WorldWideScience

Sample records for olfactory sensory neurons

  1. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  2. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  3. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  4. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  5. Changes in Olfactory Sensory Neuron Physiology and Olfactory Perceptual Learning After Odorant Exposure in Adult Mice.

    Science.gov (United States)

    Kass, Marley D; Guang, Stephanie A; Moberly, Andrew H; McGann, John P

    2016-02-01

    The adult olfactory system undergoes experience-dependent plasticity to adapt to the olfactory environment. This plasticity may be accompanied by perceptual changes, including improved olfactory discrimination. Here, we assessed experience-dependent changes in the perception of a homologous aldehyde pair by testing mice in a cross-habituation/dishabituation behavioral paradigm before and after a week-long ester-odorant exposure protocol. In a parallel experiment, we used optical neurophysiology to observe neurotransmitter release from olfactory sensory neuron (OSN) terminals in vivo, and thus compared primary sensory representations of the aldehydes before and after the week-long ester-odorant exposure in individual animals. Mice could not discriminate between the aldehydes during pre-exposure testing, but ester-exposed subjects spontaneously discriminated between the homologous pair after exposure, whereas home cage control mice cross-habituated. Ester exposure did not alter the spatial pattern, peak magnitude, or odorant-selectivity of aldehyde-evoked OSN input to olfactory bulb glomeruli, but did alter the temporal dynamics of that input to make the time course of OSN input more dissimilar between odorants. Together, these findings demonstrate that odor exposure can induce both physiological and perceptual changes in odor processing, and suggest that changes in the temporal patterns of OSN input to olfactory bulb glomeruli could induce differences in odor quality. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Expression Patterns of Odorant Receptors and Response Properties of Olfactory Sensory Neurons in Aged Mice

    OpenAIRE

    Lee, Anderson C.; Tian, Huikai; Grosmaitre, Xavier; Ma, Minghong

    2009-01-01

    The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)—2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3–27 ...

  7. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, Maurizio, E-mail: maurizio.lazzari@unibo.it; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-15

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L{sup −1}. Densitometric values of cONS, immunostained with anti-G {sub αolf}, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G {sub

  8. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    International Nuclear Information System (INIS)

    Lazzari, Maurizio; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-01-01

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L"−"1. Densitometric values of cONS, immunostained with anti-G _α_o_l_f, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G _

  9. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    Science.gov (United States)

    Marasco, Addolorata; de Paris, Alessandro; Migliore, Michele

    2016-04-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration.

  10. Connectivity from OR37 expressing olfactory sensory neurons to distinct cell types in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrea eBader

    2012-11-01

    Full Text Available Olfactory sensory neurons which express a member from the OR37 subfamily of odorant receptor genes are wired to the main olfactory bulb in a unique monoglomerular fashion; from these glomeruli an untypical connectivity into higher brain centers exists. In the present study we have investigated by DiI and transsynaptic tracing approaches how the connection pattern from these glomeruli into distinct hypothalamic nuclei is organized. The application of DiI onto the ventral domain of the bulb which harbors the OR37 glomeruli resulted in the labeling of fibers within the paraventricular and supraoptic nucleus of the hypothalamus; some of these fibers were covered with varicose-like structures. No DiI-labeled cell somata were detectable in these nuclei. The data indicate that projection neurons which originate in the OR37 region of the main olfactory bulb form direct connections into these nuclei. The cells that were labeled by the transsynaptic tracer WGA in these nuclei were further characterized. Their distribution pattern in the paraventricular nucleus was reminiscent of cells which produce distinct neuropeptides. Double labeling experiments confirmed that they contained vasopressin, but not the related neuropeptide oxytocin. Morphological analysis revealed that they comprise of magno- and parvocellular cells. A comparative investigation of the WGA-positive cells in the supraoptic nucleus demonstrated that these were vasopressin-positive, as well, whereas oxytocin-producing cells of this nucleus also contained no transsynaptic tracer. Together, the data demonstrate a connectivity from OR37 expressing sensory neurons to distinct hypothalamic neurons with the same neuropeptide content.

  11. Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice.

    Science.gov (United States)

    Lee, Anderson C; Tian, Huikai; Grosmaitre, Xavier; Ma, Minghong

    2009-10-01

    The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)-2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3-27 months). The cell density for different ORs peaked at different time points and a decline was observed for 6 of 9 ORs at advanced ages. Using patch clamp recordings, we then examined the odorant responses of individual OSNs coexpressing a defined OR (MOR23) and green fluorescent protein. The MOR23 neurons recorded from aged animals maintained a similar sensitivity and dynamic range in response to the cognate odorant (lyral) as those from younger mice. The results indicate that although the cell densities of OSNs expressing certain types of ORs decline at advanced ages, individual OSNs can retain their sensitivity. The implications of these findings in age-related olfactory deterioration are discussed.

  12. Expression of ionotropic receptors in terrestrial hermit crab’s olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Katrin Christine Groh-Lunow

    2015-02-01

    Full Text Available Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.

  13. Anatomical and molecular consequences of Unilateral Naris Closure on two populations of olfactory sensory neurons expressing defined odorant receptors.

    Science.gov (United States)

    Molinas, Adrien; Aoudé, Imad; Soubeyre, Vanessa; Tazir, Bassim; Cadiou, Hervé; Grosmaitre, Xavier

    2016-07-28

    Mammalian olfactory sensory neurons (OSNs), the primary elements of the olfactory system, are located in the olfactory epithelium lining the nasal cavity. Exposed to the environment, their lifespan is short. Consequently, OSNs are regularly regenerated and several reports show that activity strongly modulates their development and regeneration: the peripheral olfactory system can adjust to the amount of stimulus through compensatory mechanisms. Unilateral naris occlusion (UNO) was frequently used to investigate this mechanism at the entire epithelium level. However, there is little data regarding the effects of UNO at the cellular level, especially on individual neuronal populations expressing a defined odorant receptor. Here, using UNO during the first three postnatal weeks, we analyzed the anatomical and molecular consequences of sensory deprivation in OSNs populations expressing the MOR23 and M71 receptors. The density of MOR23-expressing neurons is decreased in the closed side while UNO does not affect the density of M71-expressing neurons. Using Real Time qPCR on isolated neurons, we observed that UNO modulates the transcript levels for transduction pathway proteins (odorant receptors, CNGA2, PDE1c). The transcripts modulated by UNO will differ between populations depending on the receptor expressed. These results suggest that sensory deprivation will have different effects on different OSNs' populations. As a consequence, early experience will shape the functional properties of OSNs differently depending on the type of odorant receptor they express. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Multiple sensory G proteins in the olfactory, gustatory and nociceptive neurons modulate longevity in Caenorhabditis elegans

    NARCIS (Netherlands)

    H. Lans (Hannes); G. Jansen (Gert)

    2007-01-01

    textabstractThe life span of the nematode Caenorhabditis elegans is under control of sensory signals detected by the amphid neurons. In these neurons, C. elegans expresses at least 13 Galpha subunits and a Ggamma subunit, which are involved in the transduction and modulation of sensory signals.

  15. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: A patch clamp analysis in gene-targeted mice

    OpenAIRE

    Grosmaitre, Xavier; Vassalli, Anne; Mombaerts, Peter; Shepherd, Gordon M.; Ma, Minghong

    2006-01-01

    A glomerulus in the mammalian olfactory bulb receives axonal inputs from olfactory sensory neurons (OSNs) that express the same odorant receptor (OR). Glomeruli are generally thought to represent functional units of olfactory coding, but there are no data on the electrophysiological properties of OSNs that express the same endogenous OR. Here, using patch clamp recordings in an intact epithelial preparation, we directly measured the transduction currents and receptor potentials from the dendr...

  16. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    2015-05-01

    Full Text Available Olfactory receptor neurons (ORNs convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs. We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.

  17. Odorant responsiveness of embryonic mouse olfactory sensory neurons expressing the odorant receptors S1 or MOR23.

    Science.gov (United States)

    Lam, Rebecca S; Mombaerts, Peter

    2013-07-01

    The mammalian olfactory system has developed some functionality by the time of birth. There is behavioral and limited electrophysiological evidence for prenatal olfaction in various mammalian species. However, there have been no reports, in any mammalian species, of recordings from prenatal olfactory sensory neurons (OSNs) that express a given odorant receptor (OR) gene. Here we have performed patch-clamp recordings from mouse OSNs that express the OR gene S1 or MOR23, using the odorous ligands 2-phenylethyl alcohol or lyral, respectively. We found that, out of a combined total of 20 OSNs from embryos of these two strains at embryonic day (E)16.5 or later, all responded to a cognate odorous ligand. By contrast, none of six OSNs responded to the ligand at E14.5 or E15.5. The kinetics of the odorant-evoked electrophysiological responses of prenatal OSNs are similar to those of postnatal OSNs. The S1 and MOR23 glomeruli in the olfactory bulb are formed postnatally, but the axon terminals of OSNs expressing these OR genes may be synaptically active in the olfactory bulb at embryonic stages. The upper limit of the acquisition of odorant responsiveness for S1 and MOR23 OSNs at E16.5 is consistent with the developmental expression patterns of components of the olfactory signaling pathway. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    OpenAIRE

    Marasco, Addolorata; De Paris, Alessandro; Migliore, Michele

    2016-01-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific o...

  19. Interactions of carbon dioxide and food odours in Drosophila: olfactory hedonics and sensory neuron properties.

    Directory of Open Access Journals (Sweden)

    Cécile P Faucher

    Full Text Available Behavioural responses of animals to volatiles in their environment are generally dependent on context. Most natural odours are mixtures of components that can each induce different behaviours when presented on their own. We have investigated how a complex of two olfactory stimuli is evaluated by Drosophila flies in a free-flying two-trap choice assay and how these stimuli are encoded in olfactory receptor neurons. We first observed that volatiles from apple cider vinegar attracted flies while carbon dioxide (CO2 was avoided, confirming their inherent positive and negative values. In contradiction with previous results obtained from walking flies in a four-field olfactometer, in the present assay the addition of CO2 to vinegar increased rather than decreased the attractiveness of vinegar. This effect was female-specific even though males and females responded similarly to CO2 and vinegar on their own. To test whether the female-specific behavioural response to the mixture correlated with a sexual dimorphism at the peripheral level we recorded from olfactory receptor neurons stimulated with vinegar, CO2 and their combination. Responses to vinegar were obtained from three neuron classes, two of them housed with the CO2-responsive neuron in ab1 sensilla. Sensitivity of these neurons to both CO2 and vinegar per se did not differ between males and females and responses from female neurons did not change when CO2 and vinegar were presented simultaneously. We also found that CO2-sensitive neurons are particularly well adapted to respond rapidly to small concentration changes irrespective of background CO2 levels. The ability to encode temporal properties of stimulations differs considerably between CO2- and vinegar-sensitive neurons. These properties may have important implications for in-flight navigation when rapid responses to fragmented odour plumes are crucial to locate odour sources. However, the flies' sex-specific response to the CO2-vinegar

  20. Artificial Induction of Associative Olfactory Memory by Optogenetic and Thermogenetic Activation of Olfactory Sensory Neurons and Octopaminergic Neurons in Drosophila Larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2016-01-01

    The larval brain of Drosophila melanogaster provides an excellent system for the study of the neurocircuitry mechanism of memory. Recent development of neurogenetic techniques in fruit flies enables manipulations of neuronal activities in freely behaving animals. This protocol describes detailed steps for artificial induction of olfactory associative memory in Drosophila larvae. In this protocol, the natural reward signal is substituted by thermogenetic activation of octopaminergic neurons in the brain. In parallel, the odor signal is substituted by optogenetic activation of a specific class of olfactory receptor neurons. Association of reward and odor stimuli is achieved with the concomitant application of blue light and heat that leads to activation of both sets of neurons in living transgenic larvae. Given its operational simplicity and robustness, this method could be utilized to further our knowledge on the neurocircuitry mechanism of memory in the fly brain.

  1. The Alzheimer's β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Rajapaksha Tharinda W

    2011-12-01

    Full Text Available Abstract Background The β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1, is a prime therapeutic target for lowering cerebral β-amyloid (Aβ levels in Alzheimer's disease (AD. Clinical development of BACE1 inhibitors is being intensely pursued. However, little is known about the physiological functions of BACE1, and the possibility exists that BACE1 inhibition may cause mechanism-based side effects. Indeed, BACE1-/- mice exhibit a complex neurological phenotype. Interestingly, BACE1 co-localizes with presynaptic neuronal markers, indicating a role in axons and/or terminals. Moreover, recent studies suggest axon guidance molecules are potential BACE1 substrates. Here, we used a genetic approach to investigate the function of BACE1 in axon guidance of olfactory sensory neurons (OSNs, a well-studied model of axon targeting in vivo. Results We bred BACE1-/- mice with gene-targeted mice in which GFP is expressed from the loci of two odorant-receptors (ORs, MOR23 and M72, and olfactory marker protein (OMP to produce offspring that were heterozygous for MOR23-GFP, M72-GFP, or OMP-GFP and were either BACE1+/+ or BACE1-/-. BACE1-/- mice had olfactory bulbs (OBs that were smaller and weighed less than OBs of BACE1+/+ mice. In wild-type mice, BACE1 was present in OSN axon terminals in OB glomeruli. In whole-mount preparations and tissue sections, many OB glomeruli from OMP-GFP; BACE1-/- mice were malformed compared to wild-type glomeruli. MOR23-GFP; BACE1-/- mice had an irregular MOR23 glomerulus that was innervated by randomly oriented, poorly fasciculated OSN axons compared to BACE1+/+ mice. Most importantly, M72-GFP; BACE1-/- mice exhibited M72 OSN axons that were mis-targeted to ectopic glomeruli, indicating impaired axon guidance in BACE1-/- mice. Conclusions Our results demonstrate that BACE1 is required for the accurate targeting of OSN axons and the proper formation of glomeruli in the OB, suggesting a role for BACE1 in

  2. Processing of Sensory Information in the Olfactory System

    DEFF Research Database (Denmark)

    The olfactory system is an attractive model system due to the easy control of sensory input and the experimental accessibility in animal studies. The odorant signals are processed from receptor neurons to a neural network of mitral and granular cells while various types of nonlinear behaviour can...... and equation-free techniques allow for a better reproduction and understanding of recent experimental findings. Talks: Olfaction as a Model System for Sensory-Processing Neural Networks (Jens Midtgaard, University of Copenhagen, Denmark) Nonlinear Effects of Signal Transduction in Olfactory Sensory Neurons...

  3. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice.

    Science.gov (United States)

    Grosmaitre, Xavier; Vassalli, Anne; Mombaerts, Peter; Shepherd, Gordon M; Ma, Minghong

    2006-02-07

    A glomerulus in the mammalian olfactory bulb receives axonal inputs from olfactory sensory neurons (OSNs) that express the same odorant receptor (OR). Glomeruli are generally thought to represent functional units of olfactory coding, but there are no data on the electrophysiological properties of OSNs that express the same endogenous OR. Here, using patch clamp recordings in an intact epithelial preparation, we directly measured the transduction currents and receptor potentials from the dendritic knobs of mouse OSNs that express the odorant receptor MOR23 along with the green fluorescent protein. All of the 53 cells examined responded to lyral, a known ligand for MOR23. There were profound differences in response kinetics, particularly in the deactivation phase. The cells were very sensitive to lyral, with some cells responding to as little as 10 nM. The dynamic range was unexpectedly broad, with threshold and saturation in individual cells often covering three log units of lyral concentration. The potential causes and biological significance of this cellular heterogeneity are discussed. Patch clamp recording from OSNs that express a defined OR provides a powerful approach to investigate the sensory inputs to individual glomeruli.

  4. Olfactory Receptor Database: a sensory chemoreceptor resource

    OpenAIRE

    Skoufos, Emmanouil; Marenco, Luis; Nadkarni, Prakash M.; Miller, Perry L.; Shepherd, Gordon M.

    2000-01-01

    The Olfactory Receptor Database (ORDB) is a WWW-accessible database that has been expanded from an olfactory receptor resource to a chemoreceptor resource. It stores data on six classes of G-protein-coupled sensory chemoreceptors: (i) olfactory receptor-like proteins, (ii) vomeronasal receptors, (iii) insect olfactory receptors, (iv) worm chemoreceptors, (v) taste papilla receptors and (vi) fungal pheromone receptors. A complementary database of the ligands of these receptors (OdorDB) has bee...

  5. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit

    Directory of Open Access Journals (Sweden)

    Sara J. Hawkins

    2017-11-01

    Full Text Available Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.

  6. Multilayer perceptron classification of unknown volatile chemicals from the firing rates of insect olfactory sensory neurons and its application to biosensor design.

    Science.gov (United States)

    Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D; Crampin, Edmund J

    2013-01-01

    In this letter, we use the firing rates from an array of olfactory sensory neurons (OSNs) of the fruit fly, Drosophila melanogaster, to train an artificial neural network (ANN) to distinguish different chemical classes of volatile odorants. Bootstrapping is implemented for the optimized networks, providing an accurate estimate of a network's predicted values. Initially a simple linear predictor was used to assess the complexity of the data and was found to provide low prediction performance. A nonlinear ANN in the form of a single multilayer perceptron (MLP) was also used, providing a significant increase in prediction performance. The effect of the number of hidden layers and hidden neurons of the MLP was investigated and found to be effective in enhancing network performance with both a single and a double hidden layer investigated separately. A hybrid array of MLPs was investigated and compared against the single MLP architecture. The hybrid MLPs were found to classify all vectors of the validation set, presenting the highest degree of prediction accuracy. Adjustment of the number of hidden neurons was investigated, providing further performance gain. In addition, noise injection was investigated, proving successful for certain network designs. It was found that the best-performing MLP was that of the double-hidden-layer hybrid MLP network without the use of noise injection. Furthermore, the level of performance was examined when different numbers of OSNs used were varied from the maximum of 24 to only 5 OSNs. Finally, the ideal OSNs were identified that optimized network performance. The results obtained from this study provide strong evidence of the usefulness of ANNs in the field of olfaction for the future realization of a signal processing back end for an artificial olfactory biosensor.

  7. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope

    Science.gov (United States)

    Meyer, Stephanie A.; Ozbay, Baris N.; Potcoava, Mariana; Salcedo, Ernesto; Restrepo, Diego; Gibson, Emily A.

    2016-06-01

    We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ˜81 and ˜44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.

  8. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  9. Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization

    Directory of Open Access Journals (Sweden)

    Gianluca Polese

    2016-05-01

    Full Text Available The cephalopod olfactory organ was described for the first time in 1844 by von Kölliker, who was attracted to the pair of small pits of ciliated cells on each side of the head, below the eyes close to the mantle edge, in both octopuses and squids. Several functional studies have been conducted on decapods but very little is known about octopods. The morphology of the octopus olfactory system has been studied, but only to a limited extent on post-hatching specimens, and the only paper on adult octopus gives a minimal description of the olfactory organ. Here, we describe the detailed morphology of young male and female Octopus vulgaris olfactory epithelium, and using a combination of classical morphology and 3D reconstruction techniques, we propose a new classification for O. vulgaris olfactory sensory neurons. Furthermore, using specific markers such as olfactory marker protein (OMP and proliferating cell nuclear antigen (PCNA we have been able to identify and differentially localize both mature olfactory sensory neurons and olfactory sensory neurons involved in epithelium turnover. Taken together, our data suggest that the O. vulgaris olfactory organ is extremely plastic, capable of changing its shape and also proliferating its cells in older specimens.

  10. Differences in peripheral sensory input to the olfactory bulb between male and female mice

    Science.gov (United States)

    Kass, Marley D.; Czarnecki, Lindsey A.; Moberly, Andrew H.; McGann, John P.

    2017-04-01

    Female mammals generally have a superior sense of smell than males, but the biological basis of this difference is unknown. Here, we demonstrate sexually dimorphic neural coding of odorants by olfactory sensory neurons (OSNs), primary sensory neurons that physically contact odor molecules in the nose and provide the initial sensory input to the brain’s olfactory bulb. We performed in vivo optical neurophysiology to visualize odorant-evoked OSN synaptic output into olfactory bub glomeruli in unmanipulated (gonad-intact) adult mice from both sexes, and found that in females odorant presentation evoked more rapid OSN signaling over a broader range of OSNs than in males. These spatiotemporal differences enhanced the contrast between the neural representations of chemically related odorants in females compared to males during stimulus presentation. Removing circulating sex hormones makes these signals slower and less discriminable in females, while in males they become faster and more discriminable, suggesting opposite roles for gonadal hormones in influencing male and female olfactory function. These results demonstrate that the famous sex difference in olfactory abilities likely originates in the primary sensory neurons, and suggest that hormonal modulation of the peripheral olfactory system could underlie differences in how males and females experience the olfactory world.

  11. Heterogeneous sensory innervation and extensive intrabulbar connections of olfactory necklace glomeruli.

    Directory of Open Access Journals (Sweden)

    Renee E Cockerham

    Full Text Available The mammalian nose employs several olfactory subsystems to recognize and transduce diverse chemosensory stimuli. These subsystems differ in their anatomical position within the nasal cavity, their targets in the olfactory forebrain, and the transduction mechanisms they employ. Here we report that they can also differ in the strategies they use for stimulus coding. Necklace glomeruli are the sole main olfactory bulb (MOB targets of an olfactory sensory neuron (OSN subpopulation distinguished by its expression of the receptor guanylyl cyclase GC-D and the phosphodiesterase PDE2, and by its chemosensitivity to the natriuretic peptides uroguanylin and guanylin and the gas CO(2. In stark contrast to the homogeneous sensory innervation of canonical MOB glomeruli from OSNs expressing the same odorant receptor (OR, we find that each necklace glomerulus of the mouse receives heterogeneous innervation from at least two distinct sensory neuron populations: one expressing GC-D and PDE2, the other expressing olfactory marker protein. In the main olfactory system it is thought that odor identity is encoded by a combinatorial strategy and represented in the MOB by a pattern of glomerular activation. This combinatorial coding scheme requires functionally homogeneous sensory inputs to individual glomeruli by OSNs expressing the same OR and displaying uniform stimulus selectivity; thus, activity in each glomerulus reflects the stimulation of a single OSN type. The heterogeneous sensory innervation of individual necklace glomeruli by multiple, functionally distinct, OSN subtypes precludes a similar combinatorial coding strategy in this olfactory subsystem.

  12. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep

    Directory of Open Access Journals (Sweden)

    Masahiro eYamaguchi

    2013-08-01

    Full Text Available Plastic changes in neuronal circuits often occur in association with specific behavioral states. In this review, we focus on an emerging view that neuronal circuits in the olfactory system are reorganized along the wake-sleep cycle. Olfaction is crucial to sustaining the animals’ life, and odor-guided behaviors have to be newly acquired or updated to successfully cope with a changing odor world. It is therefore likely that neuronal circuits in the olfactory system are highly plastic and undergo repeated reorganization in daily life. A remarkably plastic feature of the olfactory system is that newly generated neurons are continually integrated into neuronal circuits of the olfactory bulb (OB throughout life. New neurons in the OB undergo an extensive selection process, during which many are eliminated by apoptosis for the fine tuning of neuronal circuits. The life and death decision of new neurons occurs extensively during a short time window of sleep after food consumption (postprandial sleep, a typical daily olfactory behavior. We review recent studies that explain how olfactory information is transferred between the OB and the olfactory cortex (OC along the course of the wake-sleep cycle. Olfactory sensory input is effectively transferred from the OB to the OC during waking, while synchronized top-down inputs from the OC to the OB are promoted during the slow-wave sleep. We discuss possible neuronal circuit mechanisms for the selection of new neurons in the OB, which involves the encoding of olfactory sensory inputs and memory trace formation during waking and internally generated activities in the OC and OB during subsequent sleep. The plastic changes in the OB and OC are well coordinated along the course of olfactory behavior during wakefulness and postbehavioral rest and sleep. We therefore propose that the olfactory system provides an excellent model in which to understand behavioral state-dependent plastic mechanisms of the neuronal

  13. The terminal nerve plays a prominent role in GnRH-1 neuronal migration independent from proper olfactory and vomeronasal connections to the olfactory bulbs

    Directory of Open Access Journals (Sweden)

    Ed Zandro M. Taroc

    2017-10-01

    Yoshihara et al., 2005. Our data prove that correct development of the OBs and axonal connection of the olfactory/vomeronasal sensory neurons to the forebrain are not required for GnRH-1 ns migration, and suggest that the terminal nerve, which forms the GnRH-1 migratory scaffold, follows different guidance cues and differs in gene expression from olfactory/vomeronasal sensory neurons.

  14. Lesion of the olfactory epithelium accelerates prion neuroinvasion and disease onset when prion replication is restricted to neurons.

    Directory of Open Access Journals (Sweden)

    Jenna Crowell

    Full Text Available Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain.

  15. Lesion of the Olfactory Epithelium Accelerates Prion Neuroinvasion and Disease Onset when Prion Replication Is Restricted to Neurons

    Science.gov (United States)

    Crowell, Jenna; Wiley, James A.; Bessen, Richard A.

    2015-01-01

    Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain. PMID:25822718

  16. Induction of associative olfactory memory by targeted activation of single olfactory neurons in Drosophila larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-04-25

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by ChR2-mediated optical activation of a specific class of olfactory neurons. We show that targeted activation of the olfactory receptor and the octopaminergic neurons is indeed sufficient for the formation of associative olfactory memory in the larval brain. We also show that targeted stimulation of only a single type of olfactory receptor neurons is sufficient to induce olfactory memory that is indistinguishable from natural memory induced by the activation of multiple olfactory receptor neurons.

  17. Elucidating the Neuronal Architecture of Olfactory Glomeruli in the Drosophila Antennal Lobe

    Directory of Open Access Journals (Sweden)

    Veit Grabe

    2016-09-01

    Full Text Available Olfactory glomeruli are morphologically conserved spherical compartments of the olfactory system, distinguishable solely by their chemosensory repertoire, anatomical position, and volume. Little is known, however, about their numerical neuronal composition. We therefore characterized their neuronal architecture and correlated these anatomical features with their functional properties in Drosophila melanogaster. We quantitatively mapped all olfactory sensory neurons (OSNs innervating each glomerulus, including sexually dimorphic distributions. Our data reveal the impact of OSN number on glomerular dimensions and demonstrate yet unknown sex-specific differences in several glomeruli. Moreover, we quantified uniglomerular projection neurons for each glomerulus, which unraveled a glomerulus-specific numerical innervation. Correlation between morphological features and functional specificity showed that glomeruli innervated by narrowly tuned OSNs seem to possess a larger number of projection neurons and are involved in less lateral processing than glomeruli targeted by broadly tuned OSNs. Our study demonstrates that the neuronal architecture of each glomerulus encoding crucial odors is unique.

  18. Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.

    Science.gov (United States)

    Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni

    2006-01-01

    Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.

  19. Neural circuits containing olfactory neurons are involved in prepulse inhibition of the startle reflex in rats

    Directory of Open Access Journals (Sweden)

    Haichen eNiu

    2015-03-01

    Full Text Available Many neuropsychiatric disorders, such as schizophrenia, have been associated with abnormalities in the function of the olfactory system and prepulse inhibition (PPI of the startle reflex. However, whether these two abnormalities are related is unclear. The present study was designed to determine whether inhibiting olfactory sensory input via the infusion of zinc sulfate (ZnE, 0.17 M, 0.5 ml into the olfactory naris disrupts PPI. Furthermore, lidocaine/MK801 was bilaterally microinjected into the olfactory bulb (OB to examine whether the blockade of olfactory sensory input impairs PPI. To identify the neural projections that connect the olfaction- and PPI-related areas of the CNS, trans-synaptic retrograde tracing using a recombinant pseudorabies virus (PRV was performed. Our results demonstrated that blocking olfactory sensory input altered olfaction-related behavior. At the functional level, we demonstrated that the inhibition of olfactory sensory input impaired PPI of the startle response subsequent to a decrease in c-fos expression in relevant brain regions. Furthermore, the results of a similar and more robust experiment indicated that blocking olfactory sensory input via the microinjection of lidocaine/MK801 into the OB impaired PPI. At the circuit level, based on trans-synaptic retrograde tracing using PRV, we demonstrated that a large portion of the labeled neurons in several regions of the olfactory cortices connected to the pedunculopontine tegmental nucleus (PPTg. Thus, these data suggest that the olfactory system participates in the regulation of PPI and plays a role in the effect of PPI on the startle response in rats.

  20. Odor memories regulate olfactory receptor expression in the sensory periphery.

    Science.gov (United States)

    Claudianos, Charles; Lim, Julianne; Young, Melanie; Yan, Shanzhi; Cristino, Alexandre S; Newcomb, Richard D; Gunasekaran, Nivetha; Reinhard, Judith

    2014-05-01

    Odor learning induces structural and functional modifications throughout the olfactory system, but it is currently unknown whether this plasticity extends to the olfactory receptors (Or) in the sensory periphery. Here, we demonstrate that odor learning induces plasticity in olfactory receptor expression in the honeybee, Apis mellifera. Using quantitative RT-PCR analysis, we show that six putative floral scent receptors were differentially expressed in the bee antennae depending on the scent environment that the bees experienced. Or151, which we characterized using an in vitro cell expression system as a broadly tuned receptor binding floral odorants such as linalool, and Or11, the specific receptor for the queen pheromone 9-oxo-decenoic acid, were significantly down-regulated after honeybees were conditioned with the respective odorants in an olfactory learning paradigm. Electroantennogram recordings showed that the neural response of the antenna was similarly reduced after odor learning. Long-term odor memory was essential for inducing these changes, suggesting that the molecular mechanisms involved in olfactory memory also regulate olfactory receptor expression. Our study demonstrates for the first time that olfactory receptor expression is experience-dependent and modulated by scent conditioning, providing novel insight into how molecular regulation at the periphery contributes to plasticity in the olfactory system. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Olfactory map formation in the Drosophila brain: genetic specificity and neuronal variability.

    Science.gov (United States)

    Brochtrup, Anna; Hummel, Thomas

    2011-02-01

    The development of the Drosophila olfactory system is a striking example of how genetic programs specify a large number of different neuron types and assemble them into functional circuits. To ensure precise odorant perception, each sensory neuron has to not only select a single olfactory receptor (OR) type out of a large genomic repertoire but also segregate its synaptic connections in the brain according to the OR class identity. Specification and patterning of second-order interneurons in the olfactory brain center occur largely independent of sensory input, followed by a precise point-to-point matching of sensory and relay neurons. Here we describe recent progress in the understanding of how cell-intrinsic differentiation programs and context-dependent cellular interactions generate a stereotyped sensory map in the Drosophila brain. Recent findings revealed an astonishing morphological diversity among members of the same interneuron class, suggesting an unexpected variability in local microcircuits involved in insect sensory processing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Sensory-Evoked Intrinsic Imaging Signals in the Olfactory Bulb Are Independent of Neurovascular Coupling

    Directory of Open Access Journals (Sweden)

    Roberto Vincis

    2015-07-01

    Full Text Available Functional brain-imaging techniques used in humans and animals, such as functional MRI and intrinsic optical signal (IOS imaging, are thought to largely rely on neurovascular coupling and hemodynamic responses. Here, taking advantage of the well-described micro-architecture of the mouse olfactory bulb, we dissected the nature of odor-evoked IOSs. Using in vivo pharmacology in transgenic mouse lines reporting activity in different cell types, we show that parenchymal IOSs are largely independent of neurotransmitter release and neurovascular coupling. Furthermore, our results suggest that odor-evoked parenchymal IOSs originate from changes in light scattering of olfactory sensory neuron axons, mostly due to water movement following action potential propagation. Our study sheds light on a direct correlate of neuronal activity, which may be used for large-scale functional brain imaging.

  3. A flight sensory-motor to olfactory processing circuit in the moth Manduca sexta

    Directory of Open Access Journals (Sweden)

    Samual P Bradley

    2016-02-01

    Full Text Available Neural circuits projecting information from motor pathways to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL glomeruli. Furthermore, within the AL we show that the Manduca sexta histamine B receptor (MsHisClB is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center (LAC indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight.

  4. Activation of Six1 Expression in Vertebrate Sensory Neurons.

    Directory of Open Access Journals (Sweden)

    Shigeru Sato

    Full Text Available SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG. The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8 conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development.

  5. Brief predator sound exposure elicits behavioral and neuronal long-term sensitization in the olfactory system of an insect

    DEFF Research Database (Denmark)

    Anton, S.; Evengaard, K.; Barrozo, R. B.

    2011-01-01

    later in the same way as exposure to the sex pheromone itself. The observed behavioral modification is accompanied by an increase in the sensitivity of olfactory neurons in the antennal lobe. Our data provide thus evidence for cross-modal experience-dependent plasticity not only on the behavioral level...... at the behavioral and central nervous level. Here we show that this effect is not confined to the same sensory modality: the sensitivity of olfactory neurons can also be modulated by exposure to a different sensory stimulus, i.e., a pulsed stimulus mimicking echolocating sounds from attacking insectivorous bats. We...... tested responses of preexposed male moths in a walking bioassay and recorded from neurons in the primary olfactory center, the antennal lobe. We show that brief exposure to a bat call, but not to a behaviorally irrelevant tone, increases the behavioral sensitivity of male moths to sex pheromone 24 h...

  6. Neuronal basis of innate olfactory attraction to ethanol in Drosophila.

    Directory of Open Access Journals (Sweden)

    Andrea Schneider

    Full Text Available The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine - the invertebrate analogue of noradrenaline - in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b. Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse, the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.

  7. Multiple Signaling Pathways Coordinately Regulate Forgetting of Olfactory Adaptation through Control of Sensory Responses in Caenorhabditis elegans.

    Science.gov (United States)

    Kitazono, Tomohiro; Hara-Kuge, Sayuri; Matsuda, Osamu; Inoue, Akitoshi; Fujiwara, Manabi; Ishihara, Takeshi

    2017-10-18

    Forgetting memories is important for animals to properly respond to continuously changing environments. To elucidate the mechanisms of forgetting, we used one of the behavioral plasticities of Caenorhabditis elegans hermaphrodite, olfactory adaptation to an attractive odorant, diacetyl, as a simple model of learning. In C. elegans, the TIR-1/JNK-1 pathway accelerates forgetting of olfactory adaptation by facilitating neural secretion from AWC sensory neurons. In this study, to identify the downstream effectors of the TIR-1/JNK-1 pathway, we conducted a genetic screen for suppressors of the gain-of-function mutant of tir-1 ( ok1052 ), which shows excessive forgetting. Our screening showed that three proteins-a membrane protein, MACO-1; a receptor tyrosine kinase, SCD-2; and its putative ligand, HEN-1-regulated forgetting downstream of the TIR-1/JNK-1 pathway. We further demonstrated that MACO-1 and SCD-2/HEN-1 functioned in parallel genetic pathways, and only MACO-1 regulated forgetting of olfactory adaptation to isoamyl alcohol, which is an attractive odorant sensed by different types of sensory neurons. In olfactory adaptation, odor-evoked Ca 2+ responses in olfactory neurons are attenuated by conditioning and recovered thereafter. A Ca 2+ imaging study revealed that this attenuation is sustained longer in maco-1 and scd-2 mutant animals than in wild-type animals like the TIR-1/JNK-1 pathway mutants. Furthermore, temporal silencing by histamine-gated chloride channels revealed that the neuronal activity of AWC neurons after conditioning is important for proper forgetting. We propose that distinct signaling pathways, each of which has a specific function, may coordinately and temporally regulate forgetting by controlling sensory responses. SIGNIFICANCE STATEMENT Active forgetting is an important process to understand the whole mechanisms of memories. Recent papers have reported that the noncell autonomous regulations are required for proper forgetting in

  8. Olfactory Information Processing in the Drosophila Antennal Lobe : Anything Goes?

    OpenAIRE

    Silbering, Ana F.; Okada, Ryuichi; Ito, Kei; Galizia, Cosmas Giovanni

    2008-01-01

    When an animal smells an odor, olfactory sensory neurons generate an activity pattern across olfactory glomeruli of the first sensory neuropil, the insect antennal lobe or the vertebrate olfactory bulb. Here, several networks of local neurons interact with sensory neurons and with output neurons-insect projection neurons, or vertebrate mitral/tufted cells. The extent and form of information processing taking place in these local networks has been subject of controversy. To investigate the ro...

  9. Impaired mastication reduced newly generated neurons at the accessory olfactory bulb and pheromonal responses in mice.

    Science.gov (United States)

    Utsugi, Chizuru; Miyazono, Sadaharu; Osada, Kazumi; Matsuda, Mitsuyoshi; Kashiwayanagi, Makoto

    2014-12-01

    A large number of neurons are generated at the subventricular zone (SVZ) even during adulthood. In a previous study, we have shown that a reduced mastication impairs both neurogenesis in the SVZ and olfactory functions. Pheromonal signals, which are received by the vomeronasal organ, provide information about reproductive and social states. Vomeronasal sensory neurons project to the accessory olfactory bulb (AOB) located on the dorso-caudal surface of the main olfactory bulb. Newly generated neurons at the SVZ migrate to the AOB and differentiate into granule cells and periglomerular cells. This study aimed to explore the effects of changes in mastication on newly generated neurons and pheromonal responses. Bromodeoxyuridine-immunoreactive (BrdU-ir; a marker of DNA synthesis) and Fos-ir (a marker of neurons excited) structures in sagittal sections of the AOB after exposure to urinary odours were compared between the mice fed soft and hard diets. The density of BrdU-ir cells in the AOB in the soft-diet-fed mice after 1 month was essentially similar to that of the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 3 or 6 months than in the hard-diet-fed mice. The density of Fos-ir cells in the soft-diet-fed mice after 2 months was essentially similar to that in the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 4 months than in the hard-diet-fed mice. The present results suggest that impaired mastication reduces newly generated neurons at the AOB, which in turn impairs olfactory function at the AOB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Efficient olfactory coding in the pheromone receptor neuron of a moth.

    Directory of Open Access Journals (Sweden)

    Lubomir Kostal

    2008-04-01

    Full Text Available The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g., the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course, and the intermittency, are in good agreement with those measured experimentally in the field. These results should stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and on the plume characteristics that are most informative for the 'sniffer'. Both aspects are relevant to the design of olfactory sensors for odour-tracking robots.

  11. Stimulus-response functions of single avian olfactory bulb neurones.

    Science.gov (United States)

    McKeegan, Dorothy E F; Demmers, Theodorus G M; Wathes, Christopher M; Jones, R Bryan; Gentle, Michael J

    2002-10-25

    This study investigated olfactory processing in a functional context by examining the responses of single avian olfactory bulb neurones to two biologically important gases over relevant concentration ranges. Recordings of extracellular spike activity were made from 80 single units in the left olfactory bulb of 11 anaesthetised, freely breathing adult hens (Gallus domesticus). The units were spontaneously active, exhibiting widely variable firing rates (0.07-47.28 spikes/s) and variable temporal firing patterns. Single units were tested for their response to an ascending concentration series of either ammonia (2.5-100 ppm) or hydrogen sulphide (1-50 ppm), delivered directly to the olfactory epithelium. Stimulation with a calibrated gas delivery system resulted in modification of spontaneous activity causing either inhibition (47% of units) or excitation (53%) of firing. For ammonia, 20 of the 35 units tested exhibited a response, while for hydrogen sulphide, 25 of the 45 units tested were responsive. Approximate response thresholds for ammonia (median threshold 3.75 ppm (range 2.5-60 ppm, n=20)) and hydrogen sulphide (median threshold 1 ppm (range 1-10 ppm, n=25)) were determined with most units exhibiting thresholds near the lower end of these ranges. Stimulus response curves were constructed for 23 units; 16 (the most complete) were subjected to a linear regression analysis to determine whether they were best fitted by a linear, log or power function. No single function provided the best fit for all the curves (seven were linear, eight were log, one was power). These findings show that avian units respond to changes in stimulus concentration in a manner generally consistent with reported responses in mammalian olfactory bulb neurones. However, this study illustrates a level of fine-tuning to small step changes in concentration (<5 ppm) not previously demonstrated in vertebrate single olfactory bulb neurones.

  12. Temporal Response Properties of Accessory Olfactory Bulb Neurons: Limitations and Opportunities for Decoding.

    Science.gov (United States)

    Yoles-Frenkel, Michal; Kahan, Anat; Ben-Shaul, Yoram

    2018-05-23

    The vomeronasal system (VNS) is a major vertebrate chemosensory system that functions in parallel to the main olfactory system (MOS). Despite many similarities, the two systems dramatically differ in the temporal domain. While MOS responses are governed by breathing and follow a subsecond temporal scale, VNS responses are uncoupled from breathing and evolve over seconds. This suggests that the contribution of response dynamics to stimulus information will differ between these systems. While temporal dynamics in the MOS are widely investigated, similar analyses in the accessory olfactory bulb (AOB) are lacking. Here, we have addressed this issue using controlled stimulus delivery to the vomeronasal organ of male and female mice. We first analyzed the temporal properties of AOB projection neurons and demonstrated that neurons display prolonged, variable, and neuron-specific characteristics. We then analyzed various decoding schemes using AOB population responses. We showed that compared with the simplest scheme (i.e., integration of spike counts over the entire response period), the division of this period into smaller temporal bins actually yields poorer decoding accuracy. However, optimal classification accuracy can be achieved well before the end of the response period by integrating spike counts within temporally defined windows. Since VNS stimulus uptake is variable, we analyzed decoding using limited information about stimulus uptake time, and showed that with enough neurons, such time-invariant decoding is feasible. Finally, we conducted simulations that demonstrated that, unlike the main olfactory bulb, the temporal features of AOB neurons disfavor decoding with high temporal accuracy, and, rather, support decoding without precise knowledge of stimulus uptake time. SIGNIFICANCE STATEMENT A key goal in sensory system research is to identify which metrics of neuronal activity are relevant for decoding stimulus features. Here, we describe the first systematic

  13. Transgenic expression of B-50/GAP-43 in mature olfactory neurons triggers downregulation of native B-50/GAP-43 expression in immature olfactory neurons

    NARCIS (Netherlands)

    Holtmaat, Anthony J D G; Huizinga, C T; Margolis, F L; Gispen, Willem Hendrik; Verhaagen, J

    1999-01-01

    The adult mammalian olfactory neuroepithelium is an unusual neural tissue, since it maintains its capacity to form new neurons throughout life. Newly formed neurons differentiate in the basal layers of the olfactory neuroepithelium and express B-50/GAP-43, a protein implicated in neurite outgrowth.

  14. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee.

    Directory of Open Access Journals (Sweden)

    Jan Kropf

    Full Text Available The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN convey olfactory information on ~900 projection neurons (PN in the antennal lobe (AL. To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB. This pathway comprises the medial (m-ALT and the lateral antennal lobe tract (l-ALT. PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.

  15. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee.

    Science.gov (United States)

    Kropf, Jan; Rössler, Wolfgang

    2018-01-01

    The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.

  16. Neuronal Subtype Generation During Postnatal Olfactory Bulb Neurogenesis.

    Science.gov (United States)

    Angelova, Alexandra; Tiveron, Marie-Catherine; Cremer, Harold; Beclin, Christophe

    2018-01-01

    In the perinatal and adult forebrain, regionalized neural stem cells lining the ventricular walls produce different types of olfactory bulb interneurons. Although these postnatal stem cells are lineage related to their embryonic counterparts that produce, for example, cortical, septal, and striatal neurons, their output at the level of neuronal phenotype changes dramatically. Tiveron et al. investigated the molecular determinants underlying stem cell regionalization and the gene expression changes inducing the shift from embryonic to adult neuron production. High-resolution gene expression analyses of different lineages revealed that the zinc finger proteins, Zic1 and Zic2, are postnatally induced in the dorsal olfactory bulb neuron lineage. Functional studies demonstrated that these factors confer a GABAergic and calretinin-positive phenotype to neural stem cells while repressing dopaminergic fate. Based on these findings, we discuss the molecular mechanisms that allow acquisition of new traits during the transition from embryonic to adult neurogenesis. We focus on the involvement of epigenetic marks and emphasize why the identification of master transcription factors, that instruct the fate of postnatally generated neurons, can help in deciphering the mechanisms driving fate transition from embryonic to adult neuron production.

  17. Neuronal Subtype Generation During Postnatal Olfactory Bulb Neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexandra Angelova

    2018-02-01

    Full Text Available In the perinatal and adult forebrain, regionalized neural stem cells lining the ventricular walls produce different types of olfactory bulb interneurons. Although these postnatal stem cells are lineage related to their embryonic counterparts that produce, for example, cortical, septal, and striatal neurons, their output at the level of neuronal phenotype changes dramatically. Tiveron et al. investigated the molecular determinants underlying stem cell regionalization and the gene expression changes inducing the shift from embryonic to adult neuron production. High-resolution gene expression analyses of different lineages revealed that the zinc finger proteins, Zic1 and Zic2, are postnatally induced in the dorsal olfactory bulb neuron lineage. Functional studies demonstrated that these factors confer a GABAergic and calretinin-positive phenotype to neural stem cells while repressing dopaminergic fate. Based on these findings, we discuss the molecular mechanisms that allow acquisition of new traits during the transition from embryonic to adult neurogenesis. We focus on the involvement of epigenetic marks and emphasize why the identification of master transcription factors, that instruct the fate of postnatally generated neurons, can help in deciphering the mechanisms driving fate transition from embryonic to adult neuron production.

  18. Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System

    OpenAIRE

    DeMaria, Shannon; Berke, Allison P.; Van Name, Eric; Heravian, Anisa; Ferreira, Todd; Ngai, John

    2013-01-01

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the “one receptor, one neuron” rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the...

  19. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity

    Science.gov (United States)

    Fenk, Lorenz A.; de Bono, Mario

    2015-01-01

    Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry. PMID:26100886

  20. Induction of Associative Olfactory Memory by Targeted Activation of Single Olfactory Neurons in Drosophila Larvae

    OpenAIRE

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-01-01

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by C...

  1. No Sensory Compensation for Olfactory Memory: Differences between Blind and Sighted People

    OpenAIRE

    Agnieszka Sorokowska; Agnieszka Sorokowska; Maciej Karwowski

    2017-01-01

    Blindness can be a driving force behind a variety of changes in sensory systems. When vision is missing, other modalities and higher cognitive functions can become hyper-developed through a mechanism called sensory compensation. Overall, previous studies suggest that olfactory memory in blind people can be better than that of the sighted individuals. Better performance of blind individuals in other-sensory modalities was hypothesized to be a result of, among others, intense perceptual trainin...

  2. Cellular Mechanisms of Action of Drug Abuse on Olfactory Neurons

    Directory of Open Access Journals (Sweden)

    Thomas Heinbockel

    2015-12-01

    Full Text Available Cannabinoids (Δ9-tetrahydrocannabinol are the active ingredient of marijuana (cannabis which is the most commonly abused illicit drug in the USA. In addition to being known and used as recreational drugs, cannabinoids are produced endogenously by neurons in the brain (endocannabinoids and serve as important signaling molecules in the nervous system and the rest of the body. Cannabinoids have been implicated in bodily processes both in health and disease. Recent pharmacological and physiological experiments have described novel aspects of classic brain signaling mechanisms or revealed unknown mechanisms of cellular communication involving the endocannabinoid system. While several forms of signaling have been described for endocannabinoids, the most distinguishing feature of endocannabinoids is their ability to act as retrograde messengers in neural circuits. Neurons in the main olfactory bulb express high levels of cannabinoid receptors. Here, we describe the cellular mechanisms and function of this novel brain signaling system in regulating neural activity at synapses in olfactory circuits. Results from basic research have the potential to provide the groundwork for translating the neurobiology of drug abuse to the realm of the pharmacotherapeutic treatment of addiction, specifically marijuana substance use disorder.

  3. Dynamical modeling of the moth pheromone-sensitive olfactory receptor neuron within its sensillar environment.

    Directory of Open Access Journals (Sweden)

    Yuqiao Gu

    Full Text Available In insects, olfactory receptor neurons (ORNs, surrounded with auxiliary cells and protected by a cuticular wall, form small discrete sensory organs--the sensilla. The moth pheromone-sensitive sensillum is a well studied example of hair-like sensillum that is favorable to both experimental and modeling investigations. The model presented takes into account both the molecular processes of ORNs, i.e. the biochemical reactions and ionic currents giving rise to the receptor potential, and the cellular organization and compartmentalization of the organ represented by an electrical circuit. The number of isopotential compartments needed to describe the long dendrite bearing pheromone receptors was determined. The transduction parameters that must be modified when the number of compartments is increased were identified. This model reproduces the amplitude and time course of the experimentally recorded receptor potential. A first complete version of the model was analyzed in response to pheromone pulses of various strengths. It provided a quantitative description of the spatial and temporal evolution of the pheromone-dependent conductances, currents and potentials along the outer dendrite and served to determine the contribution of the various steps in the cascade to its global sensitivity. A second simplified version of the model, utilizing a single depolarizing conductance and leak conductances for repolarizing the ORN, was derived from the first version. It served to analyze the effects on the sensory properties of varying the electrical parameters and the size of the main sensillum parts. The consequences of the results obtained on the still uncertain mechanisms of olfactory transduction in moth ORNs--involvement or not of G-proteins, role of chloride and potassium currents--are discussed as well as the optimality of the sensillum organization, the dependence of biochemical parameters on the neuron spatial extension and the respective contributions

  4. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila.

    Directory of Open Access Journals (Sweden)

    Takahiro Chihara

    2014-06-01

    Full Text Available Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity, we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs, Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.

  5. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila.

    Science.gov (United States)

    Chihara, Takahiro; Kitabayashi, Aki; Morimoto, Michie; Takeuchi, Ken-ichi; Masuyama, Kaoru; Tonoki, Ayako; Davis, Ronald L; Wang, Jing W; Miura, Masayuki

    2014-06-01

    Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity), we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs), Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.

  6. No Sensory Compensation for Olfactory Memory: Differences between Blind and Sighted People

    Directory of Open Access Journals (Sweden)

    Agnieszka Sorokowska

    2017-12-01

    Full Text Available Blindness can be a driving force behind a variety of changes in sensory systems. When vision is missing, other modalities and higher cognitive functions can become hyper-developed through a mechanism called sensory compensation. Overall, previous studies suggest that olfactory memory in blind people can be better than that of the sighted individuals. Better performance of blind individuals in other-sensory modalities was hypothesized to be a result of, among others, intense perceptual training. At the same time, if the superiority of blind people in olfactory abilities indeed results from training, their scores should not decrease with age to such an extent as among the sighted people. Here, this hypothesis was tested in a large sample of 94 blind individuals. Olfactory memory was assessed using the Test for Olfactory Memory, comprising episodic odor recognition (discriminating previously presented odors from new odors and two forms of semantic memory (cued and free identification of odors. Regarding episodic olfactory memory, we observed an age-related decline in correct hits in blind participants, but an age-related increase in false alarms in sighted participants. Further, age moderated the between-group differences for correct hits, but the direction of the observed effect was contrary to our expectations. The difference between blind and sighted individuals younger than 40 years old was non-significant, but older sighted individuals outperformed their blind counterparts. In conclusion, we found no positive effect of visual impairment on olfactory memory. We suggest that daily perceptual training is not enough to increase olfactory memory function in blind people.

  7. No Sensory Compensation for Olfactory Memory: Differences between Blind and Sighted People.

    Science.gov (United States)

    Sorokowska, Agnieszka; Karwowski, Maciej

    2017-01-01

    Blindness can be a driving force behind a variety of changes in sensory systems. When vision is missing, other modalities and higher cognitive functions can become hyper-developed through a mechanism called sensory compensation. Overall, previous studies suggest that olfactory memory in blind people can be better than that of the sighted individuals. Better performance of blind individuals in other-sensory modalities was hypothesized to be a result of, among others, intense perceptual training. At the same time, if the superiority of blind people in olfactory abilities indeed results from training, their scores should not decrease with age to such an extent as among the sighted people. Here, this hypothesis was tested in a large sample of 94 blind individuals. Olfactory memory was assessed using the Test for Olfactory Memory, comprising episodic odor recognition (discriminating previously presented odors from new odors) and two forms of semantic memory (cued and free identification of odors). Regarding episodic olfactory memory, we observed an age-related decline in correct hits in blind participants, but an age-related increase in false alarms in sighted participants. Further, age moderated the between-group differences for correct hits, but the direction of the observed effect was contrary to our expectations. The difference between blind and sighted individuals younger than 40 years old was non-significant, but older sighted individuals outperformed their blind counterparts. In conclusion, we found no positive effect of visual impairment on olfactory memory. We suggest that daily perceptual training is not enough to increase olfactory memory function in blind people.

  8. No Sensory Compensation for Olfactory Memory: Differences between Blind and Sighted People

    Science.gov (United States)

    Sorokowska, Agnieszka; Karwowski, Maciej

    2017-01-01

    Blindness can be a driving force behind a variety of changes in sensory systems. When vision is missing, other modalities and higher cognitive functions can become hyper-developed through a mechanism called sensory compensation. Overall, previous studies suggest that olfactory memory in blind people can be better than that of the sighted individuals. Better performance of blind individuals in other-sensory modalities was hypothesized to be a result of, among others, intense perceptual training. At the same time, if the superiority of blind people in olfactory abilities indeed results from training, their scores should not decrease with age to such an extent as among the sighted people. Here, this hypothesis was tested in a large sample of 94 blind individuals. Olfactory memory was assessed using the Test for Olfactory Memory, comprising episodic odor recognition (discriminating previously presented odors from new odors) and two forms of semantic memory (cued and free identification of odors). Regarding episodic olfactory memory, we observed an age-related decline in correct hits in blind participants, but an age-related increase in false alarms in sighted participants. Further, age moderated the between-group differences for correct hits, but the direction of the observed effect was contrary to our expectations. The difference between blind and sighted individuals younger than 40 years old was non-significant, but older sighted individuals outperformed their blind counterparts. In conclusion, we found no positive effect of visual impairment on olfactory memory. We suggest that daily perceptual training is not enough to increase olfactory memory function in blind people. PMID:29276494

  9. Newborn neurons in the olfactory bulb selected for long-term survival through olfactory learning are prematurely suppressed when the olfactory memory is erased.

    Science.gov (United States)

    Sultan, Sébastien; Rey, Nolwen; Sacquet, Joelle; Mandairon, Nathalie; Didier, Anne

    2011-10-19

    A role for newborn neurons in olfactory memory has been proposed based on learning-dependent modulation of olfactory bulb neurogenesis in adults. We hypothesized that if newborn neurons support memory, then they should be suppressed by memory erasure. Using an ecological approach in mice, we showed that behaviorally breaking a previously learned odor-reward association prematurely suppressed newborn neurons selected to survive during initial learning. Furthermore, intrabulbar infusions of the caspase pan-inhibitor ZVAD (benzyloxycarbonyl-Val-Ala-Asp) during the behavioral odor-reward extinction prevented newborn neurons death and erasure of the odor-reward association. Newborn neurons thus contribute to the bulbar network plasticity underlying long-term memory.

  10. Roles for Drosophila Mushroom Body Neurons in Olfactory Learning and Memory

    Science.gov (United States)

    Zong, Lin; Tanaka, Nobuaki K.; Ito, Kei; Davis, Ronald L.; Akalal, David-Benjamin G.; Wilson, Curtis F.

    2006-01-01

    Olfactory learning assays in Drosophila have revealed that distinct brain structures known as mushroom bodies (MBs) are critical for the associative learning and memory of olfactory stimuli. However, the precise roles of the different neurons comprising the MBs are still under debate. The confusion surrounding the roles of the different neurons…

  11. Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory.

    Directory of Open Access Journals (Sweden)

    Florence Kermen

    Full Text Available BACKGROUND: It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days, but not a massed (within day, learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. CONCLUSION/SIGNIFICANCE: We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.

  12. Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory.

    Science.gov (United States)

    Kermen, Florence; Sultan, Sébastien; Sacquet, Joëlle; Mandairon, Nathalie; Didier, Anne

    2010-08-13

    It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.

  13. Uptake and transport of manganese in primary and secondary olfactory neurones in pike.

    Science.gov (United States)

    Tjälve, H; Mejàre, C; Borg-Neczak, K

    1995-07-01

    gamma-spectrometry and autoradiography were used to examine the axoplasmic flow of manganese in the olfactory nerves and to study the uptake of the metal in the brain after application of 54Mn2+ in the olfactory chambers of pikes. The results show that the 54Mn2+ is taken up in the olfactory receptor cells and is transported at a constant rate along the primary olfactory neurones into the brain. The maximal velocity for the transported 54Mn2+ was 2.90 +/- 0.21 mm/hr (mean +/- S.E.) at 10 degrees, which was the temperature used in the experiments. The 54Mn2+ accumulated in the entire olfactory bulbs, although most marked in central and caudal parts. The metal was also seen to migrate into large areas of the telencephalon, apparently mainly via the secondary olfactory axons present in the medial olfactory tract. A transfer along fibres of the medial olfactory tract probably also explains the labelling which was seen in the diencephalon down to the hypothalamus. The results also showed that there is a pathway connecting the two olfactory bulbs of the pike and that this can carry the metal. Our data further showed a marked accumulation of 54Mn2+ in the meningeal epithelium and in the contents of the meningeal sacs surrounding the olfactory bulbs. It appears from our study that manganese has the ability to pass the synaptic junctions between the primary and the secondary olfactory neurones in the olfactory bulbs and to migrate along secondary olfactory pathways into the telencephalon and the diencephalon.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Neuronal nitric oxide synthase in the olfactory system of an adult teleost fish Oreochromis mossambicus.

    Science.gov (United States)

    Singru, Praful S; Sakharkar, Amul J; Subhedar, Nishikant

    2003-07-11

    The aim of the present study is to explore the distribution of nitric oxide synthase in the olfactory system of an adult teleost, Oreochromis mossambicus using neuronal nitric oxide synthase (nNOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry methods. Intense nNOS immunoreactivity was noticed in several olfactory receptor neurons (ORNs), in their axonal extensions over the olfactory nerve and in some basal cells of the olfactory epithelium. nNOS containing fascicles of the ORNs enter the bulb from its rostral pole, spread in the olfactory nerve layer in the periphery of the bulb and display massive innervation of the olfactory glomeruli. Unilateral ablation of the olfactory organ resulted in dramatic loss of nNOS immunoreactivity in the olfactory nerve layer of the ipsilateral bulb. In the olfactory bulb of intact fish, some granule cells showed intense immunoreactivity; dendrites arising from the granule cells could be traced to the glomerular layer. Of particular interest is the occurrence of nNOS immunoreactivity in the ganglion cells of the nervus terminalis. nNOS containing fibers were also encountered in the medial olfactory tracts as they extend to the telencephalon. The NADPHd staining generally coincides with that of nNOS suggesting that it may serve as a marker for nNOS in the olfactory system of this fish. However, mismatch was encountered in the case of mitral cells, while all are nNOS-negative, few were NADPHd positive. The present study for the first time revealed the occurrence of nNOS immunoreactivity in the ORNs of an adult vertebrate and suggests a role for nitric oxide in the transduction of odor stimuli, regeneration of olfactory epithelium and processing of olfactory signals.

  15. Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb

    Science.gov (United States)

    Short, Shaina M.; Morse, Thomas M.; McTavish, Thomas S.; Shepherd, Gordon M.; Verhagen, Justus V.

    2016-01-01

    Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses. PMID:28005923

  16. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb.

    Science.gov (United States)

    Sahay, Amar; Wilson, Donald A; Hen, René

    2011-05-26

    While adult-born neurons in the olfactory bulb (OB) and the dentate gyrus (DG) subregion of the hippocampus have fundamentally different properties, they may have more in common than meets the eye. Here, we propose that new granule cells in the OB and DG may function as modulators of principal neurons to influence pattern separation and that adult neurogenesis constitutes an adaptive mechanism to optimally encode contextual or olfactory information. See the related Perspective from Aimone, Deng, and Gage, "Resolving New Memories: A Critical Look at the Dentate Gyrus, Adult Neurogenesis, and Pattern Separation," in this issue of Neuron. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Complete functional characterization of sensory neurons by system identification.

    Science.gov (United States)

    Wu, Michael C-K; David, Stephen V; Gallant, Jack L

    2006-01-01

    System identification is a growing approach to sensory neurophysiology that facilitates the development of quantitative functional models of sensory processing. This approach provides a clear set of guidelines for combining experimental data with other knowledge about sensory function to obtain a description that optimally predicts the way that neurons process sensory information. This prediction paradigm provides an objective method for evaluating and comparing computational models. In this chapter we review many of the system identification algorithms that have been used in sensory neurophysiology, and we show how they can be viewed as variants of a single statistical inference problem. We then review many of the practical issues that arise when applying these methods to neurophysiological experiments: stimulus selection, behavioral control, model visualization, and validation. Finally we discuss several problems to which system identification has been applied recently, including one important long-term goal of sensory neuroscience: developing models of sensory systems that accurately predict neuronal responses under completely natural conditions.

  18. Cellular registration without behavioral recall of olfactory sensory input under general anesthesia.

    Science.gov (United States)

    Samuelsson, Andrew R; Brandon, Nicole R; Tang, Pei; Xu, Yan

    2014-04-01

    Previous studies suggest that sensory information is "received" but not "perceived" under general anesthesia. Whether and to what extent the brain continues to process sensory inputs in a drug-induced unconscious state remain unclear. One hundred seven rats were randomly assigned to 12 different anesthesia and odor exposure paradigms. The immunoreactivities of the immediate early gene products c-Fos and Egr1 as neural activity markers were combined with behavioral tests to assess the integrity and relationship of cellular and behavioral responsiveness to olfactory stimuli under a surgical plane of ketamine-xylazine general anesthesia. The olfactory sensory processing centers could distinguish the presence or absence of experimental odorants even when animals were fully anesthetized. In the anesthetized state, the c-Fos immunoreactivity in the higher olfactory cortices revealed a difference between novel and familiar odorants similar to that seen in the awake state, suggesting that the anesthetized brain functions beyond simply receiving external stimulation. Reexposing animals to odorants previously experienced only under anesthesia resulted in c-Fos immunoreactivity, which was similar to that elicited by familiar odorants, indicating that previous registration had occurred in the anesthetized brain. Despite the "cellular memory," however, odor discrimination and forced-choice odor-recognition tests showed absence of behavioral recall of the registered sensations, except for a longer latency in odor recognition tests. Histologically distinguishable registration of sensory processing continues to occur at the cellular level under ketamine-xylazine general anesthesia despite the absence of behavioral recognition, consistent with the notion that general anesthesia causes disintegration of information processing without completely blocking cellular communications.

  19. Identification of new binding partners of the chemosensory signalling protein Gγ13 expressed in taste and olfactory sensory cells.

    Directory of Open Access Journals (Sweden)

    Zhenhui eLiu

    2012-06-01

    Full Text Available Tastant detection in the oral cavity involves selective receptors localized at the apical extremity of a subset of specialized taste bud cells called taste receptor cells (TRCs. The identification of the genes coding for the taste receptors involved in this process have greatly improved our understanding of the molecular mechanisms underlying detection. However, how these receptors signal in TRCs, and whether the components of the signaling cascades interact with each other or are organized in complexes is mostly unexplored. Here we report on the identification of three new binding partners for the mouse G protein gamma 13 subunit (Gγ13, a component of the bitter taste receptors signalling cascade. For two of these Gγ13 associated proteins, namely GOPC and MPDZ, we describe the expression in taste bud cells for the first time. Furthermore, we demonstrate by means of a yeast two-hybrid interaction assay that the C terminal PDZ binding motif of Gγ13 interacts with selected PDZ domains in these proteins. In the case of the PDZ domain-containing protein zona occludens-1 (ZO-1, a major component of the tight junction defining the boundary between the apical and baso-lateral region of TRCs, we identified the first PDZ domain as the site of strong interaction with Gγ13. This association was further confirmed by co-immunoprecipitation experiments in HEK 293 cells. In addition, we present immunohistological data supporting partial co-localization of GOPC, MPDZ or ZO-1 and Gγ13 in taste buds cells. Finally, we extend this observation to olfactory sensory neurons, another type of chemosensory cells known to express both ZO-1 and Gγ13. Taken together our results implicate these new interaction partners in the sub-cellular distribution of Gγ13 in olfactory and gustatory primary sensory cells.

  20. Chronically reinforced, operant olfactory conditioning increases the number of newborn GABAergic olfactory periglomerular neurons in the adult rat.

    Science.gov (United States)

    Tapia-Rodríguez, Miguel; Esquivelzeta-Rabell, José F; Gutiérrez-Ospina, Gabriel

    2012-12-01

    The mammalian brain preserves the ability to replace olfactory periglomerular cells (PGC) throughout life. Even though we have detailed a great deal the mechanisms underlying stem and amplifying cells maintenance and proliferation, as well as those modulating migration and differentiation, our knowledge on PGC phenotypic plasticity is at best fragmented and controversial. Here we explored whether chronically reinforced olfactory conditioning influences the phenotype of newborn PGC. Accordingly, olfactory conditioned rats showed increased numbers of GAD 65/67 positive PGC. Because such phenotypic change was not accompanied neither by increments in the total number of PGC, or periglomerular cell nuclei labeled with bromodeoxyuridine, nor by reductions in the number of tyrosine hydroxylase (TH), calbindin (CB) or calretinin (CR) immunoreactive PGC, we speculate that increments in the number of GABAergic PGC occur at the expense of other PGC phenotypes. In any event, these results support that adult newborn PGC phenotype may be subjected to phenotypic plasticity influenced by sensory stimulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Two clusters of GABAergic ellipsoid body neurons modulate olfactory labile memory in Drosophila.

    Science.gov (United States)

    Zhang, Zhiping; Li, Xiaoting; Guo, Jing; Li, Yan; Guo, Aike

    2013-03-20

    In Drosophila, aversive olfactory memory is believed to be stored in a prominent brain structure, the mushroom body (MB), and two pairs of MB intrinsic neurons, the dorsal paired medial (DPM) and the anterior paired lateral (APL) neurons, are found to regulate the consolidation of middle-term memory (MTM). Here we report that another prominent brain structure, the ellipsoid body (EB), is also involved in the modulation of olfactory MTM. Activating EB R2/R4m neurons does not affect the learning index, but specifically eliminates anesthesia-sensitive memory (ASM), the labile component of olfactory MTM. We further demonstrate that approximately two-thirds of these EB neurons are GABAergic and are responsible for the suppression of ASM. Using GRASP (GFP reconstitution across synaptic partners), we reveal potential synaptic connections between the EB and MB in regions covering both the presynaptic and postsynaptic sites of EB neurons, suggesting the presence of bidirectional connections between these two important brain structures. These findings suggest the existence of direct connections between the MB and EB, and provide new insights into the neural circuit basis for olfactory labile memory in Drosophila.

  2. Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila.

    Science.gov (United States)

    Séjourné, Julien; Plaçais, Pierre-Yves; Aso, Yoshinori; Siwanowicz, Igor; Trannoy, Séverine; Thoma, Vladimiros; Tedjakumala, Stevanus R; Rubin, Gerald M; Tchénio, Paul; Ito, Kei; Isabel, Guillaume; Tanimoto, Hiromu; Preat, Thomas

    2011-06-19

    Aversive olfactory memory is formed in the mushroom bodies in Drosophila melanogaster. Memory retrieval requires mushroom body output, but the manner in which a memory trace in the mushroom body drives conditioned avoidance of a learned odor remains unknown. To identify neurons that are involved in olfactory memory retrieval, we performed an anatomical and functional screen of defined sets of mushroom body output neurons. We found that MB-V2 neurons were essential for retrieval of both short- and long-lasting memory, but not for memory formation or memory consolidation. MB-V2 neurons are cholinergic efferent neurons that project from the mushroom body vertical lobes to the middle superiormedial protocerebrum and the lateral horn. Notably, the odor response of MB-V2 neurons was modified after conditioning. As the lateral horn has been implicated in innate responses to repellent odorants, we propose that MB-V2 neurons recruit the olfactory pathway involved in innate odor avoidance during memory retrieval.

  3. The functional significance of newly born neurons integrated into olfactory bulb circuits.

    Science.gov (United States)

    Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru

    2014-01-01

    The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons.

  4. The functional significance of newly born neurons integrated into olfactory bulb circuits

    Directory of Open Access Journals (Sweden)

    Masayuki eSakamoto

    2014-05-01

    Full Text Available The olfactory bulb (OB is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons.

  5. P2X receptors, sensory neurons and pain.

    Science.gov (United States)

    Bele, Tanja; Fabbretti, Elsa

    2015-01-01

    Pain represents a very large social and clinical problem since the current treatment provides insufficient pain relief. Plasticity of pain receptors together with sensitisation of sensory neurons, and the role of soluble mediators released from non-neuronal cells render difficult to understand the spatial and temporal scale of pain development, neuronal responses and disease progression. In pathological conditions, ATP is one of the most powerful mediators that activates P2X receptors that behave as sensitive ATP-detectors, such as neuronal P2X3 receptor subtypes and P2X4 and P2X7 receptors expressed on non-neuronal cells. Dissecting the molecular mechanisms occurring in sensory neurons and in accessory cells allows to design appropriate tissue- and cell- targeted approaches to treat chronic pain.

  6. Heterogeneity and convergence of olfactory first-order neurons account for the high speed and sensitivity of second-order neurons.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Rospars

    2014-12-01

    Full Text Available In the olfactory system of male moths, a specialized subset of neurons detects and processes the main component of the sex pheromone emitted by females. It is composed of several thousand first-order olfactory receptor neurons (ORNs, all expressing the same pheromone receptor, that contact synaptically a few tens of second-order projection neurons (PNs within a single restricted brain area. The functional simplicity of this system makes it a favorable model for studying the factors that contribute to its exquisite sensitivity and speed. Sensory information--primarily the identity and intensity of the stimulus--is encoded as the firing rate of the action potentials, and possibly as the latency of the neuron response. We found that over all their dynamic range, PNs respond with a shorter latency and a higher firing rate than most ORNs. Modelling showed that the increased sensitivity of PNs can be explained by the ORN-to-PN convergent architecture alone, whereas their faster response also requires cell-to-cell heterogeneity of the ORN population. So, far from being detrimental to signal detection, the ORN heterogeneity is exploited by PNs, and results in two different schemes of population coding based either on the response of a few extreme neurons (latency or on the average response of many (firing rate. Moreover, ORN-to-PN transformations are linear for latency and nonlinear for firing rate, suggesting that latency could be involved in concentration-invariant coding of the pheromone blend and that sensitivity at low concentrations is achieved at the expense of precise encoding at high concentrations.

  7. Electrophysiological characterization of male goldfish (Carassius auratus ventral preoptic area neurons receiving olfactory inputs

    Directory of Open Access Journals (Sweden)

    Wudu E. Lado

    2014-06-01

    Full Text Available Chemical communication via sex pheromones is critical for successful reproduction but the underlying neural mechanisms are not well-understood. The goldfish is a tractable model because sex pheromones have been well-characterized in this species. We used male goldfish forebrain explants in vitro and performed whole-cell current clamp recordings from single neurons in the ventral preoptic area (vPOA to characterize their membrane properties and synaptic inputs from the olfactory bulbs (OB. Principle component and cluster analyses based on intrinsic membrane properties of vPOA neurons (N = 107 revealed five (I-V distinct cell groups. These cells displayed differences in their input resistance (Rinput: I II = IV > III = V. Evidence from electrical stimulation of the OB and application of receptor antagonists suggests that vPOA neurons receive monosynaptic glutamatergic inputs via the medial olfactory tract, with connectivity varying among neuronal groups [I (24%, II (40%, III (0%, IV (34% and V (2%].

  8. Olfactory marker protein: turnover and transport in normal and regenerating neurons

    International Nuclear Information System (INIS)

    Kream, R.M.; Margolis, F.L.

    1984-01-01

    A 19,000-dalton acidic protein designated olfactory marker protein (OMP) is a cell-specific marker of mature olfactory chemosensory neurons. Intranasal irrigation of mouse olfactory epithelium with [ 35 S]methionine labeled OMP to high specific activity. Turnover and transport characteristics of 35 S-labeled OMP were compared to those of 35 S-labeled global cytosol protein in groups of young, adult, and Triton-treated adult mice. The latter contained primarily large numbers of regenerating olfactory neurons. In olfactory epithelium of young and Triton-treated mice, the specific activity of OMP was three times that of global cytosol protein, whereas in adults the two measures were equal. In all three groups, however, the rate of degradation of OMP was roughly equal to that of cytosol protein (T1/2 . 5 to 6 days). By contrast, differences in T1/2 for OMP decline in the bulb of adult, young, and Triton-treated adult mice were highly significant (T1/2's of 9.3, 6.1, and 4 to 5 days, respectively; p . 0.001). The specific activity of [35S]methionine incorporated in OMP exceeded that of the free amino acid 5-fold, indicating minimal precursor reutilization during the course of our experiments. Turnover data indicate that increased isotope incorporation into OMP in the epithelium is matched by an accelerated rate of degradation in the bulb. This may be correlated with the physiological state or developmental age of the primary neurons since in young and Triton-treated adult mice, rapidly maturing ''young'' olfactory neurons represent a larger proportion of the total population than in adults. Thus, OMP behaves as a typical, relatively slowly transported soluble protein (v . 2 to 4 mm/day, slow component b)

  9. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    Directory of Open Access Journals (Sweden)

    Jorge A Larriva-Sahd

    2012-06-01

    Full Text Available This study describes the microscopic organization of a wedge-shaped area at the intersection of the main and accessory olfactory bulbs, or olfactory limbus , and an additional component of the anterior olfactory nucleus or alpha accessory olfactory bulb that lies underneath of the accessory olfactory bulb. The olfactory limbus consists of a modified bulbar cortex bounded anteriorly by the main olfactory bulb and posteriorly by the accessory olfactory bulb. In Nissl-stained specimens the olfactory limbus differs from the main olfactory bulb by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the olfactory limbus is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area, a second or necklace glomerular area, and a wedge-shaped or interstitial area crowned by the so-called modified glomeruli that appear to belong to the anterior accessory olfactory bulb. The strategic location and interactions with the main and accessory olfactory bulbs, together with the previously noted functional and connectional evidence, suggest that the olfactory limbus may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 x 150 µm paralleling the base of the accessory olfactory bulb, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells organize into a single bundle that ascends avoiding the accessory olfactory bulb to resolve in a trigone bounded by the edge of the olfactory limbus, the accessory olfactory bulb and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67.

  10. Coincidence of pheromone and plant odor leads to sensory plasticity in the heliothine olfactory system.

    Directory of Open Access Journals (Sweden)

    Elena Ian

    Full Text Available Male moths possess a highly specialized olfactory system comprised of two segregated sub-arrangements dedicated to processing information about plant odors and pheromones, respectively. Communication between these two sub-systems has been described at the peripheral level, but relatively little is known about putative interactions at subsequent synaptic relays. The male moth faces the challenge of seeking out the conspecific female in a highly dynamic odor world. The female-produced pheromone blend, which is a limited resource serving as guidance for the male, will reach his antennae in intermittent pockets of odor filaments mixed with volatiles from various plants. In the present study we performed calcium imaging for measuring odor-evoked responses in the uni-glomerular antennal-lobe projection neurons (analog to mitral cells in the vertebrate olfactory bulb of Helicoverpa armigera. In order to investigate putative interactions between the two sub-systems tuned to plant volatiles and pheromones, respectively, we performed repeated stimulations with a selection of biologically relevant odors. We found that paired stimulation with a plant odor and the pheromone led to suppressed responses in both sub-systems as compared to those evoked during initial stimulation including application of each odor stimulus alone. The fact that the suppression persisted also after pairing, indicates the existence of a Hebbian-like plasticity in the primary olfactory center established by temporal pairing of the two odor stimulation categories.

  11. Dicer maintains the identity and function of proprioceptive sensory neurons.

    Science.gov (United States)

    O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B

    2017-03-01

    Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, micro

  12. Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis

    Directory of Open Access Journals (Sweden)

    Hansen Anne

    2007-08-01

    Full Text Available Abstract Background The nasal cavity of all vertebrates houses multiple chemosensors, either innervated by the Ist (olfactory or the Vth (trigeminal cranial nerve. Various types of receptor cells are present, either segregated in different compartments (e.g. in rodents or mingled in one epithelium (e.g. fish. In addition, solitary chemosensory cells have been reported for several species. Alligators which seek their prey both above and under water have only one nasal compartment. Information about their olfactory epithelium is limited. Since alligators seem to detect both volatile and water-soluble odour cues, I tested whether different sensory cell types are present in the olfactory epithelium. Results Electron microscopy and immunocytochemistry were used to examine the sensory epithelium of the nasal cavity of the American alligator. Almost the entire nasal cavity is lined with olfactory (sensory epithelium. Two types of olfactory sensory neurons are present. Both types bear cilia as well as microvilli at their apical endings and express the typical markers for olfactory neurons. The density of these olfactory neurons varies along the nasal cavity. In addition, solitary chemosensory cells innervated by trigeminal nerve fibres, are intermingled with olfactory sensory neurons. Solitary chemosensory cells express components of the PLC-transduction cascade found in solitary chemosensory cells in rodents. Conclusion The nasal cavity of the American alligator contains two different chemosensory systems incorporated in the same sensory epithelium: the olfactory system proper and solitary chemosensory cells. The olfactory system contains two morphological distinct types of ciliated olfactory receptor neurons.

  13. Sensory signals and neuronal groups involved in guiding the sea-ward motor behavior in turtle hatchlings of Chelonia agassizi

    Science.gov (United States)

    Fuentes, A. L.; Camarena, V.; Ochoa, G.; Urrutia, J.; Gutierrez, G.

    2007-05-01

    Turtle hatchlings orient display sea-ward oriented movements as soon as they emerge from the nest. Although most studies have emphasized the role of the visual information in this process, less attention has been paid to other sensory modalities. Here, we evaluated the nature of sensory cues used by turtle hatchlings of Chelonia agassizi to orient their movements towards the ocean. We recorded the time they took to crawl from the nest to the beach front (120m long) in control conditions and in visually, olfactory and magnetically deprived circumstances. Visually-deprived hatchlings displayed a high degree of disorientation. Olfactory deprivation and magnetic field distortion impaired, but not abolished, sea-ward oriented movements. With regard to the neuronal mapping experiments, visual deprivation reduced dramatically c-fos expression in the whole brain. Hatchlings with their nares blocked revealed neurons with c-fos expression above control levels principally in the c and d areas, while those subjected to magnetic field distortion had a wide spread activation of neurons throughout the brain predominantly in the dorsal ventricular ridge The present results support that Chelonia agassizi hatchlings use predominantly visual cues to orient their movements towards the sea. Olfactory and magnetic cues may also be use but their influence on hatchlings oriented motor behavior is not as clear as it is for vision. This conclusion is supported by the fact that in the absence of olfactory and magnetic cues, the brain turns on the expression of c- fos in neuronal groups that, in the intact hatchling, are not normally involved in accomplishing the task.

  14. Haptic and Olfactory Experiences of the Perth Foreshore: Case Studies in Sensory History

    Directory of Open Access Journals (Sweden)

    Saren Reid

    2015-11-01

    Full Text Available The liminal zone where a city meets ‘the water’s edge’ is a place of heightened sensory experiences. In Australia, these settings have been continually reshaped and experienced, individually and collectively, both before and after European settlement, and so they provide a physical domain for reinterpreting Australian history. In Perth, Western Australia, at the turn of the twentieth century, two recreational buildings on the foreshore, the Perth City Baths (1898–1914 and the Water Chute (1905–unknown, promoted new aquatic leisure practices that provided heightened sensory experiences of the Swan River and the city foreshore. These buildings are examined from the perspective of ‘sensory history’, an alternative form of cultural and environmental analysis that has been garnering interest from a range of disciplines over the past several decades (see, for example, the work of Constance Classen, Alain Corbin, David Howes and Mark M Smith. Sensory history seeks to reveal through historical inquiry the informative and exploratory nature of the senses in specific contexts. The potential value of sensory history to studies of built and natural environments lies in drawing attention away from the overweening and frequently generalising dominance of ‘the visual’ as a critical category in humanities research. The case studies explore how evolving swimming practices at the City Baths and ‘shooting the chutes’ at the Water Chute provided novel, exciting and sometimes unpleasant haptic and olfactory experiences and consider how changing forms of recreation allowed for broadly sensuous rather than primarily visual experiences of the foreshore and Swan River. These case studies are part of a larger body of research that seeks to ‘make sense’ of the Perth foreshore and, more broadly, Australian urban waterfronts as sites of varied and evolving sensory experience.

  15. Localization of SSeCKS in unmyelinated primary sensory neurons

    Directory of Open Access Journals (Sweden)

    Siegel Sandra M

    2008-03-01

    Full Text Available Abstract Background SSeCKS (Src SupprEssed C Kinase Substrate is a proposed protein kinase C substrate/A kinase anchoring protein (AKAP that has recently been characterized in the rat peripheral nervous system. It has been shown that approximately 40% of small primary sensory neurons contain SSeCKS-immunoreactivity in a population largely separate from substance P (95.2%, calcitonin gene related peptide (95.3%, or fluoride resistant acid phosphatase (55.0% labeled cells. In the spinal cord, it was found that SSeCKS-immunoreactive axon collaterals terminate in the dorsal third of lamina II outer in a region similar to that of unmyelinated C-, or small diameter myelinated Aδ-, fibers. However, the precise characterization of the anatomical profile of the primary sensory neurons containing SSeCKS remains to be determined. Here, immunohistochemical labeling at the light and ultrastructural level is used to clarify the myelination status of SSeCKS-containing sensory neuron axons and to further clarify the morphometric, and provide insight into the functional, classification of SSeCKS-IR sensory neurons. Methods Colocalization studies of SSeCKS with myelination markers, ultrastructural localization of SSeCKS labeling and ablation of largely unmyelinated sensory fibers by neonatal capsaicin administration were all used to establish whether SSeCKS containing sensory neurons represent a subpopulation of unmyelinated primary sensory C-fibers. Results Double labeling studies of SSeCKS with CNPase in the dorsal horn and Pzero in the periphery showed that SSeCKS immunoreactivity was observed predominantly in association with unmyelinated primary sensory fibers. At the ultrastructural level, SSeCKS immunoreactivity was most commonly associated with axonal membrane margins of unmyelinated fibers. In capsaicin treated rats, SSeCKS immunoreactivity was essentially obliterated in the dorsal horn while in dorsal root ganglia quantitative analysis revealed a 43

  16. Epac activation sensitizes rat sensory neurons via activation of Ras

    Science.gov (United States)

    Shariati, Behzad; Thompson, Eric L.; Nicol, Grant D.; Vasko, Michael R.

    2015-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2′-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. PMID:26596174

  17. Epac activation sensitizes rat sensory neurons through activation of Ras.

    Science.gov (United States)

    Shariati, Behzad; Thompson, Eric L; Nicol, Grant D; Vasko, Michael R

    2016-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2'-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Diverse coupling of neurons to populations in sensory cortex.

    Science.gov (United States)

    Okun, Michael; Steinmetz, Nicholas; Cossell, Lee; Iacaruso, M Florencia; Ko, Ho; Barthó, Péter; Moore, Tirin; Hofer, Sonja B; Mrsic-Flogel, Thomas D; Carandini, Matteo; Harris, Kenneth D

    2015-05-28

    A large population of neurons can, in principle, produce an astronomical number of distinct firing patterns. In cortex, however, these patterns lie in a space of lower dimension, as if individual neurons were "obedient members of a huge orchestra". Here we use recordings from the visual cortex of mouse (Mus musculus) and monkey (Macaca mulatta) to investigate the relationship between individual neurons and the population, and to establish the underlying circuit mechanisms. We show that neighbouring neurons can differ in their coupling to the overall firing of the population, ranging from strongly coupled 'choristers' to weakly coupled 'soloists'. Population coupling is largely independent of sensory preferences, and it is a fixed cellular attribute, invariant to stimulus conditions. Neurons with high population coupling are more strongly affected by non-sensory behavioural variables such as motor intention. Population coupling reflects a causal relationship, predicting the response of a neuron to optogenetically driven increases in local activity. Moreover, population coupling indicates synaptic connectivity; the population coupling of a neuron, measured in vivo, predicted subsequent in vitro estimates of the number of synapses received from its neighbours. Finally, population coupling provides a compact summary of population activity; knowledge of the population couplings of n neurons predicts a substantial portion of their n(2) pairwise correlations. Population coupling therefore represents a novel, simple measure that characterizes the relationship of each neuron to a larger population, explaining seemingly complex network firing patterns in terms of basic circuit variables.

  19. Reconstructing the population activity of olfactory output neurons that innervate identifiable processing units

    Directory of Open Access Journals (Sweden)

    Shigehiro Namiki

    2008-06-01

    Full Text Available We investigated the functional organization of the moth antennal lobe (AL, the primary olfactory network, using in vivo electrophysiological recordings and anatomical identification. The moth AL contains about 60 processing units called glomeruli that are identifiable from one animal to another. We were able to monitor the output information of the AL by recording the activity of a population of output neurons, each of which innervated a single glomerulus. Using compiled intracellular recordings and staining data from different animals, we mapped the odor-evoked dynamics on a digital atlas of the AL and geometrically reconstructed the population activity. We examined the quantitative relationship between the similarity of olfactory responses and the anatomical distance between glomeruli. Globally, the olfactory response profile was independent of the anatomical distance, although some local features were present.

  20. Responses of single neurons and neuronal ensembles in frog first- and second-order olfactory neurons

    Czech Academy of Sciences Publication Activity Database

    Rospars, J. P.; Šanda, Pavel; Lánský, Petr; Duchamp-Viret, P.

    2013-01-01

    Roč. 1536, NOV 6 (2013), s. 144-158 ISSN 0006-8993 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP103/11/0282 Institutional support: RVO:67985823 Keywords : olfaction * spiking activity * neuronal model Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.828, year: 2013

  1. Hierarchical axon targeting of Drosophila olfactory receptor neurons specified by the proneural transcription factors Atonal and Amos.

    Science.gov (United States)

    Okumura, Misako; Kato, Tomoko; Miura, Masayuki; Chihara, Takahiro

    2016-01-01

    Sensory information is spatially represented in the brain to form a neural map. It has been suggested that axon-axon interactions are important for neural map formation; however, the underlying mechanisms are not fully understood. We used the Drosophila antennal lobe, the first olfactory center in the brain, as a model for studying neural map formation. Olfactory receptor neurons (ORNs) expressing the same odorant receptor target their axons to a single glomerulus out of approximately 50 glomeruli in the antennal lobe. Previous studies have showed that the axons of Atonal ORNs, specified by Atonal, a basic helix-loop-helix (bHLH) transcription factor, pioneer antennal lobe formation; however, the details remain to be elucidated. Here, we show that genetic ablation of Atonal ORNs affects antennal lobe structure and axon targeting of Amos ORNs, another type of ORN specified by the bHLH transcription factor Amos. During development, Atonal ORNs reach the antennal lobe and form the axon commissure before Amos ORNs. We also found that N-cadherin knockdown specifically in Atonal ORNs disrupts the glomerular boundary in the whole antennal lobe. Our results suggest that Atonal ORNs function as pioneer axons. Thus, correct axon targeting of Atonal ORNs is essential for formation of the whole antennal lobe. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  2. Primary cell culture of LHRH neurones from embryonic olfactory placode in the sheep (Ovis aries).

    Science.gov (United States)

    Duittoz, A H; Batailler, M; Caldani, M

    1997-09-01

    The aim of this study was to establish an in vitro model of ovine luteinizing hormone-releasing hormone (LHRH) neurones. Olfactory placodes from 26 day-old sheep embryos (E26) were used for explant culture. Cultures were maintained successfully up to 35 days, but were usually used at 17 days for immunocytochemistry. LHRH and neuronal markers such as neurofilament (NF) were detected by immunocytochemistry within and/or outside the explant. Three main types of LHRH positive cells are described: (1) neuroblastic LHRH and NF immunoreactive cells with round cell body and very short neurites found mainly within the explant, (2) migrating LHRH bipolar neurones with an fusiform cell body, found outside the explant, (3) network LHRH neuron, bipolar or multipolar with long neurites connecting other LHRH neurons. Cell morphology was very similar to that which has been described in the adult sheep brain. These results strongly suggest that LHRH neurones in the sheep originate from the olfactory placode. This mode may represent a useful tool to study LHRH neurones directly in the sheep.

  3. Medullary neurons in the core white matter of the olfactory bulb: a new cell type.

    Science.gov (United States)

    Paredes, Raúl G; Larriva-Sahd, Jorge

    2010-02-01

    The structure of a new cell type, termed the medullary neuron (MN) because of its intimate association with the rostral migratory stream (RMS) in the bulbar core, is described in the adult rat olfactory bulb. The MN is a triangular or polygonal interneuron whose soma lies between the cellular clusters of the RMS or, less frequently, among the neuron progenitors therein. MNs are easily distinguished from adjacent cells by their large size and differentiated structure. Two MN subtypes have been categorized by the Golgi technique: spiny pyramidal neurons and aspiny neurons. Both MN subtypes bear a large dendritic field impinged upon by axons in the core bulbar white matter. A set of collaterals from the adjacent axons appears to terminate on the MN dendrites. The MN axon passes in close apposition to adjacent neuron progenitors in the RMS. MNs are immunoreactive with antisera raised against gamma-aminobutyric acid and glutamate decarboxylase 65/67. Electron-microscopic observations confirm that MNs correspond to fully differentiated, mature neurons. MNs seem to be highly conserved among macrosmatic species as they occur in Nissl-stained brain sections from mouse, guinea pig, and hedgehog. Although the functional role of MNs remains to be determined, we suggest that MNs represent a cellular interface between endogenous olfactory activity and the differentiation of new neurons generated during adulthood.

  4. Receptors for sensory neuropeptides in human inflammatory diseases: Implications for the effector role of sensory neurons

    International Nuclear Information System (INIS)

    Mantyh, P.W.; Catton, M.D.; Boehmer, C.G.; Welton, M.L.; Passaro, E.P. Jr.; Maggio, J.E.; Vigna, S.R.

    1989-01-01

    Glutamate and several neuropeptides are synthesized and released by subpopulations of primary afferent neurons. These sensory neurons play a role in regulating the inflammatory and immune responses in peripheral tissues. Using quantitative receptor autoradiography we have explored what changes occur in the location and concentration of receptor binding sites for sensory neurotransmitters in the colon in two human inflammatory diseases, ulcerative colitis and Crohn's disease. The sensory neurotransmitter receptors examined included bombesin, calcitonin gene related peptide-alpha, cholecystokinin, galanin, glutamate, somatostatin, neurokinin A (substance K), substance P, and vasoactive intestinal polypeptide. Of the nine receptor binding sites examined only substance P binding sites associated with arterioles, venules and lymph nodules were dramatically up-regulated in the inflamed tissue. These data suggest that substance P is involved in regulating the inflammatory and immune responses in human inflammatory diseases and indicate a specificity of efferent action for each sensory neurotransmitter in peripheral tissues

  5. Chromatin modification of Notch targets in olfactory receptor neuron diversification

    Czech Academy of Sciences Publication Activity Database

    Endo, K.; Karim, M. R.; Taniguchi, H.; Krejčí, Alena; Kinameri, E.; Siebert, M.; Ito, K.; Bray, S. J.; Moore, A. W.

    2012-01-01

    Roč. 15, č. 2 (2012), s. 224-233 ISSN 1097-6256 Institutional research plan: CEZ:AV0Z50070508 Keywords : neuron diversification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 15.251, year: 2012

  6. [The mirror neuron system in motor and sensory rehabilitation].

    Science.gov (United States)

    Oouchida, Yutaka; Izumi, Shinichi

    2014-06-01

    The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.

  7. Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila.

    Science.gov (United States)

    Qin, Hongtao; Cressy, Michael; Li, Wanhe; Coravos, Jonathan S; Izzi, Stephanie A; Dubnau, Joshua

    2012-04-10

    Mushroom body (MB)-dependent olfactory learning in Drosophila provides a powerful model to investigate memory mechanisms. MBs integrate olfactory conditioned stimulus (CS) inputs with neuromodulatory reinforcement (unconditioned stimuli, US), which for aversive learning is thought to rely on dopaminergic (DA) signaling to DopR, a D1-like dopamine receptor expressed in MBs. A wealth of evidence suggests the conclusion that parallel and independent signaling occurs downstream of DopR within two MB neuron cell types, with each supporting half of memory performance. For instance, expression of the Rutabaga (Rut) adenylyl cyclase in γ neurons is sufficient to restore normal learning to rut mutants, whereas expression of Neurofibromatosis 1 (NF1) in α/β neurons is sufficient to rescue NF1 mutants. DopR mutations are the only case where memory performance is fully eliminated, consistent with the hypothesis that DopR receives the US inputs for both γ and α/β lobe traces. We demonstrate, however, that DopR expression in γ neurons is sufficient to fully support short- and long-term memory. We argue that DA-mediated CS-US association is formed in γ neurons followed by communication between γ and α/β neurons to drive consolidation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules.

    Science.gov (United States)

    Grison, Alice; Zucchelli, Silvia; Urzì, Alice; Zamparo, Ilaria; Lazarevic, Dejan; Pascarella, Giovanni; Roncaglia, Paola; Giorgetti, Alejandro; Garcia-Esparcia, Paula; Vlachouli, Christina; Simone, Roberto; Persichetti, Francesca; Forrest, Alistair R R; Hayashizaki, Yoshihide; Carloni, Paolo; Ferrer, Isidro; Lodovichi, Claudia; Plessy, Charles; Carninci, Piero; Gustincich, Stefano

    2014-08-27

    The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson's disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease.

  9. The circuitry of olfactory projection neurons in the brain of the honeybee, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Hanna Zwaka

    2016-09-01

    Full Text Available In the honeybee brain, two prominent tracts - the medial and the lateral antennal lobe tract - project from the primary olfactory center, the antennal lobes, to the central brain, the mushroom bodies, and the protocerebral lobe. Intracellularly stained uniglomerular projection neurons (uPN were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the mushroom body lip neuropil. Projection neurons of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the mushroom body calyces and the protocerebral lobe. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral mushroom body lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between projection neurons, octopaminergic-, and GABAergic cells in the mushroom body calyces. For the first time, we found evidence for connections between both tracts within the antennal lobe.

  10. γ neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila

    Science.gov (United States)

    Qin, H.; Cressy, M.; Li, W.; Coravos, J.; Izzi, S.; Dubnau, J.

    2012-01-01

    SUMMARY Mushroom body (MB) dependent olfactory learning in Drosophila provides a powerful model to investigate memory mechanisms. MBs integrate olfactory conditioned stimuli (CS) inputs with neuromodulatory reinforcement (unconditioned stimuli, US) [1, 2], which for aversive learning is thought to rely on dopaminergic (DA) signaling [3–6] to DopR, a D1-like dopamine receptor expressed in MB [7, 8]. A wealth of evidence suggests the conclusion that parallel and independent signaling occurs downstream of DopR within two MB neuron cell types, with each supporting half of memory performance. For instance, expression of the rutabaga adenylyl cyclase (rut) in γ neurons is sufficient to restore normal learning to rut mutants [9] whereas expression of Neurofibromatosis I (NFI) in α/β neurons is sufficient to rescue NF1 mutants [10, 11]. DopR mutations are the only case where memory performance is fully eliminated [7], consistent with the hypothesis that DopR receives the US inputs for both γ and α/β lobe traces. We demonstrate, however, that DopR expression in γ neurons is sufficient to fully support short (STM) and long-term memory (LTM). We argue that DA-mediated CS-US association is formed in γ neurons followed by communication between γ and α/β neurons to drive consolidation. PMID:22425153

  11. Statistical approach in search for optimal signal in simple olfactory neuronal models

    Czech Academy of Sciences Publication Activity Database

    Pokora, Ondřej; Lánský, Petr

    2008-01-01

    Roč. 214, 1-2 (2008), s. 100-108 ISSN 0025-5564 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401 Grant - others:GA MŠk(CZ) LC06024 Institutional research plan: CEZ:AV0Z50110509 Keywords : Fisher information * olfactory neuron Subject RIV: BO - Biophysics Impact factor: 1.148, year: 2008

  12. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    Science.gov (United States)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  13. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network

    Directory of Open Access Journals (Sweden)

    Sarah Malvaut

    2016-01-01

    Full Text Available The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ and migrate along the rostral migratory stream (RMS towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour.

  14. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network

    Science.gov (United States)

    Malvaut, Sarah; Saghatelyan, Armen

    2016-01-01

    The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour. PMID:26839709

  15. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level

    OpenAIRE

    CADIOU , Hervé; AOUDE , Imad; Tazir , Bassim; Molinas , Adrien; Forbes Fenech , Claire; Meunier , Nicolas; Grosmaitre , Xavier

    2014-01-01

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of...

  16. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification.

    Science.gov (United States)

    Kramer, Ina; Sigrist, Markus; de Nooij, Joriene C; Taniuchi, Ichiro; Jessell, Thomas M; Arber, Silvia

    2006-02-02

    Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.

  17. Post-eclosion odor experience modifies olfactory receptor neuron coding in Drosophila.

    Science.gov (United States)

    Iyengar, Atulya; Chakraborty, Tuhin Subhra; Goswami, Sarit Pati; Wu, Chun-Fang; Siddiqi, Obaid

    2010-05-25

    Olfactory responses of Drosophila undergo pronounced changes after eclosion. The flies develop attraction to odors to which they are exposed and aversion to other odors. Behavioral adaptation is correlated with changes in the firing pattern of olfactory receptor neurons (ORNs). In this article, we present an information-theoretic analysis of the firing pattern of ORNs. Flies reared in a synthetic odorless medium were transferred after eclosion to three different media: (i) a synthetic medium relatively devoid of odor cues, (ii) synthetic medium infused with a single odorant, and (iii) complex cornmeal medium rich in odors. Recordings were made from an identified sensillum (type II), and the Jensen-Shannon divergence (D(JS)) was used to assess quantitatively the differences between ensemble spike responses to different odors. Analysis shows that prolonged exposure to ethyl acetate and several related esters increases sensitivity to these esters but does not improve the ability of the fly to distinguish between them. Flies exposed to cornmeal display varied sensitivity to these odorants and at the same time develop greater capacity to distinguish between odors. Deprivation of odor experience on an odorless synthetic medium leads to a loss of both sensitivity and acuity. Rich olfactory experience thus helps to shape the ORNs response and enhances its discriminative power. The experiments presented here demonstrate an experience-dependent adaptation at the level of the receptor neuron.

  18. Odor-Evoked Inhibition of Olfactory Sensory Neurons Drives Olfactory Perception in Drosophila

    Science.gov (United States)

    2017-05-22

    inside a glass tube. An solenoid valve-controlled 498 air flow of 50 ml/min passed through the glass tube and was then mixed with the 499 background...A1 R Multi-Photon Laser -Scanning 501 Confocal Microscope (Nikon) with a 60×, NA 1.0 water-immersion objective (Nikon), 502 high-sensitivity non...descanned detectors, and a Mai Tai DeepSee ultrafast laser (Spectra-503 Physics). Time-lapse imaging series of GCaMP6m from a single z plane of the

  19. Sensory Prioritization in Rats: Behavioral Performance and Neuronal Correlates.

    Science.gov (United States)

    Lee, Conrad C Y; Diamond, Mathew E; Arabzadeh, Ehsan

    2016-03-16

    Operating with some finite quantity of processing resources, an animal would benefit from prioritizing the sensory modality expected to provide key information in a particular context. The present study investigated whether rats dedicate attentional resources to the sensory modality in which a near-threshold event is more likely to occur. We manipulated attention by controlling the likelihood with which a stimulus was presented from one of two modalities. In a whisker session, 80% of trials contained a brief vibration stimulus applied to whiskers and the remaining 20% of trials contained a brief change of luminance. These likelihoods were reversed in a visual session. When a stimulus was presented in the high-likelihood context, detection performance increased and was faster compared with the same stimulus presented in the low-likelihood context. Sensory prioritization was also reflected in neuronal activity in the vibrissal area of primary somatosensory cortex: single units responded differentially to the whisker vibration stimulus when presented with higher probability compared with lower probability. Neuronal activity in the vibrissal cortex displayed signatures of multiplicative gain control and enhanced response to vibration stimuli during the whisker session. In conclusion, rats allocate priority to the more likely stimulus modality and the primary sensory cortex may participate in the redistribution of resources. Detection of low-amplitude events is critical to survival; for example, to warn prey of predators. To formulate a response, decision-making systems must extract minute neuronal signals from the sensory modality that provides key information. Here, we identify the behavioral and neuronal correlates of sensory prioritization in rats. Rats were trained to detect whisker vibrations or visual flickers. Stimuli were embedded in two contexts in which either visual or whisker modality was more likely to occur. When a stimulus was presented in the high

  20. Involvement of sensory neurons in bone defect repair in rats

    International Nuclear Information System (INIS)

    Henmi, Akiko; Nakamura, Megumi; Echigo, Seishi; Sasano, Yasuyuki

    2011-01-01

    We investigated bone repair in sensory-denervated rats, compared with controls, to elucidate the involvement of sensory neurons. Nine-week-old male Wistar rats received subcutaneous injections of capsaicin to denervate sensory neurons. Rats treated with the same amount of vehicle served as controls. A standardized bone defect was created on the parietal bone. We measured the amount of repaired bone with quantitative radiographic analysis and the mRNA expressions of osteocalcin and cathepsin K with real-time polymerase chain reaction (PCR). Quantitative radiographic analysis showed that the standard deviations and coefficients of variation for the amount of repaired bone were much higher in the capsaicin-treated group than in the control group at any time point, which means that larger individual differences in the amount of repaired bone were found in capsaicin-treated rats than controls. Furthermore, radiographs showed radiolucency in pre-existing bone surrounding the standardized defect only in the capsaicin-treated group, and histological observation demonstrated some multinuclear cells corresponding to the radiolucent area. Real-time PCR indicated that there was no significant difference in the mRNA expression levels of osteocalcin and cathepsin K between the control group and the capsaicin-treated group. These results suggest that capsaicin-induced sensory denervation affects the bone defect repair. (author)

  1. Insect olfactory memory in time and space.

    Science.gov (United States)

    Liu, Xu; Davis, Ronald L

    2006-12-01

    Recent studies using functional optical imaging have revealed that cellular memory traces form in different areas of the insect brain after olfactory classical conditioning. These traces are revealed as increased calcium signals or synaptic release from defined neurons, and include a short-lived trace that forms immediately after conditioning in antennal lobe projection neurons, an early trace in dopaminergic neurons, and a medium-term trace in dorsal paired medial neurons. New molecular genetic tools have revealed that for normal behavioral memory performance, synaptic transmission from the mushroom body neurons is required only during retrieval, whereas synaptic transmission from dopaminergic neurons is required at the time of acquisition and synaptic transmission from dorsal paired medial neurons is required during the consolidation period. Such experimental results are helping to identify the types of neurons that participate in olfactory learning and when their participation is required. Olfactory learning often occurs alongside crossmodal interactions of sensory information from other modalities. Recent studies have revealed complex interactions between the olfactory and the visual senses that can occur during olfactory learning, including the facilitation of learning about subthreshold olfactory stimuli due to training with concurrent visual stimuli.

  2. The Stem Cell Marker Lgr5 Defines a Subset of Postmitotic Neurons in the Olfactory Bulb.

    Science.gov (United States)

    Yu, Yiqun; Moberly, Andrew H; Bhattarai, Janardhan P; Duan, Chen; Zheng, Qian; Li, Fangqi; Huang, Hugh; Olson, William; Luo, Wenqin; Wen, Tieqiao; Yu, Hongmeng; Ma, Minghong

    2017-09-27

    Lgr5, leucine-rich repeat-containing G-protein coupled receptor 5, is a bona fide biomarker for stem cells in multiple tissues. Lgr5 is also expressed in the brain, but the identities and properties of these Lgr5 + cells are still elusive. Using an Lgr5-EGFP reporter mouse line, we found that, from early development to adulthood, Lgr5 is highly expressed in the olfactory bulb (OB), an area with ongoing neurogenesis. Immunostaining with stem cell, glial, and neuronal markers reveals that Lgr5 does not label stem cells in the OB but instead labels a heterogeneous population of neurons with preference in certain subtypes. Patch-clamp recordings in OB slices reveal that Lgr5-EGFP + cells fire action potentials and display spontaneous excitatory postsynaptic events, indicating that these neurons are integrated into OB circuits. Interestingly, R-spondin 3, a potential ligand of Lgr5, is also expressed in the adult OB. Collectively, our data indicate that Lgr5-expressing cells in the OB are fully differentiated neurons and imply distinct roles of Lgr5 and its ligand in postmitotic cells. SIGNIFICANCE STATEMENT Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) is a bona fide stem cell marker in many body organs. Here we report that Lgr5 is also highly expressed in the olfactory bulb (OB), the first relay station in the brain for processing odor information and one of the few neural structures that undergo continuous neurogenesis. Surprisingly, Lgr5 is not expressed in the OB stem cells, but instead in a few subtypes of terminally differentiated neurons, which are incorporated into the OB circuit. This study reveals that Lgr5 + cells in the brain represent a nonstem cell lineage, implying distinct roles of Lgr5 in postmitotic neurons. Copyright © 2017 the authors 0270-6474/17/379403-12$15.00/0.

  3. Effects of Colored Noise on Stochastic Resonance in Sensory Neurons

    International Nuclear Information System (INIS)

    Nozaki, D.; Mar, D.J.; Collins, J.J.; Grigg, P.

    1999-01-01

    Noise can assist neurons in the detection of weak signals via a mechanism known as stochastic resonance (SR). We demonstrate experimentally that SR-type effects can be obtained in rat sensory neurons with white noise, 1/f noise, or 1/f 2 noise. For low-frequency input noise, we show that the optimal noise intensity is the lowest and the output signal-to-noise ratio the highest for conventional white noise. We also show that under certain circumstances, 1/f noise can be better than white noise for enhancing the response of a neuron to a weak signal. We present a theory to account for these results and discuss the biological implications of 1/f noise. copyright 1999 The American Physical Society

  4. Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells

    Directory of Open Access Journals (Sweden)

    Brill Monika S

    2011-04-01

    Full Text Available Abstract Background While the diversity and spatio-temporal origin of olfactory bulb (OB GABAergic interneurons has been studied in detail, much less is known about the subtypes of glutamatergic OB interneurons. Results We studied the temporal generation and diversity of Neurog2-positive precursor progeny using an inducible genetic fate mapping approach. We show that all subtypes of glutamatergic neurons derive from Neurog2 positive progenitors during development of the OB. Projection neurons, that is, mitral and tufted cells, are produced at early embryonic stages, while a heterogeneous population of glutamatergic juxtaglomerular neurons are generated at later embryonic as well as at perinatal stages. While most juxtaglomerular neurons express the T-Box protein Tbr2, those generated later also express Tbr1. Based on morphological features, these juxtaglomerular cells can be identified as tufted interneurons and short axon cells, respectively. Finally, targeted electroporation experiments provide evidence that while the majority of OB glutamatergic neurons are generated from intrabulbar progenitors, a small portion of them originate from extrabulbar regions at perinatal ages. Conclusions We provide the first comprehensive analysis of the temporal and spatial generation of OB glutamatergic neurons and identify distinct populations of juxtaglomerular interneurons that differ in their antigenic properties and time of origin.

  5. Neuronal and glial release of (3H)GABA from the rat olfactory bulb

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, E.H.; Cuello, A.C.

    1981-12-01

    Neuronal versus glial components of the (3H)gamma-aminobutyric acid ((3H)GABA) release studies were performed with two different microdissected layers of the olfactory bulb of the rat. In some experiments substantia nigra was used as a GABAergic axonal system and the trigeminal ganglia as a peripheral glial model. Spontaneous release of (3H)GABA was always lower in neuronal elements as compared with glial cells. A veratridine-evoked release was observed from the ONL but not from the trigeminal ganglia. Tetrodotoxin (TTX) abolished the veratridine-evoked release from the ONL, which also showed a partial inhibition when high magnesium concentrations were used in a Ca2+-free solution. beta-Alanine was strongly exchanged with (3H)GABA from the ONL of animals with the olfactory nerve lesioned and from animals with no lesion; but only a small heteroexchange was found from the external plexiform layer. The beta-alanine heteroexchange was able to deplete the releasable GABA store from the ONL of lesioned animals. In nonlesioned animals and the external plexiform layer, the veratridine-stimulated release of (3H)GABA was not significantly reduced after the beta-alanine heteroexchange. Stimulation of the (3H)GABA release by high concentrations of potassium elicited a higher release rate from axonal terminals than from dendrites or glia. Neurones and glia showed a similar inhibition of (3H)GABA release when a high magnesium concentration was added to a calcium-free solution. When D-600 was used as a calcium-flux blocker no inhibition of the release was observed in glial cells, whereas an almost complete blockage was found in both neuronal preparations (substantia nigra and EPL). These results provide further evidence for differential release mechanisms of GABA from CNS neurones and glial cells.

  6. The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb

    Science.gov (United States)

    Gengatharan, Archana; Bammann, Rodrigo R.; Saghatelyan, Armen

    2016-01-01

    In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the role of astroglial cells in the generation, migration, integration, and survival of new neurons in the adult forebrain. In the subventricular zone, neural stem cells with astrocytic properties display regional and temporal specificity when generating different neuronal subtypes. Non-neurogenic astrocytes contribute to the establishment and maintenance of the neurogenic niche. Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic processes. Astrocytes play an important regulatory role in neuroblast migration and also assist in the development of a vasculature scaffold in the migratory stream that is essential for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help to modulate the network through a complex release of cytokines, regulate blood flow, and provide metabolic support, which may promote the integration and survival of new neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb neurogenesis, and it is likely that many other functions of these glial cells will emerge in the near future. PMID:27092050

  7. Olfactory bulb dysgenesis, mirror neuron system dysfunction, and autonomic dysregulation as the neural basis for autism.

    Science.gov (United States)

    Brang, David; Ramachandran, V S

    2010-05-01

    Autism is a disorder characterized by social withdrawal, impoverished language and empathy, and a profound inability to adopt another's viewpoint - a failure to construct a "theory of mind" for interpreting another person's thoughts and intentions. We previously showed that these symptoms might be explained, in part, by a paucity of mirror neurons. Prompted by an MRI report of an individual with autism, we now suggest that there may be, in addition, a congenital aplasia/dysplasia of the olfactory bulbs with consequent reduction of vasopressin and oxytocin receptor binding. There may also be sub-clinical temporal lobe epilepsy affecting the recently discovered third visual system that is rich in "empathy" related mirror neurons (MNS) and projects (via the TOP junction - just below the inferior parietal lobule) to limbic structures that regulate autonomic outflow. This causes deranged autonomic feedback, resulting in additional deficiencies in MNS with loss of emotional empathy and introspection.

  8. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

    Science.gov (United States)

    Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande

    2015-01-01

    Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

  9. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  10. Anatomy, histochemistry and immunohistochemistry of the olfactory subsystems in mice

    Directory of Open Access Journals (Sweden)

    Arthur William Barrios

    2014-07-01

    Full Text Available The four regions of the murine nasal cavity featuring olfactory neurons were studied anatomically and by labelling with lectins and relevant antibodies with a view to establishing criteria for the identification of olfactory subsystems that are readily applicable to other mammals. In the main olfactory epithelium and the septal organ the olfactory sensory neurons (OSNs are embedded in quasi-stratified columnar epithelium; vomeronasal OSNs are embedded in epithelium lining the medial interior wall of the vomeronasal duct and do not make contact with the mucosa of the main nasal cavity; and in Grüneberg’s ganglion a small isolated population of OSNs lies adjacent to, but not within, the epithelium. With the exception of Grüneberg’s ganglion, all the tissues expressing olfactory marker protein (OMP (the above four nasal territories, the vomeronasal and main olfactory nerves, and the main and accessory olfactory bulbs are also labelled by Lycopersicum esculentum agglutinin, while Ulex europaeus agglutinin I labels all and only tissues expressing Gi2 (the apical sensory neurons of the vomeronasal organ, their axons, and their glomerular destinations in the anterior accessory olfactory bulb. These staining patterns of UEA-I and LEA may facilitate the characterization of olfactory anatomy in other species. A 710-section atlas of the anatomy of the murine nasal cavity has been made available on line.

  11. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    Science.gov (United States)

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  12. Existence of multiple receptors in single neurons: responses of single bullfrog olfactory neurons to many cAMP-dependent and independent odorants.

    Science.gov (United States)

    Kashiwayanagi, M; Shimano, K; Kurihara, K

    1996-11-04

    The responses of single bullfrog olfactory neurons to various odorants were measured with the whole-cell patch clamp which offers direct information on cellular events and with the ciliary recording technique to obtain stable quantitative data from many neurons. A large portion of single olfactory neurons (about 64% and 79% in the whole-cell recording and in the ciliary recording, respectively) responded to many odorants with quite diverse molecular structures, including both odorants previously indicated to be cAMP-dependent (increasing) and independent odorants. One odorant elicited a response in many cells; e.g. hedione and citralva elicited the response in 100% and 92% of total neurons examined with the ciliary recording technique. To confirm that a single neuron carries different receptors or transduction pathways, the cross-adaptation technique was applied to single neurons. Application of hedione to a single neuron after desensitization of the current in response to lyral or citralva induced an inward current with a similar magnitude to that applied alone. It was suggested that most single olfactory neurons carry multiple receptors and at least dual transduction pathways.

  13. Nested Expression Domains for Odorant Receptors in Zebrafish Olfactory Epithelium

    Science.gov (United States)

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-11-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system.

  14. PERIPHERAL SENSORY NEURONS EXPRESSING MELANOPSIN RESPOND TO LIGHT

    Directory of Open Access Journals (Sweden)

    Anna Matynia

    2016-08-01

    Full Text Available The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior.

  15. Genes that act downstream of sensory neurons to influence longevity, dauer formation, and pathogen responses in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Marta M Gaglia

    Full Text Available The sensory systems of multicellular organisms are designed to provide information about the environment and thus elicit appropriate changes in physiology and behavior. In the nematode Caenorhabditis elegans, sensory neurons affect the decision to arrest during development in a diapause state, the dauer larva, and modulate the lifespan of the animals in adulthood. However, the mechanisms underlying these effects are incompletely understood. Using whole-genome microarray analysis, we identified transcripts whose levels are altered by mutations in the intraflagellar transport protein daf-10, which result in impaired development and function of many sensory neurons in C. elegans. In agreement with existing genetic data, the expression of genes regulated by the transcription factor DAF-16/FOXO was affected by daf-10 mutations. In addition, we found altered expression of transcriptional targets of the DAF-12/nuclear hormone receptor in the daf-10 mutants and showed that this pathway influences specifically the dauer formation phenotype of these animals. Unexpectedly, pathogen-responsive genes were repressed in daf-10 mutant animals, and these sensory mutants exhibited altered susceptibility to and behavioral avoidance of bacterial pathogens. Moreover, we found that a solute transporter gene mct-1/2, which was induced by daf-10 mutations, was necessary and sufficient for longevity. Thus, sensory input seems to influence an extensive transcriptional network that modulates basic biological processes in C. elegans. This situation is reminiscent of the complex regulation of physiology by the mammalian hypothalamus, which also receives innervations from sensory systems, most notably the visual and olfactory systems.

  16. Proteomic Analysis of the Human Olfactory Bulb.

    Science.gov (United States)

    Dammalli, Manjunath; Dey, Gourav; Madugundu, Anil K; Kumar, Manish; Rodrigues, Benvil; Gowda, Harsha; Siddaiah, Bychapur Gowrishankar; Mahadevan, Anita; Shankar, Susarla Krishna; Prasad, Thottethodi Subrahmanya Keshava

    2017-08-01

    The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.

  17. Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus.

    Science.gov (United States)

    Tadesse, Tizeta; Derby, Charles D; Schmidt, Manfred

    2014-01-01

    We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca(2+) imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca(2+) signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons. Both Ca(2+) signals are primarily mediated by an influx of extracellular Ca(2+) through voltage-activated Ca(2+) channels that can be blocked by CoCl2 and the L-type Ca(2+) channel blocker verapamil. Intracellular Ca(2+) stores contribute little to odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations. The odorant-induced Ca(2+) transients as well as the spontaneous Ca(2+) oscillations depend on action potentials mediated by Na(+) channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca(2+) signals represent experimentally accessible proxies of spiking.

  18. Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography

    International Nuclear Information System (INIS)

    Lancet, D.; Greer, C.A.; Kauer, J.S.; Shepherd, G.M.

    1982-01-01

    The spatial distribution of odor-induced neuronal activity in the olfactory bulb, the first relay station of the olfactory pathway, is believed to reflect important aspects of chemosensory coding. We report here the application of high-resolution 2-deoxyglucose autoradiography to the mapping of spatial patterns of metabolic activity at the level of single neurons in the olfactory bulb. It was found that glomeruli, which are synaptic complexes containing the first synaptic relay, tend to be uniformly active or inactive during odor exposure. Differential 2-deoxyglucose uptake was also observed in the somata of projection neurons (mitral cells) and interneurons (periglomerular and granule cells). This confirms and extends our previous studies in which odor-specific laminar and focal uptake patterns were revealed by the conventional x-ray film 2-deoxyglucose method due to Sokoloff and colleagues [Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O. and Shinohara, M. (1977) J. Neurochem. 28, 897-916]. Based on results obtained by the two methods, it is suggested that the glomerulus as a whole serves as a functional unit of activity. The high-resolution results are interpreted in terms of the well-characterized synaptic organization of the olfactory bulb and also serve to illustrate the capability of the 2-deoxyglucose autoradiographic technique to map metabolic activity in single neurons of the vertebrate central nervous system

  19. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  20. Efficient adenoviral vector directed expression of a foreign gene to neurons and sustentacular cells in the mouse olfactory neuroepithelium

    NARCIS (Netherlands)

    Gispen, W.H.; Holtmaat, A.J.G.D.; Hermens, W.T.J.M.C.; Oestreicher, A.B.; Kaplitt, M.G.; Verhaagen, J.

    1996-01-01

    Replication deficient recombinant adenoviral vectors are efficient gene transfer agents for postmitotic cells, including neurons and glial cells. In this paper we have examined the effectiveness of adenoviral vector-mediated gene transfer to the olfactory epithelium of adult mice. We show that

  1. Efficient adenoviral vector-directed expression of a foreign gene to neurons and sustentacular cells in the mouse olfactory neuroepithelium

    NARCIS (Netherlands)

    Holtmaat, Anthony J D G; Hermens, W.T.J.M.C.; Oestreicher, A B; Gispen, Willem Hendrik; Kaplitt, M G; Verhaagen, J

    1996-01-01

    Replication deficient recombinant adenoviral vectors are efficient gene transfer agents for postmitotic cells, including neurons and glial cells. In this paper we have examined the effectiveness of adenoviral vector-mediated gene transfer to the olfactory epithelium of adult mice. We show that

  2. Transcriptome profile and cytogenetic analysis of immortalized neuronally restricted progenitor cells derived from the porcine olfactory bulb

    Science.gov (United States)

    Recently, we established and phenotypically characterized an immortalized porcine olfactory bulb neuroblast cell line, OBGF400 (Uebing-Czipura et al., 2008). To facilitate the future application of these cells in studies of neurological dysfunction and neuronal replacement therapies, a comprehensive...

  3. The essence of appetite: Does olfactory receptor variation play a role?

    Science.gov (United States)

    Olfactory receptors are G-protein coupled chemoreceptors expressed on millions of olfactory sensory neurons within the nasal cavity. These receptors detect environmental odorants and signal the brain regarding the location of feed, potential mates, and the presence of possible threats (e.g., predato...

  4. Histone Deacetylase Rpd3 Regulates Olfactory Projection Neuron Dendrite Targeting via the Transcription Factor Prospero

    Science.gov (United States)

    Tea, Joy S.; Chihara, Takahiro; Luo, Liqun

    2010-01-01

    Compared to the mechanisms of axon guidance, relatively little is known about the transcriptional control of dendrite guidance. The Drosophila olfactory system with its stereotyped organization provides an excellent model to study the transcriptional control of dendrite wiring specificity. Each projection neuron (PN) targets its dendrites to a specific glomerulus in the antennal lobe and its axon stereotypically to higher brain centers. Using a forward genetic screen, we identified a mutation in Rpd3 that disrupts PN targeting specificity. Rpd3 encodes a class I histone deacetylase (HDAC) homologous to mammalian HDAC1 and HDAC2. Rpd3−/− PN dendrites that normally target to a dorsolateral glomerulus mistarget to medial glomeruli in the antennal lobe, and axons exhibit a severe overbranching phenotype. These phenotypes can be rescued by postmitotic expression of Rpd3 but not HDAC3, the only other class I HDAC in Drosophila. Furthermore, disruption of the atypical homeodomain transcription factor Prospero (Pros) yields similar phenotypes, which can be rescued by Pros expression in postmitotic neurons. Strikingly, overexpression of Pros can suppress Rpd3−/− phenotypes. Our study suggests a specific function for the general chromatin remodeling factor Rpd3 in regulating dendrite targeting in neurons, largely through the postmitotic action of the Pros transcription factor. PMID:20660276

  5. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb

    Science.gov (United States)

    Deshpande, Aditi; Bergami, Matteo; Ghanem, Alexander; Conzelmann, Karl-Klaus; Lepier, Alexandra; Götz, Magdalena; Berninger, Benedikt

    2013-01-01

    Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit. PMID:23487772

  6. EOL-1, the homolog of the mammalian Dom3Z, regulates olfactory learning in C. elegans

    OpenAIRE

    Zhang, J; Calarco, JA; Shen, Y; Zhang, Y

    2014-01-01

    Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates ...

  7. Morphology and intrinsic excitability of regenerating sensory and motor neurons grown on a line micropattern.

    Directory of Open Access Journals (Sweden)

    Ouafa Benzina

    Full Text Available Axonal regeneration is one of the greatest challenges in severe injuries of peripheral nerve. To provide the bridge needed for regeneration, biological or synthetic tubular nerve constructs with aligned architecture have been developed. A key point for improving axonal regeneration is assessing the effects of substrate geometry on neuronal behavior. In the present study, we used an extracellular matrix-micropatterned substrate comprising 3 µm wide lines aimed to physically mimic the in vivo longitudinal axonal growth of mice peripheral sensory and motor neurons. Adult sensory neurons or embryonic motoneurons were seeded and processed for morphological and electrical activity analyses after two days in vitro. We show that micropattern-guided sensory neurons grow one or two axons without secondary branching. Motoneurons polarity was kept on micropattern with a long axon and small dendrites. The micro-patterned substrate maintains the growth promoting effects of conditioning injury and demonstrates, for the first time, that neurite initiation and extension could be differentially regulated by conditioning injury among DRG sensory neuron subpopulations. The micro-patterned substrate impacts the excitability of sensory neurons and promotes the apparition of firing action potentials characteristic for a subclass of mechanosensitive neurons. The line pattern is quite relevant for assessing the regenerative and developmental growth of sensory and motoneurons and offers a unique model for the analysis of the impact of geometry on the expression and the activity of mechanosensitive channels in DRG sensory neurons.

  8. An information theoretic model of information processing in the Drosophila olfactory system: the role of inhibitory neurons for system efficiency.

    Science.gov (United States)

    Faghihi, Faramarz; Kolodziejski, Christoph; Fiala, André; Wörgötter, Florentin; Tetzlaff, Christian

    2013-12-20

    Fruit flies (Drosophila melanogaster) rely on their olfactory system to process environmental information. This information has to be transmitted without system-relevant loss by the olfactory system to deeper brain areas for learning. Here we study the role of several parameters of the fly's olfactory system and the environment and how they influence olfactory information transmission. We have designed an abstract model of the antennal lobe, the mushroom body and the inhibitory circuitry. Mutual information between the olfactory environment, simulated in terms of different odor concentrations, and a sub-population of intrinsic mushroom body neurons (Kenyon cells) was calculated to quantify the efficiency of information transmission. With this method we study, on the one hand, the effect of different connectivity rates between olfactory projection neurons and firing thresholds of Kenyon cells. On the other hand, we analyze the influence of inhibition on mutual information between environment and mushroom body. Our simulations show an expected linear relation between the connectivity rate between the antennal lobe and the mushroom body and firing threshold of the Kenyon cells to obtain maximum mutual information for both low and high odor concentrations. However, contradicting all-day experiences, high odor concentrations cause a drastic, and unrealistic, decrease in mutual information for all connectivity rates compared to low concentration. But when inhibition on the mushroom body is included, mutual information remains at high levels independent of other system parameters. This finding points to a pivotal role of inhibition in fly information processing without which the system efficiency will be substantially reduced.

  9. Identification of the Ulex europaeus agglutinin-I-binding protein as a unique glycoform of the neural cell adhesion molecule in the olfactory sensory axons of adults rats.

    Science.gov (United States)

    Pestean, A; Krizbai, I; Böttcher, H; Párducz, A; Joó, F; Wolff, J R

    1995-08-04

    Histochemical localization of two lectins, Ulex europaeus agglutinin-I (UEA-I) and Tetragonolobus purpureus (TPA), was studied in the olfactory bulb of adult rats. In contrast to TPA, UEA-I detected a fucosylated glycoprotein that is only present in the surface membranes of olfactory sensory cells including the whole course of their neurites up to the final arborization in glomeruli. Immunoblotting revealed that UEA-I binds specifically to a protein of 205 kDa, while TPA stains several other glycoproteins. Affinity chromatography with the use of a UEA-I column identified the 205 kDa protein as a glycoform of neural cell adhesion molecule (N-CAM), specific for the rat olfactory sensory nerves.

  10. Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb

    Directory of Open Access Journals (Sweden)

    Jeffrey E Dahlen

    2011-05-01

    Full Text Available Adult born neurons are added to the olfactory bulb (OB throughout life in rodents. While many factors have been identified as regulating the survival and integration of adult-born neurons (ABNs into existing circuitry, the understanding of how these factors affect ABN morphology and connectivity is limited. Here we compare how cell intrinsic (siRNA knock down of voltage gated sodium channels NaV1.1-1.3 and circuit level (naris occlusion reductions in activity affect ABN morphology during integration into the OB. We found that both manipulations reduce the number of dendritic spines (and thus likely the number of reciprocal synaptic connections formed with the surrounding circuitry and inhibited dendritic ramification of ABNs. Further, we identified regions of ABN apical dendrites where the largest and most significant decreases occur following siRNA knock down or naris occlusion. In siRNA knock down cells, reduction of spines is observed in proximal regions of the apical dendrite. This suggests that distal regions of the dendrite may remain active independent of NaV1.1-1.3 channel expression, perhaps facilitated by activation of T-type calcium channels and NMDA receptors. By contrast, circuit level reduction of activity by naris occlusion resulted in a global depression of spine number. Together, these results indicate that ABNs retain the ability to develop their typical overall morphological features regardless of experienced activity, and activity modulates the number and location of formed connections.

  11. Morphology and nanomechanics of sensory neurons growth cones following peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Marta Martin

    Full Text Available A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins.

  12. Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain.

    Science.gov (United States)

    Mauelshagen, J

    1993-02-01

    conditioning procedure reveal that the effect observed for the one-trial conditioning paradigm is of an associative nature and that there might be modulations, which are specific for single and multiple trial conditioning procedures. It is hypothesized that the PE1-neuron is a possible element involved in the short-term acquisition, rather than in the long-term storage, of an associative olfactory memory in the honeybee.

  13. touché is required for touch evoked generator potentials within vertebrate sensory neurons

    Science.gov (United States)

    Low, Sean E.; Ryan, Joel; Sprague, Shawn M.; Hirata, Hiromi; Cui, Wilson W.; Zhou, Weibin; Hume, Richard I.; Kuwada, John Y.; Saint-Amant, Louis

    2010-01-01

    The process by which light-touch in vertebrates is transformed into an electrical response in cutaneous mechanosensitive neurons is a largely unresolved question. To address this question we undertook a forward genetic screen in zebrafish (Danio rerio) to identify mutants exhibiting abnormal touch-evoked behaviors, despite the presence of sensory neurons and peripheral neurites. One family, subsequently named touché, was found to harbor a recessive mutation which produced offspring that were unresponsive to light-touch, but responded to a variety of other sensory stimuli. The optogenetic activation of motor behaviors by touché mutant sensory neurons expressing ChannelRhodopsin-2 suggested that the synaptic output of sensory neurons was intact, consistent with a defect in sensory neuron activation. To explore sensory neuron activation we developed an in vivo preparation permitting the precise placement of a combined electrical and tactile stimulating probe upon eGFP positive peripheral neurites. In wild type larva electrical and tactile stimulation of peripheral neurites produced action potentials detectable within the cell body. In a subset of these sensory neurons an underlying generator potential could be observed in response to subthreshold tactile stimuli. A closer examination revealed that the amplitude of the generator potential was proportional to the stimulus amplitude. When assayed touché mutant sensory neurons also responded to electrical stimulation of peripheral neurites similar to wild type larvae, however tactile stimulation of these neurites failed to uncover a subset of sensory neurons possessing generator potentials. These findings suggest that touché is required for generator potentials, and that generator potentials underlie responsiveness to light-touch in zebrafish. PMID:20631165

  14. Optogenetically enhanced axon regeneration: motor versus sensory neuron-specific stimulation.

    Science.gov (United States)

    Ward, Patricia J; Clanton, Scott L; English, Arthur W

    2018-02-01

    Brief neuronal activation in injured peripheral nerves is both necessary and sufficient to enhance motor axon regeneration, and this effect is specific to the activated motoneurons. It is less clear whether sensory neurons respond in a similar manner to neuronal activation following peripheral axotomy. Further, it is unknown to what extent enhancement of axon regeneration with increased neuronal activity relies on a reflexive interaction within the spinal circuitry. We used mouse genetics and optical tools to evaluate the precision and selectivity of system-specific neuronal activation to enhance axon regeneration in a mixed nerve. We evaluated sensory and motor axon regeneration in two different mouse models expressing the light-sensitive cation channel, channelrhodopsin (ChR2). We selectively activated either sensory or motor axons using light stimulation combined with transection and repair of the sciatic nerve. Regardless of genotype, the number of ChR2-positive neurons whose axons had regenerated successfully was greater following system-specific optical treatment, with no effect on the number of ChR2-negative neurons (whether motor or sensory neurons). We conclude that acute system-specific neuronal activation is sufficient to enhance both motor and sensory axon regeneration. This regeneration-enhancing effect is likely cell autonomous. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  16. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  17. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hatt Hanns

    2011-08-01

    Full Text Available Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  18. Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons.

    Science.gov (United States)

    Mardinly, A R; Spiegel, I; Patrizi, A; Centofante, E; Bazinet, J E; Tzeng, C P; Mandel-Brehm, C; Harmin, D A; Adesnik, H; Fagiolini, M; Greenberg, M E

    2016-03-17

    Inhibitory neurons regulate the adaptation of neural circuits to sensory experience, but the molecular mechanisms by which experience controls the connectivity between different types of inhibitory neuron to regulate cortical plasticity are largely unknown. Here we show that exposure of dark-housed mice to light induces a gene program in cortical vasoactive intestinal peptide (VIP)-expressing neurons that is markedly distinct from that induced in excitatory neurons and other subtypes of inhibitory neuron. We identify Igf1 as one of several activity-regulated genes that are specific to VIP neurons, and demonstrate that IGF1 functions cell-autonomously in VIP neurons to increase inhibitory synaptic input onto these neurons. Our findings further suggest that in cortical VIP neurons, experience-dependent gene transcription regulates visual acuity by activating the expression of IGF1, thus promoting the inhibition of disinhibitory neurons and affecting inhibition onto cortical pyramidal neurons.

  19. Connexin43 Hemichannels in Satellite Glial Cells, Can They Influence Sensory Neuron Activity?

    Directory of Open Access Journals (Sweden)

    Mauricio A. Retamal

    2017-11-01

    Full Text Available In this review article, we summarize the current insight on the role of Connexin- and Pannexin-based channels as modulators of sensory neurons. The somas of sensory neurons are located in sensory ganglia (i.e., trigeminal and nodose ganglia. It is well known that within sensory ganglia, sensory neurons do not form neither electrical nor chemical synapses. One of the reasons for this is that each soma is surrounded by glial cells, known as satellite glial cells (SGCs. Recent evidence shows that connexin43 (Cx43 hemichannels and probably pannexons located at SGCs have an important role in paracrine communication between glial cells and sensory neurons. This communication may be exerted via the release of bioactive molecules from SGCs and their subsequent action on receptors located at the soma of sensory neurons. The glio-neuronal communication seems to be relevant for the establishment of chronic pain, hyperalgesia and pathologies associated with tissue inflammation. Based on the current literature, it is possible to propose that Cx43 hemichannels expressed in SGCs could be a novel pharmacological target for treating chronic pain, which need to be directly evaluated in future studies.

  20. Untuned But Not Irrelevant: The Role of Untuned Neurons In Sensory Information Coding

    OpenAIRE

    Zylberberg, Joel

    2017-01-01

    In the sensory systems, most neurons' firing rates are tuned to at least one aspect of the stimulus. Other neurons are appear to be untuned, meaning that their firing rates do not depend on the stimulus. Previous work on information coding in neural populations has ignored untuned neurons, based on the tacit assumption that they are unimportant. Recent experimental work has questioned this assumption, showing that in some circumstances, neurons with no apparent stimulus tuning can contribute ...

  1. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: a role for CWC22

    Directory of Open Access Journals (Sweden)

    Masaki Kobayashi

    2017-03-01

    Full Text Available Unique deficits in the function of adult sensory neurons as part of their early neurodegeneration might account for progressive polyneuropathy during chronic diabetes mellitus. Here, we provide structural and functional evidence for aberrant pre-mRNA splicing in a chronic type 1 model of experimental diabetic polyneuropathy (DPN. Cajal bodies (CBs, unique nuclear substructures involved in RNA splicing, increased in number in diabetic sensory neurons, but their expected colocalization with survival motor neuron (SMN proteins was reduced – a mislocalization described in motor neurons of spinal muscular atrophy. Small nuclear ribonucleoprotein particles (snRNPs, also participants in the spliceosome, had abnormal multiple nuclear foci unassociated with CBs, and their associated snRNAs were reduced. CWC22, a key spliceosome protein, was aberrantly upregulated in diabetic dorsal root ganglia (DRG, and impaired neuronal function. CWC22 attenuated sensory neuron plasticity, with knockdown in vitro enhancing their neurite outgrowth. Further, axonal delivery of CWC22 siRNA unilaterally to locally knock down the aberrant protein in diabetic nerves improved aspects of sensory function in diabetic mice. Collectively, our findings identify subtle but significant alterations in spliceosome structure and function, including dysregulated CBs and CWC22 overexpression, in diabetic sensory neurons that offer new ideas regarding diabetic sensory neurodegeneration in polyneuropathy.

  2. Gross morphology and histology of the olfactory organ of the Greenland shark Somniosus microcephalus

    DEFF Research Database (Denmark)

    Ferrando, S.; Gallus, L.; Ghigliotti, L.

    2016-01-01

    The Greenland shark (Somniosus microcephalus) is the largest predatory fish in Arctic waters. Knowledge of the fundamental biology and ecological role of the Greenland shark is limited, and the sensory biology of the Greenland shark has been poorly studied. Given the potential relevant contribution...... of chemoreception to the sensory capability of the Greenland shark to forage and navigate in low-light environments, we examined the architecture of the peripheral olfactory organ (the olfactory rosette) through morphological, histological and immunohistochemical assays. We found that each olfactory rosette...... neurons, presence of unusually large cells along the olfactory fiber bundles) deserve further investigation. Overall, the structure of the olfactory rosette suggests a well-developed olfactory capability for the Greenland shark coherent with a bentho-pelagic lifestyle....

  3. En masse in vitro functional profiling of the axonal mechanosensitivity of sensory neurons.

    Science.gov (United States)

    Usoskin, Dmitry; Zilberter, Misha; Linnarsson, Sten; Hjerling-Leffler, Jens; Uhlén, Per; Harkany, Tibor; Ernfors, Patrik

    2010-09-14

    Perception of the environment relies on somatosensory neurons. Mechanosensory, proprioceptor and many nociceptor subtypes of these neurons have specific mechanosensitivity profiles to adequately differentiate stimulus patterns. Nevertheless, the cellular basis of differential mechanosensation remains largely elusive. Successful transduction of sensory information relies on the recruitment of sensory neurons and mechanosensation occurring at their peripheral axonal endings in vivo. Conspicuously, existing in vitro models aimed to decipher molecular mechanisms of mechanosensation test single sensory neuron somata at any one time. Here, we introduce a compartmental in vitro chamber design to deliver precisely controlled mechanical stimulation of sensory axons with synchronous real-time imaging of Ca(2+) transients in neuronal somata that reliably reflect action potential firing patterns. We report of three previously not characterized types of mechanosensitive neuron subpopulations with distinct intrinsic axonal properties tuned specifically to static indentation or vibration stimuli, showing that different classes of sensory neurons are tuned to specific types of mechanical stimuli. Primary receptor currents of vibration neurons display rapidly adapting conductance reliably detected for every single stimulus during vibration and are consistently converted into action potentials. This result allows for the characterization of two critical steps of mechanosensation in vivo: primary signal detection and signal conversion into specific action potential firing patterns in axons.

  4. Slack channels expressed in sensory neurons control neuropathic pain in mice.

    Science.gov (United States)

    Lu, Ruirui; Bausch, Anne E; Kallenborn-Gerhardt, Wiebke; Stoetzer, Carsten; Debruin, Natasja; Ruth, Peter; Geisslinger, Gerd; Leffler, Andreas; Lukowski, Robert; Schmidtko, Achim

    2015-01-21

    Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain. Copyright © 2015 the authors 0270-6474/15/351125-11$15.00/0.

  5. Comparative analysis of behavioral and transcriptional variation underlying CO2 sensory neuron function and development in Drosophila.

    Science.gov (United States)

    Pan, Jia Wern; McLaughlin, Joi; Yang, Haining; Leo, Charles; Rambarat, Paula; Okuwa, Sumie; Monroy-Eklund, Anaïs; Clark, Sabrina; Jones, Corbin D; Volkan, Pelin Cayirlioglu

    2017-10-02

    Carbon dioxide is an important environmental cue for many insects, regulating many behaviors including some that have direct human impacts. To further improve our understanding of how this system varies among closely related insect species, we examined both the behavioral response to CO 2 as well as the transcriptional profile of key developmental regulators of CO 2 sensory neurons in the olfactory system across the Drosophila genus. We found that CO 2 generally evokes repulsive behavior across most of the Drosophilids we examined, but this behavior has been lost or reduced in several lineages. Comparisons of transcriptional profiles from the developing and adult antennae for subset these species suggest that behavioral differences in some species may be due to differences in the expression of the CO 2 co-receptor Gr63a. Furthermore, these differences in Gr63a expression are correlated with changes in the expression of a few genes known to be involved in the development of the CO 2 circuit, namely dac, an important regulator of sensilla fate for sensilla that house CO 2 ORNs, and mip120, a member of the MMB/dREAM epigenetic regulatory complex that regulates CO 2 receptor expression. In contrast, most of the other known structural, molecular, and developmental components of the peripheral Drosophila CO 2 olfactory system seem to be well-conserved across all examined lineages. These findings suggest that certain components of CO 2 sensory ORN development may be more evolutionarily labile, and may contribute to differences in CO 2 -evoked behavioral responses across species.

  6. Vasodilatation in the rat dorsal hindpaw induced by activation of sensory neurons is reduced by Paclitaxel

    OpenAIRE

    Gracias, N.G.; Cummins, T.R.; Kelley, M.R.; Basile, D.P.; Iqbal, T.; Vasko, M.R.

    2010-01-01

    Peripheral neuropathy is a major side effect following treatment with the cancer chemotherapeutic drug paclitaxel. Whether paclitaxel-induced peripheral neuropathy is secondary to altered function of small diameter sensory neurons remains controversial. To ascertain whether the function of the small diameter sensory neurons was altered following systemic administration of paclitaxel, we injected male Sprague Dawley rats with 1 mg/kg paclitaxel every other day for a total of four doses and exa...

  7. Adult neurogenesis in the olfactory system shapes odor memory and perception.

    Science.gov (United States)

    Gheusi, Gilles; Lledo, Pierre-Marie

    2014-01-01

    The olfactory system is a dynamic place. In mammals, not only are sensory neurons located in the sensory organ renewed through adult life, but also its first central relay is reconstructed by continuous neuronal recruitment. Despite these numerous morphological and physiological changes, olfaction is a unique sensory modality endowed with a privileged link to memory. This raises a clear conundrum; how does the olfactory system balance its neuronal turnover with its participation in long-term memory? This review concentrates on the functional aspects of adult neurogenesis, addressing how the integration of late-born neurons participates in olfactory perception and memory. After outlining the properties of adult neurogenesis in the olfactory system, and after describing their regulation by internal and environmental factors, we ask how the process of odorant perception can be influenced by constant neuronal turnover. We then explore the possible functional roles that newborn neurons might have for olfactory memory. Throughout this review, and as we concentrate almost exclusively on mammalian models, we stress the idea that adult neurogenesis is yet another form of plasticity used by the brain to copes with a constantly changing olfactory world. © 2014 Elsevier B.V. All rights reserved.

  8. CD36 is involved in oleic acid detection by the murine olfactory system.

    Directory of Open Access Journals (Sweden)

    Sonja eOberland

    2015-09-01

    Full Text Available Olfactory signals influence food intake in a variety of species. To maximize the chances of finding a source of calories, an animal’s preference for fatty foods and triglycerides already becomes apparent during olfactory food search behavior. However, the molecular identity of both receptors and ligands mediating olfactory-dependent fatty acid recognition are, so far, undescribed. We here describe that a subset of olfactory sensory neurons expresses the fatty acid receptor CD36 and demonstrate a receptor-like localization of CD36 in olfactory cilia by STED microscopy. CD36-positive olfactory neurons share olfaction-specific transduction elements and project to numerous glomeruli in the ventral olfactory bulb. In accordance with the described roles of CD36 as fatty acid receptor or co-receptor in other sensory systems, the number of olfactory neurons responding to oleic acid, a major milk component, in Ca2+ imaging experiments is drastically reduced in young CD36 knock-out mice. Strikingly, we also observe marked age-dependent changes in CD36 localization, which is prominently present in the ciliary compartment only during the suckling period. Our results support the involvement of CD36 in fatty acid detection by the mammalian olfactory system.

  9. The critical period for peripheral specification of dorsal root ganglion neurons is related to the period of sensory neurogenesis

    International Nuclear Information System (INIS)

    Smith, C.L.

    1990-01-01

    Thoracic sensory neurons in bullfrog tadpoles can be induced to form connections typical of brachial sensory neurons by transplanting thoracic ganglia to the branchial level at stages when some thoracic sensory neurons already have formed connections. In order to find out how many postmitotic sensory neurons survive transplantation, [ 3 H]thymidine was administered to tadpoles in which thoracic ganglia were transplanted to the brachial level unilaterally at stages VII to IX. Between 16 and 37% of the neurons in transplanted ganglia were unlabeled, as compared to 46 to 60% in unoperated ganglia. Transplanted ganglia contained fewer unlabeled neurons than corresponding unoperated ganglia, indicating that transplantation caused degeneration of postmitotic neurons. Therefore, a large fraction of the neurons that formed connections typical of brachial sensory neurons probably differentiated while they were at the brachial level

  10. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing.

    Science.gov (United States)

    Lizbinski, Kristyn M; Dacks, Andrew M

    2017-01-01

    Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a "memory" by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.

  11. Organization and distribution of glomeruli in the bowhead whale olfactory bulb

    Directory of Open Access Journals (Sweden)

    Takushi Kishida

    2015-04-01

    Full Text Available Although modern baleen whales (Mysticeti retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals.

  12. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Science.gov (United States)

    Gunasekaran, Manojkumar; Chatterjee, Prodyot K.; Shih, Andrew; Imperato, Gavin H.; Addorisio, Meghan; Kumar, Gopal; Lee, Annette; Graf, John F.; Meyer, Dan; Marino, Michael; Puleo, Christopher; Ashe, Jeffrey; Cox, Maureen A.; Mak, Tak W.; Bouton, Chad; Sherry, Barbara; Diamond, Betty; Andersson, Ulf; Coleman, Thomas R.; Metz, Christine N.; Tracey, Kevin J.; Chavan, Sangeeta S.

    2018-01-01

    The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses. PMID:29755449

  13. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Manojkumar Gunasekaran

    2018-04-01

    Full Text Available The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR, dorsal root ganglion (DRG sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM into wild-type (WT mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.

  14. Painful nerve injury decreases resting cytosolic calcium concentrations in sensory neurons of rats

    NARCIS (Netherlands)

    Fuchs, Andreas; Lirk, Philipp; Stucky, Cheryl; Abram, Stephen E.; Hogan, Quinn H.

    2005-01-01

    Neuropathic pain is difficult to treat and poorly understood at the cellular level. Although cytoplasmic calcium ([Ca]c) critically regulates neuronal function, the effects of peripheral nerve injury on resting sensory neuronal [Ca]c are unknown. Resting [Ca]c was determined by microfluorometry in

  15. Reproduction phase-related expression of GnRH-like immunoreactivity in the olfactory receptor neurons, their projections to the olfactory bulb and in the nervus terminalis in the female Indian major carp Cirrhinus mrigala (Ham.).

    Science.gov (United States)

    Biju, K C; Singru, Praful S; Schreibman, Martin P; Subhedar, Nishikant

    2003-10-01

    The reproductive biology of the Indian major carp Cirrhinus mrigala is tightly synchronized with the seasonal changes in the environment. While the ovaries show growth from February through June, the fish spawn in July-August to coincide with the monsoon; thereafter the fish pass into the postspawning and resting phases. We investigated the pattern of GnRH immunoreactivity in the olfactory system at regular intervals extending over a period of 35 months. Although no signal was detected in the olfactory organ of fish collected from April through February following year, distinct GnRH-like immunoreactivity appeared in the fish collected in March. Intense immunoreactivity was noticed in several olfactory receptor neurons (ORNs) and their axonal fibers as they extend over the olfactory nerve, spread in the periphery of the olfactory bulb (OB), and terminate in the glomerular layer. Strong immunoreactivity was seen in some fascicles of the medial olfactory tracts extending from the OB to the telencephalon. Some neurons of the ganglion cells of nervus terminalis showed GnRH immunostaining during March; no immunoreactivity was detected at other times of the year. Plexus of GnRH immunoreactive fibers extending throughout the bulb represented a different component of the olfactory system; the fiber density showed a seasonal pattern that could be related to the status of gonadal maturity. While it was highest in the prespawning phase, significant reduction in the fiber density was noticed in the fish of spawning and the following regressive phases. Taken together the data suggest that the GnRH in the olfactory system of C. mrigala may play a major role in translation of the environmental cues and influence the downstream signals leading to the stimulation of the brain-pituitary-ovary axis.

  16. Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and Modulates Neurite Outgrowth in Adult Sensory Neurons.

    Science.gov (United States)

    Vernon, Claire G; Swanson, Geoffrey T

    2017-03-22

    Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG-dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2 -/- neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG-dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and

  17. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

    Science.gov (United States)

    Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M

    2015-01-01

    PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.

  18. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior.

    Science.gov (United States)

    Carlson, Bruce A

    2009-07-29

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge. In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals, and bandpass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally relevant stimulus information encoded into temporal patterns of activity by sensory neurons.

  19. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    Science.gov (United States)

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  20. Opening of pannexin and connexin based-channels increases the excitability of nodose ganglion sensory neurons.

    Directory of Open Access Journals (Sweden)

    Mauricio Antonio Retamal

    2014-06-01

    Full Text Available Satellite glial cells (SGCs are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this cellular communication is unknown. In the central nervous system, astrocytes present connexin43 (Cx43 hemichannels and pannexin1 (Panx1 channels, and their opening allows the release of signal molecules, such as ATP and glutamate. We propose that these channels could play a role in the glia-neuron communication in sensory ganglia. Therefore, we studied the expression and function of Cx43 and Panx1 in rat and mouse nodose-petrosal-jugular complex (NPJc by confocal immunofluorescence, molecular and electrophysiological techniques. Cx43 and Panx1 were detected in SGCs and sensory neurons, respectively. In the rat and mouse, the electrical activity of vagal nerve increased significantly after nodose neurons were exposed to Ca2+/ Mg2+-free solution, a condition that increases the open probability of Cx hemichannels. This response was partially mimicked by a cell-permeable peptide corresponding to the last 10 amino acids of Cx43 (TAT-Cx43CT. Enhanced neuronal activity was reduced by Cx hemichannel, Panx1 channel and P2X7 receptor blockers. Moreover, the role of Panx1 was confirmed in NPJc, because Panx1 knockout mouse showed a reduced increase of neuronal activity induced by Ca2+/Mg2+-free extracellular conditions. Data suggest that Cx hemichannels and Panx channels serve as paracrine communication pathways between SGCs and neurons by modulating the excitability of sensory neurons.

  1. Neuronal substrates of sensory gating within the human brain.

    NARCIS (Netherlands)

    Grunwald, T.; Boutros, N.N.; Pezer, N.; Oertzen, J. von; Fernandez, G.S.E.; Schaller, C.; Elger, C.E.

    2003-01-01

    BACKGROUND: For the human brain, habituation to irrelevant sensory input is an important function whose failure is associated with behavioral disturbances. Sensory gating can be studied by recording the brain's electrical responses to repeated clicks: the P50 potential is normally reduced to the

  2. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    Science.gov (United States)

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  3. Rivalry of homeostatic and sensory-evoked emotions: Dehydration attenuates olfactory disgust and its neural correlates.

    Science.gov (United States)

    Meier, Lea; Friedrich, Hergen; Federspiel, Andrea; Jann, Kay; Morishima, Yosuke; Landis, Basile Nicolas; Wiest, Roland; Strik, Werner; Dierks, Thomas

    2015-07-01

    Neural correlates have been described for emotions evoked by states of homeostatic imbalance (e.g. thirst, hunger, and breathlessness) and for emotions induced by external sensory stimulation (such as fear and disgust). However, the neurobiological mechanisms of their interaction, when they are experienced simultaneously, are still unknown. We investigated the interaction on the neurobiological and the perceptional level using subjective ratings, serum parameters, and functional magnetic resonance imaging (fMRI) in a situation of emotional rivalry, when both a homeostatic and a sensory-evoked emotion were experienced at the same time. Twenty highly dehydrated male subjects rated a disgusting odor as significantly less repulsive when they were thirsty. On the neurobiological level, we found that this reduction in subjective disgust during thirst was accompanied by a significantly reduced neural activity in the insular cortex, a brain area known to be considerably involved in processing of disgust. Furthermore, during the experience of disgust in the satiated condition, we observed a significant functional connectivity between brain areas responding to the disgusting odor, which was absent during the stimulation in the thirsty condition. These results suggest interference of conflicting emotions: an acute homeostatic imbalance can attenuate the experience of another emotion evoked by the sensory perception of a potentially harmful external agent. This finding offers novel insights with regard to the behavioral relevance of biologically different types of emotions, indicating that some types of emotions are more imperative for behavior than others. As a general principle, this modulatory effect during the conflict of homeostatic and sensory-evoked emotions may function to safeguard survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control.

    Science.gov (United States)

    Zhang, Tianhe C; Janik, John J; Peters, Ryan V; Chen, Gang; Ji, Ru-Rong; Grill, Warren M

    2015-07-01

    Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry. Copyright © 2015 the American Physiological Society.

  5. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  6. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Science.gov (United States)

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  7. Long-term memory in Aplysia modulates the total number of varicosities of single identified sensory neurons.

    OpenAIRE

    Bailey, C H; Chen, M

    1988-01-01

    The morphological consequences of long-term habituation and sensitization of the gill withdrawal reflex in Aplysia california were explored by examining the total number of presynaptic varicosities of single identified sensory neurons (a critical site of plasticity for the biochemical and biophysical changes that underlie both types of learning) in control and behaviorally trained animals. Sensory neurons from habituated animals had 35% fewer synaptic varicosities than did sensory neurons fro...

  8. Mathematical Relationships between Neuron Morphology and Neurite Growth Dynamics in Drosophila melanogaster Larva Class IV Sensory Neurons

    Science.gov (United States)

    Ganguly, Sujoy; Liang, Xin; Grace, Michael; Lee, Daniel; Howard, Jonathon

    The morphology of neurons is diverse and reflects the diversity of neuronal functions, yet the principles that govern neuronal morphogenesis are unclear. In an effort to better understand neuronal morphogenesis we will be focusing on the development of the dendrites of class IV sensory neuron in Drosophila melanogaster. In particular we attempt to determine how the the total length, and the number of branches of dendrites are mathematically related to the dynamics of neurite growth and branching. By imaging class IV neurons during early embryogenesis we are able to measure the change in neurite length l (t) as a function of time v (t) = dl / dt . We found that the distribution of v (t) is well characterized by a hyperbolic secant distribution, and that the addition of new branches per unit time is well described by a Poisson process. Combining these measurements with the assumption that branching occurs with equal probability anywhere along the dendrite we were able to construct a mathematical model that provides reasonable agreement with the observed number of branches, and total length of the dendrites of the class IV sensory neuron.

  9. Short-term memory in olfactory network dynamics

    OpenAIRE

    Stopfer, Mark; Laurent, Gilles

    1999-01-01

    Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clo...

  10. Toxicity to sensory neurons and Schwann cells in experimental linezolid-induced peripheral neuropathy.

    Science.gov (United States)

    Bobylev, Ilja; Maru, Helina; Joshi, Abhijeet R; Lehmann, Helmar C

    2016-03-01

    Peripheral neuropathy is a common side effect of prolonged treatment with linezolid. This study aimed to explore injurious effects of linezolid on cells of the peripheral nervous system and to establish in vivo and in vitro models of linezolid-induced peripheral neuropathy. C57BL/6 mice were treated with linezolid or vehicle over a total period of 4 weeks. Animals were monitored by weight, nerve conduction studies and behavioural tests. Neuropathic changes were assessed by morphometry on sciatic nerves and epidermal nerve fibre density in skin sections. Rodent sensory neuron and Schwann cell cultures were exposed to linezolid in vitro and assessed for mitochondrial dysfunction. Prolonged treatment with linezolid induced a mild, predominantly small sensory fibre neuropathy in vivo. Exposure of Schwann cells and sensory neurons to linezolid in vitro caused mitochondrial dysfunction primarily in neurons (and less prominently in Schwann cells). Sensory axonopathy could be partially prevented by co-administration of the Na(+)/Ca(2+) exchanger blocker KB-R7943. Clinical and pathological features of linezolid-induced peripheral neuropathy can be replicated in in vivo and in vitro models. Mitochondrial dysfunction may contribute to the axonal damage to sensory neurons that occurs after linezolid exposure. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons

    Directory of Open Access Journals (Sweden)

    Fierro Leonardo

    2005-11-01

    Full Text Available Abstract Background ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1 ASIC3 might trigger ischemic pain in heart and muscle; 2 it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses. Results Less than half (40% of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small ( Conclusion Our data indicates that: 1 ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2 co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen.

  12. Bidirectional communication between sensory neurons and osteoblasts in an in vitro coculture system.

    Science.gov (United States)

    Kodama, Daisuke; Hirai, Takao; Kondo, Hisataka; Hamamura, Kazunori; Togari, Akifumi

    2017-02-01

    Recent studies have revealed that the sensory nervous system is involved in bone metabolism. However, the mechanism of communication between neurons and osteoblasts is yet to be elucidated. In this study, we investigated the signaling pathways between sensory neurons of the dorsal root ganglion (DRG) and the osteoblast-like MC3T3-E1 cells using an in vitro coculture system. Our findings indicate that signal transduction from DRG-derived neurons to MC3T3-E1 cells is suppressed by antagonists of the AMPA receptor and the NK 1 receptor. Conversely, signal transduction from MC3T3-E1 cells to DRG-derived neurons is suppressed by a P2X 7 receptor antagonist. Our results suggest that these cells communicate with each other by exocytosis of glutamate, substance P in the efferent signal, and ATP in the afferent signal. © 2017 Federation of European Biochemical Societies.

  13. The mouse olfactory peduncle. 3. Development of neurons, glia and centrifugal afferents

    Directory of Open Access Journals (Sweden)

    Peter eBrunjes

    2014-06-01

    Full Text Available The present series of studies was designed to provide a general overview of the development of the region connecting the olfactory bulb to the forebrain. The olfactory peduncle contains several structures involved in processing odor information with the anterior olfactory nucleus (cortex being the largest and most studied. Results indicate that considerable growth occurs in the peduncle from postnatal day (P10-P20, with reduced expansion from P20-P30. No evidence was found for the addition of new projection or interneurons during the postnatal period. GABAergic cells decreased in both number and density after P10. Glial populations exhibited different patterns of development, with astrocytes declining in density from P10-P30, and both oligodendrocytes and microglia increasing through the interval. Myelination in the anterior commissure emerged between P11-14. Dense cholinergic innervation was observed at P10 and remained relatively stable through P30, while considerable maturation of serotonergic innervation occurred through the period. Unilateral naris occlusion from P1-P30 resulted in about a 30% reduction in the size of the ipsilateral peduncle but few changes were observed on the contralateral side. The ipsilateral peduncle also exhibited higher densities of GAD67- containing interneurons and cholinergic fibers suggesting a delay in normal developmental pruning. Lower densities of interneurons expressing CCK, somatostatin and NPY and in myelin basic protein staining were also observed. Understanding variations in developmental trajectories within the olfactory peduncle may be an important tool for unravelling the functions of the region.

  14. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.

    Science.gov (United States)

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.

  15. Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex.

    Science.gov (United States)

    Shao, Yu-Feng; Wang, Can; Xie, Jun-Fan; Kong, Xiang-Pan; Xin, Le; Dong, Chao-Yu; Li, Jing; Ren, Wen-Ting; Hou, Yi-Ping

    2016-07-01

    Our previous studies have demonstrated that neuropeptide S (NPS), via selective activation of the neurons bearing NPS receptor (NPSR) in the olfactory cortex, facilitates olfactory function. High level expression of NPSR mRNA in the subiculum complex of hippocampal formation suggests that NPS-NPSR system might be involved in the regulation of olfactory spatial memory. The present study was undertaken to investigate effects of NPS on the scopolamine- or MK801-induced impairment of olfactory spatial memory using computer-assisted 4-hole-board spatial memory test, and by monitoring Fos expression in the subiculum complex in mice. In addition, dual-immunofluorescence microscopy was employed to identify NPS-induced Fos-immunereactive (-ir) neurons that also bear NPSR. Intracerebroventricular administration of NPS (0.5 nmol) significantly increased the number of visits to switched odorants in recall trial in mice suffering from odor-discriminating inability induced by scopolamine, a selective muscarinic cholinergic receptor antagonist, or MK801, a N-methyl-D-aspartate receptor antagonist, after training trials. The improvement of olfactory spatial memory by NPS was abolished by the NPSR antagonist [D-Val(5)]NPS (40 nmol). Ex vivo c-Fos and NPSR immunohistochemistry revealed that, as compared with vehicle-treated mice, NPS markedly enhanced Fos expression in the subiculum complex encompassing the subiculum (S), presubiculum (PrS) and parasubiculum (PaS). The percentages of Fos-ir neurons that also express NPSR were 91.3, 86.5 and 90.0 % in the S, PrS and PaS, respectively. The present findings demonstrate that NPS, via selective activation of the neurons bearing NPSR in the subiculum complex, ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 in mice.

  16. The chemokine CXCL1/growth related oncogene increases sodium currents and neuronal excitability in small diameter sensory neurons

    Directory of Open Access Journals (Sweden)

    Wick Dayna M

    2008-09-01

    Full Text Available Abstract Background Altered Na+ channel expression, enhanced excitability, and spontaneous activity occur in nerve-injury and inflammatory models of pathological pain, through poorly understood mechanisms. The cytokine GRO/KC (growth related oncogene; CXCL1 shows strong, rapid upregulation in dorsal root ganglion in both nerve injury and inflammatory models. Neurons and glia express its receptor (CXCR2. CXCL1 has well-known effects on immune cells, but little is known about its direct effects on neurons. Results We report that GRO/KC incubation (1.5 nM, overnight caused marked upregulation of Na+ currents in acutely isolated small diameter rat (adult sensory neurons in vitro. In both IB4-positive and IB4-negative sensory neurons, TTX-resistant and TTX-sensitive currents increased 2- to 4 fold, without altered voltage dependence or kinetic changes. These effects required long exposures, and were completely blocked by co-incubation with protein synthesis inhibitor cycloheximide. Amplification of cDNA from the neuronal cultures showed that 3 Na channel isoforms were predominant both before and after GRO/KC treatment (Nav 1.1, 1.7, and 1.8. TTX-sensitive isoforms 1.1 and 1.7 significantly increased 2 – 3 fold after GRO/KC incubation, while 1.8 showed a trend towards increased expression. Current clamp experiments showed that GRO/KC caused a marked increase in excitability, including resting potential depolarization, decreased rheobase, and lower action potential threshold. Neurons acquired a striking ability to fire repetitively; IB4-positive cells also showed marked broadening of action potentials. Immunohistochemical labelling confirmed that the CXCR2 receptor was present in most neurons both in dissociated cells and in DRG sections, as previously shown for neurons in the CNS. Conclusion Many studies on the role of chemokines in pain conditions have focused on their rapid and indirect effects on neurons, via release of inflammatory mediators

  17. Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons.

    Science.gov (United States)

    Bao, Lan

    2015-09-30

    Voltage-gated sodium channels (Navs) comprise at least nine pore-forming α subunits. Of these, Nav1.6, Nav1.7, Nav1.8 and Nav1.9 are the most frequently studied in primary sensory neurons located in the dorsal root ganglion and are mainly localized to the cytoplasm. A large pool of intracellular Navs raises the possibility that changes in Nav trafficking could alter channel function. The molecular mediators of Nav trafficking mainly consist of signals within the Navs themselves, interacting proteins and extracellular factors. The surface expression of Navs is achieved by escape from the endoplasmic reticulum and proteasome degradation, forward trafficking and plasma membrane anchoring, and it is also regulated by channel phosphorylation and ubiquitination in primary sensory neurons. Axonal transport and localization of Navs in afferent fibers involves the motor protein KIF5B and scaffold proteins, including contactin and PDZ domain containing 2. Localization of Nav1.6 to the nodes of Ranvier in myelinated fibers of primary sensory neurons requires node formation and the submembrane cytoskeletal protein complex. These findings inform our understanding of the molecular and cellular mechanisms underlying Nav trafficking in primary sensory neurons.

  18. Rat model of cancer-induced bone pain: changes in nonnociceptive sensory neurons in vivo

    Directory of Open Access Journals (Sweden)

    Yong Fang Zhu

    2017-08-01

    Conclusion:. After induction of the CIBP model, Aβ-fiber LTMs at >2 weeks but not <1 week had undergone changes in electrophysiological properties. Importantly, changes observed are consistent with observations in models of peripheral neuropathy. Thus, Aβ-fiber nonnociceptive primary sensory neurons might be involved in the peripheral sensitization and tumor-induced tactile hypersensitivity in CIBP.

  19. Acute exposure to high‐induction electromagnetic field affects activity of model peripheral sensory neurons

    Czech Academy of Sciences Publication Activity Database

    Průcha, J.; Krůšek, Jan; Dittert, Ivan; Sinica, Viktor; Kádková, Anna; Vlachová, Viktorie

    2018-01-01

    Roč. 22, č. 2 (2018), s. 1355-1362 ISSN 1582-4934 R&D Projects: GA MZd(CZ) NV16-28784A Institutional support: RVO:67985823 Keywords : electromagnetic field * primary sensory neuron * ion channel * bradykinin receptor * transient receptor potential channel Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.499, year: 2016

  20. Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System

    Science.gov (United States)

    DeMaria, Shannon; Berke, Allison P.; Van Name, Eric; Heravian, Anisa; Ferreira, Todd

    2013-01-01

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the “one receptor, one neuron” rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed. PMID:24048853

  1. Immunocytochemistry of the olfactory marker protein.

    Science.gov (United States)

    Monti-Graziadei, G A; Margolis, F L; Harding, J W; Graziadei, P P

    1977-12-01

    The olfactory marker protein has been localized, by means of immunohistochemical techniques in the primary olfactory neurons of mice. The olfactory marker protein is not present in the staminal cells of the olfactory neuroepithelium, and the protein may be regarded as indicative of the functional stage of the neurons. Our data indicate that the olfactory marker protein is present in the synaptic terminals of the olfactory neurons at the level of the olfactory bulb glomeruli. The postsynaptic profiles of both mitral and periglomerular cells are negative.

  2. Olfactory deficits in Niemann-Pick type C1 (NPC1 disease.

    Directory of Open Access Journals (Sweden)

    Marina Hovakimyan

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a rare autosomal recessive lipid storage disease characterized by progressive neurodegeneration. As only a few studies have been conducted on the impact of NPC on sensory systems, we used a mutant mouse model (NPC1(-/- to examine the effects of this disorder to morphologically distinct regions of the olfactory system, namely the olfactory epithelium (OE and olfactory bulb (OB. METHODOLOGY/PRINCIPAL FINDINGS: For structural and functional analysis immunohistochemistry, electron microscopy, western blotting, and electrophysiology have been applied. For histochemistry and western blotting, we used antibodies against a series of neuronal and glia marker proteins, as well as macrophage markers. NPC1(-/- animals present myelin-like lysosomal deposits in virtually all types of cells of the peripheral and central olfactory system. Especially supporting cells of the OE and central glia cells are affected, resulting in pronounced astrocytosis and microgliosis in the OB and other olfactory cortices. Up-regulation of Galectin-3, Cathepsin D and GFAP in the cortical layers of the OB underlines the critical role and location of the OB as a possible entrance gate for noxious substances. Unmyelinated olfactory afferents of the lamina propria seem less affected than ensheathing cells. Supporting the structural findings, electro-olfactometry of the olfactory mucosa suggests that NPC1(-/- animals exhibit olfactory and trigeminal deficits. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a pronounced neurodegeneration and glia activation in the olfactory system of NPC1(-/-, which is accompanied by sensory deficits.

  3. Zika Virus Persistently and Productively Infects Primary Adult Sensory Neurons In Vitro

    Directory of Open Access Journals (Sweden)

    Brianna K. Swartwout

    2017-10-01

    Full Text Available Zika virus (ZIKV has recently surged in human populations, causing an increase in congenital and Guillain-Barré syndromes. While sexual transmission and presence of ZIKV in urine, semen, vaginal secretions, and saliva have been established, the origin of persistent virus shedding into biological secretions is not clear. Using a primary adult murine neuronal culture model, we have determined that ZIKV persistently and productively infects sensory neurons of the trigeminal and dorsal root ganglia, which innervate glands and mucosa of the face and the genitourinary tract, respectively, without apparent injury. Autonomic neurons that innervate these regions are not permissive for infection. However, productive ZIKV infection of satellite glial cells that surround and support sensory and autonomic neurons in peripheral ganglia results in their destruction. Persistent infection of sensory neurons, without affecting their viability, provides a potential reservoir for viral shedding in biological secretions for extended periods of time after infection. Furthermore, viral destruction of satellite glial cells may contribute to the development of Guillain-Barré Syndrome via an alternative mechanism to the established autoimmune response.

  4. Zika Virus Persistently and Productively Infects Primary Adult Sensory Neurons In Vitro.

    Science.gov (United States)

    Swartwout, Brianna K; Zlotnick, Marta G; Saver, Ashley E; McKenna, Caroline M; Bertke, Andrea S

    2017-10-13

    Zika virus (ZIKV) has recently surged in human populations, causing an increase in congenital and Guillain-Barré syndromes. While sexual transmission and presence of ZIKV in urine, semen, vaginal secretions, and saliva have been established, the origin of persistent virus shedding into biological secretions is not clear. Using a primary adult murine neuronal culture model, we have determined that ZIKV persistently and productively infects sensory neurons of the trigeminal and dorsal root ganglia, which innervate glands and mucosa of the face and the genitourinary tract, respectively, without apparent injury. Autonomic neurons that innervate these regions are not permissive for infection. However, productive ZIKV infection of satellite glial cells that surround and support sensory and autonomic neurons in peripheral ganglia results in their destruction. Persistent infection of sensory neurons, without affecting their viability, provides a potential reservoir for viral shedding in biological secretions for extended periods of time after infection. Furthermore, viral destruction of satellite glial cells may contribute to the development of Guillain-Barré Syndrome via an alternative mechanism to the established autoimmune response.

  5. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

    Science.gov (United States)

    Karim, M Rezaul; Moore, Adrian W

    2011-11-07

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as

  6. Transcriptome Analysis of Chemically-Induced Sensory Neuron Ablation in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Jane A Cox

    Full Text Available Peripheral glia are known to have a critical role in the initial response to axon damage and degeneration. However, little is known about the cellular responses of non-myelinating glia to nerve injury. In this study, we analyzed the transcriptomes of wild-type and mutant (lacking peripheral glia zebrafish larvae that were treated with metronidazole. This treatment allowed us to conditionally and selectively ablate cranial sensory neurons whose axons are ensheathed only by non-myelinating glia. While transcripts representing over 27,000 genes were detected by RNAseq, only a small fraction (~1% of genes were found to be differentially expressed in response to neuronal degeneration in either line at either 2 hrs or 5 hrs of metronidazole treatment. Analysis revealed that most expression changes (332 out of the total of 458 differentially expressed genes occurred over a continuous period (from 2 to 5 hrs of metronidazole exposure, with a small number of genes showing changes limited to only the 2 hr (55 genes or 5 hr (71 genes time points. For genes with continuous alterations in expression, some of the most meaningful sets of enriched categories in the wild-type line were those involving the inflammatory TNF-alpha and IL6 signaling pathways, oxidoreductase activities and response to stress. Intriguingly, these changes were not observed in the mutant line. Indeed, cluster analysis indicated that the effects of metronidazole treatment on gene expression was heavily influenced by the presence or absence of glia, indicating that the peripheral non-myelinating glia play a significant role in the transcriptional response to sensory neuron degeneration. This is the first transcriptome study of metronidazole-induced neuronal death in zebrafish and the response of non-myelinating glia to sensory neuron degeneration. We believe this study provides important insight into the mechanisms by which non-myelinating glia react to neuronal death and degeneration in

  7. CRMP5 regulates generation and survival of newborn neurons in olfactory and hippocampal neurogenic areas of the adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Alexandra Veyrac

    Full Text Available The Collapsin Response Mediator Proteins (CRMPS are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB and the dentate gyrus (DG. During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5(-/- mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity.

  8. Early survival factor deprivation in the olfactory epithelium enhances activity-dependent survival

    Directory of Open Access Journals (Sweden)

    Adrien eFrançois

    2013-12-01

    Full Text Available The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs. However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226. We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population towards detection of environmental odorants.

  9. Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy.

    Science.gov (United States)

    Altmann, Christine; Hardt, Stefanie; Fischer, Caroline; Heidler, Juliana; Lim, Hee-Young; Häussler, Annett; Albuquerque, Boris; Zimmer, Béla; Möser, Christine; Behrends, Christian; Koentgen, Frank; Wittig, Ilka; Schmidt, Mirko H H; Clement, Albrecht M; Deller, Thomas; Tegeder, Irmgard

    2016-12-01

    Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confirmed in primary sensory neurons. Autophagy and survival were impaired in progranulin-deficient neurons and improved in progranulin overexpressing neurons. Nerve injury in vivo caused an accumulation of LC3b-EGFP positive bodies in neurons of the dorsal root ganglia and nerves suggesting an impairment of autophagic flux. Overexpression of progranulin in these neurons was associated with a reduction of the stress marker ATF3, fewer protein aggregates in the injured nerve and enhanced stump healing. At the behavioral level, further inhibition of the autophagic flux by hydroxychloroquine intensified cold and heat nociception after sciatic nerve injury and offset the pain protection provided by progranulin. We infer that progranulin may assist in removal of protein waste and thereby helps to resolve neuropathic pain after nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A multisensory centrifugal neuron in the olfactory pathway of heliothine moths

    DEFF Research Database (Denmark)

    Zhao, Xin-Cheng; Pfuhl, Gerit; Surlykke, Annemarie

    2013-01-01

    fine processes in the dorsomedial region of the protocerebrum and extensive neuronal branches with blebby terminals in all glomeruli of the antennal lobe. Its soma is located dorsally of the central body close to the brain midline. Mass-fills of antennal-lobe connections with protocerebral regions...... showed that the centrifugal neuron is, in each brain hemisphere, one within a small group of neurons having their somata clustered. In both species the neuron was excited during application of non-odorant airborne signals, including transient sound pulses of broad bandwidth and air velocity changes....... Additional responses to odors were recorded from the neuron in Heliothis virescens. The putative biological significance of the centrifugal antennal-lobe neuron is discussed with regard to its morphological and physiological properties. In particular, a possible role in multisensory processes underlying...

  11. Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.

    Science.gov (United States)

    Usui, Noriyoshi; Watanabe, Keisuke; Ono, Katsuhiko; Tomita, Koichi; Tamamaki, Nobuaki; Ikenaka, Kazuhiro; Takebayashi, Hirohide

    2012-03-01

    Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.

  12. Different requirements for GFRα2-signaling in three populations of cutaneous sensory neurons.

    Science.gov (United States)

    Kupari, Jussi; Airaksinen, Matti S

    2014-01-01

    Many primary sensory neurons in mouse dorsal root ganglia (DRG) express one or several GFRα's, the ligand-binding receptors of the GDNF family, and their common signaling receptor Ret. GFRα2, the principal receptor for neurturin, is expressed in most of the small nonpeptidergic DRG neurons, but also in some large DRG neurons that start to express Ret earlier. Previously, GFRα2 has been shown to be crucial for the soma size of small nonpeptidergic nociceptors and for their target innervation of glabrous epidermis. However, little is known about this receptor in other Ret-expressing DRG neuron populations. Here we have investigated two populations of Ret-positive low-threshold mechanoreceptors that innervate different types of hair follicles on mouse back skin: the small C-LTMRs and the large Aβ-LTMRs. Using GFRα2-KO mice and immunohistochemistry we found that, similar to the nonpeptidergic nociceptors, GFRα2 controls the cell size but not the survival of both C-LTMRs and Aβ-LTMRs. In contrast to the nonpeptidergic neurons, GFRα2 is not required for the target innervation of C-LTMRs and Aβ-LTMRs in the back skin. These results suggest that different factors drive target innervation in these three populations of neurons. In addition, the observation that the large Ret-positive DRG neurons lack GFRα2 immunoreactivity in mature animals suggests that these neurons switch their GFRα signaling pathways during postnatal development.

  13. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  14. Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization

    Science.gov (United States)

    Smith, Cody J.; O’Brien, Timothy; Chatzigeorgiou, Marios; Spencer, W. Clay; Feingold-Link, Elana; Husson, Steven J.; Hori, Sayaka; Mitani, Shohei; Gottschalk, Alexander; Schafer, William R.; Miller, David M.

    2013-01-01

    SUMMARY Sensory neurons adopt distinct morphologies and functional modalities to mediate responses to specific stimuli. Transcription factors and their downstream effectors orchestrate this outcome but are incompletely defined. Here, we show that different classes of mechanosensory neurons in C. elegans are distinguished by the combined action of the transcription factors MEC-3, AHR-1, and ZAG-1. Low levels of MEC-3 specify the elaborate branching pattern of PVD nociceptors, whereas high MEC-3 is correlated with the simple morphology of AVM and PVM touch neurons. AHR-1 specifies AVM touch neuron fate by elevating MEC-3 while simultaneously blocking expression of nociceptive genes such as the MEC-3 target, the claudin-like membrane protein HPO-30, that promotes the complex dendritic branching pattern of PVD. ZAG-1 exercises a parallel role to prevent PVM from adopting the PVD fate. The conserved dendritic branching function of the Drosophila AHR-1 homolog, Spineless, argues for similar pathways in mammals. PMID:23889932

  15. The olfactory tubercle encodes odor valence in behaving mice.

    Science.gov (United States)

    Gadziola, Marie A; Tylicki, Kate A; Christian, Diana L; Wesson, Daniel W

    2015-03-18

    Sensory information acquires meaning to adaptively guide behaviors. Despite odors mediating a number of vital behaviors, the components of the olfactory system responsible for assigning meaning to odors remain unclear. The olfactory tubercle (OT), a ventral striatum structure that receives monosynaptic input from the olfactory bulb, is uniquely positioned to transform odor information into behaviorally relevant neural codes. No information is available, however, on the coding of odors among OT neurons in behaving animals. In recordings from mice engaged in an odor discrimination task, we report that the firing rate of OT neurons robustly and flexibly encodes the valence of conditioned odors over identity, with rewarded odors evoking greater firing rates. This coding of rewarded odors occurs before behavioral decisions and represents subsequent behavioral responses. We predict that the OT is an essential region whereby odor valence is encoded in the mammalian brain to guide goal-directed behaviors. Copyright © 2015 the authors 0270-6474/15/354515-13$15.00/0.

  16. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    Science.gov (United States)

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also

  17. Co-cultures provide a new tool to probe communication between adult sensory neurons and urothelium.

    Science.gov (United States)

    O'Mullane, Lauren M; Keast, Janet R; Osborne, Peregrine B

    2013-08-01

    Recent evidence suggests that the urothelium functions as a sensory transducer of chemical, mechanical or thermal stimuli and signals to nerve terminals and other cells in the bladder wall. The cellular and molecular basis of neuro-urothelial communication is not easily studied in the intact bladder. This led us to establish a method of co-culturing dorsal root ganglion sensory neurons and bladder urothelial cells. Sensory neurons and urothelial cells obtained from dorsal root ganglia and bladders dissected from adult female Sprague-Dawley® rats were isolated by enzyme treatment and mechanical dissociation. They were plated together or separately on collagen coated substrate and cultured in keratinocyte medium for 48 to 72 hours. Retrograde tracer labeling was performed to identify bladder afferents used for functional testing. Neurite growth and complexity in neurons co-cultured with urothelial cells was increased relative to that in neuronal monocultures. The growth promoting effect of urothelial cells was reduced by the tyrosine kinase inhibitor K252a but upstream inhibition of nerve growth factor signaling with TrkA-Fc had no effect. Fura-2 calcium imaging of urothelial cells showed responses to adenosine triphosphate (100 μM) and activation of TRPV4 (4α-PDD, 10 μM) but not TRPV1 (capsaicin, 1 μM), TRPV3 (farnesyl pyrophosphate, 1 μM) or TRPA1 (mustard oil, 100 μM). In contrast, co-cultured neurons were activated by all agonists except farnesyl pyrophosphate. Co-culturing provides a new methodology for investigating neuro-urothelial interactions in animal models of urological conditions. Results suggest that neuronal properties are maintained in the presence of urothelium and neurite growth is potentiated by a nerve growth factor independent mechanism. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. The role of main olfactory and vomeronasal systems in animal ...

    African Journals Online (AJOL)

    In many terrestrial tetrapod, olfactory sensory communication is mediated by two anatomically and functionally distinct sensory systems; the main olfactory system and vomeronasal system (accessory olfactory system). Recent anatomical studies of the central pathways of the olfactory and vomeronasal systems showed that ...

  19. Recovery of function, peripheral sensitization and sensory neurone activation by novel pathways following axonal injury in Aplysia californica.

    Science.gov (United States)

    Dulin, M F; Steffensen, I; Morris, C E; Walters, E T

    1995-10-01

    Recovery of behavioural and sensory function was examined following unilateral pedal nerve crush in Aplysia californica. Nerve crush that transected all axons connecting the tail to the central nervous system (CNS) eliminated the ipsilateral tail-evoked siphon reflex, whose sensory input travels in the crushed tail nerve (p9). The first reliable signs of recovery of this reflex were observed within 1 week, and most animals displayed tail-evoked siphon responses within 2 weeks. Wide-dynamic-range mechanosensory neurons with somata in the ventrocaudal (VC) cluster of the ipsilateral pleural ganglion exhibited a few receptive fields (RFs) on the tail 3 weeks after unilateral pedal nerve crush, indicating that the RFs had either regenerated or been reconnected to the central somata. These RFs were smaller and sensitized compared with corresponding RFs on the contralateral, uncrushed side. Centrally conducted axon responses of VC sensory neurones to electrical stimulation distal to the nerve crush site did not reappear until at least 10 days after the crush. Because the crush site was much closer to the CNS than to the tail, the failure of axon responses to be restored earlier than the behavioural responses indicates that early stages of reflex recovery are not due to regeneration of VC sensory neurone axons into the tail. Following nerve crush, VC sensory neurones often could be activated by stimulating central connectives or peripheral nerves that do not normally contain the sensory neurone's axons. These results suggest that recovery of behavioral function after nerve injury involves complex mechanisms, including regenerative growth of axotomized VC sensory neurones, sensitization of regenerating RFs and sprouting of VC sensory neurone fibres within the CNS. Furthermore, the rapidity of behavioural recovery indicates that its initial phases are mediated by additional mechanisms, perhaps centripetal regeneration of unidentified sensory neurones having peripheral

  20. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities.

    Science.gov (United States)

    Grimaud, Julien; Lledo, Pierre-Marie

    2016-06-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. © 2016 Grimaud and Lledo; Published by Cold Spring Harbor Laboratory Press.

  1. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities

    Science.gov (United States)

    Grimaud, Julien

    2016-01-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792

  2. Newborn Interneurons in the Accessory Olfactory Bulb Promote Mate Recognition in Female Mice

    Directory of Open Access Journals (Sweden)

    Livio eOboti

    2011-09-01

    Full Text Available In the olfactory bulb of adult rodents, local interneurons are constantly replaced by immature precursors derived from the subventricular zone. Whether any olfactory sensory process specifically relies on this cell renewal remains largely unclear. By using the well-known model of mating-induced imprinting, we demonstrate that this olfactory memory formation critically depends on the presence of newborn granule neurons in the accessory olfactory bulb. Accordingly, we show that, in adult female mice, exposure to male pheromones increases the number of new granule cells surviving in the accessory olfactory bulb. This neuronal addition depends on the detection of sensory cues by the vomeronasal organ and requires centrifugal feedback activity from the amygdala. The stimuli affecting neuronal survival are contained in the low molecular weight fraction of urine and are implied in pheromonal recognition during mating. By chemical depletion of newly generated bulbar interneurons, we show a direct role of renewed granule cells in the accessory olfactory bulb in preventing pregnancy block by mating male odours. Taken together, our results indicate that adult neurogenesis is essential for specific brain functions such as persistent odour learning and mate recognition.

  3. Shifts in sensory neuron identity parallel differences in pheromone preference in the European corn borer

    Directory of Open Access Journals (Sweden)

    Fotini A Koutroumpa

    2014-10-01

    Full Text Available Pheromone communication relies on highly specific signals sent and received between members of the same species. However, how pheromone specificity is determined in moth olfactory circuits remains unknown. Here we provide the first glimpse into the mechanism that generates this specificity in Ostrinia nubilalis. In Ostrinia nubilalis it was found that a single locus causes strain-specific, diametrically opposed preferences for a 2-component pheromone blend. Previously we found pheromone preference to be correlated with the strain and hybrid-specific relative antennal response to both pheromone components. This led to the current study, in which we detail the underlying mechanism of this differential response, through chemotopically mapping of the pheromone detection circuit in the antenna. We determined that both strains and their hybrids have swapped the neuronal identity of the pheromone-sensitive neurons co-housed within a single sensillum. Furthermore, neurons that mediate behavioral antagonism surprisingly co-express up to five pheromone receptors, mirroring the concordantly broad tuning to heterospecific pheromones. This appears as possible evolutionary adaptation that could prevent cross attraction to a range of heterospecific signals, while keeping the pheromone detection system to its simplest tripartite setup.

  4. Active signal conduction through the sensory dendrite of a spider mechanoreceptor neuron.

    Science.gov (United States)

    Gingl, Ewald; French, Andrew S

    2003-07-09

    Rapid responses to sensory stimulation are crucial for survival. This must be especially true for mechanical stimuli containing temporal information, such as vibration. Sensory transduction occurs at the tips of relatively long sensory dendrites in many mechanoreceptors of both vertebrates and invertebrates, but little is known about the electrical properties of these crucial links between transduction and action potential generation. The VS-3 slit-sense organ of the spider Cupiennius salei contains bipolar mechanosensory neurons that allow voltage-clamp recording from the somata, whereas mechanotransduction occurs at the tips of 100- to 200-microm-long sensory dendrites. We studied the properties of VS-3 sensory dendrites using three approaches. Voltage-jump experiments measured the spread of voltage outward from the soma by observing total mechanically transduced charge recovered at the soma as a function of time after a voltage jump. Frequency-response measurements between pseudorandom mechanical stimulation and somatic membrane potential estimated the passive cable properties of the dendrite for voltage spread in the opposite direction. Both of these sets of data indicated that the dendritic cable would significantly attenuate and retard a passively propagated receptor potential. Finally, current-clamp observations of receptor potentials and action potentials indicated that action potentials normally start at the distal dendrites and propagate regeneratively to the soma, reducing the temporal delay of passive conduction.

  5. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca(2+) channels.

    Science.gov (United States)

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-04-29

    T-type Ca(2+) channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca(2+) currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca(2+) channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca(2+) currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a 'reserve pool' of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Olfactory receptor signaling is regulated by the post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) scaffold multi-PDZ domain protein 1.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2009-12-01

    The unique ability of mammals to detect and discriminate between thousands of different odorant molecules is governed by the diverse array of olfactory receptors expressed by olfactory sensory neurons in the nasal epithelium. Olfactory receptors consist of seven transmembrane domain G protein-coupled receptors and comprise the largest gene superfamily in the mammalian genome. We found that approximately 30% of olfactory receptors possess a classical post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) domain binding motif in their C-termini. PDZ domains have been established as sites for protein-protein interaction and play a central role in organizing diverse cell signaling assemblies. In the present study, we show that multi-PDZ domain protein 1 (MUPP1) is expressed in the apical compartment of olfactory sensory neurons. Furthermore, on heterologous co-expression with olfactory sensory neurons, MUPP1 was shown to translocate to the plasma membrane. We found direct interaction of PDZ domains 1 + 2 of MUPP1 with the C-terminus of olfactory receptors in vitro. Moreover, the odorant-elicited calcium response of OR2AG1 showed a prolonged decay in MUPP1 small interfering RNA-treated cells. We have therefore elucidated the first building blocks of the putative \\'olfactosome\\

  7. Developmental emergence of different forms of neuromodulation in Aplysia sensory neurons.

    Science.gov (United States)

    Marcus, E A; Carew, T J

    1998-04-14

    The capacity for neuromodulation and biophysical plasticity is a defining feature of most mature neuronal cell types. In several cases, modulation at the level of the individual neuron has been causally linked to changes in the functional output of a neuronal circuit and subsequent adaptive changes in the organism's behavioral responses. Understanding how such capacity for neuromodulation develops therefore may provide insights into the mechanisms both of neuronal development and learning and memory. We have examined the development of multiple forms of neuromodulation triggered by a common neurotransmitter, serotonin, in the pleural sensory neurons of Aplysia californica. We have found that multiple signaling cascades within a single neuron develop sequentially, with some being expressed only very late in development. In addition, our data suggest a model in which, within a single neuromodulatory pathway, the elements of the signaling cascade are developmentally expressed in a "retrograde" manner with the ionic channel that is modulated appearing early in development, functional elements in the second messenger cascade appearing later, and finally, coupling of the second messenger cascade to the serotonin receptor appearing quite late. These studies provide the characterization of the development of neuromodulation at the level of an identified cell type and offer insights into the potential roles of neuromodulatory processes in development and adult plasticity.

  8. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Directory of Open Access Journals (Sweden)

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  9. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?

    Science.gov (United States)

    Martin, Claire; Ravel, Nadine

    2014-01-01

    Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to "bind" distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz) and gamma (60-100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  10. Beta and gamma oscillatory activities associated with olfactory memory tasks: Different rhythms for different functional networks?

    Directory of Open Access Journals (Sweden)

    Claire eMartin

    2014-06-01

    Full Text Available Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform and entorhinal cortices and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to ‘bind’ distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz and gamma (60-100 Hz. While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  11. Internal cholinergic regulation of learning and recall in a model of olfactory processing

    Directory of Open Access Journals (Sweden)

    Licurgo Benemann Almeida

    2016-11-01

    Full Text Available In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC and horizontal limb of the diagonal band of Broca (HDB to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors – reducing plasticity in the PC, but increase their firing in response to novel odor – increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar.

  12. Orthodenticle is required for the development of olfactory projection neurons and local interneurons in Drosophila

    Directory of Open Access Journals (Sweden)

    Sonia Sen

    2014-07-01

    Full Text Available The accurate wiring of nervous systems involves precise control over cellular processes like cell division, cell fate specification, and targeting of neurons. The nervous system of Drosophila melanogaster is an excellent model to understand these processes. Drosophila neurons are generated by stem cell like precursors called neuroblasts that are formed and specified in a highly stereotypical manner along the neuroectoderm. This stereotypy has been attributed, in part, to the expression and function of transcription factors that act as intrinsic cell fate determinants in the neuroblasts and their progeny during embryogenesis. Here we focus on the lateral neuroblast lineage, ALl1, of the antennal lobe and show that the transcription factor-encoding cephalic gap gene orthodenticle is required in this lineage during postembryonic brain development. We use immunolabelling to demonstrate that Otd is expressed in the neuroblast of this lineage during postembryonic larval stages. Subsequently, we use MARCM clonal mutational methods to show that the majority of the postembryonic neuronal progeny in the ALl1 lineage undergoes apoptosis in the absence of orthodenticle. Moreover, we demonstrate that the neurons that survive in the orthodenticle loss-of-function condition display severe targeting defects in both the proximal (dendritic and distal (axonal neurites. These findings indicate that the cephalic gap gene orthodenticle acts as an important intrinsic determinant in the ALl1 neuroblast lineage and, hence, could be a member of a putative combinatorial code involved in specifying the fate and identity of cells in this lineage.

  13. Ammonium-acetate is sensed by gustatory and olfactory neurons in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Christian Frøkjaer-Jensen

    2008-06-01

    Full Text Available Caenorhabditis elegans chemosensation has been successfully studied using behavioral assays that treat detection of volatile and water soluble chemicals as separate senses, analogous to smell and taste. However, considerable ambiguity has been associated with the attractive properties of the compound ammonium-acetate (NH(4Ac. NH(4Ac has been used in behavioral assays both as a chemosensory neutral compound and as an attractant.Here we show that over a range of concentrations NH(4Ac can be detected both as a water soluble attractant and as an odorant, and that ammonia and acetic acid individually act as olfactory attractants. We use genetic analysis to show that NaCl and NH(4Ac sensation are mediated by separate pathways and that ammonium sensation depends on the cyclic nucleotide gated ion channel TAX-2/TAX-4, but acetate sensation does not. Furthermore we show that sodium-acetate (NaAc and ammonium-chloride (NH(4Cl are not detected as Na(+ and Cl(- specific stimuli, respectively.These findings clarify the behavioral response of C. elegans to NH(4Ac. The results should have an impact on the design and interpretation of chemosensory experiments studying detection and adaptation to soluble compounds in the nematode Caenorhabditis elegans.

  14. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a.

    Directory of Open Access Journals (Sweden)

    Keshava Mysore

    Full Text Available Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention.

  15. The power of projectomes: genetic mosaic labeling in the larval zebrafish brain reveals organizing principles of sensory circuits.

    Science.gov (United States)

    Robles, Estuardo

    2017-09-01

    In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.

  16. Modeling the cellular mechanisms and olfactory input underlying the triphasic response of moth pheromone-sensitive projection neurons.

    Directory of Open Access Journals (Sweden)

    Yuqiao Gu

    Full Text Available In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs exhibit a triphasic firing pattern of excitation (E1-inhibition (I-excitation (E2 in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.

  17. Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons

    Directory of Open Access Journals (Sweden)

    Steve Yaeli

    2010-10-01

    Full Text Available Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.

  18. Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons.

    Science.gov (United States)

    Yaeli, Steve; Meir, Ron

    2010-01-01

    Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.

  19. Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in Caenorhabditis elegans Sensory Neurons

    Science.gov (United States)

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A.; Kerr, Genevieve; Wells, Kristen L.; Younes, Serena; Mortimer, Nathan T.; Olesnicky, Eugenia C.; Killian, Darrell J.

    2015-01-01

    The regulation of dendritic branching is critical for sensory reception, cell−cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans. PMID:25673135

  20. Excitability of Aβ sensory neurons is altered in an animal model of peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Zhu Yong

    2012-01-01

    Full Text Available Abstract Background Causes of neuropathic pain following nerve injury remain unclear, limiting the development of mechanism-based therapeutic approaches. Animal models have provided some directions, but little is known about the specific sensory neurons that undergo changes in such a way as to induce and maintain activation of sensory pain pathways. Our previous studies implicated changes in the Aβ, normally non-nociceptive neurons in activating spinal nociceptive neurons in a cuff-induced animal model of neuropathic pain and the present study was directed specifically at determining any change in excitability of these neurons. Thus, the present study aimed at recording intracellularly from Aβ-fiber dorsal root ganglion (DRG neurons and determining excitability of the peripheral receptive field, of the cell body and of the dorsal roots. Methods A peripheral neuropathy was induced in Sprague Dawley rats by inserting two thin polyethylene cuffs around the right sciatic nerve. All animals were confirmed to exhibit tactile hypersensitivity to von Frey filaments three weeks later, before the acute electrophysiological experiments. Under stable intracellular recording conditions neurons were classified functionally on the basis of their response to natural activation of their peripheral receptive field. In addition, conduction velocity of the dorsal roots, configuration of the action potential and rate of adaptation to stimulation were also criteria for classification. Excitability was measured as the threshold to activation of the peripheral receptive field, the response to intracellular injection of depolarizing current into the soma and the response to electrical stimulation of the dorsal roots. Results In control animals mechanical thresholds of all neurons were within normal ranges. Aβ DRG neurons in neuropathic rats demonstrated a mean mechanical threshold to receptive field stimulation that were significantly lower than in control rats, a

  1. Olfactory Memory

    Science.gov (United States)

    Eichenbaum, Howard; Robitsek, R. Jonathan

    2009-01-01

    Odor-recognition memory in rodents may provide a valuable model of cognitive aging. In a recent study we used signal detection analyses to distinguish odor recognition based on recollection versus that based on familiarity. Aged rats were selectively impaired in recollection, with relative sparing of familiarity, and the deficits in recollection were correlated with spatial memory impairments. These results complement electro-physiological findings indicating age-associated deficits in the ability of hippocampal neurons to differentiate contextual information, and this information-processing impairment may underlie the common age-associated decline in olfactory and spatial memory. PMID:19686208

  2. Cutaneous TRPM8-expressing sensory afferents are a small population of neurons with unique firing properties.

    Science.gov (United States)

    Jankowski, Michael P; Rau, Kristofer K; Koerber, H Richard

    2017-04-01

    It has been well documented that the transient receptor potential melastatin 8 (TRPM8) receptor is involved in environmental cold detection. The role that this receptor plays in nociception however, has been somewhat controversial since conflicting reports have shown different neurochemical identities and responsiveness of TRPM8 neurons. In order to functionally characterize cutaneous TRMP8 fibers, we used two ex vivo somatosensory recording preparations to functionally characterize TRPM8 neurons that innervate the hairy skin in mice genetically engineered to express GFP from the TRPM8 locus. We found several types of cold-sensitive neurons that innervate the hairy skin of the mouse but the TRPM8-expressing neurons were found to be of two specific populations that responded with rapid firing to cool temperatures. The first group was mechanically insensitive but the other did respond to high threshold mechanical deformation of the skin. None of these fibers were found to contain calcitonin gene-related peptide, transient receptor potential vanilloid type 1 or bind isolectin B4. These results taken together with other reports suggest that TRPM8 containing sensory neurons are environmental cooling detectors that may be nociceptive or non-nociceptive depending on the sensitivity of individual fibers to different combinations of stimulus modalities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. EGL-13/SoxD Specifies Distinct O2 and CO2 Sensory Neuron Fates in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Gramstrup Petersen, Jakob; Rojo Romanos, Teresa; Juozaityte, Vaida

    2013-01-01

    that EGL-13 is sufficient to induce O2- and CO2-sensing cell fates in some cellular contexts. Thus, the same core regulatory factor, egl-13, is required and sufficient to specify the distinct fates of O2- and CO2-sensing neurons in C. elegans. These findings extend our understanding of mechanisms......Animals harbor specialized neuronal systems that are used for sensing and coordinating responses to changes in oxygen (O2) and carbon dioxide (CO2). In Caenorhabditis elegans, the O2/CO2 sensory system comprises functionally and morphologically distinct sensory neurons that mediate rapid behavioral...

  4. Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons.

    Science.gov (United States)

    Kember, G C; Fenton, G A; Armour, J A; Kalyaniwalla, N

    2001-04-01

    Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance (ASR). Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any correlation between input and the output, the latter being the average firing (spiking) rate of the neuron. This lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for identifying "cause and effect" between such inputs and outputs. In this paper, the "competition between averages" model is used to determine what portion of a noisy, subthreshold input is responsible, on average, for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically relevant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average, and this amount is approximately independent of the firing rate. Hence, correlation measures are generally reduced as the firing rate is lowered even though neural control under this model is actually unaffected.

  5. Segmental distribution and morphometric features of primary sensory neurons projecting to the tibial periosteum in the rat.

    Directory of Open Access Journals (Sweden)

    Tadeusz Cichocki

    2004-07-01

    Full Text Available Previous reports have demonstrated very rich innervation pattern in the periosteum. Most of the periosteal fibers were found to be sensory in nature. The aim of this study was to identify the primary sensory neurons that innervate the tibial periosteum in the adult rat and to describe the morphometric features of their perikarya. To this end, an axonal fluorescent carbocyanine tracer, DiI, was injected into the periosteum on the medial surface of the tibia. The perikarya of the sensory fibers were traced back in the dorsal root ganglia (DRG L1-L6 by means of fluorescent microscopy on cryosections. DiI-containing neurons were counted in each section and their segmental distribution was determined. Using PC-assisted image analysis system, the size and shape of the traced perikarya were analyzed. DiI-labeled sensory neurons innervating the periosteum of the tibia were located in the DRG ipsilateral to the injection site, with the highest distribution in L3 and L4 (57% and 23%, respectively. The majority of the traced neurons were of small size (area < 850 microm2, which is consistent with the size distribution of CGRP- and SP-containing cells, regarded as primary sensory neurons responsible for perception of pain and temperature. A small proportion of labeled cells had large perikarya and probably supplied corpuscular sense receptors observed in the periosteum. No differences were found in the shape distribution of neurons belonging to different size classes.

  6. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect.

    Science.gov (United States)

    Rabhi, Kaouther K; Deisig, Nina; Demondion, Elodie; Le Corre, Julie; Robert, Guillaume; Tricoire-Leignel, Hélène; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia

    2016-02-10

    Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes. © 2016 The Author(s).

  7. Short-term memory in olfactory network dynamics

    Science.gov (United States)

    Stopfer, Mark; Laurent, Gilles

    1999-12-01

    Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas.. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clock. Here we examine, using locusts, the changes in population dynamics of projection-neuron assemblies over repeated odour stimulations, as would occur when an animal first encounters and then repeatedly samples an odour for identification or localization. We find that the responses of these assemblies rapidly decrease in intensity, while they show a marked increase in spike time precision and inter-neuronal oscillatory coherence. Once established, this enhanced precision in the representation endures for several minutes. This change is stimulus-specific, and depends on events within the antennal lobe circuits, independent of olfactory receptor adaptation: it may thus constitute a form of sensory memory. Our results suggest that this progressive change in olfactory network dynamics serves to converge, over repeated odour samplings, on a more precise and readily classifiable odour representation, using relational information contained across neural assemblies.

  8. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses

    Directory of Open Access Journals (Sweden)

    Max L Fletcher

    2012-03-01

    Full Text Available The anatomical organization of receptor neuron input into the olfactory bulb (OB allows odor information to be transformed into an odorant-specific spatial map of mitral/tufted cell glomerular activity at the upper level of the olfactory bulb. In other sensory systems, neuronal representations of stimuli can be reorganized or enhanced following learning. While the mammalian OB has been shown to undergo experience-dependent plasticity at the glomerular level, it is still unclear if similar representational change occurs within mitral/tufted cell glomerular odor representations following learning. To address this, odorant-evoked glomerular activity patterns were imaged in mice expressing a GFP-based calcium indicator (GCaMP2 in OB mitral/tufted cells. Glomerular odor responses were imaged before and after olfactory associative conditioning to aversive foot shock. Following conditioning, we found no overall reorganization of the glomerular representation. Training, however, did significantly alter the amplitudes of individual glomeruli within the representation in mice in which the odor was presented together with foot shock. Further, the specific pairing of foot shock with odor presentations lead to increased responses primarily in initially weakly activated glomeruli. Overall, these results suggest that associative conditioning can enhance the initial representation of odors within the olfactory bulb by enhancing responses to the learned odor in some glomeruli.

  9. Neurobiology of mammalian olfactory learning that occurs during sensitive periods

    Directory of Open Access Journals (Sweden)

    Hideto KABA

    2010-12-01

    Full Text Available This review examines the organizational principles underlying olfactory learning in three specialized contexts that occur during sensitive periods of enhanced neural plasticity and emphasizes some of their common features. All three forms of olfactory learning are associated with neural changes in the olfactory bulb (OB at the first stage of sensory processing. These changes require the association of the olfactory and somatosensory signals in the OB. They all depend on somatosensory stimulation-induced release of noradrenaline that induces structural and functional changes at mitral-granule cell reciprocal synapses in the OB, resulting in increases in inhibitory transmission. In the accessory olfactory bulb, this represents the enhanced self-inhibition of mitral cells, which selectively disrupts the transmission of the mating male’s pregnancy-blocking signal at this level. In contrast, an extensive network of secondary dendrites of mitral cells in the main olfactory bulb probably results in a sharpening of the odor-induced pattern of activity, due to increases in lateral inhibition, leading to offspring recognition in sheep and neonatal learning in rats and rabbits. These findings show that inhibitory interneurons play a critical role in olfactory learning. Further work on how these neurons shape olfactory circuit function could provide important clues to understand memory functions of interneurons in other systems. Moreover, recent research has suggested that three forms of olfactory learning are controlled by synergistic, redundant, and distributed neural mechanisms. This has general implications regarding the mechanisms that may contribute to the robustness of memories [Current Zoology 56 (6: 819–833, 2010].

  10. Associative Memory Extinction Is Accompanied by Decayed Plasticity at Motor Cortical Neurons and Persistent Plasticity at Sensory Cortical Neurons.

    Science.gov (United States)

    Guo, Rui; Ge, Rongjing; Zhao, Shidi; Liu, Yulong; Zhao, Xin; Huang, Li; Guan, Sodong; Lu, Wei; Cui, Shan; Wang, Shirlene; Wang, Jin-Hui

    2017-01-01

    Associative memory is essential for cognition, in which associative memory cells and their plasticity presumably play important roles. The mechanism underlying associative memory extinction vs. maintenance remains unclear, which we have studied in a mouse model of cross-modal associative learning. Paired whisker and olfaction stimulations lead to a full establishment of odorant-induced whisker motion in training day 10, which almost disappears if paired stimulations are not given in a week, and then recovers after paired stimulation for an additional day. In mice that show associative memory, extinction and recovery, we have analyzed the dynamical plasticity of glutamatergic neurons in layers II-III of the barrel cortex and layers IV-V of the motor cortex. Compared with control mice, the rate of evoked spikes as well as the amplitude and frequency of excitatory postsynaptic currents increase, whereas the amplitude and frequency of inhibitory postsynaptic currents (IPSC) decrease at training day 10 in associative memory mice. Without paired training for a week, these plastic changes are persistent in the barrel cortex and decayed in the motor cortex. If paired training is given for an additional day to revoke associative memory, neuronal plasticity recovers in the motor cortex. Our study indicates persistent neuronal plasticity in the barrel cortex for cross-modal memory maintenance as well as the dynamical change of neuronal plasticity in the motor cortex for memory retrieval and extinction. In other words, the sensory cortices are essential for long-term memory while the behavior-related cortices with the inability of memory retrieval are correlated to memory extinction.

  11. Associative Memory Extinction Is Accompanied by Decayed Plasticity at Motor Cortical Neurons and Persistent Plasticity at Sensory Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2017-06-01

    Full Text Available Associative memory is essential for cognition, in which associative memory cells and their plasticity presumably play important roles. The mechanism underlying associative memory extinction vs. maintenance remains unclear, which we have studied in a mouse model of cross-modal associative learning. Paired whisker and olfaction stimulations lead to a full establishment of odorant-induced whisker motion in training day 10, which almost disappears if paired stimulations are not given in a week, and then recovers after paired stimulation for an additional day. In mice that show associative memory, extinction and recovery, we have analyzed the dynamical plasticity of glutamatergic neurons in layers II–III of the barrel cortex and layers IV–V of the motor cortex. Compared with control mice, the rate of evoked spikes as well as the amplitude and frequency of excitatory postsynaptic currents increase, whereas the amplitude and frequency of inhibitory postsynaptic currents (IPSC decrease at training day 10 in associative memory mice. Without paired training for a week, these plastic changes are persistent in the barrel cortex and decayed in the motor cortex. If paired training is given for an additional day to revoke associative memory, neuronal plasticity recovers in the motor cortex. Our study indicates persistent neuronal plasticity in the barrel cortex for cross-modal memory maintenance as well as the dynamical change of neuronal plasticity in the motor cortex for memory retrieval and extinction. In other words, the sensory cortices are essential for long-term memory while the behavior-related cortices with the inability of memory retrieval are correlated to memory extinction.

  12. Aging in Sensory and Motor Neurons Results in Learning Failure in Aplysia californica.

    Directory of Open Access Journals (Sweden)

    Andrew T Kempsell

    Full Text Available The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT. Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.

  13. Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons.

    Science.gov (United States)

    Prsa, Mario; Galiñanes, Gregorio L; Huber, Daniel

    2017-02-22

    Neuronal motor commands, whether generating real or neuroprosthetic movements, are shaped by ongoing sensory feedback from the displacement being produced. Here we asked if cortical stimulation could provide artificial feedback during operant conditioning of cortical neurons. Simultaneous two-photon imaging and real-time optogenetic stimulation were used to train mice to activate a single neuron in motor cortex (M1), while continuous feedback of its activity level was provided by proportionally stimulating somatosensory cortex. This artificial signal was necessary to rapidly learn to increase the conditioned activity, detect correct performance, and maintain the learned behavior. Population imaging in M1 revealed that learning-related activity changes are observed in the conditioned cell only, which highlights the functional potential of individual neurons in the neocortex. Our findings demonstrate the capacity of animals to use an artificially induced cortical channel in a behaviorally relevant way and reveal the remarkable speed and specificity at which this can occur. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. From chemical neuroanatomy to an understanding of the olfactory system

    Directory of Open Access Journals (Sweden)

    L. Oboti

    2011-10-01

    Full Text Available The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB. Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  15. From chemical neuroanatomy to an understanding of the olfactory system

    Science.gov (United States)

    Oboti, L.; Peretto, P.; De Marchis, S.; Fasolo, A.

    2011-01-01

    The olfactory system of mammals is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents. PMID:22297441

  16. Associative cortex features in the first olfactory brain relay station.

    Science.gov (United States)

    Doucette, Wilder; Gire, David H; Whitesell, Jennifer; Carmean, Vanessa; Lucero, Mary T; Restrepo, Diego

    2011-03-24

    Synchronized firing of mitral cells (MCs) in the olfactory bulb (OB) has been hypothesized to help bind information together in olfactory cortex (OC). In this survey of synchronized firing by suspected MCs in awake, behaving vertebrates, we find the surprising result that synchronized firing conveys information on odor value ("Is it rewarded?") rather than odor identity ("What is the odor?"). We observed that as mice learned to discriminate between odors, synchronous firing responses to the rewarded and unrewarded odors became divergent. Furthermore, adrenergic blockage decreases the magnitude of odor divergence of synchronous trains, suggesting that MCs contribute to decision-making through adrenergic-modulated synchronized firing. Thus, in the olfactory system information on stimulus reward is found in MCs one synapse away from the sensory neuron. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta.

    Directory of Open Access Journals (Sweden)

    Thomas Schendzielorz

    Full Text Available The biogenic amine octopamine (OA mediates reward signals in olfactory learning and memory as well as circadian rhythms of sleep and activity. In the crepuscular hawkmoth Manduca sexta, OA changed pheromone detection thresholds daytime-dependently, suggesting that OA confers circadian control of olfactory transduction. Thus, with enzyme-linked immunosorbent assays we searched hawkmoth antennae for daytime-dependent changes in the concentration of OA and its respective second messengers. Antennal stimulation with OA raised cAMP- and IP3 levels. Furthermore, antennae expressed daytime-dependent changes in the concentration of OA, with maxima at Zeitgebertime (ZT 20 when moths were active and also maximal concentrations of cAMP occurred. Maximal IP3 levels at ZT 18 and 23 correlated with maximal flight activity of male moths, while minimal IP3 levels at dusk correlated with peaks of feeding activity. Half maximal effective concentration (EC50 for activation of the OA-receptor decreased during the moth's activity phase suggesting daytime-dependent changes in OA receptor sensitivity. With an antiserum against tyramine, the precursor of OA, two centrifugal neurons were detected projecting out into the sensory cell layer of the antenna, possibly mediating more rapid stimulus-dependent OA actions. Indeed, in fast kinetic assays OA receptor stimulation increased cAMP concentrations within 50 msec. Thus, we hypothesize that fast, stimulus-dependent centrifugal control of OA-release in the antenna occurs. Additional slow systemic OA actions might be based upon circadian release of OA into the hemolymph mediating circadian rhythms of antennal second messenger levels. The resulting rhythms of odor sensitivity are suggested to underlie circadian rhythms in odor-mediated behavior.

  18. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    Science.gov (United States)

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  19. Systemic Chemical Desensitization of Peptidergic Sensory Neurons with Resiniferatoxin Inhibits Experimental Periodontitis

    Science.gov (United States)

    Breivik, Torbjørn; Gundersen, Yngvar; Gjermo, Per; Fristad, Inge; Opstad, Per Kristian

    2011-01-01

    Background and objective: The immune system is an important player in the pathophysiology of periodontitis. The brain controls immune responses via neural and hormonal pathways, and brain-neuro-endocrine dysregulation may be a central determinant for pathogenesis. Our current knowledge also emphasizes the central role of sensory nerves. In line with this, we wanted to investigate how desensitization of peptidergic sensory neurons influences the progression of ligature-induced periodontitis, and, furthermore, how selected cytokine and stress hormone responses to Gram-negative bacterial lipopolysaccharide (LPS) stimulation are affected. Material and methods: Resiniferatoxin (RTX; 50 μg/kg) or vehicle was injected subcutaneously on days 1, 2, and 3 in stress high responding and periodontitis-susceptible Fischer 344 rats. Periodontitis was induced 2 days thereafter. Progression of the disease was assessed after the ligatures had been in place for 20 days. Two h before decapitation all rats received LPS (150 μg/kg i.p.) to induce a robust immune and stress response. Results: Desensitization with RTX significantly reduced bone loss as measured by digital X-rays. LPS provoked a significantly higher increase in serum levels of the pro-inflammatory cytokine tumour necrosis factor (TNF)-α, but lower serum levels of the anti-inflammatory cytokine interleukin (IL)-10 and the stress hormone corticosterone. Conclusions: In this model RTX-induced chemical desensitization of sensory peptidergic neurons attenuated ligature-induced periodontitis and promoted a shift towards stronger pro-inflammatory cytokine and weaker stress hormone responses to LPS. The results may partly be explained by the attenuated transmission of immuno-inflammatory signals to the brain. In turn, this may weaken the anti-inflammatory brain-derived pathways. PMID:21339860

  20. Morphological study on the olfactory systems of the snapping turtle, Chelydra serpentina.

    Science.gov (United States)

    Nakamuta, Nobuaki; Nakamuta, Shoko; Kato, Hideaki; Yamamoto, Yoshio

    2016-06-01

    In this study, the olfactory system of a semi-aquatic turtle, the snapping turtle, has been morphologically investigated by electron microscopy, immunohistochemistry, and lectin histochemistry. The nasal cavity of snapping turtle was divided into the upper and lower chambers, lined by the sensory epithelium containing ciliated and non-ciliated olfactory receptor neurons, respectively. Each neuron expressed both Gαolf, the α-subunit of G-proteins coupling to the odorant receptors, and Gαo, the α-subunit of G-proteins coupling to the type 2 vomeronasal receptors. The axons originating from the upper chamber epithelium projected to the ventral part of the olfactory bulb, while those from the lower chamber epithelium to the dorsal part of the olfactory bulb. Despite the identical expression of G-protein α-subunits in the olfactory receptor neurons, these two projections were clearly distinguished from each other by the differential expression of glycoconjugates. In conclusion, these data indicate the presence of two types of olfactory systems in the snapping turtle. Topographic arrangement of the upper and lower chambers and lack of the associated glands in the lower chamber epithelium suggest their possible involvement in the detection of odorants: upper chamber epithelium in the air and the lower chamber epithelium in the water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The sensory channel of presentation alters subjective ratings and autonomic responses towards disgusting stimuli -Blood pressure, heart rate and skin conductance in response to visual, auditory, haptic and olfactory presented disgusting stimuli-

    Directory of Open Access Journals (Sweden)

    Ilona eCroy

    2013-09-01

    Full Text Available Disgust causes specific reaction patterns, observable in mimic responses and body reactions. Most research on disgust deals with visual stimuli. However, pictures may cause another disgust experience than sounds, odors or tactile stimuli. Therefore disgust experience evoked by four different sensory channels was compared.A total of 119 participants received 3 different disgusting and one control stimulus, each presented through the visual, auditory, tactile and olfactory channel. Ratings of evoked disgust as well as responses of the autonomic nervous system (heart rate, skin conductance level, systolic blood pressure were recorded and the effect of stimulus labeling and of repeated presentation was analyzed. Ratings suggested that disgust could be evoked through all senses; they were highest for visual stimuli. However, autonomic reaction towards disgusting stimuli differed according to the channel of presentation. In contrast to the other, olfactory disgust stimuli provoked a strong decrease of systolic blood pressure. Additionally, labeling enhanced disgust ratings and autonomic reaction for olfactory and tactile, but not for visual and auditory stimuli. Repeated presentation indicated that participant’s disgust rating diminishes to all but olfactory disgust stimuli. Taken together we argue that the sensory channel through which a disgust reaction is evoked matters.

  2. Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine

    Directory of Open Access Journals (Sweden)

    Franceschini Alessia

    2012-11-01

    Full Text Available Abstract Background Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT or knock-in (KI mice expressing the Cacna1a gene mutation (R192Q found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. Results KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Conclusions Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons.

  3. Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine.

    Science.gov (United States)

    Franceschini, Alessia; Nair, Asha; Bele, Tanja; van den Maagdenberg, Arn Mjm; Nistri, Andrea; Fabbretti, Elsa

    2012-11-21

    Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons.

  4. EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jakob Gramstrup Petersen

    2013-05-01

    Full Text Available Animals harbor specialized neuronal systems that are used for sensing and coordinating responses to changes in oxygen (O2 and carbon dioxide (CO2. In Caenorhabditis elegans, the O2/CO2 sensory system comprises functionally and morphologically distinct sensory neurons that mediate rapid behavioral responses to exquisite changes in O2 or CO2 levels via different sensory receptors. How the diversification of the O2- and CO2-sensing neurons is established is poorly understood. We show here that the molecular identity of both the BAG (O2/CO2-sensing and the URX (O2-sensing neurons is controlled by the phylogenetically conserved SoxD transcription factor homolog EGL-13. egl-13 mutant animals fail to fully express the distinct terminal gene batteries of the BAG and URX neurons and, as such, are unable to mount behavioral responses to changes in O2 and CO2. We found that the expression of egl-13 is regulated in the BAG and URX neurons by two conserved transcription factors-ETS-5(Ets factor in the BAG neurons and AHR-1(bHLH factor in the URX neurons. In addition, we found that EGL-13 acts in partially parallel pathways with both ETS-5 and AHR-1 to direct BAG and URX neuronal fate respectively. Finally, we found that EGL-13 is sufficient to induce O2- and CO2-sensing cell fates in some cellular contexts. Thus, the same core regulatory factor, egl-13, is required and sufficient to specify the distinct fates of O2- and CO2-sensing neurons in C. elegans. These findings extend our understanding of mechanisms of neuronal diversification and the regulation of molecular factors that may be conserved in higher organisms.

  5. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research.

    Science.gov (United States)

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-08-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell-derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.

  6. Characterizing Human Stem Cell–derived Sensory Neurons at the Single-cell Level Reveals Their Ion Channel Expression and Utility in Pain Research

    Science.gov (United States)

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-01-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell–derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders. PMID:24832007

  7. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    Science.gov (United States)

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  8. Increased Nerve Growth Factor Signaling in Sensory Neurons of Early Diabetic Rats Is Corrected by Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Stefania Lucia Nori

    2013-01-01

    Full Text Available Diabetic polyneuropathy (DPN, characterized by early hyperalgesia and increased nerve growth factor (NGF, evolves in late irreversible neuropathic symptoms with reduced NGF support to sensory neurons. Electroacupuncture (EA modulates NGF in the peripheral nervous system, being effective for the treatment of DPN symptoms. We hypothesize that NGF plays an important pathogenic role in DPN development, while EA could be useful in the therapy of DPN by modulating NGF expression/activity. Diabetes was induced in rats by streptozotocin (STZ injection. One week after STZ, EA was started and continued for three weeks. NGF system and hyperalgesia-related mediators were analyzed in the dorsal root ganglia (DRG and in their spinal cord and skin innervation territories. Our results show that four weeks long diabetes increased NGF and NGF receptors and deregulated intracellular signaling mediators of DRG neurons hypersensitization; EA in diabetic rats decreased NGF and NGF receptors, normalized c-Jun N-terminal and p38 kinases activation, decreased transient receptor potential vanilloid-1 ion channel, and possibly activated the nuclear factor kappa-light-chain-enhancer of activated B cells (Nf-κB. In conclusion, NGF signaling deregulation might play an important role in the development of DPN. EA represents a supportive tool to control DPN development by modulating NGF signaling in diabetes-targeted neurons.

  9. Bilateral Neuropathy of Primary Sensory Neurons by the Chronic Compression of Multiple Unilateral DRGs

    Directory of Open Access Journals (Sweden)

    Ya-Bin Xie

    2016-01-01

    Full Text Available To mimic multilevel nerve root compression and intervertebral foramina stenosis in human, we established a new animal model of the chronic compression of unilateral multiple lumbar DRGs (mCCD in the rat. A higher occurrence of signs of spontaneous pain behaviors, such as wet-dog shaking and spontaneous hind paw shrinking behaviors, was firstly observed from day 1 onward. In the meantime, the unilateral mCCD rat exhibited significant bilateral hind paw mechanical and cold allodynia and hyperalgesia, as well as a thermal preference to 30°C plate between 30 and 35°C. The expression of activating transcription factor 3 (ATF3 was significantly increased in the ipsilateral and contralateral all-sized DRG neurons after the mCCD. And the expression of CGRP was significantly increased in the ipsilateral and contralateral large- and medium-sized DRG neurons. ATF3 and CGRP expressions correlated to evoked pain hypersensitivities such as mechanical and cold allodynia on postoperative day 1. The results suggested that bilateral neuropathy of primary sensory neurons might contribute to bilateral hypersensitivity in the mCCD rat.

  10. Emerging Role of Sensory Perception in Aging and Metabolism.

    Science.gov (United States)

    Riera, Celine E; Dillin, Andrew

    2016-05-01

    Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. Copyright © 2016. Published by Elsevier Ltd.

  11. Hypoxic Culture Promotes Dopaminergic-Neuronal Differentiation of Nasal Olfactory Mucosa Mesenchymal Stem Cells via Upregulation of Hypoxia-Inducible Factor-1α.

    Science.gov (United States)

    Zhuo, Yi; Wang, Lei; Ge, Lite; Li, Xuan; Duan, Da; Teng, Xiaohua; Jiang, Miao; Liu, Kai; Yuan, Ting; Wu, Pei; Wang, Hao; Deng, Yujia; Xie, Huali; Chen, Ping; Xia, Ying; Lu, Ming

    2017-08-01

    Olfactory mucosa mesenchymal stem cells (OM-MSCs) display significant clonogenic activity and may be easily propagated for Parkinson's disease therapies. Methods of inducing OM-MSCs to differentiate into dopaminergic (DAergic) neurons using olfactory ensheathing cells (OECs) are thus an attractive topic of research. We designed a hypoxic induction protocol to generate DAergic neurons from OM-MSCs using a physiological oxygen (O 2 ) level of 3% and OEC-conditioned medium (OCM; HI group). The normal induction (NI) group was cultured in O 2 at ambient air level (21%). The role of hypoxia-inducible factor-1α (HIF-1α) in the differentiation of OM-MSCs under hypoxia was investigated by treating cells with an HIF-1α inhibitor before induction (HIR group). The proportions of β-tubulin- and tyrosine hydroxylase (TH)-positive cells were significantly increased in the HI group compared with the NI and HIR groups, as shown by immunocytochemistry and Western blotting. Furthermore, the level of dopamine was significantly increased in the HI group. A slow outward potassium current was recorded in differentiated cells after 21 d of induction using whole-cell voltage-clamp tests. A hypoxic environment thus promotes OM-MSCs to differentiate into DAergic neurons by increasing the expression of HIF-1α and by activating downstream target gene TH. This study indicated that OCM under hypoxic conditions could significantly upregulate key transcriptional factors involved in the development of DAergic neurons from OM-MSCs, mediated by HIF-1α. Hypoxia promotes DAergic neuronal differentiation of OM-MSCs, and HIF-1α may play an important role in hypoxia-inducible pathways during DAergic lineage specification and differentiation in vitro.

  12. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  13. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture

    Directory of Open Access Journals (Sweden)

    Michael Perny

    2017-12-01

    Full Text Available The peripheral hearing process taking place in the cochlea mainly depends on two distinct sensory cell types: the mechanosensitive hair cells and the spiral ganglion neurons (SGNs. The first respond to the mechanical stimulation exerted by sound pressure waves on their hair bundles by releasing neurotransmitters and thereby activating the latter. Loss of these sensorineural cells is associated with permanent hearing loss. Stem cell-based approaches aiming at cell replacement or in vitro drug testing to identify potential ototoxic, otoprotective, or regenerative compounds have lately gained attention as putative therapeutic strategies for hearing loss. Nevertheless, they rely on efficient and reliable protocols for the in vitro generation of cochlear sensory cells for their implementation. To this end, we have developed a differentiation protocol based on organoid culture systems, which mimics the most important steps of in vivo otic development, robustly guiding mouse embryonic stem cells (mESCs toward otic sensory neurons (OSNs. The stepwise differentiation of mESCs toward ectoderm was initiated using a quick aggregation method in presence of Matrigel in serum-free conditions. Non-neural ectoderm was induced via activation of bone morphogenetic protein (BMP signaling and concomitant inhibition of transforming growth factor beta (TGFβ signaling to prevent mesendoderm induction. Preplacodal and otic placode ectoderm was further induced by inhibition of BMP signaling and addition of fibroblast growth factor 2 (FGF2. Delamination and differentiation of SGNs was initiated by plating of the organoids on a 2D Matrigel-coated substrate. Supplementation with brain-derived neurotrophic factor (BDNF and neurotrophin-3 (NT-3 was used for further maturation until 15 days of in vitro differentiation. A large population of neurons with a clear bipolar morphology and functional excitability was derived from these cultures. Immunostaining and gene expression

  14. Oncostatin M induces heat hypersensitivity by gp130-dependent sensitization of TRPV1 in sensory neurons

    Directory of Open Access Journals (Sweden)

    Langeslag Michiel

    2011-12-01

    Full Text Available Abstract Oncostatin M (OSM is a member of the interleukin-6 cytokine family and regulates eg. gene activation, cell survival, proliferation and differentiation. OSM binds to a receptor complex consisting of the ubiquitously expressed signal transducer gp130 and the ligand binding OSM receptor subunit, which is expressed on a specific subset of primary afferent neurons. In the present study, the effect of OSM on heat nociception was investigated in nociceptor-specific gp130 knock-out (SNS-gp130-/- and gp130 floxed (gp130fl/fl mice. Subcutaneous injection of pathophysiologically relevant concentrations of OSM into the hind-paw of C57BL6J wild type mice significantly reduced paw withdrawal latencies to heat stimulation. In contrast to gp130fl/fl mice, OSM did not induce heat hypersensitivity in vivo in SNS-gp130-/- mice. OSM applied at the receptive fields of sensory neurons in in vitro skin-nerve preparations showed that OSM significantly increased the discharge rate during a standard ramp-shaped heat stimulus. The capsaicin- and heat-sensitive ion channel TRPV1, expressed on a subpopulation of nociceptive neurons, has been shown to play an important role in inflammation-induced heat hypersensitivity. Stimulation of cultured dorsal root ganglion neurons with OSM resulted in potentiation of capsaicin induced ionic currents. In line with these recordings, mice with a null mutation of the TRPV1 gene did not show any signs of OSM-induced heat hypersensitivity in vivo. The present data suggest that OSM induces thermal hypersensitivity by directly sensitizing nociceptors via OSMR-gp130 receptor mediated potentiation of TRPV1.

  15. Sniffing and Oxytocin: Effects on Olfactory Memories.

    Science.gov (United States)

    Stoop, Ron

    2016-05-04

    In this issue of Neuron, Oettl et al. (2016) show how oxytocin can boost processing of olfactory information in female rats by a top-downregulation from the anterior olfactory nucleus onto the main olfactory bulb. As a result, interactions with juvenile conspecifics receive more attention and are longer memorized. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study.

    Science.gov (United States)

    Sundt, Danielle; Gamper, Nikita; Jaffe, David B

    2015-12-01

    Unmyelinated C-fibers are a major type of sensory neurons conveying pain information. Action potential conduction is regulated by the bifurcation (T-junction) of sensory neuron axons within the dorsal root ganglia (DRG). Understanding how C-fiber signaling is influenced by the morphology of the T-junction and the local expression of ion channels is important for understanding pain signaling. In this study we used biophysical computer modeling to investigate the influence of axon morphology within the DRG and various membrane conductances on the reliability of spike propagation. As expected, calculated input impedance and the amplitude of propagating action potentials were both lowest at the T-junction. Propagation reliability for single spikes was highly sensitive to the diameter of the stem axon and the density of voltage-gated Na(+) channels. A model containing only fast voltage-gated Na(+) and delayed-rectifier K(+) channels conducted trains of spikes up to frequencies of 110 Hz. The addition of slowly activating KCNQ channels (i.e., KV7 or M-channels) to the model reduced the following frequency to 30 Hz. Hyperpolarization produced by addition of a much slower conductance, such as a Ca(2+)-dependent K(+) current, was needed to reduce the following frequency to 6 Hz. Attenuation of driving force due to ion accumulation or hyperpolarization produced by a Na(+)-K(+) pump had no effect on following frequency but could influence the reliability of spike propagation mutually with the voltage shift generated by a Ca(2+)-dependent K(+) current. These simulations suggest how specific ion channels within the DRG may contribute toward therapeutic treatments for chronic pain. Copyright © 2015 the American Physiological Society.

  17. Adipose-derived stromal cells enhance auditory neuron survival in an animal model of sensory hearing loss.

    Science.gov (United States)

    Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas

    2017-10-01

    A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors

    Science.gov (United States)

    Low, Sean E.; Amburgey, Kimberly; Horstick, Eric; Linsley, Jeremy; Sprague, Shawn M.; Cui, Wilson W.; Zhou, Weibin; Hirata, Hiromi; Saint-Amant, Louis; Hume, Richard I.; Kuwada, John Y.

    2011-01-01

    Mutations in the gene encoding TRPM7 (trpm7), a member of the TRP superfamily of cation channels that possesses an enzymatically active kinase at its carboxyl terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations which abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons we found that TRPM7’s kinase activity, and selectivity for divalent cations over monovalent cations, were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses. PMID:21832193

  19. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons.

    Directory of Open Access Journals (Sweden)

    Tzu Lin

    2015-11-01

    Full Text Available During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.

  20. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia.

    Science.gov (United States)

    Baral, Pankaj; Umans, Benjamin D; Li, Lu; Wallrapp, Antonia; Bist, Meghna; Kirschbaum, Talia; Wei, Yibing; Zhou, Yan; Kuchroo, Vijay K; Burkett, Patrick R; Yipp, Bryan G; Liberles, Stephen D; Chiu, Isaac M

    2018-05-01

    Lung-innervating nociceptor sensory neurons detect noxious or harmful stimuli and consequently protect organisms by mediating coughing, pain, and bronchoconstriction. However, the role of sensory neurons in pulmonary host defense is unclear. Here, we found that TRPV1 + nociceptors suppressed protective immunity against lethal Staphylococcus aureus pneumonia. Targeted TRPV1 + -neuron ablation increased survival, cytokine induction, and lung bacterial clearance. Nociceptors suppressed the recruitment and surveillance of neutrophils, and altered lung γδ T cell numbers, which are necessary for immunity. Vagal ganglia TRPV1 + afferents mediated immunosuppression through release of the neuropeptide calcitonin gene-related peptide (CGRP). Targeting neuroimmunological signaling may be an effective approach to treat lung infections and bacterial pneumonia.

  1. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Yong Seek; Park, Cheung-Seog [Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Jin, Young-Ho, E-mail: jinyh@khu.ac.kr [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  2. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    International Nuclear Information System (INIS)

    Kim, Hyun-Suk; Guo, Chunlu; Thompson, Eric L.; Jiang, Yanlin; Kelley, Mark R.; Vasko, Michael R.; Lee, Suk-Hee

    2015-01-01

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 h. In cultures where APE1 expression was reduced by ∼80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons

  3. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Suk [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Guo, Chunlu; Thompson, Eric L. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Jiang, Yanlin [Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Kelley, Mark R. [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Vasko, Michael R. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Lee, Suk-Hee, E-mail: slee@iu.edu [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States)

    2015-09-15

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 h. In cultures where APE1 expression was reduced by ∼80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons.

  4. Gross anatomy and histology of the olfactory rosette of the shark Heptranchias perlo.

    Science.gov (United States)

    Ferrando, Sara; Gallus, Lorenzo; Amaroli, Andrea; Gambardella, Chiara; Waryani, Baradi; Di Blasi, Davide; Vacchi, Marino

    2017-06-01

    Sharks belonging to the family Hexanchidae have six or seven gill slits, unlike all other elasmobranchs, which have five gill slits. Their olfactory organs have a round shape, which is common for holocephalans, but not for elasmobranchs. Thus, the shape of the olfactory organ represents a further, less striking, peculiarity of this family among elasmobranchs. Despite that, the microscopic anatomy and histology of the olfactory organ have not yet been studied in any species of this family. Here, an anatomical and histological description of the olfactory organ of the sharpnose sevengill shark Heptranchias perlo is given. The organ is a rosette, with a central raphe and 31-34 primary lamellae, which bear secondary lamellae with a more or less branched shape. The elastic connective capsule which envelops the olfactory rosette possibly changes its shape along with water influx. In the olfactory epithelium, the supporting cells also have a secretory function, while no specialized mucous cells are visible; regarding this feature the olfactory epithelium of H. perlo differs from that of other chondrichthyan species. The immunohistochemical investigation of the sensory epithelium shows the absence of immunoreactivity for Gαolf in receptor neurons, which confirms previous observations in Chondrichthyes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Odor memory stability after reinnervation of the olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Eduardo Blanco-Hernández

    Full Text Available The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP. Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.

  6. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.

    Science.gov (United States)

    Cadiou, Hervé; Aoudé, Imad; Tazir, Bassim; Molinas, Adrien; Fenech, Claire; Meunier, Nicolas; Grosmaitre, Xavier

    2014-04-02

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to lyral induces plasticity in the population of OSNs expressing MOR23. Their density decreases after odorant exposure, whereas the amount of MOR23 mRNA and protein remain stable in the whole epithelium. Meanwhile, quantitative PCR indicates that each MOR23 neuron has higher levels of olfactory receptor transcripts and also expresses more CNGA2 and phosphodiesterase 1C, fundamental olfactory transduction pathway proteins. Transcript levels return to baseline after 4 weeks recovery. Patch-clamp recordings reveal that exposed MOR23 neurons respond to lyral with higher sensitivity and broader dynamic range while the responses' kinetics were faster. These effects are specific to the odorant-receptor pair lyral-MOR23: there was no effect of acetophenone on MOR23 neurons and no effect of acetophenone and lyral on the M71 population. Together, our results clearly demonstrate that OSNs undergo specific anatomical, molecular, and functional adaptation when chronically exposed to odorants in the early stage of life.

  7. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats.

    Science.gov (United States)

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2017-01-27

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.

  8. Tissue engineering the mechanosensory circuit of the stretch reflex arc: sensory neuron innervation of intrafusal muscle fibers.

    Science.gov (United States)

    Rumsey, John W; Das, Mainak; Bhalkikar, Abhijeet; Stancescu, Maria; Hickman, James J

    2010-11-01

    The sensory circuit of the stretch reflex arc, composed of specialized intrafusal muscle fibers and type Ia proprioceptive sensory neurons, converts mechanical information regarding muscle length and stretch to electrical action potentials and relays them to the central nervous system. Utilizing a non-biological substrate, surface patterning photolithography and a serum-free medium formulation a co-culture system was developed that facilitated functional interactions between intrafusal muscle fibers and sensory neurons. The presence of annulospiral wrappings (ASWs) and flower-spray endings (FSEs), both physiologically relevant morphologies in sensory neuron-intrafusal fiber interactions, were demonstrated and quantified using immunocytochemistry. Furthermore, two proposed components of the mammalian mechanosensory transduction system, BNaC1 and PICK1, were both identified at the ASWs and FSEs. To verify functionality of the mechanoreceptor elements the system was integrated with a MEMS cantilever device, and Ca(2+) currents were imaged along the length of an axon innervating an intrafusal fiber when stretched by cantilever deflection. This system provides a platform for examining the role of this mechanosensory complex in the pathology of myotonic and muscular dystrophies, peripheral neuropathy, and spasticity inducing diseases like Parkinson's. These studies will also assist in engineering fine motor control for prosthetic devices by improving our understanding of mechanosensitive feedback. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Loss of CO2 sensing by the olfactory system of CNGA3 knockout mice

    Directory of Open Access Journals (Sweden)

    Jinlong HAN, Minmin LUO

    2010-12-01

    Full Text Available Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory system in mice sensitively detects CO2 in the air. Olfactory CO2 neurons are believed to rely on cyclic guanosine monophosphate (cGMP as the key second messenger; however, the specific ion channel underlying CO­2 responses remains unclear. Here we show that CO2-evoked neuronal and behavioral responses require cyclic nucleotide-gated (CNG channels consisting of the CNGA3 subunit. Through Ca2+-imaging, we found that CO2-triggered Ca2+ influx was abolished in necklace olfactory sensory neurons (OSNs of CNGA3-knockout mice. Olfactory detection tests using a Go/No-go paradigm showed that these knockout mice failed to detect 0.5% CO2. Thus, sensitive detection of atmospheric CO2 depends on the function of CNG channels consisting of the CNGA3 subunit in necklace OSNs. These data support the important role of the necklace olfactory system in CO2 sensing and extend our understanding of the signal transduction pathway mediating CO2 detection in mammals [Current Zoology 56 (6: 793–799, 2010].

  10. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  11. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory.

    Science.gov (United States)

    Hawk, Josh D; Calvo, Ana C; Liu, Ping; Almoril-Porras, Agustin; Aljobeh, Ahmad; Torruella-Suárez, María Luisa; Ren, Ivy; Cook, Nathan; Greenwood, Joel; Luo, Linjiao; Wang, Zhao-Wen; Samuel, Aravinthan D T; Colón-Ramos, Daniel A

    2018-01-17

    Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory. Sensory adaptation adjusts the temperature range of the sensory neuron (called AFD) to optimize detection of temperature fluctuations associated with migration. Presynaptic plasticity in AFD is regulated by the conserved kinase nPKCε and transforms thermosensory information into a behavioral preference. Bypassing AFD presynaptic plasticity predictably changes learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct neuroplasticity mechanisms function together through a single-cell logic system to enact thermotactic behavior. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Asymmetric localization of natural antisense RNA of neuropeptide sensorin in Aplysia sensory neurons during aging and activity

    Directory of Open Access Journals (Sweden)

    Beena eKadakkuzha

    2014-04-01

    Full Text Available Despite the advances in our understanding of transcriptome, regulation and function of its noncoding components continue to be poorly understood. Here we searched for natural antisense transcript for sensorin (NAT-SRN, a neuropeptide expressed in the presynaptic sensory neurons of gill-withdrawal reflex of the marine snail Aplysia californica. Sensorin (SRN has a key role in learning and long-term memory storage in Aplysia. We have identified NAT-SRN in the central nervous system (CNS and have confirmed its expression by northern blotting and fluorescent RNA in situ hybridization. Quantitative analysis of NAT-SRN in micro dissected cell bodies and processes of sensory neurons suggest that NAT-SRN is present in the distal neuronal processes along with sense transcripts. Importantly, aging is associated with reduced levels of NAT-SRN in sensory neuron processes. Furthermore, we find that forskolin, an activator of CREB signaling, differentially alters the distribution of SRN and NAT-SRN. These studies reveal novel insights into physiological regulation of natural antisense RNAs.

  13. Asymmetric localization of natural antisense RNA of neuropeptide sensorin in Aplysia sensory neurons during aging and activity.

    Science.gov (United States)

    Kadakkuzha, Beena M; Liu, Xin-An; Narvaez, Maria; Kaye, Alexandra; Akhmedov, Komolitdin; Puthanveettil, Sathyanarayanan V

    2014-01-01

    Despite the advances in our understanding of transcriptome, regulation and function of its non-coding components continue to be poorly understood. Here we searched for natural antisense transcript for sensorin (NAT-SRN), a neuropeptide expressed in the presynaptic sensory neurons of gill-withdrawal reflex of the marine snail Aplysia californica. Sensorin (SRN) has a key role in learning and long-term memory storage in Aplysia. We have now identified NAT-SRN in the central nervous system (CNS) and have confirmed its expression by northern blotting and fluorescent RNA in situ hybridization. Quantitative analysis of NAT-SRN in micro-dissected cell bodies and processes of sensory neurons suggest that NAT-SRN is present in the distal neuronal processes along with sense transcripts. Importantly, aging is associated with reduction in levels of NAT-SRN in sensory neuron processes. Furthermore, we find that forskolin, an activator of CREB signaling, differentially alters the distribution of SRN and NAT-SRN. These studies reveal novel insights into physiological regulation of natural antisense RNAs.

  14. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    Science.gov (United States)

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  15. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle.

    Science.gov (United States)

    Gibbons, David D; Kutschke, William J; Weiss, Robert M; Benson, Christopher J

    2015-10-15

    Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  16. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  17. Shared mushroom body circuits underlie visual and olfactory memories in Drosophila

    Science.gov (United States)

    Vogt, Katrin; Schnaitmann, Christopher; Dylla, Kristina V; Knapek, Stephan; Aso, Yoshinori; Rubin, Gerald M; Tanimoto, Hiromu

    2014-01-01

    In nature, animals form memories associating reward or punishment with stimuli from different sensory modalities, such as smells and colors. It is unclear, however, how distinct sensory memories are processed in the brain. We established appetitive and aversive visual learning assays for Drosophila that are comparable to the widely used olfactory learning assays. These assays share critical features, such as reinforcing stimuli (sugar reward and electric shock punishment), and allow direct comparison of the cellular requirements for visual and olfactory memories. We found that the same subsets of dopamine neurons drive formation of both sensory memories. Furthermore, distinct yet partially overlapping subsets of mushroom body intrinsic neurons are required for visual and olfactory memories. Thus, our results suggest that distinct sensory memories are processed in a common brain center. Such centralization of related brain functions is an economical design that avoids the repetition of similar circuit motifs. DOI: http://dx.doi.org/10.7554/eLife.02395.001 PMID:25139953

  18. Olfactory receptor neuron responses of a longhorned beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), to pheromone, host, and non-host volatiles.

    Science.gov (United States)

    MacKay, Colin A; Sweeney, Jon D; Hillier, N Kirk

    2015-12-01

    Longhorn wood-boring beetles (Coleoptera: Cerambycidae) use olfactory cues to find mates and hosts for oviposition. Tetropium fuscum (Fabr.) is an invasive longhorned wood-boring beetle originating from Europe that has been established in Nova Scotia, Canada, since at least 1990. This study used single sensillum recordings (SSR) to determine the response of olfactory receptor neurons (ORNs) in the antennal sensilla of male and female T. fuscum to different kinds of olfactory cues, namely host volatiles, non-host volatiles, the aggregation pheromone of T. fuscum (fuscumol), and an aggregation pheromone emitted by other species of longhorn beetles (3-hydroxyhexan-2-one). Each compound had been previously shown to elicit antennal activity in T. fuscum using electroantennography or had been shown to elicit behavioral activity in T. fuscum or other cerambycids. There have been very few SSR studies done on cerambycids, and ours is the first to compare response profiles of pheromone components as well as host and non-host volatiles. Based on SSR studies with other insects, we predicted we would find ORNs that responded to the pheromone alone (pheromone-specialists), as well as ORNs that responded only to host or non-host volatiles, i.e., separation of olfactory cue perception at the ORN level. Also, because male T. fuscum emerge earlier than females and are the pheromone-emitting sex, we predicted that the number of pheromone-sensitive ORNs would be greater in females than males. We found 140 ORNs housed within 97 sensilla that responded to at least one of the 13 compounds. Fuscumol-specific ORNs made up 15% (21/140) of all recordings, but contrary to our prediction, an additional 22 ORNs (16%) responded to fuscumol plus at least one other compound; in total, fuscumol elicited a response from 43/140 (31%) of ORNs with fuscumol-specific ORNs accounting for half of these. Thus, our prediction that pheromone reception would be segregated on specialist ORNs was only partially

  19. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication.

    Science.gov (United States)

    Wang, Juan; Silva, Malan; Haas, Leonard A; Morsci, Natalia S; Nguyen, Ken C Q; Hall, David H; Barr, Maureen M

    2014-03-03

    Cells release extracellular vesicles (ECVs) that play important roles in intercellular communication and may mediate a broad range of physiological and pathological processes. Many fundamental aspects of ECV biogenesis and signaling have yet to be determined, with ECV detection being a challenge and obstacle due to the small size (100 nm) of the ECVs. We developed an in vivo system to visualize the dynamic release of GFP-labeled ECVs. We show here that specific Caenorhabdidits elegans ciliated sensory neurons shed and release ECVs containing GFP-tagged polycystins LOV-1 and PKD-2. These ECVs are also abundant in the lumen surrounding the cilium. Electron tomography and genetic analysis indicate that ECV biogenesis occurs via budding from the plasma membrane at the ciliary base and not via fusion of multivesicular bodies. Intraflagellar transport and kinesin-3 KLP-6 are required for environmental release of PKD-2::GFP-containing ECVs. ECVs isolated from wild-type animals induce male tail-chasing behavior, while ECVs isolated from klp-6 animals and lacking PKD-2::GFP do not. We conclude that environmentally released ECVs play a role in animal communication and mating-related behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Intracellular recording, sensory field mapping, and culturing identified neurons in the leech, Hirudo medicinalis.

    Science.gov (United States)

    Titlow, Josh; Majeed, Zana R; Nicholls, John G; Cooper, Robin L

    2013-11-04

    The freshwater leech, Hirudo medicinalis, is a versatile model organism that has been used to address scientific questions in the fields of neurophysiology, neuroethology, and developmental biology. The goal of this report is to consolidate experimental techniques from the leech system into a single article that will be of use to physiologists with expertise in other nervous system preparations, or to biology students with little or no electrophysiology experience. We demonstrate how to dissect the leech for recording intracellularly from identified neural circuits in the ganglion. Next we show how individual cells of known function can be removed from the ganglion to be cultured in a Petri dish, and how to record from those neurons in culture. Then we demonstrate how to prepare a patch of innervated skin to be used for mapping sensory or motor fields. These leech preparations are still widely used to address basic electrical properties of neural networks, behavior, synaptogenesis, and development. They are also an appropriate training module for neuroscience or physiology teaching laboratories.

  1. Highly localized interactions between sensory neurons and sprouting sympathetic fibers observed in a transgenic tyrosine hydroxylase reporter mouse

    Directory of Open Access Journals (Sweden)

    Zhang Jun-Ming

    2011-07-01

    Full Text Available Abstract Background Sprouting of sympathetic fibers into sensory ganglia occurs in many preclinical pain models, providing a possible anatomical substrate for sympathetically enhanced pain. However, the functional consequences of this sprouting have been controversial. We used a transgenic mouse in which sympathetic fibers expressed green fluorescent protein, observable in live tissue. Medium and large diameter lumbar sensory neurons with and without nearby sympathetic fibers were recorded in whole ganglion preparations using microelectrodes. Results After spinal nerve ligation, sympathetic sprouting was extensive by 3 days. Abnormal spontaneous activity increased to 15% and rheobase was reduced. Spontaneously active cells had Aαβ conduction velocities but were clustered near the medium/large cell boundary. Neurons with sympathetic basket formations had a dramatically higher incidence of spontaneous activity (71% and had lower rheobase than cells with no sympathetic fibers nearby. Cells with lower density nearby fibers had intermediate phenotypes. Immunohistochemistry of sectioned ganglia showed that cells surrounded by sympathetic fibers were enriched in nociceptive markers TrkA, substance P, or CGRP. Spontaneous activity began before sympathetic sprouting was observed, but blocking sympathetic sprouting on day 3 by cutting the dorsal ramus in addition to the ventral ramus of the spinal nerve greatly reduced abnormal spontaneous activity. Conclusions The data suggest that early sympathetic sprouting into the sensory ganglia may have highly localized, excitatory effects. Quantitatively, neurons with sympathetic basket formations may account for more than half of the observed spontaneous activity, despite being relatively rare. Spontaneous activity in sensory neurons and sympathetic sprouting may be mutually re-enforcing.

  2. Brn3a regulates neuronal subtype specification in the trigeminal ganglion by promoting Runx expression during sensory differentiation

    Directory of Open Access Journals (Sweden)

    Raisa Eng S

    2010-01-01

    Full Text Available Abstract The transcription factor Brn3a, product of the pou4f1 gene, is expressed in most sensory neurons throughout embryogenesis. Prior work has demonstrated a role for Brn3a in the repression of early neurogenic genes; here we describe a second major role for Brn3a in the specification of sensory subtypes in the trigeminal ganglion (TG. Sensory neurons initially co-express multiple Trk-family neurotrophin receptors, but are later marked by the unique expression of TrkA, TrkB or TrkC. Maturation of these sensory subtypes is known to depend on the expression of Runx transcription factors. Newborn Brn3a knockout mice fail to express TrkC, which is associated in the TG with mechanoreceptors, plus a set of functional genes associated with nociceptor subtypes. In embryonic Brn3a-/- ganglia, the normal expression of Runx3 is never initiated in TrkC+ neurons, and Runx1 expression is greatly attenuated in TrkA+ nociceptors. These changes are accompanied by expanded expression of TrkB in neurons that abnormally express multiple Trks, followed by the loss of TrkC and TrkA expression. In transgenic embryos expressing a Brn3a-VP16 dominant transactivator, Runx3 mRNA expression is increased, suggesting that it is a direct regulatory target of Brn3a. Chromatin immunoprecipitation confirms that Brn3a binds in vivo to a conserved upstream enhancer element within histone H3-acetylated chromatin in the Runx3 locus. Together these data show that Brn3a acts upstream of the Runx factors, which then repress TrkB expression to allow establishment of the non-overlapping Trk receptor profiles and correct terminally differentiated phenotypes.

  3. Increased levels of SV2A botulinum neurotoxin receptor in clinical sensory disorders and functional effects of botulinum toxins A and E in cultured human sensory neurons

    Directory of Open Access Journals (Sweden)

    Yiangou Y

    2011-10-01

    Full Text Available Yiangos Yiangou1 Uma Anand1,2, William R. Otto2, Marco Sinisi3, Michael Fox3, Rolfe Birch3 Keith A. Foster4, Gaurav Mukerji1,5, Ayesha Akbar1,6, Sanjiv K. Agarwal5, Praveen Anand11Department of Clinical Neuroscience, Imperial College London, Hammersmith Hospital, London; 2Histopathology Laboratory, Cancer Research UK, London Research Institute, London; 3Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore; 4Syntaxin Ltd, Oxford; 5Department of Urology; 6Department of Gastroenterology, Imperial College London, Hammersmith Hospital, London, United Kingdom Background: There is increasing evidence that botulinum neurotoxin A may affect sensory nociceptor fibers, but the expression of its receptors in clinical pain states, and its effects in human sensory neurons, are largely unknown.Methods: We studied synaptic vesicle protein subtype SV2A, a receptor for botulinum neurotoxin A, by immunostaining in a range of clinical tissues, including human dorsal root ganglion sensory neurons, peripheral nerves, the urinary bladder, and the colon. We also determined the effects of botulinum neurotoxins A and E on localization of the capsaicin receptor, TRPV1, and functional sensitivity to capsaicin stimuli in cultured human dorsal root ganglion neurons.Results: Image analysis showed that SV2A immunoreactive nerve fibers were increased in injured nerves proximal to the injury (P = 0.002, and in painful neuromas (P = 0.0027; the ratio of percentage area SV2A to neurofilaments (a structural marker was increased proximal to injury (P = 0.0022 and in neuromas (P = 0.0001, indicating increased SV2A levels in injured nerve fibers. In the urinary bladder, SV2A nerve fibers were found in detrusor muscle and associated with blood vessels, with a significant increase in idiopathic detrusor overactivity (P = 0.002 and painful bladder syndrome (P = 0.0087. Colon biopsies showed numerous SV2A-positive nerve fibers, which were increased in quiescent

  4. Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons.

    Science.gov (United States)

    Lapatsina, Liudmila; Jira, Julia A; Smith, Ewan St J; Poole, Kate; Kozlenkov, Alexey; Bilbao, Daniel; Lewin, Gary R; Heppenstall, Paul A

    2012-06-01

    A complex of stomatin-family proteins and acid-sensing (proton-gated) ion channel (ASIC) family members participate in sensory transduction in invertebrates and vertebrates. Here, we have examined the role of the stomatin-family protein stomatin-like protein-3 (STOML3) in this process. We demonstrate that STOML3 interacts with stomatin and ASIC subunits and that this occurs in a highly mobile vesicle pool in dorsal root ganglia (DRG) neurons and Chinese hamster ovary cells. We identify a hydrophobic region in the N-terminus of STOML3 that is required for vesicular localization of STOML3 and regulates physical and functional interaction with ASICs. We further characterize STOML3-containing vesicles in DRG neurons and show that they are Rab11-positive, but not part of the early-endosomal, lysosomal or Rab14-dependent biosynthetic compartment. Moreover, uncoupling of vesicles from microtubules leads to incorporation of STOML3 into the plasma membrane and increased acid-gated currents. Thus, STOML3 defines a vesicle pool in which it associates with molecules that have critical roles in sensory transduction. We suggest that the molecular features of this vesicular pool may be characteristic of a 'transducosome' in sensory neurons.

  5. Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1.

    Science.gov (United States)

    Qian, Ying; Shirasawa, Senji; Chen, Chih-Li; Cheng, Leping; Ma, Qiufu

    2002-05-15

    Trigeminal nuclei and the dorsal spinal cord are first-order relay stations for processing somatic sensory information such as touch, pain, and temperature. The origins and development of these neurons are poorly understood. Here we show that relay somatic sensory neurons and D2/D4 dorsal interneurons likely derive from Mash1-positive neural precursors, and depend on two related homeobox genes, Rnx and Tlx-1, for proper formation. Rnx and Tlx-1 maintain expression of Drg11, a homeobox gene critical for the development of pain circuitry, and are essential for the ingrowth of trkA+ nociceptive/thermoceptive sensory afferents to their central targets. We showed previously that Rnx is necessary for proper formation of the nucleus of solitary tract, the target for visceral sensory afferents. Together, our studies demonstrate a central role for Rnx and Tlx-1 in the development of two major classes of relay sensory neurons, somatic and visceral.

  6. Two different avian cold-sensitive sensory neurons: Transient receptor potential melastatin 8 (TRPM8)-dependent and -independent activation mechanisms.

    Science.gov (United States)

    Yamamoto, A; Takahashi, K; Saito, S; Tominaga, M; Ohta, T

    2016-12-01

    Sensing the ambient temperature is an important function for survival in animals. Some TRP channels play important roles as detectors of temperature and irritating chemicals. There are functional differences of TRP channels among species. TRPM8 in mammals is activated by cooling compounds and cold temperature, but less information is available on the functional role of TRPM8 in avian species. Here we investigated the pharmacological properties and thermal sensitivities of chicken TRPM8 (cTRPM8) and cold-sensitive mechanisms in avian sensory neurons. In heterologously expressed cTRPM8, menthol and its derivative, WS-12 elicited [Ca 2+ ] i increases, but icilin did not. In chicken sensory neurons, icilin increased [Ca 2+ ] i, in a TRPA1-dependent manner. Icilin selectively stimulated heterologously expressed chicken TRPA1 (cTRPA1). Similar to mammalian orthologue, cTRPM8 was activated by cold. Both heterologous and endogenous expressed cTRPM8 were sensitive to mammalian TRPM8 antagonists. There are two types of cold-sensitive cells regarding menthol sensitivity in chicken sensory neurons. The temperature threshold of menthol-insensitive neurons was significantly lower than that of menthol-sensitive ones. The population of menthol-insensitive neurons was large in chicken but almost little in mammals. The cold-induced [Ca 2+ ] i increases were not abolished by the external Ca 2+ removal or by blockades of PLC-IP 3 pathways and ryanodine channels. The cold stimulation failed to evoke [Ca 2+ ] i increases after intracellular Ca 2+ store-depletion. These results indicate that cTRPM8 acts as a cold-sensor similar to mammals. It is noteworthy that TRPM8-independent cold-sensitive neurons are abundant in chicken sensory neurons. Our results suggest that most of the cold-induced [Ca 2+ ] i increases are mediated via Ca 2+ release from intracellular stores and that these mechanisms may be specific to avian species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An olfactory subsystem that detects carbon disulfide and mediates food-related social learning.

    Science.gov (United States)

    Munger, Steven D; Leinders-Zufall, Trese; McDougall, Lisa M; Cockerham, Renee E; Schmid, Andreas; Wandernoth, Petra; Wennemuth, Gunther; Biel, Martin; Zufall, Frank; Kelliher, Kevin R

    2010-08-24

    Olfactory signals influence social interactions in a variety of species. In mammals, pheromones and other social cues can promote mating or aggression behaviors; can communicate information about social hierarchies, genetic identity and health status; and can contribute to associative learning. However, the molecular, cellular, and neural mechanisms underlying many olfactory-mediated social interactions remain poorly understood. Here, we report that a specialized olfactory subsystem that includes olfactory sensory neurons (OSNs) expressing the receptor guanylyl cyclase GC-D, the cyclic nucleotide-gated channel subunit CNGA3, and the carbonic anhydrase isoform CAII (GC-D(+) OSNs) is required for the acquisition of socially transmitted food preferences (STFPs) in mice. Using electrophysiological recordings from gene-targeted mice, we show that GC-D(+) OSNs are highly sensitive to the volatile semiochemical carbon disulfide (CS(2)), a component of rodent breath and a known social signal mediating the acquisition of STFPs. Olfactory responses to CS(2) are drastically reduced in mice lacking GC-D, CNGA3, or CAII. Disruption of this sensory transduction cascade also results in a failure to acquire STFPs from either live or surrogate demonstrator mice or to exhibit hippocampal correlates of STFP retrieval. Our findings indicate that GC-D(+) OSNs detect chemosignals that facilitate food-related social interactions. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Patient-derived olfactory mucosa for study of the non-neuronal contribution to amyotrophic lateral sclerosis pathology

    OpenAIRE

    García-Escudero, V.; Rosales, M.; Muñoz, J.L.; Scola, E.; Medina, J.; Khalique, H.; Garaulet, G.; Rodriguez, A.; Lim, F.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease which currently has no cure. Research using rodent ALS models transgenic for mutant superoxide dismutase 1 (SOD1) has implicated that glial-neuronal interactions play a major role in the destruction of motor neurons, but the generality of this mechanism is not clear as SOD1 mutations only account for less than 2% of all ALS cases. Recently, this hypothesis was backed up by observation of similar effects using astrocyte...

  9. Diversity of Internal Sensory Neuron Axon Projection Patterns Is Controlled by the POU-Domain Protein Pdm3 in Drosophila Larvae.

    Science.gov (United States)

    Qian, Cheng Sam; Kaplow, Margarita; Lee, Jennifer K; Grueber, Wesley B

    2018-02-21

    Internal sensory neurons innervate body organs and provide information about internal state to the CNS to maintain physiological homeostasis. Despite their conservation across species, the anatomy, circuitry, and development of internal sensory systems are still relatively poorly understood. A largely unstudied population of larval Drosophila sensory neurons, termed tracheal dendrite (td) neurons, innervate internal respiratory organs and may serve as a model for understanding the sensing of internal states. Here, we characterize the peripheral anatomy, central axon projection, and diversity of td sensory neurons. We provide evidence for prominent expression of specific gustatory receptor genes in distinct populations of td neurons, suggesting novel chemosensory functions. We identify two anatomically distinct classes of td neurons. The axons of one class project to the subesophageal zone (SEZ) in the brain, whereas the other terminates in the ventral nerve cord (VNC). We identify expression and a developmental role of the POU-homeodomain transcription factor Pdm3 in regulating the axon extension and terminal targeting of SEZ-projecting td neurons. Remarkably, ectopic Pdm3 expression is alone sufficient to switch VNC-targeting axons to SEZ targets, and to induce the formation of putative synapses in these ectopic target zones. Our data thus define distinct classes of td neurons, and identify a molecular factor that contributes to diversification of axon targeting. These results introduce a tractable model to elucidate molecular and circuit mechanisms underlying sensory processing of internal body status and physiological homeostasis. SIGNIFICANCE STATEMENT How interoceptive sensory circuits develop, including how sensory neurons diversify and target distinct central regions, is still poorly understood, despite the importance of these sensory systems for maintaining physiological homeostasis. Here, we characterize classes of Drosophila internal sensory neurons (td

  10. Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice

    Directory of Open Access Journals (Sweden)

    Belén Mollá

    2017-08-01

    Full Text Available Friedreich’s ataxia (FRDA is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux. The homogenous distribution of axonal spheroids along the neurites supports the existence of continues focal damages. This lead us to propose for FRDA a model of distal axonopathy based on axonal focal damages. In addition, we observed the involvement of oxidative stress and dyshomeostasis of calcium in axonal spheroid formation generating axonal injury as a primary cause of pathophysiology. Axonal spheroids may be a consequence of calcium imbalance, thus we propose the quenching or removal extracellular Ca2+ to prevent spheroids formation. In our neuronal model, treatments with BAPTA and o-phenanthroline reverted the axonal dystrophy and the mitochondrial dysmorphic parameters. These results support the hypothesis that axonal pathology is reversible in FRDA by pharmacological manipulation of intracellular Ca2+ with Ca2+ chelators or metalloprotease inhibitors, preventing Ca2+-mediated axonal injury. Thus, the modulation of Ca2+ levels may be a relevant therapeutic target to develop early axonal protection and prevent dying-back neurodegeneration.

  11. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Javier Sábado

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs. Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1 gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  12. Modeling peripheral olfactory coding in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Derek J Hoare

    Full Text Available The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs, enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%-77% (mean for all odors 45.2% but was always significantly above chance (5.6%. However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain.

  13. PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans.

    Science.gov (United States)

    Wallace, Sean W; Singhvi, Aakanksha; Liang, Yupu; Lu, Yun; Shaham, Shai

    2016-04-19

    Sensory neurons are an animal's gateway to the world, and their receptive endings, the sites of sensory signal transduction, are often associated with glia. Although glia are known to promote sensory-neuron functions, the molecular bases of these interactions are poorly explored. Here, we describe a post-developmental glial role for the PROS-1/Prospero/PROX1 homeodomain protein in sensory-neuron function in C. elegans. Using glia expression profiling, we demonstrate that, unlike previously characterized cell fate roles, PROS-1 functions post-embryonically to control sense-organ glia-specific secretome expression. PROS-1 functions cell autonomously to regulate glial secretion and membrane structure, and non-cell autonomously to control the shape and function of the receptive endings of sensory neurons. Known glial genes controlling sensory-neuron function are PROS-1 targets, and we identify additional PROS-1-dependent genes required for neuron attributes. Drosophila Prospero and vertebrate PROX1 are expressed in post-mitotic sense-organ glia and astrocytes, suggesting conserved roles for this class of transcription factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Long-Range Regulatory Synergy Is Required to Allow Control of the TAC1 Locus by MEK/ERK Signalling in Sensory Neurones

    Directory of Open Access Journals (Sweden)

    Lynne Shanley

    2010-12-01

    Full Text Available Changes in the expression of the neuropeptide substance P (SP in different populations of sensory neurones are associated with the progression of chronic inflammatory disease. Thus, understanding the genomic and cellular mechanisms driving the expression of the TAC1 gene, which encodes SP, in sensory neurones is essential to understanding its role in inflammatory disease. We used a novel combination of computational genomics, primary-cell culture and mouse transgenics to determine the genomic and cellular mechanisms that control the expression of TAC1 in sensory neurones. Intriguingly, we demonstrated that the promoter of the TAC1 gene must act in synergy with a remote enhancer, identified using comparative genomics, to respond to MAPK signalling that modulates the expression of TAC1 in sensory neurones. We also reveal that noxious stimulation of sensory neurones triggers this synergy in larger diameter sensory neurones – an expression of SP associated with hyperalgesia. This noxious stimulation of TAC1 enhancer-promotor synergy could be strongly blocked by antagonism of the MEK pathway. This study provides a unique insight into the role of long-range enhancer-promoter synergy and selectivity in the tissue-specific response of promoters to specific signal transduction pathways and suggests a possible new avenue for the development of novel anti-inflammatory therapies.

  15. Age-related deficits in synaptic plasticity rescued by activating PKA or PKC in sensory neurons of Aplysia californica

    Directory of Open Access Journals (Sweden)

    Andrew T Kempsell

    2015-09-01

    Full Text Available Brain aging is associated with declines in synaptic function that contribute to memory loss, including reduced postsynaptic response to neurotransmitters and decreased neuronal excitability. To understand how aging affects memory in a simple neural circuit, we studied neuronal proxies of memory for sensitization in mature versus advanced age Aplysia. Glutamate- (L-Glu- evoked excitatory currents were facilitated by the neuromodulator serotonin (5-HT in sensory neurons (SN isolated from mature but not aged animals. Activation of PKA and PKC signaling rescued facilitation of L-Glu currents in aged SN. Similarly, PKA and PKC activators restored increased excitability in aged tail SN. These results suggest that altered synaptic plasticity during aging involves defects in second messenger systems

  16. Age-related deficits in synaptic plasticity rescued by activating PKA or PKC in sensory neurons of Aplysia californica.

    Science.gov (United States)

    Kempsell, Andrew T; Fieber, Lynne A

    2015-01-01

    Brain aging is associated with declines in synaptic function that contribute to memory loss, including reduced postsynaptic response to neurotransmitters and decreased neuronal excitability. To understand how aging affects memory in a simple neural circuit, we studied neuronal proxies of memory for sensitization in mature vs. advanced age Aplysia californica (Aplysia). L-Glutamate- (L-Glu-) evoked excitatory currents were facilitated by the neuromodulator serotonin (5-HT) in sensory neurons (SN) isolated from mature but not aged animals. Activation of protein kinase A (PKA) and protein kinase C (PKC) signaling rescued facilitation of L-Glu currents in aged SN. Similarly, PKA and PKC activators restored increased excitability in aged tail SN. These results suggest that altered synaptic plasticity during aging involves defects in second messenger systems.

  17. Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice

    Directory of Open Access Journals (Sweden)

    Finger Thomas E

    2008-12-01

    Full Text Available Abstract Background In the past, ciliated receptor neurons, basal cells, and supporting cells were considered the principal components of the main olfactory epithelium. Several studies reported the presence of microvillous cells but their function is unknown. A recent report showed cells in the main olfactory epithelium that express the transient receptor potential channel TrpM5 claiming that these cells are chemosensory and that TrpM5 is an intrinsic signaling component of mammalian chemosensory organs. We asked whether the TrpM5-positive cells in the olfactory epithelium are microvillous and whether they belong to a chemosensory system, i.e. are olfactory neurons or trigeminally-innervated solitary chemosensory cells. Results We investigated the main olfactory epithelium of mice at the light and electron microscopic level and describe several subpopulations of microvillous cells. The ultrastructure of the microvillous cells reveals at least three morphologically different types two of which express the TrpM5 channel. None of these cells have an axon that projects to the olfactory bulb. Tests with a large panel of cell markers indicate that the TrpM5-positive cells are not sensory since they express neither neuronal markers nor are contacted by trigeminal nerve fibers. Conclusion We conclude that TrpM5 is not a reliable marker for chemosensory cells. The TrpM5-positive cells of the olfactory epithelium are microvillous and may be chemoresponsive albeit not part of the sensory apparatus. Activity of these microvillous cells may however influence functionality of local elements of the olfactory system.

  18. Mechanisms of permanent loss of olfactory receptor neurons induced by the herbicide 2,6-dichlorobenzonitrile: Effects on stem cells and noninvolvement of acute induction of the inflammatory cytokine IL-6

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Fang; Fang, Cheng [Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); School of Public Health, State University of New York at Albany, NY 12201 (United States); Schnittke, Nikolai [Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Schwob, James E. [Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Ding, Xinxin, E-mail: xding@wadsworth.org [Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); School of Public Health, State University of New York at Albany, NY 12201 (United States)

    2013-11-01

    We explored the mechanisms underlying the differential effects of two olfactory toxicants, the herbicide 2,6-dichlorobenzonitrile (DCBN) and the anti-thyroid drug methimazole (MMZ), on olfactory receptor neuron (ORN) regeneration in mouse olfactory epithelium (OE). DCBN, but not MMZ, induced inflammation-like pathological changes in OE, and DCBN increased interleukin IL-6 levels in nasal-wash fluid to much greater magnitude and duration than did MMZ. At 24 h after DCBN injection, the population of horizontal basal cells (HBCs; reserve, normally quiescent OE stem cells) lining the DMM became severely depleted as some of them detached from the basal lamina, and sloughed into the nasal cavity along with the globose basal cells (GBCs; heterogeneous population of stem and progenitor cells), neurons, and sustentacular cells of the neuroepithelium. In contrast, the layer of HBCs remained intact in MMZ-treated mice, as only the mature elements of the neuroepithelium were shed. Despite the respiratory metaplasia accompanying the greater severity of the DCBN lesion, residual HBCs that survived intoxication were activated by the injury and contributed to the metaplastic respiratory epithelium, as shown by tracing their descendants in a K5CreEr{sup T2}::fl(stop)TdTomato strain of mice in which recombination causes HBCs to express TdTomato in advance of the lesion. But, contrary to published observations with MMZ, the HBCs failed to form ORNs. A role for IL-6 in suppressing ORN regeneration in DCBN-treated mice was rejected by the failure of the anti-inflammatory drug dexamethasone to prevent the subsequent respiratory metaplasia in the DMM, suggesting that other factors lead to HBC neuro-incompetence. - Highlights: • The herbicide dichlobenil (DCBN) can damage olfactory epithelium stem cells. • Another olfactory toxicant, methimazole, leaves the olfactory stem cells intact. • DCBN, but not methimazole, induces a prolonged increase in nasal IL-6 levels. • Dexamethasone

  19. Implementation of Olfactory Bulb Glomerular Layer Computations in a Digital Neurosynaptic Core

    Directory of Open Access Journals (Sweden)

    Nabil eImam

    2012-06-01

    Full Text Available We present a biomimetic system that captures essential functional properties of the glomerular layer of the mammalian olfactory bulb, specifically including its capacity to decorrelate similar odor representations without foreknowledge of the statistical distributions of analyte features. Our system is based on a digital neuromorphic chip consisting of 256 leaky-integrate-and-fire neurons, 1024x256 crossbar synapses, and AER communication circuits. The neural circuits configured in the chip reflect established connections among mitral cells, periglomerular cells, external tufted cells and superficial short axon cells within the olfactory bulb, and accept input from convergent sets of sensors configured as olfactory sensory neurons. This configuration generates functional transformations comparable to those observed in the glomerular layer of the mammalian olfactory bulb. Our circuits, consuming only 45 pJ of active power per spike with a power supply voltage of 0.85V, can be used as the first stage of processing in low-power artificial chemical sensing devices inspired by natural olfactory systems.

  20. Implementation of olfactory bulb glomerular-layer computations in a digital neurosynaptic core.

    Science.gov (United States)

    Imam, Nabil; Cleland, Thomas A; Manohar, Rajit; Merolla, Paul A; Arthur, John V; Akopyan, Filipp; Modha, Dharmendra S

    2012-01-01

    We present a biomimetic system that captures essential functional properties of the glomerular layer of the mammalian olfactory bulb, specifically including its capacity to decorrelate similar odor representations without foreknowledge of the statistical distributions of analyte features. Our system is based on a digital neuromorphic chip consisting of 256 leaky-integrate-and-fire neurons, 1024 × 256 crossbar synapses, and address-event representation communication circuits. The neural circuits configured in the chip reflect established connections among mitral cells, periglomerular cells, external tufted cells, and superficial short-axon cells within the olfactory bulb, and accept input from convergent sets of sensors configured as olfactory sensory neurons. This configuration generates functional transformations comparable to those observed in the glomerular layer of the mammalian olfactory bulb. Our circuits, consuming only 45 pJ of active power per spike with a power supply of 0.85 V, can be used as the first stage of processing in low-power artificial chemical sensing devices inspired by natural olfactory systems.

  1. Blood oxygenation level dependent signal and neuronal adaptation to optogenetic and sensory stimulation in somatosensory cortex in awake animals.

    Science.gov (United States)

    Aksenov, Daniil P; Li, Limin; Miller, Michael J; Wyrwicz, Alice M

    2016-11-01

    The adaptation of neuronal responses to stimulation, in which a peak transient response is followed by a sustained plateau, has been well-studied. The blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal has also been shown to exhibit adaptation on a longer time scale. However, some regions such as the visual and auditory cortices exhibit significant BOLD adaptation, whereas other such as the whisker barrel cortex may not adapt. In the sensory cortex a combination of thalamic inputs and intracortical activity drives hemodynamic changes, although the relative contributions of these components are not entirely understood. The aim of this study is to assess the role of thalamic inputs vs. intracortical processing in shaping BOLD adaptation during stimulation in the somatosensory cortex. Using simultaneous fMRI and electrophysiology in awake rabbits, we measured BOLD, local field potentials (LFPs), single- and multi-unit activity in the cortex during whisker and optogenetic stimulation. This design allowed us to compare BOLD and haemodynamic responses during activation of the normal thalamocortical sensory pathway (i.e., both inputs and intracortical activity) vs. the direct optical activation of intracortical circuitry alone. Our findings show that whereas LFP and multi-unit (MUA) responses adapted, neither optogenetic nor sensory stimulation produced significant BOLD adaptation. We observed for both paradigms a variety of excitatory and inhibitory single unit responses. We conclude that sensory feed-forward thalamic inputs are not primarily responsible for shaping BOLD adaptation to stimuli; but the single-unit results point to a role in this behaviour for specific excitatory and inhibitory neuronal sub-populations, which may not correlate with aggregate neuronal activity. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. TRPA1 is functionally expressed primarily by IB4-binding, non-peptidergic mouse and rat sensory neurons.

    Directory of Open Access Journals (Sweden)

    Marie E Barabas

    Full Text Available Subpopulations of somatosensory neurons are characterized by functional properties and expression of receptor proteins and surface markers. CGRP expression and IB4-binding are commonly used to define peptidergic and non-peptidergic subpopulations. TRPA1 is a polymodal, plasma membrane ion channel that contributes to mechanical and cold hypersensitivity during tissue injury, making it a key target for pain therapeutics. Some studies have shown that TRPA1 is predominantly expressed by peptidergic sensory neurons, but others indicate that TRPA1 is expressed extensively within non-peptidergic, IB4-binding neurons. We used FURA-2 calcium imaging to define the functional distribution of TRPA1 among peptidergic and non-peptidergic adult mouse (C57BL/6J DRG neurons. Approximately 80% of all small-diameter (<27 µm neurons from lumbar 1-6 DRGs that responded to TRPA1 agonists allyl isothiocyanate (AITC; 79% or cinnamaldehyde (84% were IB4-positive. Retrograde labeling via plantar hind paw injection of WGA-Alexafluor594 showed similarly that most (81% cutaneous neurons responding to TRPA1 agonists were IB4-positive. Additionally, we cultured DRG neurons from a novel CGRP-GFP mouse where GFP expression is driven by the CGRPα promoter, enabling identification of CGRP-expressing live neurons. Interestingly, 78% of TRPA1-responsive neurons were CGRP-negative. Co-labeling with IB4 revealed that the majority (66% of TRPA1 agonist responders were IB4-positive but CGRP-negative. Among TRPA1-null DRGs, few small neurons (2-4% responded to either TRPA1 agonist, indicating that both cinnamaldehyde and AITC specifically target TRPA1. Additionally, few large neurons (≥27 µm diameter responded to AITC (6% or cinnamaldehyde (4%, confirming that most large-diameter somata lack functional TRPA1. Comparison of mouse and rat DRGs showed that the majority of TRPA1-responsive neurons in both species were IB4-positive. Together, these data demonstrate that TRPA1 is

  3. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death

    Directory of Open Access Journals (Sweden)

    Sugimura Kaoru

    2009-10-01

    Full Text Available Abstract Background For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis. The 15 da neurons are identified in each larval abdominal hemisegment and are classified into four categories - classes I to IV - in order of increasing size of their receptive fields and/or arbor complexity at the mature larval stage. Our knowledge regarding the anatomy and developmental basis of adult da neurons is still fragmentary. Results We identified multidendritic neurons in the adult Drosophila abdomen, visualized the dendritic arbors of the individual neurons, and traced the origins of those cells back to the larval stage. There were six da neurons in abdominal hemisegment 3 or 4 (A3/4 of the pharate adult and the adult just after eclosion, five of which were persistent larval da neurons. We quantitatively analyzed dendritic arbors of three of the six adult neurons and examined expression in the pharate adult of key transcription factors that result in the larval class-selective dendritic morphologies. The 'baseline design' of A3/4 in the adult was further modified in a segment-dependent and age-dependent manner. One of our notable findings is that a larval class I neuron, ddaE, completed dendritic remodeling in A2 to A4 and then underwent caspase-dependent cell death within 1 week after eclosion, while homologous neurons in A5 and in more posterior segments degenerated at pupal stages. Another finding is that the dendritic arbor of a class IV neuron, v'ada, was immediately reshaped during post

  4. TRPA1 Is Functionally Expressed Primarily by IB4-Binding, Non-Peptidergic Mouse and Rat Sensory Neurons

    Science.gov (United States)

    Stucky, Cheryl L.

    2012-01-01

    Subpopulations of somatosensory neurons are characterized by functional properties and expression of receptor proteins and surface markers. CGRP expression and IB4-binding are commonly used to define peptidergic and non-peptidergic subpopulations. TRPA1 is a polymodal, plasma membrane ion channel that contributes to mechanical and cold hypersensitivity during tissue injury, making it a key target for pain therapeutics. Some studies have shown that TRPA1 is predominantly expressed by peptidergic sensory neurons, but others indicate that TRPA1 is expressed extensively within non-peptidergic, IB4-binding neurons. We used FURA-2 calcium imaging to define the functional distribution of TRPA1 among peptidergic and non-peptidergic adult mouse (C57BL/6J) DRG neurons. Approximately 80% of all small-diameter (neurons from lumbar 1–6 DRGs that responded to TRPA1 agonists allyl isothiocyanate (AITC; 79%) or cinnamaldehyde (84%) were IB4-positive. Retrograde labeling via plantar hind paw injection of WGA-Alexafluor594 showed similarly that most (81%) cutaneous neurons responding to TRPA1 agonists were IB4-positive. Additionally, we cultured DRG neurons from a novel CGRP-GFP mouse where GFP expression is driven by the CGRPα promoter, enabling identification of CGRP-expressing live neurons. Interestingly, 78% of TRPA1-responsive neurons were CGRP-negative. Co-labeling with IB4 revealed that the majority (66%) of TRPA1 agonist responders were IB4-positive but CGRP-negative. Among TRPA1-null DRGs, few small neurons (2–4%) responded to either TRPA1 agonist, indicating that both cinnamaldehyde and AITC specifically target TRPA1. Additionally, few large neurons (≥27 µm diameter) responded to AITC (6%) or cinnamaldehyde (4%), confirming that most large-diameter somata lack functional TRPA1. Comparison of mouse and rat DRGs showed that the majority of TRPA1-responsive neurons in both species were IB4-positive. Together, these data demonstrate that TRPA1 is functionally expressed

  5. Failure of action potential propagation in sensory neurons: mechanisms and loss of afferent filtering in C-type units after painful nerve injury

    NARCIS (Netherlands)

    Gemes, Geza; Koopmeiners, Andrew; Rigaud, Marcel; Lirk, Philipp; Sapunar, Damir; Bangaru, Madhavi Latha; Vilceanu, Daniel; Garrison, Sheldon R.; Ljubkovic, Marko; Mueller, Samantha J.; Stucky, Cheryl L.; Hogan, Quinn H.

    2013-01-01

    The T-junction of sensory neurons in the dorsal root ganglion (DRG) is a potential impediment to action potential (AP) propagation towards the CNS. Using intracellular recordings from rat DRG neuronal somata during stimulation of the dorsal root, we determined that the maximal rate at which all of

  6. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons

    International Nuclear Information System (INIS)

    Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.; Nicholson, Graham M.

    2005-01-01

    The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na v ) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na v channel gating, observed clinically in response to ciguatera poisoning

  7. SAD kinases sculpt axonal arbors of sensory neurons through long and short-term responses to neurotrophin signals

    Science.gov (United States)

    Lilley, Brendan N.; Pan, Y. Albert; Sanes, Joshua R.

    2013-01-01

    SUMMARY Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex, but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short duration signals from extrinsic cues to sculpt axon arbors within the CNS. PMID:23790753

  8. SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals.

    Science.gov (United States)

    Lilley, Brendan N; Pan, Y Albert; Sanes, Joshua R

    2013-07-10

    Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A, and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here, we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short-duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short-duration signals from extrinsic cues to sculpt axon arbors within the CNS. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  10. Structural and Functional Substitution of Deleted Primary Sensory Neurons by New Growth from Intrinsic Spinal Cord Nerve Cells: An Alternative Concept in Reconstruction of Spinal Cord Circuits

    Directory of Open Access Journals (Sweden)

    Nicholas D. James

    2017-07-01

    Full Text Available In a recent clinical report, return of the tendon stretch reflex was demonstrated after spinal cord surgery in a case of total traumatic brachial plexus avulsion injury. Peripheral nerve grafts had been implanted into the spinal cord to reconnect to the peripheral nerves for motor and sensory function. The dorsal root ganglia (DRG containing the primary sensory nerve cells had been surgically removed in order for secondary or spinal cord sensory neurons to extend into the periphery and replace the deleted DRG neurons. The present experimental study uses a rat injury model first to corroborate the clinical finding of a re-established spinal reflex arch, and second, to elucidate some of the potential mechanisms underlying these findings by means of morphological, immunohistochemical, and electrophysiological assessments. Our findings indicate that, after spinal cord surgery, the central nervous system sensory system could replace the traumatically detached original peripheral sensory connections through new neurite growth from dendrites.

  11. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Science.gov (United States)

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. Copyright © 2016 the American Physiological Society.

  12. Anatomic and Physiologic Heterogeneity of Subgroup-A Auditory Sensory Neurons in Fruit Flies.

    Science.gov (United States)

    Ishikawa, Yuki; Okamoto, Natsuki; Nakamura, Mizuki; Kim, Hyunsoo; Kamikouchi, Azusa

    2017-01-01

    The antennal ear of the fruit fly detects acoustic signals in intraspecific communication, such as the courtship song and agonistic sounds. Among the five subgroups of mechanosensory neurons in the fly ear, subgroup-A neurons respond maximally to vibrations over a wide frequency range between 100 and 1,200 Hz. The functional organization of the neural circuit comprised of subgroup-A neurons, however, remains largely unknown. In the present study, we used 11 GAL4 strains that selectively label subgroup-A neurons and explored the diversity of subgroup-A neurons by combining single-cell anatomic analysis and Ca 2+ imaging. Our findings indicate that the subgroup-A neurons that project into various combinations of subareas in the brain are more anatomically diverse than previously described. Subgroup-A neurons were also physiologically diverse, and some types were tuned to a narrow frequency range, suggesting that the response of subgroup-A neurons to sounds of a wide frequency range is due to the existence of several types of subgroup-A neurons. Further, we found that an auditory behavioral response to the courtship song of flies was attenuated when most subgroup-A neurons were silenced. Together, these findings characterize the heterogeneous functional organization of subgroup-A neurons, which might facilitate species-specific acoustic signal detection.

  13. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.

    Science.gov (United States)

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  14. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae Based on Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Yinliang Wang

    Full Text Available The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs, 10 chemosensory proteins (CSPs, 34 odorant receptors (ORs, 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, Aqua

  15. Thy1.2 YFP-16 transgenic mouse labels a subset of large-diameter sensory neurons that lack TRPV1 expression.

    Directory of Open Access Journals (Sweden)

    Thomas E Taylor-Clark

    Full Text Available The Thy1.2 YFP-16 mouse expresses yellow fluorescent protein (YFP in specific subsets of peripheral and central neurons. The original characterization of this model suggested that YFP was expressed in all sensory neurons, and this model has been subsequently used to study sensory nerve structure and function. Here, we have characterized the expression of YFP in the sensory ganglia (DRG, trigeminal and vagal of the Thy1.2 YFP-16 mouse, using biochemical, functional and anatomical analyses. Despite previous reports, we found that YFP was only expressed in approximately half of DRG and trigeminal neurons and less than 10% of vagal neurons. YFP-expression was only found in medium and large-diameter neurons that expressed neurofilament but not TRPV1. YFP-expressing neurons failed to respond to selective agonists for TRPV1, P2X(2/3 and TRPM8 channels in Ca2+ imaging assays. Confocal analysis of glabrous skin, hairy skin of the back and ear and skeletal muscle indicated that YFP was expressed in some peripheral terminals with structures consistent with their presumed non-nociceptive nature. In summary, the Thy1.2 YFP-16 mouse expresses robust YFP expression in only a subset of sensory neurons. But this mouse model is not suitable for the study of nociceptive nerves or the function of such nerves in pain and neuropathies.

  16. Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons.

    Science.gov (United States)

    Miranda-Vizuete, Antonio; Fierro González, Juan Carlos; Gahmon, Gabriele; Burghoorn, Jan; Navas, Plácido; Swoboda, Peter

    2006-01-23

    Thioredoxins are a class of small proteins that play a key role in regulating many cellular redox processes. We report here the characterization of the first member of the thioredoxin family in metazoans that is mainly associated with neurons. The Caenorhabditis elegans gene B0228.5 encodes a thioredoxin (TRX-1) that is expressed in ASJ ciliated sensory neurons, and to some extent also in the posterior-most intestinal cells. TRX-1 is active at reducing protein disulfides in the presence of a heterologous thioredoxin reductase. A mutant worm strain carrying a null allele of the trx-1 gene displays a reproducible decrease in both mean and maximum lifespan when compared to wild-type. The identification and characterization of TRX-1 paves the way to use C. elegans as an in vivo model to study the role of thioredoxins in lifespan and nervous system physiology and pathology.

  17. Olfactory dreams, olfactory interest, and imagery : Relationships to olfactory memory

    OpenAIRE

    Arshamian, Artin

    2007-01-01

    Existing evidence for olfactory imagery is mixed and mainly based on reports from hallucinations and volitional imagery. Using a questionnaire, Stevenson and Case (2005) showed that olfactory dreams provided a good source for olfactory imagery studies. This study applied an extended version of the same questionnaire and examined olfactory dreams and their relation to real-life experienced odors, volitional imagery, and olfactory interest. Results showed that olfactory dreams were similar to r...

  18. Cyclophosphamide-induced cystitis reduces ASIC channel but enhances TRPV1 receptor function in rat bladder sensory neurons.

    Science.gov (United States)

    Dang, Khoa; Bielefeldt, Klaus; Gebhart, G F

    2013-07-01

    Using patch-clamp techniques, we studied the plasticity of acid-sensing ion channels (ASIC) and transient receptor potential V1 (TRPV1) channel function in dorsal root ganglia (DRG) neurons retrogradely labeled from the bladder. Saline (control) or cyclophosphamide (CYP) was given intraperitoneally on days 1, 3, and 5. On day 6, lumbosacral (LS, L6-S2) or thoracolumbar (TL, T13-L2) DRG were removed and dissociated. Bladders and bladder DRG neurons from CYP-treated rats showed signs of inflammation (greater myeloperoxidase activity; lower intramuscular wall pH) and increased size (whole cell capacitance), respectively, compared with controls. Most bladder neurons (>90%) responded to protons and capsaicin. Protons produced multiphasic currents with distinct kinetics, whereas capsaicin always triggered a sustained response. The TRPV1 receptor antagonist A-425619 abolished capsaicin-triggered currents and raised the threshold of heat-activated currents. Prolonged exposure to an acidic environment (pH range: 7.2 to 6.6) inhibited proton-evoked currents, potentiated the capsaicin-evoked current, and reduced the threshold of heat-activated currents in LS and TL bladder neurons. CYP treatment reduced density but not kinetics of all current components triggered by pH 5. In contrast, CYP-treatment was associated with an increased current density in response to capsaicin in LS and TL bladder neurons. Correspondingly, heat triggered current at a significantly lower temperature in bladder neurons from CYP-treated rats compared with controls. These results reveal that cystitis differentially affects TRPV1- and ASIC-mediated currents in both bladder sensory pathways. Acidification of the bladder wall during inflammation may contribute to changes in nociceptive transmission mediated through the TRPV1 receptor, suggesting a role for TRPV1 in hypersensitivity associated with cystitis.

  19. Dync1h1 Mutation Causes Proprioceptive Sensory Neuron Loss and Impaired Retrograde Axonal Transport of Dorsal Root Ganglion Neurons.

    Science.gov (United States)

    Zhao, Jing; Wang, Yi; Xu, Huan; Fu, Yuan; Qian, Ting; Bo, Deng; Lu, Yan-Xin; Xiong, Yi; Wan, Jun; Zhang, Xiang; Dong, Qiang; Chen, Xiang-Jun

    2016-07-01

    Sprawling (Swl) is a radiation-induced mutation which has been identified to have a nine base pair deletion in dynein heavy chain 1 (DYNC1H1: encoded by a single gene Dync1h1). This study is to investigate the phenotype and the underlying mechanism of the Dync1h1 mutant. To display the phenotype of Swl mutant mice, we examined the embryos of homozygous (Swl/Swl) and heterozygous (Swl/+) mice and their postnatal dorsal root ganglion (DRG) of surviving Swl/+ mice. The Swl/+ mice could survive for a normal life span, while Swl/Swl could only survive till embryonic (E) 8.5 days. Excessive apoptosis of Swl/+ DRG neurons was revealed during E11.5-E15.5 days, and the peak rate was at E13.5 days. In vitro study of mutated DRG neurons showed impaired retrograde transport of dynein-driven nerve growth factor (NGF). Mitochondria, another dynein-driven cargo, demonstrated much slower retrograde transport velocity in Swl/+ neurons than in wild-type (WT) neurons. Nevertheless, the Swl, Loa, and Cra mutations did not affect homodimerization of DYNC1H1. The Swl/Swl mutation of Dync1h1 gene led to embryonic mal-development and lethality, whereas the Swl/+ DRG neurons demonstrated deficient retrograde transport in dynein-driven cargos and excessive apoptosis during mid- to late-developmental stages. The underlying mechanism of the mutation may not be due to impaired homodimerization of DYNC1H1. © 2016 John Wiley & Sons Ltd.

  20. Representation of pheromones, interspecific signals, and plant odors in higher olfactory centers; mapping physiologically identified antennal-lobe projection neurons in the male heliothine moth

    Directory of Open Access Journals (Sweden)

    Xin-Cheng eZhao

    2014-10-01

    Full Text Available In the primary olfactory centre of the moth brain, for example, a few enlarged glomeruli situated dorsally, at the entrance of the antennal nerve, are devoted to information about female-produced substances whereas a set of more numerous ordinary glomeruli receives input about general odorants. Heliothine moths are particularly suitable for studying central chemosensory mechanisms not only because of their anatomically separated systems for plant odours and pheromones but also due to their use of female-produced substances in communication across the species. Thus, the male-specific system of heliothine moths includes two sub arrangements, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecifics, and the other reproductive isolation via signal information emitted from heterospecifics. Based on previous tracing experiments, a general chemotopic organization of the male-specific glomeruli has been demonstrated in a number of heliothine species. As compared to the well explored organization of the moth antennal lobe, demonstrating a non-overlapping representation of the biologically relevant stimuli, less is known about the neural arrangement residing at the following synaptic level, i.e. the mushroom body calyces and the lateral horn. In the study presented here, we have labelled physiologically characterized antennal-lobe projection neurons in males of the two heliothine species, Heliothis virescens and Helicoverpa assulta, for the purpose of mapping their target regions in the protocerebrum. In order to compare the representation of plant odours, pheromones, and interspecific signals in the higher brain regions of each species, we have created standard brain atlases and registered three-dimensional models of distinct uniglomerular projection neuron types into the relevant atlas.

  1. Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia

    Science.gov (United States)

    Javitt, Daniel C.; Freedman, Robert

    2015-01-01

    Sensory processing deficits, first investigated by Kraeplin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being re-characterized in the context of modern understanding of the involved molecular and neurobiological brain mechanisms. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia such as hallucinations. The pre-pulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slightly different stimuli that elicits the cortical Mismatch Negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and, vice versa, are affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of the illness and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients’ sensory perception of the surrounding world, even during treatment sessions, may differ considerable from others’ perceptions. A person’s ability to understand and interact effectively with surrounding world ultimately depends upon an underlying sensory experience of it. PMID:25553496

  2. A BMP-mediated transcriptional cascade involving Cash1 and Tlx-3 specifies first-order relay sensory neurons in the developing hindbrain.

    Science.gov (United States)

    Hornbruch, Amata; Ma, Grace; Ballermann, Mark A; Tumova, Katerina; Liu, Dan; Cairine Logan, C

    2005-07-01

    The divergent homeobox-containing transcription factor, Tlx-3 (also known as Hox11L2/Rnx), is required for proper formation of first-order relay sensory neurons in the developing vertebrate brainstem. To date, however, the inductive signals and transcriptional regulatory cascade underlying their development are poorly understood. We previously isolated the chick Tlx-3 homologue and showed it is expressed early (i.e. beginning at HH15) in distinct subcomponents of both the trigeminal/solitary and vestibular nuclei. Here we show via in vivo rhombomere inversions that expression of Tlx-3 is under control of local environmental signals. Our RNA in situ analysis shows expression of the BMP-specific receptor, Bmpr-1b, correlates well with Tlx-3. Furthermore, manipulation of the BMP signaling pathway in vivo via electroporation of expression vectors encoding either BMP or NOGGIN coupled with MASH1 gain-of-function experiments demonstrate that a BMP-mediated transcriptional cascade involving Cash1 and Tlx-3 specifies first-order relay sensory neurons in the developing brainstem. Notably, high-level Noggin misexpression results in an increase in newly differentiated Tlx-3+ neurons that correlates with a corresponding increase in the number of Calretinin+ neurons in vestibular nuclei at later developmental stages strongly suggesting that Tlx-3, in addition to being required for proper formation of somatic as well as visceral sensory neurons in the trigeminal and solitary nuclei, respectively, is sufficient for proper formation of special somatic sensory neurons in vestibular nuclei.

  3. The usefulness of olfactory fear conditioning for the study of early emotional and cognitive impairment in reserpine model.

    Science.gov (United States)

    Souza, Rimenez R; França, Sanmara L; Bessa, Marília M; Takahashi, Reinaldo N

    2013-11-01

    Due to the ability for depleting neuronal storages of monoamines, the reserpine model is a suitable approach for the investigation of the neurobiology of neurodegenerative diseases. However, the behavioral effects of low doses of reserpine are not always detected by classic animal tests of cognition, emotion, and sensory ability. In this study, the effects of reserpine (0.5-1.0mg/kg) were evaluated in olfactory fear conditioning, inhibitory avoidance, open-field, elevated plus-maze, and olfactory discrimination. Possible protective effects were also investigated. We found that single administration of reserpine impaired the acquisition of olfactory fear conditioning (in both doses) as well as olfactory discrimination (in the higher dose), while no effects were seen in all other tests. Additionally, we demonstrated that prior exposure to environmental enrichment prevented effects of reserpine in animals tested in olfactory fear conditioning. Altogether, these findings suggest that a combined cognitive, emotional and sensory-dependent task would be more sensitive to the effects of the reserpine model. In addition, the present data support the environmental enrichment as an useful approach for the study of resilience mechanisms in neurodegenerative processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons.

    Science.gov (United States)

    Helley, M P; Abate, W; Jackson, S K; Bennett, J H; Thompson, S W N

    2015-12-03

    The recent discovery that mammalian nociceptors express Toll-like receptors (TLRs) has raised the possibility that these cells directly detect and respond to pathogens with implications for either direct nociceptor activation or sensitization. A range of neuronal TLRs have been identified, however a detailed description regarding the distribution of expression of these receptors within sub-populations of sensory neurons is lacking. There is also some debate as to the composition of the TLR4 receptor complex on sensory neurons. Here we use a range of techniques to quantify the expression of TLR4, TLR7 and some associated molecules within neurochemically-identified sub-populations of trigeminal (TG) and dorsal root (DRG) ganglion sensory neurons. We also detail the pattern of expression and co-expression of two isoforms of lysophosphatidylcholine acyltransferase (LPCAT), a phospholipid remodeling enzyme previously shown to be involved in the lipopolysaccharide-dependent TLR4 response in monocytes, within sensory ganglia. Immunohistochemistry shows that both TLR4 and TLR7 preferentially co-localize with transient receptor potential vallinoid 1 (TRPV1) and purinergic receptor P2X ligand-gated ion channel 3 (P2X3), markers of nociceptor populations, within both TG and DRG. A gene expression profile shows that TG sensory neurons express a range of TLR-associated molecules. LPCAT1 is expressed by a proportion of both nociceptors and non-nociceptive neurons. LPCAT2 immunostaining is absent from neuronal profiles within both TG and DRG and is confined to non-neuronal cell types under naïve conditions. Together, our results show that nociceptors express the molecular machinery required to directly respond to pathogenic challenge independently from the innate immune system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Directory of Open Access Journals (Sweden)

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  6. It Takes Two – Coincidence coding within the dual olfactory pathway of the honeybee

    Directory of Open Access Journals (Sweden)

    Martin F. Brill

    2015-07-01

    Full Text Available To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g. in the visual system, increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrateinformation from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g. in auditory delay lines. Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs that transfer information from the primary olfactory centers, the antennal lobe (AL, to a multimodal integration center, the mushroom body (MB. PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code.

  7. It takes two-coincidence coding within the dual olfactory pathway of the honeybee.

    Science.gov (United States)

    Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).

  8. Distribution of binding sites for the plant lectin Ulex europaeus agglutinin I on primary sensory neurones in seven different mammalian species.

    Science.gov (United States)

    Gerke, Michelle B; Plenderleith, Mark B

    2002-01-01

    There is an increasing body of evidence to suggest that different functional classes of neurones express characteristic cell-surface carbohydrates. Previous studies have shown that the plant lectin Ulex europaeus agglutinin-I (UEA) binds to a population of small to medium diameter primary sensory neurones in rabbits and humans. This suggests that a fucose-containing glycoconjugate may be expressed by nociceptive primary sensory neurones. In order to determine the extent to which this glycoconjugate is expressed by other species, in the current study, we have examined the distribution of UEA-binding sites on primary sensory neurones in seven different mammals. Binding sites for UEA were associated with the plasma membrane and cytoplasmic granules of small to medium dorsal root ganglion cells and their axon terminals in laminae I-III of the grey matter of the spinal cord, in the rabbit, cat and marmoset monkey. However, no binding was observed in either the dorsal root ganglia or spinal cord in the mouse, rat, guinea pig or flying fox. These results indicate an inter-species variation in the expression of cell-surface glycoconjugates on mammalian primary sensory neurones.

  9. Regulation of the Na,K-ATPase gamma-subunit FXYD2 by Runx1 and Ret signaling in normal and injured non-peptidergic nociceptive sensory neurons.

    Directory of Open Access Journals (Sweden)

    Stéphanie Ventéo

    Full Text Available Dorsal root ganglia (DRGs contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury.

  10. An Olfactory Cinema: Smelling Perfume

    Directory of Open Access Journals (Sweden)

    Jiaying Sim

    2014-09-01

    Full Text Available While technological improvements from the era of silent movies to that of sound cinema have altered and continued to affect audience’s cinematic experiences, the question is not so much how technology has increased possibility of a sensory response to cinema, rather, it is one that exposes how such technological changes only underscore the participation of our senses and the body in one’s experience of watching film, highlighting the inherently sensorial nature of the cinematic experience. This paper aims to address the above question through an olfactory cinema, by close analysis of Perfume: The Story of a Murderer (2006 by Tom Tykwer. What is an olfactory cinema, and how can such an approach better our understanding of sensorial aspects found within a cinema that ostensibly favours audio-visual senses? What can we benefit from an olfactory cinema? Perhaps, it is through an olfactory cinema that one may begin to embrace the sensual quality of cinema that has been overshadowed by the naturalized ways of experiencing films solely with our eyes and ears, so much so that we desensitize ourselves to the role our senses play in cinematic experiences altogether

  11. Olfactory memory traces in Drosophila.

    Science.gov (United States)

    Berry, Jacob; Krause, William C; Davis, Ronald L

    2008-01-01

    In Drosophila, the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological, or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons' response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed researchers to observe cellular memory traces in intact animals. These investigations have revealed interesting temporal and spatial dynamics of cellular memory traces. First, a short-term cellular memory trace was discovered that exists in the antennal lobe, an early site of olfactory processing. This trace represents the recruitment of new synaptic activity into the odor representation and forms for only a short period of time just after training. Second, an intermediate-term cellular memory trace was found in the dorsal paired medial neuron, a neuron thought to play a role in stabilizing olfactory memories. Finally, a long-term protein synthesis-dependent cellular memory trace was discovered in the mushroom bodies, a structure long implicated in olfactory learning and memory. Therefore, it appears that aversive olfactory associations are encoded by multiple cellular memory traces that occur in different regions of the brain with different temporal domains.

  12. Early Olfactory Processing in Drosophila: Mechanisms and Principles

    OpenAIRE

    Wilson, Rachel I.

    2013-01-01

    In the olfactory system of Drosophila melanogaster, it is relatively straightforward to make in vivo measurements of activity in neurons corresponding to targeted processing. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antenna...

  13. The Molecular Motor KIF1A Transports the TrkA Neurotrophin Receptor and Is Essential for Sensory Neuron Survival and Function.

    Science.gov (United States)

    Tanaka, Yosuke; Niwa, Shinsuke; Dong, Ming; Farkhondeh, Atena; Wang, Li; Zhou, Ruyun; Hirokawa, Nobutaka

    2016-06-15

    KIF1A is a major axonal transport motor protein, but its functional significance remains elusive. Here we show that KIF1A-haploinsufficient mice developed sensory neuropathy. We found progressive loss of TrkA(+) sensory neurons in Kif1a(+/-) dorsal root ganglia (DRGs). Moreover, axonal transport of TrkA was significantly disrupted in Kif1a(+/-) neurons. Live imaging and immunoprecipitation assays revealed that KIF1A bound to TrkA-containing vesicles through the adaptor GTP-Rab3, suggesting that TrkA is a cargo of the KIF1A motor. Physiological measurements revealed a weaker capsaicin response in Kif1a(+/-) DRG neurons. Moreover, these neurons were hyposensitive to nerve growth factor, which could explain the reduced neuronal survival and the functional deficiency of the pain receptor TRPV1. Because phosphatidylinositol 3-kinase (PI3K) signaling significantly rescued these phenotypes and also increased Kif1a mRNA, we propose that KIF1A is essential for the survival and function of sensory neurons because of the TrkA transport and its synergistic support of the NGF/TrkA/PI3K signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Gastrodin Inhibits Allodynia and Hyperalgesia in Painful Diabetic Neuropathy Rats by Decreasing Excitability of Nociceptive Primary Sensory Neurons

    Science.gov (United States)

    Ye, Xin; Han, Wen-Juan; Wang, Wen-Ting; Luo, Ceng; Hu, San-Jue

    2012-01-01

    Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients’ quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (I NaT) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of I NaT and a decrease of potassium currents, especially slowly inactivating potassium currents (I AS); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of I NaT and total potassium current as well as I AS currents induced by STZ were normalized by GAS. This study provides a

  15. TrpA1 activation in peripheral sensory neurons underlies the ionic basis of pain hypersensitivity in response to vinca alkaloids.

    Directory of Open Access Journals (Sweden)

    Nina Boiko

    Full Text Available Chemotherapy induced peripheral neuropathy (CIPN, a side effect of many anti-cancer drugs including the vinca alkaloids, is characterized by a severe pain syndrome that compromises treatment in many patients. Currently there are no effective treatments for this pain syndrome except for the reduction of anti-cancer drug dose. Existing data supports the model that the pain associated with CIPN is the result of anti-cancer drugs augmenting the function of the peripheral sensory nociceptors but the cellular mechanisms underlying the effects of anti-cancer drugs on sensory neuron function are not well described. Studies from animal models have suggested a number of disease etiologies including mitotoxicity, axonal degeneration, immune signaling, and reduced sensory innervations but these outcomes are the result of prolonged treatment paradigms and do not necessarily represent the early formative events associated with CIPN. Here we show that acute exposure to vinca alkaloids results in an immediate pain syndrome in both flies and mice. Furthermore, we demonstrate that exposure of isolated sensory neurons to vinca alkaloids results in the generation of an inward sodium current capable of depolarizing these neurons to threshold resulting in neuronal firing. These neuronal effects of vinca alkaloids require the transient receptor potential ankyrin-1 (TrpA1 channel, and the hypersensitization to painful stimuli in response to the acute exposure to vinca alkaloids is reduced in TrpA1 mutant flies and mice. These findings demonstrate the direct excitation of sensory neurons by CIPN-causing chemotherapy drugs, and identify TrpA1 as an important target during the pathogenesis of CIPN.

  16. Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability.

    Directory of Open Access Journals (Sweden)

    Alessandro Pristerà

    Full Text Available Voltage-gated sodium channels (VGSCs play a key role in the initiation and propagation of action potentials in neurons. Na(V1.8 is a tetrodotoxin (TTX resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. Na(V1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for Na(V1.8 in inflammatory and chronic pain models. Lipid rafts are microdomains of the plasma membrane highly enriched in cholesterol and sphingolipids. Lipid rafts tune the spatial and temporal organisation of proteins and lipids on the plasma membrane. They are thought to act as platforms on the membrane where proteins and lipids can be trafficked, compartmentalised and functionally clustered. In the present study we investigated Na(V1.8 sub-cellular localisation and explored the idea that it is associated with lipid rafts in nociceptors. We found that Na(V1.8 is distributed in clusters along the axons of DRG neurons in vitro and ex vivo. We also demonstrated, by biochemical and imaging studies, that Na(V1.8 is associated with lipid rafts along the sciatic nerve ex vivo and in DRG neurons in vitro. Moreover, treatments with methyl-β-cyclodextrin (MβCD and 7-ketocholesterol (7KC led to the dissociation between rafts and Na(V1.8. By calcium imaging we demonstrated that the lack of association between rafts and Na(V1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of Na(V1.8 in nociceptors and highlight the importance of the association between Na(V1.8 and lipid rafts in the control of nociceptor excitability.

  17. Central auditory neurons have composite receptive fields.

    Science.gov (United States)

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.

  18. Identification and molecular regulation of neural stem cells in the olfactory epithelium

    International Nuclear Information System (INIS)

    Beites, Crestina L.; Kawauchi, Shimako; Crocker, Candice E.; Calof, Anne L.

    2005-01-01

    The sensory neurons that subserve olfaction, olfactory receptor neurons (ORNs), are regenerated throughout life, making the neuroepithelium in which they reside [the olfactory epithelium (OE)] an excellent model for studying how intrinsic and extrinsic factors regulate stem cell dynamics and neurogenesis during development and regeneration. Numerous studies indicate that transcription factors and signaling molecules together regulate generation of ORNs from stem and progenitor cells during development, and work on regenerative neurogenesis indicates that these same factors may operate at postnatal ages as well. This review describes our current knowledge of the identity of the OE neural stem cell; the different cell types that are thought to be the progeny (directly or indirectly) of this stem cell; and the factors that influence cell differentiation in the OE neuronal lineage. We review data suggesting that (1) the ORN lineage contains three distinct proliferating cell types-a stem cell and two populations of transit amplifying cells; (2) in established OE, these three cell types are present within the basal cell compartment of the epithelium; and (3) the stem cell that gives rise ultimately to ORNs may also generate two glial cell types of the primary olfactory pathway: sustentacular cells (SUS), which lie within OE proper; and olfactory ensheathing cells (OEC), which envelope the olfactory nerve. In addition, we describe factors that are both made by and found within the microenvironment of OE stem and progenitor cells, and which exert crucial growth regulatory effects on these cells. Thus, as with other regenerating tissues, the basis of regeneration in the OE appears be a population of stem cells, which resides within a microenvironment (niche) consisting of factors crucial for maintenance of its capacity for proliferation and differentiation

  19. Searching for collective behavior in a large network of sensory neurons.

    Directory of Open Access Journals (Sweden)

    Gašper Tkačik

    2014-01-01

    Full Text Available Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such "K-pairwise" models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1 estimating its entropy, which constrains the population's capacity to represent visual information; 2 classifying activity patterns into a small set of metastable collective modes; 3 showing that the neural codeword ensembles are extremely inhomogenous; 4 demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.

  20. Dendritic development of Drosophila high order visual system neurons is independent of sensory experience

    Directory of Open Access Journals (Sweden)

    Reuter John E

    2003-06-01

    Full Text Available Abstract Background The complex and characteristic structures of dendrites are a crucial part of the neuronal architecture that underlies brain function, and as such, their development has been a focal point of recent research. It is generally believed that dendritic development is controlled by a combination of endogenous genetic mechanisms and activity-dependent mechanisms. Therefore, it is of interest to test the relative contributions of these two types of mechanisms towards the construction of specific dendritic trees. In this study, we make use of the highly complex Vertical System (VS of motion sensing neurons in the lobula plate of the Drosophila visual system to gauge the importance of visual input and synaptic activity to dendritic development. Results We find that the dendrites of VS1 neurons are unchanged in dark-reared flies as compared to control flies raised on a 12 hour light, 12 hour dark cycle. The dendrites of these flies show no differences from control in dendrite complexity, spine number, spine density, or axon complexity. Flies with genetically ablated eyes show a slight but significant reduction in the complexity and overall length of VS1 dendrites, although this effect may be due to a reduction in the overall size of the dendritic field in these flies. Conclusions Overall, our results indicate no role for visual experience in the development of VS dendrites, while spontaneous activity from photoreceptors may play at most a subtle role in the formation of fully complex dendrites in these high-order visual processing neurons.

  1. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl− Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons

    Science.gov (United States)

    Qi, Yanmei; Mair, Norbert; Kummer, Kai K.; Leitner, Michael G.; Camprubí-Robles, María; Langeslag, Michiel; Kress, Michaela

    2018-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl− current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl− current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl− current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl− currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception. PMID:29479306

  2. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl− Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Yanmei Qi

    2018-02-01

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl− current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl− current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl− current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl− currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception.

  3. ß-catenin, a transcription factor activated by canonical Wnt signaling, is expressed in sensory neurons of calves latently infected with bovine herpesvirus 1

    Science.gov (United States)

    Like many a-herpesvirinae subfamily members, bovine herpes virus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons: the latency-related (LR) RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch mediate...

  4. Nimesulide inhibits protein kinase C epsilon and substance P in sensory neurons – comparison with paracetamol

    Directory of Open Access Journals (Sweden)

    Vellani V

    2011-06-01

    Full Text Available Vittorio Vellani1, Silvia Franchi2, Massimiliano Prandini1, Sarah Moretti2, Giorgia Pavesi1, Chiara Giacomoni3, Paola Sacerdote21Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy; 2Dipartimento di Farmacologia Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Italy; 3Dipartimento di Economia e Tecnologia, Università degli Studi della Repubblica di San Marino, Montegiardino, Repubblica di San MarinoAbstract: In this paper we describe new actions of nimesulide and paracetamol in cultured peripheral neurons isolated from rat dorsal root ganglia (DRG. Both drugs were able to decrease in a dose-dependent fashion the number of cultured DRG neurons showing translocation of protein kinase C epsilon (PKCε caused by exposure to 1 µM bradykinin or 100 nM thrombin. In addition, the level of substance P (SP released by DRG neurons and the level of preprotachykinin mRNA expression were measured in basal conditions and after 70 minutes or 36 hours of stimulation with nerve growth factor (NGF or with an inflammatory soup containing bradykinin, thrombin, endothelin-1, and KCl. Nimesulide (10 µM significantly decreased the mRNA levels of the SP precursor preprotachykinin in basal and in stimulated conditions, and decreased the amount of SP released in the medium during stimulation of neurons with NGF or with the inflammatory soup. The effects of paracetamol (10 µM on such response was lower. Nimesulide completely inhibited the release of prostaglandin E2 (PGE2 from DRG neurons, either basal or induced by NGF and by inflammatory soup, while paracetamol decreased PGE2 release only partially. Our data demonstrate, for the first time, a direct effect of two drugs largely used as analgesics on DRG neurons. The present results suggest that PKCε might be a target for the effect of nimesulide and paracetamol, while inhibition of SP synthesis and release is clearly more relevant for nimesulide than for

  5. Oscillatory neuronal activity reflects lexical-semantic feature integration within and across sensory modalities in distributed cortical networks.

    Science.gov (United States)

    van Ackeren, Markus J; Schneider, Till R; Müsch, Kathrin; Rueschemeyer, Shirley-Ann

    2014-10-22

    Research from the previous decade suggests that word meaning is partially stored in distributed modality-specific cortical networks. However, little is known about the mechanisms by which semantic content from multiple modalities is integrated into a coherent multisensory representation. Therefore we aimed to characterize differences between integration of lexical-semantic information from a single modality compared with two sensory modalities. We used magnetoencephalography in humans to investigate changes in oscillatory neuronal activity while participants verified two features for a given target word (e.g., "bus"). Feature pairs consisted of either two features from the same modality (visual: "red," "big") or different modalities (auditory and visual: "red," "loud"). The results suggest that integrating modality-specific features of the target word is associated with enhanced high-frequency power (80-120 Hz), while integrating features from different modalities is associated with a sustained increase in low-frequency power (2-8 Hz). Source reconstruction revealed a peak in the anterior temporal lobe for low-frequency and high-frequency effects. These results suggest that integrating lexical-semantic knowledge at different cortical scales is reflected in frequency-specific oscillatory neuronal activity in unisensory and multisensory association networks. Copyright © 2014 the authors 0270-6474/14/3314318-06$15.00/0.

  6. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen).

    Science.gov (United States)

    Vellani, Vittorio; Giacomoni, Chiara

    2017-01-01

    Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKC ε ) translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs). We found that gabapentin significantly reduced PKC ε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen), a very commonly used analgesic drug, also produces inhibition of PKC ε . We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  7. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen

    Directory of Open Access Journals (Sweden)

    Vittorio Vellani

    2017-01-01

    Full Text Available Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKCε translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs. We found that gabapentin significantly reduced PKCε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen, a very commonly used analgesic drug, also produces inhibition of PKCε. We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  8. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    Science.gov (United States)

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  9. Influence of Sensory Stimulation on Exhaled Volatile Organic Compounds.

    Science.gov (United States)

    Mazzatenta, A; Pokorski, M; Di Tano, A; Cacchio, M; Di Giulio, C

    2016-01-01

    The real-time exhaled volatile organic compounds (VOCs) have been suggested as a new biomarker to detect and monitor physiological processes in the respiratory system. The VOCs profile in exhaled breath reflects the biochemical alterations related to metabolic changes, organ failure, and neuronal activity, which are, at least in part, transmitted via the lungs to the alveolar exhaled breath. Breath analysis has been applied to investigate cancer, lung failure, and neurodegenerative diseases. There are by far no studies on the real-time monitoring of VOCs in sensory stimulation in healthy subjects. Therefore, in this study we investigated the breath parameters and exhaled VOCs in humans during sensory stimulation: smell, hearing, sight, and touch. Responses sensory stimulations were recorded in 12 volunteers using an iAQ-2000 sensor. We found significant effects of sensory stimulation. In particular, olfactory stimulation was the most effective stimulus that elicited the greatest VOCs variations in the exhaled breath. Since the olfactory pathway is distinctly driven by the hypothalamic and limbic circuitry, while other senses project first to the thalamic area and then re-project to other brain areas, the findings suggest the importance of olfaction and chemoreception in the regulation lung gas exchange. VOCs variations during sensory activation may become putative indicators of neural activity.

  10. Olfactory fingerprints for major histocompatibility complex-determined body odors.

    Science.gov (United States)

    Schaefer, M L; Young, D A; Restrepo, D

    2001-04-01

    Recognition of individual body odors is analogous to human face recognition in that it provides information about identity. Individual body odors determined by differences at the major histocompatibility complex (MHC or H-2) have been shown to influence mate choice, pregnancy block, and maternal behavior in mice. Unfortunately, the mechanism and extent of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB) involvement in the discrimination of animals according to H-2-type has remained ambiguous. Here we study the neuronal activation patterns evoked in the MOB in different individuals on exposure to these complex, biologically meaningful sensory stimuli. We demonstrate that body odors from H-2 disparate mice evoke overlapping but distinct maps of neuronal activation in the MOB. The spatial patterns of odor-evoked activity are sufficient to be used like fingerprints to predict H-2 identity using a novel computer algorithm. These results provide functional evidence for discrimination of H-2-determined body odors in the MOB, but do not preclude a role for the AOB. These data further our understanding of the neural strategies used to decode socially relevant odors.

  11. Topological reorganization of odor representations in the olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Emre Yaksi

    2007-07-01

    Full Text Available Odors are initially represented in the olfactory bulb (OB by patterns of sensory input across the array of glomeruli. Although activated glomeruli are often widely distributed, glomeruli responding to stimuli sharing molecular features tend to be loosely clustered and thus establish a fractured chemotopic map. Neuronal circuits in the OB transform glomerular patterns of sensory input into spatiotemporal patterns of output activity and thereby extract information about a stimulus. It is, however, unknown whether the chemotopic spatial organization of glomerular inputs is maintained during these computations. To explore this issue, we measured spatiotemporal patterns of odor-evoked activity across thousands of individual neurons in the zebrafish OB by temporally deconvolved two-photon Ca(2+ imaging. Mitral cells and interneurons were distinguished by transgenic markers and exhibited different response selectivities. Shortly after response onset, activity patterns exhibited foci of activity associated with certain chemical features throughout all layers. During the subsequent few hundred milliseconds, however, MC activity was locally sparsened within the initial foci in an odor-specific manner. As a consequence, chemotopic maps disappeared and activity patterns became more informative about precise odor identity. Hence, chemotopic maps of glomerular input activity are initially transmitted to OB outputs, but not maintained during pattern processing. Nevertheless, transient chemotopic maps may support neuronal computations by establishing important synaptic interactions within the circuit. These results provide insights into the functional topology of neural activity patterns and its potential role in circuit function.

  12. Neuronal correlates of a virtual-reality-based passive sensory P300 network.

    Science.gov (United States)

    Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching

    2014-01-01

    P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person's intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients' analytic results with this study. For example, the task

  13. Neuronal correlates of a virtual-reality-based passive sensory P300 network.

    Directory of Open Access Journals (Sweden)

    Chun-Chuan Chen

    Full Text Available P300, a positive event-related potential (ERP evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person's intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM for ERP and a novel virtual reality (VR-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients' analytic results with this study. For example

  14. Olfactory neuroblastoma

    International Nuclear Information System (INIS)

    Rashid, D.; Ahmed, B.; Malik, S.M.; Khan, M.

    2000-01-01

    Olfactory neuroblastoma/esthesioneuroblastoma in a rare malignant tumour of the olfactory neuroepithelium. This is a report of 5 cases managed over the last 10 years at Combined Military Hospital, Rawalpindi. Age of the patients at presentation ranged from 27 to 70 years. The main symptoms were unilateral nasal obstruction and intermittent epistaxis. The mean duration of symptoms at presentation was 11 months. Two patients were staged as B and 3 as C at presentation. The stage of the disease correlated with the duration of symptoms. All the cases were diagnosed on histopathology. Three were offered combination of surgery and radiotherapy. One patient received only surgical treatment and one patient received radiotherapy and chemotherapy. Combination of surgery and radiotherapy showed best results. (author)

  15. Conceptual Network Model From Sensory Neurons to Astrocytes of the Human Nervous System.

    Science.gov (United States)

    Yang, Yiqun; Yeo, Chai Kiat

    2015-07-01

    From a single-cell animal like paramecium to vertebrates like ape, the nervous system plays an important role in responding to the variations of the environment. Compared to animals, the nervous system in the human body possesses more intricate organization and utility. The nervous system anatomy has been understood progressively, yet the explanation at the cell level regarding complete information transmission is still lacking. Along the signal pathway toward the brain, an external stimulus first activates action potentials in the sensing neuron and these electric pulses transmit along the spinal nerve or cranial nerve to the neurons in the brain. Second, calcium elevation is triggered in the branch of astrocyte at the tripartite synapse. Third, the local calcium wave expands to the entire territory of the astrocyte. Finally, the calcium wave propagates to the neighboring astrocyte via gap junction channel. In our study, we integrate the existing mathematical model and biological experiments in each step of the signal transduction to establish a conceptual network model for the human nervous system. The network is composed of four layers and the communication protocols of each layer could be adapted to entities with different characterizations. We verify our simulation results against the available biological experiments and mathematical models and provide a test case of the integrated network. As the production of conscious episode in the human nervous system is still under intense research, our model serves as a useful tool to facilitate, complement and verify current and future study in human cognition.

  16. Brief exposure to sensory cues elicits stimulus-nonspecific general sensitization in an insect.

    Directory of Open Access Journals (Sweden)

    Sebastian Minoli

    Full Text Available The effect of repeated exposure to sensory stimuli, with or without reward is well known to induce stimulus-specific modifications of behaviour, described as different forms of learning. In recent studies we showed that a brief single pre-exposure to the female-produced sex pheromone or even a predator sound can increase the behavioural and central nervous responses to this pheromone in males of the noctuid moth Spodoptera littoralis. To investigate if this increase in sensitivity might be restricted to the pheromone system or is a form of general sensitization, we studied here if a brief pre-exposure to stimuli of different modalities can reciprocally change behavioural and physiological responses to olfactory and gustatory stimuli. Olfactory and gustatory pre-exposure and subsequent behavioural tests were carried out to reveal possible intra- and cross-modal effects. Attraction to pheromone, monitored with a locomotion compensator, increased after exposure to olfactory and gustatory stimuli. Behavioural responses to sucrose, investigated using the proboscis extension reflex, increased equally after pre-exposure to olfactory and gustatory cues. Pheromone-specific neurons in the brain and antennal gustatory neurons did, however, not change their sensitivity after sucrose exposure. The observed intra- and reciprocal cross-modal effects of pre-exposure may represent a new form of stimulus-nonspecific general sensitization originating from modifications at higher sensory processing levels.

  17. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.

    Directory of Open Access Journals (Sweden)

    Yu-Bin Huang

    Full Text Available Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.

  18. In Vitro Analysis of the Role of Schwann Cells on Axonal Degeneration and Regeneration Using Sensory Neurons from Dorsal Root Ganglia.

    Science.gov (United States)

    López-Leal, Rodrigo; Diaz, Paula; Court, Felipe A

    2018-01-01

    Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system. We describe methods to induce and study axonal degeneration triggered by axotomy (mechanical separation of the axon from its soma) and treatment with vinblastine (which blocks axonal transport), which constitute clinically relevant mechanical and toxic models of axonal degeneration. In addition, we describe three different methods to evaluate axonal regeneration using quantitative methods. These protocols constitute a valuable tool to analyze in vitro mechanisms associated to axonal degeneration and regeneration of sensory neurons and the role of Schwann cells in these processes.

  19. Morphology and physiology of the olfactory system of blood-feeding insects.

    Science.gov (United States)

    Guidobaldi, F; May-Concha, I J; Guerenstein, P G

    2014-01-01

    Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain

  20. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    Science.gov (United States)

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  1. Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification.

    Science.gov (United States)

    Moore, Adrian W; Roegiers, Fabrice; Jan, Lily Y; Jan, Yuh-Nung

    2004-03-15

    The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.

  2. Irrelevant sensory stimuli interfere with working memory storage: evidence from a computational model of prefrontal neurons.

    Science.gov (United States)

    Bancroft, Tyler D; Hockley, William E; Servos, Philip

    2013-03-01

    The encoding of irrelevant stimuli into the memory store has previously been suggested as a mechanism of interference in working memory (e.g., Lange & Oberauer, Memory, 13, 333-339, 2005; Nairne, Memory & Cognition, 18, 251-269, 1990). Recently, Bancroft and Servos (Experimental Brain Research, 208, 529-532, 2011) used a tactile working memory task to provide experimental evidence that irrelevant stimuli were, in fact, encoded into working memory. In the present study, we replicated Bancroft and Servos's experimental findings using a biologically based computational model of prefrontal neurons, providing a neurocomputational model of overwriting in working memory. Furthermore, our modeling results show that inhibition acts to protect the contents of working memory, and they suggest a need for further experimental research into the capacity of vibrotactile working memory.

  3. Interglomerular Connectivity within the Canonical and GC-D/Necklace Olfactory Subsystems.

    Directory of Open Access Journals (Sweden)

    Cedric R Uytingco

    Full Text Available The mammalian main olfactory system contains several subsystems that differ not only in the receptors they express and the glomerular targets they innervate within the main olfactory bulb (MOB, but also in the strategies they use to process odor information. The canonical main olfactory system employs a combinatorial coding strategy that represents odorant identity as a pattern of glomerular activity. By contrast, the "GC-D/necklace" olfactory subsystem-formed by olfactory sensory neurons expressing the receptor guanylyl cyclase GC-D and their target necklace glomeruli (NGs encircling the caudal MOB-is critical for the detection of a small number of semiochemicals that promote the acquisition of food preferences. The formation of these socially-transmitted food preferences requires the animal to integrate information about two types of olfactory stimuli: these specialized social chemosignals and the food odors themselves. However, the neural mechanisms with which the GC-D/necklace subsystem processes this information are unclear. We used stimulus-induced increases in intrinsic fluorescence signals to map functional circuitry associated with NGs and canonical glomeruli (CGs in the MOB. As expected, CG-associated activity spread laterally through both the glomerular and external plexiform layers associated with activated glomeruli. Activation of CGs or NGs resulted in activity spread between the two types of glomeruli; there was no evidence of preferential connectivity between individual necklace glomeruli. These results support previous anatomical findings that suggest the canonical and GC-D/necklace subsystems are functionally connected and may integrate general odor and semiochemical information in the MOB.

  4. Olfactory proteins mediating chemical communication in the navel orangeworm moth, Amyelois transitella.

    Directory of Open Access Journals (Sweden)

    Walter S Leal

    2009-09-01

    Full Text Available The navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae, is the most serious insect pest of almonds and pistachios in California for which environmentally friendly alternative methods of control--like pheromone-based approaches--are highly desirable. Some constituents of the sex pheromone are unstable and could be replaced with parapheromones, which may be designed on the basis of molecular interaction of pheromones and pheromone-detecting olfactory proteins.By analyzing extracts from olfactory and non-olfactory tissues, we identified putative olfactory proteins, obtained their N-terminal amino acid sequences by Edman degradation, and used degenerate primers to clone the corresponding cDNAs by SMART RACE. Additionally, we used degenerate primers based on conserved sequences of known proteins to fish out other candidate olfactory genes. We expressed the gene encoding a newly identified pheromone-binding protein, which was analyzed by circular dichroism, fluorescence, and nuclear magnetic resonance, and used in a binding assay to assess affinity to pheromone components.We have cloned nine cDNAs encoding olfactory proteins from the navel orangeworm, including two pheromone-binding proteins, two general odorant-binding proteins, one chemosensory protein, one glutathione S-transferase, one antennal binding protein X, one sensory neuron membrane protein, and one odorant receptor. Of these, AtraPBP1 is highly enriched in male antennae. Fluorescence, CD and NMR studies suggest a dramatic pH-dependent conformational change, with high affinity to pheromone constituents at neutral pH and no binding at low pH.

  5. Comparison of classifiers for decoding sensory and cognitive information from prefrontal neuronal populations.

    Directory of Open Access Journals (Sweden)

    Elaine Astrand

    Full Text Available Decoding neuronal information is important in neuroscience, both as a basic means to understand how neuronal activity is related to cerebral function and as a processing stage in driving neuroprosthetic effectors. Here, we compare the readout performance of six commonly used classifiers at decoding two different variables encoded by the spiking activity of the non-human primate frontal eye fields (FEF: the spatial position of a visual cue, and the instructed orientation of the animal's attention. While the first variable is exogenously driven by the environment, the second variable corresponds to the interpretation of the instruction conveyed by the cue; it is endogenously driven and corresponds to the output of internal cognitive operations performed on the visual attributes of the cue. These two variables were decoded using either a regularized optimal linear estimator in its explicit formulation, an optimal linear artificial neural network estimator, a non-linear artificial neural network estimator, a non-linear naïve Bayesian estimator, a non-linear Reservoir recurrent network classifier or a non-linear Support Vector Machine classifier. Our results suggest that endogenous information such as the orientation of attention can be decoded from the FEF with the same accuracy as exogenous visual information. All classifiers did not behave equally in the face of population size and heterogeneity, the available training and testing trials, the subject's behavior and the temporal structure of the variable of interest. In most situations, the regularized optimal linear estimator and the non-linear Support Vector Machine classifiers outperformed the other tested decoders.

  6. Phylogenic aspects of the amphibian dual olfactory system.

    Science.gov (United States)

    Taniguchi, Kazumi; Saito, Shouichiro; Oikawa, Toshihiro; Taniguchi, Kazuyuki

    2008-01-01

    The phylogenic significance of the subdivision of dual olfactory system is reviewed mainly on the basis of our findings by electron microscopy and lectin histochemistry in the three amphibian species. The dual olfactory system is present in common in these species and consists of the projection from the olfactory epithelium (OE) to the main olfactory bulb (MOB) and that from the vomeronasal epithelium (VNE) to the accessory olfactory bulb (AOB). The phylogenic significance of subdivisions in the dual olfactory system in the amphibian must differently be interpreted. The subdivision of the MOB into its dorsal region (D-MOB) and ventral region (V-MOB) in Xenopus laevis must be attributed to the primitive features in their olfactory receptors. The middle cavity epithelium lining the middle cavity of this frog possesses both ciliated sensory cells and microvillous sensory cells, reminding the OE in fish. The subdivision of the AOB into the rostral (R-AOB) and caudal part (C-AOB) in Bufo japonicus formosus must be regarded as an advanced characteristic. The lack of subdivisions in both MOB and AOB in Cynops pyrrhogaster may reflect their phylogenic primitiveness. Since our lectin histochemistry to detect glycoconjugates expressed in the olfactory pathway reveals the subdivisions in the dual olfactory system in the amphibian, the glycoconjugates may deeply participate in the organization and function of olfactory pathways in phylogeny.

  7. Immunohistochemical localization of two types of choline acetyltransferase in neurons and sensory cells of the octopus arm.

    Science.gov (United States)

    Sakaue, Yuko; Bellier, Jean-Pierre; Kimura, Shin; D'Este, Loredana; Takeuchi, Yoshihiro; Kimura, Hiroshi

    2014-01-01

    Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera. cChAT-positive varicose nerve fibers were observed in both the cerebrobrachial tract and neuropil of the axial nerve cord, while pChAT-positive varicose fibers were detected only in the neuropil of the axial nerve cord. After epitope retrieval, pChAT-positive neuronal cells and their processes became visible in all ganglia of the arm, including the axial and intramuscular nerve cords, and in ganglia of suckers. Moreover, pChAT-positive structures also became detectable in nerve fibers connecting the different ganglia, in smooth nerve fibers among muscle layers and dermal connective tissues, and in sensory cells of the suckers. These results suggest that the octopus arm has two types of cholinergic nerves: cChAT-positive nerves from brain ganglia and pChAT-positive nerves that are intrinsic to the arm.

  8. Functional neuroanatomy of Drosophila olfactory memory formation

    OpenAIRE

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry exten...

  9. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    Science.gov (United States)

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  10. Monosynaptic connections made by the sensory neurons of the gill- and siphon-withdrawal reflex in Aplysia participate in the storage of long-term memory for sensitization

    OpenAIRE

    Frost, William N.; Castellucci, Vincent F.; Hawkins, Robert D.; Kandel, Eric R.

    1985-01-01

    We have found that in the gill- and siphon- withdrawal reflex of Aplysia, the memory for short-term sensitization grades smoothly into long-term memory with increased amounts of sensitization training. One cellular locus for the storage of the memory underlying short-term sensitization is the set of monosynaptic connections between the siphon sensory cells and the gill and siphon motor neurons. We have now also found that these same monosynaptic connections participate in the storage of the m...

  11. Failure of action potential propagation in sensory neurons: mechanisms and loss of afferent filtering in C-type units after painful nerve injury.

    Science.gov (United States)

    Gemes, Geza; Koopmeiners, Andrew; Rigaud, Marcel; Lirk, Philipp; Sapunar, Damir; Bangaru, Madhavi Latha; Vilceanu, Daniel; Garrison, Sheldon R; Ljubkovic, Marko; Mueller, Samantha J; Stucky, Cheryl L; Hogan, Quinn H

    2013-02-15

    The T-junction of sensory neurons in the dorsal root ganglion (DRG) is a potential impediment to action potential (AP) propagation towards the CNS. Using intracellular recordings from rat DRG neuronal somata during stimulation of the dorsal root, we determined that the maximal rate at which all of 20 APs in a train could successfully transit the T-junction (following frequency) was lowest in C-type units, followed by A-type units with inflected descending limbs of the AP, and highest in A-type units without inflections. In C-type units, following frequency was slower than the rate at which AP trains could be produced in either dorsal root axonal segments or in the soma alone, indicating that the T-junction is a site that acts as a low-pass filter for AP propagation. Following frequency was slower for a train of 20 APs than for two, indicating that a cumulative process leads to propagation failure. Propagation failure was accompanied by diminished somatic membrane input resistance, and was enhanced when Ca(2+)-sensitive K(+) currents were augmented or when Ca(2+)-sensitive Cl(-) currents were blocked. After peripheral nerve injury, following frequencies were increased in axotomized C-type neurons and decreased in axotomized non-inflected A-type neurons. These findings reveal that the T-junction in sensory neurons is a regulator of afferent impulse traffic. Diminished filtering of AP trains at the T-junction of C-type neurons with axotomized peripheral processes could enhance the transmission of activity that is ectopically triggered in a neuroma or the neuronal soma, possibly contributing to pain generation.

  12. Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor, and feedback processes

    Science.gov (United States)

    Gupta, Daya S.

    2014-01-01

    The processing of time intervals in the sub- to supra-second range by the brain is critical for the interaction of primates with their surroundings in activities, such as foraging and hunting. For an accurate processing of time intervals by the brain, representation of physical time within neuronal circuits is necessary. I propose that time dimension of the physical surrounding is represented in the brain by different types of neuronal oscillators, generating spikes or spike bursts at regular intervals. The proposed oscillators include the pacemaker neurons, tonic inputs, and synchronized excitation and inhibition of inter-connected neurons. Oscillators, which are built inside various circuits of brain, help to form modular clocks, processing time intervals or other temporal characteristics specific to functions of a circuit. Relative or absolute duration is represented within neuronal oscillators by “neural temporal unit,” defined as the interval between regularly occurring spikes or spike bursts. Oscillator output is processed to produce changes in activities of neurons, named frequency modulator neuron, wired within a separate module, represented by the rate of change in frequency, and frequency of activities, proposed to encode time intervals. Inbuilt oscillators are calibrated by (a) feedback processes, (b) input of time intervals resulting from rhythmic external sensory stimulation, and (c) synchronous effects of feedback processes and evoked sensory activity. A single active clock is proposed per circuit, which is calibrated by one or more mechanisms. Multiple calibration mechanisms, inbuilt oscillators, and the presence of modular connections prevent a complete loss of interval timing functions of the brain. PMID:25136321

  13. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats.

    Science.gov (United States)

    Akude, Eli; Zherebitskaya, Elena; Chowdhury, Subir K Roy; Smith, Darrell R; Dobrowsky, Rick T; Fernyhough, Paul

    2011-01-01

    Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.

  14. Lateral presynaptic inhibition mediates gain control in an olfactory circuit.

    Science.gov (United States)

    Olsen, Shawn R; Wilson, Rachel I

    2008-04-24

    Olfactory signals are transduced by a large family of odorant receptor proteins, each of which corresponds to a unique glomerulus in the first olfactory relay of the brain. Crosstalk between glomeruli has been proposed to be important in olfactory processing, but it is not clear how these interactions shape the odour responses of second-order neurons. In the Drosophila antennal lobe (a region analogous to the vertebrate olfactory bulb), we selectively removed most interglomerular input to genetically identified second-order olfactory neurons. Here we show that this broadens the odour tuning of these neurons, implying that interglomerular inhibition dominates over interglomerular excitation. The strength of this inhibitory signal scales with total feedforward input to the entire antennal lobe, and has similar tuning in different glomeruli. A substantial portion of this interglomerular inhibition acts at a presynaptic locus, and our results imply that this is mediated by both ionotropic and metabotropic receptors on the same nerve terminal.

  15. Assessment of Olfactory Memory in Olfactory Dysfunction.

    Science.gov (United States)

    Kollndorfer, Kathrin; Reichert, Johanna; Braunsteiner, Josephine; Schöpf, Veronika

    2017-01-01

    To assess all clinically relevant components of olfactory perception, examinations for olfactory sensitivity, discrimination, and identification are performed. Besides the standard perceptual test battery, episodic olfactory memory might offer additional information about olfactory abilities relative to these standard clinical tests. As both olfactory deficits and memory deficits are early symptoms in neurodegenerative disorders, olfactory memory may be of particular interest. However, to date little is known about episodic olfactory memory performance in patients with decreased olfactory function. This study includes the investigation of olfactory memory performance in 14 hyposmic patients (8 female, mean age 52.6 years) completing two episodic odor memory tests (Sniffin' Test of Odor Memory and Odor Memory Test). To control for a general impairment in memory function, a verbal and a figural memory test were carried out. A regression model with multiple predictors was calculated for both odor memory tests separately. Odor identification was identified as the only significant predictor for both odor memory tasks. From our results, we conclude that currently available olfactory memory tests are highly influenced by odor identification abilities, implying the need for the development and validation of additional tests in this field which could serve as additional olfactory perception variables for clinical assessment.

  16. Cladistic analysis of olfactory and vomeronasal systems.

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  17. Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus.

    Directory of Open Access Journals (Sweden)

    James C Walton

    Full Text Available Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD and short day lengths (SD for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.

  18. Hornets Have It: A Conserved Olfactory Subsystem for Social Recognition in Hymenoptera?

    Directory of Open Access Journals (Sweden)

    Antoine Couto

    2017-06-01

    Full Text Available Eusocial Hymenoptera colonies are characterized by the presence of altruistic individuals, which rear their siblings instead of their own offspring. In the course of evolution, such sterile castes are thought to have emerged through the process of kin selection, altruistic traits being transmitted to following generation if they benefit relatives. By allowing kinship recognition, the detection of cuticular hydrocarbons (CHCs might be instrumental for kin selection. In carpenter ants, a female-specific olfactory subsystem processes CHC information through antennal detection by basiconic sensilla. It is still unclear if other families of eusocial Hymenoptera use the same subsystem for sensing CHCs. Here, we examined the existence of such a subsystem in Vespidae (using the hornet Vespa velutina, a family in which eusociality emerged independently of ants. The antennae of both males and female hornets contain large basiconic sensilla. Sensory neurons from the large basiconic sensilla exclusively project to a conspicuous cluster of small glomeruli in the antennal lobe, with anatomical and immunoreactive features that are strikingly similar to those of the ant CHC-sensitive subsystem. Extracellular electrophysiological recordings further show that sensory neurons within hornet basiconic sensilla preferentially respond to CHCs. Although this subsystem is not female-specific in hornets, the observed similarities with the olfactory system of ants are striking. They suggest that the basiconic sensilla subsystem could be an ancestral trait, which may have played a key role in the advent of eusociality in these hymenopteran families by allowing kin recognition and the production of altruistic behaviors toward relatives.

  19. Hard-Diet Feeding Recovers Neurogenesis in the Subventricular Zone and Olfactory Functions of Mice Impaired by Soft-Diet Feeding

    Science.gov (United States)

    Utsugi, Chizuru; Miyazono, Sadaharu; Osada, Kazumi; Sasajima, Hitoshi; Noguchi, Tomohiro; Matsuda, Mitsuyoshi; Kashiwayanagi, Makoto

    2014-01-01

    The subventricular zone (SVZ) generates an immense number of neurons even during adulthood. These neurons migrate to the olfactory bulb (OB) and differentiate into granule cells and periglomerular cells. The information broadcast by general odorants is received by the olfactory sensory neurons and transmitted to the OB. Recent studies have shown that a reduction of mastication impairs both neurogenesis in the hippocampus and brain functions. To examine these effects, we first measured the difference in Fos-immunoreactivity (Fos-ir) at the principal sensory trigeminal nucleus (Pr5), which receives intraoral touch information via the trigeminal nerve, when female adult mice ingested a hard or soft diet to explore whether soft-diet feeding could mimic impaired mastication. Ingestion of a hard diet induced greater expression of Fos-ir cells at the Pr5 than did a soft diet or no diet. Bromodeoxyuridine-immunoreactive (BrdU-ir) structures in sagittal sections of the SVZ and in the OB of mice fed a soft or hard diet were studied to explore the effects of changes in mastication on newly generated neurons. After 1 month, the density of BrdU-ir cells in the SVZ and OB was lower in the soft-diet-fed mice than in the hard-diet-fed mice. The odor preferences of individual female mice to butyric acid were tested in a Y-maze apparatus. Avoidance of butyric acid was reduced by the soft-diet feeding. We then explored the effects of the hard-diet feeding on olfactory functions and neurogenesis in the SVZ of mice impaired by soft-diet feeding. At 3 months of hard-diet feeding, avoidance of butyric acid was reversed and responses to odors and neurogenesis were recovered in the SVZ. The present results suggest that feeding with a hard diet improves neurogenesis in the SVZ, which in turn enhances olfactory function at the OB. PMID:24817277

  20. Accumulation of [35S]taurine in peripheral layers of the olfactory bulb

    International Nuclear Information System (INIS)

    Quinn, M.R.; Wysocki, C.J.; Sturman, J.A.; Wen, G.Y.

    1981-01-01

    Accumulation of [ 35 S]taurine in the laminae of the olfactory bulb of the adult cat, rat, mouse and rabbit was examined autoradiographically. [ 35 S]Taurine was administered either i.p. or i.v. and olfactory bulbs were excised 24 h post-injection. High concentrations of [ 35 S]taurine were restricted to the olfactory nerve and glomerular layers of the olfactory bulb in all species examined. Olfactory neurons are continuously renewed and the results obtained suggest that taurine may have an important role in olfactory receptor axons. (Auth.)

  1. Linking adult olfactory neurogenesis to social behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  2. Structure of Masera's Septal Olfactory Organ in Cat (Felis silvestris f. catus - Light Microscopy in Selected Stages of Ontogeny

    Directory of Open Access Journals (Sweden)

    I. Kociánová

    2006-01-01

    Full Text Available The septal organ /SO/ (Masera's organ /MO/ is a chemoreceptor presently considered one of three types of olfactory organs (along with the principal olfactory region and vomeronasal organ. Notwithstanding the septal organ having been first described by Rodolfo Masera in 1943, little is known of the properties of sensory neurons or of its functional significance in chemoreception. Until now the septal organ has been described only in laboratory rodents and some marsupials. This work refers to its existence in the domestic cat (Felis silvestris f. catus. The septal organ can be identified at the end of embryonic period - 27 or 28 days of ontogenesis in cats (the 6th developmental stage of Štěrba - coincident with formation of the principal olfactory region in nasal cavity. At 45 days of ontogenesis (the 9th developmental stage of Štěrba, this septal olfactory organ is of circular or oval shape, 120 μm in diameter, in ventral part of septum nasi, lying caudally to the opening of ductus incisivus. The structure of the epithelium of septal olfactory organ is clearly distinct from the respiratory epithelium of the nasal cavity. It varies in thickness, cellular composition, as well as free surface appearance, and even lack the typical structure of sensory epithelium, in this developmental period. Nerve bundles and glandular acini are lacking in the lamina propria mucosae of the septal organ and in the adjacent tissues. Glands appear as the single non-luminized cords of epithelia extending from the surface. The adjacent respiratory epithelium contains numerous goblet cells.

  3. Inhibition of TRPA1 channel activity in sensory neurons by the glial cell line-derived neurotrophic factor family member, artemin

    Directory of Open Access Journals (Sweden)

    Wang Shenglan

    2011-05-01

    Full Text Available Abstract Background The transient receptor potential (TRP channel subtype A1 (TRPA1 is known to be expressed on sensory neurons and respond to changes in temperature, pH and local application of certain noxious chemicals such as allyl isothiocyanate (AITC. Artemin is a neuronal survival and differentiation factor and belongs to the glial cell line-derived neurotrophic factor (GDNF family. Both TRPA1 and artemin have been reported to be involved in pathological pain initiation and maintenance. In the present study, using whole-cell patch clamp recording technique, in situ hybridization and behavioral analyses, we examined the functional interaction between TRPA1 and artemin. Results We found that 85.8 ± 1.9% of TRPA1-expressing neurons also expressed GDNF family receptor alpha 3 (GFR α3, and 87.5 ± 4.1% of GFRα3-expressing neurons were TRPA1-positive. In whole-cell patch clamp analysis, a short-term treatment of 100 ng/ml artemin significantly suppressed the AITC-induced TRPA1 currents. A concentration-response curve of AITC resulting from the effect of artemin showed that this inhibition did not change EC50 but did lower the AITC-induced maximum response. In addition, pre-treatment of artemin significantly suppressed the number of paw lifts induced by intraplantar injection of AITC, as well as the formalin-induced pain behaviors. Conclusions These findings that a short-term application of artemin inhibits the TRPA1 channel's activity and the sequential pain behaviors suggest a role of artemin in regulation of sensory neurons.

  4. Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam

    Science.gov (United States)

    Song, Yuanquan; Ori-McKenney, Kassandra M.; Zheng, Yi; Han, Chun; Jan, Lily Yeh; Jan, Yuh Nung

    2012-01-01

    Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila dendritic arborization (da) neurons are capable of substantial regeneration in the periphery but not in the CNS, and activating the Akt pathway enhances axon regeneration in the CNS. Moreover, those da neurons capable of axon regeneration also display dendrite regeneration, which is cell type-specific, developmentally regulated, and associated with microtubule polarity reversal. Dendrite regeneration is restrained via inhibition of the Akt pathway in da neurons by the epithelial cell-derived microRNA bantam but is facilitated by cell-autonomous activation of the Akt pathway. Our study begins to reveal mechanisms for dendrite regeneration, which depends on both extrinsic and intrinsic factors, including the PTEN–Akt pathway that is also important for axon regeneration. We thus established an important new model system—the fly da neuron regeneration model that resembles the mammalian injury model—with which to study and gain novel insights into the regeneration machinery. PMID:22759636

  5. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications

    Science.gov (United States)

    Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  6. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications.

    Science.gov (United States)

    Rigosa, J; Weber, D J; Prochazka, A; Stein, R B; Micera, S

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  7. Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster

    Science.gov (United States)

    Tachibana, Shin-Ichiro; Touhara, Kazushige; Ejima, Aki

    2015-01-01

    A male-specific component, 11-cis-vaccenyl acetate (cVA) works as an anti-aphrodisiac pheromone in Drosophila melanogaster. The presence of cVA on a male suppresses the courtship motivation of other males and contributes to suppression of male-male homosexual courtship, while the absence of cVA on a female stimulates the sexual motivation of nearby males and enhances the male-female interaction. However, little is known how a male distinguishes the presence or absence of cVA on a target fly from either self-produced cVA or secondhand cVA from other males in the vicinity. In this study, we demonstrate that male flies have keen sensitivity to cVA; therefore, the presence of another male in the area reduces courtship toward a female. This reduced level of sexual motivation, however, could be overcome by pretest odor exposure via olfactory habituation to cVA. Real-time imaging of cVA-responsive sensory neurons using the neural activity sensor revealed that prolonged exposure to cVA decreased the levels of cVA responses in the primary olfactory center. Pharmacological and genetic screening revealed that signal transduction via GABAA receptors contributed to this olfactory habituation. We also found that the habituation experience increased the copulation success of wild-type males in a group. In contrast, transgenic males, in which GABA input in a small subset of local neurons was blocked by RNAi, failed to acquire the sexual advantage conferred by habituation. Thus, we illustrate a novel phenomenon in which olfactory habituation positively affects sexual capability in a competitive environment. PMID:26252206

  8. Molecular characterization and differential expression of olfactory genes in the antennae of the black cutworm moth Agrotis ipsilon.

    Directory of Open Access Journals (Sweden)

    Shao-Hua Gu

    Full Text Available Insects use their sensitive and selective olfactory system to detect outside chemical odorants, such as female sex pheromones and host plant volatiles. Several groups of olfactory proteins participate in the odorant detection process, including odorant binding proteins (OBPs, chemosensory proteins (CSPs, odorant receptors (ORs, ionotropic receptors (IRs and sensory neuron membrane proteins (SNMPs. The identification and functional characterization of these olfactory proteins will enhance our knowledge of the molecular basis of insect chemoreception. In this study, we report the identification and differential expression profiles of these olfactory genes in the black cutworm moth Agrotis ipsilon. In total, 33 OBPs, 12 CSPs, 42 ORs, 24 IRs, 2 SNMPs and 1 gustatory receptor (GR were annotated from the A. ipsilon antennal transcriptomes, and further RT-PCR and RT-qPCR revealed that 22 OBPs, 3 CSPs, 35 ORs, 14 IRs and the 2 SNMPs are uniquely or primarily expressed in the male and female antennae. Furthermore, one OBP (AipsOBP6 and one CSP (AipsCSP2 were exclusively expressed in the female sex pheromone gland. These antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs were suggested to be responsible for pheromone and general odorant detection and thus could be meaningful target genes for us to study their biological functions in vivo and in vitro.

  9. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  10. Cortical feedback control of olfactory bulb circuits.

    Science.gov (United States)

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy.

    Science.gov (United States)

    Liu, Boyi; Tai, Yan; Achanta, Satyanarayana; Kaelberer, Melanie M; Caceres, Ana I; Shao, Xiaomei; Fang, Jianqiao; Jordt, Sven-Eric

    2016-11-22

    Poison ivy-induced allergic contact dermatitis (ACD) is the most common environmental allergic condition in the United States. Case numbers of poison ivy ACD are increasing due to growing biomass and geographical expansion of poison ivy and increasing content of the allergen, urushiol, likely attributable to rising atmospheric CO 2 Severe and treatment-resistant itch is the major complaint of affected patients. However, because of limited clinical data and poorly characterized models, the pruritic mechanisms in poison ivy ACD remain unknown. Here, we aim to identify the mechanisms of itch in a mouse model of poison ivy ACD by transcriptomics, neuronal imaging, and behavioral analysis. Using transcriptome microarray analysis, we identified IL-33 as a key cytokine up-regulated in the inflamed skin of urushiol-challenged mice. We further found that the IL-33 receptor, ST2, is expressed in small to medium-sized dorsal root ganglion (DRG) neurons, including neurons that innervate the skin. IL-33 induces Ca 2+ influx into a subset of DRG neurons through neuronal ST2. Neutralizing antibodies against IL-33 or ST2 reduced scratching behavior and skin inflammation in urushiol-challenged mice. Injection of IL-33 into urushiol-challenged skin rapidly exacerbated itch-related scratching via ST2, in a histamine-independent manner. Targeted silencing of neuronal ST2 expression by intrathecal ST2 siRNA delivery significantly attenuated pruritic responses caused by urushiol-induced ACD. These results indicate that IL-33/ST2 signaling is functionally present in primary sensory neurons and contributes to pruritus in poison ivy ACD. Blocking IL-33/ST2 signaling may represent a therapeutic approach to ameliorate itch and skin inflammation related to poison ivy ACD.

  12. Olfactory memory formation in Drosophila: from molecular to systems neuroscience.

    Science.gov (United States)

    Davis, Ronald L

    2005-01-01

    The olfactory nervous system of insects and mammals exhibits many similarities, which suggests that the mechanisms for olfactory learning may be shared. Molecular genetic investigations of Drosophila learning have uncovered numerous genes whose gene products are essential for olfactory memory formation. Recent studies of the products of these genes have continued to expand the range of molecular processes known to underlie memory formation. Recent research has also broadened the neuroanatomical areas thought to mediate olfactory learning to include the antennal lobes in addition to a previously accepted and central role for the mushroom bodies. The roles for neurons extrinsic to the mushroom body neurons are becoming better defined. Finally, the genes identified to participate in Drosophila olfactory learning have conserved roles in mammalian organisms, highlighting the value of Drosophila for gene discovery.

  13. Olfactory Neuroblastoma: Diagnostic Difficulty

    Directory of Open Access Journals (Sweden)

    Vidya MN,

    2011-01-01

    Full Text Available Olfactory neuroblastoma is an uncommon malignant tumor of sinonasal tract arising from the olfactory neuro epithelium. The olfactory neuroblastomas presenting with divergent histomorphologies like, epithelial appearance of cells, lacking a neuro fibrillary background and absence of rosettes are difficult to diagnose. Such cases require immunohistochemistry to establish the diagnosis. We describe the clinical features, pathological and immunohistochemical findings of grade IV Olfactory neuroblastoma in a 57 year old man

  14. No evidence for visual context-dependency of olfactory learning in Drosophila

    Science.gov (United States)

    Yarali, Ayse; Mayerle, Moritz; Nawroth, Christian; Gerber, Bertram

    2008-08-01

    How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.

  15. Radiation-induced reduction of the glial population during development disrupts the formation of olfactory glomeruli in an insect

    International Nuclear Information System (INIS)

    Oland, L.A.; Tolbert, L.P.; Mossman, K.L.

    1988-01-01

    Interactions between neurons and between neurons and glial cells have been shown by a number of investigators to be critical for normal development of the nervous system. In the olfactory system of Manduca sexta, sensory axons have been shown to induce the formation of synaptic glomeruli in the antennal lobe of the brain. Oland and Tolbert (1987) found that the growth of sensory axons into the developing antennal lobe causes changes in glial shape and disposition that presage the establishment of glomeruli, each surrounded by a glial envelope. Several lines of evidence lead us to hypothesize that the glial cells of the lobe may be acting as intermediaries in developmental interactions between sensory axons and neurons of the antennal lobe. In the present study, we have tested this hypothesis by using gamma-radiation to reduce the number of glial cells at a time when neurons of the antennal system are postmitotic but glomeruli have not yet developed. When glial numbers are severely reduced, the neuropil of the resulting lobe lacks glomeruli. Despite the presence of afferent axons, the irradiated lobe has many of the features of a lobe that developed in the absence of afferent axons. Our findings indicate that the glial cells must play a necessary role in the inductive influence of the afferent axons

  16. Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors

    Science.gov (United States)

    Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.

    2015-01-01

    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447

  17. EOL-1, the homolog of the mammalian Dom3Z, regulates olfactory learning in C. elegans.

    Science.gov (United States)

    Shen, Yu; Zhang, Jiangwen; Calarco, John A; Zhang, Yun

    2014-10-01

    Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates quality control of pre-mRNAs, can substitute the function of EOL-1 in learning regulation, demonstrating functional conservation between these homologs. Mutating the residues of Dom3Z that are critical for its enzymatic activity, and the equivalent residues in EOL-1, abolishes the function of these proteins in learning. Together, our results provide insights into the function of EOL-1/Dom3Z and suggest that its activity in pre-mRNA quality control is involved in neural plasticity. Copyright © 2014 the authors 0270-6474/14/3413364-07$15.00/0.

  18. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system

    Science.gov (United States)

    Kaplan, Bernhard A.; Lansner, Anders

    2014-01-01

    Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin–Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian–Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian–Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures. PMID

  19. Neuronal responses to tactile stimuli and tactile sensations evoked by microstimulation in the human thalamic principal somatic sensory nucleus (ventral caudal).

    Science.gov (United States)

    Schmid, Anne-Christine; Chien, Jui-Hong; Greenspan, Joel D; Garonzik, Ira; Weiss, Nirit; Ohara, Shinji; Lenz, Frederick Arthur

    2016-06-01

    The normal organization and plasticity of the cutaneous core of the thalamic principal somatosensory nucleus (ventral caudal, Vc) have been studied by single-neuron recordings and microstimulation in patients undergoing awake stereotactic operations for essential tremor (ET) without apparent somatic sensory abnormality and in patients with dystonia or chronic pain secondary to major nervous system injury. In patients with ET, most Vc neurons responded to one of the four stimuli, each of which optimally activates one mechanoreceptor type. Sensations evoked by microstimulation were similar to those evoked by the optimal stimulus only among rapidly adapting neurons. In patients with ET, Vc was highly segmented somatotopically, and vibration, movement, pressure, and sharp sensations were usually evoked by microstimulation at separate sites in Vc. In patients with conditions including spinal cord transection, amputation, or dystonia, RFs were mismatched with projected fields more commonly than in patients with ET. The representation of the border of the anesthetic area (e.g., stump) or of the dystonic limb was much larger than that of the same part of the body in patients with ET. This review describes the organization and reorganization of human Vc neuronal activity in nervous system injury and dystonia and then proposes basic mechanisms. Copyright © 2016 the American Physiological Society.

  20. Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study.

    Science.gov (United States)

    Kiparizoska, Sara; Ikuta, Toshikazu

    2017-09-01

    Evidence for olfactory dysfunction in schizophrenia has been firmly established. However, in the typical understanding of schizophrenia, olfaction is not recognized to contribute to or interact with the illness. Despite the solid presence of olfactory dysfunction in schizophrenia, its relation to the rest of the illness remains largely unclear. Here, we aimed to examine functional connectivity of the olfactory bulb, olfactory tract, and piriform cortices and isolate the network that would account for the altered olfaction in schizophrenia. We examined the functional connectivity of these specific olfactory regions in order to isolate other brain regions associated with olfactory processing in schizophrenia. Using the resting state functional MRI data from the Center for Biomedical Research Excellence in Brain Function and Mental Illness, we compared 84 patients of schizophrenia and 90 individuals without schizophrenia. The schizophrenia group showed disconnectivity between the anterior piriform cortex and the nucleus accumbens, between the posterior piriform cortex and the middle frontal gyrus, and between the olfactory tract and the visual cortices. The current results suggest functional disconnectivity of olfactory regions in schizophrenia, which may account for olfactory dysfunction and disrupted integration with other sensory modalities in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  1. A multi-ingredient dietary supplement abolishes large-scale brain cell loss, improves sensory function, and prevents neuronal atrophy in aging mice.

    Science.gov (United States)

    Lemon, J A; Aksenov, V; Samigullina, R; Aksenov, S; Rodgers, W H; Rollo, C D; Boreham, D R

    2016-06-01

    Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2009-08-01

    Full Text Available Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells.With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells.In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  3. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy.

    Science.gov (United States)

    Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z

    2017-07-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

  4. Olfactory circuits and behaviors of nematodes.

    Science.gov (United States)

    Rengarajan, Sophie; Hallem, Elissa A

    2016-12-01

    Over one billion people worldwide are infected with parasitic nematodes. Many parasitic nematodes actively search for hosts to infect using volatile chemical cues, so understanding the olfactory signals that drive host seeking may elucidate new pathways for preventing infections. The free-living nematode Caenorhabditis elegans is a powerful model for parasitic nematodes: because sensory neuroanatomy is conserved across nematode species, an understanding of the microcircuits that mediate olfaction in C. elegans may inform studies of olfaction in parasitic nematodes. Here we review circuit mechanisms that allow C. elegans to respond to odorants, gases, and pheromones. We also highlight work on the olfactory behaviors of parasitic nematodes that lays the groundwork for future studies of their olfactory microcircuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  6. A Specialized Odor Memory Buffer in Primary Olfactory Cortex

    OpenAIRE

    Zelano, Christina; Montag, Jessica; Khan, Rehan; Sobel, Noam

    2009-01-01

    Background The neural substrates of olfactory working memory are unknown. We addressed the questions of whether olfactory working memory involves a verbal representation of the odor, or a sensory image of the odor, or both, and the location of the neural substrates of these processes. Methodology/Principal Findings We used functional magnetic resonance imaging to measure activity in the brains of subjects who were remembering either nameable or unnameable odorants. We found a double dissociat...

  7. Enhanced olfactory sensitivity in autism spectrum conditions.

    Science.gov (United States)

    Ashwin, Chris; Chapman, Emma; Howells, Jessica; Rhydderch, Danielle; Walker, Ian; Baron-Cohen, Simon

    2014-01-01

    People with autism spectrum conditions (ASC) report heightened olfaction. Previous sensory experiments in people with ASC have reported hypersensitivity across visual, tactile, and auditory domains, but not olfaction. The aims of the present study were to investigate olfactory sensitivity in ASC, and to test the association of sensitivity to autistic traits. We recruited 17 adult males diagnosed with ASC and 17 typical adult male controls and tested their olfactory sensitivity using the Alcohol Sniff Test (AST), a standardised clinical evaluation of olfactory detection. The AST involves varying the distance between subject and stimulus until an odour is barely detected. Participants with ASC also completed the Autism Spectrum Quotient (AQ) as a measure of autism traits. The ASC group detected the odour at a mean distance of 24.1 cm (SD =11.5) from the nose, compared to the control group, who detected it at a significantly shorter mean distance of 14.4 cm (SD =5.9). Detection distance was independent of age and IQ for both groups, but showed a significant positive correlation with autistic traits in the ASC group (r =0.522). This is the first experimental demonstration, as far as the authors are aware, of superior olfactory perception in ASC and showing that greater olfactory sensitivity is correlated with a higher number of autistic traits. This is consistent with results from previous findings showing hypersensitivity in other sensory domains and may help explain anecdotal and questionnaire accounts of heightened olfactory sensitivity in ASC. Results are discussed in terms of possible underlying neurophysiology.

  8. The olfactory gonadotropin-releasing hormone immunoreactive system in mouse.

    Science.gov (United States)

    Jennes, L

    1986-10-29

    The olfactory gonadotropin-releasing hormone (GnRH) system in mice was studied with immunofluorescence in combination with lesions of the olfactory bulb and retrograde transport of horseradish peroxidase (HRP) which was administered intravascularly, intranasally or into the subarachnoid space. GnRH-positive neurons were located in the two major branches forming the septal roots of the nervus terminalis, in the ganglion terminale, within the fascicles of the nervus terminalis throughout its extent, in a conspicuous band which connects the ventral neck of the caudal olfactory bulb with the accessory olfactory bulb and in the nasal mucosa. GnRH-positive fibers were seen in all areas in which neurons were found, i.e. in the rostral septum, the ganglion and nervus terminalis and in the nasal subepithelium. In addition, a broad bundle of fibers was observed to surround the entire caudal olfactory bulb, connecting the rostral sulcus rhinalis with the ventrocaudal olfactory bulb. Fibers were seen in close association with the main and accessory olfactory bulb, with the fila olfactoria and with the nasal mucosa. Throughout the olfactory bulb and the nasal epithelium, an association of GnRH fibers with blood vessels was apparent. Intravascular and intranasal injection of HRP resulted in labeling of certain GnRH neurons in the septal roots of the nervus terminalis, the ganglion terminale, the nervus terminalis, the caudal ventrodorsal connection and in the accessory olfactory bulb. After placement of HRP into the subarachnoid space dorsal to the accessory olfactory bulb, about 50% of the GnRH neurons in the accessory olfactory bulb and in the ventrodorsal connection were labeled with HRP. Also, a few GnRH neurons in the rostral septum, the ganglion terminale and in the fascicles of the nervus terminalis had taken up the enzyme. Lesions of the nervus terminalis caudal to the ganglion terminale resulted in sprouting of GnRH fibers at both sites of the knife cut. Lesions rostral

  9. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila

    Directory of Open Access Journals (Sweden)

    Liria Monica Masuda-Nakagawa

    2014-04-01

    Full Text Available Inhibition has a central role in defining the selectivity of the responses of higher order neurons to sensory stimuli. However, the circuit mechanisms of regulation of these responses by inhibitory neurons are still unclear. In Drosophila, the mushroom bodies (MBs are necessary for olfactory memory, and by implication for the selectivity of learned responses to specific odors. To understand the circuitry of inhibition in the calyx (the input dendritic region of the MBs, and its relationship with MB excitatory activity, we used the simple anatomy of the Drosophila larval olfactory system to identify any inhibitory inputs that could contribute to the selectivity of MB odor responses. We found that a single neuron accounts for all detectable GABA innervation in the calyx of the MBs, and that this neuron has presynaptic terminals in the calyx and postsynaptic branches in the MB lobes (output axonal area. We call this neuron the larval anterior paired lateral (APL neuron, because of its similarity to the previously described adult APL neuron. Reconstitution of GFP partners (GRASP suggests that the larval APL makes extensive contacts with the MB intrinsic neurons, Kenyon Cells (KCs, but few contacts with incoming projection neurons. Using calcium imaging of neuronal activity in live larvae, we show that the larval APL responds to odors, in a mannner that requires output from KCs. Our data suggest that the larval APL is the sole GABAergic neuron that innervates the MB input region and carries inhibitory feedback from the MB output region, consistent with a role in modulating the olfactory selectivity of MB neurons.

  10. Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory.

    Science.gov (United States)

    Sultan, S; Mandairon, N; Kermen, F; Garcia, S; Sacquet, J; Didier, A

    2010-07-01

    Inhibitory interneurons of the olfactory bulb are subjected to permanent adult neurogenesis. Their number is modulated by learning, suggesting that they could play a role in plastic changes of the bulbar network associated with olfactory memory. Adult male C57BL/6 mice were trained in an associative olfactory task, and we analyzed long-term retention of the task 5, 30, and 90 d post-training. In parallel, we assessed the fate of these newborn cells, mapped their distribution in the olfactory bulb and measured their functional implication using the immediate early gene Zif268. In a second set of experiments, we pharmacologically modulated glutamatergic transmission and using the same behavioral task assessed the consequences on memory retention and neurogenesis. Finally, by local infusion of an antimitotic drug, we selectively blocked neurogenesis during acquisition of the task and looked at the effects on memory retention. First we demonstrated that retrieval of an associative olfactory task recruits the newborn neurons in odor-specific areas of the olfactory bulb selected to survive during acquisition of the task and that it does this in a manner that depends on the strength of learning. We then demonstrated that acquisition is not dependent on neurogenesis if long-term retention of the task is abolished by blocking neurogenesis. Adult-born neurons are thus involved in changes in the neural representation of an odor; this underlies long-term olfactory memory as the strength of learning is linked to the duration of this memory. Neurogenesis thus plays a crucial role in long-term olfactory memory.

  11. Sensory Neuroanatomy of Parastrongyloides trichosuri, a Nematode Parasite of Mammals: Amphidial Neurons of the First-Stage Larva

    Science.gov (United States)

    Zhu, He; Li, Jian; Nolan, Thomas J.; Schad, Gerhard A.; Lok, James B.

    2011-01-01

    Owing to its ability to switch between free-living and parasitic modes of development, Parastrongyloides trichosuri represents a valuable model with which to study the evolution of parasitism among the nematodes, especially aspects pertaining to morphogenesis of infective third-stage larvae. In the free-living nematode Caenorhabditis elegans, developmental fates of third-stage larvae are determined in part by environmental cues received by chemosensory neurons in the amphidial sensillae. As a basis for comparative study, we have described the neuroanatomy of the amphidial sensillae of P. trichosuri. Using computational methods we incorporated serial electron micrographs into a three-dimensional reconstruction of the amphidial neurons of this parasite. Each amphid is innervated by 13 neurons, and the dendritic processes of 10 of these extend nearly to the amphidial pore. Dendritic processes of two specialized neurons leave the amphidial channel and terminate within invaginations of the sheath cell. One of these is similar to the finger cell of C. elegans, terminating in digitiform projections. The other projects a single cilium into the sheath cell. The dendritic process of a third specialized neuron terminates within the tight junction of the amphid. Each amphidial neuron was traced from the tip of its dendrite(s) to its cell body in the lateral ganglion. Positions of these cell bodies approximate those of morphologically similar amphidial neurons in Caenorhabditis elegans, so the standard nomenclature for amphidial neurons in C. elegans was adopted. A map of cell bodies within the lateral ganglion of P. trichosuri was prepared to facilitate functional study of these neurons. PMID:21456026

  12. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  13. Inhibition of GluR Current in Microvilli of Sensory Neurons via Na+-Microdomain Coupling Among GluR, HCN Channel, and Na+/K+ Pump

    Directory of Open Access Journals (Sweden)

    Yasuhiro Kawasaki

    2018-04-01

    Full Text Available Glutamatergic dendritic EPSPs evoked in cortical pyramidal neurons are depressed by activation of hyperpolarization-activated cyclic nucleotide-gated (HCN channels expressed in dendritic spines. This depression has been attributed to shunting effects of HCN current (Ih on input resistance or Ih deactivation. Primary sensory neurons in the rat mesencephalic trigeminal nucleus (MTN have the somata covered by spine-like microvilli that express HCN channels. In rat MTN neurons, we demonstrated that Ih enhancement apparently diminished the glutamate receptor (GluR current (IGluR evoked by puff application of glutamate/AMPA and enhanced a transient outward current following IGluR (OT-IGluR. This suggests that some outward current opposes inward IGluR. The IGluR inhibition displayed a U-shaped voltage-dependence with a minimal inhibition around the resting membrane potential, suggesting that simple shunting effects or deactivation of Ih cannot explain the U-shaped voltage-dependence. Confocal imaging of Na+ revealed that GluR activation caused an accumulation of Na+ in the microvilli, which can cause a negative shift of the reversal potential for Ih (Eh. Taken together, it was suggested that IGluR evoked in MTN neurons is opposed by a transient decrease or increase in standing inward or outward Ih, respectively, both of which can be caused by negative shifts of Eh, as consistent with the U-shaped voltage-dependence of the IGluR inhibition and the OT-IGluR generation. An electron-microscopic immunohistochemical study revealed the colocalization of HCN channels and glutamatergic synapses in microvilli of MTN neurons, which would provide a morphological basis for the functional interaction between HCN and GluR channels. Mathematical modeling eliminated the possibilities of the involvements of Ih deactivation and/or shunting effect and supported the negative shift of Eh which causes the U-shaped voltage-dependent inhibition of IGluR.

  14. Repeated touch and needle-prick stimulation in the neonatal period increases the baseline mechanical sensitivity and postinjury hypersensitivity of adult spinal sensory neurons.

    Science.gov (United States)

    van den Hoogen, Nynke J; Patijn, Jacob; Tibboel, Dick; Joosten, Bert A; Fitzgerald, Maria; Kwok, Charlie H T

    2018-03-08

    Noxious stimulation at critical stages of development has long-term consequences on somatosensory processing in later life, but it is not known whether this developmental plasticity is restricted to nociceptive pathways. Here, we investigate the effect of repeated neonatal noxious or innocuous hind paw stimulation on adult spinal dorsal horn cutaneous mechanical sensitivity. Neonatal Sprague-Dawley rats of both sexes received 4 unilateral left hind paw needle pricks (NPs, n = 13) or 4 tactile (cotton swab touch) stimuli, per day (TC, n = 11) for the first 7 days of life. Control pups were left undisturbed (n = 17). When adult (6-8 weeks), lumbar wide-dynamic-range neuron activity in laminae III-V was recorded using in vivo extracellular single-unit electrophysiology. Spike activity evoked by cutaneous dynamic tactile (brush), pinch and punctate (von Frey hair) stimulation, and plantar receptive field areas were recorded, at baseline and 2 and 5 days after left plantar hind paw incision. Baseline brush receptive fields, von Frey hair, and pinch sensitivity were significantly enhanced in adult NP and TC animals compared with undisturbed controls, although effects were greatest in NP rats. After incision, injury sensitivity of adult wide-dynamic-range neurons to both noxious and dynamic tactile hypersensitivity was significantly greater in NP animals compared with TC and undisturbed controls. We conclude that both repeated touch and needle-prick stimulation in the neonatal period can alter adult spinal sensory neuron sensitivity to both innocuous and noxious mechanical stimulation. Thus, spinal sensory circuits underlying touch and pain processing are shaped by a range of early-life somatosensory experiences.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  15. [3H]GABA uptake as a marker for cell type in primary cultures of cerebellum and olfactory bulb

    International Nuclear Information System (INIS)