of the enhanced green fluorescent protein–positive area in the glomerular tufts increased after mesangial injury. Furthermore, we generated a novel Tet-on inducible triple-transgenic LacZ reporter line that allowed selective labeling of renin cells along renal afferent arterioles of adult mice. Although no intraglomerular LacZ expression was detected in healthy mice, about two-thirds of the glomerular tufts became LacZ positive during the regenerative phase after severe mesangial injury. Intraglomerular renin descendant LacZ-expressing cells colocalized with mesangial cell markers α8-integrin and PDGF receptor-β but not with endothelial, podocyte, or parietal epithelial cell markers. In contrast with LacZ-positive cells in the afferent arterioles, LacZ-positive cells in the glomerular tuft did not express renin. These data demonstrate that extraglomerular renin lineage cells represent a major source of repopulating cells for reconstitution of the intraglomerular mesangium after injury. PMID:24904091

  19. SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.

    Science.gov (United States)

    Zhu, Chang; Yao, Wen-Long; Tan, Wei; Zhang, Chuan-Han

    2017-02-15

    Evidence has shown that stromal cell-derived factor (SDF-1/CXCL12) plays an important role in maintaining adult neural progenitor cells (NPCs). SDF-1 is also known to enhance recovery by recruiting NPCs to damaged regions and recent studies have revealed that SDF-1α exhibits pleiotropism, thereby differentially affecting NPC subpopulations. In this study, we investigated the role of SDF-1 in in vitro NPC self-renewal, proliferation and differentiation, following treatment with different concentrations of SDF-1 or a CXCR4 antagonist, AMD3100. We observed that AMD3100 inhibited the formation of primary neurospheres. However, SDF-1 and AMD3100 exhibited no effect on proliferation upon inclusion of growth factors in the media. Following growth factor withdrawal, AMD3100 and SDF-1 treatment resulted in differential effects on NPC proliferation. SDF-1, at a concentration of 500ng/ml, resulted in an increase in the relative proportion of oligodendrocytes following growth factor withdrawal-induced differentiation. Using CXCR4 knockout mice, we observed that SDF-1 affected NPC proliferation in the sub-ventricular zone (SVZ). We also investigated the occurrence of differential CXCR4 expression at different stages during lineage progression. These results clearly indicate that signaling interactions between SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.

  20. Platelet-derived growth factor delays oligodendrocyte differentiation and axonal myelination in vivo in the anterior medullary velum of the developing rat.

    Science.gov (United States)

    Butt, A M; Hornby, M F; Kirvell, S; Berry, M

    1997-06-15

    The AA dimeric form of platelet-derived growth factor (PDGF-AA) is implicated in the differentiation of cells of the oligodendrocyte lineage, which express PDGF receptors of the alpha subunit type (PDGF-alphaR). In the present study, we show that a single injection of PDGF-AA into the cerebrospinal fluid of neonatal rats delays oligodendrocyte differentiation and interrupts the progress of myelination in the anterior medullary velum (AMV), a white matter tract roofing the IVth ventricle of the brain. PDGF-AA or saline was injected intrathecally in postnatal day (P) 7 rats, and the AMV was subsequently removed and immunolabelled with the oligodendrocyte-specific antibody Rip, at P9, P12, and P21, corresponding to postinjection days (PID) 2, 5, and 14. At P9 (PID2), myelination was retarded in PDGF-AA-treated rats as opposed to saline-treated controls but progressed rapidly after P12 (PID5). Quantification supported the qualitative observations that PDGF-AA mediated an acute decrease in the number of Rip+ oligodendrocytes at P9-12, which largely recovered by P21, suggesting that PDGF-AA may have delayed recruitment of myelinating oligodendrocytes. However, the definitive number of Rip+ oligodendrocytes in the AMV was not increased, suggesting that its action as a promoter of early oligodendrocyte survival may not ultimately affect the definitive number of myelinating oliogdendrocytes in vivo. We discuss the possibilities that excess PDGF-AA may have acted on early oligodendrocytes (precursors or preoligodendrocytes) to either (1) delay their differentiation by maintaining them in the cell cycle or (2) accelerate their differentiation, which may result in premature cell death in the absence of synchronised survival signals. This study supports a role for PDGF-AA in the timing of oligodendrocyte differentiation in vivo, as has been shown in vitro.

  1. Role of Sonic Hedgehog Signaling in Oligodendrocyte Differentiation.

    Science.gov (United States)

    Wang, Li-Chun; Almazan, Guillermina

    2016-12-01

    During development, the secreted molecule Sonic Hedgehog (Shh) is required for lineage specification and proliferation of oligodendrocyte progenitors (OLPs), which are the glia cells responsible for the myelination of axons in the central nervous system (CNS). Shh signaling has been implicated in controlling both the generation of oligodendrocytes (OLGs) during embryonic development and their production in adulthood. Although, some evidence points to a role of Shh signaling in OLG development, its involvement in OLG differentiation remains to be fully determined. The objective of this study was to assess whether Shh signaling is involved in OLG differentiation after neural stem cell commitment to the OLG lineage. To address these questions, we manipulated Shh signaling using cyclopamine, a potent inhibitor of Shh signaling activator Smoothened (Smo), alone or combined with the agonist SAG in OLG primary cultures and assessed expression of myelin-specific markers. We found that inactivation of Shh signaling caused a dose-dependent decrease in myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in differentiating OLGs. Co-treatment of the cells with SAG reversed the inhibitory effect of cyclopamine on both myelin-specific protein levels and morphological changes associated with it. Further experiments are required to elucidate the molecular mechanism by which Shh signaling regulates OLG differentiation.

  2. Cell lineages, growth and repair of the mouse heart.

    Science.gov (United States)

    Lescroart, Fabienne; Meilhac, Sigolène M

    2012-01-01

    The formation of the heart involves diversification of lineages which differentiate into distinct cardiac cell types or contribute to different regions such as the four cardiac chambers. The heart is the first organ to form in the embryo. However, in parallel with the growth of the organism, before or after birth, the heart has to adapt its size to maintain pumping efficiency. The adult heart has only a mild regeneration potential; thus, strategies to repair the heart after injury are based on the mobilisation of resident cardiac stem cells or the transplantation of external sources of stem cells. We discuss current knowledge on these aspects and raise questions for future research.

  3. The "Yin" and "Yang" of Cell Cycle Progression and Differentiation in the Oligodendroglial Lineage

    Science.gov (United States)

    Nguyen, Laurent; Borgs, Laurence; Vandenbosch, Renaud; Mangin, Jean-Marie; Beukelaers, Pierre; Moonen, Gustave; Gallo, Vittorio; Malgrange, Brigitte; Belachew, Shibeshih

    2006-01-01

    In white matter disorders such as leukodystrophies (LD), periventricular leucomalacia (PVL), or multiple sclerosis (MS), the hypomyelination or the remyelination failure by oligodendrocyte progenitor cells involves errors in the sequence of events that normally occur during development when progenitors proliferate, migrate through the white…

  4. Optical imaging for stem cell differentiation to neuronal lineage.

    Science.gov (United States)

    Hwang, Do Won; Lee, Dong Soo

    2012-03-01

    In regenerative medicine, the prospect of stem cell therapy holds great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell- or tissue-specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating into a neuronal lineage. The detection limit of weak promoters or reporter genes can be greatly enhanced by adopting a yeast GAL4 amplification system or an engineering-enhanced luciferase reporter gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously.

  5. Polycomb enables primitive endoderm lineage priming in embryonic stem cells

    Science.gov (United States)

    Illingworth, Robert S; Hölzenspies, Jurriaan J; Roske, Fabian V; Bickmore, Wendy A; Brickman, Joshua M

    2016-01-01

    Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver of these coordinated changes, known as lineage priming, in a process that exploits novel polycomb activities. We find that intragenic levels of the polycomb mark H3K27me3 anti-correlate with changes in transcription, irrespective of the gene’s developmental trajectory or identity as a polycomb target. In contrast, promoter proximal H3K27me3 is markedly higher for PrEn priming genes. Consequently, depletion of this modification stimulates the degree to which ESCs are primed towards PrEn when challenged to differentiate, but has little effect on gene expression in self-renewing ESC culture. These observations link polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision. DOI: http://dx.doi.org/10.7554/eLife.14926.001 PMID:27723457

  6. Protective Effects of Berberine on Oxygen-Glucose Deprivation/Reperfusion on Oligodendrocyte Cell Line (OLN-93

    Directory of Open Access Journals (Sweden)

    Shabnam Nadjafi

    2014-01-01

    Conclusions: We concluded that berberine protected OLN-93 oligodendrocyte against ischemic induced excitotoxic injury. Attenuation of intracellular Ca 2+ overload by berberine may be the key mechanism that saved OLN-93 from excitotoxicity damage.

  7. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  8. Astrocytes induce proliferation of oligodendrocyte progenitor cells via connexin 47-mediated activation of the ERK/Id4 pathway.

    Science.gov (United States)

    Liu, Zhaoyu; Xu, Dan; Wang, Shang; Chen, Yi; Li, Zhen; Gao, Xiaoyan; Jiang, Lu; Tang, Yong; Peng, Yan

    2017-04-03

    The proliferative ability of oligodendrocyte progenitor cells (OPCs) varied markedly under different culture conditions. Astrocytes (ASTs) have been verified to play a major role in regulating the proliferation of OPCs through direct contact. However, the mechanisms have not been fully clarified. To investigate the effect and mechanism under AST and OPC co-culture conditions, we analyzed all connexins comprehensively in OPCs under OPC mono-culture, AST-secreted cell factor co-culture and AST-OPC direct-contact co-culture, and found that significantly differentially expressed Cx47 was the most significant. To assess whether Cx47 plays a role in proliferation, Cx47 siRNA were conducted. The result indicates that the cell cycle of OPCs was changed, and the cell proliferation was markedly inhibited. Kyoto Encyclopedia of Genes and Genomes (KEGG) predictive analysis suggested that Cx47 regulate cell cycle and proliferation by Ca(2+) activation of ERK1/2. To verify the prediction, flow cytometry, confocal microscopy, 5-ethynyl-2'-deoxyuridine (EdU), polymerase chain reaction (RT-PCR) and western blot were used. The results show that interference of Cx47 led to decreased Ca(2+) concentrations, lower p-ERK 1/2 levels, reduced transcription factor inhibitor of DNA binding 4 (Id4) expression, arrested cell cycle and reduced OPCs proliferative ability. Additionally, blocking ERK1/2 signaling caused decreased Id4 expression, arrested cell cycle in G1 phase, and reduced OPCs proliferative ability. In conclusion, ASTs can cause Ca(2+) signaling activation, ERK1/2 phosphorylation, and Id4 expression stimulation in OPCs, inducing proliferation of these cells, mainly through Cx47.

  9. WIN55,212-2 protects oligodendrocyte precursor cells in stroke penumbra following permanent focal cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Jing SUN; Yin-quan FANG; Hong REN; Tao CHEN; Jing-jing GUO; Jun YAN; Shu SONG; Lu-yong ZHANG; Hong LIAO

    2013-01-01

    Aim:To explore whether the synthetic cannabinoid receptor agonist WIN55,212-2 could protect oligodendrocyte precursor cells (OPCs)in stroke penumbra,thereby providing neuroprotection following permanent focal cerebral ischemia in rats.Methods:Adult male SD rats were subjected to permanent middle cerebral artery occlusion (p-MCAO).The animals were administered WIN55,212-2 at 2 h,and sacrificed at 24 h after the ischemic insult.The infarct volumes and brain swelling were assessed.The expression of cannabinoid receptor type 1 (CB1) in the stroke penumbra was examined using Western blot assay.The pathological changes and proliferation of neural glial antigen 2-positive OPCs (NG2+ cells) in the stroke penumbra were studied using immunohistochemistry staining.Results:p-MCAO significantly increased the expression of CB1 within the stroke penumbra with the highest level appearing at 2 h following the ischemic insult.Administration of WIN55,212-2 (9 mg/kg,iv) significantly attenuated the brain swelling,and reduced the infarct volume as well as the number of tau-immunoreactive NG2+ cells (tau-1+/NG2+ cells) in the stroke penumbra.Moreover,WIN55,212-2 significantly promoted the proliferation of NG2+ cells in the stroke penumbra and in the ipsilateral subventricular zone at 24 h following the ischemic insult.Administration of the selective CB1 antagonist rimonabant (1 mg/kg,iv) partially blocked the effects caused by WIN55,212-2.Conclusion:Tau-1 is expressed in NG2+ cells following permanent focal cerebral ischemic injury.Treatment with WIN55,212-2 reduces the number of tau-1+/NG2+ cells and promotes NG2+ cell proliferation in the stroke penumbra,which are mediated partially via CB1 and may contribute to its neuroprotective effects.

  10. Cell Expansion During Directed Differentiation of Stem Cells Toward the Hepatic Lineage.

    Science.gov (United States)

    Raju, Ravali; Chau, David; Cho, Dong Seong; Park, Yonsil; Verfaillie, Catherine M; Hu, Wei-Shou

    2017-02-15

    The differentiation of human pluripotent stem cells toward the hepatocyte lineage can potentially provide an unlimited source of functional hepatocytes for transplantation and extracorporeal bioartificial liver applications. It is anticipated that the quantities of cells needed for these applications will be in the order of 10(9)-10(10) cells, because of the size of the liver. An ideal differentiation protocol would be to enable directed differentiation to the hepatocyte lineage with simultaneous cell expansion. We introduced a cell expansion stage after the commitment of human embryonic stem cells to the endodermal lineage, to allow for at least an eightfold increase in cell number, with continuation of cell maturation toward the hepatocyte lineage. The progressive changes in the transcriptome were measured by expression array, and the expression dynamics of certain lineage markers was measured by mass cytometry during the differentiation and expansion process. The findings revealed that while cells were expanding they were also capable of progressing in their differentiation toward the hepatocyte lineage. In addition, our transcriptome, protein and functional studies, including albumin secretion, drug-induced CYP450 expression and urea production, all indicated that the hepatocyte-like cells obtained with or without cell expansion are very similar. This method of simultaneous cell expansion and hepatocyte differentiation should facilitate obtaining large quantities of cells for liver cell applications.

  11. Oscillating field stimulation promotes spinal cord remyelination by inducing differentiation of oligodendrocyte precursor cells after spinal cord injury.

    Science.gov (United States)

    Zhang, Cheng; Zhang, Guanghao; Rong, Wei; Wang, Aihua; Wu, Changzhe; Huo, Xiaolin

    2014-01-01

    Demyelination is part of the cascading secondary injury after the primary insult and contributes to the loss of function after spinal cord injury (SCI). Oligodendrocyte precursor cells (OPCs) are the main remyelinating cells in the central nervous system (CNS). We explored whether oscillating field stimulation (OFS) could efficiently promote OPC differentiation and improve remyelination after SCI. SD rats with SCI induced by the Allen method were randomly divided into two groups, the SCI+OFS group and SCI group. The former group received active stimulator units and the latter group received sham (inoperative) stimulator units. Additionally, rats that only received laminectomy were referred as the sham group. The electric field intensity was 600 μV/mm, and the polarity was alternated every 15 minutes. The results showed that the SCI+OFS rats had significantly less demyelination and better locomotor function recovery after 12-weeks treatment. The OFS treatment significantly increased the number of Gal C-positive OPCs after 2-weeks treatment. Furthermore, these rats had higher protein expression of oligodendroglial transcription factors Olig2 and NKx2.2. These findings suggest OFS can promote locomotor recovery and remyelination in SCI rats and this effect may be related to the improved differentiation of OPCs in the spinal cord.

  12. Foetal stem cell derivation & characterization for osteogenic lineage

    Directory of Open Access Journals (Sweden)

    A Mangala Gowri

    2013-01-01

    Full Text Available Background & objectives: Mesencymal stem cells (MSCs derived from foetal tissues present a multipotent progenitor cell source for application in tissue engineering and regenerative medicine. The present study was carried out to derive foetal mesenchymal stem cells from ovine source and analyze their differentiation to osteogenic linage to serve as an animal model to predict human applications. Methods: Isolation and culture of sheep foetal bone marrow cells were done and uniform clonally derived MSC population was collected. The cells were characterized using cytochemical, immunophenotyping, biochemical and molecular analyses. The cells with defined characteristics were differentiated into osteogenic lineages and analysis for differentiated cell types was done. The cells were analyzed for cell surface marker expression and the gene expression in undifferentiated and differentiated osteoblast was checked by reverse transcriptase PCR (RT PCR analysis and confirmed by sequencing using genetic analyzer. Results: Ovine foetal samples were processed to obtain mononuclear (MNC cells which on culture showed spindle morphology, a characteristic oval body with the flattened ends. MSC population CD45 - /CD14 - was cultured by limiting dilution to arrive at uniform spindle morphology cells and colony forming units. The cells were shown to be positive for surface markers such as CD44, CD54, integrinβ1, and intracellular collagen type I/III and fibronectin. The osteogenically induced MSCs were analyzed for alkaline phosphatase (ALP activity and mineral deposition. The undifferentiated MSCs expressed RAB3B, candidate marker for stemness in MSCs. The osteogenically induced and uninduced MSCs expressed collagen type I and MMP13 gene in osteogenic induced cells. Interpretation & conclusions: The protocol for isolation of ovine foetal bone marrow derived MSCs was simple to perform, and the cultural method of obtaining pure spindle morphology cells was established

  13. Adjunctive MSCs enhance myelin formation by xenogenic oligodendrocyte precursors transplanted in the retina

    Institute of Scientific and Technical Information of China (English)

    Aileen Arriola; Mary E Kie; Yufang Shi; Randall D McKinnon

    2010-01-01

    Dear Editor, We examined myelin formation by oligodendrocytes co-transplanted with immunosuppressive mesenchymal stem cells (MSCs). Oligodendrocyte precursor cells (OPCs) were grafted into the mouse retina, and graft survival and maturation was determined with or without adjunctive MSCs.

  14. Differentiation of monkey embryonic stem cells into neural lineages.

    Science.gov (United States)

    Kuo, Hung-Chih; Pau, K-Y Francis; Yeoman, Richard R; Mitalipov, Shoukhrat M; Okano, Hideyuki; Wolf, Don P

    2003-05-01

    Embryonic stem (ES) cells are self-renewing, pluripotent, and capable of differentiating into all of the cell types found in the adult body. Therefore, they have the potential to replace degenerated or damaged cells, including those in the central nervous system. For ES cell-based therapy to become a clinical reality, translational research involving nonhuman primates is essential. Here, we report monkey ES cell differentiation into embryoid bodies (EBs), neural progenitor cells (NPCs), and committed neural phenotypes. The ES cells were aggregated in hanging drops to form EBs. The EBs were then plated onto adhesive surfaces in a serum-free medium to form NPCs and expanded in serum-free medium containing fibroblast growth factor (FGF)-2 before neural differentiation was induced. Cells were characterized at each step by immunocytochemistry for the presence of specific markers. The majority of cells in complex/cystic EBs expressed antigens (alpha-fetal protein, cardiac troponin I, and vimentin) representative of all three embryonic germ layers. Greater than 70% of the expanded cell populations expressed antigenic markers (nestin and musashi1) for NPCs. After removal of FGF-2, approximately 70% of the NPCs differentiated into neuronal phenotypes expressing either microtubule-associated protein-2C (MAP2C) or neuronal nuclear antigen (NeuN), and approximately 28% differentiated into glial cell types expressing glial fibrillary acidic protein. Small populations of MAP2C/NeuN-positive cells also expressed tyrosine hydroxylase (approximately 4%) or choline acetyltransferase (approximately 13%). These results suggest that monkey ES cells spontaneously differentiate into cells of all three germ layers, can be induced and maintained as NPCs, and can be further differentiated into committed neural lineages, including putative neurons and glial cells.

  15. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Iben Lundgaard

    2013-12-01

    Full Text Available Myelination is essential for rapid impulse conduction in the CNS, but what determines whether an individual axon becomes myelinated remains unknown. Here we show, using a myelinating coculture system, that there are two distinct modes of myelination, one that is independent of neuronal activity and glutamate release and another that depends on neuronal action potentials releasing glutamate to activate NMDA receptors on oligodendrocyte lineage cells. Neuregulin switches oligodendrocytes from the activity-independent to the activity-dependent mode of myelination by increasing NMDA receptor currents in oligodendrocyte lineage cells 6-fold. With neuregulin present myelination is accelerated and increased, and NMDA receptor block reduces myelination to far below its level without neuregulin. Thus, a neuregulin-controlled switch enhances the myelination of active axons. In vivo, we demonstrate that remyelination after white matter damage is NMDA receptor-dependent. These data resolve controversies over the signalling regulating myelination and suggest novel roles for neuregulin in schizophrenia and in remyelination after white matter damage.

  16. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Won; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2012-03-15

    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously.

  17. Therapeutic effect of transplanted human Wharton's jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an animal model of multiple sclerosis.

    Science.gov (United States)

    Mikaeili Agah, Elmira; Parivar, Kazem; Joghataei, Mohammad Taghi

    2014-04-01

    Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination. We transplanted human Wharton's jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted OPCs on the functional and pathological manifestations of the disease. Transplanted hWJ-MSC-derived OPCs significantly reduced the clinical signs of EAE. Histological examinations showed that remyelination was significantly increased after transplantation. These results suggest that hWJ-MSC-derived OPCs promote the regeneration of myelin sheaths in the brain.

  18. Developmental stage of oligodendrocytes determines their response to activated microglia in vitro

    Directory of Open Access Journals (Sweden)

    Bresnahan Jacqueline C

    2007-11-01

    Full Text Available Abstract Background Oligodendrocyte progenitor cells (OPCs and mature oligodendrocytes are both lost in central nervous system injury and disease. Activated microglia may play a role in OPC and oligodendrocyte loss or replacement, but it is not clear how the responses of OPCs and oligodendrocytes to activated microglia differ. Methods OPCs and microglia were isolated from rat cortex. OPCs were induced to differentiate into oligodendrocytes with thyroid hormone in defined medium. For selected experiments, microglia were added to OPC or oligodendrocyte cultures. Lipopolysaccharide was used to activate microglia and microglial activation was confirmed by TNFα ELISA. Cell survival was assessed with immunocytochemistry and cell counts. OPC proliferation and oligodendrocyte apoptosis were also assessed. Results OPCs and oligodendrocytes displayed phenotypes representative of immature and mature oligodendrocytes, respectively. Activated microglia reduced OPC survival, but increased survival and reduced apoptosis of mature oligodendrocytes. Activated microglia also underwent cell death themselves. Conclusion Activated microglia may have divergent effects on OPCs and mature oligodendrocytes, reducing OPC survival and increasing mature oligodendrocyte survival. This may be of importance because activated microglia are present in several disease states where both OPCs and mature oligodendrocytes are also reacting to injury. Activated microglia may simultaneously have deleterious and helpful effects on different cells after central nervous system injury.

  19. Protein tyrosine phosphatase receptor type z negatively regulates oligodendrocyte differentiation and myelination.

    Directory of Open Access Journals (Sweden)

    Kazuya Kuboyama

    Full Text Available BACKGROUND: Fyn tyrosine kinase-mediated down-regulation of Rho activity through activation of p190RhoGAP is crucial for oligodendrocyte differentiation and myelination. Therefore, the loss of function of its counterpart protein tyrosine phosphatase (PTP may enhance myelination during development and remyelination in demyelinating diseases. To test this hypothesis, we investigated whether Ptprz, a receptor-like PTP (RPTP expressed abuntantly in oligodendrocyte lineage cells, is involved in this process, because we recently revealed that p190RhoGAP is a physiological substrate for Ptprz. METHODOLOGY/PRINCIPAL FINDINGS: We found an early onset of the expression of myelin basic protein (MBP, a major protein of the myelin sheath, and early initiation of myelination in vivo during development of the Ptprz-deficient mouse, as compared with the wild-type. In addition, oligodendrocytes appeared earlier in primary cultures from Ptprz-deficient mice than wild-type mice. Furthermore, adult Ptprz-deficient mice were less susceptible to experimental autoimmune encephalomyelitis (EAE induced by active immunization with myelin/oligodendrocyte glycoprotein (MOG peptide than were wild-type mice. After EAE was induced, the tyrosine phosphorylation of p190RhoGAP increased significantly, and the EAE-induced loss of MBP was markedly suppressed in the white matter of the spinal cord in Ptprz-deficient mice. Here, the number of T-cells and macrophages/microglia infiltrating into the spinal cord did not differ between the two genotypes after MOG immunization. All these findings strongly support the validity of our hypothesis. CONCLUSIONS/SIGNIFICANCE: Ptprz plays a negative role in oligodendrocyte differentiation in early central nervous system (CNS development and remyelination in demyelinating CNS diseases, through the dephosphorylation of substrates such as p190RhoGAP.

  20. UCB Transplant of Inherited Metabolic Diseases With Administration of Intrathecal UCB Derived Oligodendrocyte-Like Cells

    Science.gov (United States)

    2017-06-27

    Adrenoleukodystrophy; Batten Disease; Mucopolysaccharidosis II; Leukodystrophy, Globoid Cell; Leukodystrophy, Metachromatic; Neimann Pick Disease; Pelizaeus-Merzbacher Disease; Sandhoff Disease; Tay-Sachs Disease; Brain Diseases, Metabolic, Inborn; Alpha-Mannosidosis; Sanfilippo Mucopolysaccharidoses

  1. A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Shelley R Hough

    Full Text Available BACKGROUND: Commitment in embryonic stem cells is often depicted as a binary choice between alternate cell states, pluripotency and specification to a particular germ layer or extraembryonic lineage. However, close examination of human ES cell cultures has revealed significant heterogeneity in the stem cell compartment. METHODOLOGY/PRINCIPAL FINDINGS: We isolated subpopulations of embryonic stem cells using surface markers, then examined their expression of pluripotency genes and lineage specific transcription factors at the single cell level, and tested their ability to regenerate colonies of stem cells. Transcript analysis of single embryonic stem cells showed that there is a gradient and a hierarchy of expression of pluripotency genes in the population. Even cells at the top of the hierarchy generally express only a subset of the stem cell genes studied. Many cells co-express pluripotency and lineage specific genes. Cells along the continuum show a progressively decreasing likelihood of self renewal as their expression of stem cell surface markers and pluripotency genes wanes. Most cells that are positive for stem cell surface markers express Oct-4, but only those towards the top of the hierarchy express the nodal receptor TDGF-1 and the growth factor GDF3. SIGNIFICANCE: These findings on gene expression in single embryonic stem cells are in concert with recent studies of early mammalian development, which reveal molecular heterogeneity and a stochasticity of gene expression in blastomeres. Our work indicates that only a small fraction of the population resides at the top of the hierarchy, that lineage priming (co-expression of stem cell and lineage specific genes characterizes pluripotent stem cell populations, and that extrinsic signaling pathways are upstream of transcription factor networks that control pluripotency.

  2. Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells

    Directory of Open Access Journals (Sweden)

    Leping Ye

    2017-06-01

    Full Text Available Adult Leydig cells (ALCs are the steroidogenic cells in the testes that produce testosterone. ALCs develop postnatally from a pool of stem cells, referred to as stem Leydig cells (SLCs. SLCs are spindle-shaped cells that lack steroidogenic cell markers, including luteinizing hormone (LH receptor and 3β-hydroxysteroid dehydrogenase. The commitment of SLCs into the progenitor Leydig cells (PLCs, the first stage in the lineage, requires growth factors, including Dessert Hedgehog (DHH and platelet-derived growth factor-AA. PLCs are still spindle-shaped, but become steroidogenic and produce mainly androsterone. The next transition in the lineage is from PLC to the immature Leydig cell (ILC. This transition requires LH, DHH, and androgen. ILCs are ovoid cells that are competent for producing a different form of androgen, androstanediol. The final stage in the developmental lineage is ALC. The transition to ALC involves the reduced expression of 5α-reductase 1, a step that is necessary to make the cells to produce testosterone as the final product. The transitions along the Leydig cell lineage are associated with the progressive down-regulation of the proliferative activity, and the up-regulation of steroidogenic capacity, with each step requiring unique regulatory signaling.

  3. Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells.

    Science.gov (United States)

    Ye, Leping; Li, Xiaoheng; Li, Linxi; Chen, Haolin; Ge, Ren-Shan

    2017-01-01

    Adult Leydig cells (ALCs) are the steroidogenic cells in the testes that produce testosterone. ALCs develop postnatally from a pool of stem cells, referred to as stem Leydig cells (SLCs). SLCs are spindle-shaped cells that lack steroidogenic cell markers, including luteinizing hormone (LH) receptor and 3β-hydroxysteroid dehydrogenase. The commitment of SLCs into the progenitor Leydig cells (PLCs), the first stage in the lineage, requires growth factors, including Dessert Hedgehog (DHH) and platelet-derived growth factor-AA. PLCs are still spindle-shaped, but become steroidogenic and produce mainly androsterone. The next transition in the lineage is from PLC to the immature Leydig cell (ILC). This transition requires LH, DHH, and androgen. ILCs are ovoid cells that are competent for producing a different form of androgen, androstanediol. The final stage in the developmental lineage is ALC. The transition to ALC involves the reduced expression of 5α-reductase 1, a step that is necessary to make the cells to produce testosterone as the final product. The transitions along the Leydig cell lineage are associated with the progressive down-regulation of the proliferative activity, and the up-regulation of steroidogenic capacity, with each step requiring unique regulatory signaling.

  4. Cell lineage and cell death: Caenorhabditis elegans and cancer research.

    Science.gov (United States)

    Potts, Malia B; Cameron, Scott

    2011-01-01

    Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.

  5. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Philips, T.; Bento-Abreu, A.; Nonneman, A.; Haeck, W.; Staats, K.; Geelen, V.; Hersmus, N.; Kusters, B.; Bosch, L. Van Den; Damme, P. van; Richardson, W.D.; Robberecht, W.

    2013-01-01

    Oligodendrocytes are well known targets for immune-mediated and infectious diseases, and have been suggested to play a role in neurodegeneration. Here, we report the involvement of oligodendrocytes and their progenitor cells in the ventral grey matter of the spinal cord in amyotrophic lateral sclero

  6. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Philips, T.; Bento-Abreu, A.; Nonneman, A.; Haeck, W.; Staats, K.; Geelen, V.; Hersmus, N.; Kusters, B.; Bosch, L. Van Den; Damme, P. van; Richardson, W.D.; Robberecht, W.

    2013-01-01

    Oligodendrocytes are well known targets for immune-mediated and infectious diseases, and have been suggested to play a role in neurodegeneration. Here, we report the involvement of oligodendrocytes and their progenitor cells in the ventral grey matter of the spinal cord in amyotrophic lateral sclero

  7. Lineage Specification of Ovarian Theca Cells Requires Multi-Cellular Interactions via Oocyte and Granulosa Cells

    Science.gov (United States)

    Liu, Chang; Peng, Jia; Matzuk, Martin M.; Yao, Humphrey H-C

    2015-01-01

    Organogenesis of the ovary is a highly orchestrated process involving multiple lineage determinations of ovarian surface epithelium, granulosa cells, and theca cells. While the sources of ovarian surface epithelium and granulosa cells are known, the origin(s) of theca progenitor cells have not been definitively identified. Here we show that theca cells derive from two sources: Wt1+ cells indigenous to the ovary and Gli1+ mesenchymal cells migrated from the mesonephros. These progenitors acquire theca lineage marker Gli1 in response to paracrine signals Desert hedgehog (Dhh) and Indian hedgehog (Ihh) from granulosa cells. Ovaries lacking Dhh/Ihh exhibit theca layer loss, blunted steroid production, arrested folliculogenesis, and failure to form corpora lutea. Production of Dhh/Ihh in granulosa cells requires Growth differentiation factor 9 (GDF9) from the oocyte. Our studies provide the first genetic evidence for the origins of theca cells and reveal a multicellular interaction critical for the formation of a functional theca. PMID:25917826

  8. Defining Developmental Potency and Cell Lineage Trajectories by Expression Profiling of Differentiating Mouse Embryonic Stem Cells

    Science.gov (United States)

    Aiba, Kazuhiro; Nedorezov, Timur; Piao, Yulan; Nishiyama, Akira; Matoba, Ryo; Sharova, Lioudmila V.; Sharov, Alexei A.; Yamanaka, Shinya; Niwa, Hitoshi; Ko, Minoru S. H.

    2009-01-01

    Biologists rely on morphology, function and specific markers to define the differentiation status of cells. Transcript profiling has expanded the repertoire of these markers by providing the snapshot of cellular status that reflects the activity of all genes. However, such data have been used only to assess relative similarities and differences of these cells. Here we show that principal component analysis of global gene expression profiles map cells in multidimensional transcript profile space and the positions of differentiating cells progress in a stepwise manner along trajectories starting from undifferentiated embryonic stem (ES) cells located in the apex. We present three ‘cell lineage trajectories’, which represent the differentiation of ES cells into the first three lineages in mammalian development: primitive endoderm, trophoblast and primitive ectoderm/neural ectoderm. The positions of the cells along these trajectories seem to reflect the developmental potency of cells and can be used as a scale for the potential of cells. Indeed, we show that embryonic germ cells and induced pluripotent cells are mapped near the origin of the trajectories, whereas mouse embryo fibroblast and fibroblast cell lines are mapped near the far end of the trajectories. We suggest that this method can be used as the non-operational semi-quantitative definition of cell differentiation status and developmental potency. Furthermore, the global expression profiles of cell lineages provide a framework for the future study of in vitro and in vivo cell differentiation. PMID:19112179

  9. Expression and function of mixed lineage kinases in dendritic cells.

    Science.gov (United States)

    Handley, Matthew E; Rasaiyaah, Jane; Barnett, James; Thakker, Manish; Pollara, Gabriele; Katz, David R; Chain, Benjamin M

    2007-08-01

    Dendritic cells (DCs) sense the presence of conserved microbial structures in their local microenvironment via specific pattern recognition receptors (PRRs). This leads to a programme of changes, which include migration and activation, and enables them to induce adaptive T cell immunity. Mitogen-activated protein kinases (MAPKs) are implicated in this response, but the pathways leading from PRR ligation to MAPK activation, and hence DC activation, are not fully understood. Recent studies in the nervous system have suggested that the mixed lineage kinase (MLK) family of MAPK kinase kinase proteins may be involved as an intermediary step between PRRs and MAPKs. Therefore, in this study, we have used a well-established DC model to explore the role of MLKs in these cells. Messenger RNA for MLKs 2, 3, 4 and DLK and protein for MLKs 2, 3 and DLK are found in DC. DC activation in response to model PRR ligands, such as LPS or poly (I:C), is accompanied by phosphorylation of MLK3. In contrast, another known PRR ligand, zymosan, induces little MLK3 phosphorylation. Inhibition of MLK activity using a pharmacological inhibitor, CEP11004, blocks p38 and Jun N-terminal kinase (JNK) MAPK activation in response to LPS and poly (I:C), but not zymosan. The inhibition is associated with a block in DC activation as measured by cell-surface marker expression and cytokine secretion. Thus, MLKs are expressed in DC, and are implicated in DC activation, and the involvement of MLKs appears to be selective, depending on the nature of the DC stimulus.

  10. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency

    Directory of Open Access Journals (Sweden)

    Jamie Trott

    2013-08-01

    Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.

  11. Optimizing Culture Medium Composition to Improve Oligodendrocyte Progenitor Cell Yields In Vitro from Subventricular Zone-Derived Neural Progenitor Cell Neurospheres

    Science.gov (United States)

    Franco, Paula G.; Pasquini, Juana M.; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC. PMID:25837625

  12. Optimizing culture medium composition to improve oligodendrocyte progenitor cell yields in vitro from subventricular zone-derived neural progenitor cell neurospheres.

    Science.gov (United States)

    Franco, Paula G; Pasquini, Juana M; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC.

  13. Resistance of subventricular neural stem cells to chronic hypoxemia despite structural disorganization of the germinal center and impairment of neuronal and oligodendrocyte survival

    Science.gov (United States)

    d’Anglemont de Tassigny, Xavier; Sirerol-Piquer, M Salomé; Gómez-Pinedo, Ulises; Pardal, Ricardo; Bonilla, Sonia; Capilla-Gonzalez, Vivian; López-López, Ivette; De la Torre-Laviana, Francisco Javier; García-Verdugo, José Manuel; López-Barneo, José

    2015-01-01

    Chronic hypoxemia, as evidenced in de-acclimatized high-altitude residents or in patients with chronic obstructive respiratory disorders, is a common medical condition that can produce serious neurological alterations. However, the pathogenesis of this phenomenon is unknown. We have found that adult rodents exposed for several days/weeks to hypoxia, with an arterial oxygen tension similar to that of chronically hypoxemic patients, manifest a partially irreversible structural disarrangement of the subventricular neurogenic niche (subventricular zone) characterized by displacement of neurons and myelinated axons, flattening of the ependymal cell layer, and thinning of capillary walls. Despite these abnormalities, the number of neuronal and oligodendrocyte progenitors, neuroblasts, and neurosphere-forming cells as well as the proliferative activity in subventricular zone was unchanged. These results suggest that neural stem cells and their undifferentiated progeny are resistant to hypoxia. However, in vivo and in vitro experiments indicate that severe chronic hypoxia decreases the survival of newly generated neurons and oligodendrocytes, with damage of myelin sheaths. These findings help explain the effects of hypoxia on adult neurogenesis and provide new perspectives on brain responsiveness to persistent hypoxemia. PMID:27774479

  14. Heterochronic misexpression of Ascl1 in the Atoh7 retinal cell lineage blocks cell cycle exit.

    Science.gov (United States)

    Hufnagel, Robert B; Riesenberg, Amy N; Quinn, Malgorzata; Brzezinski, Joseph A; Glaser, Tom; Brown, Nadean L

    2013-05-01

    Retinal neurons and glia arise from a common progenitor pool in a temporal order, with retinal ganglion cells (RGCs) appearing first, and Müller glia last. The transcription factors Atoh7/Math5 and Ascl1/Mash1 represent divergent bHLH clades, and exhibit distinct spatial and temporal retinal expression patterns, with little overlap during early development. Here, we tested the ability of Ascl1 to change the fate of cells in the Atoh7 lineage when misexpressed from the Atoh7 locus, using an Ascl1-IRES-DsRed2 knock-in allele. In Atoh7(Ascl1KI/+) and Atoh7(Ascl1KI/Ascl1KI) embryos, ectopic Ascl1 delayed cell cycle exit and differentiation, even in cells coexpressing Atoh7. The heterozygous retinas recovered, and eventually produced a normal complement of RGCs, while homozygous substitution of Ascl1 for Atoh7 did not promote postnatal retinal fates precociously, nor rescue Atoh7 mutant phenotypes. However, our analyses revealed two unexpected findings. First, ectopic Ascl1 disrupted cell cycle progression within the marked Atoh7 lineage, but also nonautonomously in other retinal cells. Second, the size of the Atoh7 retinal lineage was unaffected, supporting the idea of a compensatory shift of the non-proliferative cohort to maintain lineage size. Overall, we conclude that Ascl1 acts dominantly to block cell cycle exit, but is incapable of redirecting the fates of early RPCs.

  15. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.

    Science.gov (United States)

    Olsson, Andre; Venkatasubramanian, Meenakshi; Chaudhri, Viren K; Aronow, Bruce J; Salomonis, Nathan; Singh, Harinder; Grimes, H Leighton

    2016-09-29

    Delineating hierarchical cellular states, including rare intermediates and the networks of regulatory genes that orchestrate cell-type specification, are continuing challenges for developmental biology. Single-cell RNA sequencing is greatly accelerating such research, given its power to provide comprehensive descriptions of genomic states and their presumptive regulators. Haematopoietic multipotential progenitor cells, as well as bipotential intermediates, manifest mixed-lineage patterns of gene expression at a single-cell level. Such mixed-lineage states may reflect the molecular priming of different developmental potentials by co-expressed alternative-lineage determinants, namely transcription factors. Although a bistable gene regulatory network has been proposed to regulate the specification of either neutrophils or macrophages, the nature of the transition states manifested in vivo, and the underlying dynamics of the cell-fate determinants, have remained elusive. Here we use single-cell RNA sequencing coupled with a new analytic tool, iterative clustering and guide-gene selection, and clonogenic assays to delineate hierarchical genomic and regulatory states that culminate in neutrophil or macrophage specification in mice. We show that this analysis captured prevalent mixed-lineage intermediates that manifested concurrent expression of haematopoietic stem cell/progenitor and myeloid progenitor cell genes. It also revealed rare metastable intermediates that had collapsed the haematopoietic stem cell/progenitor gene expression programme, instead expressing low levels of the myeloid determinants, Irf8 and Gfi1 (refs 9, 10, 11, 12, 13). Genetic perturbations and chromatin immunoprecipitation followed by sequencing revealed Irf8 and Gfi1 as key components of counteracting myeloid-gene-regulatory networks. Combined loss of these two determinants 'trapped' the metastable intermediate. We propose that mixed-lineage states are obligatory during cell-fate specification

  16. Mutation of pescadillo disrupts oligodendrocyte formation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Timothy Simmons

    Full Text Available BACKGROUND: In vertebrates, the myelin sheath is essential for efficient propagation of action potentials along the axon shaft. Oligodendrocytes are the cells of the central nervous system that create myelin sheaths. During embryogenesis, ventral neural tube precursors give rise to oligodendrocyte progenitor cells, which divide and migrate throughout the central nervous system. This study aimed to investigate mechanisms that regulate oligodendrocyte progenitor cell formation. METHODOLOGY/PRINCIPAL FINDINGS: By conducting a mutagenesis screen in transgenic zebrafish, we identified a mutation, designated vu166, by an apparent reduction in the number of oligodendrocyte progenitor cells in the dorsal spinal cord. We subsequently determined that vu166 is an allele of pescadillo, a gene known to play a role in ribosome biogenesis and cell proliferation. We found that pescadillo function is required for both the proper number of oligodendrocyte progenitors to form, by regulating cell cycle progression, and for normal levels of myelin gene expression. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence that neural precursors require pes function to progress through the cell cycle and produce oligodendrocyte progenitor cells and for oligodendrocyte differentiation.

  17. Synthesis of gangliosides by cultured oligodendrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Mack, S.R.; Szuchet, S.; Dawson, G.

    1981-01-01

    Gangliosides are enriched in the nervous system compared to other tissues. The synthesis of gangliosides by monolayer cultures of isolated oligodendrocytes has not previously been investigated. Cells were labeled with (3H) galactose at preselected times and gangliosides isolated by phase partition, purified, and identified by chromatography. Cultured oligodendrocytes showed selectivity in their synthesis of gangliosides, which was expressed in the type of ganglioside synthesized as well as in the change of incorporation over time in culture. For the first ten days, there was very little incorporation of (3H) galactose in gangliosides, but this was followed by a stimulation of uptake for GM3, GM1/GD3, and GD1 gangliosides, reaching a maximum after approximately 25-30 days in vitro. There was little incorporation into GM2 or trisialogangliosides throughout the life of the cultures. Since oligodendrocytes synthesize extensive membranes during this period, one may speculate that the de novo-synthesized gangliosides are used for membranes.

  18. Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix.

    Science.gov (United States)

    Okolicsanyi, Rachel K; Griffiths, Lyn R; Haupt, Larisa M

    2014-04-01

    Along with the tri-lineage of bone, cartilage and fat, human mesenchymal stem cells (hMSCs) retain neural lineage potential. Multiple factors have been described that influence lineage fate of hMSCs including the extracellular microenvironment or niche. The niche includes the extracellular matrix (ECM) providing structural composition, as well as other associated proteins and growth factors, which collectively influence hMSC stemness and lineage specification. As such, lineage specific differentiation of MSCs is mediated through interactions including cell-cell and cell-matrix, as well as through specific signalling pathways triggering downstream events. Proteoglycans (PGs) are ubiquitous within this microenvironment and can be localised to the cell surface or embedded within the ECM. In addition, the heparan sulfate (HS) and chondroitin sulfate (CS) families of PGs interact directly with a number of growth factors, signalling pathways and ECM components including FGFs, Wnts and fibronectin. With evidence supporting a role for HSPGs and CSPGs in the specification of hMSCs down the osteogenic, chondrogenic and adipogenic lineages, along with the localisation of PGs in development and regeneration, it is conceivable that these important proteins may also play a role in the differentiation of hMSCs toward the neuronal lineage. Here we summarise the current literature and highlight the potential for HSPG directed neural lineage fate specification in hMSCs, which may provide a new model for brain damage repair.

  19. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion

    DEFF Research Database (Denmark)

    Nygren, J.M.; Liuba, K.; Breitbach, M.;

    2008-01-01

    and Purkinje neurons. However, through lineage fate-mapping we demonstrate that such in vivo fusion of lymphoid and myeloid blood cells does not occur to an appreciable extent in steady-state adult tissues or during normal development. Rather, fusion of blood cells with different non-haematopoietic cell types...... is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion......Recent studies have suggested that regeneration of non-haematopoietic cell lineages can occur through heterotypic cell fusion with haematopoietic cells of the myeloid lineage. Here we show that lymphocytes also form heterotypic-fusion hybrids with cardiomyocytes, skeletal muscle, hepatocytes...

  20. Lineage-Specific Genes Are Prominent DNA Damage Hotspots during Leukemic Transformation of B Cell Precursors

    Directory of Open Access Journals (Sweden)

    Bryant Boulianne

    2017-02-01

    Full Text Available In human leukemia, lineage-specific genes represent predominant targets of deletion, with lymphoid-specific genes frequently affected in lymphoid leukemia and myeloid-specific genes in myeloid leukemia. To investigate the basis of lineage-specific alterations, we analyzed global DNA damage in primary B cell precursors expressing leukemia-inducing oncogenes by ChIP-seq. We identified more than 1,000 sensitive regions, of which B lineage-specific genes constitute the most prominent targets. Identified hotspots at B lineage genes relate to DNA-DSBs, affect genes that harbor genomic lesions in human leukemia, and associate with ectopic deletion in successfully transformed cells. Furthermore, we show that most identified regions overlap with gene bodies of highly expressed genes and that induction of a myeloid lineage phenotype in transformed B cell precursors promotes de novo DNA damage at myeloid loci. Hence, we demonstrate that lineage-specific transcription predisposes lineage-specific genes in transformed B cell precursors to DNA damage, which is likely to promote the frequent alteration of lineage-specific genes in human leukemia.

  1. 少突胶质前体细胞分化的调节机制%The Regulation of Differentiation on Oligodendrocyte Precursor Cells

    Institute of Scientific and Technical Information of China (English)

    蒋萌

    2012-01-01

    In the CNS, oligodendrocytes are responsible for the formation of myelin that surrounds axons. In recent years, oligodendrocyte precursor cells (OPCs) have gained much attention for their potential of self-renew, differentiation, and remyelination of the CNS. The molecular mechanisms controlling OPCs differentiation during development, including oligodendroglial cytoskeleton, transcription, spatiotemporal regulation and axonal inhibition were reviewed.%少突胶质前体细胞形成中枢神经系统轴突的髓鞘.近年来,少突胶质前体细胞(OPC)以具有自我更新、分化及髓鞘化中枢神经系统轴突的潜能而引起关注.本文将综述在发育过程中调控OPC分化的分子机制,主要包括细胞骨架水平、转录水平、时空水平以及轴突水平等方面.

  2. Subclasses of oligodendrocytes populate the mouse hippocampus

    NARCIS (Netherlands)

    Vinet, Jonathan; Lemieux, Philippe; Tamburri, Albert; Tiesinga, Paul; Scafidi, Joseph; Gallo, Vittorio; Sik, Attila

    2010-01-01

    Oligodendrocytes are the myelin-forming cells of the central nervous system that facilitate transmission of axonal electrical impulses. Using transgenic mice expressing 2',3' cyclic nucleotide 3' phosphodiesterase (CNPase)-enhanced green fluorescent protein, a three-dimensional reconstruction tool a

  3. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution.

    Science.gov (United States)

    Parichy, David M; Spiewak, Jessica E

    2015-01-01

    Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve-associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns.

  4. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  5. High glucose suppresses embryonic stem cell differentiation into neural lineage cells

    Science.gov (United States)

    Yang, Penghua; Shen, Wei-bin; Reece, E. Albert; Chen, Xi; Yang, Peixin

    2017-01-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system. PMID:26940741

  6. High glucose suppresses embryonic stem cell differentiation into neural lineage cells.

    Science.gov (United States)

    Yang, Penghua; Shen, Wei-bin; Reece, E Albert; Chen, Xi; Yang, Peixin

    2016-04-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system.

  7. Biochemical subtypes of oligodendrocyte in the anterior medullary velum of the rat as revealed by the monoclonal antibody Rip.

    Science.gov (United States)

    Butt, A M; Ibrahim, M; Ruge, F M; Berry, M

    1995-07-01

    Oligodendrocytes were studied in the anterior medullary velum (AMV) of the rat using the monoclonal antibody Rip, an oligodendrocyte marker of unknown function. Confocal microscopic imaging of double immunofluorescent labelling with antibodies to Rip and carbonic anhydrase II (CAII) revealed two biochemically and morphologically distinct populations of oligodendrocyte which were either Rip+CAII+ or Rip+CAII-. Double immunofluorescent labelling with Rip and myelin basic protein (MBP) or glial fibrillary acidic protein (GFAP) provided direct evidence that Rip-labelled cells were phenotypically oligodendrocytes and confirmed that Rip did not recognise astrocytes. Oligodendrocytes which were Rip+CAII+ supported numerous myelin sheaths for small diameter axons, whilst Rip+CAII- oligodendrocytes supported fewer myelin sheaths for large diameter axons. Morphologically, Rip+CAII+ oligodendrocytes corresponded to types I or II of classical nomenclature, whilst Rip+CAII- oligodendrocytes corresponded to types III and IV. The results demonstrated a biochemical difference between oligodendrocytes which myelinated small and large diameter fibres.

  8. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    Science.gov (United States)

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  9. Long-term live cell imaging and automated 4D analysis of drosophila neuroblast lineages.

    Directory of Open Access Journals (Sweden)

    Catarina C F Homem

    Full Text Available The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.

  10. Related pituitary cell lineages develop into interdigitated 3D cell networks.

    Science.gov (United States)

    Budry, Lionel; Lafont, Chrystel; El Yandouzi, Taoufik; Chauvet, Norbert; Conéjero, Geneviève; Drouin, Jacques; Mollard, Patrice

    2011-07-26

    The pituitary gland has long been considered to be a random patchwork of hormone-producing cells. By using pituitary-scale tridimensional imaging for two of the least abundant cell lineages, the corticotropes and gonadotropes, we have now uncovered highly organized and interdigitated cell networks that reflect homotypic and heterotypic interactions between cells. Although newly differentiated corticotrope cells appear on the ventral surface of the gland, they rapidly form homotypic strands of cells that extend from the lateral tips of the anterior pituitary along its ventral surface and into the medial gland. As the corticotrope network is established away from the microvasculature, cell morphology changes from rounded, to polygonal, and finally to cells with long cytoplasmic processes or cytonemes that connect corticotropes to the perivascular space. Gonadotropes differentiate later and are positioned in close proximity to corticotropes and capillaries. Blockade of corticotrope terminal differentiation produced by knockout of the gene encoding the transcription factor Tpit results in smaller gonadotropes within an expanded cell network, particularly in the lateral gland. Thus, pituitary-scale tridimensional imaging reveals highly structured cell networks of unique topology for each pituitary lineage. The sequential development of interdigitated cell networks during organogenesis indicate that extensive cell:cell interactions lead to a highly ordered cell positioning rather than random patchwork.

  11. Proliferative cell types in embryonic lineages of the central complex of the grasshopper Schistocerca gregaria.

    Science.gov (United States)

    Boyan, George; Williams, Leslie; Legl, Andrea; Herbert, Zsofia

    2010-08-01

    The central complex of the grasshopper Schistocerca gregaria develops to completion during embryogenesis. A major cellular contribution to the central complex is from the w, x, y, z lineages of the pars intercerebralis, each of which comprises over 100 cells, making them by far the largest in the embryonic protocerebrum. Our focus has been to find a cellular mechanism that allows such a large number of cell progeny to be generated within a restricted period of time. Immunohistochemical visualization of the chromosomes of mitotically active cells has revealed an almost identical linear array of proliferative cells present simultaneously in each w, x, y, z lineage at 50% of embryogenesis. This array is maintained relatively unchanged until almost 70% of embryogenesis, after which mitotic activity declines and then ceases. The array is absent from smaller lineages of the protocerebrum not associated with the central complex. The proliferative cells are located apically to the zone of ganglion mother cells and amongst the progeny of the neuroblast. Comparisons of cell morphology, immunoreactivity (horseradish peroxidase, repo, Prospero), location in lineages and spindle orientation have allowed us to distinguish the proliferative cells in an array from neuroblasts, ganglion mother cells, neuronal progeny and glia. Our data are consistent with the proliferative cells being secondary (amplifying) progenitors and originating from a specific subtype of ganglion mother cell. We propose a model of the way that neuroblasts, ganglion mother cells and secondary progenitors together produce the large cell numbers found in central complex lineages.

  12. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model.

    Science.gov (United States)

    Führmann, T; Tam, R Y; Ballarin, B; Coles, B; Elliott Donaghue, I; van der Kooy, D; Nagy, A; Tator, C H; Morshead, C M; Shoichet, M S

    2016-03-01

    Transplantation of pluripotent stem cells and their differentiated progeny has the potential to preserve or regenerate functional pathways and improve function after central nervous system injury. However, their utility has been hampered by poor survival and the potential to form tumors. Peptide-modified biomaterials influence cell adhesion, survival and differentiation in vitro, but their effectiveness in vivo remains uncertain. We synthesized a peptide-modified, minimally invasive, injectable hydrogel comprised of hyaluronan and methylcellulose to enhance the survival and differentiation of human induced pluripotent stem cell-derived oligodendrocyte progenitor cells. Cells were transplanted subacutely after a moderate clip compression rat spinal cord injury. The hydrogel, modified with the RGD peptide and platelet-derived growth factor (PDGF-A), promoted early survival and integration of grafted cells. However, prolific teratoma formation was evident when cells were transplanted in media at longer survival times, indicating that either this cell line or the way in which it was cultured is unsuitable for human use. Interestingly, teratoma formation was attenuated when cells were transplanted in the hydrogel, where most cells differentiated to a glial phenotype. Thus, this hydrogel promoted cell survival and integration, and attenuated teratoma formation by promoting cell differentiation.

  13. Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage

    DEFF Research Database (Denmark)

    Hopkinson, Branden M; Madsen, Claus Desler; Kalisz, Mark

    2017-01-01

    of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction...

  14. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  15. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans.

    Science.gov (United States)

    Mold, Jeff E; Venkatasubrahmanyam, Shivkumar; Burt, Trevor D; Michaëlsson, Jakob; Rivera, Jose M; Galkina, Sofiya A; Weinberg, Kenneth; Stoddart, Cheryl A; McCune, Joseph M

    2010-12-17

    Although the mammalian immune system is generally thought to develop in a linear fashion, findings in avian and murine species argue instead for the developmentally ordered appearance (or "layering") of distinct hematopoietic stem cells (HSCs) that give rise to distinct lymphocyte lineages at different stages of development. Here we provide evidence of an analogous layered immune system in humans. Our results suggest that fetal and adult T cells are distinct populations that arise from different populations of HSCs that are present at different stages of development. We also provide evidence that the fetal T cell lineage is biased toward immune tolerance. These observations offer a mechanistic explanation for the tolerogenic properties of the developing fetus and for variable degrees of immune responsiveness at birth.

  16. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells

    Science.gov (United States)

    Sojka, Dorothy K; Plougastel-Douglas, Beatrice; Yang, Liping; Pak-Wittel, Melissa A; Artyomov, Maxim N; Ivanova, Yulia; Zhong, Chao; Chase, Julie M; Rothman, Paul B; Yu, Jenny; Riley, Joan K; Zhu, Jinfang; Tian, Zhigang; Yokoyama, Wayne M

    2014-01-01

    Natural killer (NK) cells belong to the innate immune system; they can control virus infections and developing tumors by cytotoxicity and producing inflammatory cytokines. Most studies of mouse NK cells, however, have focused on conventional NK (cNK) cells in the spleen. Recently, we described two populations of liver NK cells, tissue-resident NK (trNK) cells and those resembling splenic cNK cells. However, their lineage relationship was unclear; trNK cells could be developing cNK cells, related to thymic NK cells, or a lineage distinct from both cNK and thymic NK cells. Herein we used detailed transcriptomic, flow cytometric, and functional analysis and transcription factor-deficient mice to determine that liver trNK cells form a distinct lineage from cNK and thymic NK cells. Taken together with analysis of trNK cells in other tissues, there are at least four distinct lineages of NK cells: cNK, thymic, liver (and skin) trNK, and uterine trNK cells. DOI: http://dx.doi.org/10.7554/eLife.01659.001 PMID:24714492

  17. Lineage stability and phenotypic plasticity of Foxp3⁺ regulatory T cells.

    Science.gov (United States)

    Hori, Shohei

    2014-05-01

    Regulatory T (Treg) cells expressing the transcription factor forkhead box protein 3 (Foxp3) constitute a unique T-cell lineage committed to suppressive functions. While their differentiation state is remarkably stable in the face of various perturbations from the extracellular environment, they are able to adapt to diverse and fluctuating tissue environments by changing their phenotype. The lineage stability and phenotypic plasticity of Treg cells thus ensure the robustness of self-tolerance and tissue homeostasis. Recent studies have suggested, however, that Treg cells may retain lineage plasticity, the ability to switch their cell fate to various effector T-cell types under certain circumstances such as inflammation, a notion that remains highly contentious. While accumulating evidence indicates that some Treg cells can downregulate Foxp3 expression and/or acquire effector T-helper cell-like phenotypes, results from my laboratory have shown that Treg cells retain epigenetic memory of, and thus remain committed to, Foxp3 expression and suppressive functions despite such phenotypic plasticity. It has also become evident that Foxp3 can be promiscuously and transiently expressed in activated T cells. Here, I argue that the current controversy stems partly from the lack of the lineage specificity of Foxp3 expression and also from the confusion between phenotypic plasticity and lineage plasticity, and discuss implications of our findings in Treg cell fate determination and maintenance.

  18. Lineage tracing quantification reveals symmetric stem cell division in Drosophila male germline stem cells.

    Science.gov (United States)

    Salzmann, Viktoria; Inaba, Mayu; Cheng, Jun; Yamashita, Yukiko M

    2013-12-01

    In the homeostatic state, adult stem cells divide either symmetrically to increase the stem cell number to compensate stem cell loss, or asymmetrically to maintain the population while producing differentiated cells. We have investigated the mode of stem cell division in the testes of Drosophila melanogaster by lineage tracing and confirm the presence of symmetric stem cell division in this system. We found that the rate of symmetric division is limited to 1-2% of total germline stem cell (GSC) divisions, but it increases with expression of a cell adhesion molecule, E-cadherin, or a regulator of the actin cytoskeleton, Moesin, which may modulate adhesiveness of germ cells to the stem cell niche. Our results indicate that the decision regarding asymmetric vs. symmetric division is a dynamically regulated process that contributes to tissue homeostasis, responding to the needs of the tissue.

  19. Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells.

    Science.gov (United States)

    Freire-Pritchett, Paula; Schoenfelder, Stefan; Várnai, Csilla; Wingett, Steven W; Cairns, Jonathan; Collier, Amanda J; García-Vílchez, Raquel; Furlan-Magaril, Mayra; Osborne, Cameron S; Fraser, Peter; Rugg-Gunn, Peter J; Spivakov, Mikhail

    2017-03-23

    Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells.

  20. mTOR: a link from the extracellular milieu to transcriptional regulation of oligodendrocyte development

    Directory of Open Access Journals (Sweden)

    Teresa L. Wood

    2013-03-01

    Full Text Available Oligodendrocyte development is controlled by numerous extracellular signals that regulate a series of transcription factors that promote the differentiation of oligodendrocyte progenitor cells to myelinating cells in the central nervous system. A major element of this regulatory system that has only recently been studied is the intracellular signalling from surface receptors to transcription factors to down-regulate inhibitors and up-regulate inducers of oligodendrocyte differentiation and myelination. The current review focuses on one such pathway: the mTOR (mammalian target of rapamycin pathway, which integrates signals in many cell systems and induces cell responses including cell proliferation and cell differentiation. This review describes the known functions of mTOR as they relate to oligodendrocyte development, and its recently discovered impact on oligodendrocyte differentiation and myelination. A potential model for its role in oligodendrocyte development is proposed.

  1. mTOR: A Link from the Extracellular Milieu to Transcriptional Regulation of Oligodendrocyte Development

    Directory of Open Access Journals (Sweden)

    Teresa L. Wood

    2013-02-01

    Full Text Available Oligodendrocyte development is controlled by numerous extracellular signals that regulate a series of transcription factors that promote the differentiation of oligodendrocyte progenitor cells to myelinating cells in the central nervous system. A major element of this regulatory system that has only recently been studied is the intracellular signalling from surface receptors to transcription factors to down-regulate inhibitors and up-regulate inducers of oligodendrocyte differentiation and myelination. The current review focuses on one such pathway: the mTOR (mammalian target of rapamycin pathway, which integrates signals in many cell systems and induces cell responses including cell proliferation and cell differentiation. This review describes the known functions of mTOR as they relate to oligodendrocyte development, and its recently discovered impact on oligodendrocyte differentiation and myelination. A potential model for its role in oligodendrocyte development is proposed.

  2. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq.

    Science.gov (United States)

    Treutlein, Barbara; Brownfield, Doug G; Wu, Angela R; Neff, Norma F; Mantalas, Gary L; Espinoza, F Hernan; Desai, Tushar J; Krasnow, Mark A; Quake, Stephen R

    2014-05-15

    The mammalian lung is a highly branched network in which the distal regions of the bronchial tree transform during development into a densely packed honeycomb of alveolar air sacs that mediate gas exchange. Although this transformation has been studied by marker expression analysis and fate-mapping, the mechanisms that control the progression of lung progenitors along distinct lineages into mature alveolar cell types are still incompletely known, in part because of the limited number of lineage markers and the effects of ensemble averaging in conventional transcriptome analysis experiments on cell populations. Here we show that single-cell transcriptome analysis circumvents these problems and enables direct measurement of the various cell types and hierarchies in the developing lung. We used microfluidic single-cell RNA sequencing (RNA-seq) on 198 individual cells at four different stages encompassing alveolar differentiation to measure the transcriptional states which define the developmental and cellular hierarchy of the distal mouse lung epithelium. We empirically classified cells into distinct groups by using an unbiased genome-wide approach that did not require a priori knowledge of the underlying cell types or the previous purification of cell populations. The results confirmed the basic outlines of the classical model of epithelial cell-type diversity in the distal lung and led to the discovery of many previously unknown cell-type markers, including transcriptional regulators that discriminate between the different populations. We reconstructed the molecular steps during maturation of bipotential progenitors along both alveolar lineages and elucidated the full life cycle of the alveolar type 2 cell lineage. This single-cell genomics approach is applicable to any developing or mature tissue to robustly delineate molecularly distinct cell types, define progenitors and lineage hierarchies, and identify lineage-specific regulatory factors.

  3. Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma.

    Science.gov (United States)

    Wray, G A; Raff, R A

    1990-09-01

    The lineage and fate of each blastomere in the 32-cell embryo of the direct-developing sea urchin Heliocidaris erythrogramma have been traced by microinjection of tetramethylrhodamine-dextran. The results reveal substantive evolutionary modifications of the ancestral cell lineage pattern of indirect sea urchin development. Significant among these modifications are changes in the time and order of cell lineage segregation: vegetal ectodermal founder cells consistently arise earlier than during indirect development, while internal founder cells generally segregate later and in a different sequence. Modifications have also arisen in proportions of the embryo fated to become various cell types and larval structures. Ectodermal fates, particularly vestibular ectoderm, comprise a greater proportion of the total cellular volume in H. erythrogramma. Among internal cell types, coelom consumes more and endoderm less of the remaining cellular volume than during indirect sea urchin development. Evolutionary modifications are also apparent in the positional origin of larval cell types and structures in H. erythrogramma. These include an apparent tilt in the axis of prospective cell fate relative to the animal-vegetal axis as defined by cleavage planes. Together these evolutionary changes in the cell lineage of H. erythrogramma produce an accelerated loss of dorsoventral symmetry in cell fate relative to indirect development. The extent and diversity of rearrangements in its cell lineage indicate that the non-feeding larva of H. erythrogramma is a highly modified, novel form rather than a degenerate pluteus larva. These same modifications underscore the evolutionarily flexible relationship between cell lineage, gene expression, and larval morphology in sea urchin development.

  4. mSEL-1L (Suppressor/enhancer Lin12-like) protein levels influence murine neural stem cell self-renewal and lineage commitment.

    Science.gov (United States)

    Cardano, Marina; Diaferia, Giuseppe R; Cattaneo, Monica; Dessì, Sara S; Long, Qiaoming; Conti, Luciano; Deblasio, Pasquale; Cattaneo, Elena; Biunno, Ida

    2011-05-27

    Murine SEL-1L (mSEL-1L) is a key component of the endoplasmic reticulum-associated degradation pathway. It is essential during development as revealed by the multi-organ dysfunction and in uterus lethality occurring in homozygous mSEL-1L-deficient mice. Here we show that mSEL-1L is highly expressed in pluripotent embryonic stem cells and multipotent neural stem cells (NSCs) but silenced in all mature neural derivatives (i.e. astrocytes, oligodendrocytes, and neurons) by mmu-miR-183. NSCs derived from homozygous mSEL-1L-deficient embryos (mSEL-1L(-/-) NSCs) fail to proliferate in vitro, show a drastic reduction of the Notch effector HES-5, and reveal a significant down-modulation of the early neural progenitor markers PAX-6 and OLIG-2, when compared with the wild type (mSEL-1L(+/+) NSCs) counterpart. Furthermore, these cells are almost completely deprived of the neural marker Nestin, display a significant decrease of SOX-2 expression, and rapidly undergo premature astrocytic commitment and apoptosis. The data suggest severe self-renewal defects occurring in these cells probably mediated by misregulation of the Notch signaling. The results reported here denote mSEL-1L as a primitive marker with a possible involvement in the regulation of neural progenitor stemness maintenance and lineage determination.

  5. mSEL-1L (Suppressor/Enhancer Lin12-like) Protein Levels Influence Murine Neural Stem Cell Self-renewal and Lineage Commitment*

    Science.gov (United States)

    Cardano, Marina; Diaferia, Giuseppe R.; Cattaneo, Monica; Dessì, Sara S.; Long, Qiaoming; Conti, Luciano; DeBlasio, Pasquale; Cattaneo, Elena; Biunno, Ida

    2011-01-01

    Murine SEL-1L (mSEL-1L) is a key component of the endoplasmic reticulum-associated degradation pathway. It is essential during development as revealed by the multi-organ dysfunction and in uterus lethality occurring in homozygous mSEL-1L-deficient mice. Here we show that mSEL-1L is highly expressed in pluripotent embryonic stem cells and multipotent neural stem cells (NSCs) but silenced in all mature neural derivatives (i.e. astrocytes, oligodendrocytes, and neurons) by mmu-miR-183. NSCs derived from homozygous mSEL-1L-deficient embryos (mSEL-1L−/− NSCs) fail to proliferate in vitro, show a drastic reduction of the Notch effector HES-5, and reveal a significant down-modulation of the early neural progenitor markers PAX-6 and OLIG-2, when compared with the wild type (mSEL-1L+/+ NSCs) counterpart. Furthermore, these cells are almost completely deprived of the neural marker Nestin, display a significant decrease of SOX-2 expression, and rapidly undergo premature astrocytic commitment and apoptosis. The data suggest severe self-renewal defects occurring in these cells probably mediated by misregulation of the Notch signaling. The results reported here denote mSEL-1L as a primitive marker with a possible involvement in the regulation of neural progenitor stemness maintenance and lineage determination. PMID:21454627

  6. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration

    Directory of Open Access Journals (Sweden)

    Peipei Zhang

    2014-10-01

    Full Text Available Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration.

  7. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage.

    Science.gov (United States)

    Malchow, Sven; Leventhal, Daniel S; Lee, Victoria; Nishi, Saki; Socci, Nicholas D; Savage, Peter A

    2016-05-17

    The promiscuous expression of tissue-restricted antigens in the thymus, driven in part by autoimmune regulator (Aire), is critical for the protection of peripheral tissues from autoimmune attack. Aire-dependent processes are thought to promote both clonal deletion and the development of Foxp3(+) regulatory T (Treg) cells, suggesting that autoimmunity associated with Aire deficiency results from two failed tolerance mechanisms. Here, examination of autoimmune lesions in Aire(-/-) mice revealed an unexpected third possibility. We found that the predominant conventional T cell clonotypes infiltrating target lesions express antigen receptors that were preferentially expressed by Foxp3(+) Treg cells in Aire(+/+) mice. Thus, Aire enforces immune tolerance by ensuring that distinct autoreactive T cell specificities differentiate into the Treg cell lineage; dysregulation of this process results in the diversion of Treg cell-biased clonotypes into pathogenic conventional T cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Foad J Rouhani

    2016-04-01

    Full Text Available The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50-70 de novo single nucleotide variants (SNVs between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs, their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.

  9. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Foad J Rouhani

    2016-04-01

    Full Text Available The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50-70 de novo single nucleotide variants (SNVs between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs, their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.

  10. Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana.

    Science.gov (United States)

    Wolff, Carsten; Scholtz, Gerhard

    2002-10-01

    Embryos of the amphipod crustacean Orchestia cavimana are examined during cleavage, gastrulation, and segmentation by using in vivo labelling. Single blastomeres of the 8- and 16-cell stages were labelled with DiI to trace cell lineages. Early cleavage follows a distinct pattern and the a/p and d/v body axes are already determined at the 4- and 8-cell stages, respectively. In these stages, the germinal rudiment and the naupliar mesoderm can be traced back to a single blastomere each. In addition, the ectoderm and the postnaupliar mesoderm are separated into right and left components. At the16-cell stage, naupliar ectoderm is divided from the postnaupliar ectoderm, and extraembryonic lineages are separated from postnaupliar mesoderm and endoderm. From our investigation, it is evident that the cleavage pattern and cell lineage of Orchestia cavimana are not of the spiral type. Furthermore, the results of the labelling show many differences to cleavage patterns and cell lineages in other crustaceans, in particular, other Malacostraca. The cleavage and cell lineage patterns of the amphipod Orchestia are certainly derived within Malacostraca, whose ancestral cleavage mode was most likely of the superficial type. On the other hand, Orchestia exhibits a stereotyped cell division pattern during formation and differentiation of the germ band that is typical for malacostracans. Hence, a derived (apomorphic) early cleavage pattern is the ontogenetic basis for an evolutionarily older cell division pattern of advanced developmental stages. O. cavimana offers the possibility to trace the lineages and the fates of cells from early developmental stages up to the formation of segmental structures, including neurogenesis at a level of resolution that is not matched by any other arthropod system.

  11. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wan Ibrahim, Wan Norhamidah, E-mail: hamidah@science.upm.edu.my [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Tofighi, Roshan, E-mail: Roshan.Tofighi@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Onishchenko, Natalia, E-mail: Natalia.Onishchenko@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Rebellato, Paola, E-mail: Paola.Rebellato@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm (Sweden); Bose, Raj, E-mail: Raj.Bose@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Uhlén, Per, E-mail: Per.Uhlen@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm (Sweden); Ceccatelli, Sandra, E-mail: Sandra.Ceccatelli@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden)

    2013-05-15

    Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca{sup 2+} activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS. - Highlights: • PFOS decreases proliferation of neural stem cells (NSCs). • PFOS induces neuronal and oligodendrocytic differentiation in NSCs. • PFOS alters expression of PPARγ and UCP2 in vitro. • PFOS alters expression of PPARγ and UCP3 in vivo. • Block of PPAR

  12. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Directory of Open Access Journals (Sweden)

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  13. Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages.

    Science.gov (United States)

    Crigler, Lauren; Kazhanie, Amita; Yoon, Tae-Jin; Zakhari, Julia; Anders, Joanna; Taylor, Barbara; Virador, Victoria M

    2007-07-01

    The skin contains two known subpopulations of stem cells/epidermal progenitors: a basal keratinocyte population found in the interfollicular epithelium and cells residing in the bulge region of the hair follicle. The major role of the interfollicular basal keratinocyte population may be epidermal renewal, whereas the bulge population may only be activated and recruited to form a cutaneous epithelium in case of trauma. Using 3-dimensional cultures of murine skin under stress conditions in which only reserve epithelial cells would be expected to survive and expand, we demonstrate that a mesenchymal population resident in neonatal murine dermis has the unique potential to develop an epidermis in vitro. In monolayer culture, this dermal subpopulation has long-term survival capabilities in restricted serum and an inducible capacity to evolve into multiple cell lineages, both epithelial and mesenchymal, depending on culture conditions. When grafted subcutaneously, this dermal subpopulation gave rise to fusiform structures, reminiscent of disorganized muscle, that stained positive for smooth muscle actin and desmin; on typical epidermal grafts, abundant melanocytes appeared throughout the dermis that were not associated with hair follicles. The multipotential cells can be repeatedly isolated from neonatal murine dermis by a sequence of differential centrifugation and selective culture conditions. These results suggest that progenitors capable of epidermal differentiation exist in the mesenchymal compartment of an abundant tissue source and may have a function in mesenchymal-epithelial transition upon insult. Moreover, these cells could be available in sufficient quantities for lineage determination or tissue engineering applications.

  14. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies.

    Science.gov (United States)

    Gao, Feng; Bonsignori, Mattia; Liao, Hua-Xin; Kumar, Amit; Xia, Shi-Mao; Lu, Xiaozhi; Cai, Fangping; Hwang, Kwan-Ki; Song, Hongshuo; Zhou, Tongqing; Lynch, Rebecca M; Alam, S Munir; Moody, M Anthony; Ferrari, Guido; Berrong, Mark; Kelsoe, Garnett; Shaw, George M; Hahn, Beatrice H; Montefiori, David C; Kamanga, Gift; Cohen, Myron S; Hraber, Peter; Kwong, Peter D; Korber, Bette T; Mascola, John R; Kepler, Thomas B; Haynes, Barton F

    2014-07-31

    Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.

  15. Over-expression of hNGF in adult human olfactory bulb neural stem cells promotes cell growth and oligodendrocytic differentiation.

    Directory of Open Access Journals (Sweden)

    Hany E S Marei

    precursor cells markers (PDGFRα, NG2 and CNPase respect to OBNS/PC-GFP counterparts. These findings suggest an enhanced proliferation and oligodendrocytic differentiation potential for OBNS/PC-GFP-hNGF as compared to OBNS/PC-GFP.

  16. Hyperforin promotes mitochondrial function and development of oligodendrocytes.

    Science.gov (United States)

    Wang, Yanlin; Zhang, Yanbo; He, Jue; Zhang, Handi; Xiao, Lan; Nazarali, Adil; Zhang, Zhijun; Zhang, Dai; Tan, Qingrong; Kong, Jiming; Li, Xin-Min

    2011-11-01

    St. John's wort has been found to be an effective and safe herbal treatment for depression in several clinical trials. However, the underlying mechanism of its therapeutic effects is unclear. Recent studies show that the loss and malfunction of oligodendrocytes are closely related to the neuropathological changes in depression, which can be reversed by antidepressant treatment. In this study, we evaluated the effects of hyperforin, a major active component of St. John's wort, on the proliferation, development and mitochondrial function of oligodendrocytes. The study results revealed that hyperforin promotes maturation of oligodendrocytes and increases mitochondrial function without affecting proliferation of an oligodendrocyte progenitor cell line and neural stem/progenitor cells. Hyperforin also prevented mitochondrial toxin-induced cytotoxicity in an oligodendrocyte progenitor cell line. These findings suggest that hyperforin may stimulate the development and function of oligodendrocytes, which could be a mechanism of its effect in depression. Future in vitro and in vivo studies are required to further characterize the mechanisms of hyperforin.

  17. Ezh2 represses the basal cell lineage during lung endoderm development.

    Science.gov (United States)

    Snitow, Melinda E; Li, Shanru; Morley, Michael P; Rathi, Komal; Lu, Min Min; Kadzik, Rachel S; Stewart, Kathleen M; Morrisey, Edward E

    2015-01-01

    The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation.

  18. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Morizane, Ryuji [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Monkawa, Toshiaki, E-mail: monkawa@sc.itc.keio.ac.jp [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Itoh, Hiroshi [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan)

    2009-12-25

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  19. Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior

    Science.gov (United States)

    Cai, Li; Hayes, Nancy L.; Takahashi, Takao; Caviness, Verne S Jr; Nowakowski, Richard S.

    2002-01-01

    Mechanisms that regulate neuron production in the developing mouse neocortex were examined by using a retroviral lineage marking method to determine the sizes of the lineages remaining in the proliferating population of the ventricular zone during the period of neuron production. The distribution of clade sizes obtained experimentally in four different injection-survival paradigms (E11-E13, E11-E14, E11-E15, and E12-E15) from a total of over 500 labeled lineages was compared with that obtained from three models in which the average behavior of the proliferating population [i.e., the proportion of cells remaining in the proliferative population (P) vs. that exiting the proliferative population (Q)] was quantitatively related to lineage size distribution. In model 1, different proportions of asymmetric, symmetric terminal, and symmetric nonterminal cell divisions coexisted during the entire developmental period. In model 2, the developmental period was divided into two epochs: During the first, asymmetric and symmetric nonterminal cell divisions occurred, but, during the second, asymmetric and symmetric terminal cell divisions occurred. In model 3, the shifts in P and Q are accounted for by changes in the proportions of the two types of symmetric cell divisions without the inclusion of any asymmetric cell divisions. The results obtained from the retroviral experiments were well accounted for by model 1 but not by model 2 or 3. These findings demonstrate that: 1) asymmetric and both types of symmetric cell divisions coexist during the entire period of neurogenesis in the mouse, 2) neuron production is regulated in the proliferative population by the independent decisions of the two daughter cells to reenter S phase, and 3) neurons are produced by both asymmetric and symmetric terminal cell divisions. In addition, the findings mean that cell death and/or tangential movements of cells in the proliferative population occur at only a low rate and that there are no

  20. Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.

    Science.gov (United States)

    Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa

    2015-05-01

    Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level.

  1. Genome sequencing of normal cells reveals developmental lineages and mutational processes

    NARCIS (Netherlands)

    Behjati, Sam; Huch, Meritxell; van Boxtel, Ruben; Karthaus, Wouter; Wedge, David C; Tamuri, Asif U; Martincorena, Iñigo; Petljak, Mia; Alexandrov, Ludmil B; Gundem, Gunes; Tarpey, Patrick S; Roerink, Sophie; Blokker, Joyce; Maddison, Mark; Mudie, Laura; Robinson, Ben; Nik-Zainal, Serena; Campbell, Peter; Goldman, Nick; van de Wetering, Marc; Cuppen, Edwin; Clevers, Hans; Stratton, Michael R

    2014-01-01

    The somatic mutations present in the genome of a cell accumulate over the lifetime of a multicellular organism. These mutations can provide insights into the developmental lineage tree, the number of divisions that each cell has undergone and the mutational processes that have been operative. Here w

  2. A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.

    Science.gov (United States)

    Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad

    2017-01-05

    During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    Science.gov (United States)

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis.

  4. Protective Effects of N-Acetyl-L-Cysteine in Human Oligodendrocyte Progenitor Cells and Restoration of Motor Function in Neonatal Rats with Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Dongsun Park

    2015-01-01

    Full Text Available Objective. Since oligodendrocyte progenitor cells (OPCs are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE, the present study was aimed at investigating the protective effects of N-acetyl-L-cysteine (NAC, a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats. Methods. In in vitro study, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. In in vivo study, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed. Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE. Conclusion. The results indicate that NAC exerts neuroprotective effects in vitro and in vivo by preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases.

  5. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  6. Murine inner cell mass-derived lineages depend on Sall4 function

    Science.gov (United States)

    Elling, Ulrich; Klasen, Christian; Eisenberger, Tobias; Anlag, Katrin; Treier, Mathias

    2006-01-01

    Sall4 is a mammalian Spalt transcription factor expressed by cells of the early embryo and germ cells, an expression pattern similar to that of both Oct4 and Sox2, which play essential roles during early murine development. We show that the activity of Sall4 is cell-autonomously required for the development of the epiblast and primitive endoderm from the inner cell mass. Furthermore, no embryonic or extraembryonic endoderm stem cell lines could be established from Sall4-deficient blastocysts. In contrast, neither the development of the trophoblast lineage nor the ability to generate trophoblast cell lines from murine blastocysts was impaired in the absence of Sall4. These data establish Sall4 as an essential transcription factor required for the early development of inner cell mass-derived cell lineages. PMID:17060609

  7. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum.

    Science.gov (United States)

    Choi, Eunyoung; Roland, Joseph T; Barlow, Brittney J; O'Neal, Ryan; Rich, Amy E; Nam, Ki Taek; Shi, Chanjuan; Goldenring, James R

    2014-11-01

    The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of the stomach as well as in over 50% of antral glands. MIST1 expressing chief cells were predominantly observed in the body although individual glands of the antrum also showed MIST1 expressing chief cells. While classically described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed type glands containing both parietal cells and G cells throughout the antrum. Enteroendocrine cells show distinct patterns of localisation in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Lineage extrinsic and intrinsic control of immunoregulatory cell numbers by SHIP.

    Science.gov (United States)

    Collazo, Michelle M; Paraiso, Kim H T; Park, Mi-Young; Hazen, Amy L; Kerr, William G

    2012-07-01

    We previously showed that germline or induced SHIP deficiency expands immuno-regulatory cell numbers in T lymphoid and myeloid lineages. We postulated these increases could be interrelated. Here, we show that myeloid-specific ablation of SHIP leads to the expansion of both myeloid-derived suppressor cell (MDSC) and regulatory T (Treg) cell numbers, indicating SHIP-dependent control of Treg-cell numbers by a myeloid cell type. Conversely, T-lineage specific ablation of SHIP leads to expansion of Treg-cell numbers, but not expansion of the MDSC compartment, indicating SHIP also has a lineage intrinsic role in limiting Treg-cell numbers. However, the SHIP-deficient myeloid cell that promotes MDSC and Treg-cell expansion is not an MDSC as they lack SHIP protein expression. Thus, regulation of MDSC numbers in vivo must be controlled in a cell-extrinsic fashion by another myeloid cell type. We had previously shown that G-CSF levels are profoundly increased in SHIP(-/-) mice, suggesting this myelopoietic growth factor could promote MDSC expansion in a cell-extrinsic fashion. Consistent with this hypothesis, we find that G-CSF is required for expansion of the MDSC splenic compartment in mice rendered SHIP-deficient as adults. Thus, SHIP controls MDSC numbers, in part, by limiting production of the myelopoietic growth factor G-CSF.

  9. Regulatory effects on the population dynamics and wave propagation in a cell lineage model.

    Science.gov (United States)

    Wang, Mao-Xiang; Ma, Yu-Qiang; Lai, Pik-Yin

    2016-03-21

    We consider the interplay of cell proliferation, cell differentiation (and de-differentiation), cell movement, and the effect of feedback regulations on the population and propagation dynamics of different cell types in a cell lineage model. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the cell lineage. The cell densities are described by coupled reaction-diffusion partial differential equations, and the propagating wave front solutions in one dimension are investigated analytically and by numerical solutions. In particular, wavefront propagation speeds are obtained analytically and verified by numerical solutions of the equations. The emphasis is on the effects of the feedback regulations on different stages in the cell lineage. It is found that when the progenitor cell is negatively regulated, the populations of the cell lineage are strongly down-regulated with the steady growth rate of the progenitor cell being driven to zero beyond a critical regulatory strength. An analytic expression for the critical regulation strength in terms of the model parameters is derived and verified by numerical solutions. On the other hand, if the inhibition is acting on the differentiated cells, the change in the population dynamics and wave propagation speed is small. In addition, it is found that only the propagating speed of the progenitor cells is affected by the regulation when the diffusion of the differentiated cells is large. In the presence of de-differentiation, the effect on down-regulating the progenitor population is weakened and there is no effect on the propagation speed due to regulation, suggesting that the effect of regulatory control is diminished by de-differentiation pathways.

  10. Lineage- and developmental stage-specific mechanomodulation of induced pluripotent stem cell differentiation.

    Science.gov (United States)

    Maldonado, Maricela; Luu, Rebeccah J; Ico, Gerardo; Ospina, Alex; Myung, Danielle; Shih, Hung Ping; Nam, Jin

    2017-09-29

    To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes. Electrospun nanofibrous substrates with different reduced Young's modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively. The results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner. Lineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications.

  11. Lineage development of cell fusion hybrids upon somatic reprogramming

    OpenAIRE

    2011-01-01

    Tese de mestrado. Biologia (Biologia Molecular e Genética). Universidade de Lisboa, Faculdade de Ciências, 2011 Somatic cell reprogramming has been extensively studied over the last years and opened new perspectives in the use of pluripotent cells for regenerative biomedical purposes. Spontaneous cell fusion has been suggested to be involved in regenerative processes in vivo. Strong evidences support the hypothesis that the reprogrammed hybrids resulting from the fusion between a pluripote...

  12. Targeting human oligodendrocyte progenitors for myelin repair.

    Science.gov (United States)

    Dietz, Karen C; Polanco, Jessie J; Pol, Suyog U; Sim, Fraser J

    2016-09-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.

  13. Human Oligodendrocytes in Remyelination Research

    NARCIS (Netherlands)

    Czepiel, Marcin; Boddeke, Erik; Copray, Sjef

    2015-01-01

    Studies on myelination and oligodendrocyte development are inevitably linked with demyelinating conditions such as multiple sclerosis (MS), leukodystrophies or spinal cord injury (SCI). Chronic loss of myelin, subsequently leading to neurodegeneration, is the ultimate cause of severe and permanent d

  14. Selective cell targeting and lineage tracing of human induced pluripotent stem cells using recombinant avian retroviruses.

    Science.gov (United States)

    Hildebrand, Laura; Seemann, Petra; Kurtz, Andreas; Hecht, Jochen; Contzen, Jörg; Gossen, Manfred; Stachelscheid, Harald

    2015-12-01

    Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date, this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA(+) cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSC(TVA+) as well as their differentiating progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiating or undifferentiated TVA(+) cells was possible. In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies.

  15. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium.

    Directory of Open Access Journals (Sweden)

    Kamini Kunasegaran

    Full Text Available The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production. Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells.

  16. Cell lineage relationship in the stomach of normal and genetically manipulated mice

    Directory of Open Access Journals (Sweden)

    S.M. Karam

    1998-02-01

    Full Text Available The oxyntic mucosa of the mouse stomach is lined with a heterogeneous population of cells that form numerous short pits continuous with long tubular glands. Tritiated thymidine radioautography has made it possible to pinpoint the origin of all cell types and to follow the differentiation/migration of different cell lineages along the pit-gland unit. The proliferating multipotent stem cells functionally anchored in the upper glandular region, the isthmus, give rise to three main lineage precursors: 1 pre-pit cells, which migrate upward to the pit while differentiating into mucus-producing pit cells; 2 pre-neck cells, which migrate downward to the glandular neck while differentiating into mucus-producing neck cells that, by approaching the glandular base, gradually change their phenotype into pepsinogen- and intrinsic factor-producing zymogenic cells; 3 pre-parietal cells, which differentiate into acid-producing parietal cells in the isthmus and then undergo bipolar migration towards the pit and the glandular base. Thus, parietal cells are the only cells that complete their differentiation in the isthmus and then migrate to be scattered throughout the pit-gland unit. To determine whether parietal cells play a role in controlling decisions about cell fate within the pit-gland unit, the gastric epithelium has been examined in transgenic mice expressing the H,K-ATPase ß-subunit-1035 to +24/simian virus 40 large T antigen fusion gene. The blockade in parietal cell differentiation in these mice produces an amplification of lineage precursors, a marked depletion of zymogenic cells and an increase in pit cell census. Ablation of parietal cells in another transgenic mouse model expressing the H,K-ATPase ß-subunit-1035 to +24/diphtheria toxin fragment A fusion gene also produces amplification of lineage precursors, and similar effects on zymogenic and pit cell census. These findings strongly suggest that parietal cells produce regulatory signals that

  17. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes

    Science.gov (United States)

    Matute, Carlos; Sánchez-Gómez, M. Victoria; Martínez-Millán, Luis; Miledi, Ricardo

    1997-01-01

    In cultured oligodendrocytes isolated from perinatal rat optic nerves, we have analyzed the expression of ionotropic glutamate receptor subunits as well as the effect of the activation of these receptors on oligodendrocyte viability. Reverse transcription–PCR, in combination with immunocytochemistry, demonstrated that most oligodendrocytes differentiated in vitro express the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR3 and GluR4 and the kainate receptor subunits GluR6, GluR7, KA1 and KA2. Acute and chronic exposure to kainate caused extensive oligodendrocyte death in culture. This effect was partially prevented by the AMPA receptor antagonist GYKI 52466 and was completely abolished by the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that both AMPA and kainate receptors mediate the observed kainate toxicity. Furthermore, chronic application of kainate to optic nerves in vivo resulted in massive oligodendrocyte death which, as in vitro, could be prevented by coinfusion of the toxin with CNQX. These findings suggest that excessive activation of the ionotropic glutamate receptors expressed by oligodendrocytes may act as a negative regulator of the size of this cell population. PMID:9238063

  18. Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage in Drosophila melanogaster.

    Science.gov (United States)

    Matsuoka, Shinya; Armstrong, Alissa R; Sampson, Leesa L; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2017-06-01

    Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems. Copyright © 2017 by the Genetics Society of America.

  19. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals.

    Science.gov (United States)

    Frankenberg, Stephen; Shaw, Geoff; Freyer, Claudia; Pask, Andrew J; Renfree, Marilyn B

    2013-03-01

    Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.

  20. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis

    OpenAIRE

    Inoue, Takao; Sternberg, Paul W.

    2010-01-01

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited numb...

  1. Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators

    OpenAIRE

    2016-01-01

    The recently emerged CRISPR/Cas9 technique has opened a new perspective on readily editing specific genes. When combined with transcription activators, it can precisely manipulate endogenous gene expression. Here, we enhanced the expression of endogenous Cdx2 and Gata6 genes by CRISPR-mediated activators, thus mouse embryonic stem cells (ESCs) were directly converted into two extraembryonic lineages, i.e., typical trophoblast stem cells (TSCs) and extraembryonic endoderm cells (XENCs), which ...

  2. Epigenetic Control of Smooth Muscle Cell Identity and Lineage Memory.

    Science.gov (United States)

    Gomez, Delphine; Swiatlowska, Pamela; Owens, Gary K

    2015-12-01

    Vascular smooth muscle cells (SMCs), like all cells, acquire a cell-specific epigenetic signature during development that includes acquisition of a unique repertoire of histone and DNA modifications. These changes are postulated to induce an open chromatin state (referred to as euchromatin) on the repertoire of genes that are expressed in differentiated SMC, including SMC-selective marker genes like Acta2 and Myh11, as well as housekeeping genes expressed by most cell types. In contrast, genes that are silenced in differentiated SMC acquire modifications associated with a closed chromatin state (ie, heterochromatin) and transcriptional silencing. Herein, we review mechanisms that regulate epigenetic control of the differentiated state of SMC. In addition, we identify some of the major limitations in the field and future challenges, including development of innovative new tools and approaches, for performing single-cell epigenetic assays and locus-selective editing of the epigenome that will allow direct studies of the functional role of specific epigenetic controls during development, injury repair, and disease, including major cardiovascular diseases, such as atherosclerosis, hypertension, and microvascular disease, associated with diabetes mellitus.

  3. Thymopentin enhances the generation of T-cell lineage derived from human embryonic stem cells in vitro.

    Science.gov (United States)

    Zhu, Ming-Xia; Wan, Wen-Li; Li, Hai-Shen; Wang, Jing; Chen, Gui-An; Ke, Xiao-Yan

    2015-02-15

    Thymopentin is a group of biologically active peptide secreted mainly by the epithelial cells of thymic cortex and medulla. Whether it promotes T cells production from human embryonic stem cells(hESCs) in vitro remains an elusive issue. In the present study, we develop a novel strategy that enhances T-cell lineage differentiation of hESCs in collagen matrix culture by sequential cytokine cocktails treatment combined with thymopentin stimulation. We observed that approximately 30.75% cells expressed CD34 on day 14 of the cultures and expressed the surface markers of erythroid, lymphoid and myeloid lineages. The results of colony assays and gene expressions by RT-PCR analysis also demonstrated that hematopoietic progenitor cells (HPCs) derived from hESCs were capable of multi-lineage differentiation. Further study revealed that culturing with thymopentin treatment, the CD34(+)CD45RA(+)CD7(+) cells sorted from HPCs expressed T-cell-related genes, IKAROS, DNTT, TCRγ and TCRβ, and T-cell surface markers, CD3, cytoplasmic CD3, CD5, CD27, TCRγδ, CD4 and CD8. The differentiated cells produced the cytokines including IFN-γ, IL-2 and TNF-α in response to stimulation, providing the evidence for T-cell function of these cells. In conclusion, thymopentin enhances T-cell lineage differentiation from hESCs in vitro by mimicking thymus peptide environment in vivo.

  4. MYSM1-dependent checkpoints in B cell lineage differentiation and B cell-mediated immune response.

    Science.gov (United States)

    Förster, Michael; Farrington, Kyo; Petrov, Jessica C; Belle, Jad I; Mindt, Barbara C; Witalis, Mariko; Duerr, Claudia U; Fritz, Jörg H; Nijnik, Anastasia

    2017-03-01

    MYSM1 is a chromatin-binding histone deubiquitinase. MYSM1 mutations in humans result in lymphopenia whereas loss of Mysm1 in mice causes severe hematopoietic abnormalities, including an early arrest in B cell development. However, it remains unknown whether MYSM1 is required at later checkpoints in B cell development or for B cell-mediated immune responses. We analyzed conditional mouse models Mysm1(fl/fl)Tg.mb1-cre, Mysm1(fl/fl)Tg.CD19-cre, and Mysm1(fl/fl)Tg.CD21-cre with inactivation of Mysm1 at prepro-B, pre-B, and follicular B cell stages of development. We show that loss of Mysm1 at the prepro-B cell stage in Mysm1(fl/fl)Tg.mb1-cre mice results in impaired B cell differentiation, with an ∼2-fold reduction in B cell numbers in the lymphoid organs. Mysm1(fl/fl)Tg.mb1-cre B cells also showed increased expression of activation markers and impaired survival and proliferation. In contrast, Mysm1 was largely dispensable from the pre-B cell stage onward, with Mysm1(fl/fl)Tg.CD19-cre and Mysm1(fl/fl)Tg.CD21-cre mice showing no alterations in B cell numbers and largely normal responses to stimulation. MYSM1, therefore, has an essential role in B cell lineage specification but is dispensable at later stages of development. Importantly, MYSM1 activity at the prepro-B cell stage of development is important for the normal programming of B cell responses to stimulation once they complete their maturation process.

  5. Regulation of the timing of oligodendrocyte differentiation:mechanisms and perspectives

    Institute of Scientific and Technical Information of China (English)

    Hao Huang; Xiao-Feng Zhao; Kang Zheng; Mengsheng Qiu

    2013-01-01

    Axonal myelination is an essential process for normal functioning of the vertebrate central nervous system.Proper formation of myelin sheaths around axons depends on the timely differentiation of oligodendrocytes.This differentiation occurs on a predictable schedule both in culture and during development.However,the timing mechanisms for oligodendrocyte differentiation during normal development have not been fully uncovered.Recent studies have identified a large number of regulatory factors,including cell-intrinsic factors and extracellular signals,that could control the timing of oligodendrocyte differentiation.Here we provide a mechanistic and critical review of the timing control of oligodendrocyte differentiation.

  6. Near Equilibrium Calculus of Stem Cells in Application to the Airway Epithelium Lineage

    Science.gov (United States)

    Sun, Zheng; Plikus, Maksim V.; Komarova, Natalia L.

    2016-01-01

    Homeostatic maintenance of tissues is orchestrated by well tuned networks of cellular signaling. Such networks regulate, in a stochastic manner, fates of all cells within the respective lineages. Processes such as symmetric and asymmetric divisions, differentiation, de-differentiation, and death have to be controlled in a dynamic fashion, such that the cell population is maintained at a stable equilibrium, has a sufficiently low level of stochastic variation, and is capable of responding efficiently to external damage. Cellular lineages in real tissues may consist of a number of different cell types, connected by hierarchical relationships, albeit not necessarily linear, and engaged in a number of different processes. Here we develop a general mathematical methodology for near equilibrium studies of arbitrarily complex hierarchical cell populations, under regulation by a control network. This methodology allows us to (1) determine stability properties of the network, (2) calculate the stochastic variance, and (3) predict how different control mechanisms affect stability and robustness of the system. We demonstrate the versatility of this tool by using the example of the airway epithelium lineage. Recent research shows that airway epithelium stem cells divide mostly asymmetrically, while the so-called secretory cells divide predominantly symmetrically. It further provides quantitative data on the recovery dynamics of the airway epithelium, which can include secretory cell de-differentiation. Using our new methodology, we demonstrate that while a number of regulatory networks can be compatible with the observed recovery behavior, the observed division patterns of cells are the most optimal from the viewpoint of homeostatic lineage stability and minimizing the variation of the cell population size. This not only explains the observed yet poorly understood features of airway tissue architecture, but also helps to deduce the information on the still largely hypothetical

  7. B-cell Lineage Study in Patients with Juvenile Idiopathic Arthritis

    Directory of Open Access Journals (Sweden)

    Hossein Asgarian-Omran

    2008-12-01

    Full Text Available Objective: Juvenile idiopathic arthritis (JIA is the most common rheumatic disease in children. The exact causes of disease are still poorly understood. It seems that B cells have several functions in JIA, including production of autoantibodies, antigen presentation, production of cytokines, and activation of T cells. Here, we aimed to evaluate B-cell lineage and its precursors in the bone marrow of patients with JIA. Methods: Twenty consecutive patients with JIA were enrolled in this study. JIA is subdivided into three groups of Pauciarticular, Polyarticular, and Systemic JIA. Bone marrow mononuclear cells were separated. Then we analyzed the immunophenotype of the JIA patients by flow cytometry. After separation, the mononuclear cells were stained specific for B cell lineage [CD10, CD19 and CD20], T cell lineage [CD3] and non specific lineage [CD34, HLA-DR and TdT]. Findings: Flow cytometric study of bone marrow showed that JIA patients had low level of CD10, CD19, and CD20. Polyarticular patients had lower level of D10, CD19, and CD20 than pauciarticular JIA patients and systemic onset JIA patients had lower levels than both of them. Conclusion: Decreasing of B cell precursor in bone marrow is one of mechanisms for pathogenesis of JIA and the more decreased B cell precursors in bone marrow are, the worst severity of the disease is. Significant differences in CD10 content of bone marrow were detected between the polyarticular and pauciarticular groups.So, it seems that polyarticular JIA patients had lower percentage of pre B cell stage.

  8. Downregulation of the transcription factor KLF4 is required for the lineage commitment of T cells

    Institute of Scientific and Technical Information of China (English)

    Xiaomin Wen; Haifeng Liu; Gang Xiao; Xiaolong Liu

    2011-01-01

    The roles of the reprogramming factors Oct4,Sox2,c-Myc and Klf4 in early T cell development are incompletely defined.Here,we show that Klf4 is the only reprogramming factor whose expression is downregulated when early thymic progenitors (ETPs) differentiate into T cells.Enforced expression of Klf4 in uncommitted progenitors severely impaired T cell development mainly at the DN2-to-DN3 transition when T cell lineage commitment occurs and affected the transcription of a variety of genes with crucial functions in early T cell development,including genes involved in microenvironmental signaling (IL-7Rα),Notch target genes (Deltexl),and essential T cell lineage regulatory or inhibitory genes (Bcllla,SpiB,and ldl).The survival of thymocytes and the rearrangement at the Tcrb locus were impaired in the presence of enforced Klf4 expression.The defects in the DN1-to-DN2 and DN2-to-DN3 transitions in Klf4 transgenic mice could not be rescued by the introduction of a TCR transgene,but was partially rescued by restoring the expression of IL-7Rα.Thus,our data indicate that the downregulation of Klf4 is a prerequisite for T cell lineage commitment.

  9. Transcriptional analysis of early lineage commitment in human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wormald Sam

    2007-03-01

    Full Text Available Abstract Background The mechanisms responsible for the maintenance of pluripotency in human embryonic stem cells, and those that drive their commitment into particular differentiation lineages, are poorly understood. In fact, even our knowledge of the phenotype of hESC is limited, because the immunological and molecular criteria presently used to define this phenotype describe the properties of a heterogeneous population of cells. Results We used a novel approach combining immunological and transcriptional analysis (immunotranscriptional profiling to compare gene expression in hESC populations at very early stages of differentiation. Immunotranscriptional profiling enabled us to identify novel markers of stem cells and their differentiated progeny, as well as novel potential regulators of hESC commitment and differentiation. The data show clearly that genes associated with the pluripotent state are downregulated in a coordinated fashion, and that they are co-expressed with lineage specific transcription factors in a continuum during the early stages of stem cell differentiation. Conclusion These findings, that show that maintenance of pluripotency and lineage commitment are dynamic, interactive processes in hESC cultures, have important practical implications for propagation and directed differentiation of these cells, and for the interpretation of mechanistic studies of hESC renewal and commitment. Since embryonic stem cells at defined stages of commitment can be isolated in large numbers by immunological means, they provide a powerful model for studying molecular genetics of stem cell commitment in the embryo.

  10. Transcriptional analysis of early lineage commitment in human embryonic stem cells

    Science.gov (United States)

    Laslett, Andrew L; Grimmond, Sean; Gardiner, Brooke; Stamp, Lincon; Lin, Adelia; Hawes, Susan M; Wormald, Sam; Nikolic-Paterson, David; Haylock, David; Pera, Martin F

    2007-01-01

    Background The mechanisms responsible for the maintenance of pluripotency in human embryonic stem cells, and those that drive their commitment into particular differentiation lineages, are poorly understood. In fact, even our knowledge of the phenotype of hESC is limited, because the immunological and molecular criteria presently used to define this phenotype describe the properties of a heterogeneous population of cells. Results We used a novel approach combining immunological and transcriptional analysis (immunotranscriptional profiling) to compare gene expression in hESC populations at very early stages of differentiation. Immunotranscriptional profiling enabled us to identify novel markers of stem cells and their differentiated progeny, as well as novel potential regulators of hESC commitment and differentiation. The data show clearly that genes associated with the pluripotent state are downregulated in a coordinated fashion, and that they are co-expressed with lineage specific transcription factors in a continuum during the early stages of stem cell differentiation. Conclusion These findings, that show that maintenance of pluripotency and lineage commitment are dynamic, interactive processes in hESC cultures, have important practical implications for propagation and directed differentiation of these cells, and for the interpretation of mechanistic studies of hESC renewal and commitment. Since embryonic stem cells at defined stages of commitment can be isolated in large numbers by immunological means, they provide a powerful model for studying molecular genetics of stem cell commitment in the embryo. PMID:17335568

  11. Thymic anlage is colonized by progenitors restricted to T, NK, and dendritic cell lineages.

    Science.gov (United States)

    Masuda, Kyoko; Itoi, Manami; Amagai, Takashi; Minato, Nagahiro; Katsura, Yoshimoto; Kawamoto, Hiroshi

    2005-03-01

    It remains controversial whether the thymus-colonizing progenitors are committed to the T cell lineage. A major problem that has impeded the characterization of thymic immigrants has been that the earliest intrathymic progenitors thus far identified do not necessarily represent the genuine thymic immigrants, because their developmental potential should have been influenced by contact with the thymic microenvironment. In the present study, we examined the developmental potential of the ontogenically earliest thymic progenitors of day 11 murine fetus. These cells reside in the surrounding mesenchymal region and have not encountered thymic epithelial components. Flow cytometric and immunohistochemical analyses demonstrated that these cells are exclusively Lin(-)c-kit(+)IL-7R(+). Limiting dilution analyses disclosed that the progenitors with T cell potential were abundant, while those with B cell potential were virtually absent in the region of day 11 thymic anlage. Clonal analyses reveled that they are restricted to T, NK, and dendritic cell lineages. Each progenitor was capable of forming a large number of precursors that may clonally accommodate highly diverse TCRbeta chains. These results provide direct evidence that the progenitors restricted to the T/NK/dendritic cell lineage selectively immigrate into the thymus.

  12. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia.

    Science.gov (United States)

    Regalo, Gonçalo; Leutz, Achim

    2013-08-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development.

  13. BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action.

    Science.gov (United States)

    Dach, Katharina; Bendt, Farina; Huebenthal, Ulrike; Giersiefer, Susanne; Lein, Pamela J; Heuer, Heike; Fritsche, Ellen

    2017-03-20

    Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants causing developmental neurotoxicity (DNT) in humans and rodents. Their DNT effects are suspected to involve thyroid hormone (TH) signaling disruption. Here, we tested the hypothesis whether disturbance of neural progenitor cell (NPC) differentiation into the oligodendrocyte lineage (O4(+) cells) by BDE-99 involves disruption of TH action in human and mouse (h,m)NPCs. Therefore, we quantified differentiation of NPCs into O4(+) cells and measured their maturation via expression of myelin-associated genes (hMBP, mMog) in presence and absence of TH and/or BDE-99. T3 promoted O4(+) cell differentiation in mouse, but not hNPCs, and induced hMBP/mMog gene expression in both species. BDE-99 reduced generation of human and mouse O4(+) cells, but there is no indication for BDE-99 interfering with cellular TH signaling during O4(+) cell formation. BDE-99 reduced hMBP expression due to oligodendrocyte reduction, but concentrations that did not affect the number of mouse O4(+) cells inhibited TH-induced mMog transcription by a yet unknown mechanism. In addition, ascorbic acid antagonized only the BDE-99-dependent loss of human, not mouse, O4(+) cells by a mechanism probably independent of reactive oxygen species. These data point to species-specific modes of action of BDE-99 on h/mNPC development into the oligodendrocyte lineage.

  14. Bridging the gap between postembryonic cell lineages and identified embryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Oliver Birkholz

    2015-03-01

    Full Text Available The clarification of complete cell lineages, which are produced by specific stem cells, is fundamental for understanding mechanisms, controlling the generation of cell diversity and patterning in an emerging tissue. In the developing Central Nervous System (CNS of Drosophila, neural stem cells (neuroblasts exhibit two periods of proliferation: During embryogenesis they produce primary lineages, which form the larval CNS. After a phase of mitotic quiescence, a subpopulation of them resumes proliferation in the larva to give rise to secondary lineages that build up the CNS of the adult fly. Within the ventral nerve cord (VNC detailed descriptions exist for both primary and secondary lineages. However, while primary lineages have been linked to identified neuroblasts, the assignment of secondary lineages has so far been hampered by technical limitations. Therefore, primary and secondary neural lineages co-existed as isolated model systems. Here we provide the missing link between the two systems for all lineages in the thoracic and abdominal neuromeres. Using the Flybow technique, embryonic neuroblasts were identified by their characteristic and unique lineages in the living embryo and their further development was traced into the late larval stage. This comprehensive analysis provides the first complete view of which embryonic neuroblasts are postembryonically reactivated along the anterior/posterior-axis of the VNC, and reveals the relationship between projection patterns of primary and secondary sublineages.

  15. Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Masaki, E-mail: masakiwestriver@gmail.com [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States); Yanagawa, Naomi [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States); Kojima, Nobuhiko [Institute of Industrial Science (IIS), University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Yuri, Shunsuke; Hauser, Peter V.; Jo, Oak D.; Yanagawa, Norimoto [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer We induced renal lineages from mESCs by following the in vivo developmental cues. Black-Right-Pointing-Pointer We induced nephrogenic intermediate mesoderm by stepwise addition of factors. Black-Right-Pointing-Pointer We induced two types of renal progenitor cells by reciprocal conditioned media. Black-Right-Pointing-Pointer We propose the potential role of CD24 for the enrichment of renal lineage cells. -- Abstract: The in vitro derivation of renal lineage progenitor cells is essential for renal cell therapy and regeneration. Despite extensive studies in the past, a protocol for renal lineage induction from embryonic stem cells remains unestablished. In this study, we aimed to induce renal lineages from mouse embryonic stem cells (mESC) by following in vivo developmental stages, i.e., the induction of mesoderm (Stage I), intermediate mesoderm (Stage II) and renal lineages (Stage III). For stage I induction, in accordance with known signaling pathways involved in mesoderm development in vivo, i.e., Nodal, bone morphogenic proteins (BMPs) and Wnt, we found that the sequential addition of three factors, i.e., Activin-A (A), a surrogate for Nodal signaling, during days 0-2, A plus BMP-4 (4) during days 2-4, and A4 plus lithium (L), a surrogate for Wnt signaling, during days 4-6, was most effective to induce the mesodermal marker, Brachyury. For stage II induction, the addition of retinoic acid (R) in the continuous presence of A4L during days 6-8 was most effective to induce nephrogenic intermediate mesodermal markers, such as Pax2 and Lim1. Under this condition, more than 30% of cells were stained positive for Pax2, and there was a concomitant decrease in the expression of non-mesodermal markers. For stage III induction, in resemblance to the reciprocal induction between ureteric bud (UB) and metanephric mesenchyme (MM) during kidney development, we found that the exposure to conditioned media derived from UB and MM cells was

  16. Lineage-specific expression of bestrophin-2 and bestrophin-4 in human intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Go Ito

    Full Text Available Intestinal epithelial cells (IECs regulate the absorption and secretion of anions, such as HCO3(- or Cl(-. Bestrophin genes represent a newly identified group of calcium-activated Cl(- channels (CaCCs. Studies have suggested that, among the four human bestrophin-family genes, bestrophin-2 (BEST2 and bestrophin-4 (BEST4 might be expressed within the intestinal tissue. Consistently, a study showed that BEST2 is expressed by human colonic goblet cells. However, their precise expression pattern along the gastrointestinal tract, or the lineage specificity of the cells expressing these genes, remains largely unknown. Here, we show that BEST2 and BEST4 are expressed in vivo, each in a distinct, lineage-specific manner, in human IECs. While BEST2 was expressed exclusively in colonic goblet cells, BEST4 was expressed in the absorptive cells of both the small intestine and the colon. In addition, we found that BEST2 expression is significantly down-regulated in the active lesions of ulcerative colitis, where goblet cells were depleted, suggesting that BEST2 expression is restricted to goblet cells under both normal and pathologic conditions. Consistently, the induction of goblet cell differentiation by a Notch inhibitor, LY411575, significantly up-regulated the expression of not BEST4 but BEST2 in MUC2-positive HT-29 cells. Conversely, the induction of absorptive cell differentiation up-regulated the expression of BEST4 in villin-positive Caco-2 cells. In addition, we found that the up- or down-regulation of Notch activity leads to the preferential expression of either BEST4 or BEST2, respectively, in LS174T cells. These results collectively confirmed that BEST2 and BEST4 could be added to the lineage-specific genes of humans IECs due to their abilities to clearly identify goblet cells of colonic origin and a distinct subset of absorptive cells, respectively.

  17. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data.

    Science.gov (United States)

    Amat, Fernando; Lemon, William; Mossing, Daniel P; McDole, Katie; Wan, Yinan; Branson, Kristin; Myers, Eugene W; Keller, Philipp J

    2014-09-01

    The comprehensive reconstruction of cell lineages in complex multicellular organisms is a central goal of developmental biology. We present an open-source computational framework for the segmentation and tracking of cell nuclei with high accuracy and speed. We demonstrate its (i) generality by reconstructing cell lineages in four-dimensional, terabyte-sized image data sets of fruit fly, zebrafish and mouse embryos acquired with three types of fluorescence microscopes, (ii) scalability by analyzing advanced stages of development with up to 20,000 cells per time point at 26,000 cells min(-1) on a single computer workstation and (iii) ease of use by adjusting only two parameters across all data sets and providing visualization and editing tools for efficient data curation. Our approach achieves on average 97.0% linkage accuracy across all species and imaging modalities. Using our system, we performed the first cell lineage reconstruction of early Drosophila melanogaster nervous system development, revealing neuroblast dynamics throughout an entire embryo.

  18. The role of monocyte-lineage cells in human immuno-deficiency virus persistence: mechanisms and progress

    Institute of Scientific and Technical Information of China (English)

    WU Li

    2011-01-01

    Human immunodeficiency virus type 1 (HIV-1) persistence is a major barrier to the successful treatment and eradication of acquired immunodeficiency syndrome (AIDS). In addition to resting CD4+ T cells, a significant long-lived compartment of HIV-1 infection in vivo includes blood monocytes and tissue macrophages. Studying HIV-1 persistence in monocyte-lineage cells is critical because these cells are important HIV-1 target cells in vivo. Monocyte-lineage cells, including monocytes, dendritic cells (DCs) and macrophages, play a significant role in HIV-1 infection and transmission. These cells have been implicated as viral reservoirs that facilitate HIV-1 latency and persistence. A better understanding of HIV-1 interactions with monocyte-lineage cells can potentially aid in the development of new approaches for intervention. This minireview highlights the latest advances in understanding the role of monocyte-lineage cells in HIV-1 persistence and emphasizes new insights into the mechanisms underlying viral persistence.

  19. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin.

    Science.gov (United States)

    Mitew, S; Hay, C M; Peckham, H; Xiao, J; Koenning, M; Emery, B

    2014-09-12

    Oligodendrocytes and the myelin they produce are a remarkable vertebrate specialization that enables rapid and efficient nerve conduction within the central nervous system. The generation of myelin during development involves a finely-tuned pathway of oligodendrocyte precursor specification, proliferation and migration followed by differentiation and the subsequent myelination of appropriate axons. In this review we summarize the molecular mechanisms known to regulate each of these processes, including the extracellular ligands that promote or inhibit development of the oligodendrocyte lineage, the intracellular pathways they signal through and the key transcription factors that mediate their effects. Many of these regulatory mechanisms have recurring roles in regulating several transitions during oligodendrocyte development, highlighting their importance. It is also highly likely that many of these developmental mechanisms will also be involved in myelin repair in human neurological disease.

  20. Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte progenitor survival in the subventricular zone.

    Science.gov (United States)

    Relucio, Jenne; Menezes, Michael J; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Colognato, Holly

    2012-10-01

    The laminin family of extracellular matrix proteins are expressed broadly during embryonic brain development, but are enriched at ventricular and pial surfaces where laminins mediate radial glial attachment during corticogenesis. In the adult brain, however, laminin distribution is restricted, yet is found within the vascular basal lamina and associated fractones of the ventricular zone (VZ)-subventricular zone (SVZ) stem cell niche, where laminins regulate adult neural progenitor cell proliferation. It remains unknown, however, if laminins regulate the wave of oligodendrogenesis that occurs in the neonatal/early postnatal VZ-SVZ. Here we report that Lama2, the gene that encodes the laminin α2-subunit, regulates postnatal oligodendrogenesis. At birth, Lama2-/- mice had significantly higher levels of dying oligodendrocyte progenitor cells (OPCs) in the OPC germinal zone of the dorsal SVZ. This translated into fewer OPCs, both in the dorsal SVZ well as in an adjacent developing white matter tract, the corpus callosum. In addition, intermediate progenitor cells that give rise to OPCs in the Lama2-/- VZ-SVZ were mislocalized and proliferated nearer to the ventricle surface. Later, delays in oligodendrocyte maturation (with accompanying OPC accumulation), were observed in the Lama2-/- corpus callosum, leading to dysmyelination by postnatal day 21. Together these data suggest that prosurvival laminin interactions in the developing postnatal VZ-SVZ germinal zone regulate the ability, or timing, of oligodendrocyte production to occur appropriately.

  1. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma.

    Science.gov (United States)

    Wray, G A; Raff, R A

    1989-04-01

    The sea urchin Heliocidaris erythrogramma undergoes direct development, bypassing the usual echinoid pluteus larva. We present an analysis of cell lineage in H. erythrogramma as part of a definition of the mechanistic basis for this evolutionary change in developmental mode. Microinjection of fluoresceinated tracer dye and surface marking with vital dye are used to follow larval fates of 2-cell, 8-cell, and 16-cell blastomeres, and to examine axial specification. The animal-vegetal axis and adult dorsoventral axis are basically unmodified in H. erythrogramma. Animal cell fates are very similar to those of typically developing species; however, vegetal cell fates in H. erythrogramma are substantially altered. Radial differences exist among vegetal blastomere fates in the 8-cell embryo: dorsal vegetal blastomeres contribute proportionately more descendants to ectodermal and fewer to mesodermal fates, while ventral vegetal blastomeres have a complementary bias in fates. In addition, vegetal cell fates are more variable than in typical developers. There are no cells in H. erythrogramma with fates comparable to those of the micromeres and macromeres of typically developing echinoids. Instead, all vegetal cells in the 16-cell embryo can contribute progeny to ectoderm and gut. Alterations have thus arisen in cleavage patterns and timing of cell lineage partitioning during the evolution of direct development in H. erythrogramma.

  2. Integrin αv in the mechanical response of osteoblast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Keiko [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Ito, Masako [Medical Work-Life-Balance Center, Nagasaki University Hospital, Nagasaki 852-8501 (Japan); Naoe, Yoshinori [Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Lacy-Hulbert, Adam [Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114 (United States); Ikeda, Kyoji, E-mail: kikeda@ncgg.go.jp [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan)

    2014-05-02

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation.

  3. Ontogeny and distribution of cells in B lineage in the American leopard frog, Rana pipiens.

    Science.gov (United States)

    Zettergren, L D

    1982-01-01

    Two-color immunofluorescence techniques were used in order to trace the development and distribution of cells expressing immunoglobulin in Rana pipiens. Evidence is provided which suggests that (i) embryo-larval urogenital tissues are sites of generation of cells in B lineage, (ii) during ontogeny, there is a sequential expression of immunoglobulin isotypes on B cell surfaces, (iii) larvae are able to produce the full range of immunoglobulin clases found in adults, and (iv) at least two subpopulations of lymphocytes exist in Rana pipiens, sIg+ and sIg-; thymocytes and presumably peripheral T cells lack conventional surface immunoglobulin. Some ontogenetic and phylogenetic implications are discussed.

  4. On the biogenesis of the myelin sheath : Cognate polarized trafficking pathways in oligodendrocytes

    NARCIS (Netherlands)

    de Vries, H; Hoekstra, D

    2000-01-01

    Oligodendrocytes, the myelinating cells of the central nervous system, are capable of transporting vast quantities of proteins and of lipids, In particular galactosphingolipids, to the myelin sheath. The sheath is continuous with the plasma membrane of the oligodendrocyte, but the composition of bot

  5. Plectus - a stepping stone in embryonic cell lineage evolution of nematodes

    Directory of Open Access Journals (Sweden)

    Schulze Jens

    2012-07-01

    Full Text Available Abstract Background Recent studies have challenged the widespread view that the pattern of embryogenesis found in Caenorhabditis elegans (clade 9 is characteristic of nematodes in general. To understand this still largely unexplored landscape of developmental events, we set out to examine more distantly related nematodes in detail for temporospatial differences in pattern formation and cell specification. Members of the genus Plectus (clade 6 seem to be suitable candidates to show variety, with certain idiosyncratic features during early development and the convenient availability of cultivatable species. Methods The study was conducted using 4-D lineage analysis, 3-D modeling of developing embryos and laser-induced ablation of individual blastomeres. Results Detailed cell lineage studies of several Plectus species reveal that pattern formation and cell fate assignment differ markedly from C. elegans. Descendants of the first somatic founder cell S1 (AB - but not the progeny of other founder cells - demonstrate extremely variable spatial arrangements illustrating that here distinct early cell-cell interactions between invariant partners, as found in C. elegans, cannot take place. Different from C. elegans, in Plectus alternative positional variations among early S1 blastomeres resulting in a ‘situs inversus’ pattern, nevertheless give rise to adults with normal left-right asymmetries. In addition, laser ablations of early blastomeres uncover inductions between variable cell partners. Conclusions Our results suggest that embryonic cell specification in Plectus is not correlated with cell lineage but with position. With this peculiarity, Plectus appears to occupy an intermediate position between basal nematodes displaying a variable early development and the C. elegans-like invariant pattern. We suggest that indeterminate pattern formation associated with late, position-dependent fate assignment represents a plesiomorphic character among

  6. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing.

    Directory of Open Access Journals (Sweden)

    Liwen Chen

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs have been shown to enhance wound healing; however, the mechanisms involved are barely understood. In this study, we examined paracrine factors released by BM-MSCs and their effects on the cells participating in wound healing compared to those released by dermal fibroblasts. Analyses of BM-MSCs with Real-Time PCR and of BM-MSC-conditioned medium by antibody-based protein array and ELISA indicated that BM-MSCs secreted distinctively different cytokines and chemokines, such as greater amounts of VEGF-alpha, IGF-1, EGF, keratinocyte growth factor, angiopoietin-1, stromal derived factor-1, macrophage inflammatory protein-1alpha and beta and erythropoietin, compared to dermal fibroblasts. These molecules are known to be important in normal wound healing. BM-MSC-conditioned medium significantly enhanced migration of macrophages, keratinocytes and endothelial cells and proliferation of keratinocytes and endothelial cells compared to fibroblast-conditioned medium. Moreover, in a mouse model of excisional wound healing, where concentrated BM-MSC-conditioned medium was applied, accelerated wound healing occurred compared to administration of pre-conditioned or fibroblast-conditioned medium. Analysis of cell suspensions derived from the wound by FACS showed that wounds treated with BM-MSC-conditioned medium had increased proportions of CD4/80-positive macrophages and Flk-1-, CD34- or c-kit-positive endothelial (progenitor cells compared to wounds treated with pre-conditioned medium or fibroblast-conditioned medium. Consistent with the above findings, immunohistochemical analysis of wound sections showed that wounds treated with BM-MSC-conditioned medium had increased abundance of macrophages. Our results suggest that factors released by BM-MSCs recruit macrophages and endothelial lineage cells into the wound thus enhancing wound healing.

  7. Differences in CART expression and cell cycle behavior discriminate sympathetic neuroblast from chromaffin cell lineages in mouse sympathoadrenal cells.

    Science.gov (United States)

    Chan, Wing Hei; Gonsalvez, David G; Young, Heather M; Southard-Smith, E Michelle; Cane, Kylie N; Anderson, Colin R

    2016-02-01

    Adrenal medullary chromaffin cells and peripheral sympathetic neurons originate from a common sympathoadrenal (SA) progenitor cell. The timing and phenotypic changes that mark this lineage diversification are not fully understood. The present study investigated the expression patterns of phenotypic markers, and cell cycle dynamics, in the adrenal medulla and the neighboring suprarenal ganglion of embryonic mice. The noradrenergic marker, tyrosine hydroxylase (TH), was detected in both presumptive adrenal medulla and sympathetic ganglion cells, but with significantly stronger immunostaining in the former. There was intense cocaine and amphetamine-regulated transcript (CART) peptide immunostaining in most neuroblasts, whereas very few adrenal chromaffin cells showed detectable CART immunostaining. This phenotypic segregation appeared as early as E12.5, before anatomical segregation of the two cell types. Cell cycle dynamics were also examined. Initially, 88% of Sox10 positive (+) neural crest progenitors were proliferating at E10.5. Many SA progenitor cells withdrew from the cell cycle at E11.5 as they started to express TH. Whereas 70% of neuroblasts (TH+/CART+ cells) were back in the cell cycle at E12.5, only around 20% of chromaffin (CART negative) cells were in the cell cycle at E12.5 and subsequent days. Thus, chromaffin cell and neuroblast lineages showed differences in proliferative behavior from their earliest appearance. We conclude that the intensity of TH immunostaining and the expression of CART permit early discrimination of chromaffin cells and sympathetic neuroblasts, and that developing chromaffin cells exhibit significantly lower proliferative activity relative to sympathetic neuroblasts.

  8. Histone deacetylase 1 and 3 regulate the mesodermal lineage commitment of mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Weiying Lv

    Full Text Available The important role of histone acetylation alteration has become increasingly recognized in mesodermal lineage differentiation and development. However, the contribution of individual histone deacetylases (HDACs to mesoderm specification remains poorly understood. In this report, we found that trichostatin A (TSA, an inhibitor of histone deacetylase (HDACi, could induce early differentiation of embryonic stem cells (ESCs and promote mesodermal lineage differentiation. Further analysis showed that the expression levels of HDAC1 and 3 are decreased gradually during ESCs differentiation. Ectopic expression of HDAC1 or 3 significantly inhibited differentiation into the mesodermal lineage. By contrast, loss of either HDAC1 or 3 enhanced the mesodermal differentiation of ESCs. Additionally, we demonstrated that the activity of HDAC1 and 3 is indeed required for the regulation of mesoderm gene expression. Furthermore, HDAC1 and 3 were found to interact physically with the T-box transcription factor T/Bry, which is critical for mesodermal lineage commitment. These findings indicate a key mechanism for the specific role of HDAC1 and 3 in mammalian mesoderm specification.

  9. A Method for Lineage Tracing of Corneal Cells Using Multi-color Fluorescent Reporter Mice.

    Science.gov (United States)

    Amitai-Lange, Aya; Berkowitz, Eran; Altshuler, Anna; Dbayat, Noora; Nasser, Waseem; Suss-Toby, Edith; Tiosano, Beatrice; Shalom-Feuerstein, Ruby

    2015-12-18

    Lineage tracing experiments define the origin, fate and behavior of cells in a specific tissue or organism. This technique has been successfully applied for many decades, revealing seminal findings in developmental biology. More recently, it was adopted by stem cell biologists to identify and track different stem cell populations with minimal experimental intervention. The recent developments in mouse genetics, the availability of a large number of mouse strains, and the advancements in fluorescent microscopy allow the straightforward design of powerful lineage tracing systems for various tissues with basic expertise, using commercially available tools. We have recently taken advantage of this powerful methodology to explore the origin and fate of stem cells at the ocular surface using R26R-Confetti mouse. This model offers a multi-color genetic system, for the expression of 4 fluorescent genes in a random manner. Here we describe the principles of this methodology and provide an adaptable protocol for designing lineage tracing experiments; specifically for the corneal epithelium as well as for other tissues.

  10. IL-1β induces hypomyelination in the periventricular white matter through inhibition of oligodendrocyte progenitor cell maturation via FYN/MEK/ERK signaling pathway in septic neonatal rats.

    Science.gov (United States)

    Xie, Di; Shen, Fengcai; He, Shaoru; Chen, Mengmeng; Han, Qianpeng; Fang, Ming; Zeng, Hongke; Chen, Chunbo; Deng, Yiyu

    2016-04-01

    Neuroinflammation elicited by microglia plays a key role in periventricular white matter (PWM) damage (PWMD) induced by infectious exposure. This study aimed to determine if microglia-derived interleukin-1β (IL-1β) would induce hypomyelination through suppression of maturation of oligodendrocyte progenitor cells (OPCs) in the developing PWM. Sprague-Dawley rats (1-day old) were injected with lipopolysaccharide (LPS) (1 mg/kg) intraperitoneally, following which upregulated expression of IL-1β and IL-1 receptor 1 (IL-1R1 ) was observed. This was coupled with enhanced apoptosis and suppressed proliferation of OPCs in the PWM. The number of PDGFR-α and NG2-positive OPCs was significantly decreased in the PWM at 24 h and 3 days after injection of LPS, whereas it was increased at 14 days and 28 days. The protein expression of Olig1, Olig2, and Nkx2.2 was significantly reduced, and mRNA expression of Tcf4 and Axin2 was upregulated in the developing PWM after LPS injection. The expression of myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3"-phosphodiesterase (CNPase) was downregulated in the PWM at 14 days and 28 days after LPS injection; this was linked to reduction of the proportion of myelinated axons and thinner myelin sheath as revealed by electron microscopy. Primary cultured OPCs treated with IL-1β showed the failure of maturation and proliferation. Furthermore, FYN/MEK/ERK signaling pathway was involved in suppression of maturation of primary OPCs induced by IL-1β administration. Our results suggest that following LPS injection, microglia are activated and produce IL-1β in the PWM in the neonatal rats. Excess IL-1β inhibits the maturation of OPCs via suppression of FYN/MEK/ERK phosphorylation thereby leading to axonal hypomyelination.

  11. Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage.

    Science.gov (United States)

    Tay, Chor Yong; Yu, Haiyang; Pal, Mintu; Leong, Wen Shing; Tan, Nguan Soon; Ng, Kee Woei; Leong, David Tai; Tan, Lay Poh

    2010-04-15

    Stem cell response can be influenced by a multitude of chemical, topological and mechanical physiochemical cues. While extensive studies have been focused on the use of soluble factors to direct stem cell differentiation, there are growing evidences illustrating the potential to modulate stem cell differentiation via precise engineering of cell shape. Fibronectin were printed on poly(lactic-co-glycolic acid) (PLGA) thin film forming spatially defined geometries as a means to control the morphology of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs that were cultured on unpatterned substrata adhered and flattened extensively (approximately 10,000 microm(2)) while cells grown on 20 microm micropatterend wide adhesive strips were highly elongated with much smaller area coverage of approximately 2000 microm(2). Gene expression analysis revealed up-regulation of several hallmark markers associated to neurogenesis and myogenesis for cells that were highly elongated while osteogenic markers were specifically down-regulated or remained at its nominal level. Even though there is clearly upregulated levels of both neuronal and myogenic lineages but at the functionally relevant level of protein expression, the myogenic lineage is dominant within the time scale studied as determined by the exclusive expression of cardiac myosin heavy chain for the micropatterned cells. Enforced cell shape distortion resulting in large scale rearrangement of cytoskeletal network and altered nucleus shape has been proposed as a physical impetus by which mechanical deformation is translated into biochemical response. These results demonstrated for the first time that cellular shape modulation in the absence of any induction factors may be a viable strategy to coax lineage-specific differentiation of stem cells.

  12. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations.

    Science.gov (United States)

    Lin, Yao-Cheng; Boone, Morgane; Meuris, Leander; Lemmens, Irma; Van Roy, Nadine; Soete, Arne; Reumers, Joke; Moisse, Matthieu; Plaisance, Stéphane; Drmanac, Radoje; Chen, Jason; Speleman, Frank; Lambrechts, Diether; Van de Peer, Yves; Tavernier, Jan; Callewaert, Nico

    2014-09-03

    The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect.

  13. Expression Patterns of Cancer-Testis Antigens in Human Embryonic Stem Cells and Their Cell Derivatives Indicate Lineage Tracks

    OpenAIRE

    Nadya Lifantseva; Anna Koltsova; Tatyana Krylova; Tatyana Yakovleva; Galina Poljanskaya; Olga Gordeeva

    2011-01-01

    Pluripotent stem cells can differentiate into various lineages but undergo genetic and epigenetic changes during long-term cultivation and, therefore, require regular monitoring. The expression patterns of cancer-testis antigens (CTAs) MAGE-A2, -A3, -A4, -A6, -A8, -B2, and GAGE were examined in undifferentiated human embryonic stem (hES) cells, their differentiated derivatives, teratocarcinoma (hEC) cells, and cancer cell lines of neuroectodermal and mesodermal origin. Undifferentiated hES ce...

  14. cKit Lineage Hemogenic Endothelium-Derived Cells Contribute to Mesenteric Lymphatic Vessels

    Directory of Open Access Journals (Sweden)

    Lukas Stanczuk

    2015-03-01

    Full Text Available Pathological lymphatic diseases mostly affect vessels in specific tissues, yet little is known about organ-specific regulation of the lymphatic vasculature. Here, we show that the vascular endothelial growth factor receptor 3 (VEGFR-3/p110α PI3-kinase signaling pathway is selectively required for the formation of mesenteric lymphatic vasculature. Using genetic lineage tracing, we demonstrate that part of the mesenteric lymphatic vasculature develops from cKit lineage cells of hemogenic endothelial origin through a process we define as lymphvasculogenesis. This is contrary to the current dogma that all mammalian lymphatic vessels form by sprouting from veins. Our results reveal vascular-bed-specific differences in the origin and mechanisms of vessel formation, which may critically underlie organ-specific manifestation of lymphatic dysfunction in disease. The progenitor cells identified in this study may be exploited to restore lymphatic function following cancer surgery, lymphedema, or tissue trauma.

  15. Strategies for repair of white matter: Influence of osmolarity and microglia on proliferation and apoptosis of oligodendrocyte precursor cells in different basal culture media

    Directory of Open Access Journals (Sweden)

    Karolina eKleinsimlinghaus

    2013-12-01

    Full Text Available The aim of the present study has been to obtain high yields of oligodendrocyte precursor cells (OPCs in culture. This is a first step in facilitation of myelin repair. We show that, in addition to factors, known to promote proliferation, such as basic fibroblast growth factor (FGF-2 and platelet derived growth factor (PDGF the choice of the basal medium exerts a significant influence on the yield of OPCs in cultures from newborn rats. During a culture period of up to 9 days we observed larger numbers of surviving cells in Dulbecco’s Modified Eagle Medium (DMEM and Roswell Park Memorial Institute Medium (RPMI compared with Neurobasal Medium (NB. A larger number of A2B5-positive OPCs was found after 6 days in RPMI based media compared with NB. The percentage of bromodeoxyuridine (BrdU-positive cells was largest in cultures maintained in DMEM and RPMI. The percentage of caspase-3 positive cells was largest in NB, suggesting that this medium inhibits OPC proliferation and favors apoptosis. A difference between NB and DMEM as well as RPMI is the reduced Na+-content. The addition of equiosmolar supplements of mannitol or NaCl to NB medium rescued the BrdU-incorporation rate. This suggested that the osmolarity influences the proliferation of OPCs. Plating density as well as residual microglia influence OPC survival, BrdU incorporation and caspase-3 expression. We found, that high density cultures secrete factors that inhibit BrdU incorporation whereas the presence of additional microglia induces an increase in caspase-3 positive cells, indicative of enhanced apoptosis. An enhanced number of microglia could thus also explain the stronger inhibition of OPC differentiation observed in high density cultures in response to treatment with the cytokines TNF-a and IFN-g.We conclude that a maximal yield of OPCs is obtained in a medium of an osmolarity higher than 280 mOsm plated at a relatively low density in the presence of as little microglia as technically

  16. Polarity development in oligodendrocytes : Sorting and trafficking of myelin components

    NARCIS (Netherlands)

    Maier, Olaf; Hoekstra, Dick; Baron, Wia

    2008-01-01

    In vertebrates, myelination is required for the saltatory signal conductance along the axon. At the onset of myelination, the myelinating cells, i.e., oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system, are heavily engaged in the biogenesis of membranes

  17. Bone marrow angiotensin AT1 receptor regulates differentiation of monocyte lineage progenitors from hematopoietic stem cells.

    Science.gov (United States)

    Tsubakimoto, Yoshinori; Yamada, Hiroyuki; Yokoi, Hirokazu; Kishida, Sou; Takata, Hiroki; Kawahito, Hiroyuki; Matsui, Akihiro; Urao, Norifumi; Nozawa, Yoshihisa; Hirai, Hideyo; Imanishi, Jiro; Ashihara, Eishi; Maekawa, Taira; Takahashi, Tomosaburo; Okigaki, Mitsuhiko; Matsubara, Hiroaki

    2009-10-01

    The angiotensin II (Ang II) type 1 (AT(1)) receptor is expressed in bone marrow (BM) cells, whereas it remains poorly defined how Ang II regulates differentiation/proliferation of monocyte-lineage cells to exert proatherogenic actions. We generated BM chimeric apoE(-/-) mice repopulated with AT(1)-deficient (Agtr1(-/-)) or wild-type (Agtr1(+/+)) BM cells. The atherosclerotic development was significantly reduced in apoE(-/-)/BM-Agtr1(-/-) mice compared with apoE(-/-)/BM-Agtr1(+/+) mice, accompanied by decreased numbers of BM granulocyte/macrophage progenitors (GMP:c-Kit(+)Sca-1(-)Lin(-)CD34(+)CD16/32(+)) and peripheral blood monocytes. Macrophage-colony-stimulating factor (M-CSF)-induced differentiation from hematopoietic stem cells (HSCs:c-Kit(+)Sca-1(+)Lin(-)) to promonocytes (CD11b(high)Ly-6G(low)) was markedly reduced in HSCs from Agtr1(-/-) mice. The expression of M-CSF receptor c-Fms was decreased in HSCs/promonocytes from Agtr1(-/-) mice, accompanied by a marked inhibition in M-CSF-induced phosphorylation of PKC-delta and JAK2. c-Fms expression in HSCs/promonocytes was mainly regulated by TNF-alpha derived from BM CD45(-)CD34(-) stromal cells, and Ang II specifically regulated the TNF-alpha synthesis and release from BM stromal cells. Ang II regulates the expression of c-Fms in HSCs and monocyte-lineage cells through BM stromal cell-derived TNF-alpha to promote M-CSF-induced differentiation/proliferation of monocyte-lineage cells and contributes to the proatherogenic action.

  18. CD161 Defines a Transcriptional and Functional Phenotype across Distinct Human T Cell Lineages

    Directory of Open Access Journals (Sweden)

    Joannah R. Fergusson

    2014-11-01

    Full Text Available The C-type lectin CD161 is expressed by a large proportion of human T lymphocytes of all lineages, including a population known as mucosal-associated invariant T (MAIT cells. To understand whether different T cell subsets expressing CD161 have similar properties, we examined these populations in parallel using mass cytometry and mRNA microarray approaches. The analysis identified a conserved CD161++/MAIT cell transcriptional signature enriched in CD161+CD8+ T cells, which can be extended to CD161+ CD4+ and CD161+TCRγδ+ T cells. Furthermore, this led to the identification of a shared innate-like, TCR-independent response to interleukin (IL-12 plus IL-18 by different CD161-expressing T cell populations. This response was independent of regulation by CD161, which acted as a costimulatory molecule in the context of T cell receptor stimulation. Expression of CD161 hence identifies a transcriptional and functional phenotype, shared across human T lymphocytes and independent of both T cell receptor (TCR expression and cell lineage.

  19. Epigallocatechin Gallate Inhibits Mouse Mesenchymal Stem Cell Differentiation to Adipogenic Lineage

    Directory of Open Access Journals (Sweden)

    Chani B

    2016-05-01

    Full Text Available Epigallocatechin gallate (EGCG is a major component of green tea polyphenols having a potent anti-oxidant potential. Besides inhibiting the growth of many cancer cell types and inducing proliferation and differentiation in keratinocytes, it has been shown to promote reduction of body fat. The fact that mesenchymal stem cells (MSCs have ability to self-renew and differentiate into the cells of mesodermal lineages, such as fat and bone, it is, thus, possible that EGCG may directly be involved in affecting fat metabolism through its effect on mesenchymal stem cells. Hence, with this aim, the present study was designed to determine the effect of EGCG on mouse mesenchymal stem cells, C3H10T1/2 cells differentiation into adipocytes. To understand this process, the cells were incubated with varying concentrations of EGCG (1 µM, 5 µM, 10 µM, 50 µM in the presence and /or absence of adipogenic medium for 9 days. The results demonstrated that, EGCG inhibited the cells proliferation, migration and also prevented their differentiation to adipogenic lineage. These effects were analyzed through the inhibition of wound healing activity, reduction in Oil red O stained cells, together with decrease in the expression of Adipisin gene following EGCG treatment. These observations thus demonstrated anti-adipogenic effect of EGCG with a possibility of its role in the therapeutic intervention of obesity.

  20. Epigallocatechin Gallate Inhibits Mouse Mesenchymal Stem Cell Differentiation to Adipogenic Lineage.

    Science.gov (United States)

    Chani, Baldeep; Puri, Veena; Chander Sobti, Ranbir; Puri, Sanjeev

    2016-01-01

    Epigallocatechin gallate (EGCG) is a major component of green tea polyphenols having a potent anti-oxidant potential. Besides inhibiting the growth of many cancer cell types and inducing proliferation and differentiation in keratinocytes, it has been shown to promote reduction of body fat. The fact that mesenchymal stem cells (MSCs) have ability to self-renew and differentiate into the cells of mesodermal lineages, such as fat and bone, it is, thus, possible that EGCG may directly be involved in affecting fat metabolism through its effect on mesenchymal stem cells. Hence, with this aim, the present study was designed to determine the effect of EGCG on mouse mesenchymal stem cells, C3H10T1/2 cells differentiation into adipocytes. To understand this process, the cells were incubated with varying concentrations of EGCG (1 μM, 5 μM, 10 μM, 50 μM) in the presence and /or absence of adipogenic medium for 9 days. The results demonstrated that, EGCG inhibited the cells proliferation, migration and also prevented their differentiation to adipogenic lineage. These effects were analyzed through the inhibition of wound healing activity, reduction in Oil red O stained cells, together with decrease in the expression of Adipisin gene following EGCG treatment. These observations thus demonstrated anti-adipogenic effect of EGCG with a possibility of its role in the therapeutic intervention of obesity.

  1. The relationship between developing oligodendrocyte units and maturing axons during myelinogenesis in the anterior medullary velum of neonatal rats.

    Science.gov (United States)

    Butt, A M; Ibrahim, M; Berry, M

    1997-05-01

    Myelinogenesis was investigated in whole-mounted anterior medullary vela from rats aged postnatal day (P) 10-12, using double immunofluorescence labelling with Rip and anti-neurofilament 200 (NF200) antibodies, to identify oligodendrocytes and axons, respectively. A number of discrete phases of maturation of oligodendrocyte units were recognised. (1) Promyelinating oligodendrocytes co-expressed Rip and Myelin basic Protein and formed axonal associations, prior to ensheathment. (2) Transitional oligodendrocytes contained both ensheathing and non-ensheating processes. (3) Myelinating oligodendrocytes were established after a period of remodelling (in which non-ensheathing processes were lost), appearing as oligodendrocyte unit morphological phenotypes with a definitive number of incipient myelin sheaths. (4) Maturation of myelinating oligodendrocytes was defined as the establishment of internodal sheath lengths and the redistrubution of myelin basic protein from the cell somata and radial processes into the myelin sheaths only. Myelination was probably related to the maturational state of the axons, since it was initiated when the latter had attained a critical diameter of between approximately 0.2 and 0.4 micron, coincident with the expression of NF200. Oligodendrocyte differentiation and myelination of the AMV were asynchronous and multifocal, and at P10: (1) axons which were destined to be of the largest calibre in the adult AMV were already myelinated by early developing oligodendrocytes, whilst those which were destined to be the smallest calibre in the adult were unmyelinated, but ultimately became ensheathed by late developing oligoendrocytes; (2) axons were sequentially ensheathed by early developing myelinating oligodendrocytes and late developing promyelinating oligodendrocytes; (3) all axons were small calibre; (4) oligodendrocyte units exhibited polymorphism. Thus, the development of oligodendrocyte morphological phenotypes was not related solely to

  2. Notch signalling inhibits CD4 expression during initiation and differentiation of human T cell lineage.

    Directory of Open Access Journals (Sweden)

    Stephen M Carlin

    Full Text Available The Delta/Notch signal transduction pathway is central to T cell differentiation from haemopoietic stem cells (HSCs. Although T cell development is well characterized using expression of cell surface markers, the detailed mechanisms driving differentiation have not been established. This issue becomes central with observations that adult HSCs exhibit poor differentiation towards the T cell lineage relative to neonatal or embryonic precursors. This study investigates the contribution of Notch signalling and stromal support cells to differentiation of adult and Cord Blood (CB human HSCs, using the Notch signalling OP9Delta co-culture system. Co-cultured cells were assayed at weekly intervals during development for phenotype markers using flow cytometry. Cells were also assayed for mRNA expression at critical developmental stages. Expression of the central thymocyte marker CD4 was initiated independently of Notch signalling, while cells grown with Notch signalling had reduced expression of CD4 mRNA and protein. Interruption of Notch signalling in partially differentiated cells increased CD4 mRNA and protein expression, and promoted differentiation to CD4(+ CD8(+ T cells. We identified a set of genes related to T cell development that were initiated by Notch signalling, and also a set of genes subsequently altered by Notch signal interruption. These results demonstrate that while Notch signalling is essential for establishment of the T cell lineage, at later stages of differentiation, its removal late in differentiation promotes more efficient DP cell generation. Notch signalling adds to signals provided by stromal cells to allow HSCs to differentiate to T cells via initiation of transcription factors such as HES1, GATA3 and TCF7. We also identify gene expression profile differences that may account for low generation of T cells from adult HSCs.

  3. E2F4 modulates differentiation and gene expression in hematopoietic progenitor cells during commitment to the lymphoid lineage.

    Science.gov (United States)

    Enos, Megan E; Bancos, Simona A; Bushnell, Timothy; Crispe, Ian N

    2008-03-15

    The E2F4 protein is involved in gene repression and cell cycle exit, and also has poorly understood effects in differentiation. We analyzed the impact of E2F4 deficiency on early steps in mouse hematopoietic development, and found defects in early hematopoietic progenitor cells that were propagated through common lymphoid precursors to the B and T lineages. In contrast, the defects in erythromyeloid precursor cells were self-correcting over time. This suggests that E2F4 is important in early stages of commitment to the lymphoid lineage. The E2F4-deficient progenitor cells showed reduced expression of several key lymphoid-lineage genes, and overexpression of two erythromyeloid lineage genes. However, we did not detect effects on cell proliferation. These findings emphasize the significance of E2F4 in controlling gene expression and cell fate.

  4. Telomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging

    Directory of Open Access Journals (Sweden)

    Hoi-Hung Cheung

    2014-04-01

    Full Text Available Werner syndrome (WS patients exhibit premature aging predominantly in mesenchyme-derived tissues, but not in neural lineages, a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here, we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging, we differentiated iPSCs to mesenchymal stem cells (MSCs and neural stem/progenitor cells (NPCs. We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs, but not in NPCs. We postulate this “aging” discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC, whereas inhibition of telomerase sensitized NPCs to DNA damage. Our findings unveil a role for telomerase in the protection of accelerated aging in a specific lineage of stem cells.

  5. Lineage-specific expression of bestrophin-2 and bestrophin-4 in human intestinal epithelial cells

    DEFF Research Database (Denmark)

    Ito, Go; Okamoto, Ryuichi; Murano, Tatsuro

    2013-01-01

    Intestinal epithelial cells (IECs) regulate the absorption and secretion of anions, such as HCO3(-) or Cl(-). Bestrophin genes represent a newly identified group of calcium-activated Cl(-) channels (CaCCs). Studies have suggested that, among the four human bestrophin-family genes, bestrophin-2...... (BEST2) and bestrophin-4 (BEST4) might be expressed within the intestinal tissue. Consistently, a study showed that BEST2 is expressed by human colonic goblet cells. However, their precise expression pattern along the gastrointestinal tract, or the lineage specificity of the cells expressing these genes...

  6. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis.

    Science.gov (United States)

    Inoue, Takao; Sternberg, Paul W

    2010-02-15

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited number of cell types including vulval cells whose divisions are affected in bed-3 mutants. A bed-3 mutation also affects the expression pattern of the cdh-3 cadherin gene in the vulva. The phenotype of bed-3 mutants is similar to the phenotype caused by mutations in cog-1 (Nkx6), a component of a gene regulatory network controlling cell type specific gene expression in the vulval lineage. These results suggest that bed-3 is a key component linking the gene regulatory network controlling cell-type specification to control of cell division during vulval organogenesis.

  7. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed

    Energy Technology Data Exchange (ETDEWEB)

    Jegla, D.E.; Sussex, I.M.

    1989-01-01

    We mapped the fate of cells in the shoot meristem of the dry-seed embryo of sunflower, Helianthus annuus L. cv. Peredovic, using irradiation-induced somatic sectors. We analyzed 249 chlorophyll-deficient or glabrous (hairless) sectors generated in 236 plants. Most sectors observed in the inflorescence extended into vegetative nodes. Thus cell lineages that ultimately gave rise to reproductive structures also contributed to vegetative structures. No single sector extended the entire length of the shoot. Thus the shoot is not derived from one or a few apical initials. Rather, the position, vertical extent, and width of the sectors at different levels of the shoot suggest that the shoot is derived from three to four circumferential populations of cells in each of three cell layers of the embryo meristem. Sectors had no common boundaries even in plants with two or three independent sectors, but varied in extent and overlapped along the length of the shoot. Thus individual cells in a single circumferential population behaved independently to contribute lineages of different vertical extents to the growing shoot. The predicted number of circumferential populations of cells as well as the apparent cell number in each population was consistent with the actual number of cells in the embryo meristem observed in histological sections.

  8. ERG is required for the differentiation of embryonic stem cells along the endothelial lineage

    Directory of Open Access Journals (Sweden)

    Le Bras Alexandra

    2009-12-01

    Full Text Available Abstract Background The molecular mechanisms that govern stem cell differentiation along the endothelial lineage remain largely unknown. Ets related gene (ERG has recently been shown to participate in the transcriptional regulation of a number of endothelial specific genes including VE-cadherin (CD144, endoglin, and von Willebrand's Factor (vWF. The specific role of the ETS factor ERG during endothelial differentiation has not been evaluated. Results ERG expression and function were evaluated during the differentiation of embryonic stem cells into embryoid bodies (EB. The results of our study demonstrate that ERG is first expressed in a subpopulation of vascular endothelial growth factor receptor 2 (VEGF-R2 expressing cells that also express VE-cadherin. During ES cell differentiation, ERG expression remains restricted to cells of the endothelial lineage that eventually coalesce into primitive vascular structures within embryoid bodies. ERG also exhibits an endothelial cell (EC-restricted pattern during embryogenesis. To further define the role of ERG during ES cell differentiation, we used a knockdown strategy to inhibit ERG expression. Delivery of three independent shRNA led to 70-85% reductions in ERG expression during ES cell differentiation compared to no change with control shRNA. ERG knockdown was associated with a marked reduction in the number of ECs, the expression of EC-restricted genes, and the formation of vascular structures. Conclusion The ETS factor ERG appears to be a critical regulator of EC differentiation.

  9. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chanson, L. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. of Bioengineering; Brownfield, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering; Garbe, J. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Kuhn, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Stampfer, M. R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Bissell, M. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; LaBarge, M. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.

    2011-02-07

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.

  10. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    Science.gov (United States)

    Chanson, Lea; Brownfield, Douglas; Garbe, James C.; Kuhn, Irene; Stampfer, Martha R.; Bissell, Mina J.; LaBarge, Mark A.

    2011-01-01

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells. PMID:21300877

  11. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations.

    Science.gov (United States)

    Loh, Kyle M; Ang, Lay Teng; Zhang, Jingyao; Kumar, Vibhor; Ang, Jasmin; Auyeong, Jun Qiang; Lee, Kian Leong; Choo, Siew Hua; Lim, Christina Y Y; Nichane, Massimo; Tan, Junru; Noghabi, Monireh Soroush; Azzola, Lisa; Ng, Elizabeth S; Durruthy-Durruthy, Jens; Sebastiano, Vittorio; Poellinger, Lorenz; Elefanty, Andrew G; Stanley, Edouard G; Chen, Qingfeng; Prabhakar, Shyam; Weissman, Irving L; Lim, Bing

    2014-02-01

    Human pluripotent stem cell (hPSC) differentiation typically yields heterogeneous populations. Knowledge of signals controlling embryonic lineage bifurcations could efficiently yield desired cell types through exclusion of alternate fates. Therefore, we revisited signals driving induction and anterior-posterior patterning of definitive endoderm to generate a coherent roadmap for endoderm differentiation. With striking temporal dynamics, BMP and Wnt initially specified anterior primitive streak (progenitor to endoderm), yet, 24 hr later, suppressed endoderm and induced mesoderm. At lineage bifurcations, cross-repressive signals separated mutually exclusive fates; TGF-β and BMP/MAPK respectively induced pancreas versus liver from endoderm by suppressing the alternate lineage. We systematically blockaded alternate fates throughout multiple consecutive bifurcations, thereby efficiently differentiating multiple hPSC lines exclusively into endoderm and its derivatives. Comprehensive transcriptional and chromatin mapping of highly pure endodermal populations revealed that endodermal enhancers existed in a surprising diversity of "pre-enhancer" states before activation, reflecting the establishment of a permissive chromatin landscape as a prelude to differentiation.

  12. Cytokine-Regulated GADD45G Induces Differentiation and Lineage Selection in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Frederic B. Thalheimer

    2014-07-01

    Full Text Available The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.

  13. Oligodendrocyte ablation as a tool to study demyelinating diseases

    Institute of Scientific and Technical Information of China (English)

    Ahdeah Pajoohesh-Ganji; Robert H. Miller

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune mediated neurodegenerative disease characterized by demyelin-ation and oligodendrocyte (OL) loss in the central nervous system and accompanied by local inlfammation and inifltration of peripheral immune cells. Although many risk factors and symptoms have been iden-tified in MS, the pathology is complicated and the cause remains unknown. It is also unclear whether OL apoptosis precedes the inlfammation or whether the local inlfammation is the cause of OL death and demyelination. This review brielfy discusses several models that have been developed to speciifcally ablate oligodendrocytes in an effort to separate the effects of demyelination from inlfammation.

  14. A mex3 homolog is required for differentiation during planarian stem cell lineage development.

    Science.gov (United States)

    Zhu, Shu Jun; Hallows, Stephanie E; Currie, Ko W; Xu, ChangJiang; Pearson, Bret J

    2015-06-26

    Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. In this study, we used transcriptional profiling of irradiation-sensitive and irradiation-insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps to mediate the balance between ASC self-renewal and commitment.

  15. Does cell lineage in the developing cerebral cortex contribute to its columnar organization?

    Directory of Open Access Journals (Sweden)

    Marcos R Costa

    2010-06-01

    Full Text Available Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighbouring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell-cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits.

  16. Lymphoid lineage differentiation potential of mouse nuclear transfer embryonic stem cells.

    Science.gov (United States)

    Eslami-Arshaghi, Tarlan; Salehi, Mohammad; Soleimani, Masoud; Gholipourmalekabadi, Mazaher; Mossahebi-Mohammadi, Majid; Ardeshirylajimi, Abdolreza; Rajabi, Hoda

    2015-09-01

    Stem cells therapy is considered as an efficient strategy for the treatment of some diseases. Nevertheless, some obstacles such as probability of rejection by the immune system limit applications of this strategy. Therefore, several efforts have been made to overcome this among which using the induced pluripotent stem cells (iPSCs) and nuclear transfer embryonic stem cell (nt-ESCs) are the most efficient strategies. The objective of this study was to evaluate the differentiation potential of the nt-ESCs to lymphoid lineage in the presence of IL-7, IL-3, FLT3-ligand and TPO growth factors in vitro. To this end, the nt-ESCs cells were prepared and treated with aforementioned growth factors for 7 and 14 days. Then, the cells were examined for expression of lymphoid markers (CD3, CD25, CD127 and CD19) by quantitative PCR (q-PCR) and flow cytometry. An increased expression of CD19 and CD25 markers was observed in the treated cells compared with the negative control samples by day 7. After 14 days, the expression level of all the tested CD markers significantly increased in the treated groups in comparison with the control. The current study reveals the potential of the nt-ESCs in differentiation to lymphoid lineage in the presence of defined growth factors.

  17. Mixed Lineage Kinase 3 negatively regulates IKK activity and enhances etoposide-induced cell death

    OpenAIRE

    Cole, Eric T.; Zhan, Yu; Abi Saab, Widian F.; Korchnak, Amanda C.; Ashburner, Brian P.; Chadee, Deborah N.

    2009-01-01

    Mixed Lineage Kinase 3 (MLK3) is a mitogen activated protein kinase kinase kinase (MAP3K) that activates multiple MAPK signaling pathways. Nuclear factor kappa B (NF-κB) is a transcription factor that has important functions in inflammation, immunity and cell survival. We found that silencing mlk3 expression with RNA interference (RNAi) in SKOV3 human ovarian cancer epithelial cells and NIH-3T3 murine fibroblasts led to a reduction in the level of the inhibitor of kappa B alpha (IκBα) protein...

  18. From Adult Bone Marrow Cells to Other Cell Lineages:Transdifferentiation or Cells Fusion

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Recent studies have demonstrated that intravenous transplantation or local injection of bone marrow cells can induce unexpected changes of their fate. The results of these experiments showed that after transplantation or injecton, some of tissue specific somatic cells such as hepatocytes, skeleton, cardiac muscle cells and brain cells expressed the donor cell-specific genes, such as Y chromosome. There are two hypotheses that can explain this phenomenon. One is bone marrow stem cell transdifferentiation and the other is spontaneous cell fusion.

  19. Does Cell Lineage in the Developing Cerebral Cortex Contribute to its Columnar Organization?

    Science.gov (United States)

    Costa, Marcos R.; Hedin-Pereira, Cecilia

    2010-01-01

    Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone (VZ) could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighboring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell–cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits. PMID:20676384

  20. Distribution of neurosensory progenitor pools during inner ear morphogenesis unveiled by cell lineage reconstruction

    Science.gov (United States)

    Dyballa, Sylvia; Savy, Thierry; Germann, Philipp; Mikula, Karol; Remesikova, Mariana; Špir, Róbert; Zecca, Andrea; Peyriéras, Nadine; Pujades, Cristina

    2017-01-01

    Reconstructing the lineage of cells is central to understanding how the wide diversity of cell types develops. Here, we provide the neurosensory lineage reconstruction of a complex sensory organ, the inner ear, by imaging zebrafish embryos in vivo over an extended timespan, combining cell tracing and cell fate marker expression over time. We deliver the first dynamic map of early neuronal and sensory progenitor pools in the whole otic vesicle. It highlights the remodeling of the neuronal progenitor domain upon neuroblast delamination, and reveals that the order and place of neuroblasts’ delamination from the otic epithelium prefigure their position within the SAG. Sensory and non-sensory domains harbor different proliferative activity contributing distinctly to the overall growth of the structure. Therefore, the otic vesicle case exemplifies a generic morphogenetic process where spatial and temporal cues regulate cell fate and functional organization of the rudiment of the definitive organ. DOI: http://dx.doi.org/10.7554/eLife.22268.001 PMID:28051766

  1. Generation of priming mesenchymal stem cells with enhanced potential to differentiate into specific cell lineages using extracellular matrix proteins.

    Science.gov (United States)

    Han, Na Rae; Yun, Jung Im; Park, Young Hyun; Ahn, Ji Yeon; Kim, Choonghyo; Choi, Jung Hoon; Lee, Eunsong; Lim, Jeong Mook; Lee, Seung Tae

    2013-07-01

    Poor understanding of the differentiation of mesenchymal stem cells (MSCs) has resulted in a low differentiation yield, and has hindered their application in medicine. As a solution, priming MSCs sensitive to signaling, thus stimulating differentiation into a specific cell lineage, may improve the differentiation yield. To demonstrate this, priming MSCs were produced by using a gelatin matrix for the isolation of primary MSCs from bone-marrow-derived primary cells. Subsequently, cellular characteristics and sensitivity to specific differentiation signals were analyzed at passage five. Compared to non-priming MSCs, priming MSCs showed no significant differences in cellular characteristics, but demonstrated a significant increase in sensitivity to neurogenic differentiation signals. These results demonstrate that generation of priming MSCs by specific extracellular signaling increases the rate of differentiation into a cell-specific lineage.

  2. Triple Staining Including FOXA2 Identifies Stem Cell Lineages Undergoing Hepatic and Biliary Differentiation in Cirrhotic Human Liver.

    Science.gov (United States)

    Rogler, Charles E; Bebawee, Remon; Matarlo, Joe; Locker, Joseph; Pattamanuch, Nicole; Gupta, Sanjeev; Rogler, Leslie E

    2017-01-01

    Recent investigations have reported many markers associated with human liver stem/progenitor cells, "oval cells," and identified "niches" in diseased livers where stem cells occur. However, there has remained a need to identify entire lineages of stem cells as they differentiate into bile ducts or hepatocytes. We have used combined immunohistochemical staining for a marker of hepatic commitment and specification (FOXA2 [Forkhead box A2]), hepatocyte maturation (Albumin and HepPar1), and features of bile ducts (CK19 [cytokeratin 19]) to identify lineages of stem cells differentiating toward the hepatocytic or bile ductular compartments of end-stage cirrhotic human liver. We identified large clusters of disorganized, FOXA2 expressing, oval cells in localized liver regions surrounded by fibrotic matrix, designated as "micro-niches." Specific FOXA2-positive cells within the micro-niches organize into primitive duct structures that support both hepatocytic and bile ductular differentiation enabling identification of entire lineages of cells forming the two types of structures. We also detected expression of hsa-miR-122 in primitive ductular reactions expected for hepatocytic differentiation and hsa-miR-23b cluster expression that drives liver cell fate decisions in cells undergoing lineage commitment. Our data establish the foundation for a mechanistic hypothesis on how stem cell lineages progress in specialized micro-niches in cirrhotic end-stage liver disease.

  3. Neural-Competent Cells of Adult Human Dermis Belong to the Schwann Lineage

    Science.gov (United States)

    Etxaniz, Usue; Pérez-San Vicente, Adrián; Gago-López, Nuria; García-Dominguez, Mario; Iribar, Haizea; Aduriz, Ariane; Pérez-López, Virginia; Burgoa, Izaskun; Irizar, Haritz; Muñoz-Culla, Maider; Vallejo-Illarramendi, Ainara; Leis, Olatz; Matheu, Ander; Martín, Angel G.; Otaegui, David; López-Mato, María Paz; Gutiérrez-Rivera, Araika; MacLellan, Robb; Izeta, Ander

    2014-01-01

    Summary Resident neural precursor cells (NPCs) have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR+ precursors of human foreskin can be ascribed to the Schwann (CD56+) and perivascular (CD56−) cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR+CD56+ Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread. PMID:25418723

  4. Neural-Competent Cells of Adult Human Dermis Belong to the Schwann Lineage

    Directory of Open Access Journals (Sweden)

    Usue Etxaniz

    2014-11-01

    Full Text Available Resident neural precursor cells (NPCs have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR+ precursors of human foreskin can be ascribed to the Schwann (CD56+ and perivascular (CD56− cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR+CD56+ Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread.

  5. Neural-competent cells of adult human dermis belong to the Schwann lineage.

    Science.gov (United States)

    Etxaniz, Usue; Pérez-San Vicente, Adrián; Gago-López, Nuria; García-Dominguez, Mario; Iribar, Haizea; Aduriz, Ariane; Pérez-López, Virginia; Burgoa, Izaskun; Irizar, Haritz; Muñoz-Culla, Maider; Vallejo-Illarramendi, Ainara; Leis, Olatz; Matheu, Ander; Martín, Angel G; Otaegui, David; López-Mato, María Paz; Gutiérrez-Rivera, Araika; MacLellan, Robb; Izeta, Ander

    2014-11-11

    Resident neural precursor cells (NPCs) have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR(+) precursors of human foreskin can be ascribed to the Schwann (CD56(+)) and perivascular (CD56(-)) cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR(+)CD56(+) Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread.

  6. Lineage tracing reveals conversion of liver sinusoidal endothelial cells into hepatocytes.

    Science.gov (United States)

    Tan, Zhaoli; Chen, Keyan; Shao, Yong; Gao, Lihua; Wang, Yan; Xu, Jianming; Jin, Yang; Hu, Xianwen; Wang, Youliang

    2016-09-01

    Although liver sinusoidal endothelial cells (LSECs) have long been known to contribute to liver regeneration following injury, the exact role of these cells in liver regeneration remains poorly understood. In this work, we performed lineage tracing of LSECs in mice carrying Tie2-Cre or VE-cadherin-Cre constructs to facilitate fate-mapping of LSECs in liver regeneration. Some YFP-positive LSECs were observed to convert into hepatocytes following a two-thirds partial hepatectomy (PH). Furthermore, human umbilical vein endothelial cells (HUVECs) could be triggered to convert into cells that closely resembled hepatocytes when cultured with serum from mice that underwent an extended PH. These findings suggest that mature non-hepatocyte LSECs play an essential role in mammalian liver regeneration by converting to hepatocytes. The conversion of LSECs to hepatocyte-like (iHep) cells may provide a new approach to tissue engineering.

  7. P2X7 receptors mediate ischemic damage to oligodendrocytes.

    Science.gov (United States)

    Domercq, Maria; Perez-Samartin, Alberto; Aparicio, David; Alberdi, Elena; Pampliega, Olatz; Matute, Carlos

    2010-04-15

    Brain ischemia leading to stroke is a major cause of disability in developed countries. Therapeutic strategies have most commonly focused on protecting neurons from ischemic damage. However, ischemic damage to white matter causes oligodendrocyte death, myelin disruption, and axon dysfunction, and it is partially mediated by glutamate excitotoxicity. We have previously demonstrated that oligodendrocytes express ionotropic purinergic receptors. The objective of this study was to investigate the role of purinergic signaling in white matter ischemia. We show that, in addition to glutamate, enhanced ATP signaling during ischemia is also deleterious to oligodendrocytes and myelin, and impairs white matter function. Thus, ischemic oligodendrocytes in culture display an inward current and cytosolic Ca(2+) overload, which is partially mediated by P2X7 receptors. Indeed, oligodendrocytes release ATP after oxygen and glucose deprivation through the opening of pannexin hemichannels. Consistently, ischemia-induced mitochondrial depolarization as well as oxidative stress culminating in cell death are partially reversed by P2X7 receptor antagonists, by the ATP degrading enzyme apyrase and by blockers of pannexin hemichannels. In turn, ischemic damage in isolated optic nerves, which share the properties of brain white matter, is greatly attenuated by all these drugs. Ultrastructural analysis and electrophysiological recordings demonstrated that P2X7 antagonists prevent ischemic damage to oligodendrocytes and myelin, and improved action potential recovery after ischemia. These data indicate that ATP released during ischemia and the subsequent activation of P2X7 receptor is critical to white matter demise during stroke and point to this receptor type as a therapeutic target to limit tissue damage in cerebrovascular diseases.

  8. Mast Cell-activated Bone Marrow Mesenchymal Stromal Cells Regulate Proliferation and Lineage Commitment of CD34+ Progenitor cells

    Directory of Open Access Journals (Sweden)

    Zoulfia eAllakhverdi

    2013-12-01

    Full Text Available Background: Shortly after allergen exposure, the number of bone marrow and circulating CD34+ progenitors increases. We aim to analyze the possible mechanism whereby the allergic reaction stimulates bone marrow to release these effector cells in increased numbers. We hypothesize that mast cells may play a predominant role in this process. Objective: To examine the effect of IgE-activated mast cells on bone marrow mesenchymal stromal cells which regulate proliferation and differentiation of CD34+ progenitors. Methods: Primary mast cells were derived from CD34+ precursors and activated with IgE/anti-IgE. Bone marrow mesenchymal stromal cells were co-cultured with CD34+ progenitor cells and stimulated with IL1/TNF or IgE/anti-IgE activated mast cells in Transwell system. Results: Bone marrow mesenchymal stromal cells produce low level of TSLP under steady state conditions, which is markedly increased by stimulation with proinflammatory cytokines IL-1 and TNF or IgE-activated mast cells. The latter also triggers BM-MSCs production of G-CSF, and GM-CSF while inhibiting SDF-1. Mast cell-activated mesenchymal stromal cells stimulate CD34+ cells to proliferate and to regulate their expression of early allergy-associated genes. Conclusion and Clinical Relevance: This in vitro study indicates that IgE-activated mast cells trigger bone marrow mesenchymal stromal cells to release TSLP and hematopoietic growth factors and to regulate the proliferation and lineage commitment of CD34+ precursor cells. The data predict that the effective inhibition of mast cells should impair mobilization and accumulation of allergic effector cells and thereby reduce the severity of allergic diseases.

  9. Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age.

    Directory of Open Access Journals (Sweden)

    Verena Dexheimer

    Full Text Available UNLABELLED: Mesenchymal stem cells (MSC are promising for cell-based regeneration therapies but up to date it is still controversial whether their function is maintained throughout ageing. Aim of this study was to address whether frequency, activation in vitro, replicative function, and in vitro lineage choice of MSC is maintained throughout ageing to answer the question whether MSC-based regeneration strategies should be restricted to younger individuals. MSC from bone marrow aspirates of 28 donors (5-80 years were characterized regarding colony-forming unit-fibroblast (CFU-F numbers, single cell cloning efficiency (SSCE, osteogenic, adipogenic and chondrogenic differentiation capacity in vitro. Alkaline phosphatase (ALP activity, mineralization, Oil Red O content, proteoglycan- and collagen type II deposition were quantified. While CFU-F frequency was maintained, SSCE and early proliferation rate decreased significantly with advanced donor age. MSC with higher proliferation rate before start of induction showed stronger osteogenic, adipogenic and chondrogenic differentiation. MSC with high osteogenic capacity underwent better chondrogenesis and showed a trend to better adipogenesis. Lineage choice was, however, unaltered with age. CONCLUSION: Ageing influenced activation from dormancy and replicative function of MSC in a way that it may be more demanding to mobilize MSC to fast cell growth at advanced age. Since fast proliferation came along with high multilineage capacity, the proliferation status of expanded MSC rather than donor age may provide an argument to restrict MSC-based therapies to certain individuals.

  10. Changes in glycosphingolipid composition during differentiation of human embryonic stem cells to ectodermal or endodermal lineages.

    Science.gov (United States)

    Liang, Yuh-Jin; Yang, Bei-Chia; Chen, Jin-Mei; Lin, Yu-Hsing; Huang, Chia-Lin; Cheng, Yuan-Yuan; Hsu, Chi-Yen; Khoo, Kay-Hooi; Shen, Chia-Ning; Yu, John

    2011-12-01

    Glycosphingolipids (GSLs) are ubiquitous components of cell membranes that can act as mediators of cell adhesion and signal transduction and can possibly be used as cell type-specific markers. Our previous study indicated that there was a striking switch in the core structures of GSLs during differentiation of human embryonic stem cells (hESCs) into embryoid body (EB), suggesting a close association of GSLs with cell differentiation. In this study, to further clarify if alterations in GSL patterns are correlated with lineage-specific differentiation of hESCs, we analyzed changes in GSLs as hESCs were differentiated into neural progenitors or endodermal cells by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and tandem mass spectrometry (MS/MS) analyses. During hESC differentiation into neural progenitor cells, we found that the core structures of GSLs switched from globo- and lacto- to mostly ganglio-series dominated by GD3. On the other hand, when hESCs were differentiated into endodermal cells, patterns of GSLs totally differed from those observed in EB outgrowth and neural progenitors. The most prominent GSL identified by the MALDI-MS and MS/MS analysis was Gb(4) Ceramide, with no appreciable amount of stage-specific embryonic antigens 3 or 4, or GD3, in endodermal cells. These changes in GSL profiling were accompanied by alterations in the biosynthetic pathways of expressions of key glycosyltransferases. Our findings suggest that changes in GSLs are closely associated with lineage specificity and differentiation of hESCs.

  11. Differentiation of human embryonic stem cells along a hepatocyte lineage and its application in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hepatocyte transplantation and bioartificial liver(BAL)as alternatives to liver transplantation offer the possibility of effective treatment for many inherited and acquired hepatic disorders.Unfortunately,the limited availability of donated livers and the variability of their derived hepatocytes make it difficult to obtain enough viable human hepatocytes for the hepatocyte-based therapies.Embryonic stem cells (ESCs),which could be isolated directly from the blastocyst inner cell mass,have permanent self-renewal capability and developmental pluripotency and therefore might be an ideal cell source in the treatment of hepatic discords.However,differentiation of hESCS into hepatocytes with significant numbers remains a challenge.This review updates our current understanding of differentiation of ESCs into hepatic lineage cells,their future therapeutic uses and problems in liver regeneration.

  12. Epicardial Lineages

    Directory of Open Access Journals (Sweden)

    Andreas Kispert

    2013-06-01

    Full Text Available The epicardium is the mono-layered epithelium that covers the outer surface of the myocardium from early in cardiac development. Long thought to act merely passively to protect the myocardium from frictional forces in the pericardial cavity during the enduring contraction and expansion cycles of the heart, it is now considered to be a crucial source of cells and signals that direct myocardial growth and formation of the coronary vasculature during development and regeneration. Lineage tracing efforts in the chick, the mouse and the zebrafish unambiguously identified fibroblasts in interstitial and perivascular locations as well as coronary smooth muscle cells as the two major lineages that derive from epithelial-mesenchymal transition and subsequent differentiation from individual epicardial cells. However, controversies exist about an additional endothelial and myocardial fate of epicardial progenitor cells. Here, we review epicardial fate mapping efforts in three vertebrate model systems, describe their conceptual differences and discuss their methodological limitations to reach a consensus of the potential of (pro-epicardial cells in vitro and in vivo.

  13. Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation.

    Science.gov (United States)

    Yamamuro, Chizuko; Miki, Daisuke; Zheng, Zhimin; Ma, Jun; Wang, Jing; Yang, Zhenbiao; Dong, Juan; Zhu, Jian-Kang

    2014-06-05

    DNA methylation is a reversible epigenetic mark regulating genome stability and function in many eukaryotes. In Arabidopsis, active DNA demethylation depends on the function of the ROS1 subfamily of genes that encode 5-methylcytosine DNA glycosylases/lyases. ROS1-mediated DNA demethylation plays a critical role in the regulation of transgenes, transposable elements and some endogenous genes; however, there have been no reports of clear developmental phenotypes in ros1 mutant plants. Here we report that, in the ros1 mutant, the promoter region of the peptide ligand gene EPF2 is hypermethylated, which greatly reduces EPF2 expression and thereby leads to a phenotype of overproduction of stomatal lineage cells. EPF2 gene expression in ros1 is restored and the defective epidermal cell patterning is suppressed by mutations in genes in the RNA-directed DNA methylation pathway. Our results show that active DNA demethylation combats the activity of RNA-directed DNA methylation to influence the initiation of stomatal lineage cells.

  14. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates.

  15. Mechanical Modulation of Nascent Stem Cell Lineage Commitment in Tissue Engineering Scaffolds

    Science.gov (United States)

    Song, Min Jae; Dean, David; Tate, Melissa L. Knothe

    2013-01-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to “map the mechanome”, defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. PMID:23660249

  16. Extracellular Iron is a Modulator of the Differentiation of Osteoclast Lineage Cells.

    Science.gov (United States)

    Xie, Wenjie; Lorenz, Sebastian; Dolder, Silvia; Hofstetter, Willy

    2016-03-01

    Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.

  17. Traumatic brain injury reveals novel cell lineage relationships within the subventricular zone

    Directory of Open Access Journals (Sweden)

    Gretchen M. Thomsen

    2014-07-01

    Full Text Available The acute response of the rodent subventricular zone (SVZ to traumatic brain injury (TBI involves a physical expansion through increased cell proliferation. However, the cellular underpinnings of these changes are not well understood. Our analyses have revealed that there are two distinct transit-amplifying cell populations that respond in opposite ways to injury. Mash1+ transit-amplifying cells are the primary SVZ cell type that is stimulated to divide following TBI. In contrast, the EGFR+ population, which has been considered to be a functionally equivalent progenitor population to Mash1+ cells in the uninjured brain, becomes significantly less proliferative after injury. Although normally quiescent GFAP+ stem cells are stimulated to divide in SVZ ablation models, we found that the GFAP+ stem cells do not divide more after TBI. We found, instead, that TBI results in increased numbers of GFAP+/EGFR+ stem cells via non-proliferative means—potentially through the dedifferentiation of progenitor cells. EGFR+ progenitors from injured brains only were competent to revert to a stem cell state following brief exposure to growth factors. Thus, our results demonstrate previously unknown changes in lineage relationships that differ from conventional models and likely reflect an adaptive response of the SVZ to maintain endogenous brain repair after TBI.

  18. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  19. Concise Review: Primary Cilia: Control Centers for Stem Cell Lineage Specification and Potential Targets for Cell-Based Therapies.

    Science.gov (United States)

    Bodle, Josephine C; Loboa, Elizabeth G

    2016-06-01

    Directing stem cell lineage commitment prevails as the holy grail of translational stem cell research, particularly to those interested in the application of mesenchymal stem cells and adipose-derived stem cells in tissue engineering. However, elucidating the mechanisms underlying their phenotypic specification persists as an active area of research. In recent studies, the primary cilium structure has been intimately associated with defining cell phenotype, maintaining stemness, as well as functioning in a chemo, electro, and mechanosensory capacity in progenitor and committed cell types. Many hypothesize that the primary cilium may indeed be another important player in defining and controlling cell phenotype, concomitant with lineage-dictated cytoskeletal dynamics. Many of the studies on the primary cilium have emerged from disparate areas of biological research, and crosstalk amongst these areas of research is just beginning. To date, there has not been a thorough review of how primary cilia fit into the current paradigm of stem cell differentiation and this review aims to summarize the current cilia work in this context. The goal of this review is to highlight the cilium's function and integrate this knowledge into the working knowledge of stem cell biologists and tissue engineers developing regenerative medicine technologies. Stem Cells 2016;34:1445-1454.

  20. Fibroblast growth factor receptor-3 regulates Paneth cell lineage allocation and accrual of epithelial stem cells during murine intestinal development.

    Science.gov (United States)

    Vidrich, Alda; Buzan, Jenny M; Brodrick, Brooks; Ilo, Chibuzo; Bradley, Leigh; Fendig, Kirstin Skaar; Sturgill, Thomas; Cohn, Steven M

    2009-07-01

    Fibroblast growth factor receptor 3 (FGFR-3) is expressed in the lower crypt epithelium, where stem cells of the intestine reside. The role of FGFR-3 signaling in regulating features of intestinal morphogenesis was examined in FGFR-3-null (FGFR-3(-/-)) mice. FGFR-3(-/-) mice had only about half the number of intestinal crypts and a marked decrease in the number of functional clonogenic stem cells, as assessed by an in vivo microcolony-forming assay, compared with wild-type littermates. A marked deficit in allocation of progenitor cells to Paneth cell differentiation was noted, although all the principal epithelial lineages were represented in FGFR-3(-/-) mice. The total cellular content and nuclear localization of beta-catenin protein were reduced in FGFR-3(-/-) mice, as was expression of cyclin D1 and matrix metalloproteinase-7, major downstream targets of beta-catenin/T cell factor-4 (Tcf-4) signaling. Activation of FGFR-3 in Caco-2 cells, an intestinal epithelial cell line, abrogated the fall in beta-catenin/Tcf-4 signaling activity that is normally observed in these cells as cultures become progressively more confluent. These findings are consistent with the hypothesis that, during intestinal development, FGFR-3 signaling regulates crypt epithelial stem cell expansion and crypt morphogenesis, as well as Paneth cell lineage specification, through beta-catenin/Tcf-4-dependent and -independent pathways.

  1. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  2. Active enhancers are delineated de novo during hematopoiesis, with limited lineage fidelity among specified primary blood cells.

    Science.gov (United States)

    Luyten, Annouck; Zang, Chongzhi; Liu, X Shirley; Shivdasani, Ramesh A

    2014-08-15

    Tissues may adopt diverse strategies to establish specific transcriptional programs in daughter lineages. In intestinal crypts, enhancers for genes expressed in both major cell types appear broadly permissive in stem and specified progenitor cells. In blood, another self-renewing tissue, it is unclear when chromatin becomes permissive for transcription of genes expressed in distinct terminal lineages. Using chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) to profile activating histone marks, we studied enhancer dynamics in primary mouse blood stem, progenitor, and specified cells. Stem and multipotent progenitor cells show scant H3K4me2 marking at enhancers bound by specific transcription factors in their committed progeny. Rather, enhancers are modulated dynamically and serially, with substantial loss and gain of H3K4me2, at each cellular transition. Quantitative analysis of these dynamics accurately modeled hematopoiesis according to Waddington's notion of epigenotypes. Delineation of enhancers in terminal blood lineages coincides with cell specification, and enhancers active in single lineages show well-positioned H3K4me2- and H3K27ac-marked nucleosomes and DNaseI hypersensitivity in other cell types, revealing limited lineage fidelity. These findings demonstrate that enhancer chronology in blood cells differs markedly from that in intestinal crypts. Chromatin dynamics in hematopoiesis provide a useful foundation to consider classical observations such as cellular reprogramming and multilineage locus priming.

  3. FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans.

    Science.gov (United States)

    Minor, Paul J; He, Ting-Fang; Sohn, Chang Ho; Asthagiri, Anand R; Sternberg, Paul W

    2013-09-01

    The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The Caenorhabditis elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Here, we show that the fibroblast growth factor (FGF) pathway acts in concert with the Frizzled homolog LIN-17 to influence the localization of SYS-1, a component of the Wnt/β-catenin asymmetry pathway, indirectly through the regulation of cwn-1. The source of the FGF ligand is the primary vulval precursor cell (VPC) P6.p, which controls the orientation of the neighboring secondary VPC P7.p by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt CWN-1 is expressed in the posterior body wall muscle of the worm as well as in the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the highest Wnt signal. Using single molecule fluorescence in situ hybridization, we show that the FGF pathway regulates the expression of cwn-1 in the SMs. These results demonstrate an interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity, and highlight the promiscuous nature of Wnts and the importance of Wnt gradient directionality within C. elegans.

  4. DNA Methyltransferases Modulate Hepatogenic Lineage Plasticity of Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chien-Wei Lee

    2017-07-01

    Full Text Available The irreversibility of developmental processes in mammalian cells has been challenged by rising evidence that de-differentiation of hepatocytes occurs in adult liver. However, whether reversibility exists in mesenchymal stromal cell (MSC-derived hepatocytes (dHeps remains elusive. In this study, we find that hepatogenic differentiation (HD of MSCs is a reversible process and is modulated by DNA methyltransferases (DNMTs. DNMTs are regulated by transforming growth factor β1 (TGFβ1, which in turn controls hepatogenic differentiation and de-differentiation. In addition, a stepwise reduction in TGFβ1 concentrations in culture media increases DNMT1 and decreases DNMT3 in primary hepatocytes (Heps and confers Heps with multi-differentiation potentials similarly to MSCs. Hepatic lineage reversibility of MSCs and lineage conversion of Heps are regulated by DNMTs in response to TGFβ1. This previously unrecognized TGFβ1-DNMTs-MSC-HD axis may further increase the understanding the normal and pathological processes in the liver, as well as functions of MSCs after transplantation to treat liver diseases.

  5. Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions.

    Science.gov (United States)

    Wrzos, Claudia; Winkler, Anne; Metz, Imke; Kayser, Dieter M; Thal, Dietmar R; Wegner, Christiane; Brück, Wolfgang; Nessler, Stefan; Bennett, Jeffrey L; Stadelmann, Christine

    2014-04-01

    Neuromyelitis optica (NMO) is a chronic, mostly relapsing inflammatory demyelinating disease of the CNS characterized by serum anti-aquaporin 4 (AQP4) antibodies in the majority of patients. Anti-AQP4 antibodies derived from NMO patients target and deplete astrocytes in experimental models when co-injected with complement. However, the time course and mechanisms of oligodendrocyte loss and demyelination and the fate of oligodendrocyte precursor cells (OPC) have not been examined in detail. Also, no studies regarding astrocyte repopulation of experimental NMO lesions have been reported. We utilized two rat models using either systemic transfer or focal intracerebral injection of recombinant human anti-AQP4 antibodies to generate NMO-like lesions. Time-course experiments were performed to examine oligodendroglial and astroglial damage and repair. In addition, oligodendrocyte pathology was studied in early human NMO lesions. Apart from early complement-mediated astrocyte destruction, we observed a prominent, very early loss of oligodendrocytes and oligodendrocyte precursor cells (OPCs) as well as a delayed loss of myelin. Astrocyte repopulation of focal NMO lesions was already substantial after 1 week. Olig2-positive OPCs reappeared before NogoA-positive, mature oligodendrocytes. Thus, using two experimental models that closely mimic the human disease, our study demonstrates that oligodendrocyte and OPC loss is an extremely early feature in the formation of human and experimental NMO lesions and leads to subsequent, delayed demyelination, highlighting an important difference in the pathogenesis of MS and NMO.

  6. The potential of dental stem cells differentiating into neurogenic cell lineage after cultivation in different modes in vitro.

    Science.gov (United States)

    Yang, Chao; Sun, Liang; Li, Xinghan; Xie, Li; Yu, Mei; Feng, Lian; Jiang, Zongting; Guo, Weihua; Tian, Weidong

    2014-10-01

    Trauma or degenerative diseases of the central nervous system (CNS) cause the loss of neurons or glial cells. Stem cell transplantation has become a vital strategy for CNS regeneration. It is necessary to effectively induce nonneurogenic stem cells to differentiate into neurogenic cell lineages because of the limited source of neurogenic stem cells, relatively difficult cultivation, and ethical issues. Previous studies have found that dental stem cells can be used for transplantation therapy. The aim of this study was to explore a better inductive mode and time point for dental stem cells to differentiate into neural-like cells and evaluate a better candidate cell. In this study, dental follicle stem cells (DFSCs), dental papilla stem cells (DPSCs), and stem cells from apical papilla (SCAPs) were cultivated in five different modes. The proliferation ability, morphology, and expression of neural marker genes were analyzed. Results showed that DFSCs showed a higher proliferation potential. The proliferation was decreased after cultivation in chemical inductive medium as cultivation modes 3 and 5. The cells could present neural-like cell morphology after cultivation with human epidermal growth factor (EGF) and fibroblast growth factor-basic (bFGF) as cultivation modes 4 and 5. The vast majority of DFSCs gene expression levels in mode 4 on the third day was upregulated significantly. In conclusion, our data suggested that different dental stem cells exhibited different neural differentiation potentials. DFSCs might be the better candidate cell type. Furthermore, cultivation mode 4 and timing of the third day may promote differentiation into neurogenic cell lineages more effectively before transplantation to treat neurological diseases.

  7. Very Small Embryonic-Like Stem Cells: A Potential Developmental Link Between Germinal Lineage and Hematopoiesis in Humans.

    Science.gov (United States)

    Virant-Klun, Irma

    2016-01-15

    It has been suggested that hematopoietic stem/progenitor cells (HSPCs) could become specified from a population of migrating primordial germ cells (PGCs), precursors of gametes, during embryogenesis. Some recent experimental data demonstrated that the cell population that is usually considered to be PGCs, moving toward the gonadal ridges of an embryo, contains a subset of cells coexpressing several germ cell and hematopoietic markers and possessing hematopoietic activity. Experimental data showed that bone morphogenetic protein 4 (BMP4) generates PGCs from mouse bone marrow-derived pluripotent stem cells. Interestingly, functional reproductive hormone receptors have been identified in HSPCs, thus indicating their potential role in reproductive function. Several reports have demonstrated fertility restoration and germ cell generation after bone marrow transplantation in both animal models and humans. A potential link between HSPCs and germinal lineage might be represented by very small embryonic-like stem cells (VSELs), which have been found in adult human bone marrow, peripheral blood, and umbilical cord blood, express a specific pattern of pluripotency, germinal lineage, and hematopoiesis, and are proposed to persist in adult tissues and organs from the embryonic period of life. Stem cell populations, similar to VSELs, expressing several genes related to pluripotency and germinal lineage, especially to PGCs, have been discovered in adult human reproductive organs, ovaries and testicles, and were related to primitive germ cell-like cell development in vitro, thus supporting the idea of VSELs as a potential link between germinal lineage and hematopoiesis.

  8. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.

    Science.gov (United States)

    Pearson, Bret J; Sánchez Alvarado, Alejandro

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal.

  9. Cre-inducible site-specific recombination in zebrafish oligodendrocytes.

    Science.gov (United States)

    Pinzon-Olejua, Alejandro; Welte, Cornelia; Chekuru, Avinash; Bosak, Viktoria; Brand, Michael; Hans, Stefan; Stuermer, Claudia A O

    2017-01-01

    The conditional Cre/lox system has recently emerged as a valuable tool for studies on both embryonic and adult Zebrafish. Temporal control and site-specific recombination are achieved by using the ligand-inducible CreER(T2) and administration of the drug tamoxifen (TAM) or its active metabolite, 4-Hydroxytamoxifen (4-OHT). Here we report the generation of a transgenic Zebrafish line, which expresses an mCherry-tagged variant of CreER(T2) under the control of the myelin basic protein a (mbpa) promoter. Our analysis shows that larval and adult expression of the transgene recapitulates the endogenous mbpa expression pattern in oligodendrocytes. Furthermore, combination with a Cre-dependent EGFP reporter results in EGFP-expressing oligodendrocytes in the spinal cord, brain, and optic nerve in TAM- or 4-OHT-treated larvae and 4-month-old fish, but not in untreated controls. The transgenic Zebrafish line Tg(mbpa:mCherry-T2A-CreER(T2) ) elicits CreER(T2) expression specifically in myelinating glia cells. Cre-inducible targeted recombination of genes in oligodendrocytes will be useful to elucidate cellular and molecular mechanisms of myelination in vivo during development (myelination) and regeneration (remyelination) after injury to the central nervous system (CNS). It will also allow targeted expression and overexpression of genes of interest (transgenes) in oligodendrocytes at defined developmental and adult stages. Developmental Dynamics 246:41-49, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. MicroRNA expression profiles in umbilical cord blood cell lineages.

    Science.gov (United States)

    Merkerova, Michaela; Vasikova, Alzbeta; Belickova, Monika; Bruchova, Hana

    2010-01-01

    MicroRNAs (miRNAs), important regulators of cellular processes, show specific expression signatures in different blood cell lineages and stages of hematopoietic stem cell (HSC) differentiation, indicating their role in the control of hematopoiesis. Because neonatal blood displays various features of immaturity, we might expect differential miRNA regulation. Herein, we determined miRNA expression profiles of umbilical cord blood (UCB) cell lineages and compared them to those of bone marrow (BM) and peripheral blood (PB) cell counterparts. Further, we determined mRNA expression profiles using whole-genome microarrays. An approach combining bioinformatic prediction of miRNA targets with mRNA expression profiling was used to search for putative targets of miRNAs with potential functions in UCB. We pointed out several differentially expressed miRNAs and associated their expression with the target transcript levels. miR-148a expression was suppressed in HSCs and its level inversely correlated with the previously verified target, DNA methyltransferase 3B, suggesting dependence of de novo DNA methylation in HSCs on miR-148a. Prolonged cell survival of UCB HSCs may be associated with low expression of miR-143 and miR-145 and up-regulation of their downstream targets (high expression of c-MYC and miR-17-92 and following repression of TGFBR2). In HSCs, we monitored significant up-regulation of eight miRNAs, which were previously verified as regulators of HOX genes. Further, miR-146b may be associated with immaturity of neonatal immune system because it is strongly up-regulated in UCB granulocytes and T lymphocytes compared to PB cell counterparts. Comparative analysis revealed 13 miRNAs significantly altered between UCB and BM CD34(+) cells. In UCB CD34(+) cells, we monitored up-regulation of miR-520h, promoting differentiation of HSCs into progenitor cells, and reduction of miR-214, whose expression might support HSC survival. In conclusion, UCB cells show specific mi

  11. Transmissible [corrected] dog cancer genome reveals the origin and history of an ancient cell lineage.

    Science.gov (United States)

    Murchison, Elizabeth P; Wedge, David C; Alexandrov, Ludmil B; Fu, Beiyuan; Martincorena, Inigo; Ning, Zemin; Tubio, Jose M C; Werner, Emma I; Allen, Jan; De Nardi, Andrigo Barboza; Donelan, Edward M; Marino, Gabriele; Fassati, Ariberto; Campbell, Peter J; Yang, Fengtang; Burt, Austin; Weiss, Robin A; Stratton, Michael R

    2014-01-24

    Canine transmissible venereal tumor (CTVT) is the oldest known somatic cell lineage. It is a transmissible cancer that propagates naturally in dogs. We sequenced the genomes of two CTVT tumors and found that CTVT has acquired 1.9 million somatic substitution mutations and bears evidence of exposure to ultraviolet light. CTVT is remarkably stable and lacks subclonal heterogeneity despite thousands of rearrangements, copy-number changes, and retrotransposon insertions. More than 10,000 genes carry nonsynonymous variants, and 646 genes have been lost. CTVT first arose in a dog with low genomic heterozygosity that may have lived about 11,000 years ago. The cancer spawned by this individual dispersed across continents about 500 years ago. Our results provide a genetic identikit of an ancient dog and demonstrate the robustness of mammalian somatic cells to survive for millennia despite a massive mutation burden.

  12. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Shin-Ichi, E-mail: shayashi@med.tottori-u.ac.jp [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Yasuda, Hisataka [Planning and Development, Bioindustry Division, Oriental Yeast Co., Ltd, Itabashi-Ku, Tokyo 174-8505 (Japan); Yoshino, Miya [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer The frequency of C7 differentiation into osteoclast was low and constant. Black-Right-Pointing-Pointer Only extended C7 cell cultures exponentially increased osteoclast+ cultures. Black-Right-Pointing-Pointer C7 cell differentiation into committed osteoclast precursors is on 'autopilot'. Black-Right-Pointing-Pointer The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor {kappa}B ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.

  13. Collagen scaffold microenvironments modulate cell lineage commitment for differentiation of bone marrow cells into regulatory dendritic cells

    Science.gov (United States)

    Fang, Yongxiang; Wang, Bin; Zhao, Yannan; Xiao, Zhifeng; Li, Jing; Cui, Yi; Han, Sufang; Wei, Jianshu; Chen, Bing; Han, Jin; Meng, Qingyuan; Hou, Xianglin; Luo, Jianxun; Dai, Jianwu; Jing, Zhizhong

    2017-01-01

    The microenvironment plays a pivotal role for cell survival and functional regulation, and directs the cell fate determination. The biological functions of DCs have been extensively investigated to date. However, the influences of the microenvironment on the differentiation of bone marrow cells (BMCs) into dendritic cells (DCs) are not well defined. Here, we established a 3D collagen scaffold microenvironment to investigate whether such 3D collagen scaffolds could provide a favourable niche for BMCs to differentiate into specialised DCs. We found that BMCs embedded in the 3D collagen scaffold differentiated into a distinct subset of DC, exhibiting high expression of CD11b and low expression of CD11c, co-stimulator (CD40, CD80, CD83, and CD86) and MHC-II molecules compared to those grown in 2D culture. DCs cultured in the 3D collagen scaffold possessed weak antigen uptake ability and inhibited T-cell proliferation in vitro; in addition, they exhibited potent immunoregulatory function to alleviate allo-delay type hypersensitivity when transferred in vivo. Thus, DCs differentiated in the 3D collagen scaffold were defined as regulatory DCs, indicating that collagen scaffold microenvironments probably play an important role in modulating the lineage commitment of DCs and therefore might be applied as a promising tool for generation of specialised DCs. PMID:28169322

  14. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy.

    Science.gov (United States)

    Ostrovidov, Serge; Shi, Xuetao; Sadeghian, Ramin Banan; Salehi, Sahar; Fujie, Toshinori; Bae, Hojae; Ramalingam, Murugan; Khademhosseini, Ali

    2015-12-01

    Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.

  15. A role for mixed lineage kinases in granule cell apoptosis induced by cytoskeletal disruption.

    Science.gov (United States)

    Müller, Georg Johannes; Geist, Marie Aavang; Veng, Lone Merete; Willesen, Mette Georgi; Johansen, Flemming Fryd; Leist, Marcel; Vaudano, Elisabetta

    2006-03-01

    Microtubule disruption by colchicine induces apoptosis in selected neuronal populations. However, little is known about the upstream death signalling events mediating the neurotoxicity. We investigated first whether colchicine-induced granule cell apoptosis activates the c-Jun N-terminal kinase (JNK) pathway. Cultured murine cerebellar granule cells were exposed to 1 microm colchicine for 24 h. Activation of the JNK pathway was detected by western blotting as well as immunocytochemistry using antibodies against phospho-c-Jun (p-c-Jun). Next, adult male rats were injected intracerebroventricularly with colchicine (10 microg), and JNK pathway activation in dentate granule cells (DGCs) was detected by antibodies against p-c-Jun. The second part of the study tested the involvement of mixed lineage kinases (MLK) as upstream activators of the JNK pathway in colchicine toxicity, using CEP-1347, a potent MLK inhibitor. In vitro, significant inhibition of the JNK pathway, activated by colchicine, was achieved by 100-300 nm CEP-1347, which blocked both activation of cell death proteases and apoptosis. Moreover, CEP-1347 markedly delayed neurite fragmentation and cell degeneration. In vivo, CEP-1347 (1 mg/kg) significantly prevented p-c-jun increase following injection of colchicine, and enhanced survival of DGCs. We conclude that colchicine-induced neuronal apoptosis involves the JNK/MLK pathway, and that protection of granule cells can be achieved by MLK inhibition.

  16. Insulin-like growth factor binding protein-1 activates integrin-mediated intracellular signaling and migration in oligodendrocytes

    NARCIS (Netherlands)

    Chesik, Daniel; De Keyser, Jacques; Bron, Reinier; Fuhler, Gwenny M.

    2010-01-01

    P>In multiple sclerosis (MS), oligodendrocytes in lesions are lost, leaving damaged tissue virtually devoid of these myelin-producing cells. Our group has recently demonstrated enhanced expression of insulin-like growth factor (IGF) binding protein-1 (IGFBP-1) in oligodendrocytes (CNPase+) localized

  17. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells.

    Science.gov (United States)

    Nakagomi, Takayuki; Kubo, Shuji; Nakano-Doi, Akiko; Sakuma, Rika; Lu, Shan; Narita, Aya; Kawahara, Maiko; Taguchi, Akihiko; Matsuyama, Tomohiro

    2015-06-01

    Brain vascular pericytes (PCs) are a key component of the blood-brain barrier (BBB)/neurovascular unit, along with neural and endothelial cells. Besides their crucial role in maintaining the BBB, increasing evidence shows that PCs have multipotential stem cell activity. However, their multipotency has not been considered in the pathological brain, such as after an ischemic stroke. Here, we examined whether brain vascular PCs following ischemia (iPCs) have multipotential stem cell activity and differentiate into neural and vascular lineage cells to reconstruct the BBB/neurovascular unit. Using PCs extracted from ischemic regions (iPCs) from mouse brains and human brain PCs cultured under oxygen/glucose deprivation, we show that PCs developed stemness presumably through reprogramming. The iPCs revealed a complex phenotype of angioblasts, in addition to their original mesenchymal properties, and multidifferentiated into cells from both a neural and vascular lineage. These data indicate that under ischemic/hypoxic conditions, PCs can acquire multipotential stem cell activity and can differentiate into major components of the BBB/neurovascular unit. Thus, these findings support the novel concept that iPCs can contribute to both neurogenesis and vasculogenesis at the site of brain injuries.

  18. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage.

    Science.gov (United States)

    Dubois, Vanessa; Simitsidellis, Ioannis; Laurent, Michaël R; Jardi, Ferran; Saunders, Philippa T K; Vanderschueren, Dirk; Claessens, Frank

    2015-12-01

    Androgens increase skeletal muscle mass, but their clinical use is hampered by a lack of tissue selectivity and subsequent side effects. Selective androgen receptor modulators elicit muscle-anabolic effects while only sparingly affecting reproductive tissues. The selective androgen receptor modulator, GTx-024 (enobosarm), is being investigated for cancer cachexia, sarcopenia, and muscle wasting diseases. Here we investigate the role of muscle androgen receptor (AR) in the anabolic effect of GTx-024. In mice lacking AR in the satellite cell lineage (satARKO), the weight of the androgen-sensitive levator ani muscle was lower but was decreased further upon orchidectomy. GTx-024 was as effective as DHT in restoring levator ani weights to sham levels. Expression of the muscle-specific, androgen-responsive genes S-adenosylmethionine decarboxylase and myostatin was decreased by orchidectomy and restored by GTx-024 and DHT in control mice, whereas the expression was low and unaffected by androgen status in satARKO. In contrast, insulin-like growth factor 1Ea expression was not different between satARKO and control muscle, decreased upon castration, and was restored by DHT and GTx-024 in both genotypes. These data indicate that GTx-024 does not selectively modulate AR in the satellite cell lineage and that cells outside this lineage remain androgen responsive in satARKO muscle. Indeed, residual AR-positive cells were present in satARKO muscle, coexpressing the fibroblast-lineage marker vimentin. AR positive, muscle-resident fibroblasts could therefore be involved in the indirect effects of androgens on muscle. In conclusion, both DHT and GTx-024 target AR pathways in the satellite cell lineage, but cells outside this lineage also contribute to the anabolic effects of androgens.

  19. Small molecule cardiogenol C upregulates cardiac markers and induces cardiac functional properties in lineage-committed progenitor cells.

    Science.gov (United States)

    Mike, Agnes K; Koenig, Xaver; Koley, Moumita; Heher, Philipp; Wahl, Gerald; Rubi, Lena; Schnürch, Michael; Mihovilovic, Marko D; Weitzer, Georg; Hilber, Karlheinz

    2014-01-01

    Cell transplantation into the heart is a new therapy after myocardial infarction. Its success, however, is impeded by poor donor cell survival and by limited transdifferentiation of the transplanted cells into functional cardiomyocytes. A promising strategy to overcome these problems is the induction of cardiomyogenic properties in donor cells by small molecules. Here we studied cardiomyogenic effects of the small molecule compound cardiogenol C (CgC), and structural derivatives thereof, on lineage-committed progenitor cells by various molecular biological, biochemical, and functional assays. Treatment with CgC up-regulated cardiac marker expression in skeletal myoblasts. Importantly, the compound also induced cardiac functional properties: first, cardiac-like sodium currents in skeletal myoblasts, and secondly, spontaneous contractions in cardiovascular progenitor cell-derived cardiac bodies. CgC induces cardiomyogenic function in lineage-committed progenitor cells, and can thus be considered a promising tool to improve cardiac repair by cell therapy.

  20. Small Molecules Greatly Improve Conversion of Human-Induced Pluripotent Stem Cells to the Neuronal Lineage

    Directory of Open Access Journals (Sweden)

    Sally K. Mak

    2012-01-01

    Key success factors for neuronal differentiation are the yield of desired neuronal marker expression, reproducibility, length, and cost. Three main neuronal differentiation approaches are stromal-induced neuronal differentiation, embryoid body (EB differentiation, and direct neuronal differentiation. Here, we describe our neurodifferentiation protocol using small molecules that very efficiently promote neural induction in a 5-stage EB protocol from six induced pluripotent stem cells (iPSC lines from patients with Parkinson’s disease and controls. This protocol generates neural precursors using Dorsomorphin and SB431542 and further maturation into dopaminergic neurons by replacing sonic hedgehog with purmorphamine or smoothened agonist. The advantage of this approach is that all patient-specific iPSC lines tested in this study were successfully and consistently coaxed into the neural lineage.

  1. Enhanced cardiomyogenic lineage differentiation of adult bone-marrow-derived stem cells grown on cardiogel.

    Science.gov (United States)

    Sreejit, P; Verma, R S

    2013-09-01

    The extracellular matrix (ECM) and its components are known to promote growth and cellular differentiation in vitro. Cardiogel, a three-dimensional extracellular matrix derived from cardiac fibroblasts, is evaluated for its cardiomyogenic-differentiation-inducing potential on bone-marrow-derived stem cells (BMSC). BMSC from adult mice were grown on cardiogel and induced to differentiate into specific lineages that were validated by morphological, phenotypic and molecular assays. The data revealed that the cardiogel enhanced cardiomyogenic and adipogenic differentiation and relegated osteogenic differentiation following specific induction. More importantly, increased cardiomyogenic differentiation was also observed following BMSC growth on cardiogel without specific chemical (5-azacytidine) induction. This is the first report of an attempt to use cardiogel as a biomaterial on which to achieve cardiomyogenic differentiation of BMSC without chemical induction. Our study suggests that cardiogel is an efficient extracellular matrix that enhances the cardiomyogenic differentiation of BMSC and that it can therefore be used as a scaffold for cardiac tissue regeneration.

  2. Multiploid CD61+ cells are the pre-dominant cell lineage infected during acute dengue virus infection in bone marrow.

    Directory of Open Access Journals (Sweden)

    Kristina B Clark

    Full Text Available Depression of the peripheral blood platelet count during acute infection is a hallmark of dengue. This thrombocytopenia has been attributed, in part, to an insufficient level of platelet production by megakaryocytes that reside in the bone marrow (BM. Interestingly, it was observed that dengue patients experience BM suppression at the onset of fever. However, few studies focus on the interaction between dengue virus (DENV and megakaryocytes and how this interaction can lead to a reduction in platelets. In the studies reported herein, BM cells from normal healthy rhesus monkeys (RM and humans were utilized to identify the cell lineage(s that were capable of supporting virus infection and replication. A number of techniques were employed in efforts to address this issue. These included the use of viral RNA quantification, nonstructural protein and infectivity assays, phenotypic studies utilizing immunohistochemical staining, anti-differentiation DEAB treatment, and electron microscopy. Cumulative results from these studies revealed that cells in the BM were indeed highly permissive for DENV infection, with human BM having higher levels of viral production compared to RM. DENV-like particles were predominantly observed in multi-nucleated cells that expressed CD61+. These data suggest that megakaryocytes are likely the predominant cell type infected by DENV in BM, which provides one explanation for the thrombocytopenia and the dysfunctional platelets characteristic of dengue virus infection.

  3. Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage.

    Directory of Open Access Journals (Sweden)

    Subir Kapuria

    Full Text Available Epithelial homeostasis in the posterior midgut of Drosophila is maintained by multipotent intestinal stem cells (ISCs. ISCs self-renew and produce enteroblasts (EBs that differentiate into either enterocytes (ECs or enteroendocrine cells (EEs in response to differential Notch (N activation. Various environmental and growth signals dynamically regulate ISC activity, but their integration with differentiation cues in the ISC lineage remains unclear. Here we identify Notch-mediated repression of Tuberous Sclerosis Complex 2 (TSC2 in EBs as a required step in the commitment of EBs into the EC fate. The TSC1/2 complex inhibits TOR signaling, acting as a tumor suppressor in vertebrates and regulating cell growth. We find that TSC2 is expressed highly in ISCs, where it maintains stem cell identity, and that N-mediated repression of TSC2 in EBs is required and sufficient to promote EC differentiation. Regulation of TSC/TOR activity by N signaling thus emerges as critical for maintenance and differentiation in somatic stem cell lineages.

  4. CD43 signals induce Type One lineage commitment of human CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Rosenstein Yvonne

    2007-11-01

    Full Text Available Abstract Background The activation and effector phenotype of T cells depend on the strength of the interaction of the TcR with its cognate antigen and additional signals provided by cytokines and by co-receptors. Lymphocytes sense both the presence of an antigen and also clues from antigen-presenting cells, which dictate the requisite response. CD43 is one of the most abundant molecules on the surface of T cells; it mediates its own signalling events and cooperates with those mediated by the T cell receptor in T cell priming. We have examined the role of CD43 signals on the effector phenotype of adult CD4+ and CD8+ human T cells, both alone and in the presence of signals from the TcR. Results CD43 signals direct the expression of IFNγ in human T cells. In freshly isolated CD4+ T cells, CD43 signals potentiated expression of the IFNγ gene induced by TcR activation; this was not seen in CD8+ T cells. In effector cells, CD43 signals alone induced the expression of the IFNγ gene in CD4+ T cells and to a lesser extent in CD8+ cells. The combined signals from CD43 and the TcR increased the transcription of the T-bet gene in CD4+ T cells and inhibited the transcription of the GATA-3 gene in both populations of T cells, thus predisposing CD4+ T cells to commitment to the T1 lineage. In support of this, CD43 signals induced a transient membrane expression of the high-affinity chains of the receptors for IL-12 and IFNγ in CD4+ T cells. CD43 and TcR signals also cooperated with those of IL-12 in the induction of IFNγ expression. Moreover, CD43 signals induced the co-clustering of IFNγR and the TcR and cooperated with TcR and IL-12 signals, triggering a co-capping of both receptors in CD4+ populations, a phenomenon that has been associated with a T1 commitment. Conclusion Our results suggest a key role for CD43 signals in the differentiation of human CD4+ T cells into a T1 pattern.

  5. Oligodendrocyte and interneuron density in hippocampal subfields in schizophrenia and association of oligodendrocyte number with cognitive deficits

    Directory of Open Access Journals (Sweden)

    Peter eFalkai

    2016-03-01

    differences in Olig1-, Olig2-, or parvalbumin-positive cell density between schizophrenia patients and controls in any of the subregions of the posterior hippocampus.Based on the results from our stereological study we hypothesize that a decreased number of oligodendrocytes in the anterior and entire hippocampus may be involved in cognitive deficits by impairing the connectivity of this structure in schizophrenia. In the posterior hippocampus, we could not replicate previously reported findings of decreased interneurons from the entire hippocampus.

  6. Regulation of early T-lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1.

    Science.gov (United States)

    Champhekar, Ameya; Damle, Sagar S; Freedman, George; Carotta, Sebastian; Nutt, Stephen L; Rothenberg, Ellen V

    2015-04-15

    The ETS family transcription factor PU.1 is essential for the development of several blood lineages, including T cells, but its function in intrathymic T-cell precursors has been poorly defined. In the thymus, high PU.1 expression persists through multiple cell divisions in early stages but then falls sharply during T-cell lineage commitment. PU.1 silencing is critical for T-cell commitment, but it has remained unknown how PU.1 activities could contribute positively to T-cell development. Here we employed conditional knockout and modified antagonist PU.1 constructs to perturb PU.1 function stage-specifically in early T cells. We show that PU.1 is needed for full proliferation, restricting access to some non-T fates, and controlling the timing of T-cell developmental progression such that removal or antagonism of endogenous PU.1 allows precocious access to T-cell differentiation. Dominant-negative effects reveal that this repression by PU.1 is mediated indirectly. Genome-wide transcriptome analysis identifies novel targets of PU.1 positive and negative regulation affecting progenitor cell signaling and cell biology and indicating distinct regulatory effects on different subsets of progenitor cell transcription factors. Thus, in addition to supporting early T-cell proliferation, PU.1 regulates the timing of activation of the core T-lineage developmental program.

  7. Aryl hydrocarbon receptors in osteoclast lineage cells are a negative regulator of bone mass.

    Directory of Open Access Journals (Sweden)

    Tai-yong Yu

    Full Text Available Aryl hydrocarbon receptors (AhRs play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO or transgenic mice, the cellular and molecular mechanism(s in this process remain unclear. In this study, we explored the function of AhR in bone metabolism using AhR(RANKΔOc/ΔOc (RANK(Cre/+;AhR(flox/flox mice. We observed enhanced bone mass together with decreased resorption in both male and female 12 and 24-week-old AhR(RANKΔOc/ΔOc mice. Control mice treated with 3-methylcholanthrene (3MC, an AhR agonist, exhibited decreased bone mass and increased bone resorption, whereas AhR(CtskΔOc/ΔOc (Ctsk(Cre/+;AhR(flox/flox mice injected with 3MC appeared to have a normal bone phenotype. In vitro, bone marrow-derived macrophages (BMDMs from AhR(RANKΔOc/ΔOc mice exhibited impaired osteoclastogenesis and repressed differentiation with downregulated expression of B lymphocyte-induced maturation protein 1 (Blimp1, and cytochrome P450 genes Cyp1b1 and Cyp1a2. Collectively, our results not only demonstrated that AhR in osteoclast lineage cells is a physiologically relevant regulator of bone resorption, but also highlighted the need for further studies on the skeletal actions of AhR inhibitors in osteoclast lineage cells commonly associated with bone diseases, especially diseases linked to environmental pollutants known to induce bone loss.

  8. Convergent functional genomics of oligodendrocyte differentiation identifies multiple autoinhibitory signaling circuits.

    Science.gov (United States)

    Gobert, Rosanna Pescini; Joubert, Lara; Curchod, Marie-Laure; Salvat, Catherine; Foucault, Isabelle; Jorand-Lebrun, Catherine; Lamarine, Marc; Peixoto, Hélène; Vignaud, Chloé; Frémaux, Christèle; Jomotte, Thérèse; Françon, Bernard; Alliod, Chantal; Bernasconi, Lilia; Abderrahim, Hadi; Perrin, Dominique; Bombrun, Agnes; Zanoguera, Francisca; Rommel, Christian; Hooft van Huijsduijnen, Rob

    2009-03-01

    Inadequate remyelination of brain white matter lesions has been associated with a failure of oligodendrocyte precursors to differentiate into mature, myelin-producing cells. In order to better understand which genes play a critical role in oligodendrocyte differentiation, we performed time-dependent, genome-wide gene expression studies of mouse Oli-neu cells as they differentiate into process-forming and myelin basic protein-producing cells, following treatment with three different agents. Our data indicate that different inducers activate distinct pathways that ultimately converge into the completely differentiated state, where regulated gene sets overlap maximally. In order to also gain insight into the functional role of genes that are regulated in this process, we silenced 88 of these genes using small interfering RNA and identified multiple repressors of spontaneous differentiation of Oli-neu, most of which were confirmed in rat primary oligodendrocyte precursors cells. Among these repressors were CNP, a well-known myelin constituent, and three phosphatases, each known to negatively control mitogen-activated protein kinase cascades. We show that a novel inhibitor for one of the identified genes, dual-specificity phosphatase DUSP10/MKP5, was also capable of inducing oligodendrocyte differentiation in primary oligodendrocyte precursors. Oligodendrocytic differentiation feedback loops may therefore yield pharmacological targets to treat disease related to dysfunctional myelin deposition.

  9. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M. [Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft, Toledo, OH 43606 (United States); Liu, Jinsong [Department of Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Chadee, Deborah N., E-mail: deborah.chadee@utoledo.edu [Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft, Toledo, OH 43606 (United States)

    2012-08-15

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: Black-Right-Pointing-Pointer Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. Black-Right-Pointing-Pointer MLK3 is required for MMP expression and activity in ovarian cancer cells. Black-Right-Pointing-Pointer MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. Black-Right-Pointing-Pointer MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  10. Activation of arylhydrocarbon receptor (AhR) in T lineage cells inhibits cellular growth

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, K.; Tomohiro, I.; Chiharu, T. [National Institute for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    Dioxins, including the most toxic congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), exert their toxic effects by binding and activating the arylhydrocarbon receptor (AhR), a liganddependent transcription factor. Upon binding dioxins, the AhR in the cytoplasm is activated and translocated to the nucleus, where it heterodimerizes with another transcription factor, ARNT. The AhR/ARNT heterodimer modulates expressions of various genes by binding xenobiotic responsive elements (XREs) in their enhancer regions or modifies cellular functions through protein-protein interactions. The AhR activation by TCDD exposure induces various immunotoxic reactions including thymus involution and suppression of T cell-dependent antibody production. We have investigated the roles of AhR activation in T lineage cells and their underlying mechanisms by generating transgenic (Tg) mice expressing a constitutively active AhR (CA-AhR) mutant specifically in T cells and by transiently expressing the CA-AhR mutant in Jurkat T cells.

  11. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Hye-Jin [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Kyung-Ae [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Gwon, Mi-Ri; Jin Seong, Sook [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, Shin-Yoon [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Young-Ran, E-mail: yry@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.

  12. On the biogenesis of the myelin sheath: cognate polarized trafficking pathways in oligodendrocytes.

    Science.gov (United States)

    de Vries, H; Hoekstra, D

    2000-01-01

    Oligodendrocytes, the myelinating cells of the central nervous system, are capable of transporting vast quantities of proteins and of lipids, in particular galactosphingolipids, to the myelin sheath. The sheath is continuous with the plasma membrane of the oligodendrocyte, but the composition of both membrane domains differs substantially. Given its high glycosphingolipid and cholesterol content the myelin sheath bears similarity to the lipid composition of the apical domain of a polarized cell. The question thus arises whether myelin components, like typical apical membrane proteins are transported by an apical-like trafficking mechanism to the sheath, involving a 'raft'-mediated mechanism. Indeed, the evidence indicates the presence of cognate apical and basolateral pathways in oligodendrocytes. However, all major myelin proteins do not participate in this pathway, and remarkably apical-like trafficking seems to be restricted to the oligodendrocyte cell body. In this review, we summarize the evidence on the existence of different trafficking pathways in the oligodendrocyte, and discuss possible mechanisms separating the oligodendrocyte's membrane domains.

  13. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.

    Science.gov (United States)

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi

    2009-12-01

    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  14. Glial cell transplants that are subsequently rejected can be used to influence regeneration of glial cell environments in the CNS.

    Science.gov (United States)

    Blakemore, W F; Crang, A J; Franklin, R J; Tang, K; Ryder, S

    1995-02-01

    Transplantation of glial cells into demyelinating lesions in CNS offers an experimental approach which allows investigation of the complex interactions that occur between CNS glia, Schwann cells, and axons during remyelination and repair. Earlier studies have shown that 1) transplanted astrocytes are able to prevent Schwann cells from participating in CNS remyelination, but that they are only able to do so with the cooperation of cells of the oligodendrocyte lineage, and 2) transplanted mouse oligodendrocytes can remyelinate rat axons provided their rejection is controlled by immunosuppression. On the basis of these observations, we have been able to prevent the Schwann cell remyelination that normally follows ethidium bromide demyelination in the rat spinal cord by co-transplanting isogeneic astrocytes with a potentially rejectable population of mouse oligodendrocyte lineage cells. Since male mouse cells were used it was possible to demonstrate their presence in immunosuppressed recipients using a mouse Y-chromosome probe by in situ hydridisation. When myelinating mouse cells were rejected by removal of immunosuppression, the demyelinated axons were remyelinated by host oligodendrocytes rather than Schwann cells, whose entry was prevented by the persistence of the transplanted isogeneic astrocytes. The oligodendrocyte remyelination was extensive and rapid, indicating that the inflammation associated with cell rejection did not impede repair. If this host oligodendrocyte remyelination was prevented by local X-irradiation, the lesion consisted of demyelinated axons surrounded by processes from the transplanted astrocytes. By this approach, it was possible to create an environment which resembled the chronic plaques of multiple sclerosis. Thus, these experiments demonstrate that in appropriate circumstances the temporary presence of a population of glial cells can alter the outcome of damage to the CNS.

  15. WIN55, 212-2 promotes differentiation of oligodendrocyte precursor cells and improve remyelination through regulation of the phosphorylation level of the ERK 1/2 via cannabinoid receptor 1 after stroke-induced demyelination.

    Science.gov (United States)

    Sun, Jing; Fang, Yinquan; Chen, Tao; Guo, Jingjing; Yan, Jun; Song, Shu; Zhang, Luyong; Liao, Hong

    2013-01-23

    In stroke, a common cause of neurological disability in adults is that the myelin sheaths are lost through the injury or death of mature oligodendrocytes, and the failure of remyelination may be often due to insufficient proliferation and differentiation of oligodendroglial progenitors. In the current study, we used middle cerebral artery occlusion (MCAO) to induced transient focal cerebral ischemia, and found that WIN55, 212-2 augmented actively proliferating oligodendrocytes measured by CC1 immunoreactive cells within the peri-infarct areas. To establish whether these effects were associated with changes in myelin formation, we analyzed the expression of myelin basic protein (MBP) and myelin ultrastructure. We found that WIN55, 212-2 showed more extensive remyelination than vehicle at 14 days post injection (dpi). The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway may be involved in OPCs differentiation. To determine the regulatory effect of WIN55, 212-2 post-treatment on phospho-ERK 1/2 (p-ERK 1/2) after ischemia/reperfusion, Western blot analysis was performed. We found that WIN55, 212-2 regulated the phosphorylation level of the ERK 1/2 to promote OPCs survival and differentiation. Notably, cannabinoid receptor 1 is coupled to the activation of the ERK cascade. Following rimonabant combined treatment, the effect of WIN55, 212-2 on regulating the phosphorylation level of the ERK 1/2 was reversed, and the effect of accelerated myelin formation was partially inhibited. Together, we first found that WIN55, 212-2 promoted OPCs differentiation and remyelination through regulation of the level of the p-ERK 1/2 via cannabinoid receptor 1.

  16. Contribution of cells derived from the area pellucida to extraembryonic mesodermal cell lineages in heterospecific quail chick blastodermal chimeras.

    Science.gov (United States)

    Karagenç, Levent; Sandikci, Mustafa

    2013-01-01

    The current study has two main objectives: first, to determine if cells derived from the area pellucida are able to populate extraembryonic membranes, and second, to determine if donor cells have the potential to differentiate to endothelial (EC) and hematopoietic cells (HC) in the yolk sac and allantois, the two extraembryonic membranes functioning as hematopoietic organs in the avian embryo. To this end, quail chick chimeras were constructed by transferring dissociated cells from the areae pellucidae of the stage X-XII (EG&K) quail embryo into the subgerminal cavity of the unincubated chick blastoderm. The distribution of quail cells in the allantois, yolk sac, amnion, and chorion of resulting putative chimeras was examined using quail cell-specific antibody against a perinuclear antigen (QCPN) after 6 days of incubation. The presence of EC, HC, and smooth muscle cells among the QCPN(+) donor cells was examined using QH-1, a quail-specific marker identifying HC and EC and an anti-α-smooth muscle actin antibody. Evidence gathered in the present study demonstrates that quail cells derived from the areae pellucidae are able to populate all of the extraembryonic membranes of resulting heterospecific quail chick chimeras and, most importantly, give rise to HC, EC, and smooth muscle cells, all of the three main mesodermal lineages derived from the posterior mesoderm both in the yolk sac and allantois.

  17. Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury.

    Science.gov (United States)

    Huang, Siqin; Tang, Chenglin; Sun, Shanquan; Cao, Wenfu; Qi, Wei; Xu, Jin; Huang, Juan; Lu, Weitian; Liu, Qian; Gong, Biao; Zhang, Yi; Jiang, Jin

    2015-12-01

    Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.

  18. Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Paik Wah [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Abdul Hamid, Zariyantey, E-mail: zyantey@ukm.edu.my [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Chan, Kok Meng [Environmental Health and Industrial Safety Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Inayat-Hussain, Salmaan Hussain [Environmental Health and Industrial Safety Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Rajab, Nor Fadilah [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2015-04-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24 h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-forming unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e{sup +} cells but reduced the total counts of Sca-1{sup +}, CD11b{sup +}, Gr-1{sup +}, and CD45{sup +} cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5 μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12 μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage. - Highlights: • We examine 1,4-BQ toxicity targeting mouse hematopoietic cell lineages. • 1,4-BQ induces concentration-dependent cytotoxicity in bone marrow (BM) cells. • 1,4-BQ shows lineage-related toxicity on hematopoietic stem and

  19. Scaffolds for 3D in vitro culture of neural lineage cells.

    Science.gov (United States)

    Murphy, Ashley R; Laslett, Andrew; O'Brien, Carmel M; Cameron, Neil R

    2017-03-01

    Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research.

  20. Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Pauline Rimmelé

    2014-07-01

    Full Text Available Aging hematopoietic stem cells (HSCs exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging.

  1. Loss of CD44dim Expression from Early Progenitor Cells Marks T-Cell Lineage Commitment in the Human Thymus

    Science.gov (United States)

    Canté-Barrett, Kirsten; Mendes, Rui D.; Li, Yunlei; Vroegindeweij, Eric; Pike-Overzet, Karin; Wabeke, Tamara; Langerak, Anton W.; Pieters, Rob; Staal, Frank J. T.; Meijerink, Jules P. P.

    2017-01-01

    Human T-cell development is less well studied than its murine counterpart due to the lack of genetic tools and the difficulty of obtaining cells and tissues. Here, we report the transcriptional landscape of 11 immature, consecutive human T-cell developmental stages. The changes in gene expression of cultured stem cells on OP9-DL1 match those of ex vivo isolated murine and human thymocytes. These analyses led us to define evolutionary conserved gene signatures that represent pre- and post-αβ T-cell commitment stages. We found that loss of dim expression of CD44 marks human T-cell commitment in early CD7+CD5+CD45dim cells, before the acquisition of CD1a surface expression. The CD44−CD1a− post-committed thymocytes have initiated in frame T-cell receptor rearrangements that are accompanied by loss of capacity to differentiate toward myeloid, B- and NK-lineages, unlike uncommitted CD44dimCD1a− thymocytes. Therefore, loss of CD44 represents a previously unrecognized human thymocyte stage that defines the earliest committed T-cell population in the thymus. PMID:28163708

  2. A block in lineage differentiation of immortal human mammary stem / progenitor cells by ectopically-expressed oncogenes

    Directory of Open Access Journals (Sweden)

    Xiangshan Zhao

    2011-01-01

    Full Text Available Introduction: Emerging evidence suggests a direct role of cancer stem cells (CSCs in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs immortalized with human telomerase reverse transcriptase (hTERT possess properties of mammary stem / progenitor cells. Materials and Methods: In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with g-radiation, share with hTERT, the ability to maintain mammary stem / progenitor cells. Results: The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Conclusions: Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers.

  3. Evolutionary Convergence of Cell-Specific Gene Expression in Independent Lineages of C4 Grasses1[W][OPEN

    Science.gov (United States)

    John, Christopher R.; Smith-Unna, Richard D.; Woodfield, Helen; Covshoff, Sarah; Hibberd, Julian M.

    2014-01-01

    Leaves of almost all C4 lineages separate the reactions of photosynthesis into the mesophyll (M) and bundle sheath (BS). The extent to which messenger RNA profiles of M and BS cells from independent C4 lineages resemble each other is not known. To address this, we conducted deep sequencing of RNA isolated from the M and BS of Setaria viridis and compared these data with publicly available information from maize (Zea mays). This revealed a high correlation (r = 0.89) between the relative abundance of transcripts encoding proteins of the core C4 pathway in M and BS cells in these species, indicating significant convergence in transcript accumulation in these evolutionarily independent C4 lineages. We also found that the vast majority of genes encoding proteins of the C4 cycle in S. viridis are syntenic to homologs used by maize. In both lineages, 122 and 212 homologous transcription factors were preferentially expressed in the M and BS, respectively. Sixteen shared regulators of chloroplast biogenesis were identified, 14 of which were syntenic homologs in maize and S. viridis. In sorghum (Sorghum bicolor), a third C4 grass, we found that 82% of these trans-factors were also differentially expressed in either M or BS cells. Taken together, these data provide, to our knowledge, the first quantification of convergence in transcript abundance in the M and BS cells from independent lineages of C4 grasses. Furthermore, the repeated recruitment of syntenic homologs from large gene families strongly implies that parallel evolution of both structural genes and trans-factors underpins the polyphyletic evolution of this highly complex trait in the monocotyledons. PMID:24676859

  4. Over-expression of hNGF in adult human olfactory bulb neural stem cells promotes cell growth and oligodendrocytic differentiation

    NARCIS (Netherlands)

    H.E.S. Marei (Hany); A. Althani (Asmaa); N. Afifi (Nahla); A. Abd-Elmaksoud (Ahmed); C. Bernardini (Camilla); F. Michetti (Fabrizio); M. Barba (Marta); M. Pescatori (Mario); G. Maira (Giulio); E. Paldino (Emanuela); L. Manni (Luigi); P. Casalbore (Patrizia); C. Cenciarelli (Carlo)

    2013-01-01

    textabstractThe adult human olfactory bulb neural stem/progenitor cells (OBNC/PC) are promising candidate for cell-based therapy for traumatic and neurodegenerative insults. Exogenous application of NGF was suggested as a promising therapeutic strategy for traumatic and neurodegenerative diseases, h

  5. Axon-myelin sheath relations of oligodendrocyte unit phenotypes in the adult rat anterior medullary velum.

    Science.gov (United States)

    Butt, A M; Ibrahim, M; Berry, M

    1998-04-01

    Axon-oligodendrocyte relations of Rip-immunolabelled and dye-injected oligodendrocyte units are characterised in the adult rat anterior medullary velum (AMV). Each oligodendrocyte unit comprised the oligodendrocyte cell body, processes and the internodal myelin segments they support. Oligodendrocyte units corresponded to classically described type I/II or type III/IV unit phenotypes which respectively myelinated discrete populations of small and large diameter axons, delineated by a myelinated fire diameter of 2-4 microns (diameter of the axon plus its myelin sheath). Within units, mean fibre diameter was directly related to mean internodal length and inversely related to the number of myelin sheaths in the unit. The relationship between fibre diameter and internodal length was retained in units which myelinated axons of different diameters, indicating that axon diameter was an important determinant of the longitudinal dimensions of myelin sheaths. We also show that type III/IV units maintained a far greater volume of myelin than type I/II units. It was concluded that type I/II and III/IV oligodendrocytes represent two functionally and morphologically distinct phenotypes whose distribution densities were determined by the diameter and spatial dispersion of axons.

  6. SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation.

    Science.gov (United States)

    Meraviglia, Veronica; Ulivi, Alessandro Francesco; Boccazzi, Marta; Valenza, Fabiola; Fratangeli, Alessandra; Passafaro, Maria; Lecca, Davide; Stagni, Fiorenza; Giacomini, Andrea; Bartesaghi, Renata; Abbracchio, Maria P; Ceruti, Stefania; Rosa, Patrizia

    2016-08-01

    The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460.

  7. The human fetal lymphocyte lineage: identification by CD27 and LIN28B expression in B cell progenitors

    Science.gov (United States)

    McWilliams, Laurie; Su, Kuei-Ying; Liang, Xiaoe; Liao, Dongmei; Floyd, Serina; Amos, Joshua; Moody, M. Anthony; Kelsoe, Garnett; Kuraoka, Masayuki

    2013-01-01

    CD27, a member of the TNFR superfamily, is used to identify human memory B cells. Nonetheless, CD27+ B cells are present in patients with HIGM1 syndrome who are unable to generate GCs or memory B cells. CD27+IgD+ fetal B cells are present in umbilical cord blood, and CD27 may also be a marker of the human B1-like B cells. To define the origin of naïve CD27+IgD+ human B cells, we studied B cell development in both fetal and adult tissues. In human FL, most CD19+ cells coexpressed CD10, a marker of human developing B cells. Some CD19+CD10+ B cells expressed CD27, and these fetal CD27+ cells were present in the pro-B, pre-B, and immature/transitional B cell compartments. Lower frequencies of phenotypically identical cells were also identified in adult BM. CD27+ pro-B, pre-B, and immature/transitional B cells expressed recombination activating gene-1, terminal deoxynucleotidyl transferase and Vpre-B mRNA comparably to their CD27− counterparts. CD27+ and CD27− developing B cells showed similar Ig heavy chain gene usage with low levels of mutations, suggesting that CD27+ developing B cells are distinct from mutated memory B cells. Despite these similarities, CD27+ developing B cells differed from CD27− developing B cells by their increased expression of LIN28B, a transcription factor associated with the fetal lymphoid lineages of mice. Furthermore, CD27+ pro-B cells efficiently generated IgM+IgD+ immature/transitional B cells in vitro. Our observations suggest that CD27 expression during B cell development identifies a physiologic state or lineage for human B cell development distinct from the memory B cell compartment. PMID:23901121

  8. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells

    OpenAIRE

    Shin, Jae-Won; Spinler, Kyle R.; Swift, Joe; Chasis, Joel A.; Mohandas, Narla; Discher, Dennis E.

    2013-01-01

    Comparing human blood cell types, nuclear diversity is visually striking but unexplained: quasi-spherical nuclei in stem/progenitor cells and T cells contrast with multilobed nuclei in neutrophils, giant nuclei in megakaryocytes, and anuclear erythrocytes. We hypothesized broad roles for the major nuclear structure proteins—lamins—and developed mass spectrometry-calibrated intracellular flow cytometry to quantify lamin-A:B ratios. This ratio controls both nuclear viscoelasticity and cell traf...

  9. [Progress of Experimental Research on Differentiation of Muscle-Derived Stem Cells into Haematopoietic Lineages in Vitro -Review].

    Science.gov (United States)

    Wang, Juan-Juan; Gao, Xiao-Ning; Chen, Shan-Shan; Zhang, Pan-Pan; Wang, Tao; Dou, Hao-Ying

    2016-12-01

    Muscle-derived stem cells (MDSC) are a population of multipotent stem cells in the muscular tissue. It provide an excellent prospect of hemopathy treatment due to their superiorities, such as rich sources, convenient material resource and a high survival rate after transplantation and so on. However, there are great differences in sampling, separation, purification, and proliferation when MDSC were cultured in vitro. In addition, the proliferation conditions of the MDSC in vitro are yet unclear. The related regulatory mechanisms, which MDSC transformed into haematopoietic cells, need to be investigated. In this article, the experimental researches on the differentiation of MDSC into haematopoietic lineages are reviewed, the concrete problems discussed in this review are culture of MDSC in vitro, identification of MDSC, proleferation of MDSC, differention of MDSC in to hematopoietic lineages and so on.

  10. Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases

    Directory of Open Access Journals (Sweden)

    Patrick Peschl

    2017-05-01

    Full Text Available Myelin oligodendrocyte glycoprotein (MOG, a member of the immunoglobulin (Ig superfamily, is a myelin protein solely expressed at the outermost surface of myelin sheaths and oligodendrocyte membranes. This makes MOG a potential target of cellular and humoral immune responses in inflammatory demyelinating diseases. Due to its late postnatal developmental expression, MOG is an important marker for oligodendrocyte maturation. Discovered about 30 years ago, it is one of the best-studied autoantigens for experimental autoimmune models for multiple sclerosis (MS. Human studies, however, have yielded controversial results on the role of MOG, especially MOG antibodies (Abs, as a biomarker in MS. But with improved detection methods using different expression systems to detect Abs in patients’ samples, this is meanwhile no longer the case. Using cell-based assays with recombinant full-length, conformationally intact MOG, several recent studies have revealed that MOG Abs can be found in a subset of predominantly pediatric patients with acute disseminated encephalomyelitis (ADEM, aquaporin-4 (AQP4 seronegative neuromyelitis optica spectrum disorders (NMOSD, monophasic or recurrent isolated optic neuritis (ON, or transverse myelitis, in atypical MS and in N-methyl-d-aspartate receptor-encephalitis with overlapping demyelinating syndromes. Whereas MOG Abs are only transiently observed in monophasic diseases such as ADEM and their decline is associated with a favorable outcome, they are persistent in multiphasic ADEM, NMOSD, recurrent ON, or myelitis. Due to distinct clinical features within these diseases it is controversially disputed to classify MOG Ab-positive cases as a new disease entity. Neuropathologically, the presence of MOG Abs is characterized by MS-typical demyelination and oligodendrocyte pathology associated with Abs and complement. However, it remains unclear whether MOG Abs are a mere inflammatory bystander effect or truly pathogenetic

  11. Fine-tuning oligodendrocyte development by miRNAs

    Directory of Open Access Journals (Sweden)

    Richard eLu

    2012-02-01

    Full Text Available Myelination of axons by oligodendrocytes in the central nervous system is essential for normal neuronal functions. The failure of remyelination due to injury or pathological insults results in devastating demyelinating diseases. Oligodendrocytes originate in restricted regions of the embryonic ventral neural tube. After migration to populate all areas of the brain and spinal cord, they undergo a temporally well-defined series of molecular and structural changes, ultimately culminating in the cessation of proliferation, and the elaboration of a highly complex myelin sheath. The emergence of microRNAs as potent regulators of gene expression at the post-transcriptional level has broad implications in all facets of biology. Recent studies have demonstrated a critical role of microRNAs in oligodendrocyte development, including cell proliferation, maturation, and myelin formation. In this review, we will highlight and discuss the recent understanding of functional links of miRNAs to regulatory networks for central myelination, as well as perspectives on the role of miRNAs in demyelinating diseases.

  12. Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates.

    Science.gov (United States)

    Thrivikraman, Greeshma; Madras, Giridhar; Basu, Bikramjit

    2014-08-01

    In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 m) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and βIII tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates.

  13. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...

  14. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    Science.gov (United States)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of

  15. A reaction–diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts

    Directory of Open Access Journals (Sweden)

    Zhang Lei

    2012-07-01

    Full Text Available Abstract Background Colon crypts, a single sheet of epithelia cells, consist of a periodic pattern of stem cells, transit-amplifying cells, and terminally differentiated cells that constantly renew and turnover. Experimental evidence suggests that Wnt signaling promotes and regulates stem cell division, differentiation, and possible cell migrations while intestinal BMP signaling inhibits stem cell self-renewal and repression in crypt formation. As more molecular details on Wnt and BMP in crypts are being discovered, little is still known about how complex interactions among Wnt, BMP, and different types of cells, and surrounding environments may lead to de novo formation of multiple crypts or how such interactions affect regeneration and stability of crypts. Results We present a mathematical model that contains Wnt and BMP, a cell lineage, and their feedback regulations to study formation, regeneration, and stability of multiple crypts. The computational explorations and linear stability analysis of the model suggest a reaction–diffusion mechanism, which exhibits a short-range activation of Wnt plus a long-range inhibition with modulation of BMP signals in a growing tissue of cell lineage, can account for spontaneous formation of multiple crypts with the spatial and temporal pattern observed in experiments. Through this mechanism, the model can recapitulate some distinctive and important experimental findings such as crypt regeneration and crypt multiplication. BMP is important in maintaining stability of crypts and loss of BMP usually leads to crypt multiplication with a fingering pattern. Conclusions The study provides a mechanism for de novo formation of multiple intestinal crypts and demonstrates a synergetic role of Wnt and BMP in regeneration and stability of intestinal crypts. The proposed model presents a robust framework for studying spatial and temporal dynamics of cell lineages in growing tissues driven by multiple signaling

  16. B cell lymphomas express CX3CR1 a non-B cell lineage adhesion molecule

    DEFF Research Database (Denmark)

    Andreasson, U.; Ek, S.; Merz, H.

    2008-01-01

    To study the differential expression of cell membrane-bound receptors and their potential role in growth and/or survival of the tumor cells, highly purified follicular lymphoma cells were analyzed, using gene expression analysis, and compared to non-malignant B cell populations. Filtering...... the genome for overexpressed genes coding for cell membrane-bound proteins/receptors resulted in a hit list of 27 identified genes. Among these, we have focused on the aberrant over expression of CX3CR1, in different types of B cell lymphoma, as compared to non-malignant B cells. We show that CX3CR1, which...... normally is not expressed on B cells, is expressed both at the mRNA and protein level in several subtypes of lymphoma. CX3CR1 has also shown to be involved in the homing to specific tissues that express the ligand, CX3CL1, in breast and prostate cancer and may thus be involved in dissemination of lymphoma...

  17. Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters.

    Science.gov (United States)

    Beamish, Christine A; Strutt, Brenda J; Arany, Edith J; Hill, David J

    2016-04-18

    Regeneration of insulin-producing β-cells from resident pancreas progenitors requires an understanding of both progenitor identity and lineage plasticity. One model suggested that a rare β-cell sub-population within islets demonstrated multi-lineage plasticity. We hypothesized that β-cells from young mice (postnatal day 7, P7) exhibit such plasticity and used a model of islet dedifferentiation toward a ductal epithelial-cell phenotype to test this theory. RIPCre;Z/AP(+/+) mice were used to lineage trace the fate of β-cells during dedifferentiation culture by a human placental alkaline phosphatase (HPAP) reporter. There was a significant loss of HPAP-expressing β-cells in culture, but remaining HPAP(+) cells lost insulin expression while gaining expression of the epithelial duct cell marker cytokeratin-19 (Ck19). Flow cytometry and recovery of β-cell subpopulations from whole pancreas vs. islets suggest that the HPAP(+)Ck19(+) cells had derived from insulin-positive, glucose-transporter-2-low (Ins(+)Glut2(LO)) cells, representing 3.5% of all insulin-expressing cells. The majority of these cells were found outside of islets within clusters of cells. These insulin(+)Glut2(LO) cells demonstrated a greater proliferation rate in vivo and in vitro as compared to insulin(+)Glut2(+) cells at P7, were retained into adulthood, and a subset differentiated into endocrine, ductal, and neural lineages, illustrating substantial plasticity. Results were confirmed using RIPCre;ROSA- eYFP mice. Quantitative PCR data indicated these cells possess an immature β-cell phenotype. These Ins(+)Glut2(LO) cells may represent a resident population of cells capable of forming new, functional β-cells, and which may be potentially exploited for regenerative therapies in the future.

  18. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  19. Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation.

    Science.gov (United States)

    Garriock, Robert J; Chalamalasetty, Ravindra B; Kennedy, Mark W; Canizales, Lauren C; Lewandoski, Mark; Yamaguchi, Terry P

    2015-05-01

    In the development of the vertebrate body plan, Wnt3a is thought to promote the formation of paraxial mesodermal progenitors (PMPs) of the trunk region while suppressing neural specification. Recent lineage-tracing experiments have demonstrated that these trunk neural progenitors and PMPs derive from a common multipotent progenitor called the neuromesodermal progenitor (NMP). NMPs are known to reside in the anterior primitive streak (PS) region; however, the extent to which NMPs populate the PS and contribute to the vertebrate body plan, and the precise role that Wnt3a plays in regulating NMP self-renewal and differentiation are unclear. To address this, we used cell-specific markers (Sox2 and T) and tamoxifen-induced Cre recombinase-based lineage tracing to locate putative NMPs in vivo. We provide functional evidence for NMP location primarily in the epithelial PS, and to a lesser degree in the ingressed PS. Lineage-tracing studies in Wnt3a/β-catenin signaling pathway mutants provide genetic evidence that trunk progenitors normally fated to enter the mesodermal germ layer can be redirected towards the neural lineage. These data, combined with previous PS lineage-tracing studies, support a model that epithelial anterior PS cells are Sox2(+)T(+) multipotent NMPs and form the bulk of neural progenitors and PMPs of the posterior trunk region. Finally, we find that Wnt3a/β-catenin signaling directs trunk progenitors towards PMP fates; however, our data also suggest that Wnt3a positively supports a progenitor state for both mesodermal and neural progenitors. © 2015. Published by The Company of Biologists Ltd.

  20. Cell lineage specific distribution of H3K27 trimethylation accumulation in an in vitro model for human implantation.

    Directory of Open Access Journals (Sweden)

    Gijs Teklenburg

    Full Text Available Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3 marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ∼25% of the trophectoderm cells and in ∼7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion.

  1. Characterization of the platelet-derived growth factor receptor-α-positive cell lineage during murine late lung development.

    Science.gov (United States)

    Ntokou, Aglaia; Klein, Friederike; Dontireddy, Daria; Becker, Sven; Bellusci, Saverio; Richardson, William D; Szibor, Marten; Braun, Thomas; Morty, Rory E; Seeger, Werner; Voswinckel, Robert; Ahlbrecht, Katrin

    2015-11-01

    A reduced number of alveoli is the structural hallmark of diseases of the neonatal and adult lung, where alveoli either fail to develop (as in bronchopulmonary dysplasia), or are progressively destroyed (as in chronic obstructive pulmonary disease). To correct the loss of alveolar septa through therapeutic regeneration, the mechanisms of septa formation must first be understood. The present study characterized platelet-derived growth factor receptor-α-positive (PDGFRα(+)) cell populations during late lung development in mice. PDGFRα(+) cells (detected using a PDGFRα(GFP) reporter line) were noted around the proximal airways during the pseudoglandular stage. In the canalicular stage, PDGFRα(+) cells appeared in the more distal mesenchyme, and labeled α-smooth muscle actin-positive tip cells in the secondary crests and lipofibroblasts in the primary septa during alveolarization. Some PDGFRα(+) cells appeared in the mesenchyme of the adult lung. Over the course of late lung development, PDGFRα(+) cells consistently expressed collagen I, and transiently expressed markers of mesenchymal stem cells. With the use of both, a constitutive and a conditional PDGFRα(Cre) line, it was observed that PDGFRα(+) cells generated alveolar myofibroblasts including tip cells of the secondary crests, and lipofibroblasts. These lineages were committed before secondary septation. The present study provides new insights into the time-dependent commitment of the PDGFRα(+) cell lineage to lipofibroblasts and myofibroblasts during late lung development that is needed to better understand the cellular contribution to the process of alveolarization.

  2. Efficient production of trophoblast lineage cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Kojima, Junya; Fukuda, Atsushi; Taira, Hayato; Kawasaki, Tomoyuki; Ito, Hiroe; Kuji, Naoaki; Isaka, Keiichi; Umezawa, Akihiro; Akutsu, Hidenori

    2017-03-13

    Human induced pluripotent stem cells (hiPSCs) are potentially useful in both clinical applications and basic biological research. hiPSCs can differentiate into extra-embryonic cells in the presence of BMP4. However, the differentiation potential of hiPSCs can be affected by culture conditions or genetic variation. In this study, we investigated the effect of various BMP4 concentrations on the expression states of trophoblast markers and the optimal conditions for trophoblast induction. A high-fidelity gene expression assay using hiPSC lines showed that the expression levels of various trophoblast marker genes, such as KRT7, GCM1, CGB, and HLA-G, were upregulated by BMP4 in a dose-dependent manner in all types of hiPSCs used in this study. Treatment with high doses of BMP4 for prolonged periods increased the ratio of cells with trophoblast markers irrespective of the presence of bFGF. We found that the expression states of major pluripotency- and differentiation-related protein-coding genes in BMP4-treated cells depended on culture conditions rather than donor cell types. However, miRNA expression states were affected by donor cell types rather than BMP4 dose. Furthermore, the effect of the presence of bFGF on differentiation potential of KRT7-positive cells differed among iPSC types. Mechanistically, chromatin states around KRT7 promoter regions were comparable among the iPSC types used in this study, indicating that hiPSC chromatin state at these regions is not a parameter for cytotrophoblast differentiation potential. In conclusion, the optimal conditions for trophoblast differentiation from hiPSCs differ according to parental cell line.Laboratory Investigation advance online publication, 13 March 2017; doi:10.1038/labinvest.2016.159.

  3. Epigenetic control of Ccr7 expression in distinct lineages of lung dendritic cells.

    Science.gov (United States)

    Moran, Timothy P; Nakano, Hideki; Kondilis-Mangum, Hrisavgi D; Wade, Paul A; Cook, Donald N

    2014-11-15

    Adaptive immune responses to inhaled allergens are induced following CCR7-dependent migration of precursor of dendritic cell (pre-DC)-derived conventional DCs (cDCs) from the lung to regional lymph nodes. However, monocyte-derived (moDCs) in the lung express very low levels of Ccr7 and consequently do not migrate efficiently to LN. To investigate the molecular mechanisms that underlie this dichotomy, we studied epigenetic modifications at the Ccr7 locus of murine cDCs and moDCs. When expanded from bone marrow precursors, moDCs were enriched at the Ccr7 locus for trimethylation of histone 3 lysine 27 (H3K27me3), a modification associated with transcriptional repression. Similarly, moDCs prepared from the lung also displayed increased levels of H3K27me3 at the Ccr7 promoter compared with migratory cDCs from that organ. Analysis of DC progenitors revealed that epigenetic modification of Ccr7 does not occur early during DC lineage commitment because monocytes and pre-DCs both had low levels of Ccr7-associated H3K27me3. Rather, Ccr7 is gradually silenced during the differentiation of monocytes to moDCs. Thus, epigenetic modifications of the Ccr7 locus control the migration and therefore the function of DCs in vivo. These findings suggest that manipulating epigenetic mechanisms might be a novel approach to control DC migration and thereby improve DC-based vaccines and treat inflammatory diseases of the lung.

  4. Culture of rat cerebral oligodendrocytes in a serum-free, chemically defined medium

    NARCIS (Netherlands)

    Koper, J.W.; Lopes-Cardozo, M.; Romijn, H.J.; Golde, L.M.G. van

    1984-01-01

    Oligodendrocytes were isolated from the cerebra of young rats (5-10 days old) by trypsinization of the tissue followed by cell separation on Percoll gradients. The isolation was carried out in physiological, isotonic media. The cell yield was 2-4 × 10⁶ cells per brain; the plating efficiency was ≥70

  5. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  6. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-01-01

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated. PMID:26986509

  7. LINGO-1 negatively regulates myelination by oligodendrocytes.

    Science.gov (United States)

    Mi, Sha; Miller, Robert H; Lee, Xinhua; Scott, Martin L; Shulag-Morskaya, Svetlane; Shao, Zhaohui; Chang, Jufang; Thill, Greg; Levesque, Melissa; Zhang, Mingdi; Hession, Cathy; Sah, Dinah; Trapp, Bruce; He, Zhigang; Jung, Vincent; McCoy, John M; Pepinsky, R Blake

    2005-06-01

    The control of myelination by oligodendrocytes in the CNS is poorly understood. Here we show that LINGO-1 is an important negative regulator of this critical process. LINGO-1 is expressed in oligodendrocytes. Attenuation of its function by dominant-negative LINGO-1, LINGO-1 RNA-mediated interference (RNAi) or soluble human LINGO-1 (LINGO-1-Fc) leads to differentiation and increased myelination competence. Attenuation of LINGO-1 results in downregulation of RhoA activity, which has been implicated in oligodendrocyte differentiation. Conversely, overexpression of LINGO-1 leads to activation of RhoA and inhibition of oligodendrocyte differentiation and myelination. Treatment of oligodendrocyte and neuron cocultures with LINGO-1-Fc resulted in highly developed myelinated axons that have internodes and well-defined nodes of Ranvier. The contribution of LINGO-1 to myelination was verified in vivo through the analysis of LINGO-1 knockout mice. The ability to recapitulate CNS myelination in vitro using LINGO-1 antagonists and the in vivo effects seen in the LINGO-1 knockout indicate that LINGO-1 signaling may be critical for CNS myelination.

  8. Oxidative stress induces imbalance of adipogenic/osteoblastic lineage commitment in mesenchymal stem cells through decreasing SIRT1 functions.

    Science.gov (United States)

    Lin, Chia-Hua; Li, Nan-Ting; Cheng, Hui-Shan; Yen, Men-Luh

    2017-10-03

    With rapidly ageing populations worldwide, the incidence of osteoporosis has reached epidemic proportions. Reactive oxygen species (ROS), a by-product of oxidative stress and ageing, has been thought to induce osteoporosis by inhibiting osteogenic differentiation of mesenchymal stem cells (MSCs). However, specific mechanisms of how ROS results in alterations on MSC differentiation capacity have been inconsistently reported. We found that H2 O2 , an ROS, simultaneously induced MSC lineage commitment towards adipogenesis and away from osteogenesis at the functional as well as transcriptional level. In addition, H2 O2 decreased the activities of SIRT1, a histone deacetylase and longevity gene. By silencing and reconstituting SIRT1 in MSCs, we demonstrated that H2 O2 exerted its disparate effects on adipogenic/osteoblastic lineage commitment mainly through modulating SIRT1 expression levels. Treatment with resveratrol, a SIRT1 agonist, can also reverse this ROS-induced adipogenesis/osteogenesis lineage imbalance. Moreover, SIRT1 regulation of RUNX2 transcriptional activity was mediated through deacetylation of the ROS-sensitive transcription factor FOXO3a. Taken together, our data implicate SIRT1 as playing a vital role in ROS-directed lineage commitment of MSCs by modulating two lineages simultaneously. Our findings on the critical role of SIRT1 in ROS/age-related perturbations of MSC differentiation capacity highlight this molecule as a target for maintenance of MSC stemness as well as a potential anabolic target in osteoporosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages.

    Science.gov (United States)

    Rao, Xiaolan; Lu, Nan; Li, Guifen; Nakashima, Jin; Tang, Yuhong; Dixon, Richard A

    2016-03-01

    Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Mixed lineage kinase 3 inhibits phorbol myristoyl acetate-induced DNA synthesis but not osteopontin expression in rat mesangial cells.

    Science.gov (United States)

    Parameswaran, Narayanan; Hall, Carolyn S; Bock, Barbara C; Sparks, Harvey V; Gallo, Kathleen A; Spielman, William S

    2002-12-01

    Mixed lineage kinase 3 (MLK 3) (also called SPRK or PTK-1) is a recently described member of the family of the mixed lineage kinase subfamily of Ser/Thr protein kinases that interacts with mitogen-activated protein kinase pathways. In order to test the biological relevance and potential interaction of MLK 3 with protein kinase C-mediated signaling pathways, human MLK 3 was stably expressed in rat glomerular mesangial cells using a retroviral vector (LXSN) and the effects of phorbol myristoyl acetate (PMA) on DNA synthesis and osteopontin mRNA expression were examined. In control (vector-transfected) mesangial cells PMA increased [3H]-thymidine incorporation in a concentration-dependent manner. In mesangial cells stably expressing MLK 3, the PMA-induced increase in [3H]-thymidine incorporation was significantly reduced (> 50%). However, the PMA-induced increase in osteopontin mRNA was not affected by MLK 3 expression. To determine the mechanisms of these effects, activation of ERK2, JNK1 and p38 in response to PMA was examined in both vector and MLK 3 transfected cells. ERK2 activation was increased several fold by PMA in control cells but was attenuated significantly in MLK 3 expressing cells, suggesting that MLK 3 expression in mesangial cells can negatively regulate the ERK pathway. PMA had no significant effect on JNK and P38 activation, in either vector- or MLK 3-expressing cells. PD98059, a MEK inhibitor blocked PMA-induced DNA synthesis without affecting osteopontin expression. These results suggest that while protein kinase C activation increases cellular proliferation and osteopontin mRNA expression, over-expression of MLK 3 affects only the PKC-induced DNA synthesis, probably through inhibition of ERK. These results also indicate a novel mechanism of growth regulation by a member of the mixed-lineage kinase family that might have significant therapeutic implications in proliferative glomerulonephritis.

  11. In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts

    Directory of Open Access Journals (Sweden)

    F Di Meglio

    2009-08-01

    Full Text Available The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR. The amount of proteins characteristic for cardiac cells (a-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively inclines toward an increase in both a-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart.

  12. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity.

    Science.gov (United States)

    Lynn, R C; Feng, Y; Schutsky, K; Poussin, M; Kalota, A; Dimitrov, D S; Powell, D J

    2016-06-01

    Acute myeloid leukemia (AML) is an aggressive malignancy, and development of new treatments to prolong remissions is warranted. Chimeric antigen receptor (CAR) T-cell therapies appear promising but on-target, off-tumor recognition of antigen in healthy tissues remains a concern. Here we isolated a high-affinity (HA) folate receptor beta (FRβ)-specific single-chain variable fragment (2.48 nm KD) for optimization of FRβ-redirected CAR T-cell therapy for AML. T cells stably expressing the HA-FRβ CAR exhibited greatly enhanced antitumor activity against FRβ(+) AML in vitro and in vivo compared with a low-affinity FRβ CAR (54.3 nm KD). Using the HA-FRβ immunoglobulin G, FRβ expression was detectable in myeloid-lineage hematopoietic cells; however, expression in CD34(+) hematopoietic stem cells (HSCs) was nearly undetectable. Accordingly, HA-FRβ CAR T cells lysed mature CD14(+) monocytes, while HSC colony formation was unaffected. Because of the potential for elimination of mature myeloid lineage, mRNA CAR electroporation for transient CAR expression was evaluated. mRNA-electroporated HA-FRβ CAR T cells retained effective antitumor activity in vitro and in vivo. Together, our results highlight the importance of antibody affinity in target protein detection and CAR development and suggest that transient delivery of potent HA-FRβ CAR T cells is highly effective against AML and reduces the risk for long-term myeloid toxicity.

  13. Small Molecule Cardiogenol C Upregulates Cardiac Markers and Induces Cardiac Functional Properties in Lineage-Committed Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Agnes K. Mike

    2014-01-01

    Full Text Available Background/Aims: Cell transplantation into the heart is a new therapy after myocardial infarction. Its success, however, is impeded by poor donor cell survival and by limited transdifferentiation of the transplanted cells into functional cardiomyocytes. A promising strategy to overcome these problems is the induction of cardiomyogenic properties in donor cells by small molecules. Methods: Here we studied cardiomyogenic effects of the small molecule compound cardiogenol C (CgC, and structural derivatives thereof, on lineage-committed progenitor cells by various molecular biological, biochemical, and functional assays. Results: Treatment with CgC up-regulated cardiac marker expression in skeletal myoblasts. Importantly, the compound also induced cardiac functional properties: first, cardiac-like sodium currents in skeletal myoblasts, and secondly, spontaneous contractions in cardiovascular progenitor cell-derived cardiac bodies. Conclusion: CgC induces cardiomyogenic function in lineage-committed progenitor cells, and can thus be considered a promising tool to improve cardiac repair by cell therapy.

  14. Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes.

    Science.gov (United States)

    Xiao, Xiangwei; Guo, Ping; Prasadan, Krishna; Shiota, Chiyo; Peirish, Lauren; Fischbach, Shane; Song, Zewen; Gaffar, Iljana; Wiersch, John; El-Gohary, Yousef; Husain, Sohail Z; Gittes, George K

    2014-12-01

    Genetic manipulations, with or without lineage tracing for specific pancreatic cell types, are very powerful tools for studying diabetes, pancreatitis and pancreatic cancer. Nevertheless, the use of Cre/loxP systems to conditionally activate or inactivate the expression of genes in a cell type- and/or temporal-specific manner is not applicable to cell tracing and/or gene manipulations in more than one lineage at a time. Here we report a technique that allows efficient delivery of dyes for cell tagging into the mouse pancreas through the duct system, and that also delivers viruses carrying transgenes or siRNA under a specific promoter. When this technique is applied in genetically modified mice, it enables the investigator to perform either double lineage tracing or cell lineage tracing combined with gene manipulation in a second lineage. The technique requires <40 min.

  15. Fibroblasts isolated from human middle turbinate mucosa cause neural progenitor cells to differentiate into glial lineage cells.

    Directory of Open Access Journals (Sweden)

    Xingjia Wu

    Full Text Available Transplantation of olfactory ensheathing cells (OECs is a potential therapy for repair of spinal cord injury (SCI. Autologous transplantation of OECs has been reported in clinical trials. However, it is still controversial whether purified OECs or olfactory mucosa containing OECs, fibroblasts and other cells should be used for transplantation. OECs and fibroblasts were isolated from olfactory mucosa of the middle turbinate from seven patients. The percentage of OECs with p75(NTR+ and GFAP(+ ranged from 9.2% to 73.2%. Fibroblasts were purified and co-cultured with normal human neural progenitors (NHNPs. Based on immunocytochemical labeling, NHNPs were induced into glial lineage cells when they were co-cultured with the mucosal fibroblasts. These results demonstrate that OECs can be isolated from the mucosa of the middle turbinate bone as well as from the dorsal nasal septum and superior turbinates, which are the typical sites for harvesting OECs. Transplantation of olfactory mucosa containing fibroblasts into the central nervous system (CNS needs to be further investigated before translation to clinical application.

  16. Directed differentiation into neural lineages and therapeutic potential of porcine embryonic stem cells in rat Parkinson's disease model.

    Science.gov (United States)

    Yang, Jenn-Rong; Liao, Chia-Hsin; Pang, Cheng-Yoong; Huang, Lynn Ling-Huei; Lin, Yu-Ting; Chen, Yi-Ling; Shiue, Yow-Ling; Chen, Lih-Ren

    2010-08-01

    This study was conducted to direct porcine embryonic stem (pES) cells differentiating into neural lineages and to investigate therapeutic potential of GFP-expressing pES (pES/GFP(+)) in the rat model of Parkinson's disease (PD). Directed differentiation of pES into neural lineages was induced by suspension culture in medium containing RA, SHH, and FGF combinations without going through embryoid body formation. A high yield of nestin-expressing neural precursors was found in all treatments on day 2 after the 12-day induction. On day 6 after replating, more than 86.2 and 83.4% of the differentiated cells stained positively for NFL and MAP2, respectively. The expression of TH, ChAT, and GABA specific markers were also observed in these NFL-positive neural cells. The undifferentiated pES/GFP(+) cells and their neuronal differentiation derivatives were transplanted into the Sprague-Dawley (SD) rat's brain, and their survival and development was determined by using live animal fluorescence optical imaging system every 15 days. The results showed that fluorescent signals from the injection site of SD rats' brain could be detected through the experimental period of 3 months. The level of fluorescent signal detected in the treatment group was twofold that of the control group. The results of behavior analysis showed that PD rats exhibited stably decreased asymmetric rotations after transplantation with pES/GFP(+)-derived D18 neuronal progenitors. The dopaminergic differentiation of grafted cells in the brain was further confirmed by immunohistochemical staining with anti-TH, anti-DA, and anti-DAT antibodies. These results suggested that the differentiation approach we developed would direct pES cells to differentiate into neural lineages and benefit the development of novel therapeutics involving stem cell transplantation.

  17. BRILIA: Integrated Tool for High-Throughput Annotation and Lineage Tree Assembly of B-Cell Repertoires

    Science.gov (United States)

    Lee, Donald W.; Khavrutskii, Ilja V.; Wallqvist, Anders; Bavari, Sina; Cooper, Christopher L.; Chaudhury, Sidhartha

    2017-01-01

    The somatic diversity of antigen-recognizing B-cell receptors (BCRs) arises from Variable (V), Diversity (D), and Joining (J) (VDJ) recombination and somatic hypermutation (SHM) during B-cell development and affinity maturation. The VDJ junction of the BCR heavy chain forms the highly variable complementarity determining region 3 (CDR3), which plays a critical role in antigen specificity and binding affinity. Tracking the selection and mutation of the CDR3 can be useful in characterizing humoral responses to infection and vaccination. Although tens to hundreds of thousands of unique BCR genes within an expressed B-cell repertoire can now be resolved with high-throughput sequencing, tracking SHMs is still challenging because existing annotation methods are often limited by poor annotation coverage, inconsistent SHM identification across the VDJ junction, or lack of B-cell lineage data. Here, we present B-cell repertoire inductive lineage and immunosequence annotator (BRILIA), an algorithm that leverages repertoire-wide sequencing data to globally improve the VDJ annotation coverage, lineage tree assembly, and SHM identification. On benchmark tests against simulated human and mouse BCR repertoires, BRILIA correctly annotated germline and clonally expanded sequences with 94 and 70% accuracy, respectively, and it has a 90% SHM-positive prediction rate in the CDR3 of heavily mutated sequences; these are substantial improvements over existing methods. We used BRILIA to process BCR sequences obtained from splenic germinal center B cells extracted from C57BL/6 mice. BRILIA returned robust B-cell lineage trees and yielded SHM patterns that are consistent across the VDJ junction and agree with known biological mechanisms of SHM. By contrast, existing BCR annotation tools, which do not account for repertoire-wide clonal relationships, systematically underestimated both the size of clonally related B-cell clusters and yielded inconsistent SHM frequencies. We demonstrate

  18. Dual-specific Phosphatase-6 (Dusp6) and ERK Mediate AMPA Receptor-induced Oligodendrocyte Death*

    Science.gov (United States)

    Domercq, Maria; Alberdi, Elena; Sánchez-Gómez, Maria Victoria; Ariz, Usue; Pérez-Samartín, Alberto; Matute, Carlos

    2011-01-01

    Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter. PMID:21300799

  19. MLL-AF9-mediated immortalization of human hematopoietic cells along different lineages changes during ontogeny

    NARCIS (Netherlands)

    Horton, S J; Jaques, J; Woolthuis, C; van Dijk, J; Mesuraca, M; Huls, G; Morrone, G; Vellenga, E; Schuringa, J J

    The MLL-AF9 fusion gene is associated with aggressive leukemias of both the myeloid and lymphoid lineage in infants, whereas in adults, this translocation is mainly associated with acute myeloid leukemia. These observations suggest that differences exist between fetal and adult tissues in terms of

  20. MLL-AF9-mediated immortalization of human hematopoietic cells along different lineages changes during ontogeny

    NARCIS (Netherlands)

    Horton, S J; Jaques, J; Woolthuis, C; van Dijk, J; Mesuraca, M; Huls, G; Morrone, G; Vellenga, E; Schuringa, J J

    2013-01-01

    The MLL-AF9 fusion gene is associated with aggressive leukemias of both the myeloid and lymphoid lineage in infants, whereas in adults, this translocation is mainly associated with acute myeloid leukemia. These observations suggest that differences exist between fetal and adult tissues in terms of t

  1. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage.

    Science.gov (United States)

    Singh, Lakshman; Brennan, Tracy A; Russell, Elizabeth; Kim, Jung-Hoon; Chen, Qijun; Brad Johnson, F; Pignolo, Robert J

    2016-04-01

    Bone marrow derived mesenchymal progenitor cells (MPCs) play an important role in bone homeostasis. Age-related changes occur in bone resulting in a decrease in bone density and a relative increase in adipocity. Although in vitro studies suggest the existence of an age-related lineage switch between osteogenic and adipogenic fates, stem cell and microenvironmental contributions to this process have not been elucidated in vivo. In order to study the effects of MPC and microenvironmental aging on functional engraftment and lineage switching, transplantation studies were performed under non-myeloablative conditions in old recipients, with donor MPCs derived from young and old green fluorescent protein (GFP) transgenic mice. Robust engraftment by young MPCs or their progeny was observed in the marrow, bone-lining region and in the matrix of young recipients; however, significantly lower engraftment was seen at the same sites in old recipients transplanted with old MPCs. Differentiation of transplanted MPCs strongly favored adipogenesis over osteogenesis in old recipients irrespective of MPC donor age, suggesting that microenvironmental alterations that occur with in vivo aging are predominately responsible for MPC lineage switching. These data indicate that aging alters bone-fat reciprocity and differentiation of mesenchymal progenitors towards an adipogenic fate.

  2. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells.

    Science.gov (United States)

    Gittens, Rolando A; Olivares-Navarrete, Rene; Cheng, Alice; Anderson, David M; McLachlan, Taylor; Stephan, Ingrid; Geis-Gerstorfer, Jürgen; Sandhage, Kenneth H; Fedorov, Andrei G; Rupp, Frank; Boyan, Barbara D; Tannenbaum, Rina; Schwartz, Zvi

    2013-04-01

    Surface micro- and nanostructural modifications of dental and orthopedic implants have shown promising in vitro, in vivo and clinical results. Surface wettability has also been suggested to play an important role in osteoblast differentiation and osseointegration. However, the available techniques to measure surface wettability are not reliable on clinically relevant, rough surfaces. Furthermore, how the differentiation state of osteoblast lineage cells impacts their response to micro/nanostructured surfaces, and the role of wettability on this response, remain unclear. In the current study, surface wettability analyses (optical sessile drop analysis, environmental scanning electron microscopic analysis and the Wilhelmy technique) indicated hydrophobic static responses for deposited water droplets on microrough and micro/nanostructured specimens, while hydrophilic responses were observed with dynamic analyses of micro/nanostructured specimens. The maturation and local factor production of human immature osteoblast-like MG63 cells was synergistically influenced by nanostructures superimposed onto microrough titanium (Ti) surfaces. In contrast, human mesenchymal stem cells cultured on micro/nanostructured surfaces in the absence of exogenous soluble factors exhibited less robust osteoblastic differentiation and local factor production compared to cultures on unmodified microroughened Ti. Our results support previous observations using Ti6Al4V surfaces showing that recognition of surface nanostructures and subsequent cell response is dependent on the differentiation state of osteoblast lineage cells. The results also indicate that this effect may be partly modulated by surface wettability. These findings support the conclusion that the successful osseointegration of an implant depends on contributions from osteoblast lineage cells at different stages of osteoblast commitment.

  3. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation.

    Science.gov (United States)

    Pennisi, David J; Mikawa, Takashi

    2009-04-01

    Critical steps in coronary vascular formation include the epithelial-mesenchyme transition (EMT) that epicardial cells undergo to become sub-epicardial; the invasion of the myocardium; and the differentiation of coronary lineages. However, the factors controlling these processes are not completely understood. Epicardial and coronary vascular precursors migrate to the avascular heart tube during embryogenesis via the proepicardium (PE). Here, we show that in the quail embryo fibroblast growth factor receptor (FGFR)-1 is expressed in a spatially and temporally restricted manner in the PE and epicardium-derived cells, including vascular endothelial precursors, and is up-regulated in epicardial cells after EMT. We used replication-defective retroviral vectors to over-express or knock-down FGFR-1 in the PE. FGFR-1 over-expression resulted in increased epicardial EMT. Knock-down of FGFR-1, however, did not inhibit epicardial EMT but greatly compromised the ability of PE progeny to invade the myocardium. The latter could, however, contribute to endothelia and smooth muscle of sub-epicardial vessels. Correct FGFR-1 levels were also important for correct coronary lineage differentiation with, at E12, an increase in the proportion of endothelial cells amongst FGFR-1 over-expressing PE progeny and a decrease in the proportion of smooth muscle cells in antisense FGFR-1 virus-infected PE progeny. Finally, in a heart explant system, constitutive activation of FGFR-1 signaling in epicardial cells resulted in increased delamination from the epicardium, invasion of the sub-epicardium, and invasion of the myocardium. These data reveal novel roles for FGFR-1 signaling in epicardial biology and coronary vascular lineage differentiation, and point to potential new therapeutic avenues.

  4. Influence of discrete and continuous culture conditions on human mesenchymal stem cell lineage choice in RGD concentration gradient hydrogels.

    Science.gov (United States)

    Smith Callahan, Laura A; Policastro, Gina M; Bernard, Sharon L; Childers, Erin P; Boettcher, Ronna; Becker, Matthew L

    2013-09-09

    Stem cells have shown lineage-specific differentiation when cultured on substrates possessing signaling groups derived from the native tissue. A distinct determinant in this process is the concentration of the signaling motif. While several groups have been working actively to determine the specific factors, concentrations, and mechanisms governing the differentiation process, many have been turning to combinatorial and gradient approaches in attempts to optimize the multiple chemical and physical parameters needed for the next advance. However, there has not been a direct comparison between the cellular behavior and differentiation of human mesenchymal stem cells cultured in gradient and discrete substrates, which quantitates the effect of differences caused by cell-produced, soluble factors due to design differences between the culture systems. In this study, the differentiation of human mesenchymal stem cells in continuous and discrete polyethylene glycol dimethacrylate (PEGDM) hydrogels containing an RGD concentration gradient from 0 to 14 mM were examined to study the effects of the different culture conditions on stem-cell behavior. Culture condition was found to affect every osteogenic (alkaline phosphatase, Runx 2, type 1 collagen, bone sailoprotein, and calcium content) and adipogenic marker (oil red and peroxisome proliferator-activated receptor gamma) examined regardless of RGD concentration. Only in the continuous gradient culture did RGD concentration affect human mesenchymal stem-cell lineage commitment with low RGD concentrations expressing higher osteogenic differentiation than high RGD concentrations. Conversely, high RGD concentrations expressed higher adipogenic differentiation than low RGD concentrations. Cytoskeletal actin organization was only affected by culture condition at low RGD concentrations, indicating that it played a limited role in the differences in lineage commitment observed. Therefore, the role of discrete versus gradient

  5. Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population.

    Science.gov (United States)

    Metzger, Todd C; Khan, Imran S; Gardner, James M; Mouchess, Maria L; Johannes, Kellsey P; Krawisz, Anna K; Skrzypczynska, Katarzyna M; Anderson, Mark S

    2013-10-17

    Thymic epithelial cells in the medulla (mTECs) play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs) and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire), a transcriptional activator present in a subset of mTECs characterized by high CD80 and major histocompatibility complex II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire(+) mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire(-) mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates toward the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Lineage Tracing and Cell Ablation Identify a Post-Aire-Expressing Thymic Epithelial Cell Population

    Directory of Open Access Journals (Sweden)

    Todd C. Metzger

    2013-10-01

    Full Text Available Thymic epithelial cells in the medulla (mTECs play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire, a transcriptional activator present in a subset of mTECs characterized by high CD80 and major histocompatibility complex II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire+ mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire− mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates toward the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance.

  7. Lineage tracing and cell ablation identifies a post-Aire expressing thymic epithelial cell population

    Science.gov (United States)

    Metzger, Todd C.; Khan, Imran S.; Gardner, James M.; Mouchess, Maria L.; Johannes, Kellsey P.; Krawisz, Anna K.; Skrzypczynska, Katarzyna M.; Anderson, Mark S.

    2013-01-01

    Thymic epithelial cells in the medulla (mTECs) play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs) and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire), a transcriptional activator present in a subset of mTECs characterized by high CD80 and MHC II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire+ mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire− mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates towards the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance. PMID:24095736

  8. Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation.

    Science.gov (United States)

    Oonuma, Kouhei; Tanaka, Moeko; Nishitsuji, Koki; Kato, Yumiko; Shimai, Kotaro; Kusakabe, Takehiro G

    2016-12-01

    The Ciona intestinalis larva has two distinct photoreceptor organs, a conventional pigmented ocellus and a nonpigmented ocellus, that are asymmetrically situated in the brain. The ciliary photoreceptor cells of these ocelli resemble visual cells of the vertebrate retina. Precise elucidation of the lineage of the photoreceptor cells will be key to understanding the developmental mechanisms of these cells as well as the evolutionary relationships between the photoreceptor organs of ascidians and vertebrates. Photoreceptor cells of the pigmented ocellus have been thought to develop from anterior animal (a-lineage) blastomeres, whereas the developmental origin of the nonpigmented ocellus has not been determined. Here, we show that the photoreceptor cells of both ocelli develop from the right anterior vegetal hemisphere: those of the pigmented ocellus from the right A9.14 cell and those of the nonpigmented ocellus from the right A9.16 cell. The pigmented ocellus is formed by a combination of two lineages of cells with distinct embryonic origins: the photoreceptor cells originate from a medial portion of the A-lineage neural plate, while the pigment cell originates from the lateral edge of the a-lineage neural plate. In light of the recently proposed close evolutionary relationship between the ocellus pigment cell of ascidians and the cephalic neural crest of vertebrates, the ascidian ocellus may represent a prototypic contribution of the neural crest to a cranial sensory organ.

  9. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex

    NARCIS (Netherlands)

    Orduz, David; Maldonado, Paloma P; Balia, Maddalena; Vélez-Fort, Mateo; de Sars, Vincent; Yanagawa, Yuchio; Emiliani, Valentina; Angulo, Maria Cecilia

    2015-01-01

    NG2 cells, oligodendrocyte progenitors, receive a major synaptic input from interneurons in the developing neocortex. It is presumed that these precursors integrate cortical networks where they act as sensors of neuronal activity. We show that NG2 cells of the developing somatosensory cortex form a

  10. Testicular cell-conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells.

    Science.gov (United States)

    Shah, Syed M; Saini, Neha; Singh, Manoj K; Manik, Radheysham; Singla, Suresh K; Palta, Prabhat; Chauhan, Manmohan S

    2016-08-01

    Testicular cells are believed to secrete various growth factors that activate signaling pathways finally leading to gametogenesis. In vitro gametogenesis is an obscure but paramountly important task primarily because of paucity of the precursor cells and first trimester gonadal tissues. To overcome these limitations for development of in vitro gametes, the present study was designed to induce differentiation of buffalo embryonic stem (ES) cells into germ lineage cells on stimulation by testicular cell-conditioned medium (TCM), on the basis of the assumption that ES cells have the intrinsic property to differentiate into any cell type and TCM would provide the necessary growth factors for differentiation toward germ cell lineage. For this purpose, buffalo ES cells were differentiated as embryoid bodies (EB) in floating cultures and as monolayer adherent cultures in different doses (10%, 20%, and 40%) of TCM for different culture intervals (4, 8, and 14 days), to identify the optimum dose-and-time period. We observed that 40% TCM dose induces highest expression of primordial germ cell-specific (DAZL, VASA, and PLZF), meiotic (SYCP3, MLH1, TNP1/2, and PRM2), spermatocyte-specific (BOULE and TEKT1), and oocyte-specific genes (GDF9 and ZP2/3) for a culture period of 14 days under both floating and adherent differentiation. Immunocytochemical analysis of EBs and adherent cultures revealed presence of primordial germ cell markers (c-KIT, DAZL, and VASA), meiotic markers (SYCP3, MLH1 and PROTAMINE1), spermatocyte markers (ACROSIN and HAPRIN), and oocyte markers (GDF9 and ZP4), indicating progression into post-meiotic gametogenesis. The detection of germ cell-specific proteins in Day 14 EBs like VASA, GDF9, and ZP4 by Western blotting further confirmed germ lineage differentiation. The significantly lower (P cell, four-cell, eight-cell, morula, and blastocyst-like structures, indicative of their developmental competence. This, as per our knowledge, is first such study

  11. Histone Deacetylase (HDAC Inhibitors Down-Regulate Endothelial Lineage Commitment of Umbilical Cord Blood Derived Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Horia Maniu

    2012-11-01

    Full Text Available To test the involvement of histone deacetylases (HDACs activity in endothelial lineage progression, we investigated the effects of HDAC inhibitors on endothelial progenitors cells (EPCs derived from umbilical cord blood (UCB. Adherent EPCs, that expressed the endothelial marker proteins (PCAM-1, CD105, CD133, and VEGFR2 revealed by flow cytometry were treated with three HDAC inhibitors: Butyrate (BuA, Trichostatin A (TSA, and Valproic acid (VPA. RT-PCR assay showed that HDAC inhibitors down-regulated the expression of endothelial genes such as VE-cadherin, CD133, CXCR4 and Tie-2. Furthermore, flow cytometry analysis illustrated that HDAC inhibitors selectively reduce the expression of VEGFR2, CD117, VE-cadherin, and ICAM-1, whereas the expression of CD34 and CD45 remained unchanged, demonstrating that HDAC is involved in endothelial differentiation of progenitor cells. Real-Time PCR demonstrated that TSA down-regulated telomerase activity probably via suppression of hTERT expression, suggesting that HDAC inhibitor decreased cell proliferation. Cell motility was also decreased after treatment with HDAC inhibitors as shown by wound-healing assay. The balance of acethylation/deacethylation kept in control by the activity of HAT (histone acetyltransferases/HDAC enzymes play an important role in differentiation of stem cells by regulating proliferation and endothelial lineage commitment.

  12. Fas/Fas ligand-mediated apoptosis in different cell lineages and functional compartments of human lymph nodes.

    Science.gov (United States)

    Kokkonen, Tuomo S; Karttunen, Tuomo J

    2010-02-01

    We have optimized an immunohistochemical double-staining method combining immunohistochemical lymphocyte lineage marker detection and apoptosis detection with terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling. The method was used to trace Fas-mediated apoptosis in human reactive lymph nodes according to cell lineage and anatomical location. In addition to Fas, we also studied the expression of Fas ligand (FasL), CD3, CD20, CD19, CD23, and CD68 of apoptotic cells. The presence of simultaneous Fas and FasL positivity indicated involvement of activation-induced death in the induction of paracortical apoptosis. FasL expression in the high endothelial venules might be an inductor of apoptosis of Fas-positive lymphoid cells. In addition to B-lymphocyte apoptosis in the germinal centers, there was often a high apoptosis rate of CD23-expressing follicular dendritic cells. In summary, our double-staining method provides valuable new information about the occurrence and mechanisms of apoptosis of different immune cell types in the lymph node compartments. Among other things, we present support for the importance of Fas/FasL-mediated apoptosis in lymph node homeostasis.

  13. Fas/Fas Ligand–mediated Apoptosis in Different Cell Lineages and Functional Compartments of Human Lymph Nodes

    Science.gov (United States)

    Kokkonen, Tuomo S.; Karttunen, Tuomo J.

    2010-01-01

    We have optimized an immunohistochemical double-staining method combining immunohistochemical lymphocyte lineage marker detection and apoptosis detection with terminal deoxyribonucleotidyl transferase–mediated dUTP nick end labeling. The method was used to trace Fas-mediated apoptosis in human reactive lymph nodes according to cell lineage and anatomical location. In addition to Fas, we also studied the expression of Fas ligand (FasL), CD3, CD20, CD19, CD23, and CD68 of apoptotic cells. The presence of simultaneous Fas and FasL positivity indicated involvement of activation-induced death in the induction of paracortical apoptosis. FasL expression in the high endothelial venules might be an inductor of apoptosis of Fas-positive lymphoid cells. In addition to B-lymphocyte apoptosis in the germinal centers, there was often a high apoptosis rate of CD23-expressing follicular dendritic cells. In summary, our double-staining method provides valuable new information about the occurrence and mechanisms of apoptosis of different immune cell types in the lymph node compartments. Among other things, we present support for the importance of Fas/FasL–mediated apoptosis in lymph node homeostasis. (J Histochem Cytochem 58:131–140, 2010) PMID:19826071

  14. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice.

    Science.gov (United States)

    Watari, Kosuke; Shibata, Tomohiro; Nabeshima, Hiroshi; Shinoda, Ai; Fukunaga, Yuichi; Kawahara, Akihiko; Karasuyama, Kazuyuki; Fukushi, Jun-Ichi; Iwamoto, Yukihide; Kuwano, Michihiko; Ono, Mayumi

    2016-01-18

    N-myc downstream regulated gene 1 (NDRG1) is a responsible gene for a hereditary motor and sensory neuropathy-Lom (Charcot-Marie-Tooth disease type 4D). This is the first study aiming to assess the contribution of NDRG1 to differentiation of macrophage lineage cells, which has important implications for bone remodeling and inflammatory angiogenesis. Ndrg1 knockout (KO) mice exhibited abnormal curvature of the spine, high trabecular bone mass, and reduced number of osteoclasts. We observed that serum levels of macrophage colony-stimulating factor (M-CSF) and macrophage-related cytokines were markedly decreased in KO mice. Differentiation of bone marrow (BM) cells into osteoclasts, M1/M2-type macrophages and dendritic cells was all impaired. Furthermore, KO mice also showed reduced tumor growth and angiogenesis by cancer cells, accompanied by decreased infiltration of tumor-associated macrophages. The transfer of BM-derived macrophages from KO mice into BM-eradicated wild type (WT) mice induced much less tumor angiogenesis than observed in WT mice. Angiogenesis in corneas in response to inflammatory stimuli was also suppressed with decreased infiltration of macrophages. Taken together, these results indicate that