WorldWideScience

Sample records for olfactory receptor 17-4

  1. Study of a synthetic human olfactory receptor 17-4: expression and purification from an inducible mammalian cell line.

    Science.gov (United States)

    Cook, Brian L; Ernberg, Karin E; Chung, Hyeyoun; Zhang, Shuguang

    2008-01-01

    In order to begin to study the structural and functional mechanisms of olfactory receptors, methods for milligram-scale purification are required. Here we demonstrate the production and expression of a synthetically engineered human olfactory receptor hOR17-4 gene in a stable tetracycline-inducible mammalian cell line (HEK293S). The olfactory receptor gene was fabricated from scratch using PCR-based gene-assembly, which facilitated codon optimization and attachment of a 9-residue bovine rhodopsin affinity tag for detection and purification. Induction of adherent cultures with tetracycline together with sodium butyrate led to hOR17-4 expression levels of approximately 30 microg per 150 mm tissue culture plate. Fos-choline-based detergents proved highly capable of extracting the receptors, and fos-choline-14 (N-tetradecylphosphocholine) was selected for optimal solubilization and subsequent purification. Analysis by SDS-PAGE revealed both monomeric and dimeric receptor forms, as well as higher MW oligomeric species. A two-step purification method of immunoaffinity and size exclusion chromatography was optimized which enabled 0.13 milligrams of hOR17-4 monomer to be obtained at >90% purity. This high purity of hOR17-4 is not only suitable for secondary structural and functional analyses but also for subsequent crystallization trials. Thus, this system demonstrates the feasibility of purifying milligram quantities of the GPCR membrane protein hOR17-4 for fabrication of olfactory receptor-based bionic sensing device.

  2. Study of a synthetic human olfactory receptor 17-4: expression and purification from an inducible mammalian cell line.

    Directory of Open Access Journals (Sweden)

    Brian L Cook

    Full Text Available In order to begin to study the structural and functional mechanisms of olfactory receptors, methods for milligram-scale purification are required. Here we demonstrate the production and expression of a synthetically engineered human olfactory receptor hOR17-4 gene in a stable tetracycline-inducible mammalian cell line (HEK293S. The olfactory receptor gene was fabricated from scratch using PCR-based gene-assembly, which facilitated codon optimization and attachment of a 9-residue bovine rhodopsin affinity tag for detection and purification. Induction of adherent cultures with tetracycline together with sodium butyrate led to hOR17-4 expression levels of approximately 30 microg per 150 mm tissue culture plate. Fos-choline-based detergents proved highly capable of extracting the receptors, and fos-choline-14 (N-tetradecylphosphocholine was selected for optimal solubilization and subsequent purification. Analysis by SDS-PAGE revealed both monomeric and dimeric receptor forms, as well as higher MW oligomeric species. A two-step purification method of immunoaffinity and size exclusion chromatography was optimized which enabled 0.13 milligrams of hOR17-4 monomer to be obtained at >90% purity. This high purity of hOR17-4 is not only suitable for secondary structural and functional analyses but also for subsequent crystallization trials. Thus, this system demonstrates the feasibility of purifying milligram quantities of the GPCR membrane protein hOR17-4 for fabrication of olfactory receptor-based bionic sensing device.

  3. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  4. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    Any living organism interacts with and responds specifically to environmental molecules by expressing specific olfactory receptors. This specificity will be first examined in causal terms with particular emphasis on the mechanisms controlling olfactory gene expression, cell-to-cell interactions...... and odor-decoding processes. However, this type of explanation does not entirely justify the role olfactory receptors have played during evolution, since they are also expressed ectopically in different organs and/or tissues. Homologous olfactory genes have in fact been found in such diverse cells and....../or organs as spermatozoa, testis and kidney where they are assumed to act as chemotactic sensors or renin modulators. To justify their functional diversity, homologous olfactory receptors are assumed to share the same basic role: that of conferring a self-identity to cells or tissues under varying...

  5. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    Any living organism interacts with and responds specifically to environmental molecules by expressing specific olfactory receptors. This specificity will be first examined in causal terms with particular emphasis on the mechanisms controlling olfactory gene expression, cell-to-cell interactions a...

  6. Olfactory receptors in non-chemosensory tissues

    Directory of Open Access Journals (Sweden)

    NaNa Kang & JaeHyung Koo*

    2012-11-01

    Full Text Available Olfactory receptors (ORs detect volatile chemicals that lead tothe initial perception of smell in the brain. The olfactory receptor(OR is the first protein that recognizes odorants in theolfactory signal pathway and it is present in over 1,000 genesin mice. It is also the largest member of the G protein-coupledreceptors (GPCRs. Most ORs are extensively expressed in thenasal olfactory epithelium where they perform the appropriatephysiological functions that fit their location. However, recentwhole-genome sequencing shows that ORs have been foundoutside of the olfactory system, suggesting that ORs may playan important role in the ectopic expression of non-chemosensorytissues. The ectopic expressions of ORs and their physiologicalfunctions have attracted more attention recently sinceMOR23 and testicular hOR17-4 have been found to be involvedin skeletal muscle development, regeneration, and humansperm chemotaxis, respectively. When identifying additionalexpression profiles and functions of ORs in non-olfactorytissues, there are limitations posed by the small number ofantibodies available for similar OR genes. This review presentsthe results of a research series that identifies ectopic expressionsand functions of ORs in non-chemosensory tissues toprovide insight into future research directions.

  7. Nanobiosensors based on individual olfactory receptors

    CERN Document Server

    Pajot-Augy, E

    2008-01-01

    In the SPOT-NOSED European project, nanoscale sensing elements bearing olfactory receptors and grafted onto functionalized gold substrates are used as odorant detectors to develop a new concept of nanobioelectronic nose, through sensitive impedancemetric measurement of single receptor conformational change upon ligand binding, with a better specificity and lower detection threshold than traditional physical sensors.

  8. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    Directory of Open Access Journals (Sweden)

    Christophe Verbeurgt

    Full Text Available Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems, containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men. Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were

  9. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    Science.gov (United States)

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins.

  10. Trace amine-associated receptors are olfactory receptors in vertebrates.

    Science.gov (United States)

    Liberles, Stephen D

    2009-07-01

    The mammalian nose is a powerful chemosensor, capable of detecting and distinguishing a myriad of chemicals. Sensory neurons in the olfactory epithelium contain two types of chemosensory G protein-coupled receptors (GPCRs): odorant receptors (ORs), which are encoded by the largest gene family in mammals, and trace amine-associated receptors (TAARs), a smaller family of receptors distantly related to biogenic amine receptors. Do TAARs play a specialized role in olfaction distinct from that of ORs? Genes encoding TAARs are found in diverse vertebrates, from fish to mice to humans. Like OR genes, each Taar gene defines a unique population of canonical sensory neurons dispersed in a single zone of the olfactory epithelium. Ligands for mouse TAARs include a number of volatile amines, several of which are natural constituents of mouse urine, a rich source of rodent social cues. One chemical, 2-phenylethylamine, is reported to be enriched in the urine of stressed animals, and two others, trimethylamine and isoamylamine, are enriched in male versus female urine. Furthermore, isoamylamine has been proposed to be a pheromone that induces puberty acceleration in young female mice. These data raise the possibility that some TAARs are pheromone receptors in the nose, a hypothesis consistent with recent data suggesting that the olfactory epithelium contains dedicated pheromone receptors, separate from pheromone receptors in the vomeronasal organ. Future experiments will clarify the roles of TAARs in olfaction.

  11. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  12. Localization of neurotrophin receptors in olfactory epithelium and bulb.

    Science.gov (United States)

    Deckner, M L; Frisén, J; Verge, V M; Hökfelt, T; Risling, M

    1993-12-13

    We used in situ hybridization to localize trk, trkB and trkC mRNA, in rat and cat olfactory bulb. Expression of mRNA encoding truncated trkB receptors was seen in all layers, while only very modest full-length trkB expression could be detected. trkC hybridization was seen in all layers, most dense in the mitral cell layer. The localization of full-length tyrosine kinase trkB receptor in olfactory bulb and epithelium was examined with immunohistochemistry. trkB-like immunoreactivity was seen in the fila olfactoria, epithelium and in vitro, in olfactory sensory neurones. Since BDNF is expressed by olfactory sensory neurone target cells in the olfactory bulb, these data suggest that BDNF may act as a target derived neurotrophic factor in the primary olfactory system.

  13. Comparison of the canine and human olfactory receptor gene repertoires

    NARCIS (Netherlands)

    Quignon, P; Kirkness, E; Cadieu, E; Touleimat, N; Guyon, R; Renier, C; Hitte, C; Andre, C; Fraser, C; Galibert, F

    2003-01-01

    Background: Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a

  14. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  15. Predicting olfactory receptor neuron responses from odorant structure

    Directory of Open Access Journals (Sweden)

    Hähnel Melanie

    2007-05-01

    Full Text Available Abstract Background Olfactory receptors work at the interface between the chemical world of volatile molecules and the perception of scent in the brain. Their main purpose is to translate chemical space into information that can be processed by neural circuits. Assuming that these receptors have evolved to cope with this task, the analysis of their coding strategy promises to yield valuable insight in how to encode chemical information in an efficient way. Results We mimicked olfactory coding by modeling responses of primary olfactory neurons to small molecules using a large set of physicochemical molecular descriptors and artificial neural networks. We then tested these models by recording in vivo receptor neuron responses to a new set of odorants and successfully predicted the responses of five out of seven receptor neurons. Correlation coefficients ranged from 0.66 to 0.85, demonstrating the applicability of our approach for the analysis of olfactory receptor activation data. The molecular descriptors that are best-suited for response prediction vary for different receptor neurons, implying that each receptor neuron detects a different aspect of chemical space. Finally, we demonstrate that receptor responses themselves can be used as descriptors in a predictive model of neuron activation. Conclusion The chemical meaning of molecular descriptors helps understand structure-response relationships for olfactory receptors and their "receptive fields". Moreover, it is possible to predict receptor neuron activation from chemical structure using machine-learning techniques, although this is still complicated by a lack of training data.

  16. Olfactory marker protein expression is an indicator of olfactory receptor-associated events in non-olfactory tissues.

    Directory of Open Access Journals (Sweden)

    NaNa Kang

    Full Text Available Olfactory receptor (OR-associated events are mediated by well-conserved components in the olfactory epithelium, including olfactory G-protein (Golf, adenylate cyclase III (ACIII, and olfactory marker protein (OMP. The expression of ORs has recently been observed in non-olfactory tissues where they are involved in monitoring extracellular chemical cues. The large number of OR genes and their sequence similarities illustrate the need to find an effective and simple way to detect non-olfactory OR-associated events. In addition, expression profiles and physiological functions of ORs in non-olfactory tissues are largely unknown. To overcome limitations associated with using OR as a target protein, this study used OMP with Golf and ACIII as targets to screen for potential OR-mediated sensing systems in non-olfactory tissues. Here, we show using western blotting, real-time PCR, and single as well as double immunoassays that ORs and OR-associated proteins are co-expressed in diverse tissues. The results of immunohistochemical analyses showed OMP (+ cells in mouse heart and in the following cells using the corresponding marker proteins c-kit, keratin 14, calcitonin, and GFAP in mouse tissues: interstitial cells of Cajal of the bladder, medullary thymic epithelial cells of the thymus, parafollicular cells of the thyroid, and Leydig cells of the testis. The expression of ORs in OMP (+ tissues was analyzed using a refined microarray analysis and validated with RT-PCR and real-time PCR. Three ORs (olfr544, olfr558, and olfr1386 were expressed in the OMP (+ cells of the bladder and thyroid as shown using a co-immunostaining method. Together, these results suggest that OMP is involved in the OR-mediated signal transduction cascade with olfactory canonical signaling components between the nervous and endocrine systems. The results further demonstrate that OMP immunohistochemical analysis is a useful tool for identifying expression of ORs, suggesting OMP

  17. The diversified function and potential therapy of ectopic olfactory receptors in non-olfactory tissues.

    Science.gov (United States)

    Chen, Zhe; Zhao, Hong; Fu, Nian; Chen, Linxi

    2017-03-24

    Olfactory receptors (ORs) are mainly distributed in olfactory neurons and play a key role in detecting volatile odorants, eventually resulting in the production of smell perception. Recently, it is also reported that ORs are expressed in non-olfactory tissues including heart, lung, sperm, skin, and cancerous tissues. Interestingly, ectopic ORs are associated with the development of diseases in non-olfactory tissues. For instance, ectopic ORs initiate the hypoxic ventilatory responses and maintain the oxygen homeostasis of breathing in the carotid body when oxygen levels decline. Ectopic ORs induce glucose homeostasis in diabetes. Ectopic ORs regulate systemic blood pressure by increasing renin secretion and vasodilation. Ectopic ORs participate in the process of tumor cell proliferation, apoptosis, metastasis, and invasiveness. Ectopic ORs accelerate the occurrence of obesity, angiogenesis and wound-healing processes. Ectopic ORs affect fetal hemoglobin levels in sickle cell anemia and thalassemia. Finally, we also elaborate some ligands targeting for ORs. Obviously, the diversified function and related signal pathway of ectopic ORs may play a potential therapeutic target in non-olfactory tissues. Thus, this review focuses on the latest research results about the diversified function and therapeutic potential of ectopic ORs in non-olfactory tissues. © 2017 Wiley Periodicals, Inc.

  18. Deep sequencing of the murine olfactory receptor neuron transcriptome.

    Directory of Open Access Journals (Sweden)

    Ninthujah Kanageswaran

    Full Text Available The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR and a multitude of accessory proteins within the olfactory epithelium (OE. ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS-sorted olfactory receptor neurons (ORNs obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.

  19. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    Directory of Open Access Journals (Sweden)

    Bryon Silva

    2015-01-01

    Full Text Available The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS, with an unconditioned stimulus (US. The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB, can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh receptors, while the US is encoded by biogenic amine (BA systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.

  20. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    Science.gov (United States)

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  1. Olfactory Ionotropic Receptors in Mosquito Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Chen, Qian; Man, Yahui; Li, Jianyong; Pei, Di; Wu, Wenjian

    2017-09-01

    Ionotropic glutamate receptors (iGluRs) are a conserved family of ligand-gated ion channels that primarily function to mediate neuronal communication at synapses. A variant subfamily of iGluRs, the ionotropic receptors (IRs), was recently identified in insects and proved with the function in odorant recognition. Ionotropic receptors participate in a distinct olfactory signaling pathway that is independent of olfactory receptors activity. In the present study, we identify 102 putative IR genes, dubbed as AalbIr genes, in mosquito Aedes albopictus (Skuse) by in silico comparative sequence analysis. Among AalbIr genes, 19 show expression in the female antenna by RT-PCR. These putative olfactory AalbIRs share four conservative hydrophobic domains of amino acids, similar to the transmembrane and ion channel pore regions found in conventional iGluRs. To determine the potential function of these olfactory AalbIRs in host-seeking, we compared their transcript expression levels in the antennae of blood-fed females with that of non-blood-fed females by quantitative real-time RT-PCR. Three AalbIr genes showed downregulation when the mosquito finished a bloodmeal. These results may help to improve our understanding of the IR-mediated olfactory signaling in mosquitoes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Insect olfactory receptors: contributions of molecular biology to chemical ecology.

    Science.gov (United States)

    Jacquin-Joly, Emmanuelle; Merlin, Christine

    2004-12-01

    Our understanding of the molecular basis of chemical signal recognition in insects has been greatly expanded by the recent discovery of olfactory receptors (Ors). Since the discovery of the complete repertoire of Drosophila melanogaster Ors, candidate Ors have been identified from at least 12 insect species from four orders (Coleoptera, Lepidoptera, Diptera, and Hymenoptera), including species of economic or medical importance. Although all Ors share the same G-protein coupled receptor structure with seven transmembrane domains, they present poor sequence homologies within and between species, and have been identified mainly through genomic data analyses. To date, D. melanogaster remains the only insect species where Ors have been extensively studied, from expression pattern establishment to functional investigations. These studies have confirmed several observations made in vertebrates: one Or type is selectively expressed in a subtype of olfactory receptor neurons, and one olfactory neuron expresses only one type of Or. In addition, all olfactory neurons expressing one Or type converge to the same glomerulus in the antennal lobe. The olfactory mechanism, thus, appears to be conserved between insects and vertebrates. Although Or functional studies are in their initial stages in insects (mainly Drosophila), insects appear to be good models to establish fundamental concepts of olfaction with the development of powerful genetic, imaging, and behavioral tools. This new field of study will greatly contribute to the understanding of insect chemical communication mechanisms, particularly with agricultural pests and disease vectors, and could result in future strategies to reduce their negative effects.

  3. Odorant-stimulated phosphoinositide signaling in mammalian olfactory receptor neurons

    Science.gov (United States)

    Klasen, K.; Corey, E.A.; Kuck, F.; Wetzel, C.H.; Hatt, H.; Ache, B.W.

    2009-01-01

    Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains of phospholipase Cδ1 (PLCδ1) and the general receptor of phosphoinositides (GRP1), to monitor PI activity in the dendritic knobs of ORNs in vivo. Odorants mobilized PI(4,5)P2/IP3 and PI(3,4,5)P3, the substrates and products of PLC and PI3K. We then measured odorant activation of PLC and PI3K in olfactory ciliary-enriched membranes in vitro using a phospholipid overlay assay and ELISAs. Odorants activated both PLC and PI3K in the olfactory cilia within 2 sec of odorant stimulation. Odorant-dependent activation of PLC and PI3K in the olfactory epithelium could be blocked by enzyme-specific inhibitors. Odorants activated PLC and PI3K with partially overlapping specificity. These results provide direct evidence that odorants indeed activate PI signaling in mammalian ORNs in a manner that is consistent with the idea that PI signaling plays a role in olfactory transduction. PMID:19781634

  4. Chromatin Modulatory Proteins and Olfactory Receptor Signaling in the Refinement and Maintenance of Fruitless Expression in Olfactory Receptor Neurons.

    Directory of Open Access Journals (Sweden)

    Catherine E Hueston

    2016-04-01

    Full Text Available During development, sensory neurons must choose identities that allow them to detect specific signals and connect with appropriate target neurons. Ultimately, these sensory neurons will successfully integrate into appropriate neural circuits to generate defined motor outputs, or behavior. This integration requires a developmental coordination between the identity of the neuron and the identity of the circuit. The mechanisms that underlie this coordination are currently unknown. Here, we describe two modes of regulation that coordinate the sensory identities of Drosophila melanogaster olfactory receptor neurons (ORNs involved in sex-specific behaviors with the sex-specific behavioral circuit identity marker fruitless (fru. The first mode involves a developmental program that coordinately restricts to appropriate ORNs the expression of fru and two olfactory receptors (Or47b and Ir84a involved in sex-specific behaviors. This regulation requires the chromatin modulatory protein Alhambra (Alh. The second mode relies on the signaling from the olfactory receptors through CamK and histone acetyl transferase p300/CBP to maintain ORN-specific fru expression. Our results highlight two feed-forward regulatory mechanisms with both developmentally hardwired and olfactory receptor activity-dependent components that establish and maintain fru expression in ORNs. Such a dual mechanism of fru regulation in ORNs might be a trait of neurons driving plastic aspects of sex-specific behaviors.

  5. Dual activities of odorants on olfactory and nuclear hormone receptors.

    Science.gov (United States)

    Pick, Horst; Etter, Sylvain; Baud, Olivia; Schmauder, Ralf; Bordoli, Lorenza; Schwede, Torsten; Vogel, Horst

    2009-10-30

    We have screened an odorant compound library and discovered molecules acting as chemical signals that specifically activate both G-protein-coupled olfactory receptors (ORs) on the cell surface of olfactory sensory neurons and the human nuclear estrogen receptor alpha (ER) involved in transcriptional regulation of cellular differentiation and proliferation in a wide variety of tissues. Hence, these apparent dual active odorants induce distinct signal transduction pathways at different subcellular localizations, which affect both neuronal signaling, resulting in odor perception, and the ER-dependent transcriptional control of specific genes. We demonstrate these effects using fluorescence-based in vitro and cellular assays. Among these odorants, we have identified synthetic sandalwood compounds, an important class of molecules used in the fragrance industry. For one estrogenic odorant we have also identified the cognate OR. This prompted us to compare basic molecular recognition principles of odorants on the two structurally and apparent functionally non-related receptors using computational modeling in combination with functional assays. Faced with the increasing evidence that ORs may perform chemosensory functions in a number of tissues outside of the nasal olfactory epithelium, the unraveling of these molecular ligand-receptor interaction principles is of critical importance. In addition the evidence that certain olfactory sensory neurons naturally co-express ORs and ERs may provide a direct functional link between the olfactory and hormonal systems in humans. Our results are therefore useful for defining the structural and functional characteristics of ER-specific odorants and the role of odorant molecules in cellular processes other than olfaction.

  6. Metabotropic glutamate receptor expression in olfactory receptor neurons from the channel catfish, Ictalurus punctatus.

    Science.gov (United States)

    Medler, K F; Tran, H N; Parker, J M; Caprio, J; Bruch, R C

    1998-04-01

    Metabotropic glutamate receptors (mGluRs) were identified in olfactory receptor neurons of the channel catfish, Ictalurus punctatus, by polymerase chain reaction. DNA sequence analysis confirmed the presence of two subtypes, mGluR1 and mGluR3, that were coexpressed with each other and with the putative odorant receptors within single olfactory receptor neurons. Immunocytochemical data showed that both mGluR subtypes were expressed in the apical dendrites and some cilia of olfactory neurons. Pharmacological analysis showed that antagonists to each mGluR subtype significantly decreased the electrophysiological response to odorant amino acids. alpha-Methyl-L-CCG1/(2S,3S,4S)-2-methyl-2-(carboxycyclopropyl++ +)glycine (MCCG), a known antagonist to mGluR3, and (S)-4-carboxyphenylglycine (S-4CPG), a specific antagonist to mGluR1, each significantly reduced olfactory receptor responses to L-glutamate. S-4CPG and MCCG reduced the glutamate response to 54% and 56% of control, respectively, which was significantly greater than their effect on a neutral amino acid odorant, methionine. These significant reductions of odorant response by the antagonists, taken with the expression of these receptors throughout the dendritic and ciliated portions of some olfactory receptor neurons, suggest that these mGluRs may be involved in olfactory reception and signal transduction.

  7. SNP genotypes of olfactory receptor genes associated with olfactory ability in German Shepherd dogs.

    Science.gov (United States)

    Yang, M; Geng, G-J; Zhang, W; Cui, L; Zhang, H-X; Zheng, J-L

    2016-04-01

    To find out the relationship between SNP genotypes of canine olfactory receptor genes and olfactory ability, 28 males and 20 females from German Shepherd dogs in police service were scored by odor detection tests and analyzed using the Beckman GenomeLab SNPstream. The representative 22 SNP loci from the exonic regions of 12 olfactory receptor genes were investigated, and three kinds of odor (human, ice drug and trinitrotoluene) were detected. The results showed that the SNP genotypes at the OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR2K2-like:c.518G>A, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A loci had a statistically significant effect on the scenting abilities (P dogs (P T, OR10H1-like:c.770A>T, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A (P dogs with genotype CC at the OR10H1-like:c.632C>T, genotype AA at the OR10H1-like:c.770A>T, genotype TT at the OR4C11-like:c.511T>G and genotype GG at the OR4C11-like:c.692G>A loci did better at detecting the ice drug. We concluded that there was linkage between certain SNP genotypes and the olfactory ability of dogs and that SNP genotypes might be useful in determining dogs' scenting potential.

  8. Loss of Olfactory Receptor Function in Hominin Evolution

    OpenAIRE

    Hughes, Graham M.; Teeling, Emma C.; Higgins, Desmond G.

    2014-01-01

    The mammalian sense of smell is governed by the largest gene family, which encodes the olfactory receptors (ORs). The gain and loss of OR genes is typically correlated with adaptations to various ecological niches. Modern humans have 853 OR genes but 55% of these have lost their function. Here we show evidence of additional OR loss of function in the Neanderthal and Denisovan hominin genomes using comparative genomic methodologies. Ten Neanderthal and 8 Denisovan ORs show evidence of loss of ...

  9. [Olfactory esthesioneuroblastoma: scintigraphic expression of somatostatin receptors].

    Science.gov (United States)

    García Vicente, A; García Del Castillo, E; Soriano Castrejón, A; Alonso Farto, J

    1999-10-01

    Esthesioneuroblastoma is an uncommon tumor originating in the upper nasal cavity and constitutes 3% of all intranasal neoplasms. Few references exist about the expression of somatostatin receptors in these tumors. Our case demonstrates a good correlation between the somatostatin receptor scintigraphy and magnetic resonance imaging.

  10. Penguins reduced olfactory receptor genes common to other waterbirds.

    Science.gov (United States)

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-08-16

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins.

  11. Inhibitory Odorant Signaling in Mammalian Olfactory Receptor Neurons

    Science.gov (United States)

    Corey, Elizabeth A.; Brunert, Daniela; Klasen, Katharina; Ache, Barry W.

    2010-01-01

    Odorants inhibit as well as excite olfactory receptor neurons (ORNs) in many species of animals. Cyclic nucleotide-dependent activation of canonical mammalian ORNs is well established but it is still unclear how odorants inhibit these cells. Here we further implicate phosphoinositide-3-kinase (PI3K), an indispensable element of PI signaling in many cellular processes, in olfactory transduction in rodent ORNs. We show that odorants rapidly and transiently activate PI3K in the olfactory cilia and in the olfactory epithelium in vitro. We implicate known G-protein–coupled isoforms of PI3K and show that they modulate not only the magnitude but also the onset kinetics of the electrophysiological response of ORNs to complex odorants. Finally, we show that the ability of a single odorant to inhibit another can be PI3K dependent. Our collective results provide compelling support for the idea that PI3K-dependent signaling mediates inhibitory odorant input to mammalian ORNs and at least in part contributes to the mixture suppression typically seen in the response of ORNs to complex natural odorants. PMID:20032232

  12. Neuropeptide S facilitates mice olfactory function through activation of cognate receptor-expressing neurons in the olfactory cortex.

    Directory of Open Access Journals (Sweden)

    Yu-Feng Shao

    Full Text Available Neuropeptide S (NPS is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR. High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v. injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir neurons that also bear NPSR. NPS (0.1-1 nmol i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val(5]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON, piriform cortex (Pir, ventral tenia tecta (VTT, the anterior cortical amygdaloid nucleus (ACo and lateral entorhinal cortex (LEnt. The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice.

  13. Molecular characterization of the Aphis gossypii olfactory receptor gene families.

    Directory of Open Access Journals (Sweden)

    Depan Cao

    Full Text Available The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs and ionotropic receptors (IRs, which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect.

  14. Beyond Modeling: All-Atom Olfactory Receptor Model Simulations

    Directory of Open Access Journals (Sweden)

    Peter C Lai

    2012-05-01

    Full Text Available Olfactory receptors (ORs are a type of GTP-binding protein-coupled receptor (GPCR. These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can validate experimental functional studies as well as generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level. Here we have shown the specific advantages of simulating the dynamic environment that is associated with OR-odorant interactions. We present a rigorous methodology that ranges from the creation of a computationally-derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.

  15. Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression

    Science.gov (United States)

    Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.

  16. Common peptides shed light on evolution of Olfactory Receptors

    Directory of Open Access Journals (Sweden)

    Lancet Doron

    2009-05-01

    Full Text Available Abstract Background Olfactory Receptors (ORs form the largest multigene family in vertebrates. Their evolution and their expansion in the vertebrate genomes was the subject of many studies. In this paper we apply a motif-based approach to this problem in order to uncover evolutionary characteristics. Results We extract deterministic motifs from ORs belonging to ten species using the MEX (Motif Extraction algorithm, thus defining Common Peptides (CPs characteristic to ORs. We identify species-specific CPs and show that their relative abundance is high only in fish and frog, suggesting relevance to water-soluble odorants. We estimate the origins of CPs according to the tree of life and track the gains and losses of CPs through evolution. We identify major CP gain in tetrapods and major losses in reptiles. Although the number of human ORs is less than half of the number of ORs in other mammals, the fraction of lost CPs is only 11%. By examining the positions of CPs along the OR sequence, we find two regions that expanded only in tetrapods. Using CPs we are able to establish remote homology relations between ORs and non-OR GPCRs. Selecting CPs according to their evolutionary age, we bicluster ORs and CPs for each species. Clean biclustering emerges when using relatively novel CPs. Evolutionary age is used to track the history of CP acquisition in the collection of mammalian OR families within HORDE (Human Olfactory Receptor Data Explorer. Conclusion The CP method provides a novel perspective that reveals interesting traits in the evolution of olfactory receptors. It is consistent with previous knowledge, and provides finer details. Using available phylogenetic trees, evolution can be rephrased in terms of CP origins. Supplementary information is also available at http://adios.tau.ac.il/ORPS

  17. Study of bioengineered zebra fish olfactory receptor 131-2: receptor purification and secondary structure analysis.

    Science.gov (United States)

    Leck, Kwong-Joo; Zhang, Shuguang; Hauser, Charlotte A E

    2010-11-25

    How fishes are able to detect trace molecules in large bodies of water is not understood. It is plausible that they use olfactory receptors to detect water-soluble compounds. How the zebra fish Danio Rerio, an organism with only 98 functional olfactory receptors, is able to selectively detect and recognize numerous compounds in water remains a puzzling phenomenon. We are interested in studying the biochemical and molecular mechanisms of olfaction in fish. Here, we report on the study of a bioengineered zebra fish olfactory receptor OR131-2, affinity-purified from a HEK293S tetracycline-inducible system. This receptor was expressed and translocated to the cell plasma membrane as revealed by confocal microscopy. Circular dichroism spectroscopy showed that the purified zebra fish receptor folded into an α-helical structure, as observed for other G-protein coupled receptors (GPCRs). Our study shows that it is possible to produce viable quantities of the zebra fish olfactory receptor. This will not only enable detailed structural and functional analyses, but also aid in the design of biosensor devices in order to detect water-soluble metabolites or its intermediates, which are associated with human health.

  18. Study of bioengineered zebra fish olfactory receptor 131-2: receptor purification and secondary structure analysis.

    Directory of Open Access Journals (Sweden)

    Kwong-Joo Leck

    Full Text Available How fishes are able to detect trace molecules in large bodies of water is not understood. It is plausible that they use olfactory receptors to detect water-soluble compounds. How the zebra fish Danio Rerio, an organism with only 98 functional olfactory receptors, is able to selectively detect and recognize numerous compounds in water remains a puzzling phenomenon. We are interested in studying the biochemical and molecular mechanisms of olfaction in fish. Here, we report on the study of a bioengineered zebra fish olfactory receptor OR131-2, affinity-purified from a HEK293S tetracycline-inducible system. This receptor was expressed and translocated to the cell plasma membrane as revealed by confocal microscopy. Circular dichroism spectroscopy showed that the purified zebra fish receptor folded into an α-helical structure, as observed for other G-protein coupled receptors (GPCRs. Our study shows that it is possible to produce viable quantities of the zebra fish olfactory receptor. This will not only enable detailed structural and functional analyses, but also aid in the design of biosensor devices in order to detect water-soluble metabolites or its intermediates, which are associated with human health.

  19. Ionic currents and ion channels of lobster olfactory receptor neurons

    OpenAIRE

    1989-01-01

    The role of the soma of spiny lobster olfactory receptor cells in generating odor-evoked electrical signals was investigated by studying the ion channels and macroscopic currents of the soma. Four ionic currents; a tetrodotoxin-sensitive Na+ current, a Ca++ current, a Ca(++)-activated K+ current, and a delayed rectifier K+ current, were isolated by application of specific blocking agents. The Na+ and Ca++ currents began to activate at -40 to -30 mV, while the K+ currents began to activate at ...

  20. Identification and functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory locust.

    Science.gov (United States)

    Wang, Zhifeng; Yang, Pengcheng; Chen, Dafeng; Jiang, Feng; Li, Yan; Wang, Xianhui; Kang, Le

    2015-11-01

    Locusts represent the excellent model of insect olfaction because the animals are equipped with an unusual olfactory system and display remarkable density-dependent olfactory plasticity. However, information regarding receptor molecules involved in the olfactory perception of locusts is very limited. On the basis of genome sequence and antennal transcriptome of the migratory locust, we conduct the identification and functional analysis of two olfactory receptor families: odorant receptors (ORs) and ionotropic receptors (IRs). In the migratory locust, there is an expansion of OR family (142 ORs) while distinctly lower number of IR genes (32 IRs) compared to the repertoires of other insects. The number of the locust OR genes is much less than that of glomeruli in antennal lobe, challenging the general principle of the "one glomerulus-one receptor" observed in other insects. Most OR genes are found in tandem arrays, forming two large lineage-specific subfamilies in the phylogenetic tree. The "divergent IR" subfamily displays a significant contraction, and most of the IRs belong to the "antennal IR" subfamily in the locust. Most ORs/IRs have olfactory-specific expression while some broadly- or internal-expressed members are also found. Differing from holometabolous insects, the migratory locust contains very similar expression profiles of ORs/IRs between nymph and adult stages. RNA interference and behavioral assays indicate that an OR-based signaling pathway, not IR-based, mediates the attraction of locusts to aggregation pheromones. These discoveries provide insights into the unusual olfactory system of locusts and enhance our understanding of the evolution of insect olfaction.

  1. Loss of olfactory receptor function in hominin evolution.

    Science.gov (United States)

    Hughes, Graham M; Teeling, Emma C; Higgins, Desmond G

    2014-01-01

    The mammalian sense of smell is governed by the largest gene family, which encodes the olfactory receptors (ORs). The gain and loss of OR genes is typically correlated with adaptations to various ecological niches. Modern humans have 853 OR genes but 55% of these have lost their function. Here we show evidence of additional OR loss of function in the Neanderthal and Denisovan hominin genomes using comparative genomic methodologies. Ten Neanderthal and 8 Denisovan ORs show evidence of loss of function that differ from the reference modern human OR genome. Some of these losses are also present in a subset of modern humans, while some are unique to each lineage. Morphological changes in the cranium of Neanderthals suggest different sensory arrangements to that of modern humans. We identify differences in functional olfactory receptor genes among modern humans, Neanderthals and Denisovans, suggesting varied loss of function across all three taxa and we highlight the utility of using genomic information to elucidate the sensory niches of extinct species.

  2. Loss of olfactory receptor function in hominin evolution.

    Directory of Open Access Journals (Sweden)

    Graham M Hughes

    Full Text Available The mammalian sense of smell is governed by the largest gene family, which encodes the olfactory receptors (ORs. The gain and loss of OR genes is typically correlated with adaptations to various ecological niches. Modern humans have 853 OR genes but 55% of these have lost their function. Here we show evidence of additional OR loss of function in the Neanderthal and Denisovan hominin genomes using comparative genomic methodologies. Ten Neanderthal and 8 Denisovan ORs show evidence of loss of function that differ from the reference modern human OR genome. Some of these losses are also present in a subset of modern humans, while some are unique to each lineage. Morphological changes in the cranium of Neanderthals suggest different sensory arrangements to that of modern humans. We identify differences in functional olfactory receptor genes among modern humans, Neanderthals and Denisovans, suggesting varied loss of function across all three taxa and we highlight the utility of using genomic information to elucidate the sensory niches of extinct species.

  3. Making scent of the presence and local translation of odorant receptor mRNAs in olfactory axons.

    Science.gov (United States)

    Dubacq, Caroline; Fouquet, Coralie; Trembleau, Alain

    2014-03-01

    Rodents contain in their genome more than 1000 functional odorant receptor genes, which are specifically expressed by the olfactory sensory neurons projecting from the olfactory epithelium to the olfactory bulb. Strong evidence for the presence and local translation of odorant receptor mRNAs in the axon of olfactory sensory neurons was obtained, but no function has been assigned to these axonal mRNAs yet. The aim of this review is to discuss the evidence for the presence and local translation of odorant receptor mRNAs in olfactory sensory axons, and to speculate on their possible function in the wiring of the mouse olfactory sensory projections.

  4. The mannose receptor is expressed by olfactory ensheathing cells in the rat olfactory bulb.

    Science.gov (United States)

    Carvalho, Litia A; Nobrega, Alberto F; Soares, Igor D P; Carvalho, Sergio L; Allodi, Silvana; Baetas-da-Cruz, Wagner; Cavalcante, Leny A

    2013-12-01

    Complex carbohydrate structures are essential molecules of infectious bacteria, parasites, and host cells and are involved in cell signaling associated with immune responses, glycoprotein homeostasis, and cell migration. The uptake of mannose-tailed glycans is usually carried out by professional phagocytes to trigger MHC class I- and MHC class II-restricted antigen presentation or, alternatively, to end inflammation. We have detected the mannose receptor (MR) in cultured olfactory ensheathing cells (OECs), so we investigated by flow cytometry whether recently dissociated cells of the olfactory bulb (OB) nerve fiber layer (ONL) could bind a mannosylated ligand (fluorescein conjugate of mannosyl bovine serum albumin; Man/BSA-FITC) in a specific manner. In addition, we estimated the relative proportion of ONL OECs, microglia, and astrocytes, tagged by 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), by the B4 isolectin of Griffonia simplicifonia (IB4), and by glial fibrillary acidic protein (GFAP), respectively, that were Man/BSA-FITC(+) . We also determined by histochemistry and/or immunohistochemistry whether Man/BSA-FITC or an anti-MR antibody (anti-C-terminal MR peptide; anti-cMR) labeled OECs and/or parenchymal microglia. In addition, we confirmed by Western blot with the K1K2 (against the entire MR molecule) antibody that a band of about 180 kDA is expressed in the OB. Our findings are compatible with a prospective sentinel role of OECs against pathogens of the upper airways and/or damage-associated glycidic patterns as well as with homeostasis of OB mannosylated glycoproteins. Copyright © 2013 Wiley Periodicals, Inc.

  5. Degeneration patterns of the olfactory receptor genes in sea snakes.

    Science.gov (United States)

    Kishida, T; Hikida, T

    2010-02-01

    The sense of smell relies on the diversity of olfactory receptor (OR) repertoires in vertebrates. It has been hypothesized that different types of ORs are required in terrestrial and marine environments. Here we show that viviparous sea snakes, which do not rely on a terrestrial environment, have significantly lost ORs compared with their terrestrial relatives, supporting the hypothesis. On the other hand, oviparous sea snakes, which rely on a terrestrial environment for laying eggs, still maintain their ORs, reflecting the importance of the terrestrial environment for them. Furthermore, we found one Colubroidea snake (including sea snakes and their terrestrial relatives)-specific OR subfamily which had diverged widely during snake evolution after the blind snake-Colubroidea snake split. Interestingly, no pseudogenes are included in this subfamily in sea snakes, and this subfamily seems to have been expanding rapidly even in an underwater environment. These findings suggest that the Colubroidea-specific ORs detect nonvolatile odorants.

  6. Olfactory receptor gene family evolution in stickleback and medaka fishes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Interaction of olfactory receptor (OR) genes with environmental odors is regarded as the first step of olfaction.In this study,OR genes of two fish,medaka (Oryzias latipes) and stickleback (Gasterosteus aculeatus),were identified and an evolutional analysis was conducted.The selection pressure of different TM regions and complete coding region were compared.Three TM regions (TM4,TM5 and TM6) were found to have higher average Ka/Ks values,which might be partly caused by positive selection as suggested by subsequent positive selection analysis.Further analysis showed that many PTSs overlap,or are adjacent to previously deduced binding sites in mammals.These results support the hypothesis that binding sites of fish OR genes may evolved under positive selection.

  7. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  8. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  9. Olfactory receptor and neural pathway responsible for highly selective sensing of musk odors.

    Science.gov (United States)

    Shirasu, Mika; Yoshikawa, Keiichi; Takai, Yoshiki; Nakashima, Ai; Takeuchi, Haruki; Sakano, Hitoshi; Touhara, Kazushige

    2014-01-01

    Musk odorants are used widely in cosmetic industries because of their fascinating animalic scent. However, how this aroma is perceived in the mammalian olfactory system remains a great mystery. Here, we show that muscone, one musk odor secreted by various animals from stink glands, activates a few glomeruli clustered in a neuroanatomically unique anteromedial olfactory bulb. The muscone-responsive glomeruli are highly specific to macrocyclic ketones; interestingly, other synthetic musk odorants with nitro or polycyclic moieties or ester bonds activate distinct but nearby glomeruli. Anterodorsal bulbar lesions cause muscone anosmia, suggesting that this region is involved in muscone perception. Finally, we identified the mouse olfactory receptor, MOR215-1, that was a specific muscone receptor expressed by neurons innervating the muscone-responsive anteromedial glomeruli and also the human muscone receptor, OR5AN1. The current study documents the olfactory neural pathway in mice that senses and transmits musk signals from receptor to brain.

  10. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening.

    Science.gov (United States)

    Harini, K; Sowdhamini, Ramanathan

    2015-01-01

    Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors.

  11. Designing exons for human olfactory receptor gene subfamilies using a mathematical paradigm

    Indian Academy of Sciences (India)

    Sk Sarif Hassan; Pabitra Pal Choudhury; Amita Pal; R L Brahmachary; Arunava Goswami

    2010-09-01

    Ligands for only two human olfactory receptors are known. One of them, OR1D2, binds to Bourgeonal, a volatile chemical constituent of the fragrance of the mythical flower, Lily of the valley or Our Lady’s tears, Convallaria majalis (also the national flower of Finland). OR1D2, OR1D4 and OR1D5 are three full-length olfactory receptors present in an olfactory locus in the human genome. These receptors are more than 80% identical in DNA sequences and have 108 base pair mismatches among them. Apparently, these mismatch positions show no striking pattern using computer pattern recognition tools. In an attempt to find a mathematical rule in those mismatches, we find that an L-system generated sequence can be inserted into the OR1D2 subfamily-specific star model and novel full-length olfactory receptors can be generated. This remarkable mathematical principle could be utilized for making new subfamily olfactory receptor members from any olfactory receptor subfamily. The aroma and electronic nose industry might utilize this rule in future.

  12. fMRI study of the role of glutamate NMDA receptor in the olfactory adaptation in rats: Insights into cellular and molecular mechanisms of olfactory adaptation.

    Science.gov (United States)

    Zhao, Fuqiang; Wang, Xiaohai; Zariwala, Hatim A; Uslaner, Jason M; Houghton, Andrea K; Evelhoch, Jeffrey L; Hostetler, Eric; Winkelmann, Christopher T; Hines, Catherine D G

    2017-02-03

    Olfactory adaptation, characterized by attenuation of response to repeated odor stimulations or continuous odor exposure, is an intrinsic feature of olfactory processing. Adaptation can be induced by either "synaptic depression" due to depletion of neurotransmitters, or "enhanced inhibition" onto principle neurons by local inhibitory interneurons in olfactory structures. It is not clear which mechanism plays a major role in olfactory adaptation. More importantly, molecular sources of enhanced inhibition have not been identified. In this study, olfactory responses to either repeated 40-s stimulations with interstimulus intervals (ISI) of 140-s or 30-min, or a single prolonged 200-s stimulus were measured by fMRI in different naïve rats. Olfactory adaptations in the olfactory bulb (OB), anterior olfactory nucleus (AON), and piriform cortex (PC) were observed only with repeated 40-s odor stimulations, and no olfactory adaptations were detected during the prolonged 200-s stimulation. Interestingly, in responses to repeated 40-s odor stimulations in the PC, the first odor stimulation induced positive activations, and odor stimulations under adapted condition induced negative activations. The negative activations suggest that "sparse coding" and "global inhibition" are the characteristics of olfactory processing in PC, and the global inhibition manifests only under an adapted condition, not a naïve condition. Further, we found that these adaptations were NMDA receptor dependent; an NMDA receptor antagonist (MK801) blocked the adaptations. Based on the mechanism that glutamate NMDA receptor plays a role in the inhibition onto principle neurons by interneurons, our data suggest that the olfactory adaptations are caused by enhanced inhibition from interneurons. Combined with the necessity of the interruption of odor stimulation to observe the adaptations, the molecular source for the enhanced inhibition is most likely an increased glutamate release from presynaptic

  13. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems.

    Directory of Open Access Journals (Sweden)

    Karolina Corin

    Full Text Available A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.

  14. CHARACTERIZATION OF THE OLFACTORY RECEPTORS EXPRESSED IN HUMAN SPERMATOZOA

    Directory of Open Access Journals (Sweden)

    Caroline eFlegel

    2016-01-01

    Full Text Available The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicated that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa and demonstrates that ORs are involved in the physiological processes.

  15. Cloning and localization of two multigene receptor families in goldfish olfactory epithelium

    Science.gov (United States)

    Cao, Yanxiang; Oh, Bryan C.; Stryer, Lubert

    1998-01-01

    Goldfish reproduction is coordinated by pheromones that are released by ovulating females and detected by males. Two highly potent pheromones, a dihydroxyprogesterone and a prostaglandin, previously have been identified, and their effects on goldfish behavior have been studied in depth. We have cloned goldfish olfactory epithelium cDNAs belonging to two multigene G-protein coupled receptor families as a step toward elucidating the molecular basis of pheromone recognition. One gene family (GFA) consists of homologs of putative odorant receptors (≈320 residues) found in the olfactory epithelium of other fish and mammals. The other family (GFB) consists of homologs of putative pheromone receptors found in the vomeronasal organ (VNO) of mammals and also in the nose of pufferfish. GFB receptors (≈840 residues) are akin to the V2R family of VNO receptors, which possess a large extracellular N-terminal domain and are homologs of calcium-sensing and metabotropic glutamate receptors. In situ hybridization showed that the two families of goldfish receptors are differentially expressed in the olfactory epithelium. GFB mRNA is abundant in rather compact cells whose nuclei are near the apical surface. In contrast, GFA mRNA is found in elongated cells whose nuclei are positioned deeper in the epithelium. Our findings support the hypothesis that the separate olfactory organ and VNO of terrestrial vertebrates arose in evolution by the segregation of distinct classes of neurons that were differentially positioned in the olfactory epithelium of a precursor aquatic vertebrate. PMID:9751777

  16. The human olfactory receptor 17-40: requisites for fitting into the binding pocket.

    Science.gov (United States)

    Anselmi, Cecilia; Buonocore, Anna; Centini, Marisanna; Facino, Roberto Maffei; Hatt, Hanns

    2011-06-01

    To gain structural insight on the interactions between odorants and the human olfactory receptor, we did homology modelling of the receptor structure, followed by molecular docking simulation with ligands. Molecular dynamics simulation on the structures resulting from docking served to estimate the binding free energy of the various odorant families. A correlation with the odorous properties of the ligands is proposed. We also investigated which residues were involved in the binding of a set of properly synthesised ligands and which were required for fitting inside the binding pocket. Olfactive stimulation of the olfactory receptor with odorous molecules was also investigated, using calcium imaging or electrophysiological recordings.

  17. High-affinity olfactory receptor for the death-associated odor cadaverine.

    Science.gov (United States)

    Hussain, Ashiq; Saraiva, Luis R; Ferrero, David M; Ahuja, Gaurav; Krishna, Venkatesh S; Liberles, Stephen D; Korsching, Sigrun I

    2013-11-26

    Carrion smell is strongly repugnant to humans and triggers distinct innate behaviors in many other species. This smell is mainly carried by two small aliphatic diamines, putrescine and cadaverine, which are generated by bacterial decarboxylation of the basic amino acids ornithine and lysine. Depending on the species, these diamines may also serve as feeding attractants, oviposition attractants, or social cues. Behavioral responses to diamines have not been investigated in zebrafish, a powerful model system for studying vertebrate olfaction. Furthermore, olfactory receptors that detect cadaverine and putrescine have not been identified in any species so far. Here, we show robust olfactory-mediated avoidance behavior of zebrafish to cadaverine and related diamines, and concomitant activation of sparse olfactory sensory neurons by these diamines. The large majority of neurons activated by low concentrations of cadaverine expresses a particular olfactory receptor, trace amine-associated receptor 13c (TAAR13c). Structure-activity analysis indicates TAAR13c to be a general diamine sensor, with pronounced selectivity for odd chains of medium length. This receptor can also be activated by decaying fish extracts, a physiologically relevant source of diamines. The identification of a sensitive zebrafish olfactory receptor for these diamines provides a molecular basis for studying neural circuits connecting sensation, perception, and innate behavior.

  18. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha;

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen....... Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus....... In comparison, GR(+/-) mice had increased 5-HT(4) receptor (11%) binding in the caudal caudate putamen and decreased 5-HTT binding in the frontal caudate putamen but no changes in dorsal and ventral hippocampus. Post hoc analysis showed increased 5-HT(4) receptor binding in the olfactory tubercles of GR...

  19. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Kirkegaard, Lisbeth; Zueger, Maha;

    2010-01-01

    The 5-HT(4) receptor is a new potential target for antidepressant treatment and may be implicated in the pathogenesis of depression. This study investigated differences in 5-HT(4) receptor and 5-HT transporter (5-HTT) binding by quantitative autoradiography of [(3)H]SB207145 and (S)-[N-methyl-(3)H......]citalopram in two murine models of depression-related states, olfactory bulbectomy and glucocorticoid receptor heterozygous (GR(+/-)) mice. The olfactory bulbectomy model is characterized by 5-HT system changes, while the GR(+/-) mice have a deficit in hypothalamic-pituitary-adrenal (HPA) system control....... The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen...

  20. Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Rico Tabor

    Full Text Available Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca(2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1 interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2 interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3 AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4 ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb.

  1. Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications.

    Science.gov (United States)

    Nowotny, Thomas; de Bruyne, Marien; Berna, Amalia Z; Warr, Coral G; Trowell, Stephen C

    2014-10-14

    Olfactory receptors evolved to provide animals with ecologically and behaviourally relevant information. The resulting extreme sensitivity and discrimination has proven useful to humans, who have therefore co-opted some animals' sense of smell. One aim of machine olfaction research is to replace the use of animal noses and one avenue of such research aims to incorporate olfactory receptors into artificial noses. Here, we investigate how well the olfactory receptors of the fruit fly, Drosophila melanogaster, perform in classifying volatile odourants that they would not normally encounter. We collected a large number of in vivo recordings from individual Drosophila olfactory receptor neurons in response to an ecologically relevant set of 36 chemicals related to wine ('wine set') and an ecologically irrelevant set of 35 chemicals related to chemical hazards ('industrial set'), each chemical at a single concentration. Resampled response sets were used to classify the chemicals against all others within each set, using a standard linear support vector machine classifier and a wrapper approach. Drosophila receptors appear highly capable of distinguishing chemicals that they have not evolved to process. In contrast to previous work with metal oxide sensors, Drosophila receptors achieved the best recognition accuracy if the outputs of all 20 receptor types were used.

  2. Oligomerisation of C. elegans Olfactory Receptors, ODR-10 and STR-112, in Yeast

    KAUST Repository

    Tehseen, Muhammad

    2014-09-25

    It is widely accepted that vertebrate G-Protein Coupled Receptors (GPCRs) associate with each other as homo- or hetero-dimers or higher-order oligomers. The C. elegans genome encodes hundreds of olfactory GPCRs, which may be expressed in fewer than a dozen chemosensory neurons, suggesting an opportunity for oligomerisation. Here we show, using three independent lines of evidence: co-immunoprecipitation, bioluminescence resonance energy transfer and a yeast two-hybrid assay that nematode olfactory receptors (ORs) oligomerise when heterologously expressed in yeast. Specifically, the nematode receptor ODR-10 is able to homo-oligomerise and can also form heteromers with the related nematode receptor STR-112. ODR-10 also oligomerised with the rat I7 OR but did not oligomerise with the human somatostatin receptor 5, a neuropeptide receptor. In this study, the question of functional relevance was not addressed and remains to be investigated.

  3. High-affinity olfactory receptor for the death-associated odor cadaverine

    OpenAIRE

    2013-01-01

    Cadaverine and putrescine, two diamines emanating from decaying flesh, are strongly repulsive odors to humans but serve as innate attractive or social cues in other species. Here we show that zebrafish, a vertebrate model system, exhibit powerful and innate avoidance behavior to both diamines, and identify a high-affinity olfactory receptor for cadaverine.

  4. A novel brain receptor is expressed in a distinct population of olfactory sensory neurons

    NARCIS (Netherlands)

    Conzelmann, S; Levai, O; Bode, B; Eisel, U; Raming, K; Breer, H; Strotmann, J

    2000-01-01

    Three novel G-protein-coupled receptor genes related to the previously described RA1c gene have been isolated from the mouse genome. Expression of these genes has been detected in distinct areas of the brain and also in the olfactory epithelium of the nose. Developmental studies revealed a different

  5. X-ray fluorescence microscopy of olfactory receptor neurons

    Energy Technology Data Exchange (ETDEWEB)

    Ducic, T; Herbst, J; Novakova, E; Salditt, T [Institute for X-ray Physics, Georg-August-University, Friedrich-Hund-Pl. 1, 37077 Goettingen (Germany); Breunig, E; Schild, D [Department of Molecular Neurophysiology, Georg-August University Goettingen (Germany); Susini, J; Tucoulu, R, E-mail: tducic@gwdg.d [European Synchrotron Radiation Facility ESRF, 6 rue Jules Horowitz, 38043 Grenoble (France)

    2009-09-01

    We report a x-ray fluorescence microscopy study of cells and tissues from the olfactory system of Xenopus laevis. In this experiment we focus on sample preparation and experimental issues, and present first results of fluorescence maps of the elemental distribution of Cl, K, Ca, P, S and Na both in individual isolated neural cells and in cross-sections of the same tissue.

  6. Southern pine beetle: Olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin

    Energy Technology Data Exchange (ETDEWEB)

    Payne, T.L.; Berisford, C.W.; Blum, M.S.; Dickens, J.C.; Hedden, R.L.; Mori, K.; Richerson, J.V.; Vite, J.P.; West, J.R.

    1982-05-01

    In a laboratory and field bioassays, the response of Dendroctonus frontalis was significantly greater to the mixture of (1S,55R)-(-)-frontalin and alpha-pinene than to (1R,5S)-(+)-frontalin and alpha-pinene. Electrophysiologrical studies revealed that antennal olfactory receptor cells were significantly more responsive to (1S,5R)-(-)-frontalin than to 1R,5S)-(+) -frontalin. Both enanitiomers stimulated the same olfactory cells which suggests that each cell possesses at least two types of enanitomer-specific acceptors.

  7. Comparison of the fraction of olfactory receptor pseudogenes in wolf (Canis lupus) with domestic dog (Canis fatniliaris)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-hai; WEI Qin-guo; ZHANG Huan-xin; CHEN Lei

    2011-01-01

    Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates. Dogs and wolves, like many other mammals, have a highly developed capability to detect and identify odorant molecules, even at minimum concentrations. In this study, the olfactory receptor repertoire from domestic dog and its closest relative,the wolf, were sequenced to estimate the fraction of pseudogenes in each subspecies. The fraction of disrupted olfactory receptor genes in dog was 17.78%, whereas, that in wolf was 12.08%. As expected the dog was less dependent on olfaction than the wolf, and the dog had more olfactory receptor pseudogenes. However, the observed difference between the two subspecies was not at the significant level (x2 = 1.388, p = 0.239 > 0.05).The values indicated that although domestication might play a role in the reduction of OR genes, it could not be concluded that the living environment provided by domestication lead to a significant reduction of the functional olfactory receptor repertoire. Furthermore, the purpose of domestication may also have influence on the ratio of functional olfactory receptor genes reduction.

  8. 嗅觉受体基因和蛋白的研究进展%Research progress on olfactory receptor

    Institute of Scientific and Technical Information of China (English)

    彭鹤; 赵鲁杭

    2012-01-01

    The olfactory perception is the process that the olfactory receptor is activated by odorous molecules, which induce the transduction of signal in the cell and the chemical information is transduced into electrical impulses. After the changed signal is transmitted to the brain,the whole perception process completes. OR gene belongs to the multigene family. The coded olfactory receptor proteins belong to the G-protein-coupled receptor ( GPCR) superfamily and therefore are invariably seven-transmembrane domain(7TM) protein. Olfactory receptor protein plays an important role in olfactory perception and signal transduction process.%嗅觉感知的起始是由嗅觉受体( olfactory receptor,OR)被气味分子激活,引起细胞内的信号转导,将气味的化学信号转变成电信号,传到更高的脑部结构,完成气味感知.OR基因属于多基因家族,编码的嗅觉受体蛋白(olfactory receptor protein)属于G-蛋白偶联受体超家族,有7个跨膜区域.嗅觉受体蛋白在嗅觉识别气味及信号传导过程中起着重要的作用.

  9. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Derya R Shimshek

    2005-11-01

    Full Text Available Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q, both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic" among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.

  10. Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors

    Science.gov (United States)

    Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.

    2015-01-01

    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447

  11. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation.

    Science.gov (United States)

    Clowney, E Josephine; Magklara, Angeliki; Colquitt, Bradley M; Pathak, Nidhi; Lane, Robert P; Lomvardas, Stavros

    2011-08-01

    The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of "genomic contrast" in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell.

  12. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    Science.gov (United States)

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372

  13. [The 2004 Nobel Prize for Physiology or Medicine for research into smell receptors and the organization of the olfactory system].

    Science.gov (United States)

    Burbach, J P H

    2004-12-25

    The 2004 Nobel Prize for Physiology or Medicine has been awarded to Richard Axel and Linda B. Buck, for their discovery of smell receptors and the organisation of the olfactory system. Their original discovery concerned the identification of some 1000 genes that code for smell receptors in the olfactory epithelium of the rat. They also demonstrated that each receptor can only be activated by a limited number of odourants and that there is some overlap in specificity with other smell receptors. Odourants in inhaled air are specifically recognized and bound by the smell receptors on the olfactory neurones in the nasal epithelium. The activated neurones send an electrical signal to the mitral cells, the dendrites of which lie in the glomeruli of the olfactory bulb. In each olfactory neuron only one smell receptor gene is expressed. Neurones with the same type of receptor are spread throughout the epithelium but converge in the same glomerulus. An olfactory map is formed by means of mitral-cell projections which run to the cerebral cortex as well as to other parts of the brain. Possibly the information gained about odourants will be applied in the areas of physiology and pathophysiology; in the field of pharmacology for example where odourants may be used in the treatment of disorders of fertility, behaviour or mood.

  14. Expression of ionotropic receptors in terrestrial hermit crab’s olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Katrin Christine Groh-Lunow

    2015-02-01

    Full Text Available Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.

  15. Expression of CD36 by Olfactory Receptor Cells and Its Abundance on the Epithelial Surface in Mice.

    Directory of Open Access Journals (Sweden)

    Shinhye Lee

    Full Text Available CD36 is a transmembrane protein that is involved in the recognition of certain amphiphilic molecules such as polar lipids in various tissues and body fluids. So far, CD36 homologues in insects have been demonstrated to be present on the surface of olfactory dendrites and to participate in the perception of exogenous compounds. However, little is known about the relationship between CD36 and mammalian olfaction. Indeed, the detection of only CD36 mRNA in the mouse olfactory epithelium has been reported to date. In the present study, to provide potential pieces of evidence for the involvement of CD36 in mammalian olfactory perception, we extensively investigated the localisation of this protein in the mouse olfactory mucosa. In situ hybridisation analysis using antisense oligonucleotides to CD36 mRNA detected aggregated signals within the deeper epithelial layer of olfactory mucosa. The mRNA signals were also detected consistently in the superficial layer of the olfactory epithelium, which is occupied by supporting cells. Immunostaining with an anti-CD36 polyclonal antibody revealed that CD36 localises in the somata and dendrites of distinct olfactory receptor cells and that it occurs abundantly on the olfactory epithelial surface. However, immunoreactive CD36 was rarely detectable in the nerve bundles running in the lamina propria of olfactory mucosa, the axons forming the olfactory nerve layer in the outermost layer of the bulb and axon terminals in the glomeruli. We also obtained electron microscopic evidence for the association of CD36 protein with olfactory cilia. Altogether, we suggest that CD36 plays a role in the mammalian olfaction. In addition, signals for CD36 protein were also detected on or around the microvilli of olfactory supporting cells and the cilia of nasal respiratory epithelium, suggesting a role for this protein other than olfaction in the nasal cavity.

  16. A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors.

    Science.gov (United States)

    Son, Manki; Kim, Daesan; Ko, Hwi Jin; Hong, Seunghun; Park, Tai Hyun

    2017-01-15

    A multiplexed bioelectronic sensor was developed for the purpose of rapid, on-site, and simultaneous detection of various target molecules. Olfactory and taste receptors were produced in Escherichia coli, and the reconstituted receptors were immobilized onto a multi-channel type carbon nanotube field-effect transistor. This device mimicked the human olfactory/taste system and simultaneously measured the conductance changes with high sensitivity and selectivity following treatment with various odor and taste molecules commonly known to be indicators of food contamination. Various pattern recognition of odorants and tastants was available with a customized platform for the simultaneous measurement of electrical signals. The simple portable bioelectronic device was suitable for efficient monitoring of food freshness and is expected to be used as a rapid on-site sensing platform with various applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Gated currents in isolated olfactory receptor neurons of the larval tiger salamander.

    OpenAIRE

    Firestein, S; Werblin, F S

    1987-01-01

    The electrical properties of enzymatically isolated olfactory receptor cells were studied with whole-cell patch clamp. Voltage-dependent currents could be separated into three ionic components: a transient inward sodium current, a sustained inward calcium current, and an outward potassium current. Three components of the outward current could be identified by their gating and kinetics: a calcium-dependent potassium current [IK(Ca)], a voltage-dependent potassium current [IK(V)], and a transie...

  18. PI3Kγ-Dependent Signaling in Mouse Olfactory Receptor Neurons

    Science.gov (United States)

    Klasen, Katharina; Corey, Elizabeth A.; Ache, Barry W.

    2010-01-01

    Phosphatidylinositol 3-kinase (PI3K)-dependent signaling couples to receptors for many different ligands in diverse cellular systems. Recent findings suggest that PI3K-dependent signaling also mediates inhibition of odorant responses in rat olfactory receptor neurons (ORNs). Here, we present evidence that murine ORNs show PI3K-dependent calcium responses to odorant stimulation, they express 2 G protein-coupled receptor (GPCR)-activated isoforms of PI3K, PI3Kβ and PI3Kγ, and they exhibit odorant-induced PI3K activity. These findings support our use of a transgenic mouse model to begin to investigate the mechanisms underlying PI3K-mediated inhibition of odorant responses in mammalian ORNs. Mice deficient in PI3Kγ, a class IB PI3K that is activated via GPCRs, lack detectable odorant-induced PI3K activity in their olfactory epithelium and their ORNs are less sensitive to PI3K inhibition. We conclude that odorant-dependent PI3K signaling generalizes to the murine olfactory system and that PI3Kγ plays a role in mediating inhibition of odorant responses in mammalian ORNs. PMID:20190008

  19. Efficient olfactory coding in the pheromone receptor neuron of a moth.

    Science.gov (United States)

    Kostal, Lubomir; Lansky, Petr; Rospars, Jean-Pierre

    2008-04-25

    The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g., the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course, and the intermittency, are in good agreement with those measured experimentally in the field. These results should stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and on the plume characteristics that are most informative for the 'sniffer'. Both aspects are relevant to the design of olfactory sensors for odour-tracking robots.

  20. Efficient olfactory coding in the pheromone receptor neuron of a moth.

    Directory of Open Access Journals (Sweden)

    Lubomir Kostal

    2008-04-01

    Full Text Available The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g., the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course, and the intermittency, are in good agreement with those measured experimentally in the field. These results should stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and on the plume characteristics that are most informative for the 'sniffer'. Both aspects are relevant to the design of olfactory sensors for odour-tracking robots.

  1. Olfactory receptor genes cooperate with protocadherin genes in human extreme obesity.

    Science.gov (United States)

    Mariman, Edwin C M; Szklarczyk, Radek; Bouwman, Freek G; Aller, Erik E J G; van Baak, Marleen A; Wang, Ping

    2015-07-01

    Worldwide, the incidence of obesity has increased dramatically over the past decades. More knowledge about the complex etiology of obesity is needed in order to find additional approaches for treatment and prevention. Investigating the exome sequencing data of 30 extremely obese subjects (BMI 45-65 kg/m(2)) shows that predicted damaging missense variants in olfactory receptor genes on chromosome 1q and rare predicted damaging variants in the protocadherin (PCDH) beta-cluster genes on chromosome 5q31, reported in our previous work, co-localize in subjects with extreme obesity. This implies a synergistic effect between genetic variation in these gene clusters in the predisposition to extreme obesity. Evidence for a general involvement of the olfactory transduction pathway on itself could not be found. Bioinformatic analysis indicates a specific involvement of the PCDH beta-cluster genes in controlling tissue development. Further mechanistic insight needs to await the identification of the ligands of the 1q olfactory receptors. Eventually, this may provide the possibility to manipulate food flavor in a way to reduce the risk of overeating and of extreme obesity in genetically predisposed subjects.

  2. Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells

    Science.gov (United States)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1996-01-01

    Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regulates the odour sensitivity of the cells, with a K1/2 of 460 nM. This adaptation-like effect can be mimicked by CO, an activator of soluble guanylyl cyclase, with a K1/2 of 1 microM. Sensitivity modulation is achieved through a regulatory chain of events in which cGMP stimulates a persistent background current due to the activation of cyclic nucleotide-gated channels. This in turn leads to sustained Ca2+ entry providing a negative feedback signal. One consequence of the Ca2+ entry is a shift to the right of the stimulus-response curve and a reduction in saturating odour currents. Together, these two effects can reduce the sensory generator current by up to twenty-fold. Thus, cGMP functions to control the gain of the G-protein coupled cAMP pathway. Another consequence of the action of cGMP is a marked prolongation of the odour response kinetics. The effects of CO/cGMP are long-lasting and can continue for minutes. Hence, we propose that cGMP helps to prevent saturation of the cell's response by adjusting the operational range of the cAMP cascade and contributes to olfactory adaptation by decreasing the sensitivity of olfactory receptor cells to repeated odour stimuli.

  3. Defining an olfactory receptor function in airway smooth muscle cells

    Science.gov (United States)

    Aisenberg, William H.; Huang, Jessie; Zhu, Wanqu; Rajkumar, Premraj; Cruz, Randy; Santhanam, Lakshmi; Natarajan, Niranjana; Yong, Hwan Mee; De Santiago, Breann; Oh, Jung Jin; Yoon, A-Rum; Panettieri, Reynold A.; Homann, Oliver; Sullivan, John K.; Liggett, Stephen B.; Pluznick, Jennifer L.; An, Steven S.

    2016-01-01

    Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma. PMID:27905542

  4. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates.

    Directory of Open Access Journals (Sweden)

    Yoav Gilad

    2004-01-01

    Full Text Available Olfactory receptor (OR genes constitute the molecular basis for the sense of smell and are encoded by the largest gene family in mammalian genomes. Previous studies suggested that the proportion of pseudogenes in the OR gene family is significantly larger in humans than in other apes and significantly larger in apes than in the mouse. To investigate the process of degeneration of the olfactory repertoire in primates, we estimated the proportion of OR pseudogenes in 19 primate species by surveying randomly chosen subsets of 100 OR genes from each species. We find that apes, Old World monkeys and one New World monkey, the howler monkey, have a significantly higher proportion of OR pseudogenes than do other New World monkeys or the lemur (a prosimian. Strikingly, the howler monkey is also the only New World monkey to possess full trichromatic vision, along with Old World monkeys and apes. Our findings suggest that the deterioration of the olfactory repertoire occurred concomitant with the acquisition of full trichromatic color vision in primates.

  5. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons.

    Science.gov (United States)

    Rodriguez-Gil, Diego J; Bartel, Dianna L; Jaspers, Austin W; Mobley, Arie S; Imamura, Fumiaki; Greer, Charles A

    2015-05-05

    Odorant receptors (OR) are strongly implicated in coalescence of olfactory sensory neuron (OSN) axons and the formation of olfactory bulb (OB) glomeruli. However, when ORs are first expressed relative to basal cell division and OSN axon extension is unknown. We developed an in vivo fate-mapping strategy that enabled us to follow OSN maturation and axon extension beginning at basal cell division. In parallel, we mapped the molecular development of OSNs beginning at basal cell division, including the onset of OR expression. Our data show that ORs are first expressed around 4 d following basal cell division, 24 h after OSN axons have reached the OB. Over the next 6+ days the OSN axons navigate the OB nerve layer and ultimately coalesce in glomeruli. These data provide a previously unidentified perspective on the role of ORs in homophilic OSN axon adhesion and lead us to propose a new model dividing axon extension into two phases. Phase I is OR-independent and accounts for up to 50% of the time during which axons approach the OB and begin navigating the olfactory nerve layer. Phase II is OR-dependent and concludes as OSN axons coalesce in glomeruli.

  6. Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb.

    Science.gov (United States)

    Dong, Hong-Wei; Davis, James C; Ding, ShengYuan; Nai, Qiang; Zhou, Fu-Ming; Ennis, Matthew

    2012-08-22

    Transient receptor potential (TRP) channels are a large family of cation channels. The 28 TRP channel subtypes in rodent are divided into 6 subfamilies: TRPC1-7, TRPV1-6, TRPM1-8, TRPP2/3/5, TRPML1-3 and TRPA1. TRP channels are involved in peripheral olfactory transduction. Several TRPC channels are expressed in unidentified neurons in the main olfactory bulb (OB), but the expression of most TRP channels in the OB has not been investigated. The present study employed RT-PCR as an initial survey of the expression of TRP channel mRNAs in the mouse OB and in 3 cell types: external tufted, mitral and granule cells. All TRP channel mRNAs except TRPV5 were detected in OB tissue. Single cell RT-PCR revealed that external tufted, mitral and granule cell populations expressed in aggregate 14 TRP channel mRNAs encompassing members of all 6 subfamilies. These different OB neuron populations expressed 7-12 channel mRNAs. Common channel expression was more similar among external tufted and mitral cells than among these cells and granule cells. These results indicate that a large number of TRP channel subtypes are expressed in OB neurons, providing the molecular bases for these channels to regulate OB neuron activity and central olfactory processing.

  7. Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding.

    Science.gov (United States)

    Bao, Guobin; de Jong, Daniëlle; Alevra, Mihai; Schild, Detlev

    2015-12-01

    Olfactory receptor neurons (ORNs) have high-voltage-gated Ca(2+) channels whose physiological impact has remained enigmatic since the voltage-gated conductances in this cell type were first described in the 1980s. Here we show that in ORN somata of Xenopus laevis tadpoles these channels are clustered and co-expressed with large-conductance potassium (BK) channels. We found approximately five clusters per ORN and twelve Ca(2+) channels per cluster. The action potential-triggered activation of BK channels accelerates the repolarization of action potentials and shortens interspike intervals during odour responses. This increases the sensitivity of individual ORNs to odorants. At the level of mitral cells of the olfactory bulb, odour qualities have been shown to be coded by first-spike-latency patterns. The system of Ca(2+) and BK channels in ORNs appears to be important for correct odour coding because the blockage of BK channels not only affects ORN spiking patterns but also changes the latency pattern representation of odours in the olfactory bulb.

  8. Chemosensory signals and their receptors in the olfactory neural system.

    Science.gov (United States)

    Ihara, S; Yoshikawa, K; Touhara, K

    2013-12-19

    Chemical communication is widely used among various organisms to obtain essential information from their environment required for life. Although a large variety of molecules have been shown to act as chemical cues, the molecular and neural basis underlying the behaviors elicited by these molecules has been revealed for only a limited number of molecules. Here, we review the current knowledge regarding the signaling molecules whose flow from receptor to specific behavior has been characterized. Discussing the molecules utilized by mice, insects, and the worm, we focus on how each organism has optimized its reception system to suit its living style. We also highlight how the production of these signaling molecules is regulated, an area in which considerable progress has been recently made.

  9. Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Shin-Ichiro Tachibana

    Full Text Available A male-specific component, 11-cis-vaccenyl acetate (cVA works as an anti-aphrodisiac pheromone in Drosophila melanogaster. The presence of cVA on a male suppresses the courtship motivation of other males and contributes to suppression of male-male homosexual courtship, while the absence of cVA on a female stimulates the sexual motivation of nearby males and enhances the male-female interaction. However, little is known how a male distinguishes the presence or absence of cVA on a target fly from either self-produced cVA or secondhand cVA from other males in the vicinity. In this study, we demonstrate that male flies have keen sensitivity to cVA; therefore, the presence of another male in the area reduces courtship toward a female. This reduced level of sexual motivation, however, could be overcome by pretest odor exposure via olfactory habituation to cVA. Real-time imaging of cVA-responsive sensory neurons using the neural activity sensor revealed that prolonged exposure to cVA decreased the levels of cVA responses in the primary olfactory center. Pharmacological and genetic screening revealed that signal transduction via GABAA receptors contributed to this olfactory habituation. We also found that the habituation experience increased the copulation success of wild-type males in a group. In contrast, transgenic males, in which GABA input in a small subset of local neurons was blocked by RNAi, failed to acquire the sexual advantage conferred by habituation. Thus, we illustrate a novel phenomenon in which olfactory habituation positively affects sexual capability in a competitive environment.

  10. Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster

    Science.gov (United States)

    Tachibana, Shin-Ichiro; Touhara, Kazushige; Ejima, Aki

    2015-01-01

    A male-specific component, 11-cis-vaccenyl acetate (cVA) works as an anti-aphrodisiac pheromone in Drosophila melanogaster. The presence of cVA on a male suppresses the courtship motivation of other males and contributes to suppression of male-male homosexual courtship, while the absence of cVA on a female stimulates the sexual motivation of nearby males and enhances the male-female interaction. However, little is known how a male distinguishes the presence or absence of cVA on a target fly from either self-produced cVA or secondhand cVA from other males in the vicinity. In this study, we demonstrate that male flies have keen sensitivity to cVA; therefore, the presence of another male in the area reduces courtship toward a female. This reduced level of sexual motivation, however, could be overcome by pretest odor exposure via olfactory habituation to cVA. Real-time imaging of cVA-responsive sensory neurons using the neural activity sensor revealed that prolonged exposure to cVA decreased the levels of cVA responses in the primary olfactory center. Pharmacological and genetic screening revealed that signal transduction via GABAA receptors contributed to this olfactory habituation. We also found that the habituation experience increased the copulation success of wild-type males in a group. In contrast, transgenic males, in which GABA input in a small subset of local neurons was blocked by RNAi, failed to acquire the sexual advantage conferred by habituation. Thus, we illustrate a novel phenomenon in which olfactory habituation positively affects sexual capability in a competitive environment. PMID:26252206

  11. Residue conservation and dimer-interface analysis of olfactory receptor molecular models

    Directory of Open Access Journals (Sweden)

    Ramanathan Sowdhamini

    2012-10-01

    Full Text Available Olfactory Receptors (ORs are members of the Class A rhodopsin like G-protein coupled receptors (GPCRs which are the initial players in the signal transduction cascade, leading to the generation of nerve impulses transmitted to the brain and resulting in the detection of odorant molecules. Despite the accumulation of thousands of olfactory receptor sequences, no crystal structures of ORs are known tο date. However, the recent availability of crystallographic models of a few GPCRs allows us to generate homology models of ORs and analyze their amino acid patterns, as there is a huge diversity in OR sequences. In this study, we have generated three-dimensional models of 100 representative ORs from Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and Sacharomyces cerevisiae which were selected on the basis of a composite classification scheme and phylogenetic analysis. The crystal structure of bovine rhodopsin was used as a template and it was found that the full-length models have more than 90% of their residues in allowed regions of the Ramachandran plot. The structures were further used for analysis of conserved residues in the transmembrane and extracellular loop regions in order to identify functionally important residues. Several ORs are known to be functional as dimers and hence dimer interfaces were predicted for OR models to analyse their oligomeric functional state.

  12. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Guenhaël Sanz

    Full Text Available Olfactory receptors (ORs are expressed in the olfactory epithelium, where they detect odorants, but also in other tissues with additional functions. Some ORs are even overexpressed in tumor cells. In this study, we identified ORs expressed in enterochromaffin tumor cells by RT-PCR, showing that single cells can co-express several ORs. Some of the receptors identified were already reported in other tumors, but they are orphan (without known ligand, as it is the case for most of the hundreds of human ORs. Thus, genes coding for human ORs with known ligands were transfected into these cells, expressing functional heterologous ORs. The in vitro stimulation of these cells by the corresponding OR odorant agonists promoted cell invasion of collagen gels. Using LNCaP prostate cancer cells, the stimulation of the PSGR (Prostate Specific G protein-coupled Receptor, an endogenously overexpressed OR, by β-ionone, its odorant agonist, resulted in the same phenotypic change. We also showed the involvement of a PI3 kinase γ dependent signaling pathway in this promotion of tumor cell invasiveness triggered by OR stimulation. Finally, after subcutaneous inoculation of LNCaP cells into NSG immunodeficient mice, the in vivo stimulation of these cells by the PSGR agonist β-ionone significantly enhanced metastasis emergence and spreading.

  13. How does your kidney smell? Emerging roles for olfactory receptors in renal function.

    Science.gov (United States)

    Shepard, Blythe D; Pluznick, Jennifer L

    2016-05-01

    Olfactory receptors (ORs) are chemosensors that are responsible for one's sense of smell. In addition to this specialized role in the nose, recent evidence suggests that ORs are also found in a variety of additional tissues including the kidney. As this list of renal ORs continues to expand, it is becoming clear that they play important roles in renal and whole-body physiology, including a novel role in blood pressure regulation. In this review, we highlight important considerations that are crucial when studying ORs and present the current literature on renal ORs and their emerging relevance in maintaining renal function.

  14. Calcium-stores mediate adaptation in axon terminals of Olfactory Receptor Neurons in Drosophila

    Directory of Open Access Journals (Sweden)

    Murmu Meena S

    2011-10-01

    Full Text Available Abstract Background In vertebrates and invertebrates, sensory neurons adapt to variable ambient conditions, such as the duration or repetition of a stimulus, a physiological mechanism considered as a simple form of non-associative learning and neuronal plasticity. Although various signaling pathways, as cAMP, cGMP, and the inositol 1,4,5-triphosphate receptor (InsP3R play a role in adaptation, their precise mechanisms of action at the cellular level remain incompletely understood. Recently, in Drosophila, we reported that odor-induced Ca2+-response in axon terminals of olfactory receptor neurons (ORNs is related to odor duration. In particular, a relatively long odor stimulus (such as 5 s triggers the induction of a second component involving intracellular Ca2+-stores. Results We used a recently developed in-vivo bioluminescence imaging approach to quantify the odor-induced Ca2+-activity in the axon terminals of ORNs. Using either a genetic approach to target specific RNAs, or a pharmacological approach, we show that the second component, relying on the intracellular Ca2+-stores, is responsible for the adaptation to repetitive stimuli. In the antennal lobes (a region analogous to the vertebrate olfactory bulb ORNs make synaptic contacts with second-order neurons, the projection neurons (PNs. These synapses are modulated by GABA, through either GABAergic local interneurons (LNs and/or some GABAergic PNs. Application of GABAergic receptor antagonists, both GABAA or GABAB, abolishes the adaptation, while RNAi targeting the GABABR (a metabotropic receptor within the ORNs, blocks the Ca2+-store dependent component, and consequently disrupts the adaptation. These results indicate that GABA exerts a feedback control. Finally, at the behavioral level, using an olfactory test, genetically impairing the GABABR or its signaling pathway specifically in the ORNs disrupts olfactory adapted behavior. Conclusion Taken together, our results indicate that a

  15. Discovery of novel ligands for mouse olfactory receptor MOR42-3 using an in silico screening approach and in vitro validation.

    Directory of Open Access Journals (Sweden)

    Selvan Bavan

    Full Text Available The ligands for many olfactory receptors remain largely unknown despite successful heterologous expression of these receptors. Understanding the molecular receptive range of olfactory receptors and deciphering the olfactory recognition code are hampered by the huge number of odorants and large number of olfactory receptors, as well as the complexity of their combinatorial coding. Here, we present an in silico screening approach to find additional ligands for a mouse olfactory receptor that allows improved definition of its molecular receptive range. A virtual library of 574 odorants was screened against a mouse olfactory receptor MOR42-3. We selected the top 20 candidate ligands using two different scoring functions. These 40 odorant candidate ligands were then tested in vitro using the Xenopus oocyte heterologous expression system and two-electrode voltage clamp electrophysiology. We experimentally confirmed 22 of these ligands. The candidate ligands were screened for both agonist and antagonist activity. In summary, we validated 19 agonists and 3 antagonists. Two of the newly identified antagonists were of low potency. Several previously known ligands (mono- and dicarboxylic acids are also confirmed in this study. However, some of the newly identified ligands were structurally dissimilar compounds with various functional groups belonging to aldehydes, phenyls, alkenes, esters and ethers. The high positive predictive value of our in silico approach is promising. We believe that this approach can be used for initial deorphanization of olfactory receptors as well as for future comprehensive studies of molecular receptive range of olfactory receptors.

  16. Olfactory Plasticity: Variation in the Expression of Chemosensory Receptors in Bactrocera dorsalis in Different Physiological States

    Directory of Open Access Journals (Sweden)

    Sha Jin

    2017-09-01

    Full Text Available Changes in physiological conditions could influence the perception of external odors, which is important for the reproduction and survival of insect. With the alteration of physiological conditions, such as, age, feeding state, circadian rhythm, and mating status, insect can modulate their olfactory systems accordingly. Ionotropic, gustatory, and odorant receptors (IR, GR, and ORs are important elements of the insect chemosensory system, which enable insects to detect various external stimuli. In this study, we investigated the changes in these receptors at the mRNA level in Bactrocera dorsalis in different physiological states. We performed transcriptome analysis to identify chemosensory receptors: 21 IRs, 12 GRs, and 43 ORs were identified from B. dorsalis antennae, including almost all previously known chemoreceptors in B. dorsalis and a few more. Quantitative real-time polymerase chain reaction analysis revealed the effects of feeding state, mating status and time of day on the expression of IR, GR, and OR genes. The results showed that expression of chemosensory receptors changed in response to different physiological states, and these changes were completely different for different types of receptors and between male and female flies. Our study suggests that the expressions of chemosensory receptors change to adapt to different physiological states, which may indicate the significant role of these receptors in such physiological processes.

  17. Anatomical and molecular consequences of Unilateral Naris Closure on two populations of olfactory sensory neurons expressing defined odorant receptors.

    Science.gov (United States)

    Molinas, Adrien; Aoudé, Imad; Soubeyre, Vanessa; Tazir, Bassim; Cadiou, Hervé; Grosmaitre, Xavier

    2016-07-28

    Mammalian olfactory sensory neurons (OSNs), the primary elements of the olfactory system, are located in the olfactory epithelium lining the nasal cavity. Exposed to the environment, their lifespan is short. Consequently, OSNs are regularly regenerated and several reports show that activity strongly modulates their development and regeneration: the peripheral olfactory system can adjust to the amount of stimulus through compensatory mechanisms. Unilateral naris occlusion (UNO) was frequently used to investigate this mechanism at the entire epithelium level. However, there is little data regarding the effects of UNO at the cellular level, especially on individual neuronal populations expressing a defined odorant receptor. Here, using UNO during the first three postnatal weeks, we analyzed the anatomical and molecular consequences of sensory deprivation in OSNs populations expressing the MOR23 and M71 receptors. The density of MOR23-expressing neurons is decreased in the closed side while UNO does not affect the density of M71-expressing neurons. Using Real Time qPCR on isolated neurons, we observed that UNO modulates the transcript levels for transduction pathway proteins (odorant receptors, CNGA2, PDE1c). The transcripts modulated by UNO will differ between populations depending on the receptor expressed. These results suggest that sensory deprivation will have different effects on different OSNs' populations. As a consequence, early experience will shape the functional properties of OSNs differently depending on the type of odorant receptor they express.

  18. Olfactory receptor cells on the cockroach antennae: responses to the direction and rate of change in food odour concentration.

    Science.gov (United States)

    Hinterwirth, Armin; Zeiner, Reinhard; Tichy, Harald

    2004-06-01

    In insects, information about food odour is encoded by olfactory receptor cells with characteristic response spectra, located in several types of cuticular sensilla. Within short, hair-like sensilla on the cockroach's antenna, antagonistic pairs of olfactory receptor cells shape information inflow to the CNS by providing excitatory responses for both increases and decreases in food odour concentration. The segregation of food odour information into parallel ON and OFF responses suggests that temporal concentration changes become enhanced in the sensory output. When food odour concentration changes slowly and continuously up and down with smooth transition from one direction to another, the ON and OFF olfactory cells not only signal a succession of odour concentrations but also the rate with which odour concentration happens to be changing. Access to the values of such cues is of great use to an insect orientating to an odour source. With them they may extract concentration gradients from odour plumes.

  19. Expression of olfactory receptors in different life stages and life histories of wild Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Johnstone, K A; Lubieniecki, K P; Koop, B F; Davidson, W S

    2011-10-01

    It has been hypothesized that salmonids use olfactory cues to return to their natal rivers and streams. However, the key components of the molecular pathway involved in imprinting and homing are still unknown. If odorants are involved in salmon homing migration, then olfactory receptors should play a critical role in the dissipation of information from the environment to the fish. Therefore, we examined the expression profiles of a suite of genes encoding olfactory receptors and other olfactory-related genes in the olfactory rosettes of different life stages in two anadromous and one non-anadromous wild Atlantic salmon populations from Newfoundland, Canada. We identified seven differentially expressed OlfC genes in juvenile anadromous salmon compared to returning adults in both populations of anadromous Atlantic salmon. The salmon from the Campbellton River had an additional 10 genes that were differentially expressed in juveniles compared to returning adults. There was no statistically significant difference in gene expression of any of the genes in the non-anadromous population (P wild North American Atlantic salmon, has identified seven OlfC genes that may be involved in the imprinting and homeward migration of anadromous Atlantic salmon.

  20. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    Science.gov (United States)

    2014-10-01

    Ho, Wei Zhao, Roberto Sanchez, Merina Varghese, Daniel Freire , Giulio Maria Pasinetti, Activation of ectopically expressed olfactory receptors in the...disease: a review. Prog. Brain Res. 161, 303-16. Zhao W, Ho L, Varghese M, Yemul S, Dams-O’Connor K, Gordon W, Knable L, Freire D, Haroutunian V

  1. Newly discovered olfactory receptors in epidermal keratinocytes are associated with proliferation, migration, and re-epithelialization of keratinocytes

    National Research Council Canada - National Science Library

    Denda, Mitsuhiro

    2014-01-01

    .... cloned a new olfactory receptor, OR2AT4, in keratinocytes. They show that the activation of OR2AT4 induces phosphorylation of extracellular signal-regulated kinases and p38 mitogen-activated protein kinases, and that it accelerates wound healing...

  2. Linear correlation between the number of olfactory sensory neurons expressing a given mouse odorant receptor gene and the total volume of the corresponding glomeruli in the olfactory bulb

    Science.gov (United States)

    Bressel, Olaf Christian; Khan, Mona

    2015-01-01

    ABSTRACT Chemosensory specificity in the main olfactory system of the mouse relies on the expression of ∼1,100 odorant receptor (OR) genes across millions of olfactory sensory neurons (OSNs) in the main olfactory epithelium (MOE), and on the coalescence of OSN axons into ∼3,600 glomeruli in the olfactory bulb. A traditional approach for visualizing OSNs and their axons consists of tagging an OR gene genetically with an axonal marker that is cotranslated with the OR by virtue of an internal ribosome entry site (IRES). Here we report full cell counts for 15 gene‐targeted strains of the OR‐IRES‐marker design coexpressing a fluorescent protein. These strains represent 11 targeted OR genes, a 1% sample of the OR gene repertoire. We took an empirical, “count every cell” strategy: we counted all fluorescent cell profiles with a nuclear profile within the cytoplasm, on all serial coronal sections under a confocal microscope, a total of 685,673 cells in 56 mice at postnatal day 21. We then applied a strain‐specific Abercrombie correction to these OSN counts in order to obtain a closer approximation of the true OSN numbers. We found a 17‐fold range in the average (corrected) OSN number across these 11 OR genes. In the same series of coronal sections, we then determined the total volume of the glomeruli (TGV) formed by coalescence of the fluorescent axons. We found a strong linear correlation between OSN number and TGV, suggesting that TGV can be used as a surrogate measurement for estimating OSN numbers in these gene‐targeted strains. J. Comp. Neurol. 524:199–209, 2016. © 2015 Wiley Periodicals, Inc. PMID:26100963

  3. Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis.

    Directory of Open Access Journals (Sweden)

    Tosikazu Amano

    Full Text Available Recent genome wide in silico analyses discovered a new family (type 2 or family H of odorant receptors (ORs in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN, it remains unknown if type 2 ORs (OR2 function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2η genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2η genes are probably involved in aquatic olfaction. In adults, OR2η genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2η expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2ηs function as receptors for water-soluble odorants. Moreover, the fact that several OR2ηs are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions.

  4. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation.

    Science.gov (United States)

    Pluznick, Jennifer L; Protzko, Ryan J; Gevorgyan, Haykanush; Peterlin, Zita; Sipos, Arnold; Han, Jinah; Brunet, Isabelle; Wan, La-Xiang; Rey, Federico; Wang, Tong; Firestein, Stuart J; Yanagisawa, Masashi; Gordon, Jeffrey I; Eichmann, Anne; Peti-Peterdi, Janos; Caplan, Michael J

    2013-03-12

    Olfactory receptors are G protein-coupled receptors that mediate olfactory chemosensation and serve as chemosensors in other tissues. We find that Olfr78, an olfactory receptor expressed in the kidney, responds to short chain fatty acids (SCFAs). Olfr78 is expressed in the renal juxtaglomerular apparatus, where it mediates renin secretion in response to SCFAs. In addition, both Olfr78 and G protein-coupled receptor 41 (Gpr41), another SCFA receptor, are expressed in smooth muscle cells of small resistance vessels. Propionate, a SCFA shown to induce vasodilation ex vivo, produces an acute hypotensive response in wild-type mice. This effect is differentially modulated by disruption of Olfr78 and Gpr41 expression. SCFAs are end products of fermentation by the gut microbiota and are absorbed into the circulation. Antibiotic treatment reduces the biomass of the gut microbiota and elevates blood pressure in Olfr78 knockout mice. We conclude that SCFAs produced by the gut microbiota modulate blood pressure via Olfr78 and Gpr41.

  5. Olfactory receptor signaling is regulated by the post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) scaffold multi-PDZ domain protein 1.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2009-12-01

    The unique ability of mammals to detect and discriminate between thousands of different odorant molecules is governed by the diverse array of olfactory receptors expressed by olfactory sensory neurons in the nasal epithelium. Olfactory receptors consist of seven transmembrane domain G protein-coupled receptors and comprise the largest gene superfamily in the mammalian genome. We found that approximately 30% of olfactory receptors possess a classical post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) domain binding motif in their C-termini. PDZ domains have been established as sites for protein-protein interaction and play a central role in organizing diverse cell signaling assemblies. In the present study, we show that multi-PDZ domain protein 1 (MUPP1) is expressed in the apical compartment of olfactory sensory neurons. Furthermore, on heterologous co-expression with olfactory sensory neurons, MUPP1 was shown to translocate to the plasma membrane. We found direct interaction of PDZ domains 1 + 2 of MUPP1 with the C-terminus of olfactory receptors in vitro. Moreover, the odorant-elicited calcium response of OR2AG1 showed a prolonged decay in MUPP1 small interfering RNA-treated cells. We have therefore elucidated the first building blocks of the putative \\'olfactosome\\

  6. Gated currents in isolated olfactory receptor neurons of the larval tiger salamander.

    Science.gov (United States)

    Firestein, S; Werblin, F S

    1987-09-01

    The electrical properties of enzymatically isolated olfactory receptor cells were studied with whole-cell patch clamp. Voltage-dependent currents could be separated into three ionic components: a transient inward sodium current, a sustained inward calcium current, and an outward potassium current. Three components of the outward current could be identified by their gating and kinetics: a calcium-dependent potassium current [IK(Ca)], a voltage-dependent potassium current [IK(V)], and a transient potassium current (Ia). Typical resting potentials were near -54 mV, and typical input resistance was 3-6 G omega. Thus, only 3 pA of injected current was required to depolarize the cell to spike threshold near -45 mV. The response to a current step consisted of either a single spike regardless of stimulus strength, or a train of less than 8 spikes, decrementing in amplitude and frequency over approximately equal to 250 msec. Thus, the receptor response cannot be finely graded with stimulus intensity.

  7. Decrease in olfactory and taste receptor expression in the dorsolateral prefrontal cortex in chronic schizophrenia.

    Science.gov (United States)

    Ansoleaga, Belén; Garcia-Esparcia, Paula; Pinacho, Raquel; Haro, Josep Maria; Ramos, Belén; Ferrer, Isidre

    2015-01-01

    We have recently identified up- or down-regulation of the olfactory (OR) and taste (TASR) chemoreceptors in the human cortex in several neurodegenerative diseases, raising the possibility of a general deregulation of these genes in neuropsychiatric disorders. In this study, we explore the possible deregulation of OR and TASR gene expression in the dorsolateral prefrontal cortex in schizophrenia. We used quantitative polymerase chain reaction on extracts from postmortem dorsolateral prefrontal cortex of subjects with chronic schizophrenia (n = 15) compared to control individuals (n = 14). Negative symptoms were evaluated premortem by the Positive and Negative Syndrome and the Clinical Global Impression Schizophrenia Scales. We report that ORs and TASRs are deregulated in the dorsolateral prefrontal cortex in schizophrenia. Seven out of eleven ORs and four out of six TASRs were down-regulated in schizophrenia, the most prominent changes of which were found in genes from the 11p15.4 locus. The expression did not associate with negative symptom clinical scores or the duration of the illness. However, most ORs and all TASRs inversely associated with the daily chlorpromazine dose. This study identifies for the first time a decrease in brain ORs and TASRs in schizophrenia, a neuropsychiatric disease not linked to abnormal protein aggregates, suggesting that the deregulation of these receptors is associated with altered cognition of these disorders. In addition, the influence of antipsychotics on the expression of ORs and TASRs in schizophrenia suggests that these receptors could be involved in the mechanism of action or side effects of antipsychotics.

  8. Insights into the olfactory system of the ectoparasite Caligus rogercresseyi: molecular characterization and gene transcription analysis of novel ionotropic receptors.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Marambio, Jorge Pino; Wadsworth, Simon; Gallardo-Escárate, Cristian

    2014-10-01

    Although various elements of the olfactory system have been elucidated in insects, it remains practically unstudied in crustaceans at a molecular level. Among crustaceans, some species are classified as ectoparasites that impact the finfish aquaculture industry. Thus, there is an urgent need to identify and comprehend the signaling pathways used by these in host recognition. The present study, through RNA-seq and qPCR analyses, found novel transcripts involved in the olfactory system of Caligus rogercresseyi, in addition to the transcriptomic patterns expressed during different stages of salmon lice development. From a transcriptomic library generated by Illumina sequencing, contigs that annotated for ionotropic receptors and other genes implicated in the olfactory system were identified and extracted. Full length mRNA was obtained for the ionotropic glutamate receptor 25, which had 3923 bp, and for the glutamate receptor ionotropic kainate 2, which had 2737 bp. Furthermore, two other transcripts identified as glutamate receptor, ionotropic kainate 2-like were found. In silico analysis was performed for the transcription expression from different stages of development in C. rogercresseyi, and clusters according to RPKM values were constructed. Gene transcription data were validated through qPCR assays in ionotropic receptors, and showed an expression of glutamate receptor 25 associated with the copepodid stage whereas adults, especially male adults, were associated with the kainate 2 and kainate 2-like transcripts. Additionally, gene transcription analysis of the ionotropic receptors showed an overexpression in response to the presence of masking compounds and immunostimulant in salmon diets. This response correlated to a reduction in sea lice infection following in vivo challenge. Diets with masking compounds showed a decrease of lice infestation of up to 25%. This work contributes to the available knowledge on chemosensory systems in this ectoparasite, providing

  9. A novel method to study insect olfactory receptor function using HEK293 cells.

    Science.gov (United States)

    Corcoran, Jacob A; Jordan, Melissa D; Carraher, Colm; Newcomb, Richard D

    2014-11-01

    The development of rapid and reliable assays to characterize insect odorant receptors (ORs) and pheromone receptors (PRs) remains a challenge for the field. Typically ORs and PRs are functionally characterized either in vivo in transgenic Drosophila or in vitro through expression in Xenopus oocytes. While these approaches have succeeded, they are not well suited for high-throughput screening campaigns, primarily due to inherent characteristics that limit their ability to screen large quantities of compounds in a short period of time. The development of a practical, robust and consistent in vitro assay for functional studies on ORs and PRs would allow for high-throughput screening for ligands, as well as for compounds that could be used as novel olfactory-based pest management tools. Here we describe a novel method of utilizing human embryonic kidney cells (HEK293) transfected with inducible receptor constructs for the functional characterization of ORs in 96-well plates using a fluorescent spectrophotometer. Using EposOrco and EposOR3 from the pest moth, Epiphyas postvittana as an example, we generated HEK293 cell lines with robust and consistent responses to ligands in functional assays. Single-cell sorting of cell lines by FACS facilitated the selection of isogenic cell lines with maximal responses, and the addition of epitope tags on the N-termini allowed the detection of recombinant proteins in homogenates by western blot and in cells by immunocytochemistry. We thoroughly describe the methods used to generate these OR-expressing cell lines, demonstrating that they have all the necessary features required for use in high-throughput screening platforms.

  10. Olfactory receptors modulate physiological processes in human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Benjamin Kalbe

    2016-08-01

    Full Text Available Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases.

  11. Adaptation as a mechanism for gain control in cockroach ON and OFF olfactory receptor neurons.

    Science.gov (United States)

    Burgstaller, Maria; Tichy, Harald

    2012-02-01

    In many sensory systems adaptation acts as a gain control mechanism that optimizes sensory performance by trading increased sensitivity to low stimulus intensity for decreased sensitivity to high stimulus intensity. Adaptation of insect antennal olfactory receptor neurons (ORNs) has been studied for strong odour concentrations, either pulsed or constant. Here, we report that during slowly oscillating changes in the concentration of the odour of lemon oil, the ON and OFF ORNs on the antenna of the cockroach Periplaneta americana adapt to the actual odour concentration and the rate at which concentration changes. When odour concentration oscillates rapidly with brief periods, adaptation improves gain for instantaneous odour concentration and reduces gain for the rate of concentration change. Conversely, when odour concentration oscillates slowly with long periods, adaptation increases gain for the rate of change at the expense of instantaneous concentration. Without this gain control the ON and OFF ORNs would, at brief oscillation periods, soon reach their saturation level and become insensitive to further concentration increments and decrements. At long oscillation periods, on the other hand, the cue would simply be that the discharge begins to change. Because of the high gain for the rate of change, the cockroach will receive creeping changes in odour concentration, even if they persist in one direction. Gain control permits a high degree of precision at small rates when it counts most, without sacrificing the range of detection and without extending the measuring scale.

  12. Pattern of the divergence of olfactory receptor genes during tetrapod evolution.

    Directory of Open Access Journals (Sweden)

    Takushi Kishida

    Full Text Available The olfactory receptor (OR multigene family is responsible for the sense of smell in vertebrate species. OR genes are scattered widely in our chromosomes and constitute one of the largest gene families in eutherian genomes. Some previous studies revealed that eutherian OR genes diverged mainly during early mammalian evolution. However, the exact period when, and the ecological reason why eutherian ORs strongly diverged has remained unclear. In this study, I performed a strict data mining effort for marsupial opossum OR sequences and bootstrap analyses to estimate the periods of chromosomal migrations and gene duplications of OR genes during tetrapod evolution. The results indicate that chromosomal migrations occurred mainly during early vertebrate evolution before the monotreme-placental split, and that gene duplications occurred mainly during early mammalian evolution between the bird-mammal split and marsupial-placental split, coinciding with the reduction of opsin genes in primitive mammals. It could be thought that the previous chromosomal dispersal allowed the OR genes to subsequently expand easily, and the nocturnal adaptation of early mammals might have triggered the OR gene expansion.

  13. Phosphatidylinositol 4,5-bisphosphate-dependent regulation of the output in lobster olfactory receptor neurons.

    Science.gov (United States)

    Bobkov, Yuriy V; Pezier, Adeline; Corey, Elizabeth A; Ache, Barry W

    2010-05-01

    Transient receptor potential (TRP) channels often play a role in sensory transduction, including chemosensory transduction. TRP channels, a common downstream target of phosphoinositide (PI) signaling, can be modulated by exogenous phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and/or diacylglycerol (DAG). Lobster olfactory receptor neurons (ORNs) express a TRP-related, non-selective, calcium/magnesium-permeable, sodium/calcium-gated cation (SGC) channel. Here we report that PIs regulate the function of the calcium-activated form of the lobster channel. Sequestering of endogenous PI(4,5)P2, either with an anti-PI(4,5)P2 antibody or by electrostatic screening with polyvalent cations, blocks the channel. Exogenous PI(3,4,5)P3 activates the channel independently of intracellular sodium and/or calcium. Exogenous non-hydrolysable DAG analogs fail to change the gating parameters of the channel, suggesting the channel is insensitive to DAG. Electrophysiological recording from lobster ORNs in situ using a panel of pharmacological tools targeting the key components of both PI and DAG metabolism (phospholipase C, phosphoinositide 4-kinase and DAG kinase) extend these findings to the intact ORN. PI(4,5)P2 depletion suppresses both the odorant-evoked discharge and whole-cell current of the cells, and does so possibly independently of DAG production. Collectively, our results argue that PIs can regulate output in lobster ORNs, at least in part through their action on the lobster SGC channel.

  14. An olfactory receptor from Apolygus lucorum (Meyer-Dur) mainly tuned to volatiles from flowering host plants.

    Science.gov (United States)

    Yan, Shu-Wei; Zhang, Jin; Liu, Yang; Li, Guo-Qing; Wang, Gui-Rong

    2015-08-01

    Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most serious agricultural pests, feeding on a wide range of cultivated plants, including cotton, cereals and vegetables in the north of China. This insect can frequently switch between habitats and host plants over seasons and prefer plants in bloom. A. lucorum relies heavily on olfaction to locate its host plants finely discriminating different plant volatiles in the environment. Despite its economical importance, research on the olfactory system of this species has been so far very limited. In this study, we have identified and characterized an olfactory receptor which is sensitively tuned to (Z)-3-Hexenyl acetate and several flowering compounds. Besides being present in the bouquet of some flowers, these compounds are produced by plants that have suffered attacks and are supposed to act as chemical messengers between plants. This OR may play an important role in the selection of host plants.

  15. Phenylthiophenecarboxamide antagonists of the olfactory receptor co-receptor subunit from a mosquito.

    Directory of Open Access Journals (Sweden)

    Sisi Chen

    Full Text Available Insects detect environmental chemicals using chemosensory receptors, such as the ORs, a family of odorant-gated ion channels. Insect ORs are multimeric complexes of unknown stoichiometry, formed by a common subunit (the odorant receptor co-receptor subunit, Orco and one of many variable subunits that confer odorant specificity. The recent discovery of Orco directed ligands, including both agonists and antagonists, suggests Orco as a promising target for chemical control of insects. In addition to competitively inhibiting OR activation by Orco agonists, several Orco antagonists have been shown to act through a non-competitive mechanism to inhibit OR activation by odorants. We previously identified a series of Orco antagonists, including N-(4-ethylphenyl-2-thiophenecarboxamide (OX1a, previously referred to as OLC20. Here, we explore the chemical space around the OX1a structure to identify more potent Orco antagonists. Cqui\\Orco+Cqui\\Or21, an OR from Culex quinquefasciatus (the Southern House Mosquito that responds to 3-methylindole (skatole and is thought to mediate oviposition behavior, was expressed in Xenopus oocytes and receptor function assayed by two-electrode voltage clamp electrophysiology. 22 structural analogs of OX1a were screened for antagonism of OR activation by an Orco agonist. By varying the moieties decorating the phenyl and thiophene rings, and altering the distance between the rings, we were able to identify antagonists with improved potency. Detailed examination of three of these compounds (N-mesityl-2-thiophenecarboxamide, N-(4-methylbenzyl-2-thiophenecarboxamide and N-(2-ethylphenyl-3-(2-thienyl-2-propenamide demonstrated competitive inhibition of receptor activation by an Orco agonist and non-competitive inhibition of receptor activation by an odorant. The ability to inhibit OR activation by odorants may be a general property of this class of Orco antagonist, suggesting that odorant mediated behaviors can be manipulated

  16. Mating behavior induces changes of expression of Fos protein, plasma testosterone and androgen receptors in the accessory olfactory bulb (AOB) of the male mandarin vole Microtus mandarinus

    OpenAIRE

    Fengqin HE, Fadao TAI

    2009-01-01

    In order to investigate the neuroendocrine mechanism of the mating behavior in the adult male mandarin voles Microtus mandarinus, the radioimmunoassay (RIA) and immunohistochemistry methods were used to investigate the differences in plasma testosterone (T) concentrations and distribution of T immunoreactive neurons (T-IRs), androgen receptor immunoreactive neurons (AR-IRs) and Fos protein immunoreactive neurons (Fos-IRs) in the accessory olfactory bulb (AOB) and the main olfactory bulb (MOB)...

  17. Using multilayer perceptron computation to discover ideal insect olfactory receptor combinations in the mosquito and fruit fly for an efficient electronic nose.

    Science.gov (United States)

    Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D

    2015-01-01

    The model organism, Drosophila melanogaster, and the mosquito Anopheles gambiae use 60 and 79 odorant receptors, respectively, to sense their olfactory world. However, a commercial "electronic nose" in the form of an insect olfactory biosensor demands very low numbers of receptors at its front end of detection due to the difficulties of receptor/sensor integration and functionalization. In this letter, we demonstrate how computation via artificial neural networks (ANNs), in the form of multilayer perceptrons (MLPs), can be successfully incorporated as the signal processing back end of the biosensor to drastically reduce the number of receptors to three while still retaining 100% performance of odorant detection to that of a full complement of receptors. In addition, we provide a detailed performance comparison between D. melanogaster and A. gambiae odorant receptors and demonstrate that A. gambiae receptors provide superior olfaction detection performance over D. melanogaster for very low receptor numbers. The results from this study present the possibility of using the computation of MLPs to discover ideal biological olfactory receptors for an olfactory biosensor device to provide maximum classification performance of unknown odorants.

  18. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles.

    Science.gov (United States)

    Baud, Olivia; Yuan, Shuguang; Veya, Luc; Filipek, Slawomir; Vogel, Horst; Pick, Horst

    2015-10-09

    A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level.

  19. NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements

    Directory of Open Access Journals (Sweden)

    Giovanni ePascarella

    2014-02-01

    Full Text Available By coupling laser capture microdissection to nanoCAGE technology and next-generation sequencing we have identified the genome-wide collection of active promoters in the mouse Main Olfactory Epithelium (MOE. Transcription start sites (TSSs for the large majority of Olfactory Receptors (ORs have been previously mapped increasing our understanding of their promoter architecture.Here we show that in our nanoCAGE libraries of the mouse MOE we detect a large number of tags mapped in loci hosting Type-1 and Type-2 Vomeronasal Receptors genes (V1Rs and V2Rs. These loci also show a massive expression of Long Interspersed Nuclear Elements (LINEs. We have validated the expression of selected receptors detected by nanoCAGE with in situ hybridization, RT-PCR and qRT-PCR. This work extends the repertory of receptors capable of sensing chemical signals in the MOE, suggesting intriguing interplays between MOE and VNO for pheromone processing. It positions transcribed LINEs as candidate regulatory RNAs for VRs expression.

  20. Potential role of transient receptor potential channel M5 in sensing putative pheromones in mouse olfactory sensory neurons.

    Science.gov (United States)

    Oshimoto, Arisa; Wakabayashi, Yoshihiro; Garske, Anna; Lopez, Roberto; Rolen, Shane; Flowers, Michael; Arevalo, Nicole; Restrepo, Diego

    2013-01-01

    Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5) knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs). Yet, in the same study an electroolfactogram (EOG) in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors) between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO) mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input.

  1. Pairwise comparison of orthologous olfactory receptor genes between two sympatric sibling sea kraits of the genus Laticauda in Vanuatu.

    Science.gov (United States)

    Kishida, Takushi; Hayano, Azusa; Inoue-Murayama, Miho; Hikida, Tsutomu

    2013-06-01

    Olfaction-based reproductive isolation is widely observed in animals, but little is known about the genetic basis of such isolation mechanisms. Two species of sibling amphibious sea snakes, Laticauda colubrina and L. frontalis live in Vanuatu sympatrically and syntopically, but no natural hybrids have been reported. Adult females of both taxa possess distinctive lipids in the skin, and male L. frontalis distinguishes conspecific females based on olfactory cues. To shed light on the molecular basis of the evolution of olfaction-based isolation mechanisms, olfactory receptor (OR) gene repertoires of both taxa were identified using pyrosequencing-based technology, and orthologous OR gene sets were identified. Few species-specific gene duplications or species-specific gene losses were found. However, the nonsynonymous-to-synonymous substitution rate ratio was relatively higher between orthologous OR genes of L. frontalis and L. colubrina, indicating that L. frontalis and L. colubrina have evolved to possess different olfactory senses. We suggest that L. frontalis and L. colubrina have evolved allopatrically, and this may be a byproduct of the allopatric evolution, and that this dissimilarity may function as a premating isolation barrier, since L. frontalis has returned to the ancestral range (Vanuatu).

  2. Human olfactory receptors: recombinant expression in the baculovirus/Sf9 insect cell system, functional characterization, and odorant identification.

    Science.gov (United States)

    Matarazzo, Valéry; Ronin, Catherine

    2013-01-01

    Cell surface expression of recombinant olfactory receptors (ORs) is a major limitation in characterizing their functional nature. We have shown that the recombinant expression of a human OR, OR 17-210, in the baculovirus/Sf9 insect cell system allows this protein to be expressed at the cell surface. We used Ca(2+) imaging to demonstrate that recombinant OR 17-210 produces cellular activities upon odorant stimulation with ketones. Furthermore, this expression and functional system has been used to show that the preincubation of Human Odorant Binding Protein 2A decrease the calcium response of OR 17-210 following stimulation by acetophenone and beta ionone.

  3. Structure of the olfactory receptor organs, their GABAergic neural pathways, and modulation of mating behavior, in the giant freshwater prawn, Macrobrachium rosenbergii.

    Science.gov (United States)

    Kruangkum, Thanapong; Chotwiwatthanakun, Charoonroj; Vanichviriyakit, Rapeepun; Tinikul, Yotsawan; Anuracpreeda, Panat; Wanichanon, Chaitip; Hanna, Peter J; Sobhon, Prasert

    2013-06-01

    In the giant male prawn, Macrobrachium rosenbergii, the olfactory system is thought to be the main pathway for modulating sexual behavior through pheromone perception. In this report, we first used gross anatomical, histological, and SEM methods to describe the structures of the olfactory receptors (sensilla setae), their neural pathways, and possible role in modulating mating behavior. On the surfaces of antennule and antenna filaments there are four types of sensory receptors, viz single spike-like setae, single flagellum-like setae, multiple flagella-like setae, and aesthetascs (ASs). The ASs, which had previously been proposed to be odor receptor setae, are found only on the short filament of lateral antennule (slAn). Each AS on the slAn connects with olfactory receptor neurons (ORNs), whose axons form an outer central antennule nerve (ocAnNv), which then connects with the olfactory neutrophil (ON) of the brain. Thus, the slAn is the major olfactory organ that conveys sensory inputs from each AS to the ON within the deutocerebrum. GABA immunoreactivity was present in ASs, neurons of ORNs, inner central antennular, lateral tegumentary nerve, ocAnNv and the ON, inferring that GABA is the likely neurotransmitter in modulating olfaction. Disruption of the slAn by ablation or covering with Vaseline, resulted in significant reduction of mating behavior, indicating that this organ is crucial for sex pheromone perception. Identification of the active pheromones and further bioassays are now being performed.

  4. Cytochemical features of olfactory receptor cells in benthic and pelagic Sculpins (Cottoidei from Lake Baikal

    Directory of Open Access Journals (Sweden)

    Klimenkov Igor V.

    2016-01-01

    Full Text Available Electron and laser confocal microscopy were used to analyze the adaptive cytochemical features of the olfactory epithelium in three genetically close deep-water Cottoidei species endemic to Lake Baikal − golomyanka (Baikal oilfish Comephorus baicalensis, longfin Baikal sculpin Cottocomephorus inermis and fat sculpin Batrachocottus nikolskii − whose foraging strategies are realized under different hydrostatic pressure regimes. Hypobaric hypoxia that developed in B. nikolskii (a deep-water benthic species upon delivery to the surface caused distinct destructive changes in cells of the olfactory epithelium. In C. baicalensis and C. inermis, whose foraging behavior involves daily vertical migrations between deep and shallow layers, these cells are characterized by a significantly higher structural and functional stability than in deep-water B. nikolskii. The results of morphological study and quantitative analysis of functionally active mitochondria in cells of the olfactory epithelium of closely related deep-water fish species with different modes of life provide evidence that tolerance of the olfactory apparatus to hypobaric hypoxia is different in pelagic and benthic species. These results help elucidate the mechanisms responsible for the consistent functioning of the olfactory system in animals evolutionarily adapted to extreme environmental factors, and provide theoretical and practical implications in different fields of biology, neurology and extreme medicine.

  5. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor.

    Science.gov (United States)

    Gravati, Marta; Busnelli, Marta; Bulgheroni, Elisabetta; Reversi, Alessandra; Spaiardi, Paolo; Parenti, Marco; Toselli, Mauro; Chini, Bice

    2010-09-01

    Oxytocin receptor is a seven transmembrane receptor widely expressed in the CNS that triggers G(i) or G(q) protein-mediated signaling cascades leading to the regulation of a variety of neuroendocrine and cognitive functions. We decided to investigate whether and how the promiscuous receptor/G protein coupling affects neuronal excitability. As an experimental model, we used the immortalized gonadotropin-releasing hormone-positive GN11 cell line displaying the features of immature, migrating olfactory neurons. Using RT-PCR analysis, we detected the presence of oxytocin receptors whose stimulation by oxytocin led to the accumulation of inositol phosphates and to the inhibition of cell proliferation, and the expression of several inward rectifier (IR) K+ channel subtypes. Moreover, electrophysiological and pharmacological inspections using whole-cell patch-clamp recordings evidenced that in GN11 cells, IR channel subtypes are responsive to oxytocin. In particular, we found that: (i) peptide activation of receptor either inhibited or stimulated IR conductances, and (ii) IR current inhibition was mediated by a pertussis toxin-resistant G protein presumably of the G(q/11) subtype, and by phospholipase C, whereas IR current activation was achieved via receptor coupling to a pertussis toxin-sensitive G(i/o) protein. The findings suggest that neuronal excitability might be tuned by a single peptide receptor that mediates opposing effects on distinct K+ channels through the promiscuous coupling to different G proteins.

  6. Background odour induces adaptation and sensitization of olfactory receptors in the antennae of houseflies

    NARCIS (Netherlands)

    Kelling, F.J; Ialenti, F.; den Otter, C.J

    2002-01-01

    The presence of background odour was found to have a small but significant effect on the sensitivity of the antennal olfactory system of houseflies, Musca domestica Linnaeus (Diptera: Muscidae), to new pulses of odour. We show that cross-adaptation and cross-sensitization between a background odour

  7. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods.

    Science.gov (United States)

    McGowen, Michael R; Clark, Clay; Gatesy, John

    2008-08-01

    The macroevolutionary transition of whales (cetaceans) from a terrestrial quadruped to an obligate aquatic form involved major changes in sensory abilities. Compared to terrestrial mammals, the olfactory system of baleen whales is dramatically reduced, and in toothed whales is completely absent. We sampled the olfactory receptor (OR) subgenomes of eight cetacean species from four families. A multigene tree of 115 newly characterized OR sequences from these eight species and published data for Bos taurus revealed a diverse array of class II OR paralogues in Cetacea. Evolution of the OR gene superfamily in toothed whales (Odontoceti) featured a multitude of independent pseudogenization events, supporting anatomical evidence that odontocetes have lost their olfactory sense. We explored the phylogenetic utility of OR pseudogenes in Cetacea, concentrating on delphinids (oceanic dolphins), the product of a rapid evolutionary radiation that has been difficult to resolve in previous studies of mitochondrial DNA sequences. Phylogenetic analyses of OR pseudogenes using both gene-tree reconciliation and supermatrix methods yielded fully resolved, consistently supported relationships among members of four delphinid subfamilies. Alternative minimizations of gene duplications, gene duplications plus gene losses, deep coalescence events, and nucleotide substitutions plus indels returned highly congruent phylogenetic hypotheses. Novel DNA sequence data for six single-copy nuclear loci and three mitochondrial genes (> 5000 aligned nucleotides) provided an independent test of the OR trees. Nucleotide substitutions and indels in OR pseudogenes showed a very low degree of homoplasy in comparison to mitochondrial DNA and, on average, provided more variation than single-copy nuclear DNA. Our results suggest that phylogenetic analysis of the large OR superfamily will be effective for resolving relationships within Cetacea whether supermatrix or gene-tree reconciliation procedures are

  8. The olfactory receptor OR51E1 is present along the gastrointestinal tract of pigs and is modulated by intestinal microbiota

    NARCIS (Netherlands)

    Priori, D.; Clavenzani, P.; Jansman, A.J.M.; Lalles, J.P.; Trivisil, P.; Bosi, P.

    2015-01-01

    The relevance of the butyrate-sensing olfactory receptor OR51E1 for gastrointestinal (GIT) functioning has not been considered so far. We investigated in young pigs the distribution of OR51E1 along the GIT, its relation with some endocrine markers, its variation with age and after interventions affe

  9. Differential Octopaminergic Modulation of Olfactory Receptor Neuron Responses to Sex Pheromones in Heliothis virescens.

    Science.gov (United States)

    Hillier, N Kirk; Kavanagh, Rhys M B

    2015-01-01

    Octopamine is an important neuromodulator of neural function in invertebrates. Octopamine increases male moth sensitivity to female sex pheromones, however, relatively little is known as to the role of octopamine in the female olfactory system, nor its possible effects on the reception of non-pheromone odorants. The purpose of this study was to determine relative effects of octopamine on the sensitivity of the peripheral olfactory system in male and female Heliothis virescens. Single sensillum recording was conducted in both sexes following injection with octopamine or Ringer solution, and during odorant stimulation with conspecific female sex pheromone or host plant volatiles. Results indicate that octopamine plays a significant modulatory role in female sex pheromone detection in female moths; and that male and female pheromone detection neurons share distinct pharmacological and physiological similarities in H. virescens despite sexual dimorphism at the antennal level.

  10. The progress of olfactory transduction and biomimetic olfactory-based biosensors

    Institute of Scientific and Technical Information of China (English)

    WU ChunSheng; WANG LiJiang; ZHOU Jun; ZHAO LuHang; WANG Ping

    2007-01-01

    Olfaction is a very important sensation for all animals. Recently great progress has been made in the research of olfactory transduction. Especially the novel finding of the gene superfamily encoding olfactory receptors has led to rapid advances in olfactory transduction. These advances also promoted the research of biomimetic olfactory-based biosensors and some obvious achievements have been obtained due to their potential commercial prospects and promising industrial applications. This paper briefly introduces the biological basis of olfaction, summarizes the progress of olfactory signal transduction in the olfactory neuron, the olfactory bulb and the olfactory cortex, outlines the latest developments and applications of biomimetic olfactory-based biosensors. Finally, the olfactory biosensor based on light addressable potentiometric sensor (LAPS) is addressed in detail based on our recent work and the research trends of olfactory biosensors in future are discussed.

  11. 中华乌塘鳢嗅觉系统孕酮受体的免疫细胞化学研究%Progesterone receptor immunoreactivities in Bostrichthys sinensis (Lacépède) olfactory system

    Institute of Scientific and Technical Information of China (English)

    赖晓健; 洪万树; 王桂忠; 马细兰; 张其永; 王琼

    2011-01-01

    We evaluated the morphology and structure of the olfactory system in the Chinese black sleeper, Bostrichthys sinensis (Lacepede) using histology. The olfactory system consisted of the olfactory sac, olfactory nerve, and olfactory bulb. The olfactory sac (the rosette) was fusiform in shape and located inside the olfactory chamber, which had two openings that allow water to flow through the rosette as the fish moves. There were 10-16 primary olfactory lamellae radiating from the wall of the olfactory chamber. These lamellae were longitudinally arranged and parallel to each other. The primary olfactory lamellae differed in their height and some possessed secondary olfactory lamellae. Olfactory lamellae were composed of the olfactory epithelium and central core. The olfactory epithelium consisted primarily of ciliated receptor cells, ciliated non-receptor cells, supporting cells, and basal cells. The axons of the primary olfactory receptor neurons in each rosette converged to form a pair olfactory nerves that exceeded 1 cm in length in a 17 cm fish. The paired olfactory nerves extended from the posterior ventral base of each rosette to the ipsilateral olfactory bulb. The two olfactory bulbs, in close contact with the telencephalon, were slightly oval and sessile. Each olfactory bulb consisted of three, roughly distinguishable layers, in order from the surface: (1) the olfactory nerve layer, containing the axons of the olfactory receptor neurons, (2) the glomerular and mitral cell layer, where the axons of the olfactory receptor neurons arborized into glomeruli and the secondary neurons (mitral cells) were scattered around glomeruli, and (3) the granule cell layer, consisting of densely-packed small size cells. Afferent fibers of nerve bundles reached the anterior bulb, spread along the periphery of the bulb and terminated on the dendrites of mitral cells in the glomerular and mitral cell layer. The olfactory nerve layer extended more caudally in the ventral lateral

  12. Research Progress of Olfactory Receptor Neurons and Its Application in Olfactory Biosensors%嗅感觉细胞及其应用于嗅觉传感器的研究进展

    Institute of Scientific and Technical Information of China (English)

    高天昀; 叶学松

    2011-01-01

    Olfactory organ is an important sensory system and therefore it can serve as the research object of the neural information processing and biologic evolution due to its simplicity and ancient characteristics of the system. Besides, the olfactory biosensors based on olfactory receptor neurons (ORNs) have prosperous applications in environmental momtoring and food testing. This review introduces configuration and signal transduction of ORNs. Then it examines neuronal coding strategies and how the characteristic of responses to mechanical stimuli applied to olfactory processing. Finally, it illustrates the recent research of olfactory biosensors based on ORNs/olfactory receptors and puts forward the direction of future research.%嗅觉器官是生物体的重要感官之一.鉴于其简单、古老的特性,嗅觉系统可作为研究神经信息处理、生物进化两大课题的很好的突破口.工程应用方面,模仿嗅觉机制研制的嗅觉传感器在环境监测、食品品质鉴定中有广泛应用前景.本文首先介绍了嗅感觉细胞 (ORNs) 的形态和结构以及ORNs中气味信号的转导途径.然后总结了ORNs编码气味信号的研究成果,讨论了近些年发现的ORNs对机械刺激的响应这一特性对编码的作用.最后介绍了近年来利用ORNs/嗅觉受体作为气味感知元件构建嗅觉传感器的研究,并结合我们目前基于ORNs的嗅觉传感器的工作,提出了嗅觉传感器下一步发展的方向.

  13. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group γ genes in birds

    Directory of Open Access Journals (Sweden)

    Kempenaers Bart

    2009-09-01

    Full Text Available Abstract Background The detection of odorants is mediated by olfactory receptors (ORs. ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis, and in two birds, the chicken (Gallus gallus and the zebra finch (Taeniopygia guttata. Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively. We show that the green anole has a higher fraction of intact OR genes (~72% compared with the chicken (~66% and the zebra finch (~38%. We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively. Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group α, θ and γ genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called γ-c clade. An analysis of the selective pressure on the paralogous genes of each γ-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The γ-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group γ-c OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data

  14. 蜜蜂嗅觉受体基因研究进展%Advances in the Sdudies of Honeybee's Olfactory Receptor Genes

    Institute of Scientific and Technical Information of China (English)

    张巧; 董霞

    2011-01-01

    简单介绍了昆虫的嗅觉识别过程和分子机制,对蜜蜂强大的嗅觉能力进行了简要说明。综述了蜜蜂的嗅觉受体基因的研究进展与概况,为进一步研究蜜蜂的嗅觉行为及分子机理提供依据,同时也为通过嗅觉研究蜜蜂的社会性行为提供参考。%As a social insect, honey bees (Apis mellifera) possess remarkable olfactory. In this paper, we made a brief introduction about the process and molecular mechanisms of honey bee olfactory, furthermore, we summarized the research and profile of bees, olfactory receptors. It can provide us basis and references for further study about the molecular mechanisms and olfactory behavior, and also for the study of bees, sociality through the research of olfactory.

  15. Molecular Characterization and Differential Expression of an Olfactory Receptor Gene Family in the White-Backed Planthopper Sogatella furcifera Based on Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Ming He

    Full Text Available The white-backed planthopper, Sogatella furcifera, a notorious rice pest in Asia, employs host plant volatiles as cues for host location. In insects, odor detection is mediated by two types of olfactory receptors: odorant receptors (ORs and ionotropic receptors (IRs. In this study, we identified 63 SfurORs and 14 SfurIRs in S. furcifera based on sequences obtained from the head transcriptome and bioinformatics analysis. The motif-pattern of 130 hemiptera ORs indicated an apparent differentiation in this order. Phylogenetic trees of the ORs and IRs were constructed using neighbor-joining estimates. Most of the ORs had orthologous genes, but a specific OR clade was identified in S. furcifera, which suggests that these ORs may have specific olfactory functions in this species. Our results provide a basis for further investigations of how S. furcifera coordinates its olfactory receptor genes with its plant hosts, thereby providing a foundation for novel pest management approaches based on these genes.

  16. The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol.

    Directory of Open Access Journals (Sweden)

    Meredith J Ezak

    Full Text Available We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of G alpha signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn, but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine's effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol.

  17. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    Science.gov (United States)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  18. Research Progresses in Fish Olfactory System and Sex Pheromonal Receptors%鱼类嗅觉系统和性信息素受体的研究进展

    Institute of Scientific and Technical Information of China (English)

    赖晓健; 洪万树; 张其永

    2013-01-01

    鱼类嗅觉系统包括外部嗅觉器官、嗅神经和嗅球三个部分.嗅觉器官也称为嗅囊,由嗅上皮和髓质组成.气味物质的化学信息主要由嗅上皮上随机分布的嗅觉感受神经元感知,通过嗅神经将嗅觉信息传递到嗅球,嗅球在空间上有不同的功能分区,嗅觉信息经过嗅球各分区整合后分别传入端脑,发挥其生理功能.性信息素在鱼类生殖过程中的作用是通过嗅觉系统来完成的,其中嗅觉感受神经元上的性信息素受体起着重要作用.鱼类性信息素受体的研究主要从两个方面入手,一是从低浓度特异的性信息素引起嗅觉器官电生理反应或行为反应入手,寻找特异的性信息素受体;二是参照哺乳动物嗅觉受体的研究结果,从嗅觉受体基因遗传保守性入手,研究鱼类性信息素受体的结构与功能.%Fish olfactory system is composed of olfactory sac, olfactory nerve and olfactory bulb. Olfactory sac, also called olfactory organ, is composed of olfactory epithelium and central core. Chemical signals are first detected by the olfactory receptor neurons that randomly distribute in the entire olfactory epithelium, and then transferred to the olfactory bulb through the olfactory nerve. There exist different functional regions in the olfactory bulb, where the chemical signals are integrated and transferred to the telencephalon to play physiological functions. The sex pheromones play their functions through the olfactory system in fish reproduction, and the sex pheromonal receptors of the olfactory neurons play an important role. Usually, two approaches are used to investigate the sex pheromonal receptors in fishes: the first is based on species-specific electrophysiological or behavioral responses to sex pheromones at very low concentrations, and the second is based on the conservative structures of receptors genes taking reference of the mammalian counterparts.

  19. Study of natural nanovesicles carrying olfactory receptors for the development of biosensing platforms

    OpenAIRE

    Sanmartí Espinal, Marta

    2015-01-01

    [eng] Natural vesicles produced from genetically engineered cells with tailored membrane receptor composition are promising building blocks for sensing biodevices. This is particularly true for the case of G-protein coupled receptors (GPCRs) present in many sensing processes in cells, whose functionality crucially depends on their lipid environment. Membrane receptors are involved in a variety of biochemical pathways and therefore constitute important targets for therapy and development of ne...

  20. Inhibitory effect of luteolin on the odorant-induced cAMP level in HEK293 cells expressing the olfactory receptor.

    Science.gov (United States)

    Yoon, Yeo Cho; Hwang, Jin-Teak; Sung, Mi-Jeong; Wang, Shuaiyu; Munkhtugs, Davaatseren; Rhyu, Mee-Ra; Park, Jae-Ho

    2012-01-01

    Luteolin is a flavonoid in many fruits and vegetables. Although luteolin has important biological functions, including antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities, little is known about the functions of luteolin in the olfactory system. Various odorants can be detected and distinguished by using several molecular processes, including the binding of odorants to odorant receptors, activation of adenylyl cyclase (AC), changes of cyclic adenosine monophosphate (cAMP) and Ca(2+) levels in olfactory sensory neurons, as well as changes in membrane potentials and the transmission of electric signals to the brain. Because AC-cAMP signal transduction plays a pivotal role in the olfactory system, we evaluated the effects of luteolin on the AC-cAMP pathway that had been stimulated by the odorant eugenol. We demonstrated that eugenol caused an upregulation of the cAMP level and the phosphorylation of phosphokinase A (PKA, a downstream target of cAMP) in human embryonic kidney 293 (HEK293) cells expressing the murine eugenol receptor. This upregulation significantly decreased in the presence of luteolin, suggesting that luteolin inhibited the odorant-induced production of cAMP and affected the downstream phosphorylation of PKA.

  1. Role of a tachykinin-related peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Gui, Shun-Hua; Jiang, Hong-Bo; Xu, Li; Pei, Yu-Xia; Liu, Xiao-Qiang; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Insect tachykinin-related peptide (TRP), an ortholog of tachykinin in vertebrates, has been linked with regulation of diverse physiological processes, such as olfactory perception, locomotion, aggression, lipid metabolism and myotropic activity. In this study, we investigated the function of TRP (BdTRP) and its receptor (BdTRPR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis. BdTRPR is a typical G-protein coupled-receptor (GPCR), and it could be activated by the putative BdTRP mature peptides with the effective concentrations (EC50) at the nanomolar range when expressed in Chinese hamster ovary cells. Consistent with its role as a neuromodulator, expression of BdTRP was detected in the central nervous system (CNS) of B. dorsalis, specifically in the local interneurons with cell bodies lateral to the antennal lobe. BdTRPR was found in the CNS, midgut and hindgut, but interestingly also in the antennae. To investigate the role of BdTRP and BdTRPR in olfaction behavior, adult flies were subjected to RNA interference, which led to a reduction in the antennal electrophysiological response and sensitivity to ethyl acetate in the Y-tube assay. Taken together, we demonstrate the impact of TRP/TRPR signaling on the modulation of the olfactory sensitivity in B. dorsalis. The result improve our understanding of olfactory processing in this agriculturally important pest insect.

  2. Cloning, Tissue Distribution, and Transmembrane Orientation of the Olfactory Co-Receptor Orco from Two Important Lepidopteran Rice Pests, the Leaffolder (Cnaphalocrocis medinalis) and the Striped Stem Borer (Chilo suppressalis)

    Institute of Scientific and Technical Information of China (English)

    LIU Su; HUANG Yuan-jie; QIAO Fei; ZHOU Wen-wu; GONG Zhong-jun; CHENG Jia-an; ZHU Zeng-rong

    2013-01-01

    In insects, the sense of smell is mainly mediated by olfactory receptors (Ors). Olfactory co-receptor (Orco), which is co-expressed with the Ors in almost all olfactory receptor neurons (ORNs), is demonstrated to be an essential component in the insect olfactory system. It can be potential target for developing novel olfactory-disruption strategy to control insect pests. In this study, two full-length cDNA sequences encoding Orcos (CmedOrco and ChsupOrco) were cloned from two Lepidopteran rice pests, the rice leaffolder, Cnaphalocrocis medinalis and the rice striped stem borer, Chilo suppressalis. The amino acid sequences of CmedOrco and ChsupOrco showed high similarity to the previously identiifed Orcos from other insect species. Bioinformatic prediction and cellular immunofluorescence indicated that CmedOrco and ChsupOrco were both seven-transmembrane proteins with intracellular N-termini and extracellular C-termini. mRNA expression levels of the two Orcos were much higher in male and female antennae than those in non-olfactory tissues, and the ChsupOrco transcripts reached a peak level in adults compared to other life stages. Our results provide a foundation from which it will be possible to elucidate the roles of Orco in moth olfaction and for the development of environment-friendly management strategies of these two rice insect pests.

  3. Systematic Inference of Copy-Number Genotypes from Personal Genome Sequencing Data Reveals Extensive Olfactory Receptor Gene Content Diversity

    Science.gov (United States)

    Waszak, Sebastian M.; Hasin, Yehudit; Zichner, Thomas; Olender, Tsviya; Keydar, Ifat; Khen, Miriam; Stütz, Adrian M.; Schlattl, Andreas; Lancet, Doron; Korbel, Jan O.

    2010-01-01

    Copy-number variations (CNVs) are widespread in the human genome, but comprehensive assignments of integer locus copy-numbers (i.e., copy-number genotypes) that, for example, enable discrimination of homozygous from heterozygous CNVs, have remained challenging. Here we present CopySeq, a novel computational approach with an underlying statistical framework that analyzes the depth-of-coverage of high-throughput DNA sequencing reads, and can incorporate paired-end and breakpoint junction analysis based CNV-analysis approaches, to infer locus copy-number genotypes. We benchmarked CopySeq by genotyping 500 chromosome 1 CNV regions in 150 personal genomes sequenced at low-coverage. The assessed copy-number genotypes were highly concordant with our performed qPCR experiments (Pearson correlation coefficient 0.94), and with the published results of two microarray platforms (95–99% concordance). We further demonstrated the utility of CopySeq for analyzing gene regions enriched for segmental duplications by comprehensively inferring copy-number genotypes in the CNV-enriched >800 olfactory receptor (OR) human gene and pseudogene loci. CopySeq revealed that OR loci display an extensive range of locus copy-numbers across individuals, with zero to two copies in some OR loci, and two to nine copies in others. Among genetic variants affecting OR loci we identified deleterious variants including CNVs and SNPs affecting ∼15% and ∼20% of the human OR gene repertoire, respectively, implying that genetic variants with a possible impact on smell perception are widespread. Finally, we found that for several OR loci the reference genome appears to represent a minor-frequency variant, implying a necessary revision of the OR repertoire for future functional studies. CopySeq can ascertain genomic structural variation in specific gene families as well as at a genome-wide scale, where it may enable the quantitative evaluation of CNVs in genome-wide association studies involving high

  4. A use-dependent sodium current modification induced by type I pyrethroid insecticides in honeybee antennal olfactory receptor neurons.

    Science.gov (United States)

    Kadala, Aklesso; Charreton, Mercedes; Jakob, Ingrid; Le Conte, Yves; Collet, Claude

    2011-06-01

    We studied the mode of action of type I pyrethroids on the voltage-dependent sodium current from honeybee olfactory receptor neurons (ORNs), whose proper function in antenna is crucial for interindividual communication in this species. Under voltage-clamp, tetramethrin and permethrin induce a long lasting TTX-sensitive tail current upon repolarization, which is the hallmark of an abnormal prolongation of the open channel configuration. Permethrin and tetramethrin also slow down the sodium current fast inactivation. Tetramethrin and permethrin both bind to the closed state of the channel as suggested by the presence of an obvious tail current after the first single depolarization applied in the presence of either compounds. Moreover, at first sight, channel opening seems to promote tetramethrin and permethrin binding as evidenced by the progressive tail current summation along with trains of stimulations, tetramethrin being more potent at modifying channels than permethrin. However, a use-dependent increase in the sodium peak current along with stimulations suggests that the tail current accumulation could also be a consequence of progressively unmasked silent channels. Experiments with the sea anemone toxin ATX-II that suppresses sodium channels fast inactivation are consistent with the hypothesis that these silent channels are either in an inactivated state at rest, or that they normally inactivate before they open so that they do not participate to the control sodium current. In honeybee ORNs, three processes lead to a use-dependent pyrethroid-induced tail current accumulation: (i) a recruitment of silent channels that produces an increase in the peak sodium current, (ii) a slowing down of the sodium current inactivation produced by prolongation of channels opening and (iii) a typical deceleration in current deactivation. The use-dependent recruitment of silent sodium channels in honeybee ORNs makes pyrethroids more potent at modifying neuronal excitability.

  5. The olfactory transcriptomes of mice.

    Directory of Open Access Journals (Sweden)

    Ximena Ibarra-Soria

    2014-09-01

    Full Text Available The olfactory (OR and vomeronasal receptor (VR repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery.

  6. Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus.

    Science.gov (United States)

    Soffan, Alan; Antony, Binu; Abdelazim, Mahmoud; Shukla, Paraj; Witjaksono, Witjaksono; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus), which is restricted geographically to the southern part of Southeast Asia. Although efficient and sustainable control of these pests remains challenging, olfactory-system disruption has been proposed as a promising approach for controlling palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco) from R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) and examine the effects of RferOrco silencing (RNAi) on odorant detection. RferOrco and RvulOrco encoding 482 amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA) from RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led to the failure of odor-stimulus detection, as confirmed through olfactometer and electroantennography (EAG) assays. These results suggest that olfactory-system disruption leading to reduced pheromone detection holds great potential for RPW pest-control strategies.

  7. Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus

    Science.gov (United States)

    Soffan, Alan; Abdelazim, Mahmoud; Shukla, Paraj; Witjaksono, Witjaksono; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus), which is restricted geographically to the southern part of Southeast Asia. Although efficient and sustainable control of these pests remains challenging, olfactory-system disruption has been proposed as a promising approach for controlling palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco) from R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) and examine the effects of RferOrco silencing (RNAi) on odorant detection. RferOrco and RvulOrco encoding 482 amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA) from RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led to the failure of odor-stimulus detection, as confirmed through olfactometer and electroantennography (EAG) assays. These results suggest that olfactory-system disruption leading to reduced pheromone detection holds great potential for RPW pest-control strategies. PMID:27606688

  8. Biochemical Evidence for a Putative Inositol 1,3,4,5-Tetrakisphosphate Receptor in the Olfactory System of Atlantic Salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Jiongdong Pang

    2013-01-01

    Full Text Available Olfactory receptor neurons in Atlantic salmon (Salmo salar appear to use a phosphoinositide-directed phospholipase C (PLC in odorant signal transduction. The consequences of odor-activated PLC depend on its product, inositol 1,4,5-trisphosphate (IP3. Therefore, a plasma membrane rich (PMR fraction, previously characterized from salmon olfactory rosettes, was used to study binding sites for IP3 and its phosphorylation product, inositol 1,3,4,5-tetrakisphosphate (IP4. Binding sites for IP3 were present at the lower limit for detection in the PMR fraction but were abundant in a microsomal fraction. Binding sites for IP4 were abundant in the PMR fraction and thus colocalized in the same subcellular fraction with odorant receptors for amino acids and bile acids. Binding of IP4 was saturable and high affinity (Kd = 83 nM. The rank order for potency of inhibition of IP4 by other inositol polyphosphates (InsPx followed the phosphorylation number with InsP6 > InsP5 > other InsP4 isomers > InsP3 isomers > InsP2 isomers, with the latter showing no activity. The consequences of PLC activity in this system may be dictated in part by a putative receptor for IP4.

  9. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis.

    Science.gov (United States)

    Chang, Hetan; Liu, Yang; Yang, Ting; Pelosi, Paolo; Dong, Shuanglin; Wang, Guirong

    2015-08-27

    Sexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system. Interestingly, when the responses of PRs were recorded in the presence of PBPs, we measured in several combinations a dramatic increase in signals as well as in sensitivity of such combined systems. Furthermore, the discrimination ability of appropriate combinations of PRs and PBPs was improved compared with the performance of PBPs or PRs alone. Besides further supporting a role of PBPs in the pheromone detection and discrimination, our data shows for the first time that appropriate combinations of PRs and PBPs improved the discrimination ability of PBPs or PRs alone. The variety of responses measured with different pairing of PBPs and PRs indicates the complexity of the olfaction system, which, even for the relatively simple task of detecting sex pheromones, utilises a highly sophisticated combinatorial approach.

  10. The Olfactory Co-receptor Orco from the Migratory Locust (Locusta migratoria and the Desert Locust (Schistocerca gregaria: Identification and Expression pattern

    Directory of Open Access Journals (Sweden)

    Ying Yang, Jürgen Krieger, Long Zhang, Heinz Breer

    2012-01-01

    Full Text Available In locusts, olfaction plays a crucial role for initiating and controlling behaviours, including food seeking and aggregation with conspecifics, which underlie the agricultural pest capacity of the animals. In this context, the molecular basis of olfaction in these insects is of particular interest. Here, we have identified genes of two orthopteran species, Locusta migratoria and Schistocera gregaria, which encode the olfactory receptor co-receptor (Orco. It was found that the sequences of LmigOrco and SgreOrco share a high degree of identity to each other and also to Orco proteins from different insect orders. The Orco-expressing cells in the antenna of S. gregaria and L. migratoria were visualized by in situ hybridization. Orco expression could be assigned to clusters of cells in sensilla basiconica and few cells in sensilla trichoidea, most likely representing olfactory sensory neurons. No Orco-positive cells were detected in sensilla coeloconica and sensilla chaetica. Orco expression was found already in all nymphal stages and was verified in some other tissues which are equipped with chemosensory hairs (mouthparts, tarsi, wings. Together, the results support the notion for a decisive role of Orco in locust olfaction.

  11. The olfactory co-receptor Orco from the migratory locust (Locusta migratoria) and the desert locust (Schistocerca gregaria): identification and expression pattern.

    Science.gov (United States)

    Yang, Ying; Krieger, Jürgen; Zhang, Long; Breer, Heinz

    2012-01-01

    In locusts, olfaction plays a crucial role for initiating and controlling behaviours, including food seeking and aggregation with conspecifics, which underlie the agricultural pest capacity of the animals. In this context, the molecular basis of olfaction in these insects is of particular interest. Here, we have identified genes of two orthopteran species, Locusta migratoria and Schistocera gregaria, which encode the olfactory receptor co-receptor (Orco). It was found that the sequences of LmigOrco and SgreOrco share a high degree of identity to each other and also to Orco proteins from different insect orders. The Orco-expressing cells in the antenna of S. gregaria and L. migratoria were visualized by in situ hybridization. Orco expression could be assigned to clusters of cells in sensilla basiconica and few cells in sensilla trichodea, most likely representing olfactory sensory neurons. No Orco-positive cells were detected in sensilla coeloconica and sensilla chaetica. Orco expression was found already in all nymphal stages and was verified in some other tissues which are equipped with chemosensory hairs (mouthparts, tarsi, wings). Together, the results support the notion for a decisive role of Orco in locust olfaction.

  12. Expression and evolutionary divergence of the non-conventional olfactory receptor in four species of fig wasp associated with one species of fig

    Directory of Open Access Journals (Sweden)

    Xiao Jinhua

    2009-02-01

    Full Text Available Abstract Background The interactions of fig wasps and their host figs provide a model for investigating co-evolution. Fig wasps have specialized morphological characters and lifestyles thought to be adaptations to living in the fig's syconium. Although these aspects of natural history are well documented, the genetic mechanism(s underlying these changes remain(s unknown. Fig wasp olfaction is the key to host-specificity. The Or83b gene class, an unusual member of olfactory receptor family, plays a critical role in enabling the function of conventional olfactory receptors. Four Or83b orthologous genes from one pollinator (PFW (Ceratosolen solmsi and three non-pollinator fig wasps (NPFWs (Apocrypta bakeri, Philotrypesis pilosa and Philotrypesis sp. associated with one species of fig (Ficus hispida can be used to better understand the molecular mechanism underlying the fig wasp's adaptation to its host. We made a comparison of spatial tissue-specific expression patterns and substitution rates of one orthologous gene in these fig wasps and sought evidence for selection pressures. Results A newly identified Or83b orthologous gene was named Or2. Expressions of Or2 were restricted to the heads of all wingless male fig wasps, which usually live in the dark cavity of a fig throughout their life cycle. However, expressions were widely detected in the antennae, legs and abdomens of all female fig wasps that fly from one fig to another for oviposition, and secondarily pollination. Weak expression was also observed in the thorax of PFWs. Compared with NPFWs, the Or2 gene in C. solmsi had an elevated rate of substitutions and lower codon usage. Analyses using Tajima's D, Fu and Li's D* and F* tests indicated a non-neutral pattern of nucleotide variation in all fig wasps. Unlike in NPFWs, this non-neutral pattern was also observed for synonymous sites of Or2 within PFWs. Conclusion The sex- and species-specific expression patterns of Or2 genes detected beyond

  13. Olfactory signaling in insects.

    Science.gov (United States)

    Wicher, Dieter

    2015-01-01

    The detection of volatile chemical information in insects is performed by three types of olfactory receptors, odorant receptors (ORs), specific gustatory receptor (GR) proteins for carbon dioxide perception, and ionotropic receptors (IRs) which are related to ionotropic glutamate receptors. All receptors form heteromeric assemblies; an OR complex is composed of an odor-specific OrX protein and a coreceptor (Orco). ORs and GRs have a 7-transmembrane topology as for G protein-coupled receptors, but they are inversely inserted into the membrane. Ligand-gated ion channels (ionotropic receptors) and ORs operate as IRs activated by volatile chemical cues. ORs are evolutionarily young receptors, and they first appear in winged insects and seem to be evolved to allow an insect to follow sparse odor tracks during flight. In contrast to IRs, the ORs can be sensitized by repeated subthreshold odor stimulation. This process involves metabotropic signaling. Pheromone receptors are especially sensitive and require an accessory protein to detect the lipid-derived pheromone molecules. Signaling cascades involved in pheromone detection depend on intensity and duration of stimuli and underlie a circadian control. Taken together, detection and processing of volatile information in insects involve ionotropic as well as metabotropic mechanisms. Here, I review the cellular signaling events associated with detection of cognate ligands by the different types of odorant receptors.

  14. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    Directory of Open Access Journals (Sweden)

    Petra eAmchova

    2014-03-01

    Full Text Available Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed higher voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 µg/kg/infusion. To this aim, olfactory-bulbectomized (OBX and sham-operated (SHAM Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous (FR-1 schedule of reinforcement in 2h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behaviour after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg, did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2 reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.

  15. Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry.

    Science.gov (United States)

    Persson, Laura; Witt, Rochelle M; Galligan, Meghan; Greer, Paul L; Eisner, Adriana; Pazyra-Murphy, Maria F; Datta, Sandeep R; Segal, Rosalind A

    2014-12-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (Shh(Ala/Ala)), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature Shh(Ala/Ala) mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry.

  16. Expression of estrogen receptor (ER) -α and -β transcripts in the neonatal and adult rat cerebral cortex, cerebellum, and olfactory bulb

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present study expression of estrogen receptor subtype -α (ERα) and -β (ERβ) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1~ 3-days-old) and adult (250~350g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERα transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERα was present in the adult cerebral cortex. No significant difference in ERβ transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERα expression was significantly weaker than ERβ. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERα transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERα/ERβ transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.

  17. Olfactory receptor neuron responses of a longhorned beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), to pheromone, host, and non-host volatiles.

    Science.gov (United States)

    MacKay, Colin A; Sweeney, Jon D; Hillier, N Kirk

    2015-12-01

    Longhorn wood-boring beetles (Coleoptera: Cerambycidae) use olfactory cues to find mates and hosts for oviposition. Tetropium fuscum (Fabr.) is an invasive longhorned wood-boring beetle originating from Europe that has been established in Nova Scotia, Canada, since at least 1990. This study used single sensillum recordings (SSR) to determine the response of olfactory receptor neurons (ORNs) in the antennal sensilla of male and female T. fuscum to different kinds of olfactory cues, namely host volatiles, non-host volatiles, the aggregation pheromone of T. fuscum (fuscumol), and an aggregation pheromone emitted by other species of longhorn beetles (3-hydroxyhexan-2-one). Each compound had been previously shown to elicit antennal activity in T. fuscum using electroantennography or had been shown to elicit behavioral activity in T. fuscum or other cerambycids. There have been very few SSR studies done on cerambycids, and ours is the first to compare response profiles of pheromone components as well as host and non-host volatiles. Based on SSR studies with other insects, we predicted we would find ORNs that responded to the pheromone alone (pheromone-specialists), as well as ORNs that responded only to host or non-host volatiles, i.e., separation of olfactory cue perception at the ORN level. Also, because male T. fuscum emerge earlier than females and are the pheromone-emitting sex, we predicted that the number of pheromone-sensitive ORNs would be greater in females than males. We found 140 ORNs housed within 97 sensilla that responded to at least one of the 13 compounds. Fuscumol-specific ORNs made up 15% (21/140) of all recordings, but contrary to our prediction, an additional 22 ORNs (16%) responded to fuscumol plus at least one other compound; in total, fuscumol elicited a response from 43/140 (31%) of ORNs with fuscumol-specific ORNs accounting for half of these. Thus, our prediction that pheromone reception would be segregated on specialist ORNs was only partially

  18. Five types of olfactory receptor neurons in the strawberry blossom weevil Anthonomus rubi: selective responses to inducible host-plant volatiles.

    Science.gov (United States)

    Bichão, Helena; Borg-Karlson, Anna-Karin; Araújo, Jorge; Mustaparta, Hanna

    2005-02-01

    Plants release hundreds of volatiles that are important in the interaction with herbivorous animals, but which odorants are detected by which species? In this study, single receptor neurons on the antenna of the oligophagous strawberry blossom weevil Anthonomus rubi were screened for sensitivity to naturally produced plant compounds by the use of gas chromatography linked to electrophysiological recordings from single cells. The narrow tuning of the neurons was demonstrated by responses solely to a few structurally related sesquiterpenes, aromatics or monoterpene hydrocarbons out of hundreds of plant constituents tested. We present five olfactory receptor neuron types, identified according to one primary odorant i.e. the compound to which the neurons are most sensitive. These odorants, (-)-germacrene D, (-)-beta-caryophyllene, methyl salicylate, E-beta-ocimene and (3E)-4,8-dimethyl-1,3,7-nonatriene, present in the intact strawberry plant, are induced in higher amounts by weevil feeding. This suggests that these compounds can provide information about the presence of conspecifics. We used protocols especially designed to allow comparison with previously investigated species. Striking similarities, but also differences, are demonstrated between receptor neuron specificity in the strawberry weevil and moths.

  19. Aging in the olfactory system.

    Science.gov (United States)

    Mobley, Arie S; Rodriguez-Gil, Diego J; Imamura, Fumiaki; Greer, Charles A

    2014-02-01

    With advancing age, the ability of humans to detect and discriminate odors declines. In light of the rapid progress in analyzing molecular and structural correlates of developing and adult olfactory systems, the paucity of information available on the aged olfactory system is startling. A rich literature documents the decline of olfactory acuity in aged humans, but the underlying cellular and molecular mechanisms are largely unknown. Using animal models, preliminary work is beginning to uncover differences between young and aged rodents that may help address the deficits seen in humans, but many questions remain unanswered. Recent studies of odorant receptor (OR) expression, synaptic organization, adult neurogenesis, and the contribution of cortical representation during aging suggest possible underlying mechanisms and new research directions.

  20. Mating behavior induces changes of expression of Fos protein, plasma testosterone and androgen receptors in the accessory olfactory bulb (AOB of the male mandarin vole Microtus mandarinus

    Directory of Open Access Journals (Sweden)

    Fengqin HE, Fadao TAI

    2009-08-01

    Full Text Available In order to investigate the neuroendocrine mechanism of the mating behavior in the adult male mandarin voles Microtus mandarinus, the radioimmunoassay (RIA and immunohistochemistry methods were used to investigate the differences in plasma testosterone (T concentrations and distribution of T immunoreactive neurons (T-IRs, androgen receptor immunoreactive neurons (AR-IRs and Fos protein immunoreactive neurons (Fos-IRs in the accessory olfactory bulb (AOB and the main olfactory bulb (MOB following exposure to clean hard-wood shavings (control group, soiled bedding (exposure group or contact with an estrous female (mating group. Results showed that plasma T concentration was significantly higher in the mating group than that in the exposure group, and both the mating group and the exposure group displayed significantly higher plasma T concentration than the control group. T-IRs, AR-IRs and Fos-IRs were investigated with the immunohistochemistry method in granule cell (GC and mitral cell (MC of the MOB and the AOB in the three groups. There were significantly more T-IRs, AR-IRs and Fos-IRs in MC and GC of the AOB in the mating group than that in the exposure group or the control group. T-IRs, AR-IRs and Fos-IRs did not show significant differences between the exposure group and the control group. Furthermore, obvious differences in MC and GC of the MOB were not found among the three groups. The results confirm that both changes of T and AR in the AOB might be underlying mating behavior in the adult male mandarin voles [Current Zoology 55 (4: 288–295, 2009].

  1. Functional olfactory sensory neurons housed in olfactory sensilla on the ovipositor of the hawkmoth Manduca sexta.

    Directory of Open Access Journals (Sweden)

    Christian Felix Klinner

    2016-11-01

    Full Text Available Olfactory systems evolved to detect and identify volatile chemical cues, in many cases across great distances. However, the precision of copulatory and oviposition behaviors suggest that they may be guided by olfactory cues detected by sensory systems located on or near the ovipositor. Here we present evidence of a small number of functional olfactory sensilla on the ovipositor of the hawkmoth Manduca sexta. Gene expression analysis of isolated ovipositor tissue indicated active transcription of gustatory and both classes of olfactory receptor genes. Expression of the olfactory co-receptor ORCo and the antennal ionotropic co-receptors IR8a and IR25a suggests that functional olfactory proteins may be present in the sensory structures located on the ovipositor. Scanning electron microscopy identified five to nine porous sensilla on each of the anal papillae of the ovipositor. Furthermore, HRP immunostaining indicated that these sensilla are innervated by the dendrite-like structures from multiple neurons. Finally, we functionally characterized neural responses in these sensilla using single sensillum recordings. Stimulation with a panel of 142 monomolecular odorants revealed that these sensilla indeed house functional olfactory sensory neurons (OSNs. While it remains to be determined what role these chemosensory sensilla play in odor and gustatory guided behaviors, our data clearly demonstrate an olfactory function for neurons present in M. sexta ovipositor sensilla.

  2. Mechanisms of permanent loss of olfactory receptor neurons induced by the herbicide 2,6-dichlorobenzonitrile: Effects on stem cells and noninvolvement of acute induction of the inflammatory cytokine IL-6

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Fang; Fang, Cheng [Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); School of Public Health, State University of New York at Albany, NY 12201 (United States); Schnittke, Nikolai [Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Schwob, James E. [Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Ding, Xinxin, E-mail: xding@wadsworth.org [Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); School of Public Health, State University of New York at Albany, NY 12201 (United States)

    2013-11-01

    We explored the mechanisms underlying the differential effects of two olfactory toxicants, the herbicide 2,6-dichlorobenzonitrile (DCBN) and the anti-thyroid drug methimazole (MMZ), on olfactory receptor neuron (ORN) regeneration in mouse olfactory epithelium (OE). DCBN, but not MMZ, induced inflammation-like pathological changes in OE, and DCBN increased interleukin IL-6 levels in nasal-wash fluid to much greater magnitude and duration than did MMZ. At 24 h after DCBN injection, the population of horizontal basal cells (HBCs; reserve, normally quiescent OE stem cells) lining the DMM became severely depleted as some of them detached from the basal lamina, and sloughed into the nasal cavity along with the globose basal cells (GBCs; heterogeneous population of stem and progenitor cells), neurons, and sustentacular cells of the neuroepithelium. In contrast, the layer of HBCs remained intact in MMZ-treated mice, as only the mature elements of the neuroepithelium were shed. Despite the respiratory metaplasia accompanying the greater severity of the DCBN lesion, residual HBCs that survived intoxication were activated by the injury and contributed to the metaplastic respiratory epithelium, as shown by tracing their descendants in a K5CreEr{sup T2}::fl(stop)TdTomato strain of mice in which recombination causes HBCs to express TdTomato in advance of the lesion. But, contrary to published observations with MMZ, the HBCs failed to form ORNs. A role for IL-6 in suppressing ORN regeneration in DCBN-treated mice was rejected by the failure of the anti-inflammatory drug dexamethasone to prevent the subsequent respiratory metaplasia in the DMM, suggesting that other factors lead to HBC neuro-incompetence. - Highlights: • The herbicide dichlobenil (DCBN) can damage olfactory epithelium stem cells. • Another olfactory toxicant, methimazole, leaves the olfactory stem cells intact. • DCBN, but not methimazole, induces a prolonged increase in nasal IL-6 levels. • Dexamethasone

  3. 50 CFR 17.4 - Pre-Act wildlife.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Pre-Act wildlife. 17.4 Section 17.4 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE...

  4. 47 CFR 17.4 - Antenna structure registration.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed...

  5. Organization and distribution of glomeruli in the bowhead whale olfactory bulb

    Directory of Open Access Journals (Sweden)

    Takushi Kishida

    2015-04-01

    Full Text Available Although modern baleen whales (Mysticeti retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals.

  6. Stimulation of the Sigma-1 Receptor by DHEA Enhances Synaptic Efficacy and Neurogenesis in the Hippocampal Dentate Gyrus of Olfactory Bulbectomized Mice

    Science.gov (United States)

    Moriguchi, Shigeki; Shinoda, Yasuharu; Yamamoto, Yui; Sasaki, Yuzuru; Miyajima, Kosuke; Tagashira, Hideaki; Fukunaga, Kohji

    2013-01-01

    Dehydroepiandrosterone (DHEA) is the most abundant neurosteroid synthesized de novo in the central nervous system. We previously reported that stimulation of the sigma-1 receptor by DHEA improves cognitive function by activating calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C and extracellular signal-regulated kinase in the hippocampus in olfactory bulbectomized (OBX) mice. Here, we asked whether DHEA enhances neurogenesis in the subgranular zone of the hippocampal dentate gyrus (DG) and improves depressive-like behaviors observed in OBX mice. Chronic treatment with DHEA at 30 or 60 mg/kg p.o. for 14 days significantly improved hippocampal LTP impaired in OBX mice concomitant with increased CaMKII autophosphorylation and GluR1 (Ser-831) phosphorylation in the DG. Chronic DHEA treatment also ameliorated depressive-like behaviors in OBX mice, as assessed by tail suspension and forced swim tests, while a single DHEA treatment had no affect. DHEA treatment also significantly increased the number of BrdU-positive neurons in the subgranular zone of the DG of OBX mice, an increase inhibited by treatment with NE-100, a sigma-1 receptor antagonist. DHEA treatment also significantly increased phosphorylation of Akt (Ser-473), Akt (Ser-308) and ERK in the DG. Furthermore, GSK-3β (Ser-9) phosphorylation increased in the DG of OBX mice possibly accounting for increased neurogenesis through Akt activation. Finally, we confirmed that DHEA treatment of OBX mice increases the number of BrdU-positive neurons co-expressing β-catenin, a downstream GSK-3βtarget. Overall, we conclude that sigma-1 receptor stimulation by DHEA ameliorates OBX-induced depressive-like behaviors by increasing neurogenesis in the DG through activation of the Akt/GSK-3β/β-catenin pathway. PMID:23593332

  7. Stimulation of the sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice.

    Directory of Open Access Journals (Sweden)

    Shigeki Moriguchi

    Full Text Available Dehydroepiandrosterone (DHEA is the most abundant neurosteroid synthesized de novo in the central nervous system. We previously reported that stimulation of the sigma-1 receptor by DHEA improves cognitive function by activating calcium/calmodulin-dependent protein kinase II (CaMKII, protein kinase C and extracellular signal-regulated kinase in the hippocampus in olfactory bulbectomized (OBX mice. Here, we asked whether DHEA enhances neurogenesis in the subgranular zone of the hippocampal dentate gyrus (DG and improves depressive-like behaviors observed in OBX mice. Chronic treatment with DHEA at 30 or 60 mg/kg p.o. for 14 days significantly improved hippocampal LTP impaired in OBX mice concomitant with increased CaMKII autophosphorylation and GluR1 (Ser-831 phosphorylation in the DG. Chronic DHEA treatment also ameliorated depressive-like behaviors in OBX mice, as assessed by tail suspension and forced swim tests, while a single DHEA treatment had no affect. DHEA treatment also significantly increased the number of BrdU-positive neurons in the subgranular zone of the DG of OBX mice, an increase inhibited by treatment with NE-100, a sigma-1 receptor antagonist. DHEA treatment also significantly increased phosphorylation of Akt (Ser-473, Akt (Ser-308 and ERK in the DG. Furthermore, GSK-3β (Ser-9 phosphorylation increased in the DG of OBX mice possibly accounting for increased neurogenesis through Akt activation. Finally, we confirmed that DHEA treatment of OBX mice increases the number of BrdU-positive neurons co-expressing β-catenin, a downstream GSK-3βtarget. Overall, we conclude that sigma-1 receptor stimulation by DHEA ameliorates OBX-induced depressive-like behaviors by increasing neurogenesis in the DG through activation of the Akt/GSK-3β/β-catenin pathway.

  8. Influence of blood meal on the responsiveness of olfactory receptor neurons in antennal sensilla trichodea of the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Siju, K P; Hill, Sharon R; Hansson, Bill S; Ignell, Rickard

    2010-06-01

    In female Aedes aegypti L. mosquitoes, a blood meal induces physiological and behavioral changes. Previous studies have shown that olfactory receptor neurons (ORNs) housed in grooved peg sensilla on the antennae of Ae. aegypti down-regulate their sensitivity to lactic acid, a key component driving host-seeking behavior, which correlates with observed changes in the host-seeking behavior of this species. In the present study, we performed electrophysiological recordings from the most abundant antennal sensillum type, sensilla trichodea. Our results indicate that the response spectra of ORNs contained within most trichoid sensilla do not change in response to blood feeding. However, we observe an increase in sensitivity to primarily indole and phenolic compounds in neurons housed within four of the five functional types of short blunt tipped II trichoid sensilla, both at 24 and 72h post-blood feeding, which was more pronounced at 24h than 72h. Furthermore, sensitivity to undecanone, acetic acid and propionic acid was observed to increase 72h post-blood meal. Considering the timing of these changes, we believe that these neurons may be involved in driving the orientation behavior of female mosquitoes to oviposition sites, which are known to release these compounds. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals.

    Science.gov (United States)

    Niimura, Yoshihito; Matsui, Atsushi; Touhara, Kazushige

    2014-09-01

    Olfactory receptors (ORs) detect odors in the environment, and OR genes constitute the largest multigene family in mammals. Numbers of OR genes vary greatly among species--reflecting the respective species' lifestyles--and this variation is caused by frequent gene gains and losses during evolution. However, whether the extent of gene gains/losses varies among individual gene lineages and what might generate such variation is unknown. To answer these questions, we used a newly developed phylogeny-based method to classify >10,000 intact OR genes from 13 placental mammal species into 781 orthologous gene groups (OGGs); we then compared the OGGs. Interestingly, African elephants had a surprisingly large repertoire (∼ 2000) of functional OR genes encoded in enlarged gene clusters. Additionally, OR gene lineages that experienced more gene duplication had weaker purifying selection, and Class II OR genes have evolved more dynamically than those in Class I. Some OGGs were highly expanded in a lineage-specific manner, while only three OGGs showed complete one-to-one orthology among the 13 species without any gene gains/losses. These three OGGs also exhibited highly conserved amino acid sequences; therefore, ORs in these OGGs may have physiologically important functions common to every placental mammal. This study provides a basis for inferring OR functions from evolutionary trajectory. © 2014 Niimura et al.; Published by Cold Spring Harbor Laboratory Press.

  10. 17-4 PH and 15-5 PH

    Science.gov (United States)

    Johnson, Howard T.

    1995-01-01

    17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

  11. Whole-cell recording from honeybee olfactory receptor neurons: ionic currents, membrane excitability and odourant response in developing workerbee and drone.

    Science.gov (United States)

    Laurent, Stéphanie; Masson, Claudine; Jakob, Ingrid

    2002-04-01

    Whole-cell recording techniques were used to characterize ionic membrane currents and odourant responses in honeybee olfactory receptor neurons (ORNs) in primary cell culture. ORNs of workerbee (female) and drone (male) were isolated at an early stage of development before sensory axons connect to their target in the antennal lobe. The results collectively indicate that honeybee ORNs have electrical properties similar, but not necessarily identical to, those currently envisaged for ORNs of other species. Under voltage clamp at least four ionic currents could be distinguished. Inward currents were made of a fast transient, tetrodotoxin-sensitive sodium current. In some ORNs a cadmium-sensitive calcium current was detected. ORNs showed heterogeneity in their outward currents: either outward currents were made of a delayed rectifier type potassium current, which was partially blocked by tetraethyl ammonium or quinidine, or were composed of a delayed rectifier type and a transient calcium-dependent potassium current, which was cadmium-sensitive and abolished by removal of external calcium. The proportion of each of the two outward currents, however, was different within the ORNs of the two sexes suggesting a gender-specific functional heterogeneity. ORNs showed heterogeneity in action potential firing properties: depolarizing current steps elicited either one action potential or, as in most of the cells, it led to repetitive spiking. Action potentials were tetrodotoxin-sensitive suggesting they are carried by sodium. Odourant stimulation with different mixtures and pure substances evoked depolarizing receptor potentials with superimposed action potentials when spike threshold was reached. In summary, honeybee ORNs are remarkably mature at early stages in their development.

  12. Olfactory Neuroblastoma: Diagnostic Difficulty

    Directory of Open Access Journals (Sweden)

    Vidya MN,

    2011-01-01

    Full Text Available Olfactory neuroblastoma is an uncommon malignant tumor of sinonasal tract arising from the olfactory neuro epithelium. The olfactory neuroblastomas presenting with divergent histomorphologies like, epithelial appearance of cells, lacking a neuro fibrillary background and absence of rosettes are difficult to diagnose. Such cases require immunohistochemistry to establish the diagnosis. We describe the clinical features, pathological and immunohistochemical findings of grade IV Olfactory neuroblastoma in a 57 year old man

  13. Olfactory ensheathing cell tumor

    Directory of Open Access Journals (Sweden)

    Ippili Kaushal

    2009-01-01

    Full Text Available Olfactory ensheathing cells (OECs are found in the olfactory bulb and olfactory nasal mucosa. They resemble Schwann cells on light and electron microscopy, however, immunohistochemical staining can distinguish between the two. There are less than 30 cases of olfactory groove schwannomas reported in the literature while there is only one reported case of OEC tumor. We report an OEC tumor in a 42-year-old male and discuss the pathology and origin of this rare tumor.

  14. 22 CFR 17.4 - Equity and good conscience.

    Science.gov (United States)

    2010-04-01

    ... DISABILITY FUND UNDER THE FOREIGN SERVICE RETIREMENT AND DISABILITY SYSTEM (FSRDS) AND THE FOREIGN SERVICE PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  15. 昆虫气味受体及其介导的嗅觉信号转导途径%Insect Odorant Receptors and their Olfactory Signal Transduction Pathway

    Institute of Scientific and Technical Information of China (English)

    俞明明; 徐文岳

    2011-01-01

    Protection against insect bites is one of the main strategies in prevention and control of the vectorborne diseases. However , due to the obvious shortcomings of traditional control methods, it is necessary to develop new control measures. Most insects rely on their olfactory systems for host and mate location. Interfering with insect olfactory systems is becoming a hot research area in the control of vector-borne diseases. As odorant receptors play a major role in perception of odorant molecules by insect olfactory system, this paper summarizes the recent progress on insect odorant receptors and their olfactory signal transduction.%减少媒介昆虫的叮咬是控制虫媒病的重要手段.然而,传统防制手段的弊端已逐渐暴露,因此,研制新型防制方法 迫在眉睫.昆虫寻找宿主和吸血等行为在很大程度上是由其嗅觉系统控制的,因此,通过干扰昆虫嗅觉系统进行防制成为新的虫媒病控制手段.在昆虫通过嗅觉系统感受环境中众多气味分子的过程中,昆虫气味受体的作用尤为重要.本文就昆虫气味受体及其介导的嗅觉信号转导等方面取得的研究进展作一简要综述.

  16. Relation of the volume of the olfactory bulb to psychophysical measures of olfactory function.

    Science.gov (United States)

    Mazal, Patricia Portillo; Haehner, Antje; Hummel, Thomas

    2016-01-01

    The aim of this review is to investigate whether changes in olfactory bulb volume relate to changes in specific olfactory functions. We studied currently available peer-reviewed articles on the volume of the human olfactory bulb that also included a psychophysical measure of olfactory function. In the present review, we observed a very clear and consistent correlation between general olfactory function and olfactory bulb (OB) volume. We were not able to find a clear relationship between a specific smell component and OB volume, even when analyzing pathologic conditions separately. In some cases, changes were observed for different subtests, but these changes did not significantly correlate with OB volume or had only a borderline correlation. In other cases, we found contradictory data. Several factors may contribute to the difficulties in finding correlations with the different components of smell: (1) the OB volume may be influenced by information from olfactory receptor neurons (bottom-up effect), information from central nervous system (top-down effect) and by direct damage; (2) most pathologic conditions affect more than one area of the olfactory pathway; (3) small sample sizes of hyposmic subjects were used. We believe that it is necessary to do further studies with larger numbers of subjects to answer the currently investigated question.

  17. Quality Coding by Neural Populations in the Early Olfactory Pathway: Analysis Using Information Theory and Lessons for Artificial Olfactory Systems

    Science.gov (United States)

    Fonollosa, Jordi; Gutierrez-Galvez, Agustin; Marco, Santiago

    2012-01-01

    In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble’s performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic. PMID:22719851

  18. Expression profiling of olfactory receptor gene Ⅱ in the tobacco cutworm, Spodoptera litura(Lepidoptera: Noctuidae)%斜纹夜蛾嗅觉受体基因Ⅱ的表达谱分析

    Institute of Scientific and Technical Information of China (English)

    陈茜; 吴仲南; 杜永均; 诸葛启钏

    2011-01-01

    气味调控斜纹夜蛾Spodoptera litura的觅食、交配和产卵等行为,而嗅觉受体(olfactory receptor,OR)作为气味的直接受体,是嗅觉神经信号产生的起点,是嗅觉信息的编码及信号的传递通路的重要组成部分.本研究通过RTPCR和Western blot技术,对斜纹夜蛾嗅觉受体基因Ⅱ(Spodoptera litura olfactory receptor geneⅡ,SlitOR2)(GenBank登录号:DQ845292)的组织特异性和不同发育阶段表达情况进行分析鉴定.半定量RT-PCR研究结果表明,SlitOR2主要在成虫期的触角中表达,其他部位和发育期未检测到表达.Western blot鉴定结果表明SlitOR2主要在成虫触角表达,与半定量RT-PCR结果基本一致.但在成虫足、头和中期蛹中也看到有微量蛋白表达.可能是与目的蛋白大小类似的其他非特异性蛋白条带,也可能是该蛋白在成虫足部、头部和中期蛹中有微量表达,因为足部的跗节和头部的口喙也分布有少量的嗅觉感器.目的条带单一清晰,表明制备的多肽抗体特异性较好,可以用于后续相关实验.%Odour chemically mediates foraging, mating and oviposition behaviour of the tobacco cutworm, Spodoptera litura ( Fabricius) ( Lepidoptera, Noctuidae ). The olfactory receptor is a direct receptor of odours and a key component of olfactory system, which plays an important role in encoding and transmission pathway of olfactory signal. By using RT-PCR and Western blot techniques, the tissue-specific expression of S. Litura olfactory receptor gene II ( SIUOR2 ) ( GenBank accession no. DQ845292) in different developmental stages was analyzed and identified. Semi-quantitative RT-PCR analysis indicated that SIUOR2 mRNA was mainly expressed in the adult antennae. Western blot result showed SlitOR2 was expressed mainly in the adult antennae, which was consistent with the previous semi-quantitative RT-PCR results. But there were also trace proteins which are expressed in the adult legs, head and mid

  19. Olfactory system and demyelination.

    Science.gov (United States)

    Garcia-Gonzalez, D; Murcia-Belmonte, V; Clemente, D; De Castro, F

    2013-09-01

    Within the central nervous system, the olfactory system represents one of the most exciting scenarios since it presents relevant examples of long-life sustained neurogenesis and continuous axonal outgrowth from the olfactory epithelium with the subsequent plasticity phenomena in the olfactory bulb. The olfactory nerve is composed of nonmyelinated axons with interesting ontogenetic interpretations. However, the centripetal projections from the olfactory bulb are myelinated axons which project to more caudal areas along the lateral olfactory tract. In consequence, demyelination has not been considered as a possible cause of the olfactory symptoms in those diseases in which this sense is impaired. One prototypical example of an olfactory disease is Kallmann syndrome, in which different mutations give rise to combined anosmia and hypogonadotropic hypogonadism, together with different satellite symptoms. Anosmin-1 is the extracellular matrix glycoprotein altered in the X-linked form of this disease, which participates in cell adhesion and migration, and axonal outgrowth in the olfactory system and in other regions of the central nervous system. Recently, we have described a new patho-physiological role of this protein in the absence of spontaneous remyelination in multiple sclerosis. In the present review, we hypothesize about how both main and satellite neurological symptoms of Kallmann syndrome may be explained by alterations in the myelination. We revisit the relationship between the olfactory system and myelin highlighting that minor histological changes should not be forgotten as putative causes of olfactory malfunction.

  20. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  1. Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae

    NARCIS (Netherlands)

    Qiu, Y.T.; Loon, van J.J.A.; Takken, W.; Meijerink, J.; Smid, H.M.

    2006-01-01

    Olfactory receptor neurons (ORNs) in the antenna of insects serve to encode odors in action potential activity conducted to the olfactory lobe of the deuterocerebrum. We performed an analysis of the electrophysiological responses of olfactory neurons in the antennae of the female malaria mosquito An

  2. Identification of paralogous HERV-K LTRs on human chromosomes 3, 4, 7 and 11 in regions containing clusters of olfactory receptor genes.

    Science.gov (United States)

    Nadezhdin, E V; Lebedev, Y B; Glazkova, D V; Bornholdt, D; Arman, I P; Grzeschik, K H; Hunsmann, G; Sverdlov, E D

    2001-07-01

    A locus harboring a human endogenous retroviral LTR (long terminal repeat) was mapped on the short arm of human chromosome 7 (7p22), and its evolutionary history was investigated. Sequences of two human genome fragments that were homologous to the LTR-flanking sequences were found in human genome databases: (1) an LTR-containing DNA fragment from region 3p13 of the human genome, which includes clusters of olfactory receptor genes and pseudogenes; and (2) a fragment of region 21q22.1 lacking LTR sequences. PCR analysis demonstrated that LTRs with highly homologous flanking sequences could be found in the genomes of human, chimp, gorilla, and orangutan, but were absent from the genomes of gibbon and New World monkeys. A PCR assay with a primer set corresponding to the sequence from human Chr 3 allowed us to detect LTR-containing paralogous sequences on human chromosomes 3, 4, 7, and 11. The divergence times for the LTR-flanking sequences on chromosomes 3 and 7, and the paralogous sequence on chromosome 21, were evaluated and used to reconstruct the order of duplication events and retroviral insertions. (1) An initial duplication event that occurred 14-17 Mya and before LTR insertion - produced two loci, one corresponding to that located on Chr 21, while the second was the ancestor of the loci on chromosomes 3 and 7. (2) Insertion of the LTR (most probably as a provirus) into this ancestral locus took place 13 Mya. (3) Duplication of the LTR-containing ancestral locus occurred 11 Mya, forming the paralogous modern loci on Chr 3 and 7.

  3. Neural sensitivity to odorants in deprived and normal olfactory bulbs.

    Directory of Open Access Journals (Sweden)

    Francisco B Rodríguez

    Full Text Available Early olfactory deprivation in rodents is accompanied by an homeostatic regulation of the synaptic connectivity in the olfactory bulb (OB. However, its consequences in the neural sensitivity and discrimination have not been elucidated. We compared the odorant sensitivity and discrimination in early sensory deprived and normal OBs in anesthetized rats. We show that the deprived OB exhibits an increased sensitivity to different odorants when compared to the normal OB. Our results indicate that early olfactory stimulation enhances discriminability of the olfactory stimuli. We found that deprived olfactory bulbs adjusts the overall excitatory and inhibitory mitral cells (MCs responses to odorants but the receptive fields become wider than in the normal olfactory bulbs. Taken together, these results suggest that an early natural sensory stimulation sharpens the receptor fields resulting in a larger discrimination capability. These results are consistent with previous evidence that a varied experience with odorants modulates the OB's synaptic connections and increases MCs selectivity.

  4. The olfactory bulb and the number of its glomeruli in the common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Moriya-Ito, Keiko; Tanaka, Ikuko; Umitsu, Yoshitomo; Ichikawa, Masumi; Tokuno, Hironobu

    2015-04-01

    The olfactory system has been well studied in mammals such as mice and rats. However, few studies have focused on characterizing this system in diurnal primates that rely on their sense of smell to a lesser extent due to their ecological environment. In the present study, we determined the histological organization of the olfactory bulb in the common marmoset (Callithrix jacchus). We then constructed 3-dimensional models of the glomeruli of the olfactory bulb, and estimated the number of glomeruli. Olfactory glomeruli are the functional units of olfactory processing, and have been investigated in detail using mice. There are approximately 1800 glomeruli in a mouse hemibulb, and olfactory sensory neurons expressing one selected olfactory receptor converge onto one or two glomeruli. Because mice have about 1000 olfactory receptor genes, it is proposed that the number of glomeruli in mammals is nearly double that of olfactory receptor genes. The common marmoset carries only about 400 intact olfactory receptor genes. The present study revealed that the number of glomeruli in a marmoset hemibulb was approximately 1500-1800. This result suggests that the number of glomeruli is not positively correlated with the number of intact olfactory receptor genes in mammals.

  5. Anatomical specializations for enhanced olfactory sensitivity in kiwi, Apteryx mantelli.

    Science.gov (United States)

    Corfield, Jeremy R; Eisthen, Heather L; Iwaniuk, Andrew N; Parsons, Stuart

    2014-01-01

    The ability to function in a nocturnal and ground-dwelling niche requires a unique set of sensory specializations. The New Zealand kiwi has shifted away from vision, instead relying on auditory and tactile stimuli to function in its environment and locate prey. Behavioral evidence suggests that kiwi also rely on their sense of smell, using olfactory cues in foraging and possibly also in communication and social interactions. Anatomical studies appear to support these observations: the olfactory bulbs and tubercles have been suggested to be large in the kiwi relative to other birds, although the extent of this enlargement is poorly understood. In this study, we examine the size of the olfactory bulbs in kiwi and compare them with 55 other bird species, including emus, ostriches, rheas, tinamous, and 2 extinct species of moa (Dinornithiformes). We also examine the cytoarchitecture of the olfactory bulbs and olfactory epithelium to determine if any neural specializations beyond size are present that would increase olfactory acuity. Kiwi were a clear outlier in our analysis, with olfactory bulbs that are proportionately larger than those of any other bird in this study. Emus, close relatives of the kiwi, also had a relative enlargement of the olfactory bulbs, possibly supporting a phylogenetic link to well-developed olfaction. The olfactory bulbs in kiwi are almost in direct contact with the olfactory epithelium, which is indeed well developed and complex, with olfactory receptor cells occupying a large percentage of the epithelium. The anatomy of the kiwi olfactory system supports an enhancement for olfactory sensitivities, which is undoubtedly associated with their unique nocturnal niche.

  6. Olfactory Mucosa Tissue Based Biosensor for Bioelectronic Nose

    Science.gov (United States)

    Liu, Qingjun; Ye, Weiwei; Yu, Hui; Hu, Ning; Cai, Hua; Wang, Ping

    2009-05-01

    Biological olfactory system can distinguish thousands of odors. In order to realize the biomimetic design of electronic nose on the principle of mammalian olfactory system, we have reported bioelectronic nose based on cultured olfactory cells. In this study, the electrical property of the tissue-semiconductor interface was analyzed by the volume conductor theory and the sheet conductor model. Olfactory mucosa tissue of rat was isolated and fixed on the surface of the light-addressable potentiometric sensor (LAPS), with the natural stations of the neuronal populations and functional receptor unit of the cilia well reserved. By the extracellular potentials of the olfactory receptor cells of the mucosa tissue monitored, both the simulation and the experimental results suggested that this tissue-semiconductor hybrid system was sensitive to odorants stimulation.

  7. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb.

    Science.gov (United States)

    Kass, Marley D; Pottackal, Joseph; Turkel, Daniel J; McGann, John P

    2013-01-01

    Olfactory sensory deprivation during development has been shown to induce significant alterations in the neurophysiology of olfactory receptor neurons (ORNs), the primary sensory inputs to the brain's olfactory bulb. Deprivation has also been shown to alter the neurochemistry of the adult olfactory system, but the physiological consequences of these changes are poorly understood. Here we used in vivo synaptopHluorin (spH) imaging to visualize odorant-evoked neurotransmitter release from ORNs in adult transgenic mice that underwent 4 weeks of unilateral olfactory deprivation. Deprivation reduced odorant-evoked spH signals compared with sham-occluded mice. Unexpectedly, this reduction was equivalent between ORNs on the open and plugged sides. Changes in odorant selectivity of glomerular subpopulations of ORNs were also observed, but only in ORNs on the open side of deprived mice. These results suggest that naris occlusion in adult mice produces substantial changes in primary olfactory processing which may reflect not only the decrease in olfactory stimulation on the occluded side but also the alteration of response properties on the intact side. We also observed a modest effect of true sham occlusions that included noseplug insertion and removal, suggesting that conventional noseplug techniques may have physiological effects independent of deprivation per se and thus require more careful controls than has been previously appreciated.

  8. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  9. Hot Ductility of the 17-4 PH Stainless Steels

    Science.gov (United States)

    Herrera Lara, V.; Guerra Fuentes, L.; Covarrubias Alvarado, O.; Salinas Rodriguez, A.; Garcia Sanchez, E.

    2016-03-01

    The mechanisms of loss of hot ductility and the mechanical behavior of 17-4 PH alloys were investigated using hot tensile testing at temperatures between 700 and 1100 °C and strain rates of 10-4, 10-2, and 10-1 s-1. Scanning electron microscopy was used in conjunction with the results of the tensile tests to find the temperature region of loss of ductility and correlate it with cracking observed during processing by hot upsetting prior to ring rolling. It is reported that 17-4 PH alloys lose ductility in a temperature range around 900 °C near to the duplex austenite + ferrite phase field. Furthermore, it is found that niobium carbides precipitated at austenite/ferrite interfaces and grain boundaries have a pronounced effect on the mechanical behavior of the alloy during high-temperature deformation.

  10. Go contributes to olfactory reception in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Roman Gregg

    2009-01-01

    Full Text Available Abstract Background Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology and function as ligand-gated cation channels. Consequently, the involvement of cyclic nucleotides and G proteins in insect odor reception is controversial. Since the heterotrimeric Goα subunit is expressed in Drosophila olfactory receptor neurons, we reasoned that Go acts together with insect odorant receptor cation channels to mediate odor-induced physiological responses. Results To test whether Go dependent signaling is involved in mediating olfactory responses in Drosophila, we analyzed electroantennogram and single-sensillum recording from flies that conditionally express pertussis toxin, a specific inhibitor of Go in Drosophila. Pertussis toxin expression in olfactory receptor neurons reversibly reduced the amplitude and hastened the termination of electroantennogram responses induced by ethyl acetate. The frequency of odor-induced spike firing from individual sensory neurons was also reduced by pertussis toxin. These results demonstrate that Go signaling is involved in increasing sensitivity of olfactory physiology in Drosophila. The effect of pertussis toxin was independent of odorant identity and intensity, indicating a generalized involvement of Go in olfactory reception. Conclusion These results demonstrate that Go is required for maximal physiological responses to multiple odorants in Drosophila, and suggest that OR channel function and G-protein signaling are required for optimal physiological responses to odors.

  11. The source of spontaneous activity in the main olfactory bulb of the rat.

    Directory of Open Access Journals (Sweden)

    Josif Stakic

    Full Text Available INTRODUCTION: In vivo, most neurons in the main olfactory bulb exhibit robust spontaneous activity. This paper tests the hypothesis that spontaneous activity in olfactory receptor neurons drives much of the spontaneous activity in mitral and tufted cells via excitatory synapses. METHODS: Single units were recorded in vivo from the main olfactory bulb of a rat before, during, and after application of lidocaine to the olfactory nerve. The effect of lidocaine on the conduction of action potentials from the olfactory epithelium to the olfactory bulb was assessed by electrically stimulating the olfactory nerve rostral to the application site and monitoring the field potential evoked in the bulb. RESULTS: Lidocaine caused a significant decrease in the amplitude of the olfactory nerve evoked field potential that was recorded in the olfactory bulb. By contrast, the lidocaine block did not significantly alter the spontaneous activity of single units in the bulb, nor did it alter the field potential evoked by electrical stimulation of the lateral olfactory tract. Lidocaine block also did not change the temporal patters of action potential or their synchronization with respiration. CONCLUSIONS: Spontaneous activity in neurons of the main olfactory bulb is not driven mainly by activity in olfactory receptor neurons despite the extensive convergence onto mitral and tufted cells. These results suggest that spontaneous activity of mitral and tufted is either an inherent property of these cells or is driven by centrifugal inputs to the bulb.

  12. Glutamate Receptor Antagonist Infusions into the Basolateral and Medial Amygdala Reveal Differential Contributions to Olfactory vs. Context Fear Conditioning and Expression

    Science.gov (United States)

    Walker, David L.; Paschall, Gayla Y.; Davis, Michael

    2005-01-01

    The basolateral amygdala's involvement in fear acquisition and expression to visual and auditory stimuli is well known. The involvement of the basolateral and other amygdala areas in fear acquisition and expression to stimuli of other modalities is less certain. We evaluated the contribution of the basolateral and medial amygdala to olfactory and…

  13. Identification of the western tarnished plant bug (lygus hesperus) olfactory co-receptor orco: expression profile and confirmation of atypical membrane topology

    Science.gov (United States)

    Lygus hesperus (western tarnished plant bug) is an agronomically important pest species of numerous cropping systems. Similar to other insects, a critical component underlying behaviors is the perception and discrimination of olfactory cues. Consequently, the molecular basis of olfaction in this spe...

  14. Olfactory ensheathing glia are required for embryonic olfactory axon targeting and the migration of gonadotropin-releasing hormone neurons

    Directory of Open Access Journals (Sweden)

    Perrine Barraud

    2013-06-01

    Kallmann's syndrome is caused by the failure of olfactory axons and gonadotropin-releasing hormone (GnRH neurons to enter the embryonic forebrain, resulting in anosmia and sterility. Sox10 mutations have been associated with Kallmann's syndrome phenotypes, but their effect on olfactory system development is unknown. We recently showed that Sox10 is expressed by neural crest-derived olfactory ensheathing cells (OECs. Here, we demonstrate that in homozygous Sox10lacZ/lacZ mouse embryos, OEC differentiation is disrupted; olfactory axons accumulate in the ventromedial olfactory nerve layer and fewer olfactory receptor neurons express the maturation marker OMP (most likely owing to the failure of axonal targeting. Furthermore, GnRH neurons clump together in the periphery and a smaller proportion enters the forebrain. Our data suggest that human Sox10 mutations cause Kallmann's syndrome by disrupting the differentiation of OECs, which promote embryonic olfactory axon targeting and hence olfactory receptor neuron maturation, and GnRH neuron migration to the forebrain.

  15. Organization of olfactory centres in the malaria mosquito Anopheles gambiae

    Science.gov (United States)

    Riabinina, Olena; Task, Darya; Marr, Elizabeth; Lin, Chun-Chieh; Alford, Robert; O'Brochta, David A.; Potter, Christopher J.

    2016-01-01

    Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes. PMID:27694947

  16. Superplastic forming of the Cd-17.4Zn alloy; Conformado superplastico de la aleacion Cd-17.4Zn

    Energy Technology Data Exchange (ETDEWEB)

    Llanes-Briceno, J. A.; Torres-Villasenor, G. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2000-06-01

    In the present work the necessary steps to carry on the superplastic forming of the Cd-17.4Zn alloy are defined. The use of either atmospheric pressure or gas pressure as forming tools is analyzed. The optimum values of the variable involved (temperature, maximum strain and sensitivity index) are determined while a method for the characterization of futures superplastic alloys is set forth. The experimental characterization of the superplastic forming is achieved with free bulging of circular membranes of 12, 16, 24, 32 and 40 mm in diameter and with three different membrane thicknesses (0.4, 0.6, 0.8 mm). [Spanish] Se definen los pasos necesarios para el conformado superplastico de la aleacion Cd-17.4 Zn. Se comparan la presion atmosferica y el gas a presion como herramientas de conformado. Se determinan los valores optimos de la variables involucradas (temperatura, deformacion maxima e indice de sensibilidad) y se plantea una metodologia para la caracterizacion de futuras aleaciones superplasticas. El conformado superplastico se caracteriza experimentalmente mediante el inflado libre de membranas circulares de 12, 16, 24, 32 y 40 mm de diametro y tres diferentes espesores (0.4, 0.6 y 0.8 mm). Se muestra la estructura perlitica (enfuiada al aive Cd-17.4Zn) y la estructura grano fino. Se muestra la profundidad de deformacion en tres espesores (0.4, 0.6, 0.8 mm) a P=200 Kpa y T = 200 y a T = 230.

  17. Environmental toxicants-induced immune responses in the olfactory mucosa

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2016-11-01

    Full Text Available Olfactory sensory neurons (OSNs are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa of the nasal cavity, OSN axons directly project to the olfactory bulb that is a component of the central nervous system (CNS. Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the olfactory bulb via the olfactory mucosa, and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the olfactory mucosa, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the olfactory bulb after inflammation has subsided. It is now known that immune cells and cytokines in the olfactory mucosa play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the olfactory mucosa affects the pathophysiology of OSNs.

  18. Olfactory Reference Syndrome

    Directory of Open Access Journals (Sweden)

    Alper Evrensel

    2015-12-01

    Full Text Available Olfactory reference syndrome is a delusional disorder in which the patient persistently and falsely believes that his or her body emits a foul odor. The disease is considered a variant of somatic type of delusional disorder under the diagnostic systems. Similarities between olfactory reference syndrome and obsessive compulsive disorder have also been noted. The etiopathogenesis of the disorder has not yet been clarified. Antidepressants, antipsychotics and psychotherapy are used in the treatment of this disorder. The aim of this article was to review clinical features, neurobiology, differantial diagnosis, classification problems and treatment of olfactory reference syndrome.

  19. Construction of odor representations by olfactory bulb microcircuits.

    Science.gov (United States)

    Cleland, Thomas A

    2014-01-01

    Like other sensory systems, the olfactory system transduces specific features of the external environment and must construct an organized sensory representation from these highly fragmented inputs. As with these other systems, this representation is not accurate per se, but is constructed for utility, and emphasizes certain, presumably useful, features over others. I here describe the cellular and circuit mechanisms of the peripheral olfactory system that underlie this process of sensory construction, emphasizing the distinct architectures and properties of the two prominent computational layers in the olfactory bulb. Notably, while the olfactory system solves essentially similar conceptual problems to other sensory systems, such as contrast enhancement, activity normalization, and extending dynamic range, its peculiarities often require qualitatively different computational algorithms than are deployed in other sensory modalities. In particular, the olfactory modality is intrinsically high dimensional, and lacks a simple, externally defined basis analogous to wavelength or pitch on which elemental odor stimuli can be quantitatively compared. Accordingly, the quantitative similarities of the receptive fields of different odorant receptors (ORs) vary according to the statistics of the odor environment. To resolve these unusual challenges, the olfactory bulb appears to utilize unique nontopographical computations and intrinsic learning mechanisms to perform the necessary high-dimensional, similarity-dependent computations. In sum, the early olfactory system implements a coordinated set of early sensory transformations directly analogous to those in other sensory systems, but accomplishes these with unique circuit architectures adapted to the properties of the olfactory modality.

  20. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex

    OpenAIRE

    Kensaku eMori; Hiroyuki eManabe; Kimiya eNarikiyo; Naomi eOnisawa

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory senso...

  1. Cellular basis for the olfactory response to nicotine.

    Science.gov (United States)

    Bryant, Bruce; Xu, Jiang; Audige, Valery; Lischka, Fritz W; Rawson, Nancy E

    2010-03-17

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (Rose J. E., et al. (1993) Pharmacol., Biochem. Behav.44 (4), 891-900). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (Mombaerts P. (1999) Annu. Rev. Neurosci.22, 487-509), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (Gomez G., et al. (2000) J. Neurosci. Res.62 (5), 737-749), and rat olfactory neurons. Rat and human OSNs responded to S(-)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation.

  2. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Chase R.; Gallagher, Evan P., E-mail: evang3@u.washington.edu

    2013-09-15

    Highlights: •Low Cd exposures elicited significant olfactory mediated behavioral changes independent of histological injury. •The olfactory behavioral deficits persisted following a 16-day depuration. •Olfactory molecular biomarkers expression was strongly linked to injury to the olfactory epithelium. •Cd induced a strong antioxidant response in the coho salmon olfactory system. •Results suggest a sensitivity of salmonids to waterborne Cd. -- Abstract: The olfactory system of salmonids is sensitive to the adverse effects of metals such as copper and cadmium. In the current study, we analyzed olfactory-mediated alarm responses, epithelial injury and recovery, and a suite of olfactory molecular biomarkers encoding genes critical in maintaining olfactory function in juvenile coho salmon receiving acute exposures to cadmium (Cd). The molecular biomarkers analyzed included four G-protein coupled receptors (GPCRs) representing the two major classes of odorant receptors (salmon olfactory receptor sorb and vomeronasal receptors svra, svrb, and gpr27), as well as markers of neurite outgrowth (nrn1) and antioxidant responses to metals, including heme oxygenase 1 (hmox1), and peroxiredoxin 1 (prdx1). Coho received acute (8–168 h) exposures to 3.7 ppb and 347 ppb Cd, and a subset of fish was analyzed following a 16-day depuration. Coho exposed to 347 ppb Cd over 48 h exhibited a reduction in freeze responses, and an extensive loss of olfaction accompanied by histological injury to the olfactory epithelium. The olfactory injury in coho exposed to 347 ppb Cd was accompanied at the gene level by significant decreases in expression of the olfactory GPCRs and increased expression of hmox1. Persistent behavioral deficits, histological injury and altered expression of a subset of olfactory biomarkers were still evident in Cd-exposed coho following a 16-day depuration in clean water. Exposure to 3.7 ppb Cd also resulted in reduced freeze responses and histological changes

  3. Identification of G protein α subunits in the main olfactory system and vomeronasal system of the Japanese Striped snake, Elaphe quadrivirgata.

    Science.gov (United States)

    Kondoh, Daisuke; Koshi, Katsuo; Ono, Hisaya K; Sasaki, Kuniaki; Nakamuta, Nobuaki; Taniguchi, Kazuyuki

    2013-01-01

    In the olfactory system, G proteins couple to the olfactory receptors, and G proteins expressed in the main olfactory system and vomeronasal system vary according to animal species. In this study, G protein α subunits expressed in the main olfactory system and vomeronasal system of the snake were identified by immunohistochemistry. In the olfactory epithelium, only anti-Gαolf/s antibody labeled the cilia of the receptor cells. In the vomeronasal epithelium, only anti-Gαo antibody labeled the microvilli of the receptor cells. In the accessory olfactory bulb, anti-Gαo antibody stained the whole glomerular layer. These results suggest that the main olfactory system and the vomeronasal system of the snake express Gαolf and Gαo as G proteins coupling to the olfactory receptors, respectively.

  4. Expression of olfactory signaling genes in the eye.

    Directory of Open Access Journals (Sweden)

    Alexey Pronin

    Full Text Available PURPOSE: To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. METHODS: Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. RESULTS: We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. CONCLUSIONS: Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment.

  5. 罗非鱼嗅觉对15种常见氨基酸的RSE探讨%RSE of 15 general amino acids for fish's olfactory receptor Oreochromis sp.

    Institute of Scientific and Technical Information of China (English)

    柴敏娟; 曾建平; 于淼

    2001-01-01

    用15种常见氨基酸刺激罗非鱼嗅上皮,观察由此引起的嗅电反应(嗅电图,下简EOG),研究各种氨基酸对嗅觉的相对有效刺激性(下简RSE).结果表明:①15种氨基酸对鱼类嗅觉的RSE顺序如下: L- Ser > L-Met > L- Lys > DL-Met > L-Arg >DL-Ser > L-Cys > L-Asn > L-Thr > L-His > L-Ala > L-Glu > DL-Pho > L-Phe > L-Asp;②在6种鱼类必需氨基酸中,RSE的排列顺序为:L-Met > L- Lys > L- Arg > L- Thr> L-His > L-Phe;③氨基酸对鱼类嗅觉的RSE与其结构有关.%Electrophysiological responses (EOG) are obtained from olfactory receptor of Oreochromis ,sp., using fifteen amino acids stimulus, and the relative stimulating effectiveness (RSE)between fifteen amino acids are compare . The results indicated that: ① The RSE order of fifteen amino acids is as follows: L-Ser > L-Met > L- Lys > DL-Met > L-Arg > DL-Ser > L-Cys > L-Asn >L-Thr>L-His>L-Ala>L-GIu> DL-Pho>L-Phe>L-Asp. ②Among six necessary amino acids. The RSE order is as follows: L-Met>L- Lys>L- Arg>L- Thr>L-His>L-Phe. ③ The RSE of amino acids is relatea to the molecular structure characteristic in fish' s olfactory receptor.

  6. Nasal toxicity, carcinogenicity, and olfactory uptake of metals.

    Science.gov (United States)

    Sunderman, F W

    2001-01-01

    Occupational exposures to inhalation of certain metal dusts or aerosols can cause loss of olfactory acuity, atrophy of the nasal mucosa, mucosal ulcers, perforated nasal septum, or sinonasal cancer. Anosmia and hyposmia have been observed in workers exposed to Ni- or Cd-containing dusts in alkaline battery factories, nickel refineries, and cadmium industries. Ulcers of the nasal mucosa and perforated nasal septum have been reported in workers exposed to Cr(VI) in chromate production and chrome plating, or to As(III) in arsenic smelters. Atrophy of the olfactory epithelium has been observed in rodents following inhalation of NiSO4 or alphaNi3S2. Cancers of the nose and nasal sinuses have been reported in workers exposed to Ni compounds in nickel refining, cutlery factories, and alkaline battery manufacture, or to Cr(VI) in chromate production and chrome plating. In animals, several metals (eg, Al, Cd, Co, Hg, Mn, Ni, Zn) have been shown to pass via olfactory receptor neurons from the nasal lumen through the cribriform plate to the olfactory bulb. Some metals (eg, Mn, Ni, Zn) can cross synapses in the olfactory bulb and migrate via secondary olfactory neurons to distant nuclei of the brain. After nasal instillation of a metal-containing solution, transport of the metal via olfactory axons can occur rapidly, within hours or a few days (eg, Mn), or slowly over days or weeks (eg, Ni). The olfactory bulb tends to accumulate certain metals (eg, Al, Bi, Cu, Mn, Zn) with greater avidity than other regions of the brain. The molecular mechanisms responsible for metal translocation in olfactory neurons and deposition in the olfactory bulb are unclear, but complexation by metal-binding molecules such as carnosine (beta-alanyl-L-histidine) may be involved.

  7. Concentration-invariant odor representation in the olfactory system by presynaptic inhibition.

    Science.gov (United States)

    Zhang, Danke; Li, Yuanqing; Wu, Si

    2013-01-01

    The present study investigates a network model for implementing concentration-invariant representation for odors in the olfactory system. The network consists of olfactory receptor neurons, projection neurons, and inhibitory local neurons. Receptor neurons send excitatory inputs to projection neurons, which are modulated by the inhibitory inputs from local neurons. The modulation occurs at the presynaptic site from a receptor neuron to a projection one, leading to the operation of divisive normalization. The responses of local interneurons are determined by the total activities of olfactory receptor neurons. We find that with a proper parameter condition, the responses of projection neurons become effectively independent of the odor concentration. Simulation results confirm our theoretical analysis.

  8. Ultrastructure (SEM, TEM) of the olfactory epithelium in the wels, Siluris glanis L. (Siluridae, Pisces).

    Science.gov (United States)

    Jakubowski, M

    1981-01-01

    The number of lamellae in a single olfactory rosette of the Silurus increases with age. In one-year-old specimens there are about 50 lamellae, while in the three-year-old ones their number rises to 109. The surface area of an average lamella increases from 2.5 mm2 to 8 mm2, respectively. Four continuous zones have been distinguished in the olfactory epithelium that covers the lamella: olfactory sensory, ciliary, glandular and marginal. These zones differ with respect to their cellular composition. The olfactory zone occupies 25...30% of the total surface of the epithelium. Receptor cells occur exclusively in this zone. Two types of olfactory receptor cells have been distinguished, flagellar and microvillous. Special attention is given to a third type of receptor cell (perhaps nonolfactory) the so called compound cilium receptor. Striated rootlets do not occur near the basal bodies in the flagellar olfactory receptor cells but they are found in the compound cilium ones. It is believed that the compound cilium receptor cell is sensitive to water flow between the lamellae. The formation of the sensory terminals on the olfactory receptor cells is totally completed in Silurus not earlier than between the first and second year of age. Both, sensory flagellum and compound cilium type of terminals appear earlier than the sensory microvilli. It is believed that the described types of the receptor cells are quite independent ones.

  9. The olfactory bulb structure of African giant rat (Cricetomys gambianus, Waterhouse 1840) I: cytoarchitecture.

    Science.gov (United States)

    Olude, M A; Ogunbunmi, T K; Olopade, J O; Ihunwo, A O

    2014-09-01

    The olfactory system typically consists of two parallel systems: the main olfactory system and the accessory olfactory system. The main olfactory bulb (MOB) acts as the initial processing site for volatile chemical stimuli and receives input from the olfactory receptor cells located in the olfactory epithelium. The African giant rat is reputed to have abilities to detect landmines and tuberculosis samples by sniffing. This study therefore is a preliminary study on the histological and immunohistochemical anatomy of the olfactory bulb of the African giant rat (Cricetomys gambianus, Waterhouse). Nissl and Klüver-Barrera histological staining of the olfactory bulb revealed a cytoarchitecture typical of most mammals with 6 cell layers, and 1-2-layered glomeruli measuring approximately 150 μm each in diameter. Immunohistochemical staining with glial fibrillary acidic protein (GFAP) and 2',3'-cyclic nucleotide 3-phosphodiesterase (CNPase) revealed cellular conformations relative to most mammals. GFAP immunohistochemistry also revealed cell bodies and processes within the periglomerular area which may potentiate signaling from the olfactory receptor cells, while CNPase largely showed soma and evidence of myelin sheath deposition, confirming myelination at different layers of the bulb. Neurogenesis was examined using the neurogenic markers doublecortin (DCX) and Ki-67. Migration of newly generated cells was observed in all layers of the MOB with DCX and in most layers with Ki-67. The anatomy of the olfactory bulb is described as relatively large in the African giant rat, having a neuroarchitecture similar to most rodents.

  10. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  11. Encoding olfactory signals via multiple chemosensory systems.

    Science.gov (United States)

    Ma, Minghong

    2007-01-01

    Most animals have evolved multiple olfactory systems to detect general odors as well as social cues. The sophistication and interaction of these systems permit precise detection of food, danger, and mates, all crucial elements for survival. In most mammals, the nose contains two well described chemosensory apparatuses (the main olfactory epithelium and the vomeronasal organ), each of which comprises several subtypes of sensory neurons expressing distinct receptors and signal transduction machineries. In many species (e.g., rodents), the nasal cavity also includes two spatially segregated clusters of neurons forming the septal organ of Masera and the Grueneberg ganglion. Results of recent studies suggest that these chemosensory systems perceive diverse but overlapping olfactory cues and that some neurons may even detect the pressure changes carried by the airflow. This review provides an update on how chemosensory neurons transduce chemical (and possibly mechanical) stimuli into electrical signals, and what information each system brings into the brain. Future investigation will focus on the specific ligands that each system detects with a behavioral context and the processing networks that each system involves in the brain. Such studies will lead to a better understanding of how the multiple olfactory systems, acting in concert, offer a complete representation of the chemical world.

  12. An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction.

    Science.gov (United States)

    Hutch, C R; Hillard, C J; Jia, C; Hegg, C C

    2015-08-01

    Endocannabinoids modulate a diverse array of functions including progenitor cell proliferation in the central nervous system, and odorant detection and food intake in the mammalian central olfactory system and larval Xenopus laevis peripheral olfactory system. However, the presence and role of endocannabinoids in the peripheral olfactory epithelium have not been examined in mammals. We found the presence of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptor protein and mRNA in the olfactory epithelium. Using either immunohistochemistry or calcium imaging we localized CB1 receptors on neurons, glia-like sustentacular cells, microvillous cells and progenitor-like basal cells. To examine the role of endocannabinoids, CB1- and CB2- receptor-deficient (CB1(-/-)/CB2(-/-)) mice were used. The endocannabinoid 2-arachidonylglycerol (2-AG) was present at high levels in both C57BL/6 wildtype and CB1(-/-)/CB2(-/-) mice. 2-AG synthetic and degradative enzymes are expressed in wildtype mice. A small but significant decrease in basal cell and olfactory sensory neuron numbers was observed in CB1(-/-)/CB2(-/-) mice compared to wildtype mice. The decrease in olfactory sensory neurons did not translate to impairment in olfactory-mediated behaviors assessed by the buried food test and habituation/dishabituation test. Collectively, these data indicate the presence of an endocannabinoid system in the mouse olfactory epithelium. However, unlike in tadpoles, endocannabinoids do not modulate olfaction. Further investigation on the role of endocannabinoids in progenitor cell function in the olfactory epithelium is warranted.

  13. Genetic control of wiring specificity in the fly olfactory system.

    Science.gov (United States)

    Hong, Weizhe; Luo, Liqun

    2014-01-01

    Precise connections established between pre- and postsynaptic partners during development are essential for the proper function of the nervous system. The olfactory system detects a wide variety of odorants and processes the information in a precisely connected neural circuit. A common feature of the olfactory systems from insects to mammals is that the olfactory receptor neurons (ORNs) expressing the same odorant receptor make one-to-one connections with a single class of second-order olfactory projection neurons (PNs). This represents one of the most striking examples of targeting specificity in developmental neurobiology. Recent studies have uncovered central roles of transmembrane and secreted proteins in organizing this one-to-one connection specificity in the olfactory system. Here, we review recent advances in the understanding of how this wiring specificity is genetically controlled and focus on the mechanisms by which transmembrane and secreted proteins regulate different stages of the Drosophila olfactory circuit assembly in a coordinated manner. We also discuss how combinatorial coding, redundancy, and error-correcting ability could contribute to constructing a complex neural circuit in general.

  14. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available BACKGROUND: P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated. PRINCIPAL FINDINGS: Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect. CONCLUSIONS: The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and

  15. Effects of urea on the molecules involved in the olfactory signal transduction: a preliminary study on Danio rerio.

    Science.gov (United States)

    Ferrando, Sara; Gallus, Lorenzo; Gambardella, Chiara; Marchesotti, Emiliano; Ravera, Silvia; Franceschini, Valeria; Masini, Maria Angela

    2014-12-01

    Among vertebrates, the physiologically uremic Chondrichthyes are the only class which are not presenting the ciliated olfactory receptor neurons in the olfactory neuroepithelium. The only sequenced genome for this class revealed only three olfactory receptor genes and the immunohistochemical detection of G protein alpha subunit typically coupled to the olfactory receptors (Gα(olf)) failed in different species. Chronic renal disease can represent a cause of olfactory impairment in human. In this context, our present study focused on investigating potential effects of high urea concentration on the olfactory epithelium of vertebrates. Larvae of the teleost fish Danio rerio were exposed to urea in order to assess the effects on the olfactory signal transduction; in particular on both the olfactory receptors and the Gα(olf). The endocytosis of neutral red dye in the olfactory mucosa was detected in control and urea-exposed larvae. The amount of neutral red dye uptake was used as a marker of binding and internalization of the Gα(olf). The neutral red dye endocytosis was not affected by urea exposure, hence suggesting that the presence of the Gα(olf) and their binding to the odorants are not affected by urea treatment, either. The presence and distribution of Gα(olf) were investigated in the olfactory epithelium of control and urea-exposed larvae, using a commercial antibody. The immunoreactivity was increased after urea treatment, suggesting an effect of urea on the expression or degradation of this G protein alpha subunit.

  16. Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab

    Science.gov (United States)

    2012-01-01

    Background In the olfactory system of malacostracan crustaceans, axonal input from olfactory receptor neurons associated with aesthetascs on the animal’s first pair of antennae target primary processing centers in the median brain, the olfactory lobes. The olfactory lobes are divided into cone-shaped synaptic areas, the olfactory glomeruli where afferents interact with local olfactory interneurons and olfactory projection neurons. The local olfactory interneurons display a large diversity of neurotransmitter phenotypes including biogenic amines and neuropeptides. Furthermore, the malacostracan olfactory glomeruli are regionalized into cap, subcap, and base regions and these compartments are defined by the projection patterns of the afferent olfactory receptor neurons, the local olfactory interneurons, and the olfactory projection neurons. We wanted to know how neurons expressing A-type allatostatins (A-ASTs; synonym dip-allatostatins) integrate into this system, a large family of neuropeptides that share the C-terminal motif –YXFGLamide. Results We used an antiserum that was raised against the A-type Diploptera punctata (Dip)-allatostatin I to analyse the distribution of this peptide in the brain of a terrestrial hermit crab, Coenobita clypeatus (Anomura, Coenobitidae). Allatostatin A-like immunoreactivity (ASTir) was widely distributed in the animal’s brain, including the visual system, central complex and olfactory system. We focussed our analysis on the central olfactory pathway in which ASTir was abundant in the primary processing centers, the olfactory lobes, and also in the secondary centers, the hemiellipsoid bodies. In the olfactory lobes, we further explored the spatial relationship of olfactory interneurons with ASTir to interneurons that synthesize RFamide-like peptides. We found that these two peptides are present in distinct populations of local olfactory interneurons and that their synaptic fields within the olfactory glomeruli are also mostly

  17. Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab

    Directory of Open Access Journals (Sweden)

    Polanska Marta A

    2012-09-01

    Full Text Available Abstract Background In the olfactory system of malacostracan crustaceans, axonal input from olfactory receptor neurons associated with aesthetascs on the animal’s first pair of antennae target primary processing centers in the median brain, the olfactory lobes. The olfactory lobes are divided into cone-shaped synaptic areas, the olfactory glomeruli where afferents interact with local olfactory interneurons and olfactory projection neurons. The local olfactory interneurons display a large diversity of neurotransmitter phenotypes including biogenic amines and neuropeptides. Furthermore, the malacostracan olfactory glomeruli are regionalized into cap, subcap, and base regions and these compartments are defined by the projection patterns of the afferent olfactory receptor neurons, the local olfactory interneurons, and the olfactory projection neurons. We wanted to know how neurons expressing A-type allatostatins (A-ASTs; synonym dip-allatostatins integrate into this system, a large family of neuropeptides that share the C-terminal motif –YXFGLamide. Results We used an antiserum that was raised against the A-type Diploptera punctata (Dip-allatostatin I to analyse the distribution of this peptide in the brain of a terrestrial hermit crab, Coenobita clypeatus (Anomura, Coenobitidae. Allatostatin A-like immunoreactivity (ASTir was widely distributed in the animal’s brain, including the visual system, central complex and olfactory system. We focussed our analysis on the central olfactory pathway in which ASTir was abundant in the primary processing centers, the olfactory lobes, and also in the secondary centers, the hemiellipsoid bodies. In the olfactory lobes, we further explored the spatial relationship of olfactory interneurons with ASTir to interneurons that synthesize RFamide-like peptides. We found that these two peptides are present in distinct populations of local olfactory interneurons and that their synaptic fields within the olfactory

  18. Electrophysiological characterization of olfactory cell types in the antennae and palps of the housefly

    NARCIS (Netherlands)

    Kelling, FJ; Biancaniello, G; den Otter, CJ

    2002-01-01

    A set of odours was presented to the housefly Musca domestica and the electrophysiological responses of single olfactory receptor cells in the antennae and palps were recorded. The olfactory cells in the antennae of the housefly showed a large variability of response profiles, but multidimensional c

  19. Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis.

    Science.gov (United States)

    Frontera, Jimena Laura; Cervino, Ailen Soledad; Jungblut, Lucas David; Paz, Dante Agustín

    2015-03-01

    Olfactory epithelium has the capability to continuously regenerate olfactory receptor neurons throughout life. Adult neurogenesis results from proliferation and differentiation of neural stem cells, and consequently, olfactory neuroepithelium offers an excellent opportunity to study neural regeneration and the factors involved in the maintenance and regeneration of all their cell types. We analyzed the expression of BDNF in the olfactory system under normal physiological conditions as well as during a massive regeneration induced by chemical destruction of the olfactory epithelium in Xenopus laevis larvae. We described the expression and presence of BDNF in the olfactory epithelium and bulb. In normal physiological conditions, sustentacular (glial) cells and a few scattered basal (stem) cells express BDNF in the olfactory epithelium as well as the granular cells in the olfactory bulb. Moreover, during massive regeneration, we demonstrated a drastic increase in basal cells expressing BDNF as well as an increase in BDNF in the olfactory bulb and nerve. Together these results suggest an important role of BDNF in the maintenance and regeneration of the olfactory system.

  20. Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis

    Directory of Open Access Journals (Sweden)

    Hansen Anne

    2007-08-01

    Full Text Available Abstract Background The nasal cavity of all vertebrates houses multiple chemosensors, either innervated by the Ist (olfactory or the Vth (trigeminal cranial nerve. Various types of receptor cells are present, either segregated in different compartments (e.g. in rodents or mingled in one epithelium (e.g. fish. In addition, solitary chemosensory cells have been reported for several species. Alligators which seek their prey both above and under water have only one nasal compartment. Information about their olfactory epithelium is limited. Since alligators seem to detect both volatile and water-soluble odour cues, I tested whether different sensory cell types are present in the olfactory epithelium. Results Electron microscopy and immunocytochemistry were used to examine the sensory epithelium of the nasal cavity of the American alligator. Almost the entire nasal cavity is lined with olfactory (sensory epithelium. Two types of olfactory sensory neurons are present. Both types bear cilia as well as microvilli at their apical endings and express the typical markers for olfactory neurons. The density of these olfactory neurons varies along the nasal cavity. In addition, solitary chemosensory cells innervated by trigeminal nerve fibres, are intermingled with olfactory sensory neurons. Solitary chemosensory cells express components of the PLC-transduction cascade found in solitary chemosensory cells in rodents. Conclusion The nasal cavity of the American alligator contains two different chemosensory systems incorporated in the same sensory epithelium: the olfactory system proper and solitary chemosensory cells. The olfactory system contains two morphological distinct types of ciliated olfactory receptor neurons.

  1. Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice.

    Science.gov (United States)

    Moriguchi, Shigeki; Yamamoto, Yui; Ikuno, Tatsuya; Fukunaga, Kohji

    2011-06-01

    Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  2. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    OpenAIRE

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo

    2009-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pe...

  3. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities

    Science.gov (United States)

    Grimaud, Julien

    2016-01-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792

  4. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

    Science.gov (United States)

    Mori, Kensaku; Manabe, Hiroyuki; Narikiyo, Kimiya; Onisawa, Naomi

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness may require neuronal circuit mechanisms for the "binding" of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron-olfactory bulb-olfactory cortex-orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  5. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex and orbitofrontal cortex

    Directory of Open Access Journals (Sweden)

    Kensaku eMori

    2013-10-01

    Full Text Available The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron – olfactory bulb – olfactory cortex – orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  6. Attention and Olfactory Consciousness

    Directory of Open Access Journals (Sweden)

    Andreas eKeller

    2011-12-01

    Full Text Available Understanding the relation between attention and consciousness is an important part of our understanding of consciousness. Attention, unlike consciousness, can be systematically manipulated in psychophysical experiments and a law-like relation between attention and consciousness is waiting to be discovered. Most attempts to discover the nature of this relation are focused on a special type of attention: spatial visual attention. In this review I want to introduce another type of attention to the discussion: attention to the olfactory modality. I will first clarify the position of attention to smells in a general taxonomy of attention. I will then review the mechanisms and neuroanatomy of attention and consciousness in the olfactory system before using the newly introduced system to provide evidence that attention is necessary for consciousness.

  7. Olfactory toxicity in fishes.

    Science.gov (United States)

    Tierney, Keith B; Baldwin, David H; Hara, Toshiaki J; Ross, Peter S; Scholz, Nathaniel L; Kennedy, Christopher J

    2010-01-21

    Olfaction conveys critical environmental information to fishes, enabling activities such as mating, locating food, discriminating kin, avoiding predators and homing. All of these behaviors can be impaired or lost as a result of exposure to toxic contaminants in surface waters. Historically, teleost olfaction studies have focused on behavioral responses to anthropogenic contaminants (e.g., avoidance). More recently, there has been a shift towards understanding the underlying mechanisms and functional significance of contaminant-mediated changes in fish olfaction. This includes a consideration of how contaminants affect the olfactory nervous system and, by extension, the downstream physiological and behavioral processes that together comprise a normal response to naturally occurring stimuli (e.g., reproductive priming or releasing pheromones). Numerous studies spanning several species have shown that ecologically relevant exposures to common pollutants such as metals and pesticides can interfere with fish olfaction and disrupt life history processes that determine individual survival and reproductive success. This represents one of the pathways by which toxic chemicals in aquatic habitats may increasingly contribute to the decline and at-risk status of many commercially and ecologically important fish stocks. Despite our emerging understanding of the threats that pollution poses for chemical communication in aquatic communities, many research challenges remain. These include: (1) the determination of specific mechanisms of toxicity in the fish olfactory sensory epithelium; (2) an understanding of the impacts of complex chemical mixtures; (3) the capacity to assess olfactory toxicity in fish in situ; (4) the impacts of toxins on olfactory-mediated behaviors that are still poorly understood for many fish species; and (5) the connections between sublethal effects on individual fish and the long-term viability of wild populations. This review summarizes and integrates

  8. Olfactory Loss in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Antje Haehner

    2011-01-01

    Full Text Available Impairment of olfaction is a characteristic and early feature of Parkinson's disease. Recent data indicate that >95% of patients with Parkinson's disease present with significant olfactory loss. Deficits in the sense of smell may precede clinical motor symptoms by years and can be used to assess the risk for developing Parkinson's disease in otherwise asymptomatic individuals. This paper summarizes the available information about olfactory function in Parkinson's disease, indicating the advantageous use of olfactory probes in early and differential diagnosis.

  9. Genomic sequence analysis of the 238-kb swine segment with a cluster of TRIM and olfactory receptor genes located, but with no class I genes, at the distal end of the SLA class I region.

    Science.gov (United States)

    Ando, Asako; Shigenari, Atsuko; Kulski, Jerzy K; Renard, Christine; Chardon, Patrick; Shiina, Takashi; Inoko, Hidetoshi

    2005-12-01

    Continuous genomic sequence has been previously determined for the swine leukocyte antigen (SLA) class I region from the TNF gene cluster at the border between the major histocompatibility complex (MHC) class III and class I regions to the UBD gene at the telomeric end of the classical class I gene cluster (SLA-1 to SLA-5, SLA-9, SLA-11). To complete the genomic sequence of the entire SLA class I genomic region, we have analyzed the genomic sequences of two BAC clones carrying a continuous 237,633-bp-long segment spanning from the TRIM15 gene to the UBD gene located on the telomeric side of the classical SLA class I gene cluster. Fifteen non-class I genes, including the zinc finger and the tripartite motif (TRIM) ring-finger-related family genes and olfactory receptor genes, were identified in the 238-kilobase (kb) segment, and their location in the segment was similar to their apparent human homologs. In contrast, a human segment (alpha block) spanning about 375 kb from the gene ETF1P1 and from the HLA-J to HLA-F genes was absent from the 238-kb swine segment. We conclude that the gene organization of the MHC non-class I genes located in the telomeric side of the classical SLA class I gene cluster is remarkably similar between the swine and the human segments, although the swine lacks a 375-kb segment corresponding to the human alpha block.

  10. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses

    Directory of Open Access Journals (Sweden)

    Max L Fletcher

    2012-03-01

    Full Text Available The anatomical organization of receptor neuron input into the olfactory bulb (OB allows odor information to be transformed into an odorant-specific spatial map of mitral/tufted cell glomerular activity at the upper level of the olfactory bulb. In other sensory systems, neuronal representations of stimuli can be reorganized or enhanced following learning. While the mammalian OB has been shown to undergo experience-dependent plasticity at the glomerular level, it is still unclear if similar representational change occurs within mitral/tufted cell glomerular odor representations following learning. To address this, odorant-evoked glomerular activity patterns were imaged in mice expressing a GFP-based calcium indicator (GCaMP2 in OB mitral/tufted cells. Glomerular odor responses were imaged before and after olfactory associative conditioning to aversive foot shock. Following conditioning, we found no overall reorganization of the glomerular representation. Training, however, did significantly alter the amplitudes of individual glomeruli within the representation in mice in which the odor was presented together with foot shock. Further, the specific pairing of foot shock with odor presentations lead to increased responses primarily in initially weakly activated glomeruli. Overall, these results suggest that associative conditioning can enhance the initial representation of odors within the olfactory bulb by enhancing responses to the learned odor in some glomeruli.

  11. The mitosis and immunocytochemistry of olfactory ensheathing cells from nasal olfactory mucosa

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-bo; TANG Tian-si; GONG Ai-hua; SHENG Wei-hua; YANG Ji-cheng

    2005-01-01

    Objective: To culture olfactory ensheathing cells (OECs) of rats in vitro and to investigate its morphology, mitosis and immunocytochemistry, and to explore if the OECs could be a new donation for transplantation. Methods: OECs were harvested from olfactory mucosa of Sprague Dawleys rats based on the differing rates of attachment of the various cell types, followed by glial fibrillary acidic protein (GFAP), nerve growth factor (NGF), anti-low affinity receptor for NGF (NGFRp75), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and S-100 immunocytochemistry. The morphological changes and mitosis were observed under a phase contrast microscope at different culture time.Results: Three morphologically distinct types of cells, bipolar,multipolar and flat morphology were present in the primary culture of adult rat olfactory mucosa. Mitosis was characterized by a retraction of all processes, forming a sphere that divided into spherical daughter cells, the daughter cells sent out their processes. The OECs were immunoreactive for GFAP, NGFRp75, S-100, NGF, BDNF and NT-3. Conclusions: The OECs from nasal olfactory mucosa cultivated in the medium with fetal bovine serum could survive, divide, differentiate, and express the neurotrophin. It may become an accessible source for autologous grafting in spinal cord injury.

  12. Recent Trend in Development of Olfactory Displays

    Science.gov (United States)

    Yanagida, Yasuyuki

    An olfactory display is a device that generates scented air with desired concentration of aroma, and delivers it to the user's olfactory organ. In this article, the nature of olfaction is briefly described from the view point of how to configure olfactory displays. Next, component technologies to compose olfactory displays, i.e., making scents and delivering scents, are categorized. Several existing olfactory display systems are introduced to show the current status of research and development of olfactory displays.

  13. Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream.

    Science.gov (United States)

    Gliem, Sebastian; Syed, Adnan S; Sansone, Alfredo; Kludt, Eugen; Tantalaki, Evangelia; Hassenklöver, Thomas; Korsching, Sigrun I; Manzini, Ivan

    2013-06-01

    In contrast to the single sensory surface present in teleost fishes, several spatially segregated subsystems with distinct molecular and functional characteristics define the mammalian olfactory system. However, the evolutionary steps of that transition remain unknown. Here we analyzed the olfactory system of an early diverging tetrapod, the amphibian Xenopus laevis, and report for the first time the existence of two odor-processing streams, sharply segregated in the main olfactory bulb and partially segregated in the olfactory epithelium of pre-metamorphic larvae. A lateral odor-processing stream is formed by microvillous receptor neurons and is characterized by amino acid responses and Gαo/Gαi as probable signal transducers, whereas a medial stream formed by ciliated receptor neurons is characterized by responses to alcohols, aldehydes, and ketones, and Gαolf/cAMP as probable signal transducers. To reveal candidates for the olfactory receptors underlying these two streams, the spatial distribution of 12 genes from four olfactory receptor gene families was determined. Several class II and some class I odorant receptors (ORs) mimic the spatial distribution observed for the medial stream, whereas a trace amine-associated receptor closely parallels the spatial pattern of the lateral odor-processing stream. Other olfactory receptors (some class I odorant receptors and vomeronasal type 1 receptors) and odor responses (to bile acids, amines) were not lateralized, the latter not even in the olfactory bulb, suggesting an incomplete segregation. Thus, the olfactory system of X. laevis exhibits an intermediate stage of segregation and as such appears well suited to investigate the molecular driving forces behind olfactory regionalization.

  14. The olfactory system is affected by steroid aerosol treatment in mice.

    Science.gov (United States)

    Mucignat-Caretta, C; Bondí, M; Rubini, A; Calabrese, F; Barbato, A

    2009-12-01

    Asthma needs continuous treatment often for years. In humans, some drugs are administered via aerosol, therefore they come in contact with both respiratory and olfactory mucosa. We explored the possibility that antiasthma corticosteroid treatment could influence the olfactory function by passage through the nose. A group of mice was exposed twice daily for 42 days to fluticasone propionate aerosol and was compared with a control group. Olfactory behavior, respiratory mechanics, histology, and immunoreactivity in the olfactory system were assessed. Fluticasone-treated mice were slower in retrieving a piece of hidden food, but both groups were similarly fast when the food was visible. When a clearly detectable odor was present in the environment, all mice behaved in a similar way. Respiratory mechanics indices were similar in all mice except for the viscose resistance, which was reduced in fluticasone-treated mice. Olfactory mucosa of fluticasone-treated mice was thicker than that of controls. Slight but consistent differences in staining were present for Olfactory Marker Protein but not for other proteins. A mild impairment of olfactory function is present in mice chronically treated with fluticasone aerosol, apparently accompanied by slight modifications of the olfactory receptor cells, and suggests monitoring of olfactory function modifications in long-term steroid users.

  15. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae Based on Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Yinliang Wang

    Full Text Available The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs, 10 chemosensory proteins (CSPs, 34 odorant receptors (ORs, 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, Aqua

  16. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.

    Science.gov (United States)

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  17. Long-Lasting Metabolic Imbalance Related to Obesity Alters Olfactory Tissue Homeostasis and Impairs Olfactory-Driven Behaviors.

    Science.gov (United States)

    Lacroix, Marie-Christine; Caillol, Monique; Durieux, Didier; Monnerie, Régine; Grebert, Denise; Pellerin, Luc; Repond, Cendrine; Tolle, Virginie; Zizzari, Philippe; Baly, Christine

    2015-10-01

    Obesity is associated with chronic food intake disorders and binge eating. Food intake relies on the interaction between homeostatic regulation and hedonic signals among which, olfaction is a major sensory determinant. However, its potential modulation at the peripheral level by a chronic energy imbalance associated to obese status remains a matter of debate. We further investigated the olfactory function in a rodent model relevant to the situation encountered in obese humans, where genetic susceptibility is juxtaposed on chronic eating disorders. Using several olfactory-driven tests, we compared the behaviors of obesity-prone Sprague-Dawley rats (OP) fed with a high-fat/high-sugar diet with those of obese-resistant ones fed with normal chow. In OP rats, we reported 1) decreased odor threshold, but 2) poor olfactory performances, associated with learning/memory deficits, 3) decreased influence of fasting, and 4) impaired insulin control on food seeking behavior. Associated with these behavioral modifications, we found a modulation of metabolism-related factors implicated in 1) electrical olfactory signal regulation (insulin receptor), 2) cellular dynamics (glucorticoids receptors, pro- and antiapoptotic factors), and 3) homeostasis of the olfactory mucosa and bulb (monocarboxylate and glucose transporters). Such impairments might participate to the perturbed daily food intake pattern that we observed in obese animals. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Profound Olfactory Dysfunction in Myasthenia Gravis

    Science.gov (United States)

    Leon-Sarmiento, Fidias E.; Bayona, Edgardo A.; Bayona-Prieto, Jaime; Osman, Allen; Doty, Richard L.

    2012-01-01

    In this study we demonstrate that myasthenia gravis, an autoimmune disease strongly identified with deficient acetylcholine receptor transmission at the post-synaptic neuromuscular junction, is accompanied by a profound loss of olfactory function. Twenty-seven MG patients, 27 matched healthy controls, and 11 patients with polymiositis, a disease with peripheral neuromuscular symptoms analogous to myasthenia gravis with no known central nervous system involvement, were tested. All were administered the University of Pennsylvania Smell Identification Test (UPSIT) and the Picture Identification Test (PIT), a test analogous in content and form to the UPSIT designed to control for non-olfactory cognitive confounds. The UPSIT scores of the myasthenia gravis patients were markedly lower than those of the age- and sex-matched normal controls [respective means (SDs) = 20.15 (6.40) & 35.67 (4.95); p<0.0001], as well as those of the polymiositis patients who scored slightly below the normal range [33.30 (1.42); p<0.0001]. The latter finding, along with direct monitoring of the inhalation of the patients during testing, implies that the MG-related olfactory deficit is unlikely due to difficulties sniffing, per se. All PIT scores were within or near the normal range, although subtle deficits were apparent in both the MG and PM patients, conceivably reflecting influences of mild cognitive impairment. No relationships between performance on the UPSIT and thymectomy, time since diagnosis, type of treatment regimen, or the presence or absence of serum anti-nicotinic or muscarinic antibodies were apparent. Our findings suggest that MG influences olfactory function to the same degree as observed in a number of neurodegenerative diseases in which central nervous system cholinergic dysfunction has been documented. PMID:23082113

  19. Modeling peripheral olfactory coding in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Derek J Hoare

    Full Text Available The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs, enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%-77% (mean for all odors 45.2% but was always significantly above chance (5.6%. However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain.

  20. Ultrastructural and histochemical properties of the olfactory system in the japanese jungle crow, Corvus macrorhynchos.

    Science.gov (United States)

    Kondoh, Daisuke; Nashimoto, Mai; Kanayama, Shunsaku; Nakamuta, Nobuaki; Taniguchi, Kazuyuki

    2011-08-01

    Although it has been commonly believed that birds are more dependent on the vision and audition than the olfaction, recent studies indicate that the olfaction of birds is related to the reproductive, homing, and predatory behaviors. In an attempt to reveal the dependence on the olfactory system in crows, we examined the olfactory system of the Japanese jungle crow (Corvus macrorhynchos) by histological, ultrastructural, and lectin histochemical methods. The olfactory epithelium (OE) of the crow occupied remarkably a small area of the nasal cavity (NC) and had the histological and ultrastructural features like other birds. The olfactory bulb (OB) of the crow was remarkably small and did not possess the olfactory ventricle. The left and right halves of the OB were fused in many cases. In the lectin histochemistry, soybean agglutinin (SBA) and Vicia villosa agglutinin (VVA) stained a small number of the receptor cells (RCs) in the OE and the olfactory nerve layer (ONL) and glomerular layer (GL) on the dorsocaudal region of the OB. Phaseolus vulgaris agglutinin-E (PHA-E) stained several RCs in the OE and the ONL and GL on the ventral region of the OB. These results suggest that 1) the crow has less-developed olfactory system than other birds, and 2) the dedicated olfactory receptor cells project their axons to the specific regions of the OB in the crow.

  1. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium.

    Science.gov (United States)

    Nickell, William T; Kleene, Nancy K; Kleene, Steven J

    2007-09-15

    When olfactory receptor neurons respond to odours, a depolarizing Cl(-) efflux is a substantial part of the response. This requires that the resting neuron accumulate Cl(-) against an electrochemical gradient. In isolated olfactory receptor neurons, the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 is essential for Cl(-) accumulation. However, in intact epithelium, a robust electrical olfactory response persists in mice lacking NKCC1. This response is largely due to a neuronal Cl(-) efflux. It thus appears that NKCC1 is an important part of a more complex system of Cl(-) accumulation. To identify the remaining transport proteins, we first screened by RT-PCR for 21 Cl(-) transporters in mouse nasal tissue containing olfactory mucosa. For most of the Cl(-) transporters, the presence of mRNA was demonstrated. We also investigated the effects of pharmacological block or genetic ablation of Cl(-) transporters on the olfactory field potential, the electroolfactogram (EOG). Mice lacking the common Cl(-)/HCO(3)(-) exchanger AE2 had normal EOGs. Block of NKCC cotransport with bumetanide reduced the EOG in epithelia from wild-type mice but had no effect in mice lacking NKCC1. Hydrochlorothiazide, a blocker of the Na(+)-Cl(-) cotransporter, had only a small effect. DIDS, a blocker of some KCC cotransporters and Cl(-)/HCO(3)(-) exchangers, reduced the EOG in epithelia from both wild-type and NKCC1 knockout mice. A combination of bumetanide and DIDS decreased the response more than either drug alone. However, no combination of drugs completely abolished the Cl(-) component of the response. These results support the involvement of both NKCC1 and one or more DIDS-sensitive transporters in Cl(-) accumulation in olfactory receptor neurons.

  2. Functional Specialization of Olfactory Glomeruli in a Moth

    Science.gov (United States)

    Hansson, Bill S.; Ljungberg, Hakan; Hallberg, Eric; Lofstedt, Christer

    1992-05-01

    The specific function of the glomerular structures present in the antennal lobes or olfactory bulbs of organisms ranging from insects to humans has been obscure because of limitations in neuronal marking methods. By tracing individual neurons in the moth Agrotis segetum, it was determined that physiologically distinct types of pheromone receptor neurons project axons to different regions of the macroglomerular complex (MGC). Each glomerulus making up the MGC has a specific functional identity, initially processing information about one specific pheromone component. This indicates that, at least through the first stage of synapses, olfactory information moves through labeled lines.

  3. Diversity of Voltage Activated Calcium Currents in Identified Olfactory Interneurons

    OpenAIRE

    Husch, Andreas

    2007-01-01

    In the insect antennal lobe (AL) each olfactory receptor cell projects to one glomerulus and many receptor axons converge in each glomerulus, where they provide synaptic input to local interneurons (LNs) and projection (output) neurons (PNs). The arborizations of LNs are confined to the AL. In contrast, the PNs extend axons to higher order neuropiles of the protocerebrum, including the mushroom bodies and the lateral lobus of the protocerebrum. In particular PNs have been in the focus of inte...

  4. Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel

    Science.gov (United States)

    Jung, Im Doo; Ha, Sangyul; Park, Seong Jin; Blaine, Deborah C.; Bollina, Ravi; German, Randall M.

    2016-11-01

    The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.

  5. The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor.

    Science.gov (United States)

    Amigó, J; Díaz, A; Pilar-Cuéllar, F; Vidal, R; Martín, A; Compan, V; Pazos, A; Castro, E

    2016-12-01

    Preclinical studies support a critical role of 5-HT4 receptors (5-HT4Rs) in depression and anxiety, but their influence in depression- and anxiety-like behaviours and the effects of antidepressants remain partly unknown. We evaluated 5-HT4R knockout (KO) mice in different anxiety and depression paradigms and mRNA expression of some neuroplasticity markers (BDNF, trkB and Arc) and the functionality of 5-HT1AR. Moreover, the implication of 5-HT4Rs in the behavioural and molecular effects of chronically administered fluoxetine was assessed in naïve and olfactory bulbectomized mice (OBX) of both genotypes. 5-HT4R KO mice displayed few specific behavioural impairments including reduced central activity in the open-field (anxiety), and decreased sucrose consumption and nesting behaviour (anhedonia). In these mice, we measured increased levels of BDNF and Arc mRNA and reduced levels of trkB mRNA in the hippocampus, and a desensitization of 5-HT1A autoreceptors. Chronic administration of fluoxetine elicited similar behavioural effects in WT and 5-HT4R KO mice on anxiety-and depression-related tests. Following OBX, locomotor hyperactivity and anxiety were similar in both genotypes. Interestingly, chronic fluoxetine failed to reverse this OBX-induced syndrome in 5-HT4R KO mice, a response associated with differential effects in hippocampal neuroplasticity biomarkers. Fluoxetine reduced hippocampal Arc and BDNF mRNA expressions in WT but not 5-HT4R KO mice subjected to OBX. These results demonstrate that the absence of 5-HT4Rs triggers adaptive changes that could maintain emotional states, and that the behavioural and molecular effects of fluoxetine under pathological depression appear to be critically dependent on 5-HT4Rs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Activity of the principal cells of the olfactory bulb promotes a structural dynamic on the distal dendrites of immature adult-born granule cells via activation of NMDA receptors.

    Science.gov (United States)

    Breton-Provencher, Vincent; Coté, Daniel; Saghatelyan, Armen

    2014-01-29

    The adult olfactory bulb is continuously supplied with neuronal precursors that differentiate into granule and periglomerular cells. Little is known about the structural dynamic of adult-born granule cells (GCs) at their different maturational stages, the mechanisms controlling the integration of new neurons into the pre-existing neuronal circuitry, or the role of principal cell activity in these processes. We used two-photon time-lapse imaging to reveal a high level of filopodia formation and retraction on the distal dendrites of adult-born GCs at their early maturational stages. This dynamic decreased as the adult-born interneurons matured. Filopodia formation/retraction on the dendrites of adult-born GCs at the early maturational stages depended on the activation of NMDA receptors (NMDARs). The stimulation of mitral cells using a pattern that mimics activity of these principal neurons to odor presentation promotes the NMDAR-dependent filopodia dynamic of adult-born GCs during their early but not late maturational stages. Moreover, NMDA iontophoresis was sufficient to induce the formation of new filopodia on the distal dendrites of immature adult-born GCs. The maturation of adult-born interneurons was accompanied by a progressive hyperpolarization of the membrane potential and an increased Mg(2+) block of NMDARs. Decreasing the extracellular Mg(2+) concentration led to filopodia formation on the dendrites of mature adult-born GCs following NMDA iontophoresis. Our findings reveal an increased structural dynamic of adult-born GCs during the early stages of their integration into the mouse bulbar circuitry and highlight a critical period during which the principal cells' activity influences filopodia formation/retraction on the dendrites of interneurons.

  7. Neuronal basis of innate olfactory attraction to ethanol in Drosophila.

    Directory of Open Access Journals (Sweden)

    Andrea Schneider

    Full Text Available The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine - the invertebrate analogue of noradrenaline - in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b. Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse, the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.

  8. Environmental temperature modulates olfactory reception in Drosophila melanogaster.

    Science.gov (United States)

    Martin, Fernando; Riveron, Jacob; Alcorta, Esther

    2011-12-01

    Sensory systems, including the olfactory system, are able to adapt to changing environmental conditions. In nature, changes in temperature modify the volatility and concentration of odorants in the air. If the olfactory system does not adapt to these changes, it could relay wrong information about the distance to or direction of odor sources. Recent behavioral studies in Drosophila melanogaster showed olfactory acclimation to temperature. In this report, we investigated if temperature affects olfaction at the level of the receptors themselves. With this aim, we performed electroantennograms (EAGs) and single sensillum recordings (SSRs) to measure the response to several odorants in flies that had been submitted to temperature treatments. In response to all tested odorants, the amplitude of the EAGs increased in flies that had been exposed to a higher temperature and decreased after cold treatment, revealing that at least part of the reported change in olfactory perception happens at reception level. SSRs of odorant stimulated basiconic sensilla ab2 and ab3 showed some changes in the number of spikes after heat or cold treatment. However, the number and shape of spontaneous action potentials were unaffected, suggesting that the observed changes related specifically to the olfactory function of the neurons.

  9. From chemical neuroanatomy to an understanding of the olfactory system

    Directory of Open Access Journals (Sweden)

    L. Oboti

    2011-10-01

    Full Text Available The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB. Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  10. From chemical neuroanatomy to an understanding of the olfactory system.

    Science.gov (United States)

    Oboti, L; Peretto, P; Marchis, S De; Fasolo, A

    2011-10-19

    The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  11. Infection of Wolbachia may improve the olfactory response of Drosophila

    Institute of Scientific and Technical Information of China (English)

    PENG Yu; WANG YuFeng

    2009-01-01

    The endosymbiotic bacterium Wolbachia infects various insects and is primarily known for its ability to manipulate host reproduction.Recent investigations reveal that Wolbachia also affects the activity of somatic cells.We here demonstrated by trap method and T-maze that Wolbachia infection had signifi-cant impact on the olfactory response of Drosophila simulans.Wolbachia-infected flies took shorter time to enter the food trap and were more sensitive to odorant in T-maze than those uninfected controls,The time of olfactory response was relative to Wolbachia density in flies.Wolbachia density in 15-day-old flies that were caught in a shorter time (less than 60 min) by food trap was significantly higher than those taken in a longer time (more than 100 min).Quantitative RT-PCR showed that the transcript of an important odorant receptor gene or83b in flies with fast olfactory response was sig-nificantly more than those with slow olfactory response.These results suggest that Wolbachia might Increase olfactory response of flies by regulating the expression of olfaction-related genes in hosts.

  12. The role of dopamine in Drosophila larval classical olfactory conditioning.

    Directory of Open Access Journals (Sweden)

    Mareike Selcho

    Full Text Available Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt as well as appetitive (odor-sugar associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive

  13. Intermittency coding in the primary olfactory system: a neural substrate for olfactory scene analysis.

    Science.gov (United States)

    Park, Il Memming; Bobkov, Yuriy V; Ache, Barry W; Príncipe, José C

    2014-01-15

    The spatial and temporal characteristics of the visual and acoustic sensory input are indispensable attributes for animals to perform scene analysis. In contrast, research in olfaction has focused almost exclusively on how the nervous system analyzes the quality and quantity of the sensory signal and largely ignored the spatiotemporal dimension especially in longer time scales. Yet, detailed analyses of the turbulent, intermittent structure of water- and air-borne odor plumes strongly suggest that spatio-temporal information in longer time scales can provide major cues for olfactory scene analysis for animals. We show that a bursting subset of primary olfactory receptor neurons (bORNs) in lobster has the unexpected capacity to encode the temporal properties of intermittent odor signals. Each bORN is tuned to a specific range of stimulus intervals, and collectively bORNs can instantaneously encode a wide spectrum of intermittencies. Our theory argues for the existence of a novel peripheral mechanism for encoding the temporal pattern of odor that potentially serves as a neural substrate for olfactory scene analysis.

  14. Orientation in birds. Olfactory navigation.

    Science.gov (United States)

    Papi, F

    1991-01-01

    Research work on the olfactory navigation of birds, which has only recently attracted attention, has shown that many wild species rely on an osmotactic mechanism to find food sources, even at a considerable distance. The homing pigeon, the only bird to have been thoroughly investigated with respect to olfactory navigation, has been found to rely on local odours for homeward orientation, and to integrate olfactory cues perceived during passive transportation with those picked up at the release site. It is possible to design experiments in which birds are given false olfactory information, and predictions about the effects of this can be made and tested. Pigeons are able to home from unfamiliar sites because they acquire an olfactory map extending beyond the area they have flown over. The olfactory map is built up by associating wind-borne odours with the direction from which they come; this was shown by experiments which aimed to prevent, limit or alter this association. One aim of the research work has been to test whether pigeons flying over unfamiliar areas also rely or can learn to rely on non-olfactory cues, depending on their local availability, and/or on the methods of rearing and training applied to them. Various evaluations have been made of the results; the most recent experiments, however, confirm that pigeons do derive directional information from atmospheric odours. A neurobiological approach is also in progress; its results show that some telencephalic areas are involved in orientation and olfactory navigation. The lack of any knowledge about the distribution and chemical nature of the odorants which allow pigeons to navigate hinders progress in this area of research.

  15. Discordance between olfactory psychophysical measurements and olfactory event related potentials in five patients with olfactory dysfunction following upper respiratory infection

    Institute of Scientific and Technical Information of China (English)

    GUAN Jing; NI Dao-feng; WANG Jian; GAO Zhi-qiang

    2009-01-01

    Background Subjective olfactory tests are easy to perform and popularly applied in the clinic, but using only these, it is difficult to diagnose all disorders of the olfactory system. The olfactory event related potentials technique offers further insight into the olfactory system and is an ideal objective test. This analysis was of subjective and objective data on the olfactory function of twelve patients with loss of smell associated with an upper respiratory infection (URI). Methods We tested the twelve patients with URI induced olfactory loss by medical history, physical examination of the head and neck, olfactory tests and medical imaging. Olfactory function was assessed by Toyota and Takagi olfactometry including olfactory detection and recognition thresholds and olfactory event-related potentials (OERPs) recorded with OEP-98C Olfactometer. Results An unusual phenomenon was observed in five patients in whom the subjective detection and recognition thresholds were normal, while the expected OERPs were not detectable. Conclusions We suggest that the discordance between olfactory psychophysical measurements and OERPs might be the results of abnormal electrephysiology related with olfactory neuropathy caused by viral URI. In addition, the measurement of OERPs might play a significant role in evaluating olfactory dysfunction.

  16. Understanding smell--the olfactory stimulus problem.

    Science.gov (United States)

    Auffarth, Benjamin

    2013-09-01

    The main problem with sensory processing is the difficulty in relating sensory input to physiological responses and perception. This is especially problematic at higher levels of processing, where complex cues elicit highly specific responses. In olfaction, this relationship is particularly obfuscated by the difficulty of characterizing stimulus statistics and perception. The core questions in olfaction are hence the so-called stimulus problem, which refers to the understanding of the stimulus, and the structure-activity and structure-odor relationships, which refer to the molecular basis of smell. It is widely accepted that the recognition of odorants by receptors is governed by the detection of physico-chemical properties and that the physical space is highly complex. Not surprisingly, ideas differ about how odor stimuli should be classified and about the very nature of information that the brain extracts from odors. Even though there are many measures for smell, there is none that accurately describes all aspects of it. Here, we summarize recent developments in the understanding of olfaction. We argue that an approach to olfactory function where information processing is emphasized could contribute to a high degree to our understanding of smell as a perceptual phenomenon emerging from neural computations. Further, we argue that combined analysis of the stimulus, biology, physiology, and behavior and perception can provide new insights into olfactory function. We hope that the reader can use this review as a competent guide and overview of research activities in olfactory physiology, psychophysics, computation, and psychology. We propose avenues for research, particularly in the systematic characterization of receptive fields and of perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Regeneration and rewiring of rodent olfactory sensory neurons.

    Science.gov (United States)

    Yu, C Ron; Wu, Yunming

    2017-01-01

    The olfactory sensory neurons are the only neurons in the mammalian nervous system that not only regenerate naturally and in response to injury, but also project to specific targets in the brain. The stem cells in the olfactory epithelium commit to both neuronal and non-neuronal lineages depending on the environmental conditions. They provide a continuous supply of new neurons. A newly generated neuron must express a specific odorant receptor gene and project to a central target consist of axons expressing the same receptor type. Recent studies have provided insights into this highly regulated, complex process. However, the molecular mechanisms that determine the regenerative capacity of stem cells, and the ability of newly generated neurons in directing their axons toward specific targets, remain elusive. Here we review progresses and controversies in the field and offer testable models. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Which solvent for olfactory testing?

    Science.gov (United States)

    Philpott, C M; Goodenough, P C; Wolstenholme, C R; Murty, G E

    2004-12-01

    The physical properties of any carrier can deteriorate over time and thus alter the results in any olfactory test. The aim of this study was to evaluate clinically potential solvents as a clean odourless carrier for olfactory testing. Sweet almond oil, pure coconut oil, pure peach kernel oil, dipropylene glycol, monopropylene glycol, mineral oil and silicone oil were studied. The experimentation was conducted in two parts. First, an olfactory device was used to conduct air through the solvents on a weekly basis using a cohort of six volunteers to assess the perceived odour of each solvent at weekly intervals. Secondly a cross-reference test was performed using small bottled solutions of phenylethyl-alcohol and 1-butanol in 10-fold dilutions to compare any perceived difference in concentrations over a period of 8 weeks. We concluded that mineral oil is the most suitable carrier for the purpose of olfactory testing, possessing many desirable characteristics of an olfactory solvent, and that silicone oil may provide a suitable alternative for odorants with which it is miscible.

  19. Gross anatomy and histology of the olfactory rosette of the shark Heptranchias perlo.

    Science.gov (United States)

    Ferrando, Sara; Gallus, Lorenzo; Amaroli, Andrea; Gambardella, Chiara; Waryani, Baradi; Di Blasi, Davide; Vacchi, Marino

    2017-02-17

    Sharks belonging to the family Hexanchidae have six or seven gill slits, unlike all other elasmobranchs, which have five gill slits. Their olfactory organs have a round shape, which is common for holocephalans, but not for elasmobranchs. Thus, the shape of the olfactory organ represents a further, less striking, peculiarity of this family among elasmobranchs. Despite that, the microscopic anatomy and histology of the olfactory organ have not yet been studied in any species of this family. Here, an anatomical and histological description of the olfactory organ of the sharpnose sevengill shark Heptranchias perlo is given. The organ is a rosette, with a central raphe and 31-34 primary lamellae, which bear secondary lamellae with a more or less branched shape. The elastic connective capsule which envelops the olfactory rosette possibly changes its shape along with water influx. In the olfactory epithelium, the supporting cells also have a secretory function, while no specialized mucous cells are visible; regarding this feature the olfactory epithelium of H. perlo differs from that of other chondrichthyan species. The immunohistochemical investigation of the sensory epithelium shows the absence of immunoreactivity for Gαolf in receptor neurons, which confirms previous observations in Chondrichthyes.

  20. Histomorphological and microanatomical characteristics of the olfactory organ of freshwater carp, Cirrhinus reba (Hamilton

    Directory of Open Access Journals (Sweden)

    Ghosh Saroj Kumar

    2016-12-01

    Full Text Available The morphoanatomy, cellular organization, and surface architecture of the olfactory apparatus in Cirrhinus reba (Hamilton is described using light and scanning electron microscopy. The oval shaped olfactory rosette contained 32 ± 2 primary lamellae on each side of the median raphe, and was lodged on the floor of the olfactory chamber. The olfactory lamellae were basically flat and compactly arranged in the rosette. The olfactory chamber communicated to the outside aquatic environment through inlet and outlet apertures with a conspicuous nasal flap in between. The mid dorsal portion of the olfactory lamellae was characterized by a linguiform process. Sensory and non-sensory regions were distributed separately on each lamella. The sensory epithelium occupied the apical part including the linguiform process, whereas the resting part of the lamella was covered with non-sensory epithelium. The sensory epithelium comprised both ciliated and microvillous receptor cells distinguished by the architecture on their apical part. The non-sensory epithelium possessed mucous cells, labyrinth cells, and stratified epithelial cells with distinctive microridges. The functional importance of the different cells lining the olfactory mucosa was correlated with the ecological habits of the fish examined.

  1. Odor memory stability after reinnervation of the olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Eduardo Blanco-Hernández

    Full Text Available The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP. Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.

  2. Odor Memory Stability after Reinnervation of the Olfactory Bulb

    Science.gov (United States)

    Blanco-Hernández, Eduardo; Valle-Leija, Pablo; Zomosa-Signoret, Viviana; Drucker-Colín, René; Vidaltamayo, Román

    2012-01-01

    The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain. PMID:23071557

  3. Signal processing inspired from the olfactory bulb for electronic noses

    Science.gov (United States)

    Jing, Ya-Qi; Meng, Qing-Hao; Qi, Pei-Feng; Zeng, Ming; Liu, Ying-Jie

    2017-01-01

    A bio-inspired signal processing method is proposed for electronic noses (e-noses). The proposed method contains an olfactory bulb model and a feature generation step. The structure of the olfactory bulb model is similar to the anatomical structure of mammals’ olfactory bulb. It consists of olfactory receptor neurons, mitral cells, granule cells, periglomerular cells, and short axon cells. This model uses gas sensors’ original response curves and transforms them to neuron spiking series no matter what kind the response curve is. This largely simplifies the follow-up feature generation step. Recurrence quantification analysis is employed to perform feature generation and the five most important features are selected. Finally, in order to verify the performance of the proposed method, seven kinds of Chinese liquors are tested and three classification methods are used to classify them. The experimental results demonstrate that the proposed method has a higher classification rate (99.05%) and also a steadier performance with the change of sensor number and types than the classic one.

  4. Cell-based microfluidic platform for mimicking human olfactory system.

    Science.gov (United States)

    Lee, Seung Hwan; Oh, Eun Hae; Park, Tai Hyun

    2015-12-15

    Various attempts have been made to mimic the human olfactory system using human olfactory receptors (hORs). In particular, OR-expressed cell-based odorant detection systems mimic the smell sensing mechanism of humans, as they exploit endogenous cellular signaling pathways. However, the majority of such cell-based studies have been performed in the liquid phase to maintain cell viability, and liquid odorants were used as detection targets. Here, we present a microfluidic device for the detection of gaseous odorants which more closely mimics the human olfactory system. Cells expressing hOR were cultured on a porous membrane. The membrane was then flipped over and placed between two compartments. The upper compartment is the gaseous part where gaseous odorants are supplied, while the lower compartment is the aqueous part where viable cells are maintained in the liquid medium. Using this simple microfluidic device, we were able to detect gaseous odorant molecules by a fluorescence signal. The fluorescence signal was generated by calcium influx resulting from the interaction between odorant molecules and the hOR. The system allowed detection of gaseous odorant molecules in real-time, and the findings showed that the fluorescence responses increased dose-dependently in the range of 0-2 ppm odorant. In addition, the system can discriminate among gaseous odorant molecules. This microfluidic system closely mimics the human olfactory system in the sense that the submerged cells detect gaseous odorants.

  5. Olfactory dysfunction in Down's Syndrome.

    Science.gov (United States)

    Murphy, C; Jinich, S

    1996-01-01

    Down's Syndrome subjects over 40 years old show neuropathology similar to that of Alzheimer's disease. The olfactory system is particularly vulnerable in Alzheimer's disease, both anatomically and functionally. Several measures of sensory and cognitive functioning were studied in the older Down's Syndrome patient, with the hypothesis of significant olfactory dysfunction. Participants were 23 Down's subjects, and 23 controls. The Dementia Rating Scale showed mean scores of 103 for Down's subjects and 141 for controls. Down's subjects showed significant deficits in odor detection threshold, odor identification, and odor recognition memory. Normal performance in a taste threshold task, similar to the olfactory threshold task in subject demands, suggested that the Down's syndrome subjects' poor performance was not due to task demands. Deficits in olfaction may provide a sensitive and early indicator of the deterioration and progression of the brain in older subjects with Down's Syndrome.

  6. Olfactory system oscillations across phyla.

    Science.gov (United States)

    Kay, Leslie M

    2015-04-01

    Neural oscillations are ubiquitous in olfactory systems of mammals, insects and molluscs. Neurophysiological and computational investigations point to common mechanisms for gamma or odor associated oscillations across phyla (40-100Hz in mammals, 20-30Hz in insects, 0.5-1.5Hz in molluscs), engaging the reciprocal dendrodendritic synapse between excitatory principle neurons and inhibitory interneurons in the olfactory bulb (OB), antennal lobe (AL), or procerebrum (PrC). Recent studies suggest important mechanisms that may modulate gamma oscillations, including neuromodulators and centrifugal input to the OB and AL. Beta (20Hz) and theta (2-12Hz) oscillations coordinate activity within and across brain regions. Olfactory beta oscillations are associated with odor learning and depend on centrifugal OB input, while theta oscillations are strongly associated with respiration.

  7. The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input.

    Science.gov (United States)

    He, Chao; Altshuler-Keylin, Svetlana; Daniel, David; L'Etoile, Noelle D; O'Halloran, Damien

    2016-10-06

    In mammals, olfactory subsystems have been shown to express seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-one-neuron pattern, whereas in Caenorhabditis elegans, olfactory sensory neurons express multiple G-protein coupled odorant receptors per olfactory sensory neuron. In both mammalian and C. elegans olfactory sensory neurons (OSNs), the process of olfactory adaptation begins within the OSN; this process of negative feedback within the mammalian OSN has been well described in mammals and enables activated OSNs to desensitize their response cell autonomously while attending to odors detected by separate OSNs. However, the mechanism that enables C. elegans to adapt to one odor and attend to another odor sensed by the same olfactory sensory neuron remains unclear. We found that the cyclic nucleotide gated channel subunit CNG-1 is required to promote cross adaptation responses between distinct olfactory cues. This change in sensitivity to a pair of odorants after persistent stimulation by just one of these odors is modulated by the internal nutritional state of the animal, and we find that this response is maintained across a diverse range of food sources for C. elegans. We also reveal that CNG-1 integrates food related cues for exploratory motor output, revealing that CNG-1 functions in multiple capacities to link nutritional information with behavioral output. Our data describes a novel model whereby CNG channels can integrate the coincidence detection of appetitive and olfactory information to set olfactory preferences and instruct behavioral outputs.

  8. Biocompatibility of 17-4 PH stainless steel foam for implant applications.

    Science.gov (United States)

    Mutlu, Ilven; Oktay, Enver

    2011-01-01

    In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.

  9. Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

    Science.gov (United States)

    Liu, Wei; Ma, Junjie; Atabaki, Mehdi Mazar; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Sreshta, Harold; Kovacevic, Radovan

    2015-06-01

    17-4 PH stainless steel has wide applications in severe working conditions due to its combination of good corrosion resistance and high strength. The weldability of 17-4 PH stainless steel is challenging. In this work, hybrid laser-arc welding was developed to weld 17-4 PH stainless steel. This method was chosen based on its advantages, such as deep weld penetration, less filler materials, and high welding speed. The 17-4 PH stainless steel plates with a thickness of 19 mm were successfully welded in a single pass. During the hybrid welding, the 17-4 PH stainless steel was immensely susceptible to porosity and solidification cracking. The porosity was avoided by using nitrogen as the shielding gas. The nitrogen stabilized the keyhole and inhibited the formation of bubbles during welding. Solidification cracking easily occurred along the weld centerline at the root of the hybrid laser-arc welds. The microstructural evolution and the cracking susceptibility of 17-4 PH stainless steel were investigated to remove these centerline cracks. The results showed that the solidification mode of the material changed due to high cooling rate at the root of the weld. The rapid cooling rate caused the transformation from ferrite to austenite during the solidification stage. The solidification cracking was likely formed as a result of this cracking-susceptible microstructure and a high depth/width ratio that led to a high tensile stress concentration. Furthermore, the solidification cracking was prevented by preheating the base metal. It was found that the preheating slowed the cooling rate at the root of the weld, and the ferrite-to-austenite transformation during the solidification stage was suppressed. Delta ferrite formation was observed in the weld bead as well no solidification cracking occurred by optimizing the preheating temperature.

  10. Effects of urea on the olfactory reception in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Lorenzo Gallus

    2016-06-01

    Full Text Available The effects of uremia on human olfactory functions have been clinically evaluated in various studies, even if to date it is not completely clarified which uremic toxins mediate these processes. Surprisingly, the role of the main molecule involved in uremia, urea indeed, has not been adequately investigated as other possible molecules may also be involved in uremic anosmia. The effects of urea on the olfaction have been evaluated in some clinical studies, but this is the first attempt to determine a direct action of urea on the olfactory epithelium of a vertebrate. Danio rerio adults were exposed to urea in different experiments to assess the effects on olfactory sensitivity and signal transduction. The analysis of the swimming speed has been used to evaluate the response to hypoxanthine 3-N-oxide (H3NO, a molecule that is known to elicit an olfactory-mediated alarm reaction in D. rerio. The presence and distribution of the G protein alpha subunit coupled to the olfactory receptors (Gαolf has been immunohistochemically investigated in the olfactory epithelium of control and urea-exposed D. rerio. Our findings showed that urea alters the response to H3NO of D. rerio with a quite rapid and reversible effect that appears to be independent from a mere interference of urea on the receptor-ligand binding. The Gαolf protein resulted increases after urea treatment, suggesting an effect of urea on its expression or degradation.

  11. Super plastic forming of the Cd-17.4 Zn alloy; Conformado superplastico de la aleacion Cd-17.4 Zn

    Energy Technology Data Exchange (ETDEWEB)

    Llanes Briceno, J. A.; Torres Villasenor, G. [Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F. (Mexico)

    2000-06-01

    In the present work the necessary steps to carry on the superplastic forming of the Cd-17.4 Zn alloy are defined. The use of either atmospheric pressure or gas pressure as forming tools is analyzed. The optimum values of the variables involved (temperature, maximum strain and sensitivity index) are determined while a method for the characterization of future superplastic alloys is set forth. The experimental characterization of the superplastic forming is achieved with free bulging of circular membranes of 12, 16, 24, 32 and 40 mm in diameter and with three different membrane thicknesses (0.4, 0.6 and 0.8 mm). [Spanish] Se definen los pasos necesarios para el conformado superplastico de la aleacion Cd-17.4Zn. Se comparan la presion atmosferica y el gas a presion como herramientas de conformado. Se determinan los valores optimos de las variables involucradas (temperatura, deformacion maxima e indice de sensibilidad) y se plantea una metodologia para la caracterizacion de futuras aleaciones superplasticas. El conformado superplastico se caracteriza experimentalmente mediante el inflado libre de membranas circulares de 12, 16, 24, 32 y 40 mm de diametro y tres diferentes espesores (0.4, 0.6 y 0.8 mm).

  12. Histoarchitectural and surface ultrastructural analysis of the olfactory epithelium of Puntius ticto (Hamilton, 1822

    Directory of Open Access Journals (Sweden)

    Saroj Kumar Ghosh

    2015-08-01

    Full Text Available Organization of various cells lining the olfactory mucosa of Puntius ticto (Hamilton, 1822 were described by light as well as scanning electron microscopy. The paired olfactory chambers located antero-dorsal to the eyes and communicated outside through anterior and posterior nasal openings. The oval shaped olfactory rosette lied at the bottom of chamber and composed of 18-20 lamellae arranged on either side of median raphe. Sensory and non-sensory regions were distributed separately on each lamella. The sensory epithelium consisted mainly of two distinct morphological forms: ciliated and microvillous receptor cells. The non-sensory epithelium contained ciliated non-sensory cells, stratified epithelial cells with concentric microridges and mucous cells. Basal cells were situated at the deeper part of the epithelium, adjacent to the central core. The functional significance of cellular components of the olfactory epithelium was discussed with the habit and habitat of fish.

  13. Microelectrode Recording of Tissue Neural Oscillations for a Bionic Olfactory Biosensor

    Institute of Scientific and Technical Information of China (English)

    Qingjun Liu; Fenni Zhang; Ning Hu; Hua Wang; Kuen Jimmy Hsia; Ping Wang

    2012-01-01

    In olfactory research,neural oscillations exhibit excellent temporal regularity,which are functional and necessary at the physiological and cognitive levels.In this paper,we employed a bionic tissue biosensor which treats intact epithelium as sensing element to record the olfactory oscillations extracellularly.After being stimulated by odorant of butanedione,the olfactory receptor neurons generated different kinds of oscillations,which can be described as pulse firing oscillation,transient firing oscillation,superposed firing oscillation,and sustained firing oscillation,according to their temporal appearances respectively.With a time-frequency analysis of sonogram,the oscillations also demonstrated different frequency properties,such as δ,θ,α,β and γ oscillations.The results suggest that the bionic biosensor cooperated with sonogram analysis can well improve the investigation of olfactory oscillations,and provide a novel model for artificial olfaction sensor design.

  14. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Science.gov (United States)

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.

  15. Olfactory dysfunction in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Zou YM

    2016-04-01

    Full Text Available Yong-ming Zou, Da Lu, Li-ping Liu, Hui-hong Zhang, Yu-ying Zhou Department of Neurology, Tianjin Huanhu Hospital, Tianjin, People’s Republic of China Abstract: Alzheimer’s disease (AD is a common neurodegenerative disorder with the earliest clinical symptom of olfactory dysfunction, which is a potential clinical marker for AD severity and progression. However, many questions remain unanswered. This article reviews relevant research on olfactory dysfunction in AD and evaluates the predictive value of olfactory dysfunction for the epidemiological, pathophysiological, and clinical features of AD, as well as for the conversion of cognitive impairment to AD. We summarize problems of existing studies and provide a useful reference for further studies in AD olfactory dysfunction and for clinical applications of olfactory testing. Keywords: olfactory dysfunction, Alzheimer’s disease, olfactory testing, progress

  16. Inactivation of the olfactory marker protein (OMP) gene in river dolphins and other odontocete cetaceans.

    Science.gov (United States)

    Springer, Mark S; Gatesy, John

    2017-04-01

    Various toothed whales (Odontoceti) are unique among mammals in lacking olfactory bulbs as adults and are thought to be anosmic (lacking the olfactory sense). At the molecular level, toothed whales have high percentages of pseudogenic olfactory receptor genes, but species that have been investigated to date retain an intact copy of the olfactory marker protein gene (OMP), which is highly expressed in olfactory receptor neurons and may regulate the temporal resolution of olfactory responses. One hypothesis for the retention of intact OMP in diverse odontocete lineages is that this gene is pleiotropic with additional functions that are unrelated to olfaction. Recent expression studies provide some support for this hypothesis. Here, we report OMP sequences for representatives of all extant cetacean families and provide the first molecular evidence for inactivation of this gene in vertebrates. Specifically, OMP exhibits independent inactivating mutations in six different odontocete lineages: four river dolphin genera (Platanista, Lipotes, Pontoporia, Inia), sperm whale (Physeter), and harbor porpoise (Phocoena). These results suggest that the only essential role of OMP that is maintained by natural selection is in olfaction, although a non-olfactory role for OMP cannot be ruled out for lineages that retain an intact copy of this gene. Available genome sequences from cetaceans and close outgroups provide evidence of inactivating mutations in two additional genes (CNGA2, CNGA4), which imply further pseudogenization events in the olfactory cascade of odontocetes. Selection analyses demonstrate that evolutionary constraints on all three genes (OMP, CNGA2, CNGA4) have been greatly reduced in Odontoceti, but retain a signature of purifying selection on the stem Cetacea branch and in Mysticeti (baleen whales). This pattern is compatible with the 'echolocation-priority' hypothesis for the evolution of OMP, which posits that negative selection was maintained in the common

  17. Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival.

    Science.gov (United States)

    François, Adrien; Laziz, Iman; Rimbaud, Stéphanie; Grebert, Denise; Durieux, Didier; Pajot-Augy, Edith; Meunier, Nicolas

    2013-01-01

    The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants.

  18. Early survival factor deprivation in the olfactory epithelium enhances activity-dependent survival

    Directory of Open Access Journals (Sweden)

    Adrien eFrançois

    2013-12-01

    Full Text Available The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs. However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226. We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population towards detection of environmental odorants.

  19. 7 CFR 17.4 - Agents of the participant or importer.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Agents of the participant or importer. 17.4 Section 17... Agents of the participant or importer. (a) General. (1) A participant or importer is not required to use... importer and such agent. The written nomination shall also specify the period of time to be covered by...

  20. An Olfactory Cinema: Smelling Perfume

    Directory of Open Access Journals (Sweden)

    Jiaying Sim

    2014-09-01

    Full Text Available While technological improvements from the era of silent movies to that of sound cinema have altered and continued to affect audience’s cinematic experiences, the question is not so much how technology has increased possibility of a sensory response to cinema, rather, it is one that exposes how such technological changes only underscore the participation of our senses and the body in one’s experience of watching film, highlighting the inherently sensorial nature of the cinematic experience. This paper aims to address the above question through an olfactory cinema, by close analysis of Perfume: The Story of a Murderer (2006 by Tom Tykwer. What is an olfactory cinema, and how can such an approach better our understanding of sensorial aspects found within a cinema that ostensibly favours audio-visual senses? What can we benefit from an olfactory cinema? Perhaps, it is through an olfactory cinema that one may begin to embrace the sensual quality of cinema that has been overshadowed by the naturalized ways of experiencing films solely with our eyes and ears, so much so that we desensitize ourselves to the role our senses play in cinematic experiences altogether

  1. Olfactory training in patients with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Antje Haehner

    Full Text Available OBJECTIVE: Decrease of olfactory function in Parkinson's disease (PD is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from "training" with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function. METHODS: We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training. Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves. Olfactory testing was performed before and after training using the "Sniffin' Sticks" (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification in addition to threshold tests for the odors used in the training process. RESULTS: Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training. CONCLUSION: The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.

  2. Effects of Caffeine on Olfactory Learning in Crickets.

    Science.gov (United States)

    Sugimachi, Seigo; Matsumoto, Yukihisa; Mizunami, Makoto; Okada, Jiro

    2016-10-01

    Caffeine is a plant-derived alkaloid that is generally known as a central nervous system (CNS) stimulant. In order to examine the effects of caffeine on higher CNS functions in insects, we used an appetitive olfactory learning paradigm for the cricket Gryllus bimaculatus. Crickets can form significant long-term memories (LTMs) after repetitive training sessions, during which they associate a conditioned stimulus (CS: odor) with an unconditioned stimulus (US: reward). Administration of hemolymphal injections of caffeine established LTM after only single-trial conditioning over a wide range of caffeine dosages (1.6 µµg/kg to 39 mg/kg). We investigated the physiological mechanisms underlying this enhancement of olfactory learning performance pharmacologically, focusing on three major physiological roles of caffeine: 1) inhibition of phosphodiesterase (PDE), 2) agonism of ryanodine receptors, and 3) antagonism of adenosine receptors. Application of drugs relevant to these actions resulted in significant effects on LTM formation. These results suggest that externally applied caffeine enhances LTM formation in insect olfactory learning via multiple cellular mechanisms.

  3. The smell of blue light: a new approach towards understanding an olfactory neuronal network

    Directory of Open Access Journals (Sweden)

    Klemens F Störtkuhl

    2011-05-01

    Full Text Available Olfaction is one of the most important senses throughout the animal kingdom. It enables animals to discriminate between a wide variety of attractive and repulsive odorants and often plays a decisive role in species specific communication. In recent years the analysis of olfactory systems both in vertebrates and invertebrates has attracted much scientific interest. In this context a pivotal question is how the properties and connectivities of individual neurons contribute to a functioning neuronal network that mediates odor-guided behavior. As a novel approach to analyze the role of individual neurons within a circuitry, techniques have been established that make use of light-sensitive proteins. In this review we introduce a non-invasive, optogenetic technique which was used to manipulate the activity of individual neurons in the olfactory system of Drosophila melanogaster larvae. Both channelrhodopsin-2 and the photosensitive adenylyl cyclase PAC α in individual olfactory receptor neurons of the olfactory system of Drosophila larvae allows stimulating individual receptor neurons by light. Depending on which particular olfactory receptor neuron is optogenetically activated, repulsion or attraction behavior can be induced, indicating which sensory neurons underlie which type of behavior.

  4. Processing of Sensory Information in the Olfactory System

    DEFF Research Database (Denmark)

    , Bayer Technology Services) Axonal Pathfinding and Sorting in the Olfactory System (Noemi Hummel, ETH Zuerich, Switzerland; Simon Kokkendorff and Jens Starke, Technical University of Denmark, Denmark) Analysis of Macroscopic Network Activities (Jens Starke, Technical University of Denmark, Denmark......The olfactory system is an attractive model system due to the easy control of sensory input and the experimental accessibility in animal studies. The odorant signals are processed from receptor neurons to a neural network of mitral and granular cells while various types of nonlinear behaviour can...... be observed. These are oscillations and fast adaptation, axonal pathfinding and sorting, as well as spatiotemporal pattern formation including contrast enhancement and travelling waves. A combination of different mathematical approaches like qualitative methods, bifurcation analysis, data analysis...

  5. Induced peripheral sensitivity in the developing vertebrate olfactory system.

    Science.gov (United States)

    Hudson, R; Distel, H

    1998-11-30

    The high dimensionality and unpredictability of the chemical world makes it difficult for the olfactory system to anticipate relevant stimuli and construct neural filters accordingly. A developmental solution to this problem would be to alter the sensory surface according to environmental conditions so as to enhance sensitivity to molecules of particular relevance. Evidence for this has been obtained in the rabbit. By feeding pregnant does aromatic juniper berries, it could be shown that newborn, weanling and even adult animals demonstrate a preference for juniper odor without subsequent postnatal experience, and that this is associated with enhanced peripheral sensitivity for juniper odor as measured by electro-olfactogram (EOG). This is consistent with the report that in young salmon olfactory imprinting is associated with enhanced, odor-specific sensitivity of receptor cells as measured by patch clamp. The mechanisms underlying such changes are unknown, including the extent to which they are a particular feature of developing systems.

  6. Centrifugal innervation of the mammalian olfactory bulb.

    Science.gov (United States)

    Matsutani, Shinji; Yamamoto, Noboru

    2008-12-01

    Although it has been known for decades that the mammalian olfactory bulb receives a substantial number of centrifugal inputs from other regions of the brain, relatively few data have been available on the function of the centrifugal olfactory system. Knowing the role of the centrifugal projection and how it works is of critical importance to fully understanding olfaction. The centrifugal fibers can be classified into two groups, a group that release neuromodulators, such as noradrenaline, serotonin, or acetylcholine, and a group originating in the olfactory cortex. Accumulating evidence suggests that centrifugal neuromodulatory inputs are associated with acquisition of odor memory. Because the distribution of the terminals on these fibers is diffuse and widespread, the neuromodulatory inputs must affect diverse subsets of bulbar neurons at the same time. In contrast, knowledge of the role of centrifugal fibers from the olfactory cortical areas is limited. Judging from recent morphological evidence, these fibers may modify the activity of neurons located in sparse and discrete loci in the olfactory bulb. Given the modular organization of the olfactory bulb, centrifugal fibers from the olfactory cortex may help coordinate the activities of restricted subsets of neurons belonging to distinct functional modules in an odor-specific manner. Because the olfactory cortex receives inputs from limbic and neocortical areas in addition to inputs from the bulb, the centrifugal inputs from the cortex can modulate odor processing in the bulb in response to non-olfactory as well as olfactory cues.

  7. Calmodulin as a downstream gene of octopamine-OAR α1 signalling mediates olfactory attraction in gregarious locusts.

    Science.gov (United States)

    Xu, L; Li, L; Yang, P; Ma, Z

    2017-02-01

    The migratory locust (Locusta migratoria) shows aggregative traits in nymph marching bands and swarm formations through mutual olfactory attraction of conspecifics. However, olfactory preference in different nymph stages in gregarious locusts is not sufficiently explored. In this study, we found that the nymph olfactory preference for gregarious volatiles exhibited obvious variations at different developmental stages. The gregarious locusts show attractive response to conspecific volatiles from the third stadium. Transcriptome comparison between third- and fourth-stadium nymphs showed that the G protein-coupled receptor (GPCR) pathways are significantly enriched. Amongst the genes present in GPCR pathways, the expression level of calmodulin in locust brains significantly increased from the third- to the fourth-stadium nymphs. Amongst the four octopamine receptors (OARs) belonging to the GPCR family, only OAR α1 showed similar expression patterns to those of calmodulin, and knockdown of OAR α1 reduced the expression level of calmodulin. RNA interference of calmodulin decreased locomotion and induced the loss of olfactory attraction in gregarious locusts. Moreover, the activation of OAR α1 in calmodulin-knockdown locusts did not induce olfactory attraction of the nymphs to gregarious volatiles. Thus, calmodulin as a downstream gene of octopamine-OAR α1 (OA-OAR α1) signalling mediates olfactory attraction in gregarious locusts. Overall, this study provides novel insights into the mechanism of OA-OAR α1 signalling involved in olfactory attraction of gregarious locusts.

  8. Relationship of microstructure transformation and hardening behavior of type 17-4 PH stainless steel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between the microstructure transformation of type 17-4 PH stainless steel and the aging hardening behavior was investigated. The results showed that, when 17-4 PH stainless steel aging at 595℃, the bulk hardness of samples attains its peak value (42.5 HRC) for about 20 min, and then decreases at all time. TEM revealed the microstructure corresponding with peak hardness is that the fine spheroid-shape copper with the fcc crystal structure and the fiber-shape secondary carbide M23C6 precipitated from the lath martensite matrix. Both precipitations of copper and M23C6 are the reasons for strengthening of the alloy at this temperature. With the extension of holding time at this temperature, the copper and secondary carbide grow and lose the coherent relationship with the matrix, so the bulk hardness of samples decreases.

  9. Influence of laser power on microstructure of laser metal deposited 17-4 ph stainless steel

    Science.gov (United States)

    Adeyemi, A. A.; Akinlabi, ET; Mahamood, R. M.; Sanusi, K. O.; Pityana, S.; Tlotleng, M.

    2017-08-01

    The influence of laser power on the microstructure of 17-4 PH stainless steel produced by laser metal deposition was investigated. Multiple-trackof 17-4 stainless steel powder was deposited on 316 stainless steel substrate using laser metal deposition, an additive manufacturing process. In this research, laser power was varied between 1.0 kW and 2.6 kW with scanning speed fixed at 1.2 m/s. The powder flow rate and the gas flow rate were also kept constant at values of 5 g/min and 2 l/min respectively. The microstructure was studied under optical microscope and it revealed that the microstructure was dendritic in structure with finer and lesser δ-ferriteat low laser power while the appearance of coarse and more δ-ferriteare seen at higher laser power.

  10. Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH.

    Science.gov (United States)

    Masoomi, Mohammad; Shamsaei, Nima; Winholtz, Robert A; Milner, Justin L; Gnäupel-Herold, Thomas; Elwany, Alaa; Mahmoudi, Mohamad; Thompson, Scott M

    2017-08-01

    Neutron diffraction was employed to measure internal residual stresses at various locations along stainless steel (SS) 17-4 PH specimens additively manufactured via laser-powder bed fusion (L-PBF). Of these specimens, two were rods (diameter=8 mm, length=80 mm) built vertically upward and one a parallelepiped (8×80×9 mm(3)) built with its longest edge parallel to ground. One rod and the parallelepiped were left in their as-built condition, while the other rod was heat treated. Data presented provide insight into the microstructural characteristics of typical L-PBF SS 17-4 PH specimens and their dependence on build orientation and post-processing procedures such as heat treatment. Data have been deposited in the Data in Brief Dataverse repository (doi:10.7910/DVN/T41S3V).

  11. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

    Science.gov (United States)

    Rafi, H. Khalid; Pal, Deepankar; Patil, Nachiket; Starr, Thomas L.; Stucker, Brent E.

    2014-12-01

    The mechanical behavior and the microstructural evolution of 17-4 precipitation hardenable (PH) stainless steel processed using selective laser melting have been studied. Test coupons were produced from 17-4 PH stainless steel powder in argon and nitrogen atmospheres. Characterization studies were carried out using mechanical testing, optical microscopy, scanning electron microscopy, and x-ray diffraction. The results show that post-process heat treatment is required to obtain typically desired tensile properties. Columnar grains of smaller diameters (<2 µm) emerged within the melt pool with a mixture of martensite and retained austenite phases. It was found that the phase content of the samples is greatly influenced by the powder chemistry, processing environment, and grain diameter.

  12. Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH

    Directory of Open Access Journals (Sweden)

    Mohammad Masoomi

    2017-08-01

    Full Text Available Neutron diffraction was employed to measure internal residual stresses at various locations along stainless steel (SS 17-4 PH specimens additively manufactured via laser-powder bed fusion (L-PBF. Of these specimens, two were rods (diameter=8 mm, length=80 mm built vertically upward and one a parallelepiped (8×80×9 mm3 built with its longest edge parallel to ground. One rod and the parallelepiped were left in their as-built condition, while the other rod was heat treated. Data presented provide insight into the microstructural characteristics of typical L-PBF SS 17-4 PH specimens and their dependence on build orientation and post-processing procedures such as heat treatment. Data have been deposited in the Data in Brief Dataverse repository (doi:10.7910/DVN/T41S3V.

  13. Role of alloy additions on strengthening in 17-4 PH stainless steel

    Science.gov (United States)

    Murthy, Arpana Sudershan

    Alloy modifications by addition of niobium (Nb), vanadium (V), nitrogen (N) and cobalt (Co) to cast 17-4 PH steel were investigated to determine the effect on mechanical properties. Additions of Nb, V, and N increased the yield strength from 1120 MPa to 1310 MPa while decreased the room temperature charpy V notch (CVN) toughness from 20 J to four Joules. The addition of Co to cast 17-4 PH steel enhanced the yield strength and CVN toughness from 1140 MPa to 1290 MPa and from 3.7 J to 5.5 J, respectively. In the base 17-4 PH steel, an increase in block width from 2.27 ± 0.10 μm in the solution treated condition to 3.06 ± 0.17 μm upon aging at 755 K was measured using orientation image microscopy. Cobalt inhibited recrystallization and block boundary migration during aging resulting in a finer martensitic block structure. The influence of Co on copper (Cu) precipitation in steels was studied using atom probe tomography. A narrower precipitate size distribution was observed in the steels with Co addition. The concentration profile across the matrix / precipitate interface indicated rejection of Co atoms from the copper precipitates. This behavior was observed to be energetically favorable using first principle calculations. The activation energies for Cu precipitation increased from 205 kJ/ mol in the non-cobalt containing alloy, to 243 kJ/ mol, and 272 kJ/ mol in alloys with 3 wt. %Co, and 7 wt. % Co, respectively. The role of Co on Cu precipitation in cast 17-4 PH steel is proposed as follows: (i) Co is rejected out of the Cu precipitate and sets up a barrier to the growth of the Cu precipitate; (ii) results in Cu precipitates of smaller size and narrower distribution; (iii) the coarsening of Cu precipitates is inhibited; and (iv) the activation energy for Cu precipitation increases.

  14. Study of micropart fabrication via 17-4 PH stainless nanopowder injection molding.

    Science.gov (United States)

    Tirta, Andy; Prasetyo, Yus; Baek, Eung-Ryul; Choi, Chul-Jin

    2011-01-01

    Micropart fabrication via 17-4 PH stainless nanopowder injection molding was investigated. The nanopowder was mixed with a binder that was based on wax to produce a feedstock composed of 45% powder and binder (the powder load). Initially, the fit and proper test was done before the micropart was made by making some bars of green samples, which the properties were examined after the sintering process. The examination involved the mechanical properties such as the porosity, hardness, and some of metallurgical aspects, such as the second-phase formation and the final compound after the sintering. The results showed that utilizing 17-4 PH stainless nanopowder is promising for micropart fabrication since it can form a nearly full-density sintered sample with a low porosity and good toughness, and can provide a smooth surface finish. After this, the investigations followed with the injection of the feedstock into the PDMS micromold that was formed by the nickel pattern from the X-Ray LIGA process. The green samples successfully produced a high-aspect-ratio sample with a thickness of up to 1 mm and an aspect ratio of 15 in the microchannel part. Then the green samples were sintered at 1,300 degrees C for 2 h, since from the initial test, they showed optimum parameters with nearly full density, low porosity, and a high degree of hardness. The research shows the excellent results of the application of the 17-4 PH stainless nanopowder to micropart fabrication.

  15. Auditory Stimulation Dishabituates Olfactory Responses via Noradrenergic Cortical Modulation

    Directory of Open Access Journals (Sweden)

    Jonathan J. Smith

    2009-01-01

    Full Text Available Dishabituation is a return of a habituated response if context or contingency changes. In the mammalian olfactory system, metabotropic glutamate receptor mediated synaptic depression of cortical afferents underlies short-term habituation to odors. It was hypothesized that a known antagonistic interaction between these receptors and norepinephrine ß-receptors provides a mechanism for dishabituation. The results demonstrate that a 108 dB siren induces a two-fold increase in norepinephrine content in the piriform cortex. The same auditory stimulus induces dishabituation of odor-evoked heart rate orienting bradycardia responses in awake rats. Finally, blockade of piriform cortical norepinephrine ß-receptors with bilateral intracortical infusions of propranolol (100 μM disrupts auditory-induced dishabituation of odor-evoked bradycardia responses. These results provide a cortical mechanism for a return of habituated sensory responses following a cross-modal alerting stimulus.

  16. Olfactory neuroblastoma: A case report

    Science.gov (United States)

    USLU, GONCA HANEDAN; CANYILMAZ, EMINE; ZENGIN, AHMET YASAR; MUNGAN, SEVDEGUL; YONEY, ADNAN; BAHADIR, OSMAN; GOCMEZ, HUSEYIN

    2015-01-01

    Olfactory neuroblastoma (ON) is a rare type of malignant neoplasm originating from the olfactory neuroepithelial cells of the nasal cavity. ON is also known as esthesioneuroblastoma or neuroendocrine carcinoma. The malignancy accounts for <3% of tumors originating in the nasal cavity. Through the nasal cavity, ON may infiltrate the sinuses, the orbit and the cranium. The tumor is characterized by a pattern of slow growth and local recurrences. Treatment options are surgical excision or surgery combined with a radiotherapy (RT) and/or chemotherapy combination treatment. The present study reports the case of a 69-year-old patient with a mass in the nasal cavity who was treated by combined surgical excision and RT. The literature for ON and the treatment of the tumor are also discussed. PMID:26788185

  17. Critical role of GFRα1 in the development and function of the main olfactory system.

    Science.gov (United States)

    Marks, Carolyn; Belluscio, Leonardo; Ibáñez, Carlos F

    2012-11-28

    Glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are prominently expressed in the olfactory epithelium (OE) and olfactory bulb (OB), but their importance for olfactory system development is completely unknown. We have investigated the consequences of GFRα1 deficiency for mouse olfactory system development and function. In the OE, GFRα1 was expressed in basal precursors, immature olfactory sensory neurons (OSNs), and olfactory ensheathing cells (OECs), but was excluded from mature OSNs. The OE of newborn Gfra1 knock-out mice was thinner and contained fewer OSNs, but more dividing precursors, suggesting deficient neurogenesis. Immature OSN axon bundles were enlarged and associated OECs increased, indicating impaired migration of OECs and OSN axons. In the OB, GFRα1 was expressed in immature OSN axons and OECs of the nerve layer, as well as mitral and tufted cells, but was excluded from GABAergic interneurons. In newborn knock-outs, the nerve layer was dramatically reduced, exhibiting fewer axons and OECs. Bulbs were smaller and presented fewer and disorganized glomeruli and a significant reduction in mitral cells. Numbers of tyrosine hydroxylase-, calbindin-, and calretinin-expressing interneurons were also reduced in newborn mice lacking Gfra1. At birth, the OE and OB of Gdnf knock-out mice displayed comparable phenotypes. Similar deficits were also found in adult heterozygous Gfra1(+/-) mutants, which in addition displayed diminished responses in behavioral tests of olfactory function. We conclude that GFRα1 is critical for the development and function of the main olfactory system, contributing to the development and allocation of all major classes of neurons and glial cells.

  18. Identification and Characterization of Pheromone Receptors and Interplay between Receptors and Pheromone Binding Proteins in the Diamondback Moth, Plutella xyllostella

    OpenAIRE

    Sun, Mengjing; Liu, Yang; Walker, William B.; Liu, Chengcheng; Lin, Kejian; Gu, Shaohua; ZHANG Yongjun; Zhou, Jingjiang; Wang, Guirong

    2013-01-01

    Moths depend on olfactory cues such as sex pheromones to find and recognize mating partners. Pheromone receptors (PRs) and Pheromone binding proteins (PBPs) are thought to be associated with olfactory signal transduction of pheromonal compounds in peripheral olfactory reception. Here six candidate pheromone receptor genes in the diamondback moth, Plutella xyllostella were identified and cloned. All of the six candidate PR genes display male-biased expression, which is a typical characteristic...

  19. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  20. Roles of olfactory system dysfunction in depression.

    Science.gov (United States)

    Yuan, Ti-Fei; Slotnick, Burton M

    2014-10-01

    The olfactory system is involved in sensory functions, emotional regulation and memory formation. Olfactory bulbectomy in rat has been employed as an animal model of depression for antidepressant discovery studies for many years. Olfaction is impaired in animals suffering from chronic stress, and patients with clinical depression were reported to have decreased olfactory function. It is believed that the neurobiological bases of depression might include dysfunction in the olfactory system. Further, brain stimulation, including nasal based drug delivery could provide novel therapies for management of depression.

  1. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.

    Science.gov (United States)

    Cadiou, Hervé; Aoudé, Imad; Tazir, Bassim; Molinas, Adrien; Fenech, Claire; Meunier, Nicolas; Grosmaitre, Xavier

    2014-04-01

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to lyral induces plasticity in the population of OSNs expressing MOR23. Their density decreases after odorant exposure, whereas the amount of MOR23 mRNA and protein remain stable in the whole epithelium. Meanwhile, quantitative PCR indicates that each MOR23 neuron has higher levels of olfactory receptor transcripts and also expresses more CNGA2 and phosphodiesterase 1C, fundamental olfactory transduction pathway proteins. Transcript levels return to baseline after 4 weeks recovery. Patch-clamp recordings reveal that exposed MOR23 neurons respond to lyral with higher sensitivity and broader dynamic range while the responses' kinetics were faster. These effects are specific to the odorant-receptor pair lyral-MOR23: there was no effect of acetophenone on MOR23 neurons and no effect of acetophenone and lyral on the M71 population. Together, our results clearly demonstrate that OSNs undergo specific anatomical, molecular, and functional adaptation when chronically exposed to odorants in the early stage of life.

  2. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats.

    Directory of Open Access Journals (Sweden)

    Julia Negroni

    Full Text Available Neuropeptide Y (NPY plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM. Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.

  3. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats.

    Science.gov (United States)

    Negroni, Julia; Meunier, Nicolas; Monnerie, Régine; Salesse, Roland; Baly, Christine; Caillol, Monique; Congar, Patrice

    2012-01-01

    Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.

  4. Phase Field Simulation for Grains Evolution of 17-4PH Steel During Cyclic Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Yuan YOU; Mufu YAN; Chengsong ZHANG

    2013-01-01

    A phase field model is developed to simulate the grain evolution of 17-4PH steel during cyclic heat treatment (CHT).Our simulations successfully reproduce the grain morphologies of every CHT.In the process of every CHT,phase transformation recrystallization happens.The recrystallized grains appear mainly on the original grain boundaries.The average grain size of 13.2 μm obtained by 1040 ℃C×1 h solution treatment for this experimental steel can be refined to 2.2 μm after five CHT's.Furthermore,the effects of phenomenological parameters in our model are discussed.

  5. Olfactory impairment in the rotenone model of Parkinson's disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation

    Directory of Open Access Journals (Sweden)

    Laís Soares Rodrigues

    2014-12-01

    Full Text Available Olfactory and rapid eye movement (REM sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson's disease (PD. Besides different studies reported declines in olfactory performances during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood although the impairment in the dopamine (DA neurotransmission in the olfactory bulb and in the nigrostriatal pathway may have important roles in olfactory as well as in REM sleep disturbances. Therefore, we have led to the hypothesis that a modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and after a short period of REM sleep deprivation (REMSD. We decided to investigate the olfactory, neurochemical and histological alterations generated by the administration of piribedil (a selective D2 agonist or raclopride (a selective D2 antagonist, within the glomerular layer of the olfactory bulb, in rats submitted to intranigral rotenone and REMSD. Our findings provided a remarkable evidence of the occurrence of a negative correlation (r = - 0.52, P = 0.04 between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham groups. A significant positive correlation (r = 0.34, P = 0.03 was observed between nigral DA and olfactory discrimination index (DI, for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc are associated to enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA induced by piribedil in the rotenone control and rotenone REMSD groups were consistent with reduced amounts of DI. The present evidence reinforce that DA produced by periglomerular neurons, and particularly the bulbar dopaminergic D2 receptors, are essential participants in the olfactory discrimination processes, as well as SNpc

  6. Houseflies : Effects of age on olfactory responses

    NARCIS (Netherlands)

    Kelling, FJ; den Otter, CJ; Sommeijer, MJ; Francke, PJ

    1998-01-01

    The olfactory system of sexually immature 1-day-old flies is already functional. No clear differences exist between the responses of their olfactory cells and those of sexually mature flies to amylacetate, S-methylphenol, 2-pentanone and R(+)-limonene. However, the sensitivity to 1-octen-3-ol is low

  7. Olfactory regulation of mosquito-host interactions

    NARCIS (Netherlands)

    Zwiebel, L.J.; Takken, W.

    2004-01-01

    Mosquitoes that act as disease vectors rely upon olfactory cues to direct several important behaviors that are fundamentally involved in establishing their overall vectorial capacity. Of these, the propensity to select humans for blood feeding is arguably the most important of these olfactory driven

  8. Flow Curve Analysis of 17-4 PH Stainless Steel under Hot Compression Test

    Science.gov (United States)

    Mirzadeh, Hamed; Najafizadeh, Abbas; Moazeny, Mohammad

    2009-12-01

    The hot compression behavior of a 17-4 PH stainless steel (AISI 630) has been investigated at temperatures of 950 °C to 1150 °C and strain rates of 10-3 to 10 s-1. Glass powder in the Rastegaev reservoirs of the specimen was used as a lubricant material. A step-by-step procedure for data analysis in the hot compression test was given. The work hardening rate analysis was performed to reveal if dynamic recrystallization (DRX) occurred. Many samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall toward the steady-state stress. At low Zener-Hollomon ( Z) parameter, this material showed a new DRX flow behavior, which was called multiple transient steady state (MTSS). At high Z, as a result of adiabatic deformation heating, a drop in flow stress was observed. The general constitutive equations were used to determine the hot working constants of this material. Moreover, after a critical discussion, the deformation activation energy of 17-4 PH stainless steel was determined as 337 kJ/mol.

  9. 中红侧沟茧蜂嗅觉受体MmedOr2基因的克隆及组织表达谱%Cloning and Tissue Expression Analysis of an Olfactory Receptor MmedOr2 in Microplitis mediator (Hymenoptera:Braconidae)

    Institute of Scientific and Technical Information of China (English)

    马龙; 王山宁; 路子云; 刘泽文; 张永军; 郭予元

    2014-01-01

    Olfaction plays a vital role in host-seeking, enemy-defending, mating and immigration in natural enemies. Olfactory receptors are an important class of functional proteins in insect olfactory system. In this study, a sequence fragment of olfactory receptor gene MmedOr2 in Microplitis mediator was identified from the antenna cDNA library, and the full-length sequence of this gene was obtained by using rapid amplification of cDNA ends (RACE). Further, expression profiles of this gene in different tissues along the developmental stages, as well as before and after mating was analyzed using real-time quantitative PCR. It was found that the receptor gene was specifically expressed in antenna, and expression level was significantly higher in female than in male. In female, MmedOr2 expression reached the highest level on the 3rd day after emergence while the highest expression in male appeared on the 4th day after emergence. After peak expression, MmedOr2 expression level declined gradually in both male and female adults. In addition, expression level of MmedOr2 in female adults was notably decreased after mating. According to above findings, we speculate that MmedOr2 may be a sex pheromone receptor and plays an important role in mate-searching.%嗅觉在天敌昆虫寻找寄主、躲避敌害、交配、转移等行为中发挥关键作用。嗅觉受体是昆虫嗅觉系统中一类重要的功能蛋白。本文选取从中红侧沟茧蜂触角cDNA文库鉴定一个嗅觉受体基因MmedOr2序列片段,采用RACE技术克隆获得中红侧沟茧蜂嗅觉受体基因MmedOr2的全长序列。通过实时荧光定量PCR解析了该基因在中红侧沟茧蜂不同发育阶段、不同组织部位以及交配前后的转录表达谱。结果表明, MmedOr2在触角中特异性表达,且在雌蜂触角中表达量显著高于雄蜂触角。雌、雄蜂羽化后分别在第3 d和第4 d MmedOr2表达量达到最高,该基因转录表达量达到最高后逐渐下降

  10. Morphology and cytology of the olfactory organs in small juvenile Dascyllus aruanus and Amphiprion ocellaris (Pisces

    DEFF Research Database (Denmark)

    Arvedlund, Michael; Brolund, Thea Marie; Nielsen, Lis Engdahl

    2003-01-01

    the rosette comprises six lamellae, three on each side of a midline raphe; in A. ocellaris 12 lamellae, six on each side. In both species, the sensory regions in the lamellae are continuous, except for the margin of the lamellae, and richly covered with stereocilia. Areas with juvenile bipolar receptor cells......The olfactory organs in juvenile Dascyllus aruanus and Amphiprion ocellaris, studied by scanning and transmission electron microscopy (SEM and TEM), consisted of two bilaterally radial rosettes per specimen, fan-shaped, located medio-ventrally, one in each of two olfactory chambers. In D. aruanus...

  11. The Feasibility of Gelatin-Based Retronasal Stimuli to Assess Olfactory Perception

    Directory of Open Access Journals (Sweden)

    Daniel Shepherd

    2015-10-01

    Full Text Available Links between some psychological disorders and olfactory deficits are well documented, and screening tests have been developed to exploit these associations. Odors can take one of two routes to the olfactory receptors in the nasal epithelium, the orthonasal or retronasal route. This article discusses the potential use of the retronasal route to assess olfaction using gelatin-based stimuli delivered orally. Using a relatively new psychophysical method, the Single-Interval Adjustment Matrix task, we estimated vanillin thresholds for five healthy participants sampling small vanillin flavored gels. Our data demonstrate the feasibility of using solid-state gustatory stimuli to assess retronasal perception.

  12. A Closer Look at Acid-Base Olfactory Titrations

    Science.gov (United States)

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  13. Evidence that thyroid hormone induces olfactory cellular proliferation in salmon during a sensitive period for imprinting.

    Science.gov (United States)

    Lema, Sean C; Nevitt, Gabrielle A

    2004-09-01

    Salmon have long been known to imprint and home to natal stream odors, yet the mechanisms driving olfactory imprinting remain obscure. The timing of imprinting is associated with elevations in plasma thyroid hormone levels, with possible effects on growth and proliferation of the peripheral olfactory system. Here, we begin to test this idea by determining whether experimentally elevated plasma levels of 3,5,3'-triiodothyronine (T(3)) influence cell proliferation as detected by the 5-bromo-2'-deoxyuridine (BrdU) cell birth-dating technique in the olfactory epithelium of juvenile coho salmon (Oncorhynchus kisutch). We also explore how natural fluctuations in thyroxine (T(4)) relate to proliferation in the epithelium during the parr-smolt transformation. In both studies, we found that BrdU labeled both single and clusters of mitotic cells. The total number of BrdU-labeled cells in the olfactory epithelium was significantly greater in fish with artificially elevated T(3) compared with placebo controls. This difference in proliferation was restricted to the basal region of the olfactory epithelium, where multipotent progenitor cells differentiate into olfactory receptor neurons. The distributions of mitotic cluster sizes differed significantly from a Poisson distribution for both T(3) and placebo treatments, suggesting that proliferation tends to be non-random. Over the course of the parr-smolt transformation, changes in the density of BrdU cells showed a positive relationship with natural fluctuations in plasma T(4). This relationship suggests that even small changes in thyroid activity can stimulate the proliferation of neural progenitor cells in the salmon epithelium. Taken together, our results establish a link between the thyroid hormone axis and measurable anatomical changes in the peripheral olfactory system.

  14. Empty spiracles is required for the development of olfactory projection neuron circuitry in Drosophila.

    Science.gov (United States)

    Lichtneckert, Robert; Nobs, Lionel; Reichert, Heinrich

    2008-08-01

    In both insects and mammals, second-order olfactory neurons receive input from olfactory receptor neurons and relay olfactory input to higher brain centers. In Drosophila, the wiring specificity of these olfactory projection neurons (PNs) is predetermined by their lineage identity and birth order. However, the genetic programs that control this wiring specificity are not well understood. The cephalic gap gene empty spiracles (ems) encodes a homeodomain transcription factor required for embryonic development of the antennal brain neuromere. Here we show that ems is expressed postembryonically in the progenitors of the two major olfactory PN lineages. Moreover, we show that ems has cell lineage-specific functions in postembryonic PN development. Thus, in the lateral PN lineage, transient ems expression is essential for development of the correct number of PNs; in ems mutants, the number of PNs in the lineage is dramatically reduced by apoptosis. By contrast, in the anterodorsal PN lineage, transient ems expression is necessary for precise targeting of PN dendrites to appropriate glomeruli; in ems mutants, these PNs fail to innervate correct glomeruli, innervate inappropriate glomeruli, or mistarget dendrites to other brain regions. Furthermore, in the anterodorsal PN lineage, ems controls the expression of the POU-domain transcription factor Acj6 in approximately half of the cells and, in at least one glomerulus, ems function in dendritic targeting is mediated through Acj6. The finding that Drosophila ems, like its murine homologs Emx1/2, is required for the formation of olfactory circuitry implies that conserved genetic programs control olfactory system development in insects and mammals.

  15. Detection of Olfactory Dysfunction Using Olfactory Event Related Potentials in Young Patients with Multiple Sclerosis

    Science.gov (United States)

    Caminiti, Fabrizia; De Salvo, Simona; De Cola, Maria Cristina; Russo, Margherita; Bramanti, Placido; Marino, Silvia; Ciurleo, Rosella

    2014-01-01

    Background Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients' response bias and clinical, demographic and cognitive features. Aims To evaluate objectively the olfactory function using Olfactory Event Related Potentials. Materials and Methods We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years) and of 30 age, sex and smoking–habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated. Results Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01). The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433), as well as inversely correlated with the disease duration (r = −0.3641, p = 0.0479). Conclusion Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease. PMID:25047369

  16. Detection of olfactory dysfunction using olfactory event related potentials in young patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Fabrizia Caminiti

    Full Text Available Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients' response bias and clinical, demographic and cognitive features.To evaluate objectively the olfactory function using Olfactory Event Related Potentials.We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years and of 30 age, sex and smoking-habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated.Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01. The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433, as well as inversely correlated with the disease duration (r = -0.3641, p = 0.0479.Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease.

  17. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map.

    Science.gov (United States)

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2009-12-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at approximately 50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a three-dimensional discrete neural map are unclear. We found that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) was differentially expressed in different classes of PNs. Loss-of-function and gain-of-function studies indicated that Caps instructs the segregation of Caps-positive and Caps-negative PN dendrites to discrete glomerular targets. Moreover, Caps-mediated PN dendrite targeting was independent of presynaptic ORNs and did not involve homophilic interactions. The closely related protein Tartan was partially redundant with Caps. These LRR proteins are probably part of a combinatorial cell-surface code that instructs discrete olfactory map formation.

  18. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a.

    Directory of Open Access Journals (Sweden)

    Keshava Mysore

    Full Text Available Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention.

  19. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a.

    Science.gov (United States)

    Mysore, Keshava; Flannery, Ellen M; Tomchaney, Michael; Severson, David W; Duman-Scheel, Molly

    2013-01-01

    Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a) during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention.

  20. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    Science.gov (United States)

    Zhou, Jun; Yang, Wei; Chen, Peihua; Liu, Qingjun; Wang, Ping

    2009-05-01

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  1. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, S.S.M., E-mail: ssmtavares@terra.com.b [Universidade Federal Fluminense - Programa de Pos-graduacao em Engenharia Mecanica (PGMEC), Rua Passo da Patria, 156 - CEP 24210-240 - Niteroi/RJ (Brazil); Silva, F.J. da; Scandian, C. [Universidade Federal do Espirito Santo - Departamento de Engenharia Mecanica - Av. Fernando Ferrrari, 514 - CEP 29075-910 - Vitoria/ES (Brazil); Silva, G.F. da [Universidade Federal Fluminense - Programa de Pos-graduacao em Engenharia Mecanica (PGMEC), Rua Passo da Patria, 156 - CEP 24210-240 - Niteroi/RJ (Brazil); Abreu, H.F.G. de [Universidade Federal do Ceara - Departamento de Engenharia Metalurgica e Materiais - Campus do Pici, Bloco 702 - CEP 60455-760 - Fortaleza/CE (Brazil)

    2010-11-15

    UNS S17400 or 17-4PH is a precipitation hardening martensitic stainless steel with many industrial applications. Quite different mechanical properties can be produced in this material by varying the aging temperature. In this work, the influence of aging temperature on the intergranular corrosion susceptibility was evaluated by electrochemical and metallographic tests. The microstructural features were investigated by X-ray diffraction, optical and scanning electron microscopy. Intergranular chromium carbide precipitation occurs in specimens aged at high temperatures, although NbC carbides were also observed. The results obtained by double loop electrochemical potentiodynamic reactivation tests (DL-EPR) show that the susceptibility to intergranular corrosion resistance increases with the increase of aging temperature. Healing due to Cr diffusion in the 600-650 {sup o}C range was not observed by DL-EPR tests.

  2. Shot Peening and Thermal Stress Relaxation in 17-4 PH Stainless Steel

    Science.gov (United States)

    Qin, Enwei; Chen, Guoxing; Tan, Ziming; Wu, Shuhui

    2015-11-01

    Shot peening is an effective process to enhance the fatigue performance of turbine blades. In this study, the effect of peening pressures was discussed in terms of the residual stress distribution and the surface morphology. Shot peening processes were designed at varying pressures on a 17-4 PH martensitic stainless steel. The profiles of hardness and residual stress were characterized in the cross section. The thermal stress relaxation was further carried out to evaluate the stability of the compressive residual stress under service temperatures of turbine blades. Results show that a maximum stress depth is obtained with peening pressure of 0.40 MPa, and the residual stress can be maintained up to 400 °C, which ensures the service in low-pressure turbine blades.

  3. Characteristics of Interdiffusion between 17-4 PH Steel and Nickel

    Science.gov (United States)

    Laik, A.; Gawde, P. S.; Bhanumurthy, K.; Kale, G. B.

    2008-04-01

    The characteristics of interdiffusion between precipitation-hardened 17-4 PH grade stainless steel and nickel were studied in the temperature range of 900 °C to 1100 °C, using diffusion couples of these two materials. The diffusion coefficients of the major diffusing elements Fe, Ni, Cr, and Cu were evaluated for this multicomponent system. The diffusion paths plotted on the Fe-Ni-Cr isotherm showed a flat “S” shape, suggesting insignificant interaction among the diffusing species. The temperature dependence of the diffusion coefficients for each element was evaluated, and the activation energies for diffusion were determined. The asymmetric nature of concentration variation of the elements at the diffusion zone was observed and was explained by the difference in diffusivities of the diffusing species. The activation energy for diffusion of Ni was found to be lower than that of Fe and Cr.

  4. Microstructure and wear behavior of stellite 6 cladding on 17-4 PH stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, M., E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-04-07

    Research highlights: > The microstructure of the surface layer consisted of carbides embedded in a Co-rich solid solution with dendritic structure. Primary phases formed during the process were identified as Co(FCC) and lamellar eutectic phases (M{sub 23}C{sub 6}, M{sub 6}C, Cr{sub 7}C{sub 3}). > Microhardness profiles showed that hardness increases from interface to the coating surface. This is due to the finer size of the grains at coating surface in comparison to that at interface and also diffusion of Fe adjacent to the interface. > The delamination was suggested as the dominant mechanism of the wear. In this regard, plate-like wear debris consisted of voids and cracks. In addition, due to increase in surface temperature, Cr{sub 2}O{sub 3} oxide phase was formed during wear tests. - Abstract: This paper deals with the investigation of the microstructure and wear behavior of the stellite 6 cladding on precipitation hardening martensitic stainless steel (17-4PH) using gas tungsten arc welding (GTAW) method. 17-4 PH stainless steel is widely used in oil and gas industries. Optical metallography, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to study the microstructure and wear mechanisms. X-ray diffraction analysis was also used to identify phases formed in the coating. The results showed that the microstructure of the surface layer consisted of carbides embedded in a Co-rich solid solution with a dendritic structure. In addition, the dendritic growth in the coating was epitaxial. Primary phases formed during the process were Co (fcc), Co (hcp), lamellar eutectic phases, M{sub 23}C{sub 6} and Cr{sub 7}C{sub 3} type carbides. The results of the wear tests indicated that the delamination was the dominant mechanism. So, it is necessary to apply an inter-layer between the substrate and top coat.

  5. Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact.

    Science.gov (United States)

    Clark, Jonathan T; Ray, Anandasankar

    2016-09-01

    Insects have developed highly sophisticated and sensitive olfactory systems to find animal or plant hosts for feeding. Some insects vector pathogens that cause diseases in hundreds of millions of people and destroy billions of dollars of food products every year. There is great interest, therefore, in understanding how the insect olfactory system can be manipulated to reduce their contact with hosts. Here, we review recent advances in our understanding of insect olfactory detection mechanisms, which may serve as a foundation for designing insect control programs based on manipulation of their behaviors by using odorants. Because every insect species has a unique set of olfactory receptors and olfactory-mediated behaviors, we focus primarily on general principles of odor detection that potentially apply to most insects. While these mechanisms have emerged from studies on model systems for study of insect olfaction, such as Drosophila melanogaster, they provide a foundation for discovery of odorants to repel vector insects or reduce their host-seeking behavior.

  6. Dog and mouse: Towards a balanced view of the mammalian olfactory system

    Directory of Open Access Journals (Sweden)

    William Arthur Barrios Santos

    2014-09-01

    Full Text Available Although the most intensively studied mammalian olfactory system is that of the mouse, in which olfactory chemical cues of one kind or another are detected in four different nasal areas (the main olfactory epithelium, the septal organ, Grüneberg’s ganglion, and the sensory epithelium of the vomeronasal organ, the extraordinarily sensitive olfactory system of the dog is also an important model that is increasingly used, for example in genomic studies of species evolution. Here we describe the topography and extent of the main olfactory and vomeronasal sensory epithelia of the dog, and we report finding no structures equivalent to the Grüneberg ganglion and septal organ of the mouse. Since we examined adults, newborns and foetuses we conclude that these latter structures are absent in dogs, possibly as the result of regression or involution.The absence of a vomeronasal component based on VR2 receptors suggests that the vomeronasal organ may be undergoing a similar involutionary process.

  7. Characteristics of odorant elicited calcium fluxes in acutely-isolated chick olfactory neurons.

    Science.gov (United States)

    Jung, Yewah; Wirkus, Eric; Amendola, Diedra; Gomez, George

    2005-06-01

    To understand avian olfaction, it is important to characterize the peripheral olfactory system of a representative bird species. This study determined the functional properties of olfactory receptor neurons of the chicken olfactory epithelium. Individual neurons were acutely isolated from embryonic day-18 to newborn chicks by dissection and enzymatic dissociation. We tested single olfactory neurons with behaviorally relevant odorant mixtures and measured their responses using ratiometric calcium imaging; techniques used in this study were identical to those used in other studies of olfaction in other vertebrate species. Chick olfactory neurons displayed properties similar to those found in other vertebrates: they responded to odorant stimuli with either decreases or increases in intracellular calcium, calcium increases were mediated by a calcium influx, and responses were reversibly inhibited by 100 microM L: -cis-diltiazem, 1 mM Neomycin, and 20 microM U73122, which are biochemical inhibitors of second messenger signaling. In addition, some cells showed a complex pattern of responses, with different odorant mixtures eliciting increases or decreases in calcium in the same cell. It appears that there are common features of odorant signaling shared by a variety of vertebrate species, as well as features that may be peculiar to chickens.

  8. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Directory of Open Access Journals (Sweden)

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  9. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2.

    Science.gov (United States)

    Ponissery Saidu, Samsudeen; Stephan, Aaron B; Talaga, Anna K; Zhao, Haiqing; Reisert, Johannes

    2013-06-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca(2+)-activated Cl(-) channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5' rapid amplification of cDNA ends analysis was conducted to characterize the 5' end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5' end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca(2+) sensitivity and that the exon 4-encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties.

  10. Vasoactive intestinal polypeptide mediates circadian rhythms in mammalian olfactory bulb and olfaction.

    Science.gov (United States)

    Miller, Jae-Eun Kang; Granados-Fuentes, Daniel; Wang, Thomas; Marpegan, Luciano; Holy, Timothy E; Herzog, Erik D

    2014-04-23

    Accumulating evidence suggests that the olfactory bulbs (OBs) function as an independent circadian system regulating daily rhythms in olfactory performance. However, the cells and signals in the olfactory system that generate and coordinate these circadian rhythms are unknown. Using real-time imaging of gene expression, we found that the isolated olfactory epithelium and OB, but not the piriform cortex, express similar, sustained circadian rhythms in PERIOD2 (PER2). In vivo, PER2 expression in the OB of mice is circadian, approximately doubling with a peak around subjective dusk. Furthermore, mice exhibit circadian rhythms in odor detection performance with a peak at approximately subjective dusk. We also found that circadian rhythms in gene expression and odor detection performance require vasoactive intestinal polypeptide (VIP) or its receptor VPAC2R. VIP is expressed, in a circadian manner, in interneurons in the external plexiform and periglomerular layers, whereas VPAC2R is expressed in mitral and external tufted cells in the OB. Together, these results indicate that VIP signaling modulates the output from the OB to maintain circadian rhythms in the mammalian olfactory system.

  11. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events.

    Science.gov (United States)

    Heydel, Jean-Marie; Coelho, Alexandra; Thiebaud, Nicolas; Legendre, Arièle; Le Bon, Anne-Marie; Faure, Philippe; Neiers, Fabrice; Artur, Yves; Golebiowski, Jérôme; Briand, Loïc

    2013-09-01

    At the periphery of the olfactory system, the binding of odorants on olfactory receptors (ORs) is usually thought to be the first level of the perception of smell. However, at this stage, there is evidence that other molecular mechanisms also interfere with this chemoreception by ORs. These perireceptor events are mainly supported by two groups of proteins present in the olfactory nasal mucus or in the nasal epithelium. Odorant-binding proteins (OBPs), the first group of proteins have been investigated for many years. OBPs are small carrier proteins capable of binding odorants with affinities in the micromolar range. Although there is no absolute evidence to support their functional roles in vertebrates, OBPs are good candidates for the transport of inhaled odorants towards the ORs via the nasal mucus. The second group of proteins involves xenobiotic metabolizing enzymes, which are strongly expressed in the olfactory epithelium and supposed to be involved in odorant transformation, degradation, and/or olfactory signal termination. Following an overview of these proteins, this review explores their roles, which are still a matter of debate.

  12. Immunohistochemical and histochemical characteristics of the olfactory system of the guppy, Poecilia reticulata (Teleostei, Poecilidae).

    Science.gov (United States)

    Bettini, Simone; Lazzari, Maurizio; Ciani, Franco; Franceschini, Valeria

    2009-10-01

    Olfaction in fish has been studied using preferentially macrosmatic species as models. In the present research, the labelling patterns of different neuronal markers and lectins were analyzed in the olfactory neurons and in their bulbar axonal endings in the guppy Poecilia reticulata, belonging to the group of microsmatic fish. We observed that calretinin immunostaining was confined to a population of olfactory receptor cells localized in the upper layers of the sensory mucosa, probably microvillous neurons innervating the lateral glomerular layer. Immunoreactivity for S100 proteins was mainly evident in crypt cells, but also in other olfactory cells belonging to subtypes projecting in distinct regions of the bulbs. Protein gene product 9.5 (PGP 9.5) was not detected in the olfactory system of the guppy. Lectin binding revealed the presence of N-acetylglucosamine and alpha-N-acetylgalactosamine residues in the glycoconjugates of numerous olfactory neurons ubiquitously distributed in the mucosa. The low number of sugar types detected suggested a reduced glycosidic variability that could be an index of restricted odorant discrimination, in concordance with guppy visual-based behaviors. Finally, we counted few crypt cells which were immunoreactive for S100 and calretinin. Crypt cells were more abundant in guppy females. This difference is in accordance with guppy gender-specific responses to pheromones. Cells immunoreactive to calretinin showed no evidence of ventral projections in the bulbs. We assumed the hypothesis that their odorant sensitivity is not strictly limited to pheromones or sexual signals in general.

  13. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.

    Science.gov (United States)

    Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  14. Olfactory bulb as an alternative in neurotransplantation

    Directory of Open Access Journals (Sweden)

    Руслан Романович Новиков

    2015-05-01

    Full Text Available The article examines the ethical and legal aspects of transplantation of embryonic neural tissue, structure of the rat olfactory bulb. It is given substantiation for its use as a possible alternative version of the embryonic neural tissue at damage in the cerebral hemispheres in the experiment.Materials and methods. Detailed description of the fault model of the cerebral hemispheres of the brain of rats, olfactory bulb biopsy procedure, cultivation of olfactory bulb suspension and fetal neural tissue, comparison of the functional aspects of transplantation of the olfactory bulb and the embryonic neural tissue.Results. The obtained data are similar to structure of olfactory bulb and fetal tissues during culturing. Recovery in the motor areas varies by the time factor and less intense in the group of the olfactory bulb and the group without tissue transplantation.Conclusions. Comparative analysis of the effectiveness of transplantation of embryonic neural tissue and olfactory bulb in the injured brain allows us to speak about the positive results of these groups to the difference in the duration of the recovery process

  15. [Odor sensing system and olfactory display].

    Science.gov (United States)

    Nakamoto, Takamichi

    2014-01-01

    In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care.

  16. Functional morphology of the olfactory organ of the tongue sole, Cynoglossus semilaevis

    Science.gov (United States)

    Ma, Aijun; Wang, Xin'an

    2010-03-01

    The morphology and structure of the olfactory organ of Cynoglossus semilaevis Günther are described. The oval olfactory sacs on both sides differ in size and in the number of lamellae, with those on the abocular side having smaller sacs and fewer lamellae than those on the ocular side. On the ocular side, the average ratio of sac length to eye diameter is 2.1 (i.e.>1) with an average of 91 lamellae, while on the abocular side, the values were 1.7 (i.e.>1) and 69, respectively. In addition, the surface morphology varies in different parts of the lamella. The frontal part, near the anterior nostril, is a non-sensory margin with cilia-free epidermal cells. Within this is an internal ciliated sensory area, which is intercalated with ciliated receptor cells and a few ciliated non-sensory cells. Additionally, some dense ciliated non-sensory cells make up a non-sensory area, which also contains cilia-free epidermal cells distributed in patches. In the rear of the olfactory sac near the posterior nostril, the lamellae differ in morphology from those of the frontal olfactory sac but are similar in having few ciliated receptor cells. In other words, the surface of the lamellae in the rear part of the olfactory sac is mainly non-sensory. At present, four types of lamellae (I, II, III and IV) have been recognized in relation to the pattern of the sensory epithelium. In this study, the frontal and rear lamellae resembled types I and IV, respectively, but are referred to as types I' and IV' because they are slightly less developed. Data on the ratio of length of lamellae to eye diameter, number of lamellae and the type of surface pattern of the lamellae show that the development of the olfactory system of C. semilaevis facilitates prey capture.

  17. Differential interactions of sex pheromone and plant odour in the olfactory pathway of a male moth.

    Directory of Open Access Journals (Sweden)

    Nina Deisig

    Full Text Available Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants, mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a recordings from individual sensilla to study responses of olfactory receptor neurons, b in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization.

  18. Imaging the olfactory tract (Cranial Nerve no.1)

    Energy Technology Data Exchange (ETDEWEB)

    Duprez, Thierry P. [Department of Radiology and Medical Imaging, Universite catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200-Brussels (Belgium)], E-mail: Thierry.Duprez@uclouvain.be; Rombaux, Philippe [Department of Otorhinolaryngology, Universite catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200-Brussels (Belgium)], E-mail: Philippe.Rombaux@uclouvain.be

    2010-05-15

    This review paper browses pros and cons of the different radiological modalities for imaging the olfactory tract and highlights the potential benefits and limitation of more recent advances in MR and CT technology. A systematic pictorial overview of pathological conditions affecting olfactory sense is given. Techniques for collecting quantitative data on olfactory bulb volume and on olfactory sulcus depth are described. At last, insights into functional imaging of olfactory sense are shown.

  19. Neuronal organization of olfactory bulb circuits

    Directory of Open Access Journals (Sweden)

    Shin eNagayama

    2014-09-01

    Full Text Available Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.

  20. Stomatin-related olfactory protein, SRO, specifically expressed in the murine olfactory sensory neurons.

    Science.gov (United States)

    Kobayakawa, Ko; Hayashi, Reiko; Morita, Kenji; Miyamichi, Kazunari; Oka, Yuichiro; Tsuboi, Akio; Sakano, Hitoshi

    2002-07-15

    We identified a stomatin-related olfactory protein (SRO) that is specifically expressed in olfactory sensory neurons (OSNs). The mouse sro gene encodes a polypeptide of 287 amino acids with a calculated molecular weight of 32 kDa. SRO shares 82% sequence similarity with the murine stomatin, 78% with Caenorhabditis elegans MEC-2, and 77% with C. elegans UNC-1. Unlike other stomatin-family genes, the sro transcript was present only in OSNs of the main olfactory epithelium. No sro expression was seen in vomeronasal neurons. SRO was abundant in most apical dendrites of OSNs, including olfactory cilia. Immunoprecipitation revealed that SRO associates with adenylyl cyclase type III and caveolin-1 in the low-density membrane fraction of olfactory cilia. Furthermore, anti-SRO antibodies stimulated cAMP production in fractionated cilia membrane. SRO may play a crucial role in modulating odorant signals in the lipid rafts of olfactory cilia.

  1. Olfactory impairment in the rotenone model of Parkinson's disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation.

    Science.gov (United States)

    Rodrigues, Lais S; Targa, Adriano D S; Noseda, Ana Carolina D; Aurich, Mariana F; Da Cunha, Cláudio; Lima, Marcelo M S

    2014-01-01

    Olfactory and rapid eye movement (REM) sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson's disease (PD). Additionally, different studies report declines in olfactory performance during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood, and impairment of dopamine (DA) neurotransmission in the olfactory bulb and the nigrostriatal pathway may have important roles in olfaction and REM sleep disturbances. Therefore, we hypothesized that modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and REM sleep deprivation (REMSD). We decided to investigate the olfactory, neurochemical, and histological alterations generated through the administration of piribedil (a selective D2 agonist) or raclopride (a selective D2 antagonist) within the glomerular layer of the olfactory bulb, in rats subjected to intranigral rotenone and REMSD. Our findings provide evidence of the occurrence of a negative correlation (r = -0.52, P = 0.04) between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham, groups. A significant positive correlation (r = 0.34, P = 0.03) was observed between nigrostriatal DA levels and olfactory discrimination index (DI) for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc) are associated with enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA were induced by piribedil in the rotenone control and rotenone REMSD groups, consistent with reductions in the DI. The present evidence reinforce the idea that DA produced by periglomerular neurons, particularly the bulbar dopaminergic D2 receptors, is an essential participant in olfactory discrimination processes, as the SNpc, and the striatum.

  2. Olfactory impairment in the rotenone model of Parkinson’s disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation

    Science.gov (United States)

    Rodrigues, Lais S.; Targa, Adriano D. S.; Noseda, Ana Carolina D.; Aurich, Mariana F.; Da Cunha, Cláudio; Lima, Marcelo M. S.

    2014-01-01

    Olfactory and rapid eye movement (REM) sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson’s disease (PD). Additionally, different studies report declines in olfactory performance during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood, and impairment of dopamine (DA) neurotransmission in the olfactory bulb and the nigrostriatal pathway may have important roles in olfaction and REM sleep disturbances. Therefore, we hypothesized that modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and REM sleep deprivation (REMSD). We decided to investigate the olfactory, neurochemical, and histological alterations generated through the administration of piribedil (a selective D2 agonist) or raclopride (a selective D2 antagonist) within the glomerular layer of the olfactory bulb, in rats subjected to intranigral rotenone and REMSD. Our findings provide evidence of the occurrence of a negative correlation (r = −0.52, P = 0.04) between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham, groups. A significant positive correlation (r = 0.34, P = 0.03) was observed between nigrostriatal DA levels and olfactory discrimination index (DI) for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc) are associated with enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA were induced by piribedil in the rotenone control and rotenone REMSD groups, consistent with reductions in the DI. The present evidence reinforce the idea that DA produced by periglomerular neurons, particularly the bulbar dopaminergic D2 receptors, is an essential participant in olfactory discrimination processes, as the SNpc, and the striatum. PMID:25520618

  3. [Graphic method of recording olfactory disorders].

    Science.gov (United States)

    Bariliak, R A; Kitsera, A E

    1976-01-01

    The authors present a method of recording results of threshold olfactometry for substances of different neuroreceptive response (olfactory, olfactive-trigeminal and olfactive-glossopharyngeal) in the form of olfactograms. The use of a unit for comparative evaluation of the olfactory function (deciodor) made it possible to get a unit horizontal zero line on the olfactogram. The authors demonstrate olfactograms of patients with various olfactory disorders. They consider that the method of graphic recording results of comparative threshold olfactometry is a valuable differential-diagnostic test.

  4. Olfactory dysfunction and its measurement in the clinic

    Institute of Scientific and Technical Information of China (English)

    Richard L.Doty

    2015-01-01

    The sense of smell is largely taken for granted by laypersons and medical professionals alike.Indeed, its role in determining the flavor of foods and beverages, as well as in warning of, or protecting against, environmental hazards, often goes unrecognized.This is exemplified, in part, by the fact that most patients presenting to medical clinics with "taste" problems are typically subjected to complex brain imaging and gastroenterological tests without the sense of smell even being tested or considered as a basis of the problem.Aside from frank deficiencies in sweet, sour, bitter, salty and savory (umami) sensations, "taste" disorders most commonly reflect inadequate stimulation of the olfactory receptors via the retronasal route;i.e., from volatiles passing to the receptors from the oral cavity through the nasal pharynx.This article describes the two most common procedures for measuring the sense of smell in the clinic and provides examples of the application of these tests to diseases and other disorders frequently associated with smell loss.Basic issues related to olfactory testing and evaluation are addressed.It is pointed out that smell loss, particularly in later life, can be a harbinger for not only a range of neurodegenerative diseases, but can be a prognostic indicator of early mortality.

  5. Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius

    Science.gov (United States)

    Liu, Feng; Chen, Zhou; Liu, Nannan

    2017-01-01

    As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs. PMID:28383033

  6. Timberol® Inhibits TAAR5-Mediated Responses to Trimethylamine and Influences the Olfactory Threshold in Humans.

    Directory of Open Access Journals (Sweden)

    Ivonne Wallrabenstein

    Full Text Available In mice, trace amine-associated receptors (TAARs are interspersed in the olfactory epithelium and constitute a chemosensory subsystem that is highly specific for detecting volatile amines. Humans possess six putative functional TAAR genes. Human TAAR5 (hTAAR5 is highly expressed in the olfactory mucosa and was shown to be specifically activated by trimethylamine. In this study, we were challenged to uncover an effective blocker substance for trimethylamine-induced hTAAR5 activation. To monitor blocking effects, we recombinantly expressed hTAAR5 and employed a commonly used Cre-luciferase reporter gene assay. Among all tested potential blocker substances, Timberol®, an amber-woody fragrance, is able to inhibit the trimethylamine-induced hTAAR5 activation up to 96%. Moreover, human psychophysical data showed that the presence of Timberol® increases the olfactory detection threshold for the characteristic fishy odor of trimethylamine by almost one order of magnitude. In conclusion, our results show that among tested receptors Timberol® is a specific and potent antagonist for the hTAAR5-mediated response to trimethylamine in a heterologous system. Furthermore, our data concerning the observed shift of the olfactory detection threshold in vivo implicate that hTAAR5 or other receptors that may be inhibited by Timberol® could be involved in the high affinity olfactory perception of trimethylamine in humans.

  7. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments.

    Science.gov (United States)

    Mutlu, Ilven; Oktay, Enver

    2013-04-01

    Highly porous 17-4 PH stainless steel foam for biomedical applications was produced by space holder technique. Metal release and weight loss from 17-4 PH stainless steel foams was investigated in simulated body fluid and artificial saliva environments by static immersion tests. Inductively coupled plasma-mass spectrometer was employed to measure the concentrations of various metal ions released from the 17-4 PH stainless steel foams into simulated body fluids and artificial saliva. Effect of immersion time and pH value on metal release and weight loss in simulated body fluid and artificial saliva were determined. Pore morphology, pore size and mechanical properties of the 17-4 PH stainless steel foams were close to human cancellous bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways.

    Science.gov (United States)

    Gorojankina, Tatiana; Grébert, Denise; Salesse, Roland; Tanfin, Zahra; Caillol, Monique

    2007-06-07

    Orexins A and B (OxA and OxB) are multifunctional neuropeptides implicated in the regulation of energy metabolism, wakefulness but also in a broad range of motivated behaviours. They signal through two G-protein-coupled receptors: orexin receptor 1 and 2 (Ox1R and Ox2R). The orexins and their receptors are present at all levels of the rat olfactory system: epithelium, bulb, piriform cortex but their signalling mechanisms remain unknown. We have studied orexins signal transduction pathways in the rat olfactory mucosa (OM) and in the Odora cell line derived from olfactory sensory neurons and heterologously expressing Ox1R or Ox2R. We have demonstrated by western blot and RT-PCR that multiple components of adenylyl cyclase (AC) and phospholipase C (PLC) signalling pathways were identical in OM and Odora cells. OxA and OxB induced a weak increase in IP3 in OM; they induced a significant rise in cAMP and IP3 in Odora transfected cells, suggesting the activation of AC and PLC pathways. Both OxA and OxB induced intracellular calcium elevation and transient activation of MAP kinases (ERK42/44) in Odora/Ox1R and Odora/Ox2R cells. These results suggest the existence of multiple orexins signalling pathways in Odora cells and probably in OM, corresponding to different possible roles of these peptides.

  9. Extremely sparse olfactory inputs are sufficient to mediate innate aversion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Xiaojing J Gao

    Full Text Available Innate attraction and aversion to odorants are observed throughout the animal kingdom, but how olfactory circuits encode such valences is not well understood, despite extensive anatomical and functional knowledge. In Drosophila melanogaster, ~50 types of olfactory receptor neurons (ORNs each express a unique receptor gene, and relay information to a cognate type of projection neurons (PNs. To examine the extent to which the population activity of ORNs is required for olfactory behavior, we developed a genetic strategy to block all ORN outputs, and then to restore output in specific types. Unlike attraction, aversion was unaffected by simultaneous silencing of many ORNs, and even single ORN types previously shown to convey neutral valence sufficed to mediate aversion. Thus, aversion may rely on specific activity patterns in individual ORNs rather than the number or identity of activated ORNs. ORN activity is relayed into the brain by downstream circuits, with excitatory PNs (ePN representing a major output. We found that silencing the majority of ePNs did not affect aversion, even when ePNs directly downstream of single restored ORN types were silenced. Our data demonstrate the robustness of olfactory aversion, and suggest that its circuit mechanism is qualitatively different from attraction.

  10. Extremely sparse olfactory inputs are sufficient to mediate innate aversion in Drosophila.

    Science.gov (United States)

    Gao, Xiaojing J; Clandinin, Thomas R; Luo, Liqun

    2015-01-01

    Innate attraction and aversion to odorants are observed throughout the animal kingdom, but how olfactory circuits encode such valences is not well understood, despite extensive anatomical and functional knowledge. In Drosophila melanogaster, ~50 types of olfactory receptor neurons (ORNs) each express a unique receptor gene, and relay information to a cognate type of projection neurons (PNs). To examine the extent to which the population activity of ORNs is required for olfactory behavior, we developed a genetic strategy to block all ORN outputs, and then to restore output in specific types. Unlike attraction, aversion was unaffected by simultaneous silencing of many ORNs, and even single ORN types previously shown to convey neutral valence sufficed to mediate aversion. Thus, aversion may rely on specific activity patterns in individual ORNs rather than the number or identity of activated ORNs. ORN activity is relayed into the brain by downstream circuits, with excitatory PNs (ePN) representing a major output. We found that silencing the majority of ePNs did not affect aversion, even when ePNs directly downstream of single restored ORN types were silenced. Our data demonstrate the robustness of olfactory aversion, and suggest that its circuit mechanism is qualitatively different from attraction.

  11. Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb.

    Science.gov (United States)

    Vaaga, Christopher E; Yorgason, Jordan T; Williams, John T; Westbrook, Gary L

    2017-03-01

    In the olfactory bulb, lateral inhibition mediated by local juxtaglomerular interneurons has been proposed as a gain control mechanism, important for decorrelating odorant responses. Among juxtaglomerular interneurons, short axon cells are unique as dual-transmitter neurons that release dopamine and GABA. To examine their intraglomerular function, we expressed channelrhodopsin under control of the DAT-cre promoter and activated olfactory afferents within individual glomeruli. Optical stimulation of labeled cells triggered endogenous dopamine release as measured by cyclic voltammetry and GABA release as measured by whole cell GABAA receptor currents. Activation of short axon cells reduced the afferent presynaptic release probability via D2 and GABAB receptor activation, resulting in reduced spiking in both mitral and external tufted cells. Our results suggest that short axon cells influence glomerular activity not only by direct inhibition of external tufted cells but also by inhibition of afferent inputs to external tufted and mitral cells.NEW & NOTEWORTHY Sensory systems, including the olfactory system, encode information across a large dynamic range, making synaptic mechanisms of gain control critical to proper function. Here we demonstrate that a dual-transmitter interneuron in the olfactory bulb controls the gain of intraglomerular afferent input via two distinct mechanisms, presynaptic inhibition as well as inhibition of a principal neuron subtype, and thereby potently controls the synaptic gain of afferent inputs. Copyright © 2017 the American Physiological Society.

  12. The short neuropeptide F modulates olfactory sensitivity of Bactrocera dorsalis upon starvation.

    Science.gov (United States)

    Jiang, Hong-Bo; Gui, Shun-Hua; Xu, Li; Pei, Yu-Xia; Smagghe, Guy; Wang, Jin-Jun

    2017-05-01

    The insect short neuropeptide F (sNPF) family has been shown to modulate diverse physiological processes, such as feeding, appetitive olfactory behavior, locomotion, sleep homeostasis and hormone release. In this study, we identified the sNPF (BdsNPF) and its receptor (BdsNPFR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Afterwards, the receptor cDNA was functionally expressed in Chinese hamster ovary cell lines. Activation of BdsNPFR by sNPF peptides caused an increase in intracellular calcium ions, with a 50% effective concentration values at the nanomolar level. As indicated by qPCR, the BdsNPF and BdsNPFR transcripts were mainly detected in the central nervous system and antennae, and they showed significantly starvation-induced expression patterns. Furthermore, we found that the starved flies had an increased electroantennogram response compared to the normally fed flies. However, this enhanced olfactory sensitivity was reversed when we decreased the expression of BdsNPF by double-stranded RNA injection in adults. We concluded that sNPF plays an important role in modulating the olfactory sensitivity of B. dorsalis upon starvation. Our results will facilitate the understanding of the regulation of early olfactory processing in B. dorsalis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification of candidate olfactory genes in Leptinotarsa decemlineata by antennal transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Yang eLiu

    2015-06-01

    Full Text Available The sense of smell is critical for the survival of insects, by which insects detect the odor signals in the environment and make appropriate behavioral responses such as host preference, mate choice, and oviposition site selection. The antenna is the main olfactory organ in insects. Multiple antennal proteins have been suggested to be involved in olfactory signal transduction pathway such as odorant receptors (ORs, ionotropic receptors (IRs, odorant binding proteins (OBPs, chemosensory proteins (CSPs and sensory neuron membrane proteins (SNMPs. In this study, we identified several olfactory gene subfamilies in the economically important Coleopteran agricultural pest, Leptinotarsa decemlineata, by assembling the adult male and female antennal transcriptomes. In the male and female antennal transcriptome, we identified a total of 37 OR genes, 10 IR genes, 26 OBP genes, 15 CSP genes and 3 SNMP genes. Further all candidate ORs were validated to be expressed in male or female antenna by semi-quantitative reverse transcription PCR. Most of the candidate OR genes have similar expression level in male and female. A few OR genes have been detected as male-specific (LdecOR6 or male-bias (LdecOR5, LdecOR12, LdecOR26 and LdecOR32 expression. As well as that, two OR genes (LdecOR3 and LdecOR29 were proved to be expressed higher in female. Our findings make it possible for future research of the olfactory system of L. decemlineata at the molecular level.

  14. Cladistic Analysis of Olfactory and Vomeronasal Systems

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2010-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical “cortex.” We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses. PMID:21290004

  15. Cladistic analysis of olfactory and vomeronasal systems.

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  16. Cladistic Analysis of Olfactory and Vomeronasal Systems

    OpenAIRE

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system...

  17. Cladistic analysis of olfactory and vomeronasal systems

    OpenAIRE

    Alino eMartinez-Marcos

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system...

  18. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  19. Cladistic analysis of olfactory and vomeronasal systems

    Directory of Open Access Journals (Sweden)

    Alino eMartinez-Marcos

    2011-01-01

    Full Text Available Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical cortex. We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis, short-tailed opossums (Monodelphis domestica and rats (Rattus norvegicus by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines. In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  20. Olfactory bulb encoding during learning under anesthesia

    Science.gov (United States)

    Nicol, Alister U.; Sanchez-Andrade, Gabriela; Collado, Paloma; Segonds-Pichon, Anne; Kendrick, Keith M.

    2014-01-01

    Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odors and whether they can be investigated under anesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odor smelled on the breath of a demonstrator animal occurs under isofluorane anesthesia. Furthermore, subsequent exposure to this cued odor under anesthesia promotes the same pattern of increased release of glutamate and gamma-aminobutyric acid (GABA) in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes) electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anesthesia before, during and after a novel scented food odor was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odor during and after learning and decreases in response to an uncued odor. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50%) of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odors prior to learning were either excited or inhibited afterwards. With the uncued odor many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odors as well as in evoked glutamate and GABA

  1. Dimorphic olfactory lobes in the arthropoda.

    Science.gov (United States)

    Strausfeld, Nicholas; Reisenman, Carolina E

    2009-07-01

    Specialized olfactory lobe glomeruli relating to sexual or caste differences have been observed in at least five orders of insects, suggesting an early appearance of this trait in insect evolution. Dimorphism is not limited to nocturnal species, but occurs even in insects that are known to use vision for courtship. Other than a single description, there is no evidence for similar structures occurring in the Crustacea, suggesting that the evolution of dimorphic olfactory systems may typify terrestrial arthropods.

  2. Did Lake Bonneville Experience A Major Water-Budget Shift At 17.4 cal ka?

    Science.gov (United States)

    Oviatt, C.

    2009-12-01

    Lake Bonneville, in western Utah, had transgressed to its highest level by 18.3 cal ka, overflowed into the Snake River drainage basin until 17.4 cal ka, then catastrophically dropped 100 m as its overflow threshold was washed out. This event, which is referred to as the “Bonneville flood,” is well documented geomorphically, stratigraphically, and geochronologically. At the same time the Bonneville flood was occurring, the level of Lake Estancia in central New Mexico dropped over 30 m then returned to its previous high level in an event caused by climate change in that basin. The question is: “did Lake Bonneville experience a correlative climate-induced shift in its water budget (a decrease in the ratio of input to output), even while it continuously overflowed before, during, and after the Bonneville flood?” The answer to this question has a bearing on the global effects of the climate change that is well documented in the Estancia basin. Data from sediment cores from the Bonneville basin are providing a means to address the question. Data include: ostracode faunal changes, total inorganic carbon, stable isotopes, detrital sand, and mineralogy. The challenge is to identify the measurable characteristics of the sediment core that can be used to clearly separate the effects of water-budget change from those caused by the catastrophic (essentially instantaneous) 100-m lowering of Lake Bonneville.

  3. Experimental investigation on selective laser melting of 17-4PH stainless steel

    Science.gov (United States)

    Hu, Zhiheng; Zhu, Haihong; Zhang, Hu; Zeng, Xiaoyan

    2017-01-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technique that uses powders to fabricate 3Dparts directly. The objective of this paper is to perform an experimental investigation of selective laser melted 17-4PH stainless steel. The investigation involved the influence of separate processing parameters on the density, defect, microhardness and the influence of heat-treatment on the mechanical properties. The outcomes of this study show that scan velocity and slice thickness have significant effects on the density and the characteristics of pores of the SLMed parts. The effect of hatch spacing depends on scan velocity. The processing parameters, such as scan velocity, hatch spacing and slice thickness, have effect on microhardness. Compared to the samples with no heat-treatment, the yield strength of the heat-treated sample increases significantly and the elongation decreases due to the transformation of microstructure and the changes in the precipitation strengthening phases. By a combination of changes in composition and precipitation strengthening, microhardness improved.

  4. CNPase Expression in Olfactory Ensheathing Cells

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2011-01-01

    Full Text Available A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.

  5. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb.

    Science.gov (United States)

    Del Punta, Karina; Puche, Adam; Adams, Niels C; Rodriguez, Ivan; Mombaerts, Peter

    2002-09-12

    The mammalian vomeronasal system is specialized in pheromone detection. The neural circuitry of the accessory olfactory bulb (AOB) provides an anatomical substrate for the coding of pheromone information. Here, we describe the axonal projection pattern of vomeronasal sensory neurons to the AOB and the dendritic connectivity pattern of second-order neurons. Genetically traced sensory neurons expressing a given gene of the V2R class of vomeronasal receptors project their axons to six to ten glomeruli distributed in globally conserved areas of the AOB, a theme similar to V1R-expressing neurons. Surprisingly, second-order neurons tend to project their dendrites to glomeruli innervated by axons of sensory neurons expressing the same V1R or the same V2R gene. Convergence of receptor type information in the olfactory bulb may represent a common design in olfactory systems.

  6. Olfactory systems and neural circuits that modulate predator odor fear.

    Science.gov (United States)

    Takahashi, Lorey K

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  7. Origin and endpoint of the olfactory nerve fibers: as described by Santiago Ramón y Cajal.

    Science.gov (United States)

    Levine, Catherine; Marcillo, Alexander

    2008-07-01

    In the late Nineteenth Century, Santiago Ramón y Cajal was able to reproduce an exceptional illustration of the Olfactory Nerve pathway and its myriad of cells, by using the Golgi Method. Dr. Cajal focused intense study on the histology of the nervous system and published a treatise on the olfactory nerve fibers and the distinct peripheral origin and central nervous system endpoint of this unique pathway. The original title of this work is "Origen y terminación de las fibras nerviosas olfatorias" published in 1890. As the original publication is in Spanish, here we provide an English translation allowing present-day English speakers to read these writings. Cajal followed the trajectory of the olfactory nerve fibers as they transitioned between the peripheral and central nervous system and was able to assert that these fibers were not continuous from the olfactory bulb to the bipolar cells that relinquish into the olfactory epithelium, but that the olfactory system was made up of various cell types each having distinct morphologies and functions. This may very well be the first definitive description of the olfactory receptor neurons and the first illustrations of the continuity of these cells throughout the olfactory pathway. These meticulous histological preparations were created by first using Camillo Golgi's potassium dichromate and silver nitrate impregnation method known as "reazione nera" or "black reaction," where nerve cells, nerve fibers, and neuroglia could be visualized. This study exhibits the structural and functional organization of the mammalian fila olfactoria as it was investigated in centuries past.

  8. Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice

    Science.gov (United States)

    Chelminski, Yan; Magnan, Christophe; Luquet, Serge H.; Everard, Amandine; Meunier, Nicolas; Gurden, Hirac; Martin, Claire

    2017-01-01

    Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning.

  9. Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafish.

    Science.gov (United States)

    Harden, Maegan V; Newton, Lucy A; Lloyd, Russell C; Whitlock, Kathleen E

    2006-11-01

    Odors experienced as juveniles can have significant effects on the behavior of mature organisms. A dramatic example of this occurs in salmon, where the odors experienced by developing fish determine the river to which they return as adults. Further examples of olfactory memories are found in many animals including vertebrates and invertebrates. Yet, the cellular and molecular bases underlying the formation of olfactory memory are poorly understood. We have devised a series of experiments to determine whether zebrafish can form olfactory memories much like those observed in salmonids. Here we show for the first time that zebrafish form and retain olfactory memories of an artificial odorant, phenylethyl alcohol (PEA), experienced as juveniles. Furthermore, we demonstrate that exposure to PEA results in changes in gene expression within the olfactory sensory system. These changes are evident by in situ hybridization in the olfactory epithelium of the developing zebrafish. Strikingly, our analysis by in situ hybridization demonstrates that the transcription factor, otx2, is up regulated in the olfactory sensory epithelia in response to PEA. This increase is evident at 2-3 days postfertilization and is maintained in the adult animals. We propose that the changes in otx2 gene expression are manifest as an increase in the number of neuronal precursors in the cells olfactory epithelium of the odor-exposed fish. Thus, our results reveal a role for the environment in controlling gene expression in the developing peripheral nervous system. Copyright 2006 Wiley Periodicals, Inc.

  10. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Science.gov (United States)

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  11. Olfactory processing and odor specificity: a meta-analysis of menstrual cycle variation in olfactory sensitivity

    Directory of Open Access Journals (Sweden)

    Martinec Nováková Lenka

    2014-12-01

    Full Text Available Cycle-correlated variation in olfactory threshold, with women becoming more sensitive to odors mid-cycle, is somewhat supported by the literature but the evidence is not entirely consistent, with several studies finding no, or mixed, effects. It has been argued that cyclic shifts in olfactory threshold might be limited to odors relevant to the mating context.

  12. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-01-01

    Full Text Available Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L 4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L 4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

  13. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Hao Zhao; Qing Li; Bao-lin Yang; Zeng-xu Liu; Qing Yu; Wen-jun Zhang; Keng Yuan; Hui-hong Zeng; Gao-chun Zhu; De-ming Liu

    2015-01-01

    Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of puriifed transplanted olfactory ensheathing cells (OECs) remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microen-capsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L4–5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencap-sulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results conifrm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L4–5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

  14. Olfactory proteins mediating chemical communication in the navel orangeworm moth, Amyelois transitella.

    Directory of Open Access Journals (Sweden)

    Walter S Leal

    Full Text Available BACKGROUND: The navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae, is the most serious insect pest of almonds and pistachios in California for which environmentally friendly alternative methods of control--like pheromone-based approaches--are highly desirable. Some constituents of the sex pheromone are unstable and could be replaced with parapheromones, which may be designed on the basis of molecular interaction of pheromones and pheromone-detecting olfactory proteins. METHODOLOGY: By analyzing extracts from olfactory and non-olfactory tissues, we identified putative olfactory proteins, obtained their N-terminal amino acid sequences by Edman degradation, and used degenerate primers to clone the corresponding cDNAs by SMART RACE. Additionally, we used degenerate primers based on conserved sequences of known proteins to fish out other candidate olfactory genes. We expressed the gene encoding a newly identified pheromone-binding protein, which was analyzed by circular dichroism, fluorescence, and nuclear magnetic resonance, and used in a binding assay to assess affinity to pheromone components. CONCLUSION: We have cloned nine cDNAs encoding olfactory proteins from the navel orangeworm, including two pheromone-binding proteins, two general odorant-binding proteins, one chemosensory protein, one glutathione S-transferase, one antennal binding protein X, one sensory neuron membrane protein, and one odorant receptor. Of these, AtraPBP1 is highly enriched in male antennae. Fluorescence, CD and NMR studies suggest a dramatic pH-dependent conformational change, with high affinity to pheromone constituents at neutral pH and no binding at low pH.

  15. Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons.

    Science.gov (United States)

    Goldstein, Bradley J; Goss, Garrett M; Hatzistergos, Konstantinos E; Rangel, Erika B; Seidler, Barbara; Saur, Dieter; Hare, Joshua M

    2015-01-01

    The olfactory epithelium houses chemosensory neurons, which transmit odor information from the nose to the brain. In adult mammals, the olfactory epithelium is a uniquely robust neuroproliferative zone, with the ability to replenish its neuronal and non-neuronal populations due to the presence of germinal basal cells. The stem and progenitor cells of these germinal layers, and their regulatory mechanisms, remain incompletely defined. Here we show that progenitor cells expressing c-Kit, a receptor tyrosine kinase marking stem cells in a variety of embryonic tissues, are required for maintenance of the adult neuroepithelium. Mouse genetic fate-mapping analyses show that embryonically, a c-Kit(+) population contributes to olfactory neurogenesis. In adults under conditions of normal turnover, there is relatively sparse c-Kit(+) progenitor cell (ckPC) activity. However, after experimentally induced neuroepithelial injury, ckPCs are activated such that they reconstitute the neuronal population. There are also occasional non-neuronal cells found to arise from ckPCs. Moreover, the selective depletion of the ckPC population, utilizing temporally controlled targeted diphtheria toxin A expression, results in failure of neurogenesis after experimental injury. Analysis of this model indicates that most ckPCs reside among the globose basal cell populations and act downstream of horizontal basal cells, which can serve as stem cells. Identification of the requirement for olfactory c-Kit-expressing progenitors in olfactory maintenance provides new insight into the mechanisms involved in adult olfactory neurogenesis. Additionally, we define an important and previously unrecognized site of adult c-Kit activity.

  16. Influence of Postbuild Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

    Science.gov (United States)

    Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.

    2017-03-01

    The additive manufacturing build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the postbuild microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4 precipitation hardened (SS17-4PH) is an industrially relevant alloy for applications requiring high strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5-mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively processed material than in the samples of the alloy in wrought form. This indicates that the additively processed material is more resistant to localized corrosion and pitting in this environment than is the wrought alloy. The results also suggest that after homogenization, the additively produced SS17-4 could be more resistant to pitting than the wrought SS17-4 is in an actual service environment.

  17. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    Science.gov (United States)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  18. Influence of Postbuild Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

    Science.gov (United States)

    Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.

    2017-01-01

    The additive manufacturing build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the postbuild microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4 precipitation hardened (SS17-4PH) is an industrially relevant alloy for applications requiring high strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5-mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively processed material than in the samples of the alloy in wrought form. This indicates that the additively processed material is more resistant to localized corrosion and pitting in this environment than is the wrought alloy. The results also suggest that after homogenization, the additively produced SS17-4 could be more resistant to pitting than the wrought SS17-4 is in an actual service environment.

  19. Effect of salinity changes on olfactory memory-related genes and hormones in adult chum salmon Oncorhynchus keta.

    Science.gov (United States)

    Kim, Na Na; Choi, Young Jae; Lim, Sang-Gu; Jeong, Minhwan; Jin, Deuk-Hee; Choi, Cheol Young

    2015-09-01

    Studies of memory formation have recently concentrated on the possible role of N-methyl-d-aspartate receptors (NRs). We examined changes in the expression of three NRs (NR1, NR2B, and NR2C), olfactory receptor (OR), and adrenocorticotropic hormone (ACTH) in chum salmon Oncorhynchus keta using quantitative polymerase chain reaction (QPCR) during salinity change (seawater→50% seawater→freshwater). NRs were significantly detected in the diencephalon and telencephalon and OR was significantly detected in the olfactory epithelium. The expression of NRs, OR, and ACTH increased after the transition to freshwater. We also determined that treatment with MK-801, an antagonist of NRs, decreased NRs in telencephalon cells. In addition, a reduction in salinity was associated with increased levels of dopamine, ACTH, and cortisol (in vivo). Reductions in salinity evidently caused NRs and OR to increase the expression of cortisol and dopamine. We concluded that memory capacity and olfactory imprinting of salmon is related to the salinity of the environment during the migration to spawning sites. Furthermore, salinity affects the memory/imprinting and olfactory abilities, and cortisol and dopamine is also related with olfactory-related memories during migration.

  20. Transcriptional profiling of olfactory system development identifies distal antenna as a regulator of subset of neuronal fates

    Science.gov (United States)

    Barish, Scott; Li, Qingyun; Pan, Jia W.; Soeder, Charlie; Jones, Corbin; Volkan, Pelin C.

    2017-01-01

    Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1–4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown. Here we use transcriptional profiling across the time series of antennal development to identify novel transcriptional programs governing the differentiation of ORNs. We surveyed four critical developmental stages of the olfactory system: 3rd instar larval (prepatterning), 8 hours after puparium formation (APF, SOP selection), 40 hrs APF (neurogenesis), and adult antennae. We focused on the expression profiles of olfactory receptor genes and transcription factors—the two main classes of genes that regulate the sensory identity of ORNs. We identify distinct clusters of genes that have overlapping temporal expression profiles suggesting they have a key role during olfactory system development. We show that the expression of the transcription factor distal antenna (dan) is highly similar to other prepatterning factors and is required for the expression of a subset of ORs. PMID:28102318

  1. Microanatomy and surgical relevance of the olfactory cistern.

    Science.gov (United States)

    Wang, Shou-Sen; Zheng, He-Ping; Zhang, Xiang; Zhang, Fa-Hui; Jing, Jun-Jie; Wang, Ru-Mi

    2008-01-01

    All surgical approaches to the anterior skull base involve the olfactory cistern and have the risk of damaging the olfactory nerve. The purpose of this study was to describe the microanatomical features of the olfactory cistern and discuss its surgical relevance. In this study, the olfactory cisterns of 15 formalin-fixed adult cadaveric heads were dissected using a surgical microscope. The results showed that the olfactory cistern was situated in the superficial part of the olfactory sulcus, which separated the gyrus retus from the orbital gyrus. In coronal section, the cistern was triangular in shape; its anterior part enveloped the olfactory bulbs and was high and broad; its posterior part was medial-superior to internal carotid artery and was also much broader. There were one or several openings in the inferior wall of the posterior part in 53.4% of the cisterns. The olfactory cistern communicated with the surrounding subarachnoind cisterns through these openings. The middle part of the olfactory cistern gradually narrowed down posteriorly. Most cisterns were spacious with a few fibrous trabeculas and bands between the olfactory nerves and cistern walls. However 23% of the cisterns were narrow with the cistern walls tightly encasing the olfactory nerve. There were two or three of arterial loops in each olfactory sulcus, from which long, fine olfactory arteries originated. The olfactory arteries coursed along the olfactory nerve and gave off many terminal branches to provide the main blood supply to the olfactory nerve in most cisterns, but the blood supply was in segmental style in a few cisterns. Moreover, the veins of the cistern appeared to be more segmental than the olfactory arteries in most cisterns. These results suggested that most olfactory cisterns are spacious with relatively independent blood supply, and it is reasonable to separate the olfactory tract with its independent blood supply from the frontal lobe by 1-2 cm in the subfrontal approach, the

  2. Optogenetically induced olfactory stimulation in Drosophila larvae reveales the neuronal basis of odor-aversion behavior

    Directory of Open Access Journals (Sweden)

    Dennis Bellmann

    2010-06-01

    Full Text Available Olfactory stimulation induces an odor-guided crawling behavior of Drosophila melanogaster larvae characterized by either an attractive or a repellent reaction. In order to understand the underlying processes leading to these orientations we stimulated single olfactory receptor neurons (ORNs through photo-activation within an intact neuronal network. Using the Gal4-UAS system two light inducible proteins, the light-sensitive cation channel channelrhodopsin-2 (ChR-2 or the light-sensitive adenylyl cyclase (Pac α were expressed in all or in individual ORNs of the larval olfactory system. Blue light stimulation caused an activation of these neurons, ultimately producing the illusion of an odor stimulus. Larvae were tested in a phototaxis assay for their orientation towards or away from the light source. Here we show that activation of Pacα expressing ORNs bearing the receptors Or33b or Or45a in blind norpA mutant larvae induces a repellent behavior away from the light. Conversely, photo-activation of the majority of ORNs induces attraction towards the light. Interestingly, in wild type larvae two ligands of Or33b and Or45a, octyl acetate and propionic ethylester, respectively, have been found to cause an escape reaction. Therefore, we combined light and odor stimulation to analyze the function of Or33b and Or45a expressing ORNs. We show that the larval olfactory system contains a designated neuronal pathway for repellent odorants and that activation of a specific class of ORNs already determines olfactory avoidance behavior.

  3. Olfactory responses of the antennal trichoid sensilla to chemical repellents in the mosquito, Culex quinquefasciatus.

    Science.gov (United States)

    Liu, Feng; Chen, Li; Appel, Arthur G; Liu, Nannan

    2013-11-01

    Insect repellents are widely used to protect against insect bites and thus prevent allergic reaction and the spread of disease. To gain insight into the mosquito's response to chemicals repellents, we investigated the interaction between the olfactory system of the mosquito Culex quinquefasciatus Say and chemical repellents using single sensillum recording. The interactions of 50 repellent chemicals with olfactory receptor neurons were measured in six different types of mosquito sensilla: long sharp trichoid (LST), short sharp trichoid (SST), short blunt trichoid I (SBT-I), short blunt trichoid II (SBT-II), short blunt trichoid-curved (SBT-C), and grooved peg (GP). A single olfactory neuron reacted to the chemical repellents in each of the sensilla except for SBT-I and SBT-II, where two neurons were involved. Other than LST and GP, which showed no or very weak responses to the repellents tested, all the sensilla showed significant excitatory responses to certain types of repellents. Terpene-derived chemicals such as eucalyptol, α-pinene, and camphor, stimulated olfactory receptor neurons in a dose-dependent manner and mosquitoes responded more strongly to terpene-derived chemical repellents than to non-terpene-derived chemicals such as dimethyl phthalate. Mosquitoes also exhibited a similar response to stereoisomers of chemicals such as (-)-β-pinene versus (+)-β-pinene, and (-)-menthone versus (+)-menthone. This study not only demonstrates the effects of chemical repellents on the mosquito olfactory system but also provides important information that will assist those screening new mosquito repellents and designing new mosquito control agents.

  4. Comparison between Olfactory Function of Pregnant Women and ...

    African Journals Online (AJOL)

    2017-05-22

    May 22, 2017 ... study was carried out to investigate and compare olfactory function of pregnant women with non-pregnant ..... Prevalence and assessment of qualitative olfactory dysfunction in different ... A qualitative and quantitative review.

  5. An Olfactory Indicator for Acid-Base Titrations.

    Science.gov (United States)

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  6. Common dynamical features of sensory adaptation in photoreceptors and olfactory sensory neurons

    OpenAIRE

    Giovanna De Palo; Giuseppe Facchetti; Monica Mazzolini; Anna Menini; Vincent Torre; Claudio Altafini

    2013-01-01

    Sensory systems adapt, i.e., they adjust their sensitivity to external stimuli according to the ambient level. In this paper we show that single cell electrophysiological responses of vertebrate olfactory receptors and of photoreceptors to different input protocols exhibit several common features related to adaptation, and that these features can be used to investigate the dynamical structure of the feedback regulation responsible for the adaptation. In particular, we point out that two diffe...

  7. Effect of rare earths on mechanical properties of plasma nitrocarburized surface layer of 17-4PH steel

    Institute of Scientific and Technical Information of China (English)

    刘瑞良; 闫牧夫; 吴丹蕾

    2009-01-01

    The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ...

  8. Perceptual and neural olfactory similarity in honeybees.

    Directory of Open Access Journals (Sweden)

    Fernando Guerrieri

    2005-04-01

    Full Text Available The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones and in their carbon-chain length (from six to nine carbons. The results obtained by presentation of a total of 16 x 16 odour pairs show that (i all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii for some odour pairs, cross-generalisation between odorants was asymmetric; (iv a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours.

  9. Perceptual and Neural Olfactory Similarity in Honeybees

    Directory of Open Access Journals (Sweden)

    Guerrieri Fernando

    2005-01-01

    Full Text Available The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones and in their carbon-chain length (from six to nine carbons.The results obtained by presentation of a total of 16 x 16 odour pairs show that (i all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii for some odour pairs, cross-generalisation between odorants was asymmetric; (iv a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours.

  10. Olfactory coding in the honeybee lateral horn.

    Science.gov (United States)

    Roussel, Edith; Carcaud, Julie; Combe, Maud; Giurfa, Martin; Sandoz, Jean-Christophe

    2014-03-03

    Olfactory systems dynamically encode odor information in the nervous system. Insects constitute a well-established model for the study of the neural processes underlying olfactory perception. In insects, odors are detected by sensory neurons located in the antennae, whose axons project to a primary processing center, the antennal lobe. There, the olfactory message is reshaped and further conveyed to higher-order centers, the mushroom bodies and the lateral horn. Previous work has intensively analyzed the principles of olfactory processing in the antennal lobe and in the mushroom bodies. However, how the lateral horn participates in olfactory coding remains comparatively more enigmatic. We studied odor representation at the input to the lateral horn of the honeybee, a social insect that relies on both floral odors for foraging and pheromones for social communication. Using in vivo calcium imaging, we show consistent neural activity in the honeybee lateral horn upon stimulation with both floral volatiles and social pheromones. Recordings reveal odor-specific maps in this brain region as stimulations with the same odorant elicit more similar spatial activity patterns than stimulations with different odorants. Odor-similarity relationships are mostly conserved between antennal lobe and lateral horn, so that odor maps recorded in the lateral horn allow predicting bees' behavioral responses to floral odorants. In addition, a clear segregation of odorants based on pheromone type is found in both structures. The lateral horn thus contains an odor-specific map with distinct representations for the different bee pheromones, a prerequisite for eliciting specific behaviors.

  11. Forty years of olfactory navigation in birds.

    Science.gov (United States)

    Gagliardo, Anna

    2013-06-15

    Forty years ago, Papi and colleagues discovered that anosmic pigeons cannot find their way home when released at unfamiliar locations. They explained this phenomenon by developing the olfactory navigation hypothesis: pigeons at the home loft learn the odours carried by the winds in association with wind direction; once at the release site, they determine the direction of displacement on the basis of the odours perceived locally and orient homeward. In addition to the old classical experiments, new GPS tracking data and observations on the activation of the olfactory system in displaced pigeons have provided further evidence for the specific role of olfactory cues in pigeon navigation. Although it is not known which odours the birds might rely on for navigation, it has been shown that volatile organic compounds in the atmosphere are distributed as fairly stable gradients to allow environmental odour-based navigation. The investigation of the potential role of olfactory cues for navigation in wild birds is still at an early stage; however, the evidence collected so far suggests that olfactory navigation might be a widespread mechanism in avian species.

  12. Nonneoplastic changes in the olfactory epithelium--experimental studies.

    OpenAIRE

    Gaskell, B. A.

    1990-01-01

    Interest in the olfactory mucosa has increased in recent years, since it has been shown to possess a considerable amount of cytochrome P-450-dependent monooxygenase activity and a wide variety of chemicals have been identified as olfactory toxins. Many chemicals induce lesions of a general nature in the olfactory mucosa, i.e., inflammation, degeneration, regeneration, and proliferation, whereas others cause more specific effects. Changes in the olfactory mucosa with reference to chemicals tha...

  13. Olfactory region schwannoma: Excision with preservation of olfaction

    Directory of Open Access Journals (Sweden)

    Pravin Salunke

    2014-01-01

    Full Text Available Olfactory region schwannomas are rare, but when they occur, they commonly arise from the meningeal branches of the trigeminal nerve and may present without involvement of the olfaction. A 24 year old lady presented with hemifacial paraesthesias. Radiology revealed a large olfactory region enhancing lesion. She was operated through a transbasal with olfactory preserving approach. This manuscript highlights the importance of olfactory preservation in such lesions.

  14. Olfactory sensor processing in neural networks: lessons from modeling the fruit fly antennal lobe

    Directory of Open Access Journals (Sweden)

    J. Henning Proske

    2012-02-01

    Full Text Available The insect olfactory system can be a model for artificial olfactory devices. In particular, Drosophila melanogaster due to its genetic tractability has yielded much information about the design and function of such systems in biology. In this study we investigate possible network topologies to separate representations of odors in the primary olfactory neuropil, the antennal lobe. In particular we compare networks based on stochastic and homogeneous connection weight distributions to connectivities that are based on the input correlations between the glomeruli in the antennal lobe. We show that moderate homogeneous inhibition implements a soft winner-take-all mechanism when paired with realistic input from a database of odor responses in receptor cells. The sparseness of representations increases with stronger inhibition. Excitation, on the other hand, pushes the representation of odors closer together thus making them harder to distinguish. We further analyze the relationship between different inhibitory network topologies and the properties of the receptor responses to different odors. We show that realistic input from the database has a relatively high entropy of activation values over all odors and receptors compared to the theoretical maximum. Furthermore, under conditions in which the information in the input is artificially decreased, networks with heterogeneous topologies based on the similarity of glomerular response profiles perform best. These results indicate that in order to arrive at the most beneficial representation for odor discrimination it is important to finely tune the strength of inhibition in combination with taking into account the properties of the available sensors.

  15. Does post-infectious olfactory loss affect mood more severely than chronic sinusitis with olfactory loss?

    Science.gov (United States)

    Jung, Yong G; Lee, Jun-Seok; Park, Gi C

    2014-11-01

    Olfactory deficits that develop after viral upper respiratory infection (URI) may have different effects on patient depression index compared to chronic sinusitis with olfactory loss. However, there have been no controlled trials to evaluate the different effects of chronic sinusitis and URI on depression index. Prospective study of 25 subjects in two groups. This study enrolled 25 participants who were diagnosed with post-URI olfactory loss as the study group and 25 patients with chronic sinusitis and olfactory loss as a control group. Control group participants were matched for age, sex, and degree of olfactory loss (threshold, discrimination, and identification [TDI]). We compared the Beck Depression Inventory (BDI) scores of each group and analyzed the correlation between TDI and BDI. The mean BDI score of the post-URI group was significantly higher than that of the control group (14.52 ± 6.59 vs. 9.32 ± 5.23; P=.002). Age, sex, and TDI score did not affect BDI score in the post-URI olfactory loss group. However, BDI score in the sinusitis group was inversely correlated with TDI score (R=-0.423; P=.035), and the BDI score of female subjects (11.00 ± 5.13) was significantly higher than that of male subjects (5.00 ± 2.16; P = .047). Post-URI olfactory loss affected patient mood more severely than chronic sinusitis with a similar degree of olfactory loss. This influence was not affected by sex, age, or TDI score in the post-URI olfactory loss group. 3b. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Study on Fatigue Resistance of 17-4PH Stainless Steel After Laser Transformation Hardened%17-4PH不锈钢激光淬火疲劳性能研究

    Institute of Scientific and Technical Information of China (English)

    李志强; 陈昭运

    2013-01-01

    Laser surface hardening was conducted on the 17-4PH stainless steel surface, the microstructure, hardness, distribution of surface residual stress as well as fatigue life were analyzed. The results show that the cross-section of 17-4PH after laser hardening consists of hardened layer, transition layer and base metal layer. The thickness and the average micro-hardness of the hardened layer is 1.2 mm and 440 HV respectively, the hardness is higher 60-90 HV than base metal. The surface residual stress is compressive stress whose extension is over than lmm. The fatigue life is enhanced especially at the low stress situation, the crack propagation area increases, the resistance of crack propagation is improved.%对17-4PH不锈钢进行表面激光淬火,分析了激光淬火后的组织、硬度、残余应力和疲劳寿命.结果表明:激光淬火后,17-4PH不锈钢组织分为淬硬区、过渡区和基体,淬硬层深1.2mm,平均显微硬度440HV,较基体提高60~90HV,表面残余应力为压应力,压应力的范围超过1mm.17-4PH钢激光淬火后疲劳寿命提高,且在低应力下提高效果明显,裂纹源位于次表面,裂纹扩展区增大,抵抗裂纹扩展的能力增强.

  17. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    Science.gov (United States)

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  18. Kin recognition in zebrafish: a 24-hour window for olfactory imprinting.

    Science.gov (United States)

    Gerlach, Gabriele; Hodgins-Davis, Andrea; Avolio, Carla; Schunter, Celia

    2008-09-22

    Distinguishing kin from non-kin profoundly impacts the evolution of social behaviour. Individuals able to assess the genetic relatedness of conspecifics can preferentially allocate resources towards related individuals and avoid inbreeding. We have addressed the question of how animals acquire the ability to recognize kin by studying the development of olfactory kin preference in zebrafish (Danio rerio). Previously, we showed that zebrafish use an olfactory template to recognize even unfamiliar kin through phenotype matching. Here, we show for the first time that this phenotype matching is based on a learned olfactory imprinting process in which exposure to kin individuals on day 6 post fertilization (pf) is necessary and sufficient for imprinting. Larvae that were exposed to kin before or after but not on day 6 pf did not recognize kin. Larvae isolated from all contact with conspecifics did not imprint on their own chemical cues; therefore, we see no evidence for kin recognition through self-matching in this species. Surprisingly, exposure to non-kin odour during the sensitive phase of development did not result in imprinting on the odour cues of unrelated individuals, suggesting a genetic predisposition to kin odour. Urine-born peptides expressed by genes of the immune system (MHC) are important messengers carrying information about 'self' and 'other'. We suggest that phenotype matching is acquired through a time-sensitive learning process that, in zebrafish, includes a genetic predisposition potentially involving MHC genes expressed in the olfactory receptor neurons.

  19. Odourant dominance in olfactory mixture processing: what makes a strong odourant?

    Science.gov (United States)

    Schubert, Marco; Sandoz, Jean-Christophe; Galizia, Giovanni; Giurfa, Martin

    2015-03-07

    The question of how animals process stimulus mixtures remains controversial as opposing views propose that mixtures are processed analytically, as the sum of their elements, or holistically, as unique entities different from their elements. Overshadowing is a widespread phenomenon that can help decide between these alternatives. In overshadowing, an individual trained with a binary mixture learns one element better at the expense of the other. Although element salience (learning success) has been suggested as a main explanation for overshadowing, the mechanisms underlying this phenomenon remain unclear. We studied olfactory overshadowing in honeybees to uncover the mechanisms underlying olfactory-mixture processing. We provide, to our knowledge, the most comprehensive dataset on overshadowing to date based on 90 experimental groups involving more than 2700 bees trained either with six odourants or with their resulting 15 binary mixtures. We found that bees process olfactory mixtures analytically and that salience alone cannot predict overshadowing. After normalizing learning success, we found that an unexpected feature, the generalization profile of an odourant, was determinant for overshadowing. Odourants that induced less generalization enhanced their distinctiveness and became dominant in the mixture. Our study thus uncovers features that determine odourant dominance within olfactory mixtures and allows the referring of this phenomenon to differences in neural activity both at the receptor and the central level in the insect nervous system.

  20. Response of the hammerhead shark olfactory epithelium to amino acid stimuli.

    Science.gov (United States)

    Tricas, Timothy C; Kajiura, Stephen M; Summers, Adam P

    2009-10-01

    Sharks and rays are highly sensitive to chemical stimuli in their natural environment but several hypotheses predict that hammerhead sharks, with their expanded head and enlarged olfactory epithelium, have particularly acute olfactory systems. We used the electro-olfactogram (EOG) technique to compare the relative response of the scalloped hammerhead shark (Sphyrna lewini) olfactory epithelium to 20 proteinogenic amino acids and determine the sensitivity for 6 amino acids. At micromolar concentrations, cysteine evoked the greatest EOG response which was approximately twice as large as that of alanine. The weakest response was obtained for proline followed by aspartic acid and isoleucine. The olfactory epithelium showed adaptation to sequential stimulation, and recovery was related to the inter-stimulus time period. Estimated EOG response thresholds were in the sub-nanomolar range for both alanine (9.2 x 10(-11) M) and cysteine (8.4 x 10(-10) M) and in the micromolar range for proline and serine. These thresholds from 10(-10) to 10(-6) M for the scalloped hammerhead shark are comparable or lower than those reported for other teleost and elasmobranch species. Future work should focus on binary and more complex compounds to test for competition and cross-adaptation for different classes of peripheral receptors, and their responses to molecules found in biologically relevant stimuli.

  1. The importance of the olfactory sense in the human behavior and evolution.

    Science.gov (United States)

    Sarafoleanu, C; Mella, C; Georgescu, M; Perederco, C

    2009-01-01

    Not long ago it was believed that the human olfactory sense had a low importance, a vision which turned into the exploration of the environment. Recent studies have shown that, despite the weak representation of the olfactory receptor common in other species too, the cortical areas of integration of the olfactory sensations are very large and have important interconnections with memory, language, and neuro-vegetative areas. In humans, olfaction has a small contribution in identifying objects or other people, but plays an important social and emotional part. People learn to love or to hate certain foods or objects only by appreciating their odor and this proved to be a very important economic factor. The most significant role of olfactory signals in humans appears to be the modulation of their behavior and interpersonal relationships, of their affiliation to certain groups or social classes, having a major influence in their tastes and personality. signal that will be sent to the specialized areas in their tastes and personality.

  2. Multiple sites of adaptation lead to contrast encoding in the Drosophila olfactory system.

    Science.gov (United States)

    Cafaro, Jon

    2016-04-01

    Animals often encounter large increases in odor intensity that can persist for many seconds. These increases in the background odor are often accompanied by increases in the variance of the odor stimulus. Previous studies have shown that a persistent odor stimulus (odor background) results in a decrease in the response to brief odor pulses in the olfactory receptor neurons (ORNs). However, the contribution of adapting mechanisms beyond theORNs is not clear. Thus, it is unclear how adaptive mechanisms are distributed within the olfactory circuit and what impact downstream adaptation may have on the encoding of odor stimuli. In this study, adaptation to the same odor stimulus is examined at multiple levels in the well studied and accessibleDrosophilaolfactory system. The responses of theORNs are compared to the responses of the second order, projection neurons (PNs), directly connected to them. Adaptation inPNspike rate was found to be much greater than adaptation in theORNspike rate. This greater adaptation allowsPNs to encode odor contrast (ratio of pulse intensity to background intensity) with little ambiguity. Moreover, distinct neural mechanisms contribute to different aspects of adaptation; adaptation to the background odor is dominated by adaptation in spike generation in bothORNs andPNs, while adaptation to the odor pulse is dominated by changes within olfactory transduction and the glomerulus. These observations suggest that the olfactory system adapts at multiple sites to better match its response gain to stimulus statistics.

  3. A Flight Sensory-Motor to Olfactory Processing Circuit in the Moth Manduca sexta.

    Science.gov (United States)

    Bradley, Samual P; Chapman, Phillip D; Lizbinski, Kristyn M; Daly, Kevin C; Dacks, Andrew M

    2016-01-01

    Neural circuits projecting information from motor to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir) neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL) glomeruli. Furthermore, within the AL we show that the M. sexta histamine B receptor (MsHisClB) is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight.

  4. Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb.

    Science.gov (United States)

    Cho, Jin H; Kam, Joseph W K; Cloutier, Jean-François

    2012-11-15

    Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2(lox/lox);OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2(lox/lox);OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.

  5. Linking adult olfactory neurogenesis to social behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  6. Olfactory comfort awareness (OCA). A new unit?

    Energy Technology Data Exchange (ETDEWEB)

    Kempski, D. von [DVK air vitalizing system, Duesseldorf (Germany)

    2005-07-01

    It is generally known that the perceived air quality has a great impact on the well-being of room occupants. Engineers tend to rely completely on measuring the absence of pollutants aiming for objectively clean air, but neglect the subjective awareness of room occupants or how they perceive indoor air quality. Neurophysiological and psychological research has shown that the hedonic value often plays the key role in determining that perception. It has to be understood that not only thermal conditions but also the sense of olfaction play major roles. This lack of awareness of the interactions between thermal and olfactory conditions frequently accounts for the dissatisfaction rate. This paper will concentrate on demonstrating the influence of the hedonic value on room occupants and on how to achieve air that from an olfactory perspective is perceived to be natural. This is different from the commonly known, perceived ''artificial'' air. Furthermore, it will show how important it is to evaluate healthy buildings not only for the absence of negative odors as expressed by the olf and decipol units. Olfactory comfort goes far beyond this scale and, therefore, it is necessary to introduce a new unit called olfactory comfort awareness OCA. OCA is a score between -10 and 10 that expresses the grade of olfactory comfort the room occupants perceive. This measure does not replace the well-accepted decipol unit but complements it, emphasising the importance not only of the absence of negative influencing odorants, but also the importance of olfactory comfort as measurement by the new unit. (Orig.)

  7. Thermal Aging Effect Analysis of 17-4PH Martensitic Stainless Steel Valves for Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    BAI; Bing; ZHANG; Chang-yi; TONG; Zhen-feng; YANG; Wen

    2015-01-01

    The valve stem used in the main steam system of nuclear power plant is usually martensitic stainless steel(such as 17.4ph16.4Mo etc.).When served in high temperature for a long time,the thermal aging embrittlement of valve stem will be significant,and even lead to the fracture.

  8. Characterisation of microstructure and its effect on the strength and toughness of 17-4PH stainless steel

    DEFF Research Database (Denmark)

    Das, C. R.; Bhaduri, A. K.; Albert, S. K.

    2009-01-01

    The influence of microstructure on the strength and toughness of 17-4 Precipitation-Hardened (PH) Stainless Steel (SS) was studied as a function of duration of ageing at 783 K. Lath martensite is formed in this steel in its solution-annealed condition. X-ray diffraction studies detected...

  9. The Influence of Post-Build Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel.

    Science.gov (United States)

    Stoudt, M R; Ricker, R E; Lass, E A; Levine, L E

    2017-03-01

    The additive manufacturing (AM) build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the post-build microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4PH is an industrially-relevant alloy for applications requiring high-strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5 mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively-processed material than in samples of the alloy in wrought form. This indicates that the additively-processed material is more resistant to localized corrosion and pitting in this environment than the wrought alloy. The results also suggest that after homogenization, the additively-produced SS17-4 could be more resistant to pitting than wrought SS17-4 in an actual service environment.

  10. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  11. Structure and diversity in mammalian accessory olfactory bulb.

    Science.gov (United States)

    Meisami, E; Bhatnagar, K P

    1998-12-15

    The accessory olfactory bulb (AOB) is the first neural integrative center for the olfactory-like vomeronasal sensory system. In this article, we first briefly present an overview of vomeronasal system organization and review the history of the discovery of mammalian AOB. Next, we briefly review the evolution of the vomeronasal system in vertebrates, in particular the reptiles. Following these introductory aspects, the structure of the rodent AOB, as typical of the well-developed mammalian AOB, is presented, detailing laminar organization and cell types as well as aspects of the homology with the main olfactory bulb. Then, the evolutionary origin and diversity of the AOB in mammalian orders and species is discussed, describing structural, phylogenetic, and species-specific variation in the AOB location, shape, and size and morphologic differentiation and development. The AOB is believed to be absent in fishes but present in terrestrial tetrapods including amphibians; among the reptiles AOB is absent in crocodiles, present in turtles, snakes, and some lizards where it may be as large or larger than the main bulb. The AOB is absent in bird and in the aquatic mammals (whales, porpoises, manatees). Among other mammals, AOB is present in the monotremes and marsupials, edentates, and in the majority of the placental mammals like carnivores, herbivores, as well as rodents and lagomorphs. Most bat species do not have an AOB and among those where one is found, it shows marked variation in size and morphologic development. Among insectivores and primates, AOB shows marked variation in occurrence, size, and morphologic development. It is small in shrews and moles, large in hedgehogs and prosimians; AOB continues to persist in New World monkeys but is not found in the adults of the higher primates such as the Old World monkeys, apes, and humans. In many species where AOB is absent in the adult, it often develops in the embryo and fetus but regresses in later stages of

  12. Interneurons in the human olfactory system in Alzheimer's disease.

    Science.gov (United States)

    Saiz-Sanchez, Daniel; Flores-Cuadrado, Alicia; Ubeda-Bañon, Isabel; de la Rosa-Prieto, Carlos; Martinez-Marcos, Alino

    2016-02-01

    The principal olfactory structures display Alzheimer's disease (AD) related pathology at early stages of the disease. Consequently, olfactory deficits are among the earliest symptoms. Reliable olfactory tests for accurate clinical diagnosis are rarely made. In addition, neuropathological analysis postmortem of olfactory structures is often not made. Therefore, the relationship between the clinical features and the underlying pathology is poorly defined. Traditionally, research into Alzheimer's disease has focused on the degeneration of cortical temporal projection neurons and cholinergic neurons. Recent evidence has demonstrated the neurodegeneration of interneuron populations in AD. This review provides an updated overview of the pathological involvement of interneuron populations in the human olfactory system in Alzheimer's disease.

  13. Subjective and objective olfactory abnormalities in Crohn's disease.

    Science.gov (United States)

    Fischer, Marie; Zopf, Yurdagül; Elm, Cornelia; Pechmann, Georg; Hahn, Eckhart G; Schwab, Dieter; Kornhuber, Johannes; Thuerauf, Norbert Joachim

    2014-07-01

    The pathogenesis of Crohn's disease (CD) is still unknown, but the involvement of the olfactory system in CD appears possible. No study to date has systematically assessed the olfactory function in CD patients. We investigated the olfactory function in CD patients in active (n = 31) and inactive disease (n = 27) and in a control group of age- and sex-matched healthy subjects (n = 35). Subjective olfactory testing was applied using the Sniffin' Sticks test. For olfactory testing, olfactory event-related potentials (OERPs) were obtained with a 4-channel olfactometer using phenyl ethyl alcohol (PEA) and hydrogen sulfide (H(2)S). Carbon dioxide (CO(2)) was employed as control stimulus, and chemosomatosensory event-related potentials (CSSERPs) were registered. Results of the Sniffin' Sticks test revealed significantly different olfactory hedonic judgment with increased olfactory hedonic estimates for pleasant odorants in CD patients in active disease compared with healthy subjects. A statistical trend was found toward lower olfactory thresholds in CD patients. In objective olfactory testing, CD patients showed lower amplitudes of OERPs and CSSERPs. Additionally, OERPs showed significantly shorter N1- and P2 latencies following stimulation of the right nostril with H(2)S in CD patients in inactive disease compared with controls. Our study demonstrates specific abnormalities of olfactory perception in CD patients.

  14. Sphenoid esthesioneuroblastoma arising from the hindmost olfactory filament.

    Science.gov (United States)

    Matsunaga, Mami; Nakagawa, Takayuki; Sakamoto, Tatsunori; Ito, Juichi

    2015-04-01

    Esthesioneuroblastoma (ENB), or olfactory neuroblastoma, is a rare malignant neoplasm arising from the olfactory neuroepithelium. Typically, ENBs are found in the olfactory cleft with extension to the ethmoid sinuses or anterior skull base. Here we report a case of ENB located in the sphenoid sinus, which had been considered as an ectopic ENB. However, endoscopic resection revealed the continuity of the tumor with the hindmost olfactory filament. The present case suggests that an ENB in the sphenoid sinus was not ectopic, but arose from the normal olfactory neuroepithelium. This continuity of the ENB with this filament indicated that the tumor was not ectopic, and that there was possible tumor invasion into the olfactory neuroepithelium in the cribriform niche. Therefore, pathological examination of the olfactory neuroepithelium in the cribriform niche may be necessary in case of sphenoid ENBs.

  15. Olfactory perception, communication, and the nose-to-brain pathway.

    Science.gov (United States)

    Stockhorst, Ursula; Pietrowsky, Reinhard

    2004-10-30

    The present paper's aim is of to give an overview about the basic knowledge as well as actual topics of olfaction--with a special regard on behavior. We summarize different functions of the nose and the olfactory system in human physiology and psychology. We will first describe the functional anatomy of the olfactory system in man. Afterwards, the function of the olfactory system will be viewed from an evolutionary and phylogenetic perspective. We will further outline the main features of olfactory perception, and will show how olfactory perception is influenced by learning. Olfactory signals are relevant stimuli that affect communication. Consequently, the role of the olfactory system in social interaction and mood will be described and gender differences will be addressed. Finally, the function of the nose as an interface to the brain, including implications for pharmacology, will be discussed.

  16. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes.

    Science.gov (United States)

    Butler, Julie M; Field, Karen E; Maruska, Karen P

    2016-01-01

    Fishes use multimodal signals during both inter- and intra-sexual displays to convey information about their sex, reproductive state, and social status. These complex behavioral displays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the relative role of each sensory channel in these complex multi-sensory interactions is a common focus of neuroethology. The mechanosensory lateral line system of fishes detects near-body water movements and is implicated in a variety of behaviors including schooling, rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific calcium channel antagonist and could potentially disrupt function of all superficially located sensory receptor cells, including those for chemosensing. Here, we examined whether CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three freshwater fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain activation in olfactory processing regions of A. burtoni immersed in either control or cobalt solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfactory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in olfactory processing regions of the brain. To our knowledge this is the first empirical evidence demonstrating that the same CoCl2 treatment used to ablate the lateral line system also impairs olfactory function. These data have important implications for the use of CoCl2 in future

  17. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes.

    Directory of Open Access Journals (Sweden)

    Julie M Butler

    Full Text Available Fishes use multimodal signals during both inter- and intra-sexual displays to convey information about their sex, reproductive state, and social status. These complex behavioral displays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the relative role of each sensory channel in these complex multi-sensory interactions is a common focus of neuroethology. The mechanosensory lateral line system of fishes detects near-body water movements and is implicated in a variety of behaviors including schooling, rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific calcium channel antagonist and could potentially disrupt function of all superficially located sensory receptor cells, including those for chemosensing. Here, we examined whether CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three freshwater fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain activation in olfactory processing regions of A. burtoni immersed in either control or cobalt solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfactory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in olfactory processing regions of the brain. To our knowledge this is the first empirical evidence demonstrating that the same CoCl2 treatment used to ablate the lateral line system also impairs olfactory function. These data have important implications for the use of

  18. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    PRIMARY OBJECTIVE: Olfactory functions are not systematically evaluated following traumatic brain injury (TBI). This study aimed at comparing two smell tests that are used in a clinical setting. RESEARCH DESIGN: The University of Pennsylvania Smell Identification Test (UPSIT) and the Alberta Smell...

  19. Olfactory alterations in patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Sergio Semeraro Jordy

    Full Text Available ABSTRACT This cross-sectional study involves 100 multiple sclerosis (MS and 100 non-MS patients, under the age of 60 years old, with nasal obstruction, traumatic brain injury, previous rhinoplasty or neurosurgery, and so forth. Objective To assess olfactory function using the Connecticut test and verify correlations between olfactory alteration, disease duration and the Expanded Disability Status Scale (EDSS. Methods One hundred MS patients and 100 healthy control patients responded to a questionnaire. Those with olfactory alteration underwent a facial CT to exclude other causes. Results Thirty-two percent of patients showed alterations, compared with 3% in the healthy control group. Patients having EDSS above 4, showed a 5.2-times increased risk of dysfunction. Patients over 38 years of age have a 2.2-times increased risk over younger patients. Conclusions Because MS patients are likely to experience olfactory alterations, this study is a useful tool in follow-up care, although more studies are necessary to evaluate the correlations in MS evolution.

  20. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  1. Olfactory Sensitivity for Six Predator Odorants in CD-1 Mice, Human Subjects, and Spider Monkeys

    Science.gov (United States)

    Sarrafchi, Amir; Odhammer, Anna M. E.; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2013-01-01

    Using a conditioning paradigm, we assessed the olfactory sensitivity of six CD-1 mice (Mus musculus) for six sulfur-containing odorants known to be components of the odors of natural predators of the mouse. With all six odorants, the mice discriminated concentrations <0.1 ppm (parts per million) from the solvent, and with five of the six odorants the best-scoring animals were even able to detect concentrations <1 ppt (parts per trillion). Four female spider monkeys (Ateles geoffroyi) and twelve human subjects (Homo sapiens) tested in parallel were found to detect the same six odorants at concentrations <0.01 ppm, and with four of the six odorants the best-scoring animals and subjects even detected concentrations <10 ppt. With all three species, the threshold values obtained here are generally lower than (or in the lower range of) those reported for other chemical classes tested previously, suggesting that sulfur-containing odorants may play a special role in olfaction. Across-species comparisons showed that the mice were significantly more sensitive than the human subjects and the spider monkeys with four of the six predator odorants. However, the human subjects were significantly more sensitive than the mice with the remaining two odorants. Human subjects and spider monkeys significantly differed in their sensitivity with only two of the six odorants. These comparisons lend further support to the notion that the number of functional olfactory receptor genes or the relative or absolute size of the olfactory bulbs are poor predictors of a species’ olfactory sensitivity. Analysis of odor structure–activity relationships showed that in both mice and human subjects the type of alkyl rest attached to a thietane and the type of oxygen moiety attached to a thiol significantly affected olfactory sensitivity. PMID:24278296

  2. An olfactory subsystem that detects carbon disulfide and mediates food-related social learning

    Science.gov (United States)

    Munger, Steven D.; Leinders-Zufall, Trese; McDougall, Lisa M.; Cockerham, Renee E.; Schmid, Andreas; Wandernoth, Petra; Wennemuth, Gunther; Biel, Martin; Zufall, Frank; Kelliher, Kevin R.

    2010-01-01

    Summary Olfactory signals influence social interactions in a variety of species [1, 2]. In mammals, pheromones and other social cues can promote mating or aggression behaviors, can communicate information about social hierarchies, genetic identity and health status, and can contribute to associative learning [1–5]. However, the molecular, cellular and neural mechanisms underlying many olfactory-mediated social interactions remain poorly understood. Here, we report that a specialized olfactory subsystem that includes olfactory sensory neurons (OSNs) expressing the receptor guanylyl cyclase GC-D, the cyclic nucleotide-gated channel subunit CNGA3 and the carbonic anhydrase isoform CAII (GC-D+ OSNs) [6–11] is required for the acquisition of socially transmitted food preferences (STFPs) in mice. Using electrophysiological recordings from gene-targeted mice, we show that GC-D+ OSNs are highly sensitive to the volatile semiochemical carbon disulfide (CS2), a component of rodent breath and a known social signal mediating the acquisition of STFPs [12–14]. Responses to sub-micromolar concentrations of CS2 in the main olfactory epithelium or in identified GC-D+ OSNs are absent in mice lacking CNGA3 or CAII and drastically reduced in mice lacking GC-D. Mice in which GC-D+ OSN transduction mechanisms have been disrupted fail to acquire STFPs from either live or surrogate demonstrator mice and do not exhibit neuronal activation of the ventral subiculum of the hippocampus, a brain region implicated in STFP retrieval [15]. Our findings indicate that GC-D+ OSNs detect chemosignals that facilitate food-related social interactions. PMID:20637621

  3. Harmful effects of cadmium on olfactory system in mice.

    Science.gov (United States)

    Bondier, Jean-Robert; Michel, Germaine; Propper, Alain; Badot, Pierre-Marie

    2008-10-01

    The inhalation of certain metals can result in olfactory epithelial injury, an altered sense of smell, and direct delivery of the metal from the olfactory epithelium to the olfactory bulbs and other parts of the central nervous system. The purpose of this study was to examine whether mice given an intranasal instillation of cadmium would develop altered olfactory function and to assess whether cadmium may be transported directly from the olfactory epithelium to the central nervous system. To evaluate cadmium's ability to induce anosmia and on the basis of olfactory epithelium sensitivity to metals, the aim of this study was first to study cadmium effects on the olfactory function and secondly to check whether cadmium may be transported from the nasal area to the central nervous system. After an intranasal instillation of a solution containing CdCl2 at 136 mM, we observed in treated mice: (1) a partial destruction of the olfactory epithelium, which is reduced to three or four basal cell layers followed by a progressive regeneration; (2) a loss of odor discrimination with a subsequent recovery; and (3) a cadmium uptake by olfactory bulbs demonstrated using atomic absorption spectrophotometry, but not by other parts of the central nervous system. Cadmium was delivered to the olfactory bulbs, most likely along the olfactory nerve, thereby bypassing the intact blood-brain barrier. We consider that cadmium can penetrate olfactory epithelium and hence be transported to olfactory bulbs. The olfactory route could therefore be a likely way to reach the brain and should be taken into account for occupational risk assessments for this metal.

  4. Neuronal chloride accumulation in olfactory epithelium of mice lacking NKCC1.

    Science.gov (United States)

    Nickell, William T; Kleene, Nancy K; Gesteland, Robert C; Kleene, Steven J

    2006-03-01

    When stimulated with odorants, olfactory receptor neurons (ORNs) produce a depolarizing receptor current. In isolated ORNs, much of this current is caused by an efflux of Cl-. This implies that the neurons have one or more mechanisms for accumulating cytoplasmic Cl- at rest. Whether odors activate an efflux of Cl- in intact olfactory epithelium, where the ionic environment is poorly characterized, has not been previously determined. In mouse olfactory epithelium, we found that >80% of the summated electrical response to odors is blocked by niflumic acid or flufenamic acid, each of which inhibits Ca2+-activated Cl- channels in ORNs. This indicates that ORNs accumulate Cl- in situ. Recent evidence has shown that NKCC1, a Na+-K+-2Cl- cotransporter, contributes to Cl- accumulation in mammalian ORNs. However, we find that the epithelial response to odors is only reduced by 39% in mice carrying a null mutation in Nkcc1. As in the wild-type, most of the response is blocked by niflumic acid or flufenamic acid, indicating that the underlying current is carried by Cl-. We conclude that ORNs effectively accumulate Cl- in situ even in the absence of NKCC1. The Cl- -transport mechanism underlying this accumulation has not yet been identified.

  5. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    Science.gov (United States)

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165.

  6. Integration of bio-inspired, control-based visual and olfactory data for the detection of an elusive target

    Science.gov (United States)

    Duong, Tuan A.; Duong, Nghi; Le, Duong

    2017-01-01

    In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.

  7. Disease stabilization of progressive olfactory neuroblastoma (esthesioneuroblastoma) under treatment with sunitinib mesylate.

    Science.gov (United States)

    Preusser, M; Hutterer, M; Sohm, M; Koperek, O; Elandt, K; Dieckmann, K; Prayer, D; Marosi, C

    2010-04-01

    Olfactory neuroblastoma (esthesioneuroblastoma) is a rare neoplasm of the olfactory epithelium in the upper nasal cavity. Here, we report the case of a 69-year-old man who presented with massive progression of a metastatic esthesioneuroblastoma after endonasal resection, functional neck dissection, and radiotherapy of local and distant tumor relapses. After exhaustion of all conventional therapeutic options, we initiated treatment with the oral multityrosinekinase inhibitor sunitinib mesylate. Using this drug, significant improvement of clinical symptoms, disease stabilization, and recovery from Karnofsky index of 40% to 70% could be achieved in the absence of significant adverse drug effects. The patient died 15 months after initiation of sunitinib therapy due to complications of a traumatic femoral neck fracture without evidence of tumor progression. Immunohistochemical analysis of tumor tissue specimens obtained at initial surgery revealed ample expression of platelet-derived growth factor receptor (PDGFR)-b on stromal and endothelial cells. Sunitinib should be considered for palliative therapy of advanced esthesioneuroblastoma.

  8. Electrophysiological characterization of male goldfish (Carassius auratus ventral preoptic area neurons receiving olfactory inputs

    Directory of Open Access Journals (Sweden)

    Wudu E. Lado

    2014-06-01

    Full Text Available Chemical communication via sex pheromones is critical for successful reproduction but the underlying neural mechanisms are not well-understood. The goldfish is a tractable model because sex pheromones have been well-characterized in this species. We used male goldfish forebrain explants in vitro and performed whole-cell current clamp recordings from single neurons in the ventral preoptic area (vPOA to characterize their membrane properties and synaptic inputs from the olfactory bulbs (OB. Principle component and cluster analyses based on intrinsic membrane properties of vPOA neurons (N = 107 revealed five (I-V distinct cell groups. These cells displayed differences in their input resistance (Rinput: I II = IV > III = V. Evidence from electrical stimulation of the OB and application of receptor antagonists suggests that vPOA neurons receive monosynaptic glutamatergic inputs via the medial olfactory tract, with connectivity varying among neuronal groups [I (24%, II (40%, III (0%, IV (34% and V (2%].

  9. Coding Odorant Concentration through Activation Timing between the Medial and Lateral Olfactory Bulb

    Directory of Open Access Journals (Sweden)

    Zhishang Zhou

    2012-11-01

    Full Text Available In mammals, each olfactory bulb (OB contains a pair of mirror-symmetric glomerular maps organized to reflect odorant receptor identity. The functional implication of maintaining these symmetric medial-lateral maps within each OB remains unclear. Here, using in vivo multielectrode recordings to simultaneously detect odorant-induced activity across the entire OB, we reveal a timing difference in the odorant-evoked onset latencies between the medial and lateral halves. Interestingly, the latencies in the medial and lateral OB decreased at different rates as odorant concentration increased, causing the timing difference between them to also diminish. As a result, output neurons in the medial and lateral OB fired with greater synchrony at higher odorant concentrations. Thus, we propose that temporal differences in activity between the medial and lateral OB can dynamically code odorant concentration, which is subsequently decoded in the olfactory cortex through the integration of synchronous action potentials.

  10. Intranasal location and immunohistochemical characterization of the equine olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Alexandra Kupke

    2016-10-01

    Full Text Available The olfactory epithelium (OE is the only body site where neurons contact directly the environment and are therefore exposed to a broad variation of substances and insults. It can serve as portal of entry for neurotropic viruses which spread via the olfactory pathway to the central nervous system (CNS. For horses, it has been proposed and concluded mainly from rodent studies that different viruses, e.g. Borna disease virus (BoDV, equine herpesvirus 1 (EHV-1, hendra virus, influenza virus, rabies virus, vesicular stomatitis virus (VSV can use this route. However, little is yet known about cytoarchitecture, protein expression and the intranasal location of the equine OE. Revealing differences in cytoarchitecture or protein expression pattern in comparison to rodents, canines or humans might help to explain varying susceptibility to certain intranasal virus infections. On the other hand, disclosing similarities especially between rodents and other species, e.g. horses would help to underscore transferability of rodent models. Analysis of the complete noses of 5 adult horses revealed that in the equine OE two epithelial subtypes with distinct marker expression exist, designated as types a and b which resemble those previously described in dogs. Detailed statistical analysis was carried out to confirm the results obtained on the descriptive level. The equine OE was predominantly located in caudodorsal areas of the nasal turbinates with a significant decline in rostroventral direction, especially for type a. Immunohistochemically, olfactory marker protein (OMP and doublecortin (DCX expression was found in more cells of OE type a, whereas expression of proliferating cell nuclear antigen (PCNA and tropomyosin receptor kinase A (TrkA was present in more cells of type b. Accordingly, type a resembles the mature epithelium, in contrast to the more juvenile type b. Protein expression profile was comparable to canine and rodent OE but equine type a and b were

  11. Intranasal Location and Immunohistochemical Characterization of the Equine Olfactory Epithelium

    Science.gov (United States)

    Kupke, Alexandra; Wenisch, Sabine; Failing, Klaus; Herden, Christiane

    2016-01-01

    The olfactory epithelium (OE) is the only body site where neurons contact directly the environment and are therefore exposed to a broad variation of substances and insults. It can serve as portal of entry for neurotropic viruses which spread via the olfactory pathway to the central nervous system. For horses, it has been proposed and concluded mainly from rodent studies that different viruses, e.g., Borna disease virus, equine herpesvirus 1 (EHV-1), hendra virus, influenza virus, rabies virus, vesicular stomatitis virus can use this route. However, little is yet known about cytoarchitecture, protein expression and the intranasal location of the equine OE. Revealing differences in cytoarchitecture or protein expression pattern in comparison to rodents, canines, or humans might help to explain varying susceptibility to certain intranasal virus infections. On the other hand, disclosing similarities especially between rodents and other species, e.g., horses would help to underscore transferability of rodent models. Analysis of the complete noses of five adult horses revealed that in the equine OE two epithelial subtypes with distinct marker expression exist, designated as types a and b which resemble those previously described in dogs. Detailed statistical analysis was carried out to confirm the results obtained on the descriptive level. The equine OE was predominantly located in caudodorsal areas of the nasal turbinates with a significant decline in rostroventral direction, especially for type a. Immunohistochemically, olfactory marker protein and doublecortin (DCX) expression was found in more cells of OE type a, whereas expression of proliferating cell nuclear antigen and tropomyosin receptor kinase A was present in more cells of type b. Accordingly, type a resembles the mature epithelium, in contrast to the more juvenile type b. Protein expression profile was comparable to canine and rodent OE but equine types a and b were located differently within the nose and

  12. Local neurons play key roles in the mammalian olfactory bulb.

    Science.gov (United States)

    Saghatelyan, Armen; Carleton, Alan; Lagier, Samuel; de Chevigny, Antoine; Lledo, Pierre-Marie

    2003-01-01

    Over the past few decades, research exploring how the brain perceives, discriminates, and recognizes odorant molecules has received a growing interest. Today, olfaction is no longer considered a matter of poetry. Chemical senses entered the biological era when an increasing number of scientists started to elucidate the early stages of the olfactory pathway. A combination of genetic, biochemical, cellular, electrophysiological and behavioral methods has provided a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. Our group is exploring the physiology of the main olfactory bulb, the first processing relay in the mammalian brain. From different electrophysiological approaches, we are attempting to understand the cellular rules that contribute to the synaptic transmission and plasticity at this central relay. How olfactory sensory inputs, originating from the olfactory epithelium located in the nasal cavity, are encoded in the main olfactory bulb remains a crucial question for understanding odor processing. More importantly, the persistence of a high level of neurogenesis continuously supplying the adult olfactory bulb with newborn local neurons provides an attractive model to investigate how basic olfactory functions are maintained when a large proportion of local neurons are continuously renewed. For this purpose, we summarize the current ideas concerning the molecular mechanisms and organizational strategies used by the olfactory system to encode and process information in the main olfactory bulb. We discuss the degree of sensitivity of the bulbar neuronal network activity to the persistence of this high level of neurogenesis that is modulated by sensory experience. Finally, it is worth mentioning that analyzing the molecular mechanisms and organizational strategies used by the olfactory system to transduce, encode, and process odorant information in the olfactory bulb should aid in

  13. Genomics of mature and immature olfactory sensory neurons.

    Science.gov (United States)

    Nickell, Melissa D; Breheny, Patrick; Stromberg, Arnold J; McClintock, Timothy S

    2012-08-15

    The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes.

  14. Hot dip aluminizing on 17-4PH stainless steel and its high-temperature oxidation resistance%17-4PH不锈钢热浸镀铝及其高温耐氧化性能

    Institute of Scientific and Technical Information of China (English)

    王院生; 熊计; 王均; 李海丰; 张太平; 石树坤

    2011-01-01

    Hot-dip aluminizing and diffusion annealing were carried out on 17-4PH stainless steel. The microstructure and microhardness of the coating and its high-temperature oxidation resistance were studied. The results showed that the coating consists of three layers including rich aluminum layer, alloy layer and substrate layer.The major phase of the alloy layer is Fe2Al5. After diffusion annealing treatment at 950 ℃ for 1 h, the rich aluminum layer transforms into the alloy layer completely with a thickness of ca. 100 μm. The alloy layer can divide into an inner diffusion layer and an outer diffusion layer. The inner diffusion layer is ca.40 μm thick and its main phase is Fe3Al.The outer diffusion layer is mainly composed of FeAl. The microhardness of alloy layer reduces gradually from the surface to the substrate and the maximum value is 714 HV. After hot dip aluminizing, the high-temperature oxidation resistance of 17-4PH stainless steel is greatly improved. The high-temperature oxidation resistance of 17-4PH stainless steel is approximately seven times that of the common one at 1 000 ℃. During the oxidation process, r-A12O3 in the surface layer and intermetallic compounds FeAl and Fe3Al play a role in the high-temperature oxidation resistance.%在17-4PH不锈钢上热浸镀铝,然后进行扩散退火处理.研究了热浸镀铝层的显微组织和显微硬度的变化,并考察了其高温耐氧化性能.结果表明:17-4PH不锈钢热浸镀铝后表面分为富铝层、合金层、基体层等3层,合金层主要相为Fe2Al5.经950℃.1 h的扩散处理后,富铝层全部转变为合金层,厚度约为100 μM,且分为内扩散层与外扩散层.内扩散层厚度约为40 μm,主要相为Fe3Al;外扩散层主要相为FeAl.合金层的显微硬度从表面到基体逐渐降低,表面显微硬度最高达到714 HV.17-4PH不锈钢经热浸镀铝后,其高温耐氧化性能显著提高.在1000℃,热浸镀铝件的高温耐氧化性能约是未镀铝件的7倍.

  15. The recombination activation gene 1 (Rag1 is expressed in a subset of zebrafish olfactory neurons but is not essential for axon targeting or amino acid detection

    Directory of Open Access Journals (Sweden)

    Friedrich Rainer W

    2005-07-01

    Full Text Available Abstract Background Rag1 (Recombination activation gene-1 mediates genomic rearrangement and is essential for adaptive immunity in vertebrates. This gene is also expressed in the olfactory epithelium, but its function there is unknown. Results Using a transgenic zebrafish line and immunofluorescence, we show that Rag1 is expressed and translated in a subset of olfactory sensory neurons (OSNs. Neurons expressing GFP under the Rag1 promoter project their axons to the lateral region of the olfactory bulb only, and axons with the highest levels of GFP terminate in a single glomerular structure. A subset of GFP-expressing neurons contain Gαo, a marker for microvillous neurons. None of the GFP-positive neurons express Gαolf, Gαq or the olfactory marker protein OMP. Depletion of RAG1, by morpholino-mediated knockdown or mutation, did not affect axon targeting. Calcium imaging indicates that amino acids evoke chemotopically organized glomerular activity patterns in a Rag1 mutant. Conclusion Rag1 expression is restricted to a subpopulation of zebrafish olfactory neurons projecting to the lateral olfactory bulb. RAG1 catalytic activity is not essential for axon targeting, nor is it likely to be required for regulation of odorant receptor expression or the response of OSNs to amino acids.

  16. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  17. Neural correlates of taste perception in congenital olfactory impairment.

    Science.gov (United States)

    Gagnon, Léa; Vestergaard, Martin; Madsen, Kristoffer; Karstensen, Helena G; Siebner, Hartwig; Tommerup, Niels; Kupers, Ron; Ptito, Maurice

    2014-09-01

    Olfaction and gustation contribute both to the appreciation of food flavours. Although acquired loss of smell has profound consequences on the pleasure of eating, food habits and body weight, less is known about the impact of congenital olfactory impairment on gustatory processing. Here we examined taste identification accuracy and its neural correlates using functional magnetic resonance imaging (fMRI) in 12 congenitally olfactory impaired individuals and 8 normosmic controls. Results showed that taste identification was worse in congenitally olfactory impaired compared to control subjects. The fMRI results demonstrated that olfactory impaired individuals had reduced activation in medial orbitofrontal cortex (mOFC) relative to normosmic subjects while tasting. In addition, olfactory performance as measured with the Sniffin' Sticks correlated positively with taste-induced blood-oxygen-level dependent (BOLD) signal increases in bilateral mOFC and anterior insula. Our data provide a neurological underpinning for the reduced taste perception in congenitally olfactory impaired individuals.

  18. Radiologic findings of olfactory neuroblastoma (Esthesioblastoma

    Directory of Open Access Journals (Sweden)

    Alpaslan Yavuz

    2013-12-01

    Full Text Available Olfactory neuroblastoma (ONB also known as esthesioblastoma is a rare malignant neoplasm originating from olfactive epitelium, usually locate in the olfactory region of the nasal cavity and anterior skull base. Few cases have been published in the literature yet. Detailed radiologic and histopathological examination is necessary for diagnosis and staging ONB. Prognosis is favorable especially for locally advanced tumors; regional and distant metastasis has been accepted as indicators of poor prognosis. Surgery and radiotherapy are the main therapeutic modalities in use today. We reported the x-ray graphic, B Mod-Doppler Ultrasound (US and Computed Tomography (CT findings of 64 years-old male with ONB in this presentation. J Clin Exp Invest 2013; 4 (4: 532-534

  19. Neurogenesis in the adult olfactory bulb

    Institute of Scientific and Technical Information of China (English)

    Angela Pignatelli; Cristina Gambardella; Ottorino Belluzzi

    2011-01-01

    Neurogenesis is the process by which cells divide, migrate, and subsequently differentiate into a neuronal phenotype. Significant rates of neurogenesis persist into adulthood in two brain regions, the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricles. Cells of the subventricular zone divide and migrate via the rostral migratory stream to the olfactory bulb where they differentiate into granule and periglomerular cells. With the discovery of large-scale neurogenesis in the adult brain, there have been significant efforts to identify the mechanisms that control this process as well as the role of these cells in neuronal functioning. Although many questions remain unanswered, new insights appear daily about adult neurogenesis, regulatory mechanisms, and the fates of the progeny. In this review we highlight the main studies investigating factors that regulate neurogenesis in the subventricular zone, neuronal migration to the olfactory bulb, neuronal integration into the existing bulbar network and shortly discuss the functional meaning of this process.

  20. Olfactory Decoding Method Using Neural Spike Signals

    Institute of Scientific and Technical Information of China (English)

    Kyung-jin YOU; Hyun-chool SHIN

    2010-01-01

    This paper presents a travel method for inferring the odor based on naval activities observed from rats'main olfactory bulbs.Mufti-channel extmcellular single unit recordings are done by microwire electrodes(Tungsten,50μm,32 channels)innplanted in the mitral/tufted cell layers of the main olfactory bulb of the anesthetized rats to obtain neural responses to various odors.Neural responses as a key feature are measured by subtraction firing rates before stimulus from after.For odor irderenoe,a decoding method is developed based on the ML estimation.The results show that the average decoding acauacy is about 100.0%,96.0%,and 80.0% with three rats,respectively.This wait has profound implications for a novel brain-madune interface system far odor inference.

  1. Odors Discrimination by Olfactory Epithelium Biosensor

    Science.gov (United States)

    Liu, Qingjun; Hu, Ning; Ye, Weiwei; Zhang, Fenni; Wang, Hua; Wang, Ping

    2011-09-01

    Humans are exploring the bionic biological olfaction to sense the various trace components of gas or liquid in many fields. For achieving the goal, we endeavor to establish a bioelectronic nose system for odor detection by combining intact bioactive function units with sensors. The bioelectronic nose is based on the olfactory epithelium of rat and microelectrode array (MEA). The olfactory epithelium biosensor generates extracellular potentials in presence of odor, and presents obvious specificity under different odors condition. The odor response signals can be distinguished with each other effectively by signal sorting. On basis of bioactive MEA hybrid system and the improved signal processing analysis, the bioelectronic nose will realize odor discrimination by the specific feature of signals response to various odors.

  2. File list: Unc.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.20.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.20.AllAg.Olfactory_epithelium.bed ...

  3. File list: Unc.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.50.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.50.AllAg.Olfactory_epithelium.bed ...

  4. File list: Unc.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Olfactory_epithelium.bed ...

  5. File list: Unc.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Olfactory_epithelium.bed ...

  6. Descriptive epidemiology of selected olfactory tumors.

    Science.gov (United States)

    Villano, J Lee; Bressler, Linda; Propp, Jennifer M; Valyi-Nagy, Tibor; Martin, Iman K; Dolecek, Therese A; McCarthy, Bridget J

    2010-10-01

    Olfactory tumors, especially olfactory neuroblastomas (ON) and carcinomas with neuroendocrine differentiation (CND), are extremely rare, and little descriptive epidemiologic information is available. The objective of this study was to more fully describe selected olfactory tumors using a large population-based cancer incidence database. The Surveillance, Epidemiology and End Results (SEER) 9 registries limited-use data were reviewed from 1973 to 2006 for selected nasal cavity (C30.0) and accessory sinus (C31.0-31.9) tumors. Frequencies, incidence rates, and relative survival rates were estimated using SEER*Stat, v6.5.2. The majority of cases were squamous cell carcinoma (SCC), while the incidence of ON was greater than CND. For ON, the incidence was highest in the 60-79 year age group, while for SCC, the incidence was highest in the 80+ year age group. For CND, the incidence leveled off in the oldest age groups. Survival rates were highest for ON (>70% alive at 5 years after diagnosis) and poorest for CND (44% alive at 5 years). Adjuvant radiation therapy did not improve survival over surgery alone in ON. In SCC, survival was worse in patients who received adjuvant radiation compared to patients who had surgery alone. Our analysis confirms some previously published information, and adds new information about the incidence and demographics of ON and CND. In addition, our analysis documents the lack of benefit of adjuvant radiation in ON. It is not feasible to conduct prospective trials in patients with these rare diseases, and the importance of registry data in learning about olfactory tumors is emphasized.

  7. Olfactory dysfunction in persian patients suffering from parkinson's disease

    OpenAIRE

    Farzad Fatehi; Askar Ghorbani; Hamid Noorolahi; Mehdi Shams; Akbar Soltanzadeh

    2011-01-01

    Background Looking in literature reveals that aging is accompanied by olfactory dysfunction and hyposmia/anosmia is a common manifestation in some neurodegenerative disorders. Olfactory dysfunction is regarded as non-motor manifestations of Parkinson disease (PD). The main goal of this study was to examine the extent of olfactory dysfunction in Persian PD patients. Methods We used seven types of odors including rosewater, mint, lemon, garlic which were produced by Barij Essence Company in Ira...

  8. MRI of the olfactory bulbs and sulci in human fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, Robin; Grabar, Sophie; Kalifa, Gabriel; Adamsbaum, Catherine [Paris V, Faculte de Medecine, Department of Radiology, Hopital Saint Vincent de Paul, Paris Cedex 14 (France); Fallet-Bianco, Catherine [Hopital Sainte-Anne, Paris (France); Garel, Catherine [Hopital Robert Debre, Paris (France)

    2006-02-01

    There is limited knowledge of the MRI pattern of the development of fetal olfactory bulbs and sulci. To describe the MRI appearance of olfactory bulbs and sulci in normal in vivo fetuses according to gestational age. Olfactory bulbs and sulci were retrospectively assessed on brain MRI examinations of 88 normal fetuses between 24 and 39 weeks gestational age. Two reference centres were involved in the study and both used routine protocols that included axial and coronal T2- and T1-weighted sequences at 1.5 T. The results were compared both with the commonly used neuropathological data in the literature and with personal neuropathological data. Pearson's chi-squared test or Fisher's exact test were performed. One case of olfactory agenesis associated with CHARGE syndrome was identified. T2-weighted coronal sequences were the most sensitive for detecting olfactory bulbs and sulci. Olfactory sulci were significantly better detected from 30 weeks onwards (90.9-100%; P<0.001). MRI showed a posteroanterior development of these sulci. Olfactory bulbs were better detected from 30 to 34 weeks (80-90.9%; P<0.002). Comparison with neuropathological data confirmed the posteroanterior development of the sulci and showed an important delay in detection of the olfactory structures (bulbs and sulci). No difference was observed between the two centres involved. To date, fetal MRI can depict olfactory sulci from 30 weeks gestational age onwards and olfactory bulbs from 30 to 34 weeks gestational age. This preliminary reference standard is useful to assess the normality of the olfactory system and to diagnose olfactory agenesis. (orig.)

  9. Olfactory metaphors in the online environment

    Directory of Open Access Journals (Sweden)

    Alina Ţenescu

    2015-08-01

    Full Text Available The main objective of this paper is to analyze the main aspects of the olfactory metaphor in online perfume reviews and to identify its main characteristics in the non-specialized perfume discourse. Using as a starting point the approach whose overall view is guided by conceptual metaphor theory, we will identify, analyze and classify the main elements of the metaphorical schema associated with the olfactory metaphor related to fragrance perception and description. We will illustrate this category by examples taken from a corpus of excerpts of online non-specialized perfume discourse. Managing the issue of perception and description of fragrance in the online environment allows us an orientation of the research by multiple approaches of the semantics of perfume-speak: the recognition of essential aspects of perfume imaginary, with a focus on the olfactory metaphor in our research corpus; the analysis of sensory impressions and representations in online non-specialized discourse about fragrance. Our main aim is to organize conceptualizations of perfume notes into several categories, following the model inspired by the research of Lakoff and Johnson (Metaphors we live by, 1980.

  10. Neurally Encoding Time for Olfactory Navigation.

    Directory of Open Access Journals (Sweden)

    In Jun Park

    2016-01-01

    Full Text Available Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal's ability to locate the source of odor cues in realistic turbulent environments-a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing.

  11. Terminal-Nerve-Derived Neuropeptide Y Modulates Physiological Responses in the Olfactory Epithelium of Hungry Axolotls (Ambystoma mexicanum)

    Science.gov (United States)

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J.; Eisthen, Heather L.

    2007-01-01

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances. PMID:16855098

  12. Terminal nerve-derived neuropeptide y modulates physiological responses in the olfactory epithelium of hungry axolotls (Ambystoma mexicanum).

    Science.gov (United States)

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J; Eisthen, Heather L

    2006-07-19

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by l-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.

  13. CARACTERIZACIÓN NO DESTRUCTIVA DEL ENDURECIMIENTO POR PRECIPITACIÓN DE UN ACERO 17-4PH

    OpenAIRE

    García Pérez, Ivan Xicotencatl

    2012-01-01

    El acero endurecible por precipitación 17-4 PH ha sido usado ampliamente, debido a que presenta una combinación balanceada de propiedades mecánicas y una buena resistencia a la corrosión. La temperatura de trabajo de este acero está por debajo de los 390 ̊C. Existe una gran preocupación en la industria ya que después de una exposición prolongada a esta temperatura, presentan degradación de sus propiedades, causada por envejecimiento. Los ensayos no destructivos ofrecen gran ...

  14. Relationship between binder contents and mechanical properties of 17-4 ph stainless steel fabricated by PIM process and sintering

    Science.gov (United States)

    Khalil, K. A.; Kim, Sug Won

    2006-04-01

    Mechanical properties and microstructures of 17-4 ph stainless steel parts produced using different binder contents (powder loading) of powder injection molding (PIM) feedstock have been studied. The tensile and wear properties have been evaluated. Wear tests were conducted by a pin-on-disk tribometer, without lubricant, at different loads and sliding distance. SEM examination of the fracture sufaces revealed good particle bonding and a high ductile fracture surface for high powder loading. The surface fractures of the bars with higher powder loading show a closed porosity. High performance properties such as fully dense, ultimate tensile strength, hardness and wear resistance are obtained with high powder loading.

  15. Identification of Odorant-Receptor Interactions by Global Mapping of the Human Odorome

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Tromelin, Anne; Le Bon, Anne Marie

    2014-01-01

    between odorants and the cannabinoid receptor 1 (CB1) and the peroxisome proliferator-activated receptor gamma ( PPAR gamma). Overall, these results illustrate the potential of integrative systems chemical biology to explore the impact of odorant molecules on human health, i.e. human odorome.......The human olfactory system recognizes a broad spectrum of odorants using approximately 400 different olfactory receptors ( hORs). Although significant improvements of heterologous expression systems used to study interactions between ORs and odorant molecules have been made, screening the olfactory...

  16. Destruction of the main olfactory epithelium reduces female sexual behavior and olfactory investigation in female mice

    OpenAIRE

    Keller, Matthieu; Douhard, Quentin; Baum, M.J.; Bakker, Julie

    2006-01-01

    We studied the contribution of the main olfactory system to mate recognition and sexual behavior in female mice. Female mice received an intranasal irrigation of either a zinc sulfate (ZnSO4) solution to destroy the main olfactory epithelium (MOE) or saline (SAL) to serve as control. ZnSO4-treated female mice were no longer able to reliably distinguish between volatile as well as nonvolatile odors from an intact versus a castrated male. Furthermore, sexual behavior in mating tests with a sexu...

  17. The structural organization and immunohistochemistry of G-protein alpha subunits in the olfactory system of the air-breathing mudskipper, Periophthalmus barbarus (Linnaeus, 1766) (Gobiidae, Oxudercinae).

    Science.gov (United States)

    Kuciel, Michał; Rita Lauriano, Eugenia; Silvestri, Giuseppa; Zuwała, Krystyna; Pergolizzi, Simona; Zaccone, Daniele

    2014-01-01

    The study provides the first comprehensive information on the immunohistochemistry and ultrastructure of the olfactory receptor neurons (ORNs) in the mudskipper, Periophthalmus barbarus. The olfactory sensory epithelium is in the form of islets which cover part of the olfactory canal running from the upper lip toward the eye, where large single accessory nasal sacs occur. Within the islets, microvillous, ciliated and crypt ORNs were observed as well as giant cells and sparse non-sensory ciliated cells. Around the islets and in the walls of accessory nasal sacs, there are epidermal cells with microridges typical of fish epidermis. Close to the entrance to the accessory nasal sac, in the non-sensory epithelium of the nasal cavity and the skin epithelium covering the olfactory organ, areas of solitary chemosensory cells (SCCs) are reported for the first time. The distribution of the various ORN cell types is assessed through the immunohistochemistry against olfactory receptor coupled G-proteins. The ciliated ORNs were labeled by G alpha olf/s antibody. The ORNs with microvilli and crypt cells were G alpha i-3 immunoreactive.

  18. Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus.

    Directory of Open Access Journals (Sweden)

    James C Walton

    Full Text Available Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD and short day lengths (SD for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.

  19. Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4 PH stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li Guijiang; Wang Jun [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Li Cong; Peng Qian [Nuclear Power Institute of China, Chengdu 610041 (China); Gao Jian [Chengdu Tool Institute, Sichuan, Xindu 610051 (China); Shen Baoluo [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China)], E-mail: shen_baoluo@163.com

    2008-05-15

    An attempt that the precipitation hardening steel 17-4PH was conducted by DC plasma nitriding (DCPN) is made to develop a kind of candidate material for nuclear reactor. Nitriding process performed at temperature {<=} 400 deg. C takes effect on creation of the layers composed of S-phase (expanded austenite) and {alpha}{sub N}{sup '} (expanded martensite). Up to the temperature of 420 deg. C, the S-phase peaks disappear due to the transformation occurrence (S-phase {yields}{alpha}{sub N}{sup '} + CrN). For the samples nitrided at temperature {>=} 450 deg. C, no evidence of {alpha}{sub N}{sup '} is found owing to a precipitation ({alpha}{sub N}{sup '}{yields}{alpha}+CrN) taking place. For the 480 deg. C/4 h treated sample, it is the surface microhardness that plays the lead role in the wear rate reduction but the surface roughness; while for the 400 deg. C/4 h treated sample, it is both of the surface roughness and the S-phase formation. Dry sliding wear of the untreated 17-4PH is mainly characterized by strong adhesion, abrasion and oxidation mechanism. Samples nitrided at 400 deg. C which is dominated by slight abrasion and plastic deformation exhibit the best dry sliding wear resistance compared to the samples nitrided at other temperatures.

  20. Effects of Temperature on Microstructure and Wear of Salt Bath Nitrided 17-4PH Stainless Steel

    Science.gov (United States)

    Wang, Jun; Lin, Yuanhua; Fan, Hongyuan; Zeng, Dezhi; Peng, Qian; Shen, Baoluo

    2012-08-01

    Salt bath nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 610, 630, and 650 °C for 2 h using a complex salt bath heat-treatment, and the properties of the nitrided surface were systematically evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt bathing nitriding, the main phase of the nitrided layer was expanded martensite (α'), expanded austenite (γN), CrN, Fe4N, and (Fe,Cr) x O y . In the sample nitrided above 610 °C, the expanded martensite transformed into expanded austenite. But in the sample nitrided at 650 °C, the expanded austenite decomposed into αN and CrN. The decomposed αN then disassembled into CrN and alpha again. The nitrided layer depth thickened intensively with the increasing nitriding temperature. The activation energy of nitriding in this salt bath was 125 ± 5 kJ/mol.

  1. Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4 PH stainless steel

    Science.gov (United States)

    Li, Gui-jiang; Wang, Jun; Li, Cong; Peng, Qian; Gao, Jian; Shen, Bao-luo

    2008-05-01

    An attempt that the precipitation hardening steel 17-4PH was conducted by DC plasma nitriding (DCPN) is made to develop a kind of candidate material for nuclear reactor. Nitriding process performed at temperature ⩽ 400 °C takes effect on creation of the layers composed of S-phase (expanded austenite) and αN‧ (expanded martensite). Up to the temperature of 420 °C, the S-phase peaks disappear due to the transformation occurrence (S-phase → αN‧ + CrN). For the samples nitrided at temperature ⩾ 450 °C, no evidence of αN‧ is found owing to a precipitation (αN‧ → α +CrN) taking place. For the 480 °C/4 h treated sample, it is the surface microhardness that plays the lead role in the wear rate reduction but the surface roughness; while for the 400 °C/4 h treated sample, it is both of the surface roughness and the S-phase formation. Dry sliding wear of the untreated 17-4PH is mainly characterized by strong adhesion, abrasion and oxidation mechanism. Samples nitrided at 400 °C which is dominated by slight abrasion and plastic deformation exhibit the best dry sliding wear resistance compared to the samples nitrided at other temperatures.

  2. The regeneration of P2 olfactory sensory neurons is selectively impaired following methyl bromide lesion.

    Science.gov (United States)

    Holbrook, Eric H; Iwema, Carrie L; Peluso, Carolyn E; Schwob, James E

    2014-09-01

    The capacity of the peripheral olfactory system to recover after injury has not been thoroughly explored. P2-IRES-tauLacZ mice were exposed to methyl bromide, which causes epithelial damage and kills 90% of the P2 neurons. With subsequent neuronal regeneration, P2 neurons recover within their usual territory to equal control numbers by 1 month but then decline sharply to roughly 40% of control by 3 months. At this time, the P2 projection onto the olfactory bulb is erroneous in several respects. Instead of converging onto 1 or 2 glomeruli per surface, small collections of P2 axons innervate multiple glomeruli at roughly the same position in the bulb as in controls. Within these glomeruli, the P2 axons are aggregated near the edge, whereas the remainder of the glomerulus contains olfactory marker protein (+), non-P2 axons, violating the one receptor-one glomerulus rule normally observed. The aggregates are denser than found in control P2-innervated glomeruli, suggesting that the P2 axons may not be synaptically connected. Based on published literature and other data, we hypothesize that P2 neurons lose out in an activity-based competition for synaptic territory within the glomeruli and are not maintained at control numbers due to a lack of trophic support from the bulb.

  3. Differential expression of axon-sorting molecules in mouse olfactory sensory neurons.

    Science.gov (United States)

    Ihara, Naoki; Nakashima, Ai; Hoshina, Naosuke; Ikegaya, Yuji; Takeuchi, Haruki

    2016-08-01

    In the mouse olfactory system, the axons of olfactory sensory neurons that express the same type of odorant receptor (OR) converge to a specific set of glomeruli in the olfactory bulb (OB). It is widely accepted that expressed OR molecules instruct glomerular segregation by regulating the expression of axon-sorting molecules. Although the relationship between the expression of axon-sorting molecules and OR types has been analyzed in detail, those between the expressions of axon-sorting molecules remain to be elucidated. Here we collected the expression profiles of four axon-sorting molecules from a large number of glomeruli in the OB. These molecules demonstrated position-independent mosaic expressions, but their patterns were not identical in the OB. Comparing their expressions identified positive and negative correlations between several pairs of genes even though they showed various expressions. Furthermore, the principal component analysis revealed that the factor loadings in the principal component 1, which explain the largest amount of variation, were most likely to reflect the degree of the cyclic nucleotide-gated (CNG) channel dependence on the expression of axon-sorting molecules. Thus, neural activity generated through the CNG channel is a major component in the generation of a wide variety of expressions of axon-sorting molecules in glomerular segregation.

  4. Involvement of hormones in olfactory imprinting and homing in chum salmon.

    Science.gov (United States)

    Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko

    2016-02-16

    The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker.

  5. A qualitative and quantitative investigation of olfactory and nasal respiratory mucosal surfaces of cow and sheep based on various ultrastr. and bioch. methods

    NARCIS (Netherlands)

    Menco, B.P.M.

    1977-01-01

    Many hypotheses have been developed to account for the process of olfaction (for reviews see MOULTON and BEIDLER, 1967; DAVIES, 1971 and POYNDER, 1974), but at the present time none of them has been verified. The olfactory organ demonstrates very interesting receptor properties. It interacts with a

  6. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury)

    Science.gov (United States)

    Wang, Tian-Tian; Zhang, Jing; Sun, Long; Yang, Yun-Qiu; Huang, Chang-Chun; Jiang, Li-Ya; Ding, De-Gui

    2016-01-01

    Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) is an invasive insect pest which, in China, causes unprecedented damage and economic losses due to its extreme fecundity and wide host range, including forest and shade trees, and even crops. Compared to the better known lepidopteran species which use Type-I pheromones, little is known at the molecular level about the olfactory mechanisms of host location and mate choice in H. cunea, a species using Type-II lepidopteran pheromones. In the present study, the H. cunea antennal transcriptome was constructed by Illumina Hiseq 2500TM sequencing, with the aim of discovering olfaction-related genes. We obtained 64,020,776 clean reads, and 59,243 unigenes from the analysis of the transcriptome, and the putative gene functions were annotated using gene ontology (GO) annotation. We further identified 124 putative chemosensory unigenes based on homology searches and phylogenetic analysis, including 30 odorant binding proteins (OBPs), 17 chemosensory proteins (CSPs), 52 odorant receptors (ORs), 14 ionotropic receptors (IRs), nine gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs). We also found many conserved motif patterns of OBPs and CSPs using a MEME system. Moreover, we systematically analyzed expression patterns of OBPs and CSPs based on reverse transcription PCR and quantitative real time PCR (RT-qPCR) with RNA extracted from different tissues and life stages of both sexes in H. cunea. The antennae-biased expression may provide a deeper further understanding of olfactory processing in H. cunea. The first ever identification of olfactory genes in H. cunea may provide new leads for control of this major pest. PMID:27741298

  7. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    Full Text Available BACKGROUND: Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells. PRINCIPAL FINDINGS: With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells. SIGNIFICANCE: In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  8. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium.

    Science.gov (United States)

    Altenhofen, W; Ludwig, J; Eismann, E; Kraus, W; Bönigk, W; Kaupp, U B

    1991-11-01

    Cyclic nucleotide-gated ionic channels in photoreceptors and olfactory sensory neurons are activated by binding of cGMP or cAMP to a receptor site on the channel polypeptide. By site-directed mutagenesis and functional expression of bovine wild-type and mutant channels in Xenopus oocytes, we have tested the hypothesis that an alanine/threonine difference in the cyclic nucleotide-binding site determines the specificity of ligand binding, as has been proposed for cyclic nucleotide-dependent protein kinases [Weber, I.T., Shabb, J.B. & Corbin, J.D. (1989) Biochemistry 28, 6122-6127]. The wild-type olfactory channel is approximately 25-fold more sensitive to both cAMP and cGMP than the wild-type rod photoreceptor channel, and both channels are 30- to 40-fold more sensitive to cGMP than to cAMP. Substitution of the respective threonine by alanine in the rod photoreceptor and olfactory channels decreases the cGMP sensitivity of channel activation 30-fold but little affects activation by cAMP. Substitution of threonine by serine, an amino acid that also carries a hydroxyl group, even improves cGMP sensitivity of the wild-type channels 2- to 5-fold. We conclude that the hydroxyl group of Thr-560 (rod) and Thr-537 (olfactory) forms an additional hydrogen bond with cGMP, but not cAMP, and thereby provides the structural basis for ligand discrimination in cyclic nucleotide-gated channels.

  9. Nav1.7 is the predominant sodium channel in rodent olfactory sensory neurons

    Directory of Open Access Journals