WorldWideScience

Sample records for olfactory fear conditioning

  1. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Science.gov (United States)

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  2. Learning-dependent and -independent enhancement of mitral/tufted cell glomerular odor responses following olfactory fear conditioning in awake mice.

    Science.gov (United States)

    Ross, Jordan M; Fletcher, Max L

    2018-04-18

    Associative fear learning produces fear toward the conditioned stimulus (CS) and often generalization, the expansion of fear from the CS to similar, unlearned stimuli. However, how fear learning affects early sensory processing of learned and unlearned stimuli in relation to behavioral fear responses to these stimuli remains unclear. We subjected male and female mice expressing the fluorescent calcium indicator GCaMP3 in olfactory bulb mitral and tufted cells to a classical olfactory fear conditioning paradigm. We then used awake, in vivo calcium imaging to quantify learning-induced changes in glomerular odor responses, which constitute the first site of olfactory processing in the brain. The results demonstrate that odor-shock pairing non-specifically enhances glomerular odor representations in a learning-dependent manner and increases representational similarity between the CS and non-conditioned odors, potentially priming the system towards generalization of learned fear. Additionally, CS-specific glomerular enhancements remain even when associative learning is blocked, suggesting two separate mechanisms lead to enhanced glomerular responses following odor-shock pairings. SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are uniquely coded in a spatial map that represents odor identity, making the OB a unique model system for investigating how learned fear alters sensory processing. Classical fear conditioning causes fear of the conditioned stimulus (CS) and of neutral stimuli, known as generalization. Combining fear conditioning with fluorescent calcium imaging of OB glomeruli, we found enhanced glomerular responses of the CS as well as neutral stimuli in awake mice, which mirrors fear generalization. We report that CS and neutral stimuli enhancements are, respectively, learning- independent and learning-dependent. Together, these results reveal distinct mechanisms leading to enhanced OB processing of fear-inducing stimuli and provide important

  3. The usefulness of olfactory fear conditioning for the study of early emotional and cognitive impairment in reserpine model.

    Science.gov (United States)

    Souza, Rimenez R; França, Sanmara L; Bessa, Marília M; Takahashi, Reinaldo N

    2013-11-01

    Due to the ability for depleting neuronal storages of monoamines, the reserpine model is a suitable approach for the investigation of the neurobiology of neurodegenerative diseases. However, the behavioral effects of low doses of reserpine are not always detected by classic animal tests of cognition, emotion, and sensory ability. In this study, the effects of reserpine (0.5-1.0mg/kg) were evaluated in olfactory fear conditioning, inhibitory avoidance, open-field, elevated plus-maze, and olfactory discrimination. Possible protective effects were also investigated. We found that single administration of reserpine impaired the acquisition of olfactory fear conditioning (in both doses) as well as olfactory discrimination (in the higher dose), while no effects were seen in all other tests. Additionally, we demonstrated that prior exposure to environmental enrichment prevented effects of reserpine in animals tested in olfactory fear conditioning. Altogether, these findings suggest that a combined cognitive, emotional and sensory-dependent task would be more sensitive to the effects of the reserpine model. In addition, the present data support the environmental enrichment as an useful approach for the study of resilience mechanisms in neurodegenerative processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    Science.gov (United States)

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  5. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  6. Olfactory systems and neural circuits that modulate predator odor fear

    Science.gov (United States)

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  7. I can see, hear, and smell your fear : Comparing olfactory and audiovisual media in fear communication

    NARCIS (Netherlands)

    De Groot, Jasper H B; Semin, Gün R.; Smeets, Monique A M

    2014-01-01

    Recent evidence suggests that humans can become fearful after exposure to olfactory fear signals, yet these studies have reported the effects of fear chemosignals without examining emotion-relevant input from traditional communication modalities (i.e., vision, audition). The question that we pursued

  8. Social Modulation of Associative Fear Learning by Pheromone Communication

    Science.gov (United States)

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…

  9. Human fear conditioning conducted in full immersion 3-dimensional virtual reality.

    Science.gov (United States)

    Huff, Nicole C; Zeilinski, David J; Fecteau, Matthew E; Brady, Rachael; LaBar, Kevin S

    2010-08-09

    Fear conditioning is a widely used paradigm in non-human animal research to investigate the neural mechanisms underlying fear and anxiety. A major challenge in conducting conditioning studies in humans is the ability to strongly manipulate or simulate the environmental contexts that are associated with conditioned emotional behaviors. In this regard, virtual reality (VR) technology is a promising tool. Yet, adapting this technology to meet experimental constraints requires special accommodations. Here we address the methodological issues involved when conducting fear conditioning in a fully immersive 6-sided VR environment and present fear conditioning data. In the real world, traumatic events occur in complex environments that are made up of many cues, engaging all of our sensory modalities. For example, cues that form the environmental configuration include not only visual elements, but aural, olfactory, and even tactile. In rodent studies of fear conditioning animals are fully immersed in a context that is rich with novel visual, tactile and olfactory cues. However, standard laboratory tests of fear conditioning in humans are typically conducted in a nondescript room in front of a flat or 2D computer screen and do not replicate the complexity of real world experiences. On the other hand, a major limitation of clinical studies aimed at reducing (extinguishing) fear and preventing relapse in anxiety disorders is that treatment occurs after participants have acquired a fear in an uncontrolled and largely unknown context. Thus the experimenters are left without information about the duration of exposure, the true nature of the stimulus, and associated background cues in the environment. In the absence of this information it can be difficult to truly extinguish a fear that is both cue and context-dependent. Virtual reality environments address these issues by providing the complexity of the real world, and at the same time allowing experimenters to constrain fear

  10. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  11. Olfactory systems and neural circuits that modulate predator odor fear

    OpenAIRE

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator ...

  12. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses

    Directory of Open Access Journals (Sweden)

    Max L Fletcher

    2012-03-01

    Full Text Available The anatomical organization of receptor neuron input into the olfactory bulb (OB allows odor information to be transformed into an odorant-specific spatial map of mitral/tufted cell glomerular activity at the upper level of the olfactory bulb. In other sensory systems, neuronal representations of stimuli can be reorganized or enhanced following learning. While the mammalian OB has been shown to undergo experience-dependent plasticity at the glomerular level, it is still unclear if similar representational change occurs within mitral/tufted cell glomerular odor representations following learning. To address this, odorant-evoked glomerular activity patterns were imaged in mice expressing a GFP-based calcium indicator (GCaMP2 in OB mitral/tufted cells. Glomerular odor responses were imaged before and after olfactory associative conditioning to aversive foot shock. Following conditioning, we found no overall reorganization of the glomerular representation. Training, however, did significantly alter the amplitudes of individual glomeruli within the representation in mice in which the odor was presented together with foot shock. Further, the specific pairing of foot shock with odor presentations lead to increased responses primarily in initially weakly activated glomeruli. Overall, these results suggest that associative conditioning can enhance the initial representation of odors within the olfactory bulb by enhancing responses to the learned odor in some glomeruli.

  13. Serotonergic Modulation of Conditioned Fear

    Directory of Open Access Journals (Sweden)

    Judith R. Homberg

    2012-01-01

    Full Text Available Conditioned fear plays a key role in anxiety disorders as well as depression and other neuropsychiatric conditions. Understanding how neuromodulators drive the associated learning and memory processes, including memory consolidation, retrieval/expression, and extinction (recall, is essential in the understanding of (individual differences in vulnerability to these disorders and their treatment. The human and rodent studies I review here together reveal, amongst others, that acute selective serotonin reuptake inhibitor (SSRI treatment facilitates fear conditioning, reduces contextual fear, and increases cued fear, chronic SSRI treatment reduces both contextual and cued fear, 5-HT1A receptors inhibit the acquisition and expression of contextual fear, 5-HT2A receptors facilitates the consolidation of cued and contextual fear, inactivation of 5-HT2C receptors facilitate the retrieval of cued fear memory, the 5-HT3 receptor mediates contextual fear, genetically induced increases in serotonin levels are associated with increased fear conditioning, impaired cued fear extinction, or impaired extinction recall, and that genetically induced 5-HT depletion increases fear conditioning and contextual fear. Several explanations are presented to reconcile seemingly paradoxical relationships between serotonin levels and conditioned fear.

  14. The fragrant power of collective fear.

    Directory of Open Access Journals (Sweden)

    Roa Harb

    Full Text Available Fear is a well-characterized biological response to threatening or stressful situations in humans and other social animals. Importantly, fearful stimuli in the natural environment are likely to be encountered concurrently by a group of animals. The modulation of fear acquisition and fear memory by a group as opposed to an individual experience, however, remains largely unknown. Here, we demonstrate a robust reduction in fear memory to an aversive event undertaken in a group despite similar fear learning between individually- and group-conditioned rats. This reduction persists outside the group confines, appears to be a direct outcome of group cognizance and is counteracted by loss of olfactory signaling among the group members. These results show that a group experience of fear can be protective and suggest that distinct neural pathways from those classically studied in individuals modulate collective fear memories.

  15. Enhanced olfactory sensitivity in autism spectrum conditions.

    Science.gov (United States)

    Ashwin, Chris; Chapman, Emma; Howells, Jessica; Rhydderch, Danielle; Walker, Ian; Baron-Cohen, Simon

    2014-01-01

    People with autism spectrum conditions (ASC) report heightened olfaction. Previous sensory experiments in people with ASC have reported hypersensitivity across visual, tactile, and auditory domains, but not olfaction. The aims of the present study were to investigate olfactory sensitivity in ASC, and to test the association of sensitivity to autistic traits. We recruited 17 adult males diagnosed with ASC and 17 typical adult male controls and tested their olfactory sensitivity using the Alcohol Sniff Test (AST), a standardised clinical evaluation of olfactory detection. The AST involves varying the distance between subject and stimulus until an odour is barely detected. Participants with ASC also completed the Autism Spectrum Quotient (AQ) as a measure of autism traits. The ASC group detected the odour at a mean distance of 24.1 cm (SD =11.5) from the nose, compared to the control group, who detected it at a significantly shorter mean distance of 14.4 cm (SD =5.9). Detection distance was independent of age and IQ for both groups, but showed a significant positive correlation with autistic traits in the ASC group (r =0.522). This is the first experimental demonstration, as far as the authors are aware, of superior olfactory perception in ASC and showing that greater olfactory sensitivity is correlated with a higher number of autistic traits. This is consistent with results from previous findings showing hypersensitivity in other sensory domains and may help explain anecdotal and questionnaire accounts of heightened olfactory sensitivity in ASC. Results are discussed in terms of possible underlying neurophysiology.

  16. Fear conditioned responses and PTSD symptoms in children: Sex differences in fear-related symptoms.

    Science.gov (United States)

    Gamwell, Kaitlyn; Nylocks, Maria; Cross, Dorthie; Bradley, Bekh; Norrholm, Seth D; Jovanovic, Tanja

    2015-11-01

    Fear conditioning studies in adults have found that posttraumatic stress disorder (PTSD) is associated with heightened fear responses and impaired discrimination. The objective of the current study was to examine the association between PTSD symptoms and fear conditioned responses in children from a highly traumatized urban population. Children between 8 and 13 years old participated in a fear conditioning study in addition to providing information about their trauma history and PTSD symptoms. Results showed that females showed less discrimination between danger and safety signals during conditioning compared to age-matched males. In boys, intrusive symptoms were predictive of fear responses, even after controlling for trauma exposure. However, in girls, conditioned fear to the danger cue was predictive of self-blame and fear of repeated trauma. This study suggests there are early sex differences in the patterns of fear conditioning and that these sex differences may translate to differential risk for trauma-related psychopathology. © 2015 Wiley Periodicals, Inc.

  17. Chemosensory anxiety cues enhance the perception of fearful faces - An fMRI study.

    Science.gov (United States)

    Wudarczyk, Olga A; Kohn, Nils; Bergs, Rene; Goerlich, Katharina S; Gur, Raquel E; Turetsky, Bruce; Schneider, Frank; Habel, Ute

    2016-12-01

    Recent evidence suggests that humans can communicate emotion via chemosensory signals. Olfactory cues signaling anxiety can bias the perception of ambiguous stimuli, but the underlying neurobiological mechanisms of this effect are currently unknown. Here, we investigated the brain responses to subtle changes in facial expressions in response to anxiety chemosensory cues. Ten healthy individuals donated their sweat in two situations: while anticipating an important oral examination (anxiety condition) and during physical exercise (control condition). Subsequently, 24 participants completed a parametrically morphed (neutral to fearful) emotion recognition task under exposure to the olfactory cues of anxiety and sports, in the fMRI scanner. Behaviorally, the participants rated more discernible fearful faces as more fearful and neutral faces as more neutral under exposure to the anxiety cues. For brain response, under exposure to the anxiety cues, increased fearfulness of the face corresponded to increased activity in the left insula and the left middle occipital gyrus extending into fusiform gyrus. Moreover, with higher subjective ratings of facial fearfulness, participants additionally showed increased activity in the left hippocampus. These results suggest that chemosensory anxiety cues facilitate processing of socially relevant fearful stimuli and boost memory retrieval due to enhanced emotional context. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Equal pain – Unequal fear response: Enhanced susceptibility of tooth pain to fear conditioning

    Directory of Open Access Journals (Sweden)

    Michael Lukas Meier

    2014-07-01

    Full Text Available Experimental fear conditioning in humans is widely used as a model to investigate the neural basis of fear learning and to unravel the pathogenesis of anxiety disorders. It has been observed that fear conditioning depends on stimulus salience and subject vulnerability to fear. It is further known that the prevalence of dental-related fear and phobia is exceedingly high in the population. Dental phobia is unique as no other body part is associated with a specific phobia. Therefore, we hypothesized that painful dental stimuli exhibit an enhanced susceptibility to fear conditioning when comparing to equal perceived stimuli applied to other body sites. Differential susceptibility to pain-related fear was investigated by analyzing responses to an unconditioned stimulus (UCS applied to the right maxillary canine (UCS-c versus the right tibia (UCS-t. For fear conditioning, UCS-c and USC-t consisted of painful electric stimuli, carefully matched at both application sites for equal intensity and quality perception. UCSs were paired to simple geometrical forms which served as conditioned stimuli (CS+. Unpaired CS+ were presented for eliciting and analyzing conditioned fear responses. Outcome parameter were 1 skin conductance changes and 2 time-dependent brain activity (BOLD responses in fear-related brain regions such as the amygdala, anterior cingulate cortex, insula, thalamus, orbitofrontal cortex and medial prefrontal cortex.A preferential susceptibility of dental pain to fear conditioning was observed, reflected by heightened skin conductance responses and enhanced time-dependent brain activity (BOLD responses in the fear network. For the first time, this study demonstrates fear-related neurobiological mechanisms that point towards a superior conditionability of tooth pain. Beside traumatic dental experiences our results offer novel evidence that might explain the high prevalence of dental-related fears in the population.

  19. Effects of sleep on memory for conditioned fear and fear extinction

    OpenAIRE

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with th...

  20. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning.

    Science.gov (United States)

    Li, Susan Shi Yuan; McNally, Gavan P

    2014-02-01

    A key insight of associative learning theory is that learning depends on the actions of prediction error: a discrepancy between the actual and expected outcomes of a conditioning trial. When positive, such error causes increments in associative strength and, when negative, such error causes decrements in associative strength. Prediction error can act directly on fear learning by determining the effectiveness of the aversive unconditioned stimulus or indirectly by determining the effectiveness, or associability, of the conditioned stimulus. Evidence from a variety of experimental preparations in human and non-human animals suggest that discrete neural circuits code for these actions of prediction error during fear learning. Here we review the circuits and brain regions contributing to the neural coding of prediction error during fear learning and highlight areas of research (safety learning, extinction, and reconsolidation) that may profit from this approach to understanding learning. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  1. Generalization of Conditioned Fear along a Dimension of Increasing Fear Intensity

    Science.gov (United States)

    Dunsmoor, Joseph E.; Mitroff, Stephen R.; LaBar, Kevin S.

    2009-01-01

    The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two…

  2. Chronically reinforced, operant olfactory conditioning increases the number of newborn GABAergic olfactory periglomerular neurons in the adult rat.

    Science.gov (United States)

    Tapia-Rodríguez, Miguel; Esquivelzeta-Rabell, José F; Gutiérrez-Ospina, Gabriel

    2012-12-01

    The mammalian brain preserves the ability to replace olfactory periglomerular cells (PGC) throughout life. Even though we have detailed a great deal the mechanisms underlying stem and amplifying cells maintenance and proliferation, as well as those modulating migration and differentiation, our knowledge on PGC phenotypic plasticity is at best fragmented and controversial. Here we explored whether chronically reinforced olfactory conditioning influences the phenotype of newborn PGC. Accordingly, olfactory conditioned rats showed increased numbers of GAD 65/67 positive PGC. Because such phenotypic change was not accompanied neither by increments in the total number of PGC, or periglomerular cell nuclei labeled with bromodeoxyuridine, nor by reductions in the number of tyrosine hydroxylase (TH), calbindin (CB) or calretinin (CR) immunoreactive PGC, we speculate that increments in the number of GABAergic PGC occur at the expense of other PGC phenotypes. In any event, these results support that adult newborn PGC phenotype may be subjected to phenotypic plasticity influenced by sensory stimulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Association of poor childhood fear conditioning and adult crime.

    Science.gov (United States)

    Gao, Yu; Raine, Adrian; Venables, Peter H; Dawson, Michael E; Mednick, Sarnoff A

    2010-01-01

    Amygdala dysfunction is theorized to give rise to poor fear conditioning, which in turn predisposes to crime, but it is not known whether poor conditioning precedes criminal offending. This study prospectively assessed whether poor fear conditioning early in life predisposes to adult crime in a large cohort. Electrodermal fear conditioning was assessed in a cohort of 1,795 children at age 3, and registration for criminal offending was ascertained at age 23. In a case-control design, 137 cohort members with a criminal record were matched on gender, ethnicity, and social adversity with 274 noncriminal comparison members. Statistical analyses compared childhood fear conditioning for the two groups. Criminal offenders showed significantly reduced electrodermal fear conditioning at age 3 compared to matched comparison subjects. Poor fear conditioning at age 3 predisposes to crime at age 23. Poor fear conditioning early in life implicates amygdala and ventral prefrontal cortex dysfunction and a lack of fear of socializing punishments in children who grow up to become criminals. These findings are consistent with a neurodevelopmental contribution to crime causation.

  4. Distinct Contributions of Median Raphe Nucleus to Contextual Fear Conditioning and Fear-Potentiated Startle

    Science.gov (United States)

    Silva, R. C. B.; Cruz, A. P. M.; Avanzi, V.; Landeira-Fernandez, J.; Brandão, M. L.

    2002-01-01

    Ascending 5-HT projections from the median raphe nucleus (MRN), probably to the hippocampus, are implicated in the acquisition of contextual fear (background stimuli), as assessed by freezing behavior. Foreground cues like light, used as a conditioned stimulus (CS) in classical fear conditioning, also cause freezing through thalamic transmission to the amygdala. As the MRN projects to the hippocampus and amygdala, the role of this raphe nucleus in fear conditioning to explicit cues remains to be explained. Here we analyzed the behavior of rats with MRN electrolytic lesions in a contextual conditioning situation and in a fear-potentiated startle procedure. The animals received MRN electrolytic lesions either before or on the day after two consecutive training sessions in which they were submitted to 10 conditioning trials, each in an experimental chamber (same context) where they. received foot-shocks (0.6 mA, 1 sec) paired to a 4-sec light CS. Seven to ten days later, the animals were submitted to testing sessions for assessing conditioned fear when they were placed for five shocks, and the duration of contextual freezing was recorded. The animals were then submitted to a fear-potentiated startle in response to a 4-sec light-CS, followed by white noise (100 dB, 50 ms). Control rats (sham) tested in the same context showed more freezing than did rats with pre- or post-training MRN lesions. Startle was clearly potentiated in the presence of light CS in the sham-lesioned animals. Whereas pretraining lesions reduced both freezing and fear-potentiated startle, the post-training lesions reduced only freezing to context, without changing the fear-potentiated startle. In a second experiment, neurotoxic lesions of the MRN with local injections of N-methyl-D-aspartate or the activation of 5-HT1A somatodendritic auto-receptors of the MRN by microinjections of the 5-HT1A receptor agonist 8-hydroxy- 2-(di-n-propylamino)tetralin (8-OH-DPAT) before the training sessions also

  5. Hippocampal structural plasticity accompanies the resulting contextual fear memory following stress and fear conditioning.

    Science.gov (United States)

    Giachero, Marcelo; Calfa, Gaston D; Molina, Victor A

    2013-10-15

    The present research investigated the resulting contextual fear memory and structural plasticity changes in the dorsal hippocampus (DH) following stress and fear conditioning. This combination enhanced fear retention and increased the number of total and mature dendritic spines in DH. Intra-basolateral amygdala (BLA) infusion of midazolam prior to stress prevented both the enhancement of fear retention and an increase in the density of total and mature dendritic spines in DH. These findings emphasize the role of the stress-induced attenuation of GABAergic neurotransmission in BLA in the promoting influence of stress on fear memory and on synaptic remodeling in DH. In conclusion, the structural remodeling in DH accompanied the facilitated fear memory following a combination of fear conditioning and stressful stimulation.

  6. Effects of sleep on memory for conditioned fear and fear extinction

    Science.gov (United States)

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. REM may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep’s effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. PMID:25894546

  7. Effects of sleep on memory for conditioned fear and fear extinction.

    Science.gov (United States)

    Pace-Schott, Edward F; Germain, Anne; Milad, Mohammed R

    2015-07-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning, and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. Rapid eye movement (REM) may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction, and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep's effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  8. Social transmission of Pavlovian fear: fear-conditioning by-proxy in related female rats.

    Science.gov (United States)

    Jones, Carolyn E; Riha, Penny D; Gore, Andrea C; Monfils, Marie-H

    2014-05-01

    Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a foot-shock) leads to associative learning such that the tone alone will elicit a conditioned response (e.g., freezing). Individuals can also acquire fear from a social context, such as through observing the fear expression of a conspecific. In the current study, we examined the influence of kinship/familiarity on social transmission of fear in female rats. Rats were housed in triads with either sisters or non-related females. One rat from each cage was fear conditioned to a tone CS+ shock US. On day two, the conditioned rat was returned to the chamber accompanied by one of her cage mates. Both rats were allowed to behave freely, while the tone was played in the absence of the foot-shock. The previously untrained rat is referred to as the fear-conditioned by-proxy (FCbP) animal, as she would freeze based on observations of her cage-mate's response rather than due to direct personal experience with the foot-shock. The third rat served as a cage-mate control. The third day, long-term memory tests to the CS were performed. Consistent with our previous application of this paradigm in male rats (Bruchey et al. in Behav Brain Res 214(1):80-84, 2010), our results revealed that social interactions between the fear conditioned and FCbP rats on day two contribute to freezing displayed by the FCbP rats on day three. In this experiment, prosocial behavior occurring at the termination of the cue on day two was significantly greater between sisters than their non-sister counterparts, and this behavior resulted in increased freezing on day three. Our results suggest that familiarity and/or kinship influences the social transmission of fear in female rats.

  9. Juvenile neurogenesis makes essential contributions to adult brain structure and plays a sex-dependent role in fear memories

    Directory of Open Access Journals (Sweden)

    Jesse Daniel Cushman

    2012-02-01

    Full Text Available Postnatal-neurogenesis (PNN contributes neurons to olfactory bulb (OB and dentate gyrus (DG throughout juvenile development, but the quantitative amount, temporal dynamics and functional roles of this contribution have not been defined. By using transgenic mouse models for cell lineage tracing and conditional cell ablation, we found that juvenile neurogenesis gradually increased the total number of granule neurons by approximately 40% in OB, and by 25% in DG, between two weeks and two months of age, and that total numbers remained stable thereafter. These findings indicate that the overwhelming majority of net postnatal neuronal addition in these regions occurs during the juvenile period and that adult neurogenesis contributes primarily to replacement of granule cells in both regions. Behavioral analysis in our conditional cell ablation mouse model showed that complete loss of PNN throughout both the juvenile and adult period produced a specific set of sex-dependent cognitive changes. We observed normal hippocampus-independent delay fear conditioning, but excessive generalization of fear to a novel auditory stimulus, which is consistent with a role for PNN in psychopathology. Standard contextual fear conditioning was intact, however, pre-exposure dependent contextual fear was impaired suggesting a specific role for PNN in incidental contextual learning. Contextual discrimination between two highly similar contexts was enhanced; suggesting either enhanced contextual pattern separation or impaired temporal integration. We also observed a reduced reliance on olfactory cues, consistent with a role for OB PNN in the efficient processing of olfactory information. Thus, juvenile neurogenesis adds substantively to the total numbers of granule neurons in OB and DG during periods of critical juvenile behavioral development, including weaning, early social interactions and sexual maturation, and plays a sex-dependent role in fear memories.

  10. Appetitive but Not Aversive Olfactory Conditioning Modifies Antennal Movements in Honeybees

    Science.gov (United States)

    Cholé, Hanna; Junca, Pierre; Sandoz, Jean-Christophe

    2015-01-01

    In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting…

  11. Methods to measure olfactory behavior in mice.

    Science.gov (United States)

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui

    2015-02-02

    Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice, including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors, especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, with respect to both social and nonsocial odors. Copyright © 2015 John Wiley & Sons, Inc.

  12. Fear Conditioning Downregulates Rac1 Activity in the Basolateral Amygdala Astrocytes to Facilitate the Formation of Fear Memory.

    Science.gov (United States)

    Liao, Zhaohui; Tao, Yezheng; Guo, Xiaomu; Cheng, Deqin; Wang, Feifei; Liu, Xing; Ma, Lan

    2017-01-01

    Astrocytes are well known to scale synaptic structural and functional plasticity, while the role in learning and memory, such as conditioned fear memory, is poorly elucidated. Here, using pharmacological approach, we find that fluorocitrate (FC) significantly inhibits the acquisition of fear memory, suggesting that astrocyte activity is required for fear memory formation. We further demonstrate that fear conditioning downregulates astrocytic Rac1 activity in basolateral amygdala (BLA) in mice and promotes astrocyte structural plasticity. Ablation of astrocytic Rac1 in BLA promotes fear memory acquisition, while overexpression or constitutive activation of astrocytic Rac1 attenuates fear memory acquisition. Furthermore, temporal activation of Rac1 by photoactivatable Rac1 (Rac1-PA) induces structural alterations in astrocytes and in vivo activation of Rac1 in BLA astrocytes during fear conditioning attenuates the formation of fear memory. Taken together, our study demonstrates that fear conditioning-induced suppression of BLA astrocytic Rac1 activity, associated with astrocyte structural plasticity, is required for the formation of conditioned fear memory.

  13. Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults.

    Science.gov (United States)

    Schiele, Miriam A; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen; Pauli, Paul

    2016-05-01

    Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc.

  14. Hippocampal Structural Plasticity Accompanies the Resulting Contextual Fear Memory Following Stress and Fear Conditioning

    Science.gov (United States)

    Giachero, Marcelo; Calfa, Gaston D.; Molina, Victor A.

    2013-01-01

    The present research investigated the resulting contextual fear memory and structural plasticity changes in the dorsal hippocampus (DH) following stress and fear conditioning. This combination enhanced fear retention and increased the number of total and mature dendritic spines in DH. Intra-basolateral amygdala (BLA) infusion of midazolam prior to…

  15. Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear.

    Science.gov (United States)

    Lonsdorf, Tina B; Menz, Mareike M; Andreatta, Marta; Fullana, Miguel A; Golkar, Armita; Haaker, Jan; Heitland, Ivo; Hermann, Andrea; Kuhn, Manuel; Kruse, Onno; Meir Drexler, Shira; Meulders, Ann; Nees, Frauke; Pittig, Andre; Richter, Jan; Römer, Sonja; Shiban, Youssef; Schmitz, Anja; Straube, Benjamin; Vervliet, Bram; Wendt, Julia; Baas, Johanna M P; Merz, Christian J

    2017-06-01

    The so-called 'replicability crisis' has sparked methodological discussions in many areas of science in general, and in psychology in particular. This has led to recent endeavours to promote the transparency, rigour, and ultimately, replicability of research. Originating from this zeitgeist, the challenge to discuss critical issues on terminology, design, methods, and analysis considerations in fear conditioning research is taken up by this work, which involved representatives from fourteen of the major human fear conditioning laboratories in Europe. This compendium is intended to provide a basis for the development of a common procedural and terminology framework for the field of human fear conditioning. Whenever possible, we give general recommendations. When this is not feasible, we provide evidence-based guidance for methodological decisions on study design, outcome measures, and analyses. Importantly, this work is also intended to raise awareness and initiate discussions on crucial questions with respect to data collection, processing, statistical analyses, the impact of subtle procedural changes, and data reporting specifically tailored to the research on fear conditioning. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Opposite effects of fear conditioning and extinction on dendritic spine remodelling.

    Science.gov (United States)

    Lai, Cora Sau Wan; Franke, Thomas F; Gan, Wen-Biao

    2012-02-19

    It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.

  17. Where There is Smoke There is Fear-Impaired Contextual Inhibition of Conditioned Fear in Smokers.

    Science.gov (United States)

    Haaker, Jan; Lonsdorf, Tina B; Schümann, Dirk; Bunzeck, Nico; Peters, Jan; Sommer, Tobias; Kalisch, Raffael

    2017-07-01

    The odds-ratio of smoking is elevated in populations with neuropsychiatric diseases, in particular in the highly prevalent diagnoses of post-traumatic stress and anxiety disorders. Yet, the association between smoking and a key dimensional phenotype of these disorders-maladaptive deficits in fear learning and fear inhibition-is unclear. We therefore investigated acquisition and memory of fear and fear inhibition in healthy smoking and non-smoking participants (N=349, 22% smokers). We employed a well validated paradigm of context-dependent fear and safety learning (day 1) including a memory retrieval on day 2. During fear learning, a geometrical shape was associated with an aversive electrical stimulation (classical fear conditioning, in danger context) and fear responses were extinguished within another context (extinction learning, in safe context). On day 2, the conditioned stimuli were presented again in both contexts, without any aversive stimulation. Autonomic physiological measurements of skin conductance responses as well as subjective evaluations of fear and expectancy of the aversive stimulation were acquired. We found that impairment of fear inhibition (extinction) in the safe context during learning (day 1) was associated with the amount of pack-years in smokers. During retrieval of fear memories (day 2), smokers showed an impairment of contextual (safety context-related) fear inhibition as compared with non-smokers. These effects were found in physiological as well as subjective measures of fear. We provide initial evidence that smokers as compared with non-smokers show an impairment of fear inhibition. We propose that smokers have a deficit in integrating contextual signs of safety, which is a hallmark of post-traumatic stress and anxiety disorders.

  18. The role of dopamine in Drosophila larval classical olfactory conditioning.

    Directory of Open Access Journals (Sweden)

    Mareike Selcho

    Full Text Available Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt as well as appetitive (odor-sugar associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive

  19. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish

    Directory of Open Access Journals (Sweden)

    Yoshida Masayuki

    2012-10-01

    Full Text Available Abstract Background Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. Methods Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. Results The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned

  20. Altered olfactory processing of stress-related body odors and artificial odors in patients with panic disorder.

    Science.gov (United States)

    Wintermann, Gloria-Beatrice; Donix, Markus; Joraschky, Peter; Gerber, Johannes; Petrowski, Katja

    2013-01-01

    Patients with Panic Disorder (PD) direct their attention towards potential threat, followed by panic attacks, and increased sweat production. Onés own anxiety sweat odor influences the attentional focus, and discrimination of threat or non-threat. Since olfactory projection areas overlap with neuronal areas of a panic-specific fear network, the present study investigated the neuronal processing of odors in general and of stress-related sweat odors in particular in patients with PD. A sample of 13 patients with PD with/ without agoraphobia and 13 age- and gender-matched healthy controls underwent an fMRI investigation during olfactory stimulation with their stress-related sweat odors (TSST, ergometry) as well as artificial odors (peach, artificial sweat) as non-fearful non-body odors. The two groups did not differ with respect to their olfactory identification ability. Independent of the kind of odor, the patients with PD showed activations in fronto-cortical areas in contrast to the healthy controls who showed activations in olfaction-related areas such as the amygdalae and the hippocampus. For artificial odors, the patients with PD showed a decreased neuronal activation of the thalamus, the posterior cingulate cortex and the anterior cingulate cortex. Under the presentation of sweat odor caused by ergometric exercise, the patients with PD showed an increased activation in the superior temporal gyrus, the supramarginal gyrus, and the cingulate cortex which was positively correlated with the severity of the psychopathology. For the sweat odor from the anxiety condition, the patients with PD showed an increased activation in the gyrus frontalis inferior, which was positively correlated with the severity of the psychopathology. The results suggest altered neuronal processing of olfactory stimuli in PD. Both artificial odors and stress-related body odors activate specific parts of a fear-network which is associated with an increased severity of the psychopathology.

  1. Altered olfactory processing of stress-related body odors and artificial odors in patients with panic disorder.

    Directory of Open Access Journals (Sweden)

    Gloria-Beatrice Wintermann

    Full Text Available Patients with Panic Disorder (PD direct their attention towards potential threat, followed by panic attacks, and increased sweat production. Onés own anxiety sweat odor influences the attentional focus, and discrimination of threat or non-threat. Since olfactory projection areas overlap with neuronal areas of a panic-specific fear network, the present study investigated the neuronal processing of odors in general and of stress-related sweat odors in particular in patients with PD.A sample of 13 patients with PD with/ without agoraphobia and 13 age- and gender-matched healthy controls underwent an fMRI investigation during olfactory stimulation with their stress-related sweat odors (TSST, ergometry as well as artificial odors (peach, artificial sweat as non-fearful non-body odors.The two groups did not differ with respect to their olfactory identification ability. Independent of the kind of odor, the patients with PD showed activations in fronto-cortical areas in contrast to the healthy controls who showed activations in olfaction-related areas such as the amygdalae and the hippocampus. For artificial odors, the patients with PD showed a decreased neuronal activation of the thalamus, the posterior cingulate cortex and the anterior cingulate cortex. Under the presentation of sweat odor caused by ergometric exercise, the patients with PD showed an increased activation in the superior temporal gyrus, the supramarginal gyrus, and the cingulate cortex which was positively correlated with the severity of the psychopathology. For the sweat odor from the anxiety condition, the patients with PD showed an increased activation in the gyrus frontalis inferior, which was positively correlated with the severity of the psychopathology.The results suggest altered neuronal processing of olfactory stimuli in PD. Both artificial odors and stress-related body odors activate specific parts of a fear-network which is associated with an increased severity of the

  2. The roles of Eph receptors in contextual fear conditioning memory formation.

    Science.gov (United States)

    Dines, Monica; Grinberg, Svetlana; Vassiliev, Maria; Ram, Alon; Tamir, Tal; Lamprecht, Raphael

    2015-10-01

    Eph receptors regulate glutamate receptors functions, neuronal morphology and synaptic plasticity, cellular events believed to be involved in memory formation. In this study we aim to explore the roles of Eph receptors in learning and memory. Toward that end, we examined the roles of EphB2 and EphA4 receptors, key regulators of synaptic functions, in fear conditioning memory formation. We show that mice lacking EphB2 (EphB2(-/-)) are impaired in short- and long-term contextual fear conditioning memory. Mice that express a carboxy-terminally truncated form of EphB2 that lacks forward signaling, instead of the full EphB2, are impaired in long-term, but not short-term, contextual fear conditioning memory. Long-term contextual fear conditioning memory is attenuated in CaMKII-cre;EphA4(lx/-) mice where EphA4 is removed from all pyramidal neurons of the forebrain. Mutant mice with targeted kinase-dead EphA4 (EphA4(KD)) exhibit intact long-term contextual fear conditioning memory showing that EphA4 kinase-mediated forward signaling is not needed for contextual fear memory formation. The ability to form long-term conditioned taste aversion (CTA) memory is not impaired in the EphB2(-/-) and CaMKII-cre;EphA4(lx/-) mice. We conclude that EphB2 forward signaling is required for long-term contextual fear conditioning memory formation. In contrast, EphB2 mediates short-term contextual fear conditioning memory formation in a forward signaling-independent manner. EphA4 mediates long-term contextual fear conditioning memory formation in a kinase-independent manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Influence of cued-fear conditioning and its impairment on NREM sleep.

    Science.gov (United States)

    Kumar, Tankesh; Jha, Sushil K

    2017-10-01

    Many studies suggest that fear conditioning influences sleep. It is, however, not known if the changes in sleep architecture after fear conditioning are essentially associated with the consolidation of fearful memory or with fear itself. Here, we have observed that within sleep, NREM sleep consistently remained augmented after the consolidation of cued fear-conditioned memory. But a similar change did not occur after impairing memory consolidation by blocking new protein synthesis and glutamate transmission between glial-neuronal loop in the lateral amygdala (LA). Anisomycin (a protein synthesis inhibitor) and DL-α-amino-adipic acid (DL- α -AA) (a glial glutamine synthetase enzyme inhibitor) were microinjected into the LA soon after cued fear-conditioning to induce memory impairment. On the post-conditioning day, animals in both the groups exhibited significantly less freezing. In memory-consolidated groups (vehicle groups), NREM sleep significantly increased during 2nd to 5th hours after training compared to their baseline days. However, in memory impaired groups (anisomycin and DL- α -AA microinjected groups), similar changes were not observed. Our results thus suggest that changes in sleep architecture after cued fear-conditioning are indeed a consolidation dependent event. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Maltreatment Exposure, Brain Structure, and Fear Conditioning in Children and Adolescents.

    Science.gov (United States)

    McLaughlin, Katie A; Sheridan, Margaret A; Gold, Andrea L; Duys, Andrea; Lambert, Hilary K; Peverill, Matthew; Heleniak, Charlotte; Shechner, Tomer; Wojcieszak, Zuzanna; Pine, Daniel S

    2016-07-01

    Alterations in learning processes and the neural circuitry that supports fear conditioning and extinction represent mechanisms through which trauma exposure might influence risk for psychopathology. Few studies examine how trauma or neural structure relates to fear conditioning in children. Children (n=94) aged 6-18 years, 40.4% (n=38) with exposure to maltreatment (physical abuse, sexual abuse, or domestic violence), completed a fear conditioning paradigm utilizing blue and yellow bells as conditioned stimuli (CS+/CS-) and an aversive alarm noise as the unconditioned stimulus. Skin conductance responses (SCR) and self-reported fear were acquired. Magnetic resonance imaging data were acquired from 60 children. Children without maltreatment exposure exhibited strong differential conditioning to the CS+ vs CS-, based on SCR and self-reported fear. In contrast, maltreated children exhibited blunted SCR to the CS+ and failed to exhibit differential SCR to the CS+ vs CS- during early conditioning. Amygdala and hippocampal volume were reduced among children with maltreatment exposure and were negatively associated with SCR to the CS+ during early conditioning in the total sample, although these associations were negative only among non-maltreated children and were positive among maltreated children. The association of maltreatment with externalizing psychopathology was mediated by this perturbed pattern of fear conditioning. Child maltreatment is associated with failure to discriminate between threat and safety cues during fear conditioning in children. Poor threat-safety discrimination might reflect either enhanced fear generalization or a deficit in associative learning, which may in turn represent a central mechanism underlying the development of maltreatment-related externalizing psychopathology in children.

  5. Excitatory strength of expressive faces: effects of happy and fear expressions and context on the extinction of a conditioned fear response.

    Science.gov (United States)

    Lanzetta, J T; Orr, S P

    1986-01-01

    In a recent study, Orr and Lanzetta (1984) showed that the excitatory properties of fear facial expressions previously described (Lanzetta & Orr, 1981; Orr & Lanzetta, 1980) do not depend on associative mechanisms; even in the absence of reinforcement, fear faces intensify the emotional reaction to a previously conditioned stimulus and disrupt extinction of an acquired fear response. In conjunction with the findings on acquisition, the failure to obtain extinction suggests that fear faces have some of the functional properties of "prepared" (fear-relevant) stimuli. In the present study we compared the magnitude of conditioned fear responses to happy and fear faces when a potent danger signal, the shock electrodes, are attached or unattached. If fear faces are functionally analogous to prepared stimuli, then, even in the absence of veridical support for an expectation of shock, they should retain excitatory strength, whereas happy faces should not. The results are consistent with this view of fear expressions. In the absence of reinforcement, and with shock electrodes removed, conditioned fear responses and basal levels of arousal were of greater magnitude for the fear-face condition than for the happy-face condition.

  6. Fear conditioning induced by interpersonal conflicts in healthy individuals.

    Science.gov (United States)

    Tada, Mitsuhiro; Uchida, Hiroyuki; Maeda, Takaki; Konishi, Mika; Umeda, Satoshi; Terasawa, Yuri; Nakajima, Shinichiro; Mimura, Masaru; Miyazaki, Tomoyuki; Takahashi, Takuya

    2015-01-01

    Psychophysiological markers have been focused to investigate the psychopathology of psychiatric disorders and personality subtypes. In order to understand neurobiological mechanisms underlying these conditions, fear-conditioning model has been widely used. However, simple aversive stimuli are too simplistic to understand mechanisms because most patients with psychiatric disorders are affected by social stressors. The objective of this study was to test the feasibility of a newly-designed conditioning experiment using a stimulus to cause interpersonal conflicts and examine associations between personality traits and response to that stimulus. Twenty-nine healthy individuals underwent the fear conditioning and extinction experiments in response to three types of stimuli: a simple aversive sound, disgusting pictures, and pictures of an actors' face with unpleasant verbal messages that were designed to cause interpersonal conflicts. Conditioned response was quantified by the skin conductance response (SCR). Correlations between the SCR changes, and personality traits measured by the Zanarini Rating Scale for Borderline Personality Disorder (ZAN-BPD) and Revised NEO Personality Inventory were explored. The interpersonal conflict stimulus resulted in successful conditioning, which was subsequently extinguished, in a similar manner as the other two stimuli. Moreover, a greater degree of conditioned response to the interpersonal conflict stimulus correlated with a higher ZAN-BPD total score. Fear conditioning and extinction can be successfully achieved, using interpersonal conflicts as a stimulus. Given that conditioned fear caused by the interpersonal conflicts is likely associated with borderline personality traits, this paradigm could contribute to further understanding of underlying mechanisms of interpersonal fear implicated in borderline personality disorder.

  7. Fear Conditioning Induced by Interpersonal Conflicts in Healthy Individuals

    Science.gov (United States)

    Tada, Mitsuhiro; Uchida, Hiroyuki; Maeda, Takaki; Konishi, Mika; Umeda, Satoshi; Terasawa, Yuri; Nakajima, Shinichiro; Mimura, Masaru; Miyazaki, Tomoyuki; Takahashi, Takuya

    2015-01-01

    Psychophysiological markers have been focused to investigate the psychopathology of psychiatric disorders and personality subtypes. In order to understand neurobiological mechanisms underlying these conditions, fear-conditioning model has been widely used. However, simple aversive stimuli are too simplistic to understand mechanisms because most patients with psychiatric disorders are affected by social stressors. The objective of this study was to test the feasibility of a newly-designed conditioning experiment using a stimulus to cause interpersonal conflicts and examine associations between personality traits and response to that stimulus. Twenty-nine healthy individuals underwent the fear conditioning and extinction experiments in response to three types of stimuli: a simple aversive sound, disgusting pictures, and pictures of an actors’ face with unpleasant verbal messages that were designed to cause interpersonal conflicts. Conditioned response was quantified by the skin conductance response (SCR). Correlations between the SCR changes, and personality traits measured by the Zanarini Rating Scale for Borderline Personality Disorder (ZAN-BPD) and Revised NEO Personality Inventory were explored. The interpersonal conflict stimulus resulted in successful conditioning, which was subsequently extinguished, in a similar manner as the other two stimuli. Moreover, a greater degree of conditioned response to the interpersonal conflict stimulus correlated with a higher ZAN-BPD total score. Fear conditioning and extinction can be successfully achieved, using interpersonal conflicts as a stimulus. Given that conditioned fear caused by the interpersonal conflicts is likely associated with borderline personality traits, this paradigm could contribute to further understanding of underlying mechanisms of interpersonal fear implicated in borderline personality disorder. PMID:25978817

  8. Aversive cues fail to activate fos expression in the asymmetric olfactory-habenula pathway of zebrafish

    Directory of Open Access Journals (Sweden)

    Tagide N. Decarvalho

    2013-05-01

    Full Text Available The dorsal habenular nuclei of the zebrafish epithalamus have become a valuable model for studying the development of left-right (L-R asymmetry and its function in the vertebrate brain. The bilaterally paired dorsal habenulae exhibit striking differences in size, neuroanatomical organization and molecular properties. They also display differences in their efferent connections with the interpeduncular nucleus (IPN and in their afferent input, with a subset of mitral cells distributed on both sides of the olfactory bulb innervating only the right habenula. Previous studies have implicated the dorsal habenulae in modulating fear/anxiety responses in juvenile and adult zebrafish. It has been suggested that the asymmetric olfactory-habenula pathway (OB-Ha, revealed by selective labeling from an lhx2a:YFP transgene, mediates fear behaviors elicited by alarm pheromone. Here we show that expression of the fam84b gene demarcates a unique region of the right habenula that is the site of innervation by lhx2a:YFP-labeled olfactory axons. Upon ablation of the parapineal, which normally promotes left habenular identity; the fam84b domain is present in both dorsal habenulae and lhx2a:YFP-labeled olfactory bulb neurons form synapses on the left and the right side. To explore the relevance of the asymmetric olfactory projection and how it might influence habenular function, we tested activation of this pathway using odorants known to evoke behaviors. We find that alarm substance or other aversive odors, and attractive cues, activate fos expression in subsets of cells in the olfactory bulb but not in the lhx2a:YFP expressing population. Moreover, neither alarm pheromone nor chondroitin sulfate elicited fos activation in the dorsal habenulae. The results indicate that L-R asymmetry of the epithalamus sets the directionality of olfactory innervation, however, the lhx2a:YFP olfactory-habenula pathway does not appear to mediate fear responses to aversive odorants.

  9. An Appetitive Conditioned Stimulus Enhances Fear Acquisition and Impairs Fear Extinction

    Science.gov (United States)

    Leung, Hiu T.; Holmes, Nathan M.; Westbrook, R. Frederick

    2016-01-01

    Four experiments used between- and within-subject designs to examine appetitive-aversive interactions in rats. Experiments 1 and 2 examined the effect of an excitatory appetitive conditioned stimulus (CS) on acquisition and extinction of conditioned fear. In Experiment 1, a CS shocked in a compound with an appetitive excitor (i.e., a stimulus…

  10. What's wrong with fear conditioning?

    NARCIS (Netherlands)

    Beckers, T.; Krypotos, A.M.; Boddez, Y.; Effting, M.; Kindt, M.

    2013-01-01

    Fear conditioning is one of the prime paradigms of behavioural neuroscience and a source of tremendous insight in the fundamentals of learning and memory and the psychology and neurobiology of emotion. It is also widely regarded as a model for the pathogenesis of anxiety disorders in a

  11. BDNFval66met affects neural activation pattern during fear conditioning and 24 h delayed fear recall.

    Science.gov (United States)

    Lonsdorf, Tina B; Golkar, Armita; Lindström, Kara M; Haaker, Jan; Öhman, Arne; Schalling, Martin; Ingvar, Martin

    2015-05-01

    Brain-derived neurotrophic factor (BDNF), the most abundant neutrophin in the mammalian central nervous system, is critically involved in synaptic plasticity. In both rodents and humans, BDNF has been implicated in hippocampus- and amygdala-dependent learning and memory and has more recently been linked to fear extinction processes. Fifty-nine healthy participants, genotyped for the functional BDNFval66met polymorphism, underwent a fear conditioning and 24h-delayed extinction protocol while skin conductance and blood oxygenation level dependent (BOLD) responses (functional magnetic resonance imaging) were acquired. We present the first report of neural activation pattern during fear acquisition 'and' extinction for the BDNFval66met polymorphism using a differential conditioned stimulus (CS)+ > CS- comparison. During conditioning, we observed heightened allele dose-dependent responses in the amygdala and reduced responses in the subgenual anterior cingulate cortex in BDNFval66met met-carriers. During early extinction, 24h later, we again observed heightened responses in several regions ascribed to the fear network in met-carriers as opposed to val-carriers (insula, amygdala, hippocampus), which likely reflects fear memory recall. No differences were observed during late extinction, which likely reflects learned extinction. Our data thus support previous associations of the BDNFval66met polymorphism with neural activation in the fear and extinction network, but speak against a specific association with fear extinction processes. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Fear but not fright: re-evaluating traumatic experience attenuates anxiety-like behaviors after fear conditioning

    Directory of Open Access Journals (Sweden)

    Marco eCostanzi

    2014-08-01

    Full Text Available Fear allows organisms to cope with dangerous situations and remembering these situations has an adaptive role preserving individuals from injury and death. However, recalling traumatic memories can induce re-experiencing the trauma, thus resulting in a maladaptive fear. A failure to properly regulate fear responses has been associated with anxiety disorders, like Posttraumatic Stress Disorder (PTSD. Thus, re-establishing the capability to regulate fear has an important role for its adaptive and clinical relevance. Strategies aimed at erasing fear memories have been proposed, although there are limits about their efficiency in treating anxiety disorders. To re-establish fear regulation, here we propose a new approach, based on the re-evaluation of the aversive value of traumatic experience. Mice were submitted to a contextual-fear-conditioning paradigm in which a neutral context was paired with an intense electric footshock. Three weeks after acquisition, conditioned mice were treated with a less intense footshock (pain threshold. The effectiveness of this procedure in reducing fear expression was assessed in terms of behavioral outcomes related to PTSD (e.g. hyper-reactivity to a neutral tone, anxiety levels in a plus maze task, social avoidance, and learning deficits in a spatial water maze and of amygdala activity by evaluating c-fos expression. Furthermore, a possible role of lateral orbitofrontal cortex (lOFC in mediating the behavioral effects induced by the re-evaluation procedure was investigated. We observed that this treatment (i significantly mitigates the abnormal behavioral outcomes induced by trauma, (ii persistently attenuates fear expression without erasing contextual memory, (iii prevents fear reinstatement, (iv reduces amygdala activity and (v requires an intact lOFC to be effective.The results suggest that an effective strategy to treat pathological anxiety should address cognitive re-evaluation of traumatic experiences

  13. Fear-potentiation in the elevated plus-maze test depends on stressor controllability and fear conditioning

    NARCIS (Netherlands)

    Korte, S M; Bohus, B; de Boer, Sietse

    The purpose of the study was to determine which stressor qualities (escapable vs. inescapable stress and unconditioned vs. conditioned stress) can potentiate fear in the elevated plus-maze. While inescapable stress potentiated fear, escapable stress did not, but escapable stress increased the

  14. Human fear conditioning and extinction in neuroimaging: a systematic review.

    Directory of Open Access Journals (Sweden)

    Christina Sehlmeyer

    Full Text Available Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance

  15. Brain activation associated to olfactory conditioned same-sex partner preference in male rats.

    Science.gov (United States)

    Coria-Avila, Genaro A; Cibrian-Llanderal, Tamara; Díaz-Estrada, Victor X; García, Luis I; Toledo-Cárdenas, Rebeca; Pfaus, James G; Manzo, Jorge

    2018-03-01

    Sexual preferences can be strongly modified by Pavlovian learning. For instance, olfactory conditioned same-sex partner preference can occur when a sexually naïve male cohabits with an scented male during repeated periods under the effects of enhanced D2-type activity. Preference is observed days later via social and sexual behaviors. Herein we explored brain activity related to learned same-sex preference (Fos-Immunoreactivity, IR) following exposure to a conditioned odor paired with same-sex preference. During conditioning trials males received either saline or the D2-type receptor agonist quinpirole (QNP) and cohabitated during 24 h with a stimulus male that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days, for a total of three trials. In a drug-free final test we assessed socio/sexual partner preference between the scented male and a receptive female. The results indicated that QNP-conditioned males developed a same-sex preference observed via contact, time spent, olfactory investigations, and non-contact erections. By contrast, saline-conditioned and intact (non-exposed to conditioning) males expressed an unconditioned preference for the female. Four days later the males were exposed to almond scent and their brains were processed for Fos-IR. Results indicated that the QNP-conditioned group expressed more Fos-IR in the nucleus accumbens (AcbSh), medial preoptic area (MPA), piriform cortex (Pir) and ventromedial nucleus of the hypothalamus (VMH) as compared to saline-conditioned. Intact males expressed the lowest Fos-IR in AcbSh and VMH, but the highest in MPA and Pir. We discuss the role of these areas in the learning process of same-sex partner preferences and olfactory discrimination. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Functional imaging of stimulus convergence in amygdalar neurons during Pavlovian fear conditioning.

    Directory of Open Access Journals (Sweden)

    Sabiha K Barot

    2009-07-01

    Full Text Available Associative conditioning is a ubiquitous form of learning throughout the animal kingdom and fear conditioning is one of the most widely researched models for studying its neurobiological basis. Fear conditioning is also considered a model system for understanding phobias and anxiety disorders. A fundamental issue in fear conditioning regards the existence and location of neurons in the brain that receive convergent information about the conditioned stimulus (CS and unconditioned stimulus (US during the acquisition of conditioned fear memory. Convergent activation of neurons is generally viewed as a key event for fear learning, yet there has been almost no direct evidence of this critical event in the mammalian brain.Here, we used Arc cellular compartmental analysis of temporal gene transcription by fluorescence in situ hybridization (catFISH to identify neurons activated during single trial contextual fear conditioning in rats. To conform to temporal requirements of catFISH analysis we used a novel delayed contextual fear conditioning protocol which yields significant single- trial fear conditioning with temporal parameters amenable to catFISH analysis. Analysis yielded clear evidence that a population of BLA neurons receives convergent CS and US information at the time of the learning, that this only occurs when the CS-US arrangement is supportive of the learning, and that this process requires N-methyl-D-aspartate receptor activation. In contrast, CS-US convergence was not observed in dorsal hippocampus.Based on the pattern of Arc activation seen in conditioning and control groups, we propose that a key requirement for CS-US convergence onto BLA neurons is the potentiation of US responding by prior exposure to a novel CS. Our results also support the view that contextual fear memories are encoded in the amygdala and that the role of dorsal hippocampus is to process and transmit contextual CS information.

  17. Acute immobilization stress following contextual fear conditioning reduces fear memory: timing is essential.

    Science.gov (United States)

    Uwaya, Akemi; Lee, Hyunjin; Park, Jonghyuk; Lee, Hosung; Muto, Junko; Nakajima, Sanae; Ohta, Shigeo; Mikami, Toshio

    2016-02-24

    Histone acetylation is regulated in response to stress and plays an important role in learning and memory. Chronic stress is known to deteriorate cognition, whereas acute stress facilitates memory formation. However, whether acute stress facilitates memory formation when it is applied after fear stimulation is not yet known. Therefore, this study aimed to investigate the effect of acute stress applied after fear training on memory formation, mRNA expression of brain-derived neurotrophic factor (BDNF), epigenetic regulation of BDNF expression, and corticosterone level in mice in vivo. Mice were subjected to acute immobilization stress for 30 min at 60 or 90 min after contextual fear conditioning training, and acetylation of histone 3 at lysine 14 (H3K14) and level of corticosterone were measured using western blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. A freezing behavior test was performed 24 h after training, and mRNA expression of BDNF was measured using real-time polymerase chain reactions. Different groups of mice were used for each test. Freezing behavior significantly decreased with the down-regulation of BDNF mRNA expression caused by acute immobilization stress at 60 min after fear conditioning training owing to the reduction of H3K14 acetylation. However, BDNF mRNA expression and H3K14 acetylation were not reduced in animals subjected to immobilization stress at 90 min after the training. Further, the corticosterone level was significantly high in mice subjected to immobilization stress at 60 min after the training. Acute immobilization stress for 30 min at 60 min after fear conditioning training impaired memory formation and reduced BDNF mRNA expression and H3K14 acetylation in the hippocampus of mice owing to the high level of corticosterone.

  18. Medial prefrontal cortex stimulation modulates the processing of conditioned fear

    Directory of Open Access Journals (Sweden)

    Anne eGuhn

    2014-02-01

    Full Text Available The extinction of conditioned fear is dependent on an efficient interplay between the amygdala and the medial prefrontal cortex (mPFC. In rats, high-frequency electrical mPFC stimulation was shown to improve extinction by a reduction of amygdala activity. However, so far it is unclear whether stimulation of homologues regions in humans might have similar beneficial effects.Healthy volunteers received one-session of either active or sham repetitive transcranial magnetic stimulation (rTMS covering the mPFC while undergoing a two-day fear conditioning and extinction paradigm. rTMS was applied offline after fear acquisition in which one of two faces (CS+ but not CS- was associated with an aversive scream (UCS. Immediate extinction learning (day 1 and extinction recall (day 2 were conducted without UCS delivery. Conditioned responses were assessed in a multimodal approach using fear-potentiated startle (FPS, skin conductance responses (SCR, functional near-infrared spectroscopy (fNIRS and self-report scales. Consistent with the hypothesis of a modulated processing of conditioned fear after high-frequency rTMS, the active group showed a reduced CS+/CS- discrimination during extinction learning as evident in FPS as well as in SCR and arousal ratings. FPS responses to CS+ further showed a linear decrement throughout both extinction sessions. This study describes the first experimental approach of influencing conditioned fear by using rTMS which can be a basis for future studies investigating a complementation of mPFC stimulation to cognitive behavioral therapy.

  19. An organization of visual and auditory fear conditioning in the lateral amygdala.

    Science.gov (United States)

    Bergstrom, Hadley C; Johnson, Luke R

    2014-12-01

    Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA. Copyright © 2014. Published by Elsevier Inc.

  20. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  1. Olfactory dreams, olfactory interest, and imagery : Relationships to olfactory memory

    OpenAIRE

    Arshamian, Artin

    2007-01-01

    Existing evidence for olfactory imagery is mixed and mainly based on reports from hallucinations and volitional imagery. Using a questionnaire, Stevenson and Case (2005) showed that olfactory dreams provided a good source for olfactory imagery studies. This study applied an extended version of the same questionnaire and examined olfactory dreams and their relation to real-life experienced odors, volitional imagery, and olfactory interest. Results showed that olfactory dreams were similar to r...

  2. Revealing context-specific conditioned fear memories with full immersion virtual reality

    Directory of Open Access Journals (Sweden)

    Nicole eHuff

    2011-11-01

    Full Text Available The extinction of conditioned fear is known to be context specific, and often referred to as more robustly contextually bound than the fear memory itself (Bouton, 2004. Yet, recent findings in rodents have challenged the notion that contextual fear retention is initially generalized. The context specificity of a cued-fear memory to the learning context has not been addressed in the human literature largely due to limitations in methodology. Here we adapt a novel technology to test the context specificity of cued fear conditioning using full immersion 3-dimensional virtual reality (VR. During acquisition training, healthy participants navigated through virtual environments containing dynamic snake and spider conditioned stimuli (CSs, one of which was paired with electrical wrist stimulation. During a 24-hour delayed retention test, one group returned to the same context as acquisition training whereas another group experienced the CSs in a novel context. Unconditioned stimulus (US expectancy ratings were assayed on-line during fear acquisition as an index of contingency awareness. Skin conductance responses (SCR time-locked to CS onset were the dependent measure of cued fear, and skin conductance levels during the interstimulus interval were an index of context fear. Findings indicate that early in acquisition training, participants express contingency awareness as well as differential contextual fear, whereas differential cued fear emerged later in acquisition. During the retention test, differential cued fear retention was enhanced in the group who returned to the same context as acquisition training relative to the context shift group. The results extend recent rodent work to illustrate differences in cued and context fear acquisition and the contextual specificity of recent fear memories. Findings support the use of full immersion VR as a novel tool in cognitive neuroscience to bridge rodent models of contextual phenomena underlying human

  3. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. Copyright © 2015 the authors 0270-6474/15/357833-17$15.00/0.

  4. The relative effectiveness of extinction and counter-conditioning in diminishing children's fear.

    Science.gov (United States)

    Newall, Carol; Watson, Tiffany; Grant, Kerry-Ann; Richardson, Rick

    2017-08-01

    Two behavioural strategies for reducing learned fear are extinction and counter-conditioning, and in this study we compared the relative effectiveness of the two procedures at diminishing fear in children. Seventy-three children aged 7-12 years old (M = 9.30, SD = 1.62) were exposed to pictures of two novel animals on a computer screen during the fear acquisition phase. One of these animals was paired with a picture of a scared human face (CS+) while the other was not (CS-). The children were then randomly assigned to one of three conditions: counter-conditioning (animal paired with a happy face), extinction (animal without scared face), or control (no fear reduction procedure). Changes in fear beliefs and behavioural avoidance of the animal were measured. Counter-conditioning was more effective at reducing fear to the CS + than extinction. The findings are discussed in terms of implications for behavioural treatments of childhood anxiety disorders. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Fear less : Individual differences in fear conditioning and their relation to treatment outcome in anxiety disorders

    NARCIS (Netherlands)

    Duits, P.|info:eu-repo/dai/nl/412437694

    2016-01-01

    Findings from animal and human experimental studies highlight the importance of fear conditioning processes in the development and treatment of anxiety disorders. The work reported in this thesis was focused on potential abnormalities in the acquisition and extinction of fear in patients with

  6. Short-Term Total Sleep-Deprivation Impairs Contextual Fear Memory, and Contextual Fear-Conditioning Reduces REM Sleep in Moderately Anxious Swiss Mice

    Directory of Open Access Journals (Sweden)

    Munazah F. Qureshi

    2017-11-01

    Full Text Available The conditioning tasks have been widely used to model fear and anxiety and to study their association with sleep. Many reports suggest that sleep plays a vital role in the consolidation of fear memory. Studies have also demonstrated that fear-conditioning influences sleep differently in mice strains having a low or high anxiety level. It is, therefore, necessary to know, how sleep influences fear-conditioning and how fear-conditioning induces changes in sleep architecture in moderate anxious strains. We have used Swiss mice, a moderate anxious strain, to study the effects of: (i sleep deprivation on contextual fear conditioned memory, and also (ii contextual fear conditioning on sleep architecture. Animals were divided into three groups: (a non-sleep deprived (NSD; (b stress control (SC; and (c sleep-deprived (SD groups. The SD animals were SD for 5 h soon after training. We found that the NSD and SC animals showed 60.57% and 58.12% freezing on the testing day, while SD animals showed significantly less freezing (17.13% only; p < 0.001 on the testing day. Further, we observed that contextual fear-conditioning did not alter the total amount of wakefulness and non-rapid eye movement (NREM sleep. REM sleep, however, significantly decreased in NSD and SC animals on the training and testing days. Interestingly, REM sleep did not decrease in the SD animals on the testing day. Our results suggest that short-term sleep deprivation impairs fear memory in moderate anxious mice. It also suggests that NREM sleep, but not REM sleep, may have an obligatory role in memory consolidation.

  7. Computational search for hypotheses concerning the endocannabinoid contribution to the extinction of fear conditioning

    OpenAIRE

    Anastasio, Thomas J.

    2013-01-01

    Fear conditioning, in which a cue is conditioned to elicit a fear response, and extinction, in which a previously conditioned cue no longer elicits a fear response, depend on neural plasticity occurring within the amygdala. Projection neurons in the basolateral amygdala (BLA) learn to respond to the cue during fear conditioning, and they mediate fear responding by transferring cue signals to the output stage of the amygdala. Some BLA projection neurons retain their cue responses after extinct...

  8. Contingency learning in human fear conditioning involves the ventral striatum.

    Science.gov (United States)

    Klucken, Tim; Tabbert, Katharina; Schweckendiek, Jan; Merz, Christian Josef; Kagerer, Sabine; Vaitl, Dieter; Stark, Rudolf

    2009-11-01

    The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  9. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning

    DEFF Research Database (Denmark)

    Wilensky, Ann E; Schafe, Glenn E; Kristensen, Morten Pilgaard

    2006-01-01

    of the amygdala (CE), which serves as the principal output nucleus for the expression of conditioned fear responses. In the present study, we reexamined the roles of LA and CE. Specifically, we asked whether CE, like LA, might also be involved in fear learning and memory consolidation. Using functional...... inactivation methods, we first show that CE is involved not only in the expression but also the acquisition of fear conditioning. Next, we show that inhibition of protein synthesis in CE after training impairs fear memory consolidation. These findings indicate that CE is not only involved in fear expression...... but, like LA, is also involved in the learning and consolidation of pavlovian fear conditioning....

  10. Differential conditioning and long-term olfactory memory in individual Camponotus fellah ants.

    Science.gov (United States)

    Josens, Roxana; Eschbach, Claire; Giurfa, Martin

    2009-06-01

    Individual Camponotus fellah ants perceive and learn odours in a Y-maze in which one odour is paired with sugar (CS+) while a different odour (CS-) is paired with quinine (differential conditioning). We studied olfactory retention in C. fellah to determine whether olfactory learning leads to long-term memory retrievable 24 h and 72 h after training. One and 3 days after training, ants exhibited robust olfactory memory through a series of five successive retention tests in which they preferred the CS+ and stayed longer in the arm presenting it. In order to determine the nature of the associations memorized, we asked whether choices within the Y-maze were driven by excitatory memory based on choosing the CS+ and/or inhibitory memory based on avoiding the CS-. By confronting ants with a novel odour vs either the CS+ or the CS- we found that learning led to the formation of excitatory memory driving the choice of the CS+ but no inhibitory memory based on the CS- was apparent. Ants even preferred the CS- to the novel odour, thus suggesting that they used the CS- as a contextual cue in which the CS+ was embedded, or as a second-order cue predicting the CS+ and thus the sugar reward. Our results constitute the first controlled account of olfactory long-term memory in individual ants for which the nature of associations could be precisely characterized.

  11. Deep brain stimulation of the amygdala alleviates fear conditioning-induced alterations in synaptic plasticity in the cortical-amygdala pathway and fear memory.

    Science.gov (United States)

    Sui, Li; Huang, SiJia; Peng, BinBin; Ren, Jie; Tian, FuYing; Wang, Yan

    2014-07-01

    Deep brain stimulation (DBS) of the amygdala has been demonstrated to modulate hyperactivity of the amygdala, which is responsible for the symptoms of post-traumatic stress disorder (PTSD), and thus might be used for the treatment of PTSD. However, the underlying mechanism of DBS of the amygdala in the modulation of the amygdala is unclear. The present study investigated the effects of DBS of the amygdala on synaptic transmission and synaptic plasticity at cortical inputs to the amygdala, which is critical for the formation and storage of auditory fear memories, and fear memories. The results demonstrated that auditory fear conditioning increased single-pulse-evoked field excitatory postsynaptic potentials in the cortical-amygdala pathway. Furthermore, auditory fear conditioning decreased the induction of paired-pulse facilitation and long-term potentiation, two neurophysiological models for studying short-term and long-term synaptic plasticity, respectively, in the cortical-amygdala pathway. In addition, all these auditory fear conditioning-induced changes could be reversed by DBS of the amygdala. DBS of the amygdala also rescued auditory fear conditioning-induced enhancement of long-term retention of fear memory. These findings suggested that DBS of the amygdala alleviating fear conditioning-induced alterations in synaptic plasticity in the cortical-amygdala pathway and fear memory may underlie the neuromodulatory role of DBS of the amygdala in activities of the amygdala.

  12. Psychopaths show enhanced amygdala activation during fear conditioning

    Directory of Open Access Journals (Sweden)

    Douglas eSchultz

    2016-03-01

    Full Text Available Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into primary and secondary psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional fearlessness, while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths.

  13. Early Extinction after Fear Conditioning Yields a Context-Independent and Short-Term Suppression of Conditional Freezing in Rats

    Science.gov (United States)

    Chang, Chun-hui; Maren, Stephen

    2009-01-01

    Extinction of Pavlovian fear conditioning in rats is a useful model for therapeutic interventions in humans with anxiety disorders. Recently, we found that delivering extinction trials soon (15 min) after fear conditioning yields a short-term suppression of fear, but little long-term extinction. Here, we explored the possible mechanisms underlying…

  14. Cocaine and Pavlovian fear conditioning: dose-effect analysis.

    Science.gov (United States)

    Wood, Suzanne C; Fay, Jonathan; Sage, Jennifer R; Anagnostaras, Stephan G

    2007-01-25

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1-15mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15mg/kg) displayed significantly less contextual and cued memory, compared to saline control animals. Conversely, mice pre-treated with a very low dose of cocaine (0.1mg/kg) showed significantly enhanced fear memory for both context and tone, compared to controls. These results were not due to cocaine's anesthetic effects, as shock reactivity was unaffected by cocaine. The data suggest that despite cocaine's reputation as a performance-enhancing and anxiogenic drug, this effect is seen only at very low doses, whereas a moderate dose disrupts hippocampus and amygdala-dependent fear conditioning.

  15. The Amygdala Is Critical for Trace, Delay, and Contextual Fear Conditioning

    Science.gov (United States)

    Kochli, Daniel E.; Thompson, Elaine C.; Fricke, Elizabeth A.; Postle, Abagail F.; Quinn, Jennifer J.

    2015-01-01

    Numerous investigations have definitively shown amygdalar involvement in delay and contextual fear conditioning. However, much less is known about amygdala contributions to trace fear conditioning, and what little evidence exists is conflicting as noted in previous studies. This discrepancy may result from selective targeting of individual nuclei…

  16. Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction.

    Science.gov (United States)

    Rodriguez-Romaguera, Jose; Sotres-Bayon, Francisco; Mueller, Devin; Quirk, Gregory J

    2009-05-15

    Previous work has implicated noradrenergic beta-receptors in the consolidation and reconsolidation of conditioned fear. Less is known, however, about their role in fear expression and extinction. The beta-receptor blocker propranolol has been used clinically to reduce anxiety. With an auditory fear conditioning task in rats, we assessed the effects of systemic propranolol on the expression and extinction of two measures of conditioned fear: freezing and suppression of bar-pressing. One day after receiving auditory fear conditioning, rats were injected with saline, propranolol, or peripheral beta-receptor blocker sotalol (both 10 mg/kg, IP). Twenty minutes after injection, rats were given either 6 or 12 extinction trials and were tested for extinction retention the following day. The effect of propranolol on the firing rate of neurons in prelimbic (PL) prefrontal cortex was also assessed. Propranolol reduced freezing by more than 50%, an effect that was evident from the first extinction trial. Suppression was also significantly reduced. Despite this, propranolol had no effect on the acquisition or retention of extinction. Unlike propranolol, sotalol did not affect fear expression, although both drugs significantly reduced heart rate. This suggests that propranolol acts centrally to reduce fear. Consistent with this, propranolol reduced the firing rate of PL neurons. Propranolol reduced the expression of conditioned fear, without interfering with extinction learning. Reduced fear with intact extinction suggests a possible use for propranolol in reducing anxiety during extinction-based exposure therapies, without interfering with long-term clinical response.

  17. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

    Science.gov (United States)

    Nasehi, Mohammad; Farrahizadeh, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-09-01

    Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported. To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition. Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions. Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear. © The Author(s) 2016.

  18. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning.

    Science.gov (United States)

    Catlow, Briony J; Song, Shijie; Paredes, Daniel A; Kirstein, Cheryl L; Sanchez-Ramos, Juan

    2013-08-01

    Drugs that modulate serotonin (5-HT) synaptic concentrations impact neurogenesis and hippocampal (HPC)-dependent learning. The primary objective is to determine the extent to which psilocybin (PSOP) modulates neurogenesis and thereby affects acquisition and extinction of HPC-dependent trace fear conditioning. PSOP, the 5-HT2A agonist 25I-NBMeO and the 5-HT2A/C antagonist ketanserin were administered via an acute intraperitoneal injection to mice. Trace fear conditioning was measured as the amount of time spent immobile in the presence of the conditioned stimulus (CS, auditory tone), trace (silent interval) and post-trace interval over 10 trials. Extinction was determined by the number of trials required to resume mobility during CS, trace and post-trace when the shock was not delivered. Neurogenesis was determined by unbiased counts of cells in the dentate gyrus of the HPC birth-dated with BrdU co-expressing a neuronal marker. Mice treated with a range of doses of PSOP acquired a robust conditioned fear response. Mice injected with low doses of PSOP extinguished cued fear conditioning significantly more rapidly than high-dose PSOP or saline-treated mice. Injection of PSOP, 25I-NBMeO or ketanserin resulted in significant dose-dependent decreases in number of newborn neurons in hippocampus. At the low doses of PSOP that enhanced extinction, neurogenesis was not decreased, but rather tended toward an increase. Extinction of "fear conditioning" may be mediated by actions of the drugs at sites other than hippocampus such as the amygdala, which is known to mediate the perception of fear. Another caveat is that PSOP is not purely selective for 5-HT2A receptors. PSOP facilitates extinction of the classically conditioned fear response, and this, and similar agents, should be explored as potential treatments for post-traumatic stress disorder and related conditions.

  19. Isoflurane causes anterograde but not retrograde amnesia for pavlovian fear conditioning.

    Science.gov (United States)

    Dutton, Robert C; Maurer, Anya J; Sonner, James M; Fanselow, Michael S; Laster, Michael J; Eger, Edmond I

    2002-05-01

    Production of retrograde amnesia by anesthetics would indicate that these drugs can disrupt mechanisms that stabilize memory. Such disruption would allow suppression of memory of previous untoward events. The authors examined whether isoflurane provides retrograde amnesia for classic (Pavlovian) fear conditioning. Rats were trained to fear tone by applying three (three-trial) or one (one-trial) tone-shock pairs while breathing various constant concentrations of isoflurane. Immediately after training, isoflurane administration was either discontinued, maintained unchanged, or rapidly increased to 1.0 minimum alveolar concentration for 1 h longer. Groups of rats were similarly trained to fear context while breathing isoflurane by applying shocks (without tones) in a distinctive environment. The next day, memory for the conditioned stimuli was determined by presenting the tone or context (without shock) and measuring the proportion of time each rat froze (appeared immobile). For each conditioning procedure, the effects of the three posttraining isoflurane treatments were compared. Rapid increases in posttraining isoflurane administration did not suppress conditioned fear for any of the training procedures. In contrast, isoflurane administration during conditioning dose-dependently suppressed conditioning (P conditioning. Isoflurane appears to disrupt memory processes that occur at or within a few minutes of the conditioning procedure.

  20. Impaired Auditory and Contextual Fear Conditioning in Soman-Exposed Rats

    Science.gov (United States)

    2011-01-01

    Hymowitz et al., 1985, 1990; Modrow and Jaax, 1989). Pavlovian fear conditioning is a useful procedure often used to elucidate the neural substrates...Stitcher DL, Lennox WJ. Protection against both lethal and behavioral effects of soman. Drug Chem Toxicol 1984;7:605–24. Hasselmo ME. The role of...Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear

  1. Noradrenergic Modulation of Fear Conditioning and Extinction.

    Science.gov (United States)

    Giustino, Thomas F; Maren, Stephen

    2018-01-01

    The locus coeruleus norepinephrine (LC-NE) system plays a broad role in learning and memory. Here we begin with an overview of the LC-NE system. We then consider how both direct and indirect manipulations of the LC-NE system affect cued and contextual aversive learning and memory. We propose that NE dynamically modulates Pavlovian conditioning and extinction, either promoting or impairing learning aversive processes under different levels of behavioral arousal. We suggest that under high levels of stress (e.g., during/soon after fear conditioning) the locus coeruleus (LC) promotes cued fear learning by enhancing amygdala function while simultaneously blunting prefrontal function. Under low levels of arousal, the LC promotes PFC function to promote downstream inhibition of the amygdala and foster the extinction of cued fear. Thus, LC-NE action on the medial prefrontal cortex (mPFC) might be described by an inverted-U function such that it can either enhance or hinder learning depending on arousal states. In addition, LC-NE seems to be particularly important for the acquisition, consolidation and extinction of contextual fear memories. This may be due to dense adrenoceptor expression in the hippocampus (HPC) which encodes contextual information, and the ability of NE to regulate long-term potentiation (LTP). Moreover, recent work reveals that the diversity of LC-NE functions in aversive learning and memory are mediated by functionally heterogeneous populations of LC neurons that are defined by their projection targets. Hence, LC-NE function in learning and memory is determined by projection-specific neuromodulation that accompanies various states of behavioral arousal.

  2. Noradrenergic Modulation of Fear Conditioning and Extinction

    Directory of Open Access Journals (Sweden)

    Thomas F. Giustino

    2018-03-01

    Full Text Available The locus coeruleus norepinephrine (LC-NE system plays a broad role in learning and memory. Here we begin with an overview of the LC-NE system. We then consider how both direct and indirect manipulations of the LC-NE system affect cued and contextual aversive learning and memory. We propose that NE dynamically modulates Pavlovian conditioning and extinction, either promoting or impairing learning aversive processes under different levels of behavioral arousal. We suggest that under high levels of stress (e.g., during/soon after fear conditioning the locus coeruleus (LC promotes cued fear learning by enhancing amygdala function while simultaneously blunting prefrontal function. Under low levels of arousal, the LC promotes PFC function to promote downstream inhibition of the amygdala and foster the extinction of cued fear. Thus, LC-NE action on the medial prefrontal cortex (mPFC might be described by an inverted-U function such that it can either enhance or hinder learning depending on arousal states. In addition, LC-NE seems to be particularly important for the acquisition, consolidation and extinction of contextual fear memories. This may be due to dense adrenoceptor expression in the hippocampus (HPC which encodes contextual information, and the ability of NE to regulate long-term potentiation (LTP. Moreover, recent work reveals that the diversity of LC-NE functions in aversive learning and memory are mediated by functionally heterogeneous populations of LC neurons that are defined by their projection targets. Hence, LC-NE function in learning and memory is determined by projection-specific neuromodulation that accompanies various states of behavioral arousal.

  3. Learning strategies during fear conditioning

    OpenAIRE

    Carpenter, Russ E.; Summers, Cliff H.

    2009-01-01

    This paper describes a model of fear learning, in which subjects have an option of behavioral responses to impending social defeat. The model generates two types of learning: social avoidance and classical conditioning, dependent upon 1) escape from or 2) social subordination to an aggressor. We hypothesized that social stress provides the impetus as well as the necessary information to stimulate dichotomous goal-oriented learning. Specialized tanks were constructed to subject rainbow trout t...

  4. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    environmental conditions. By adopting this standpoint, the functional attribution as olfactory or chemotactic sensors to these receptors should not be seen neither as a cause conditioning receptor gene expression, nor as a final effect resulting from genetically predetermined programs, but as a direct...... and odor-decoding processes. However, this type of explanation does not entirely justify the role olfactory receptors have played during evolution, since they are also expressed ectopically in different organs and/or tissues. Homologous olfactory genes have in fact been found in such diverse cells and....../or organs as spermatozoa, testis and kidney where they are assumed to act as chemotactic sensors or renin modulators. To justify their functional diversity, homologous olfactory receptors are assumed to share the same basic role: that of conferring a self-identity to cells or tissues under varying...

  5. Fear Conditioning Effects on Sensitivity to Drug Reward

    Science.gov (United States)

    2010-06-01

    motivational responses and self-administration behaviors (Robbins et al., 2008). Pavlovian conditioning mechanisms link unconditioned drug responses...model. Induction of fear conditioning is followed by measurement of sensitivity to drug reward using a conditioned place preference (CPP) model to...morphine. Conditioned drug reward is a relevant model in addiction because environmental cues (e.g. a barroom) induce craving and persistent

  6. Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for Treatment of PTSD

    Science.gov (United States)

    2014-10-01

    and thus PTSD, is fear condition - ing. Fear conditioning is a Pavlovian response whereby a neutral stimulus is paired with an aversive stimulus until...for drug use, sleep disorders, and psychiatric and medical conditions via structured interview and laboratory tests. Inclu- sion criteria included the...Annual 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for

  7. Contextual fear conditioning in virtual reality is affected by 5HTTLPR and NPSR1 polymorphisms: effects on fear-potentiated startle

    Directory of Open Access Journals (Sweden)

    Evelyn eGlotzbach-Schoon

    2013-04-01

    Full Text Available The serotonin (5-HT and neuropeptide S (NPS systems are discussed as important genetic modulators of fear and sustained anxiety contributing to the etiology of anxiety disorders. Sustained anxiety is a crucial characteristic of most anxiety disorders which likely develops through context conditioning. This study investigated if and how genetic alterations of the 5-HT and the NPS systems as well as their interaction modulate contextual fear conditioning; specifically, function polymorphic variants in the genes coding for the 5-HT transporter (5HTT and the NPS receptor (NPSR1 were studied. A large group of healthy volunteers was therefore stratified for 5HTTLPR (S+ vs. LL carriers and NPSR1 rs324981 (T+ vs. AA carriers polymorphisms resulting in four genotype groups (S+/T+, S+/AA, LL/T+, LL/AA of 20 participants each. All participants underwent contextual fear conditioning and extinction using a virtual reality paradigm. During acquisition, one virtual office room (anxiety context, CXT+ was paired with an unpredictable electric stimulus (unconditioned stimulus, US, whereas another virtual office room was not paired with any US (safety context, CXT-. During extinction no US was administered. Anxiety responses were quantified by fear-potentiated startle and ratings. Most importantly, we found a gene × gene interaction on fear-potentiated startle. Only carriers of both risk alleles (S+/T+ exhibited higher startle responses in CXT+ compared to CXT-. In contrast, anxiety ratings were only influenced by the NPSR1 polymorphism with AA carriers showing higher anxiety ratings in CXT+ as compared to CXT-. Our results speak in favor of a two level account of fear conditioning with diverging effects on implicit vs. explicit fear responses. Contextual fear reflected in potentiated startle responses may be an endophenotype for anxiety disorders.

  8. Assessment of Olfactory Memory in Olfactory Dysfunction.

    Science.gov (United States)

    Kollndorfer, Kathrin; Reichert, Johanna; Braunsteiner, Josephine; Schöpf, Veronika

    2017-01-01

    To assess all clinically relevant components of olfactory perception, examinations for olfactory sensitivity, discrimination, and identification are performed. Besides the standard perceptual test battery, episodic olfactory memory might offer additional information about olfactory abilities relative to these standard clinical tests. As both olfactory deficits and memory deficits are early symptoms in neurodegenerative disorders, olfactory memory may be of particular interest. However, to date little is known about episodic olfactory memory performance in patients with decreased olfactory function. This study includes the investigation of olfactory memory performance in 14 hyposmic patients (8 female, mean age 52.6 years) completing two episodic odor memory tests (Sniffin' Test of Odor Memory and Odor Memory Test). To control for a general impairment in memory function, a verbal and a figural memory test were carried out. A regression model with multiple predictors was calculated for both odor memory tests separately. Odor identification was identified as the only significant predictor for both odor memory tasks. From our results, we conclude that currently available olfactory memory tests are highly influenced by odor identification abilities, implying the need for the development and validation of additional tests in this field which could serve as additional olfactory perception variables for clinical assessment.

  9. Olfactory insights into sleep-dependent learning and memory.

    Science.gov (United States)

    Shanahan, Laura K; Gottfried, Jay A

    2014-01-01

    Sleep is pervasive throughout most of the animal kingdom-even jellyfish and honeybees do it. Although the precise function of sleep remains elusive, research increasingly suggests that sleep plays a key role in memory consolidation. Newly formed memories are highly labile and susceptible to interference, and the sleep period offers an optimal window in which memories can be strengthened or modified. Interestingly, a small but growing research area has begun to explore the ability of odors to modulate memories during sleep. The unique anatomical organization of the olfactory system, including its intimate overlap with limbic systems mediating emotion and memory, and the lack of a requisite thalamic intermediary between the nasal periphery and olfactory cortex, suggests that odors may have privileged access to the brain during sleep. Indeed, it has become clear that the long-held assumption that odors have no impact on the sleeping brain is no longer tenable. Here, we summarize recent studies in both animal and human models showing that odor stimuli experienced in the waking state modulate olfactory cortical responses in sleep-like states, that delivery of odor contextual cues during sleep can enhance declarative memory and extinguish fear memory, and that olfactory associative learning can even be achieved entirely within sleep. Data reviewed here spotlight the emergence of a new research area that should hold far-reaching implications for future neuroscientific investigations of sleep, learning and memory, and olfactory system function. © 2014 Elsevier B.V. All rights reserved.

  10. Failure to condition to a cue is associated with sustained contextual fear

    NARCIS (Netherlands)

    Baas, J. M. P.; van Ooijen, L.; Goudriaan, A.; Kenemans, J. L.

    2008-01-01

    The acquisition of a conditioned fear response is adaptive, as it enables the organism to appropriately respond to predictors of aversive events. Consequently, the absence of predictive cues can be used as a signal for safety. We aimed to study whether deficient fear conditioning might lead to

  11. Imaging the olfactory tract (Cranial Nerve no.1)

    International Nuclear Information System (INIS)

    Duprez, Thierry P.; Rombaux, Philippe

    2010-01-01

    This review paper browses pros and cons of the different radiological modalities for imaging the olfactory tract and highlights the potential benefits and limitation of more recent advances in MR and CT technology. A systematic pictorial overview of pathological conditions affecting olfactory sense is given. Techniques for collecting quantitative data on olfactory bulb volume and on olfactory sulcus depth are described. At last, insights into functional imaging of olfactory sense are shown.

  12. Fear conditioning following a unilateral anterior temporal lobectomy: reduced autonomic responding and stimulus contingency knowledge.

    Science.gov (United States)

    Coppens, Evelien; van Paesschen, Wim; Vandenbulcke, Mathieu; Vansteenwegen, Debora

    2010-03-01

    Animal research demonstrated that during fear conditioning the amygdala plays a central role in forming an association between the conditioned stimulus (CS) and the unconditioned stimulus (US). Lesion studies conducted in patients who underwent a unilateral anterior temporal lobe resection, however; yielded contradictory findings. To date, it remains unclear whether amygdala damage only affects fear-conditioned startle responding or impairs both the latter and fear-conditioned skin conductance responding (SCR). Moreover inconsistency exists regarding the preservation of contingency knowledge in amygdala-damaged patients. In the current study, a differential fear conditioning task was presented to a unilaterally amygdala-damaged patient group and a healthy control group, recording fear-potentiated startle responses along with SCRs. Retrospectively, the valence of the CSs and contingency awareness was assessed. Unlike the control group, unilaterally amygdala-damaged patients showed neither in their SCRs nor in their valence ratings an effect of fear conditioning. The startle data, however, yielded in none of the two test groups fear-conditioned responding. Finally, considerably fewer patients (37.5%) than controls (95%) acquired correct memory of the presented contingency. Based on these findings we concluded that the fear conditioning impairment in amygdala-damaged patients was not restricted to SCRs, but also affected valence ratings and memory of the presented contingency. A broader theory of the amygdala as relevance detector is proposed in order to account for the diverse neurological findings obtained so far.

  13. Expatriates' Multiple Fears, from Terrorism to Working Conditions: Development of a Model.

    Science.gov (United States)

    Giorgi, Gabriele; Montani, Francesco; Fiz-Perez, Javier; Arcangeli, Giulio; Mucci, Nicola

    2016-01-01

    Companies' internationalization appears to be fundamental in the current globalized and competitive environment and seems important not only for organizational success, but also for societal development and sustainability. On one hand, global business increases the demand for managers for international assignment. On the other hand, emergent fears, such as terrorism, seem to be developing around the world, enhancing the risk of expatriates' potential health problems. The purpose of this paper is to examine the relationships between the emergent concept of fear of expatriation with further workplace fears (economic crisis and dangerous working conditions) and with mental health problems. The study uses a quantitative design. Self-reported data were collected from 265 Italian expatriate workers assigned to both Italian and worldwide projects. Structural equation model analyses showed that fear of expatriation mediates the relationship of mental health with fear of economic crisis and with perceived dangerous working conditions. As expected, in addition to fear, worries of expatriation are also related to further fears. Although, the study is based on self-reports and the cross-sectional study design limits the possibility of making causal inferences, the new constructs introduced add to previous research.

  14. Expatriates’ Multiple Fears, from Terrorism to Working Conditions: Development of a Model

    Science.gov (United States)

    Giorgi, Gabriele; Montani, Francesco; Fiz-Perez, Javier; Arcangeli, Giulio; Mucci, Nicola

    2016-01-01

    Companies’ internationalization appears to be fundamental in the current globalized and competitive environment and seems important not only for organizational success, but also for societal development and sustainability. On one hand, global business increases the demand for managers for international assignment. On the other hand, emergent fears, such as terrorism, seem to be developing around the world, enhancing the risk of expatriates’ potential health problems. The purpose of this paper is to examine the relationships between the emergent concept of fear of expatriation with further workplace fears (economic crisis and dangerous working conditions) and with mental health problems. The study uses a quantitative design. Self-reported data were collected from 265 Italian expatriate workers assigned to both Italian and worldwide projects. Structural equation model analyses showed that fear of expatriation mediates the relationship of mental health with fear of economic crisis and with perceived dangerous working conditions. As expected, in addition to fear, worries of expatriation are also related to further fears. Although, the study is based on self-reports and the cross-sectional study design limits the possibility of making causal inferences, the new constructs introduced add to previous research. PMID:27790173

  15. Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice

    NARCIS (Netherlands)

    Misane, I.; Tovote, P.; Meyer, M.; Spiess, J.; Ögren, S.O.; Stiedl, O.

    2005-01-01

    Hippocampal and amygdaloid neuroplasticity are important substrates for Pavlovian fear conditioning. The hippocampus has been implicated in trace fear conditioning. However, a systematic investigation of the significance of the trace interval has not yet been performed. Therefore, this study

  16. Role of dopamine receptors in the ventral tegmental area in conditioned fear.

    Science.gov (United States)

    de Oliveira, Amanda Ribeiro; Reimer, Adriano Edgar; Brandão, Marcus Lira

    2009-05-16

    The increased startle reflex in the presence of a stimulus that has been previously paired with footshock has been termed fear-potentiated startle (FPS) and is considered a reliable index of anxiety. Some studies have suggested an association between stressful situations and alterations in dopaminergic (DA) transmission. Many studies converge on the hypothesis that the mesocorticolimbic pathway, originating from DA neurons in the ventral tegmental area (VTA), is particularly sensitive to fear-arousing stimuli. The present study explored the involvement of VTA DA receptors in the acquisition and expression of conditioned fear to a light conditioned stimulus (CS). We evaluated the effects of intra-VTA administration of SKF 38393 (D(1) agonist), SCH 23390 (D(1) antagonist), quinpirole (D(2) agonist), and sulpiride (D(2) antagonist) on FPS. All drugs were administered bilaterally into the VTA (1.0 microg/0.2 microl/site). Locomotor activity/exploration and motor coordination were evaluated in the open-field and rotarod tests. None of the drugs produced significant effects on FPS when injected before conditioning, indicating that VTA DA receptors are not involved in the acquisition of conditioned fear to a light-CS. In contrast, when injected before the test session, quinpirole significantly reduced FPS, whereas the other drugs had no effect. Quinpirole's ability to decrease FPS may be the result of an action on VTA D(2) presynaptic autoreceptors that decrease dopamine levels in terminal fields of the mesocorticolimbic pathway. Altogether, the present results suggest the importance of VTA DA neurons in the fear-activating effects of Pavlovian conditioning. In addition to demonstrating the importance of dopaminergic mechanisms in the motivational consequences of footshock, the present findings also indicate that these neural circuits are mainly involved in the expression, rather than acquisition, of conditioned fear.

  17. Learning and memory in conditioned fear extinction: effects of d-cycloserine

    NARCIS (Netherlands)

    Vervliet, B.

    2008-01-01

    This review addresses the effects of the cognitive enhancer D-cycloserine (DCS) on the memory processes that occur in conditioned fear extinction, which is the experimental model for exposure techniques to reduce clinical anxiety. All reported rat studies show an enhanced fear extinction effect when

  18. Changes of pressure and humidity affect olfactory function.

    Science.gov (United States)

    Kuehn, Michael; Welsch, Heiko; Zahnert, Thomas; Hummel, Thomas

    2008-03-01

    The present study aimed at investigating the question whether olfactory function changes in relation to barometric pressure and humidity. Using climate chambers, odor threshold and discrimination for butanol were tested in 75 healthy volunteers under hypobaric and hyperbaric, and different humidity conditions. Among other effects, olfactory sensitivity at threshold level, but not suprathreshold odor discrimination, was impaired in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests.

  19. Fluoxetine pretreatment promotes neuronal survival and maturation after auditory fear conditioning in the rat amygdala.

    Directory of Open Access Journals (Sweden)

    Lizhu Jiang

    Full Text Available The amygdala is a critical brain region for auditory fear conditioning, which is a stressful condition for experimental rats. Adult neurogenesis in the dentate gyrus (DG of the hippocampus, known to be sensitive to behavioral stress and treatment of the antidepressant fluoxetine (FLX, is involved in the formation of hippocampus-dependent memories. Here, we investigated whether neurogenesis also occurs in the amygdala and contributes to auditory fear memory. In rats showing persistent auditory fear memory following fear conditioning, we found that the survival of new-born cells and the number of new-born cells that differentiated into mature neurons labeled by BrdU and NeuN decreased in the amygdala, but the number of cells that developed into astrocytes labeled by BrdU and GFAP increased. Chronic pretreatment with FLX partially rescued the reduction in neurogenesis in the amygdala and slightly suppressed the maintenance of the long-lasting auditory fear memory 30 days after the fear conditioning. The present results suggest that adult neurogenesis in the amygdala is sensitive to antidepressant treatment and may weaken long-lasting auditory fear memory.

  20. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning

    Science.gov (United States)

    Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. PMID:26179231

  1. Muscarinic receptors in amygdala control trace fear conditioning.

    Directory of Open Access Journals (Sweden)

    Amber N Baysinger

    Full Text Available Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA. The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.

  2. Muscarinic receptors in amygdala control trace fear conditioning.

    Science.gov (United States)

    Baysinger, Amber N; Kent, Brianne A; Brown, Thomas H

    2012-01-01

    Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF) is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs) and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA). The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine) or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.

  3. Changes in olfactory bulb volume following lateralized olfactory training.

    Science.gov (United States)

    Negoias, S; Pietsch, K; Hummel, T

    2017-08-01

    Repeated exposure to odors modifies olfactory function. Consequently, "olfactory training" plays a significant role in hyposmia treatment. In addition, numerous studies show that the olfactory bulb (OB) volume changes in disorders associated with olfactory dysfunction. Aim of this study was to investigate whether and how olfactory bulb volume changes in relation to lateralized olfactory training in healthy people. Over a period of 4 months, 97 healthy participants (63 females and 34 males, mean age: 23.74 ± 4.16 years, age range: 19-43 years) performed olfactory training by exposing the same nostril twice a day to 4 odors (lemon, rose, eucalyptus and cloves) while closing the other nostril. Before and after olfactory training, magnetic resonance imaging (MRI) scans were performed to measure OB volume. Furthermore, participants underwent lateralized odor threshold and odor identification testing using the "Sniffin' Sticks" test battery.OB volume increased significantly after olfactory training (11.3 % and 13.1 % respectively) for both trained and untrained nostril. No significant effects of sex, duration and frequency of training or age of the subjects were seen. Interestingly, PEA odor thresholds worsened after training, while olfactory identification remained unchanged.These data show for the first time in humans that olfactory training may involve top-down process, which ultimately lead to a bilateral increase in olfactory bulb volume.

  4. Involvement of the prelimbic cortex in contextual fear conditioning with temporal and spatial discontinuity.

    Science.gov (United States)

    Santos, Thays Brenner; Kramer-Soares, Juliana Carlota; Favaro, Vanessa Manchim; Oliveira, Maria Gabriela Menezes

    2017-10-01

    Time plays an important role in conditioning, it is not only possible to associate stimuli with events that overlap, as in delay fear conditioning, but it is also possible to associate stimuli that are discontinuous in time, as shown in trace conditioning for a discrete stimuli. The environment itself can be a powerful conditioned stimulus (CS) and be associated to unconditioned stimulus (US). Thus, the aim of the present study was to determine the parameters in which contextual fear conditioning occurs by the maintenance of a contextual representation over short and long time intervals. The results showed that a contextual representation can be maintained and associated after 5s, even in the absence of a 15s re-exposure to the training context before US delivery. The same effect was not observed with a 24h interval of discontinuity. Furthermore, optimal conditioned response with a 5s interval is produced only when the contexts (of pre-exposure and shock) match. As the pre-limbic cortex (PL) is necessary for the maintenance of a continuous representation of a stimulus, the involvement of the PL in this temporal and contextual processing was investigated. The reversible inactivation of the PL by muscimol infusion impaired the acquisition of contextual fear conditioning with a 5s interval, but not with a 24h interval, and did not impair delay fear conditioning. The data provided evidence that short and long intervals of discontinuity have different mechanisms, thus contributing to a better understanding of PL involvement in contextual fear conditioning and providing a model that considers both temporal and contextual factors in fear conditioning. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Insect olfactory memory in time and space.

    Science.gov (United States)

    Liu, Xu; Davis, Ronald L

    2006-12-01

    Recent studies using functional optical imaging have revealed that cellular memory traces form in different areas of the insect brain after olfactory classical conditioning. These traces are revealed as increased calcium signals or synaptic release from defined neurons, and include a short-lived trace that forms immediately after conditioning in antennal lobe projection neurons, an early trace in dopaminergic neurons, and a medium-term trace in dorsal paired medial neurons. New molecular genetic tools have revealed that for normal behavioral memory performance, synaptic transmission from the mushroom body neurons is required only during retrieval, whereas synaptic transmission from dopaminergic neurons is required at the time of acquisition and synaptic transmission from dorsal paired medial neurons is required during the consolidation period. Such experimental results are helping to identify the types of neurons that participate in olfactory learning and when their participation is required. Olfactory learning often occurs alongside crossmodal interactions of sensory information from other modalities. Recent studies have revealed complex interactions between the olfactory and the visual senses that can occur during olfactory learning, including the facilitation of learning about subthreshold olfactory stimuli due to training with concurrent visual stimuli.

  6. Effects of Stress and Sex on Acquisition and Consolidation of Human Fear Conditioning

    Science.gov (United States)

    Kuhn, Cynthia M.; LaBar, Kevin S.; Zorawski, Michael; Blanding, Nineequa Q.

    2006-01-01

    We examined the relationship between stress hormone (cortisol) release and acquisition and consolidation of conditioned fear learning in healthy adults. Participants underwent acquisition of differential fear conditioning, and consolidation was assessed in a 24-h delayed extinction test. The acquisition phase was immediately followed by an 11-min…

  7. Modulation of cannabinoid signaling by amygdala α2-adrenergic system in fear conditioning.

    Science.gov (United States)

    Nasehi, Mohammad; Zamanparvar, Majid; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-03-01

    The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Growing evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. In addition, there is an interaction between the cannabinoid and noradrenergic system that has significant functional and behavioral implications. Considering the importance of these systems in forming memories for fearful events, we have investigated the involvement of basolateral amygdala (BLA) α2-adrenoceptors on ACPA (as selective cannabinoid CB1 agonist)-induced inhibition of the acquisition of contextual and auditory conditioned fear. A contextual and auditory fear conditioning apparatus for assess fear memory in adult male NMRI mice was used. Pre-training, intraperitoneal administration of ACPA decreased the percentage freezing time in contextual (at doses of 0.05 and 0.1mg/kg) and auditory (at dose of 0.1 mg/kg) in the fear conditioning task, indicating memory acquisition deficit. The same result was observed with intra-BLA microinjection of clonidine (0.001-0.5 μg/mouse, for both memories), as α2-adrenoceptor agonist and yohimbine (at doses of 0.005 and 0.05 for contextual and at dose of 0.05 μg/mouse for auditory fear memory), as α2-adrenoceptor antagonist. In addition, intra-BLA microinjection of clonidine (0.0005 μg/mouse) did not alter ACPA response in both conditions, while the same dose of yohimbine potentiated ACPA response at the lower dose on contextual fear memory. It is concluded that BLA α2-adrenergic receptors may be involved in context- but not tone-dependent fear memory impairment induced by activation of CB1 receptors. Copyright © 2015. Published by Elsevier B.V.

  8. Prior fear conditioning does not impede enhanced active avoidance in serotonin transporter knockout rats.

    Science.gov (United States)

    Schipper, Pieter; Henckens, Marloes J A G; Borghans, Bart; Hiemstra, Marlies; Kozicz, Tamas; Homberg, Judith R

    2017-05-30

    Stressors can be actively or passively coped with, and adequate adaption of the coping response to environmental conditions can reduce their potential deleterious effects. One major factor influencing stress coping behaviour is serotonin transporter (5-HTT) availability. Abolishment of 5-HTT is known to impair fear extinction but facilitates acquisition of signalled active avoidance (AA), a behavioural task in which an animal learns to avoid an aversive stimulus that is predicted by a cue. Flexibility in adapting coping behaviour to the nature of the stressor shapes resilience to stress-related disorders. Therefore, we investigated the relation between 5-HTT expression and ability to adapt a learned coping response to changing environmental conditions. To this end, we first established and consolidated a cue-conditioned passive fear response in 5-HTT -/- and wildtype rats. Next, we used the conditioned stimulus (CS) to signal oncoming shocks during signalled AA training in 5-HTT -/- and wildtype rats to study their capability to acquire an active coping response to the CS following fear conditioning. Finally, we investigated the behavioural response to the CS in a novel environment and measured freezing, exploration and self-grooming, behaviours reflective of stress coping strategy. We found that fear conditioned and sham conditioned 5-HTT -/- animals acquired the signalled AA response faster than wildtypes, while prior conditioning briefly delayed AA learning similarly in both genotypes. Subsequent exposure to the CS in the novel context reduced freezing and increased locomotion in 5-HTT -/- compared to wildtype rats. This indicates that improved AA performance in 5-HTT -/- rats resulted in a weaker residual passive fear response to the CS in a novel context. Fear conditioning prior to AA training did not affect freezing upon re-encountering the CS, although it did reduce locomotion in 5-HTT -/- rats. We conclude that independent of 5-HTT signalling, prior fear

  9. Behavioural, neurochemical and neuroendocrine effects of the endogenous β-carboline harmane in fear-conditioned rats.

    Science.gov (United States)

    Smith, Karen L; Ford, Gemma K; Jessop, David S; Finn, David P

    2013-02-01

    The putative endogenous imidazoline binding site ligand harmane enhances neuronal activation in response to psychological stress and alters behaviour in animal models of anxiety and antidepressant efficacy. However, the neurobiological mechanisms underlying harmane's psychotropic effects are poorly understood. We investigated the effects of intraperitoneal injection of harmane (2.5 and 10 mg/kg) on fear-conditioned behaviour, hypothalamo-pituitary-adrenal axis activity, and monoaminergic activity within specific fear-associated areas of the rat brain. Harmane had no significant effect on the duration of contextually induced freezing or 22 kHz ultrasonic vocalisations and did not alter the contextually induced suppression of motor activity, including rearing. Harmane reduced the duration of rearing and tended to increase freezing in non-fear-conditioned controls, suggesting potential sedative effects. Harmane increased plasma ACTH and corticosterone concentrations, and serotonin (in hypothalamus, amygdaloid cortex, prefrontal cortex and hippocampus) and noradrenaline (prefrontal cortex) content, irrespective of fear-conditioning. Furthermore, harmane reduced dopamine and serotonin turnover in the PFC and hypothalamus, and serotonin turnover in the amygdaloid cortex in both fear-conditioned and non-fear-conditioned rats. In contrast, harmane increased dopamine and noradrenaline content and reduced dopamine turnover in the amygdala of fear-conditioned rats only, suggesting differential effects on catecholaminergic transmission in the presence and absence of fear. The precise mechanism(s) mediating these effects of harmane remain to be determined but may involve its inhibitory action on monoamine oxidases. These findings support a role for harmane as a neuromodulator, altering behaviour, brain neurochemistry and neuroendocrine function.

  10. The role of the medial prefrontal cortex in the conditioning and extinction of fear

    Directory of Open Access Journals (Sweden)

    Thomas Francis Giustino

    2015-11-01

    Full Text Available Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD. As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL and infralimbic (IL subdivisions of the medial prefrontal cortex (mPFC regulate the expression and suppression of fear in rodents, respectively. Here we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.

  11. EXPATRIATES’ MULTIPLE FEARS, FROM TERRORISM TO WORKING CONDITIONS – DEVELOPMENT OF A MODEL

    Directory of Open Access Journals (Sweden)

    Gabriele Giorgi

    2016-10-01

    Full Text Available Companies’ internationalization appears to be fundamental in the current globalized and competitive environment and seems important not only for organizational success, but also for societal development and sustainability. On one hand, global business increases the demand for managers for international assignment. On the other hand, emergent fears, such as terrorism, seem to be developing around the world, enhancing the risk of expatriates’ potential health problems. The purpose of this paper is to examine the relationships between the emergent concept of fear of expatriation with further workplace fears (economic crisis and dangerous working conditions and with mental health problems. The study uses a quantitative design. Self-reported data were collected from 265 Italian expatriate workers assigned to both Italian and worldwide projects. Structural equation model analyses showed that fear of expatriation mediates the relationship of mental health with fear of economic crisis and with perceived dangerous working conditions. As expected, in addition to fear, worries of expatriation are also related to further fears. Although the study is based on self-reports and the cross-sectional study design limits the possibility of making causal inferences, the new constructs introduced add to previous research.

  12. Chronic treatment with fluoxetine prevents the return of extinguished auditory-cued conditioned fear.

    Science.gov (United States)

    Deschaux, Olivier; Spennato, Guillaume; Moreau, Jean-Luc; Garcia, René

    2011-05-01

    We have recently shown that post-extinction exposure of rats to a sub-threshold reminder shock can reactivate extinguished context-related freezing and found that chronic treatment with fluoxetine before fear extinction prevents this phenomenon. In the present study, we examined whether these findings would be confirmed with auditory fear conditioning. Rats were initially submitted to a session of five tone-shock pairings with either a 0.7- or 0.1-mA shock and underwent, 3 days later, a session of 20 tone-alone trials. At the beginning of this latter session, we observed cue-conditioned freezing in rats that received the strong, but not the weak, shock. At the end, both groups (strong and weak shocks) displayed similar low levels of freezing, indicating fear extinction in rats exposed to the strong shock. These rats exhibited again high levels of cue-evoked freezing when exposed to three tone-shock pairings with 0.1-mA shock. This reemergence of cue-conditioned fear was completely abolished by chronic (over a 21-day period) fluoxetine treatment which spared, when administered before the initial fear conditioning, the original tone-shock association. These data extend our previous findings and suggest that chronic fluoxetine treatment favor extinction memory by dampening the reactivation of the original tone-shock association.

  13. Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear.

    Science.gov (United States)

    Tronson, Natalie C; Schrick, Christina; Guzman, Yomayra F; Huh, Kyu Hwan; Srivastava, Deepak P; Penzes, Peter; Guedea, Anita L; Gao, Can; Radulovic, Jelena

    2009-03-18

    Learning processes mediating conditioning and extinction of contextual fear require activation of several key signaling pathways in the hippocampus. Principal hippocampal CA1 neurons respond to fear conditioning by a coordinated activation of multiple protein kinases and immediate early genes, such as cFos, enabling rapid and lasting consolidation of contextual fear memory. The extracellular signal-regulated kinase (Erk) additionally acts as a central mediator of fear extinction. It is not known however, whether these molecular events take place in overlapping or nonoverlapping neuronal populations. By using mouse models of conditioning and extinction of fear, we set out to determine the time course of cFos and Erk activity, their cellular overlap, and regulation by afferent cholinergic input from the medial septum. Analyses of cFos(+) and pErk(+) cells by immunofluorescence revealed predominant nuclear activation of either protein during conditioning and extinction of fear, respectively. Transgenic cFos-LacZ mice were further used to label in vivo Fos(+) hippocampal cells during conditioning followed by pErk immunostaining after extinction. The results showed that these signaling molecules were activated in segregated populations of hippocampal principal neurons. Furthermore, immunotoxin-induced lesions of medial septal neurons, providing cholinergic input into the hippocampus, selectively abolished Erk activation and extinction of fear without affecting cFos responses and conditioning. These results demonstrate that extinction mechanisms based on Erk signaling involve a specific population of CA1 principal neurons distinctively regulated by afferent cholinergic input from the medial septum.

  14. Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for Treatment of PTSD

    Science.gov (United States)

    2015-12-01

    1 Award Number: W81XWH-11-2-0001 TITLE: Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for Treatment of PTSD...REPORT TYPE Final 3. DATES COVERED (From - To) 1 Oct 2010 – 30 Sep 2015 4. TITLE AND SUBTITLE Role of Sleep Deprivation in Fear Conditioning and...especially adequate REM during exposure therapy may enhance efficacy and reduce remission after treatment. 15. SUBJECT TERMS PTSD, sleep deprivation , fear

  15. The influence of acute stress on the regulation of conditioned fear

    Directory of Open Access Journals (Sweden)

    Candace M. Raio

    2015-01-01

    Full Text Available Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation, and briefly discuss other techniques (avoidance and reconsolidation where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology.

  16. Heart rate response to fear conditioning and virtual reality in subthreshold PTSD.

    Science.gov (United States)

    Roy, Michael J; Costanzo, Michelle E; Jovanovic, Tanja; Leaman, Suzanne; Taylor, Patricia; Norrholm, Seth D; Rizzo, Albert A

    2013-01-01

    Posttraumatic stress disorder (PTSD) is a significant health concern for U.S. military service members (SMs) returning from Afghanistan and Iraq. Early intervention to prevent chronic disability requires greater understanding of subthreshold PTSD symptoms, which are associated with impaired physical health, mental health, and risk for delayed onset PTSD. We report a comparison of physiologic responses for recently deployed SMs with high and low subthreshold PTSD symptoms, respectively, to a fear conditioning task and novel virtual reality paradigm (Virtual Iraq). The high symptom group demonstrated elevated heart rate (HR) response during fear conditioning. Virtual reality sequences evoked significant HR responses which predicted variance of the PTSD Checklist-Military Version self-report. Our results support the value of physiologic assessment during fear conditioning and combat-related virtual reality exposure as complementary tools in detecting subthreshold PTSD symptoms in Veterans.

  17. Sex differences in the behavioural and hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats.

    Science.gov (United States)

    Daviu, Núria; Andero, Raül; Armario, Antonio; Nadal, Roser

    2014-11-01

    In recent years, special attention is being paid to sex differences in susceptibility to disease. In this regard, there is evidence that male rats present higher levels of both cued and contextual fear conditioning than females. However, little is known about the concomitant hypothalamic-pituitary-adrenal (HPA) axis response to those situations which are critical in emotional memories. Here, we studied the behavioural and HPA responses of male and female Wistar rats to context fear conditioning using electric footshock as the aversive stimulus. Fear-conditioned rats showed a much greater ACTH and corticosterone response than those merely exposed to the fear conditioning chamber without receiving shocks. Moreover, males presented higher levels of freezing whereas HPA axis response was greater in females. Accordingly, during the fear extinction tests, female rats consistently showed less freezing and higher extinction rate, but greater HPA activation than males. Exposure to an open-field resulted in lower activity/exploration in fear-conditioned males, but not in females, suggesting greater conditioned cognitive generalization in males than females. It can be concluded that important sex differences in fear conditioning are observed in both freezing and HPA activation, but the two sets of variables are affected in the opposite direction: enhanced behavioural impact in males, but enhanced HPA responsiveness in females. Thus, the role of sex differences on fear-related stimuli may depend on the variables chosen to evaluate it, the greater responsiveness of the HPA axis in females perhaps being an important factor to be further explored. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    Science.gov (United States)

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  19. The Acquisition and Extinction of Fear of Painful Touch: a Novel Tactile Fear Conditioning Paradigm

    NARCIS (Netherlands)

    Biggs, Emma E; Meulders, Ann; Kaas, Amanda L; Goebel, R.; Vlaeyen, Johan W S

    2017-01-01

    Fear of touch, due to allodynia and spontaneous pain, is not well-understood. Experimental methods to advance this topic are lacking, and therefore we propose a novel tactile conditioning paradigm. Seventy-six pain-free participants underwent acquisition in both a predictable and unpredictable pain

  20. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders.

    Science.gov (United States)

    VanElzakker, Michael B; Dahlgren, M Kathryn; Davis, F Caroline; Dubois, Stacey; Shin, Lisa M

    2014-09-01

    Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlov's dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Contribution of estradiol levels and hormonal contraceptives to sex differences within the fear network during fear conditioning and extinction.

    Science.gov (United States)

    Hwang, Moon Jung; Zsido, Rachel G; Song, Huijin; Pace-Schott, Edward F; Miller, Karen Klahr; Lebron-Milad, Kelimer; Marin, Marie-France; Milad, Mohammed R

    2015-11-18

    Findings about sex differences in the field of fear conditioning and fear extinction have been mixed. At the psychophysiological level, sex differences emerge only when taking estradiol levels of women into consideration. This suggests that this hormone may also influence sex differences with regards to activations of brain regions involved in fear conditioning and its extinction. Importantly, the neurobiological correlates associated with the use of hormonal oral contraceptives in women have not been fully contrasted against men and against naturally cycling women with different levels of estradiol. In this study, we begin to fill these scientific gaps. We recruited 37 healthy men and 48 healthy women. Of these women, 16 were using oral contraceptives (OC) and 32 were naturally cycling. For these naturally cycling women, a median split was performed on their serum estradiol levels to create a high estradiol (HE) group (n = 16) and a low estradiol (LE) group (n = 16). All participants underwent a 2-day fear conditioning and extinction paradigm in a 3 T MR scanner. Using the 4 groups (men, HE women, LE women, and OC users) and controlling for age and coil type, one-way ANCOVAs were performed to look at significant activations within the nodes of the fear circuit. Using post-hoc analyses, beta-weights were extracted in brain regions showing significant effects in order to unveil the differences based on hormonal status (men, HE, LE, OC). Significant main effect of hormonal status group was found across the different phases of the experiment and in different sub-regions of the insular and cingulate cortices, amygdala, hippocampus, and hypothalamus. During conditioning, extinction and recall, most of the observed differences suggested higher activations among HE women relative to men. During the unconditioned response, however, a different pattern was observed with men showing significantly higher brain activations. Our data further support the important contribution

  2. Prefrontal-limbic Functional Connectivity during Acquisition and Extinction of Conditioned Fear.

    Science.gov (United States)

    Barrett, Douglas W; Gonzalez-Lima, F

    2018-04-15

    This study is a new analysis to obtain novel metabolic data on the functional connectivity of prefrontal-limbic regions in Pavlovian fear acquisition and extinction of tone-footshock conditioning. Mice were analyzed with the fluorodeoxyglucose (FDG) autoradiographic method to metabolically map regional brain activity. New FDG data were sampled from the nuclei of the habenula and other regions implicated in aversive conditioning, such as infralimbic cortex, amygdala and periaqueductal gray regions. The activity patterns among these regions were inter-correlated during acquisition, extinction or pseudorandom training to develop a functional connectivity model. Two subdivisions of the habenular complex showed increased activity after acquisition relative to extinction, with the pseudorandom group intermediate between the other two groups. Significant acquisition activation effects were also found in centromedial amygdala, dorsomedial and ventrolateral periaqueductal gray. FDG uptake increases during extinction were found only in dorsal and ventral infralimbic cortex. The overall pattern of activity correlations between these regions revealed extensive but differential functional connectivity during acquisition and extinction training, with less functional connectivity found after pseudorandom training. Interestingly, habenula nuclei showed a distinct pattern of inter-correlations with amygdala nuclei during extinction. The functional connectivity model revealed changing interactions among infralimbic cortex, amygdala, habenula and periaqueductal gray regions through the stages of Pavlovian fear acquisition and extinction. This study provided new data on the contributions of the habenula to fear conditioning, and revealed previously unreported infralimbic-amygdala-habenula-periaqueductal gray interactions implicated in acquisition and extinction of conditioned fear. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum.

    Science.gov (United States)

    Zoicas, Iulia; Slattery, David A; Neumann, Inga D

    2014-12-01

    Central oxytocin (OXT) has anxiolytic and pro-social properties both in humans and rodents, and has been proposed as a therapeutic option for anxiety and social dysfunctions. Here, we utilized a mouse model of social fear conditioning (SFC) to study the effects of OXT on social fear, and to determine whether SFC causes alterations in central OXT receptor (OXTR) binding and local OXT release. Central infusion of OXT, but not arginine vasopressin, prior to social fear extinction training completely abolished social fear expression in an OXTR-mediated fashion without affecting general anxiety or locomotion. SFC caused increased OXTR binding in the dorso-lateral septum (DLS), central amygdala, dentate gyrus, and cornu ammunis 1, which normalized after social fear extinction, suggesting that these areas form part of a brain network involved in the development and neural support of social fear. Microdialysis revealed that the increase in OXT release observed in unconditioned mice within the DLS during social fear extinction training was attenuated in conditioned mice. Consequently, increasing the availability of local OXT by infusion of OXT into the DLS reversed social fear. Thus, alterations in the brain OXT system, including altered OXTR binding and OXT release within the DLS, play an important role in SFC and social fear extinction. Thus, we suggest that the OXT system is adversely affected in disorders associated with social fear, such as social anxiety disorder and reinstalling an appropriate balance of the OXT system may alleviate some of the symptoms.

  4. Discordance between olfactory psychophysical measurements and olfactory event related potentials in five patients with olfactory dysfunction following upper respiratory infection.

    Science.gov (United States)

    Guan, Jing; Ni, Dao-feng; Wang, Jian; Gao, Zhi-qiang

    2009-07-05

    Subjective olfactory tests are easy to perform and popularly applied in the clinic, but using only these, it is difficult to diagnose all disorders of the olfactory system. The olfactory event related potentials technique offers further insight into the olfactory system and is an ideal objective test. This analysis was of subjective and objective data on the olfactory function of twelve patients with loss of smell associated with an upper respiratory infection (URI). We tested the twelve patients with URI induced olfactory loss by medical history, physical examination of the head and neck, olfactory tests and medical imaging. Olfactory function was assessed by Toyota and Takagi olfactometry including olfactory detection and recognition thresholds and olfactory event-related potentials (OERPs) recorded with OEP-98C Olfactometer. An unusual phenomenon was observed in five patients in whom the subjective detection and recognition thresholds were normal, while the expected OERPs were not detectable. We suggest that the discordance between olfactory psychophysical measurements and OERPs might be the results of abnormal electrophysiology related with olfactory neuropathy caused by viral URI. In addition, the measurement of OERPs might play a significant role in evaluating olfactory dysfunction.

  5. Discordance between olfactory psychophysical measurements and olfactory event related potentials in five patients with olfactory dysfunction following upper respiratory infection

    Institute of Scientific and Technical Information of China (English)

    GUAN Jing; NI Dao-feng; WANG Jian; GAO Zhi-qiang

    2009-01-01

    Background Subjective olfactory tests are easy to perform and popularly applied in the clinic, but using only these, it is difficult to diagnose all disorders of the olfactory system. The olfactory event related potentials technique offers further insight into the olfactory system and is an ideal objective test. This analysis was of subjective and objective data on the olfactory function of twelve patients with loss of smell associated with an upper respiratory infection (URI). Methods We tested the twelve patients with URI induced olfactory loss by medical history, physical examination of the head and neck, olfactory tests and medical imaging. Olfactory function was assessed by Toyota and Takagi olfactometry including olfactory detection and recognition thresholds and olfactory event-related potentials (OERPs) recorded with OEP-98C Olfactometer. Results An unusual phenomenon was observed in five patients in whom the subjective detection and recognition thresholds were normal, while the expected OERPs were not detectable. Conclusions We suggest that the discordance between olfactory psychophysical measurements and OERPs might be the results of abnormal electrephysiology related with olfactory neuropathy caused by viral URI. In addition, the measurement of OERPs might play a significant role in evaluating olfactory dysfunction.

  6. Olfactory Functioning in First-Episode Psychosis.

    Science.gov (United States)

    Kamath, Vidyulata; Lasutschinkow, Patricia; Ishizuka, Koko; Sawa, Akira

    2018-04-06

    Though olfactory deficits are well-documented in schizophrenia, fewer studies have examined olfactory performance profiles across the psychosis spectrum. The current study examined odor identification, discrimination, and detection threshold performance in first-episode psychosis (FEP) patients diagnosed with schizophrenia, schizoaffective disorder, bipolar disorder with psychotic features, major depression with psychotic features, and other psychotic conditions. FEP patients (n = 97) and healthy adults (n = 98) completed birhinal assessments of odor identification, discrimination, and detection threshold sensitivity for lyral and citralva. Participants also completed measures of anticipatory pleasure, anhedonia, and empathy. Differences in olfactory performances were assessed between FEP patients and controls and within FEP subgroups. Sex-stratified post hoc analyses were employed for a complete analysis of sex differences. Relationships between self-report measures and olfactory scores were also examined. Individuals with psychosis had poorer scores across all olfactory measures when compared to the control group. Within the psychosis cohort, patients with schizophrenia-associated psychosis had poorer odor identification, discrimination, and citralva detection threshold scores relative to controls. In schizophrenia patients, greater olfactory disturbance was associated with increased negative symptomatology, greater self-reported anhedonia, and lower self-reported anticipatory pleasure. Patients with mood-associated psychosis performed comparable to controls though men and women in this cohort showed differential olfactory profiles. These findings indicate that olfactory deficits extend beyond measures of odor identification in FEP with greater deficits observed in schizophrenia-related subgroups of psychosis. Studies examining whether greater olfactory dysfunction confers greater risk for developing schizophrenia relative to other forms of psychosis are

  7. Reward devaluation disrupts latent inhibition in fear conditioning.

    Science.gov (United States)

    De la Casa, Luís Gonzalo; Mena, Auxiliadora; Ruiz-Salas, Juán Carlos; Quintero, Esperanza; Papini, Mauricio R

    2018-03-01

    Three experiments explored the link between reward shifts and latent inhibition (LI). Using consummatory procedures, rewards were either downshifted from 32% to 4% sucrose (Experiments 1-2), or upshifted from 4% to 32% sucrose (Experiment 3). In both cases, appropriate unshifted controls were also included. LI was implemented in terms of fear conditioning involving a single tone-shock pairing after extensive tone-only preexposure. Nonpreexposed controls were also included. Experiment 1 demonstrated a typical LI effect (i.e., disruption of fear conditioning after preexposure to the tone) in animals previously exposed only to 4% sucrose. However, the LI effect was eliminated by preexposure to a 32%-to-4% sucrose devaluation. Experiment 2 replicated this effect when the LI protocol was administered immediately after the reward devaluation event. However, LI was restored when preexposure was administered after a 60-min retention interval. Finally, Experiment 3 showed that a reward upshift did not affect LI. These results point to a significant role of negative emotion related to reward devaluation in the enhancement of stimulus processing despite extensive nonreinforced preexposure experience.

  8. Influence of stress on fear memory processes in an aversive differential conditioning paradigm in humans.

    Science.gov (United States)

    Bentz, Dorothée; Michael, Tanja; Wilhelm, Frank H; Hartmann, Francina R; Kunz, Sabrina; von Rohr, Isabelle R Rudolf; de Quervain, Dominique J-F

    2013-07-01

    It is widely assumed that learning and memory processes play an important role in the pathogenesis, expression, maintenance and therapy of anxiety disorders, such as phobias or post-traumatic stress disorder (PTSD). Memory retrieval is involved in symptom expression and maintenance of these disorders, while memory extinction is believed to be the underlying mechanism of behavioral exposure therapy of anxiety disorders. There is abundant evidence that stress and stress hormones can reduce memory retrieval of emotional information, whereas they enhance memory consolidation of extinction training. In this study we aimed at investigating if stress affects these memory processes in a fear conditioning paradigm in healthy human subjects. On day 1, fear memory was acquired through a standard differential fear conditioning procedure. On day 2 (24h after fear acquisition), participants either underwent a stressful cold pressor test (CPT) or a control condition, 20 min before memory retrieval testing and extinction training. Possible prolonged effects of the stress manipulation were investigated on day 3 (48 h after fear acquisition), when memory retrieval and extinction were tested again. On day 2, men in the stress group showed a robust cortisol response to stress and showed lower unconditioned stimulus (US) expectancy ratings than men in the control group. This reduction in fear memory retrieval was maintained on day 3. In women, who showed a significantly smaller cortisol response to stress than men, no stress effects on fear memory retrieval were observed. No group differences were observed with respect to extinction. In conclusion, the present study provides evidence that stress can reduce memory retrieval of conditioned fear in men. Our findings may contribute to the understanding of the effects of stress and glucocorticoids on fear symptoms in anxiety disorders and suggest that such effects may be sex-specific. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 'The perception of fear conditioning urban space'

    OpenAIRE

    Fani Bakratsa

    2011-01-01

    The dominant metabolic system within urban environments often involves deep socio-economic inequalities, exploitative productive practices and a persistent sense of alienation among the vast majority of the population. The city itself spawns the conditions both for the development of actual criminality and, more perniciously, for the emergence of an acute perception of fear within the polis. Over the years, this perception has affected a whole array of societal elements including, quite signi...

  10. From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and in anxiety disorders

    Science.gov (United States)

    VanElzakker, Michael B.; Dahlgren, M. Kathryn; Davis, F. Caroline; Dubois, Stacey; Shin, Lisa M.

    2014-01-01

    Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlov's dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders. PMID:24321650

  11. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard. J.; Myers, Catherine E.

    2012-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning. PMID:23164732

  12. Posttraining handling facilitates memory for auditory-cue fear conditioning in rats.

    Science.gov (United States)

    Hui, Isabel R; Hui, Gabriel K; Roozendaal, Benno; McGaugh, James L; Weinberger, Norman M

    2006-09-01

    A large number of studies have indicated that stress exposure or the administration of stress hormones and other neuroactive drugs immediately after a learning experience modulates the consolidation of long-term memory. However, there has been little investigation into how arousal induced by handling of the animals in order to administer these drugs affects memory. Therefore, the present study examined whether the posttraining injection or handling procedure per se affects memory of auditory-cue classical fear conditioning. Male Sprague-Dawley rats, which had been pre-handled on three days for 1 min each prior to conditioning, received three pairings of a single-frequency auditory stimulus and footshock, followed immediately by either a subcutaneous injection of a vehicle solution or brief handling without injection. A control group was placed back into their home cages without receiving any posttraining treatment. Retention was tested 24 h later in a novel chamber and suppression of ongoing motor behavior during a 10-s presentation of the auditory-cue served as the measure of conditioned fear. Animals that received posttraining injection or handling did not differ from each other but showed significantly less stimulus-induced movement compared to the non-handled control group. These findings thus indicate that the posttraining injection or handling procedure is sufficiently arousing or stressful to facilitate memory consolidation of auditory-cue classical fear conditioning.

  13. Deficient fear conditioning in psychopathy as a function of interpersonal and affective disturbances

    Directory of Open Access Journals (Sweden)

    Ralf eVeit

    2013-10-01

    Full Text Available The diminished fear reactivity is one of the most valid physiological findings in psychopathy research. In a fear conditioning paradigm, with faces as conditioned stimulus (CS and electric shock as unconditioned stimulus (US, we investigated a sample of 14 high psychopathic violent offenders. Event related potentials, skin conductance responses (SCR as well as subjective ratings of the CSs were collected. This study assessed to which extent the different facets of the psychopathy construct contribute to the fear conditioning deficits observed in psychopaths. Participants with high scores on the affective facet subscale of the Psychopathy Checklist-Revised (PCL-R showed weaker conditioned fear responses and lower N100 amplitudes compared to low scorers. In contrast, high scorers on the affective facet rated the CS+ (paired more negatively than low scorers regarding the CS- (unpaired. Regarding the P300, high scores on the interpersonal facet were associated with increased amplitudes to the CS+ compared to the CS-, while the opposed pattern was found with the antisocial facet. Both, the initial and terminal contingent negative variation indicated a divergent pattern: participants with pronounced interpersonal deficits, showed increased cortical negativity to the CS+ compared to the CS-, whereas a reversed CS+/CS- differentiation was found in offenders scoring high on the antisocial facet. The present study revealed that deficient fear conditioning in psychopathy was most pronounced in offenders with high scores on the affective facet. Event related potentials suggest that participants with distinct interpersonal deficits showed increased information processing, whereas the antisocial facet was linked to decreased attention and interest to the CS+. These data indicate that an approach to the facets of psychopathy can help to resolve ambiguous findings in psychopathy research and enables a more precise and useful description of this disorder.

  14. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    Science.gov (United States)

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  15. Low Endogenous Fibroblast Growth Factor 2 Levels Are Associated With Heightened Conditioned Fear Expression in Rats and Humans.

    Science.gov (United States)

    Graham, Bronwyn M; Zagic, Dino; Richardson, Rick

    2017-10-15

    Hippocampal concentrations of the neurotrophic factor fibroblast growth factor 2 (FGF2) are negatively associated with the expression of fear following conditioning in rats. Heightened conditioned fear expression may be a prospective risk factor for the development of human anxiety and trauma disorders. However, the relationship between conditioned fear expression and FGF2 is yet to be established in humans. Using a cross-species approach, we first investigated the relationship between serum concentrations of FGF2 and individual differences in conditioned fear expression in rats (n = 19). We then subjected 88 human participants, who were recruited from university and community advertisements, to a differential fear conditioning procedure and assessed the relationship between salivary concentrations of FGF2 and fear expression to a conditioned stimulus (CS) (a stimulus paired with a shock) and a CS that was never paired with shock. Rats with low serum levels of FGF2 exhibited significantly more freezing than rats with high serum levels of FGF2. Similarly, relative to those with high salivary FGF2, human participants with low salivary FGF2 exhibited significantly heightened skin conductance responses to the CS without shock during fear conditioning and to both the CS with shock and CS without shock during fear recall. These studies establish that peripheral markers of FGF2 concentrations are negatively associated with fear expression in both rats and humans. To the extent that conditioned fear expression predicts anxiety and trauma disorder vulnerability, FGF2 may be a clinically useful biomarker in the prediction and eventual prevention of these disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats

    Science.gov (United States)

    2011-05-01

    benzodiazepine drug midazolam (Uvnas-Moberg et al, 1994). A high-stress strain of Sprague-Dawley rats that typically perform poorly on conditioned avoidance...2010). The accurate measurement of fear memory in Pavlovian conditioning : resolving the baseline issue. f Neurosci Methods 190: 235-239. Joordens RJ...stress disorder. Psychiatry Res 48: 107-117. Rescorla RA, Wagner AR (1972). A theory of Pavlovian conditioning : variations in the effectiveness of

  17. Odor memories regulate olfactory receptor expression in the sensory periphery.

    Science.gov (United States)

    Claudianos, Charles; Lim, Julianne; Young, Melanie; Yan, Shanzhi; Cristino, Alexandre S; Newcomb, Richard D; Gunasekaran, Nivetha; Reinhard, Judith

    2014-05-01

    Odor learning induces structural and functional modifications throughout the olfactory system, but it is currently unknown whether this plasticity extends to the olfactory receptors (Or) in the sensory periphery. Here, we demonstrate that odor learning induces plasticity in olfactory receptor expression in the honeybee, Apis mellifera. Using quantitative RT-PCR analysis, we show that six putative floral scent receptors were differentially expressed in the bee antennae depending on the scent environment that the bees experienced. Or151, which we characterized using an in vitro cell expression system as a broadly tuned receptor binding floral odorants such as linalool, and Or11, the specific receptor for the queen pheromone 9-oxo-decenoic acid, were significantly down-regulated after honeybees were conditioned with the respective odorants in an olfactory learning paradigm. Electroantennogram recordings showed that the neural response of the antenna was similarly reduced after odor learning. Long-term odor memory was essential for inducing these changes, suggesting that the molecular mechanisms involved in olfactory memory also regulate olfactory receptor expression. Our study demonstrates for the first time that olfactory receptor expression is experience-dependent and modulated by scent conditioning, providing novel insight into how molecular regulation at the periphery contributes to plasticity in the olfactory system. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Inhibition of the mesoamygdala dopaminergic pathway impairs the retrieval of conditioned fear associations.

    Science.gov (United States)

    Nader, K; LeDoux, J E

    1999-10-01

    Previous findings have demonstrated that systemic dopaminergic manipulations impair the retrieval of Pavlovian conditioned fear. A second-order fear-conditioning paradigm was used to test whether the dopaminergic projection from the ventral tegmental area (VTA) to the lateral and basal amygdala (LBA) can affect conditioned fear. Phase 1 entailed conditioned stimulus-unconditioned stimulus (CS1-US) pairings. In Phase 2, drugs were infused in either the LBA or VTA prior to pairings of CS2 (a second cue) with CS1. In Phase 3, freezing behavior elicited by CS2 was tested without drugs. Infusions of the D2 agonist quinpirole into the VTA or of the D1 antagonist SCH 23390 into the LBA caused a decrease in freezing to CS2. Both manipulations decrease D1 receptor activation in the LBA. Infusions of the D1 agonist SKF 38393 into the LBA had no effect. This pattern of results is consistent with the hypothesis that the VTA-LBA dopaminergic projection modulates the retrieval of an association between a CS and footshock US.

  19. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    Directory of Open Access Journals (Sweden)

    Jorge A Larriva-Sahd

    2012-06-01

    Full Text Available This study describes the microscopic organization of a wedge-shaped area at the intersection of the main and accessory olfactory bulbs, or olfactory limbus , and an additional component of the anterior olfactory nucleus or alpha accessory olfactory bulb that lies underneath of the accessory olfactory bulb. The olfactory limbus consists of a modified bulbar cortex bounded anteriorly by the main olfactory bulb and posteriorly by the accessory olfactory bulb. In Nissl-stained specimens the olfactory limbus differs from the main olfactory bulb by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the olfactory limbus is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area, a second or necklace glomerular area, and a wedge-shaped or interstitial area crowned by the so-called modified glomeruli that appear to belong to the anterior accessory olfactory bulb. The strategic location and interactions with the main and accessory olfactory bulbs, together with the previously noted functional and connectional evidence, suggest that the olfactory limbus may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 x 150 µm paralleling the base of the accessory olfactory bulb, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells organize into a single bundle that ascends avoiding the accessory olfactory bulb to resolve in a trigone bounded by the edge of the olfactory limbus, the accessory olfactory bulb and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67.

  20. The dorsolateral periaqueductal gray and its role in mediating fear learning to life threatening events.

    Directory of Open Access Journals (Sweden)

    Grasielle C Kincheski

    Full Text Available The dorsolateral column of the periaqueductal gray (dlPAG integrates aversive emotional experiences and represents an important site responding to life threatening situations, such as hypoxia, cardiac pain and predator threats. Previous studies have shown that the dorsal PAG also supports fear learning; and we have currently explored how the dlPAG influences associative learning. We have first shown that N-methyl-D-aspartate (NMDA 100 pmol injection in the dlPAG works as a valuable unconditioned stimulus (US for the acquisition of olfactory fear conditioning (OFC using amyl acetate odor as conditioned stimulus (CS. Next, we revisited the ascending projections of the dlPAG to the thalamus and hypothalamus to reveal potential paths that could mediate associative learning during OFC. Accordingly, the most important ascending target of the dlPAG is the hypothalamic defensive circuit, and we were able to show that pharmacological inactivation using β-adrenoceptor blockade of the dorsal premammillary nucleus, the main exit way for the hypothalamic defensive circuit to thalamo-cortical circuits involved in fear learning, impaired the acquisition of the OFC promoted by NMDA stimulation of the dlPAG. Moreover, our tracing study revealed multiple parallel paths from the dlPAG to several thalamic targets linked to cortical-hippocampal-amygdalar circuits involved in fear learning. Overall, the results point to a major role of the dlPAG in the mediation of aversive associative learning via ascending projections to the medial hypothalamic defensive circuit, and perhaps, to other thalamic targets, as well. These results provide interesting perspectives to understand how life threatening events impact on fear learning, and should be useful to understand pathological fear memory encoding in anxiety disorders.

  1. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    Science.gov (United States)

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  2. A computational model of conditioning inspired by Drosophila olfactory system.

    Science.gov (United States)

    Faghihi, Faramarz; Moustafa, Ahmed A; Heinrich, Ralf; Wörgötter, Florentin

    2017-03-01

    Recent studies have demonstrated that Drosophila melanogaster (briefly Drosophila) can successfully perform higher cognitive processes including second order olfactory conditioning. Understanding the neural mechanism of this behavior can help neuroscientists to unravel the principles of information processing in complex neural systems (e.g. the human brain) and to create efficient and robust robotic systems. In this work, we have developed a biologically-inspired spiking neural network which is able to execute both first and second order conditioning. Experimental studies demonstrated that volume signaling (e.g. by the gaseous transmitter nitric oxide) contributes to memory formation in vertebrates and invertebrates including insects. Based on the existing knowledge of odor encoding in Drosophila, the role of retrograde signaling in memory function, and the integration of synaptic and non-synaptic neural signaling, a neural system is implemented as Simulated fly. Simulated fly navigates in a two-dimensional environment in which it receives odors and electric shocks as sensory stimuli. The model suggests some experimental research on retrograde signaling to investigate neural mechanisms of conditioning in insects and other animals. Moreover, it illustrates a simple strategy to implement higher cognitive capabilities in machines including robots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for Treatment of PTSD

    Science.gov (United States)

    2015-10-01

    mechanism underlying the most successful treatment for PTSD, Prolonged Exposure. In animal models, sleep deprivation has been shown to impair extinction ...2. 3. 9 +Sleep and Extinction Learning  Animal models show fear conditioning:  Disrupts sleep  Disrupted sleep, in turn  Impairs extinction ...Award Number: W81XWH-11-2-0001 TITLE: “Role of Sleep Deprivation in Fear Conditioning and Extinction : Implications for Treatment of PTSD

  4. Electrolytic Lesions of the Dorsal Hippocampus Disrupt Renewal of Conditional Fear after Extinction

    Science.gov (United States)

    Ji, Jinzhao; Maren, Stephen

    2005-01-01

    There is a growing body of evidence that the hippocampus is critical for context-dependent memory retrieval. In the present study, we used Pavlovian fear conditioning in rats to examine the role of the dorsal hippocampus (DH) in the context-specific expression of fear memory after extinction (i.e., renewal). Pre-training electrolytic lesions of…

  5. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  6. Properties and mechanisms of olfactory learning and memory

    Directory of Open Access Journals (Sweden)

    Michelle T Tong

    2014-07-01

    Full Text Available Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system -- particularly olfactory bulb -- comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal and cumulative (adult appetitive odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  7. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  8. Beta-adrenergic receptors in the lateral nucleus of the amygdala contribute to the acquisition but not the consolidation of auditory fear conditioning.

    Science.gov (United States)

    Bush, David E A; Caparosa, Ellen M; Gekker, Anna; Ledoux, Joseph

    2010-01-01

    Beta-adrenergic receptors (βARs) have long been associated with fear disorders and with learning and memory. However, the contribution of these receptors to Pavlovian fear conditioning, a leading behavioral model for studying fear learning and memory, is still poorly understood. The aim of this study was to investigate the involvement of βAR activation in the acquisition, consolidation and expression of fear conditioning. We focused on manipulations of βARs in the lateral nucleus of the amygdala (LA) because of the well-established contribution of this area to fear conditioning. Specifically, we tested the effects of intra-LA microinfusions of the βAR antagonist, propranolol, on learning and memory for auditory Pavlovian fear conditioning in rats. Pre-training propranolol infusions disrupted the initial acquisition, short-term memory (STM), and long-term memory (LTM) for fear conditioning, but infusions immediately after training had no effect. Further, infusion of propranolol prior to testing fear responses did not affect fear memory expression. These findings indicate that amygdala βARs are important for the acquisition but not the consolidation of fear conditioning.

  9. Contextual Change After Fear Acquisition Affects Conditioned Responding and the Time Course of Extinction Learning-Implications for Renewal Research.

    Science.gov (United States)

    Sjouwerman, Rachel; Niehaus, Johanna; Lonsdorf, Tina B

    2015-01-01

    Context plays a central role in retrieving (fear) memories. Accordingly, context manipulations are inherent to most return of fear (ROF) paradigms (in particular renewal), involving contextual changes after fear extinction. Context changes are, however, also often embedded during earlier stages of ROF experiments such as context changes between fear acquisition and extinction (e.g., in ABC and ABA renewal). Previous studies using these paradigms have however focused exclusively on the context switch after extinction (i.e., renewal). Thus, the possibility of a general effect of context switch on conditioned responding that may not be conditional to preceding extinction learning remains unstudied. Hence, the current study investigated the impact of a context switch between fear acquisition and extinction on immediate conditioned responding and on the time-course of extinction learning by using a multimodal approach. A group that underwent contextual change after fear conditioning (AB; n = 36) was compared with a group without a contextual change from acquisition to extinction (AA; n = 149), while measuring physiological (skin conductance and fear potentiated startle) measures and subjective fear ratings. Contextual change between fear acquisition and extinction had a pronounced effect on both immediate conditioned responding and on the time course of extinction learning in skin conductance responses and subjective fear ratings. This may have important implications for the mechanisms underlying and the interpretation of the renewal effect (i.e., contextual switch after extinction). Consequently, future studies should incorporate designs and statistical tests that disentangle general effects of contextual change from genuine ROF effects.

  10. Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from Context Fear Conditioning, Recall, and Extinction.

    Science.gov (United States)

    Bernier, Brian E; Lacagnina, Anthony F; Ayoub, Adam; Shue, Francis; Zemelman, Boris V; Krasne, Franklin B; Drew, Michael R

    2017-06-28

    Dentate gyrus (DG) is widely thought to provide a teaching signal that enables hippocampal encoding of memories, but its role during retrieval is poorly understood. Some data and models suggest that DG plays no role in retrieval; others encourage the opposite conclusion. To resolve this controversy, we evaluated the effects of optogenetic inhibition of dorsal DG during context fear conditioning, recall, generalization, and extinction in male mice. We found that (1) inhibition during training impaired context fear acquisition; (2) inhibition during recall did not impair fear expression in the training context, unless mice had to distinguish between similar feared and neutral contexts; (3) inhibition increased generalization of fear to an unfamiliar context that was similar to a feared one and impaired fear expression in the conditioned context when it was similar to a neutral one; and (4) inhibition impaired fear extinction. These effects, as well as several seemingly contradictory published findings, could be reproduced by BACON (Bayesian Context Fear Algorithm), a physiologically realistic hippocampal model positing that acquisition and retrieval both involve coordinated activity in DG and CA3. Our findings thus suggest that DG contributes to retrieval and extinction, as well as to the initial establishment of context fear. SIGNIFICANCE STATEMENT Despite abundant evidence that the hippocampal dentate gyrus (DG) plays a critical role in memory, it remains unclear whether the role of DG relates to memory acquisition or retrieval. Using contextual fear conditioning and optogenetic inhibition, we show that DG contributes to both of these processes. Using computational simulations, we identify specific mechanisms through which the suppression of DG affects memory performance. Finally, we show that DG contributes to fear extinction learning, a process in which learned fear is attenuated through exposures to a fearful context in the absence of threat. Our data resolve a

  11. The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning.

    Science.gov (United States)

    Alexander, Jon C; McDermott, Carmel M; Tunur, Tumay; Rands, Vicky; Stelly, Claire; Karhson, Debra; Bowlby, Mark R; An, W Frank; Sweatt, J David; Schrader, Laura A

    2009-03-01

    Potassium channel interacting proteins (KChIPs) are members of a family of calcium binding proteins that interact with Kv4 potassium (K(+)) channel primary subunits and also act as transcription factors. The Kv4 subunit is a primary K(+) channel pore-forming subunit, which contributes to the somatic and dendritic A-type currents throughout the nervous system. These A-type currents play a key role in the regulation of neuronal excitability and dendritic processing of incoming synaptic information. KChIP3 is also known as calsenilin and as the transcription factor, downstream regulatory element antagonist modulator (DREAM), which regulates a number of genes including prodynorphin. KChIP3 and Kv4 primary channel subunits are highly expressed in hippocampus, an area of the brain important for learning and memory. Through its various functions, KChIP3 may play a role in the regulation of synaptic plasticity and learning and memory. We evaluated the role of KChIP3 in a hippocampus-dependent memory task, contextual fear conditioning. Male KChIP3 knockout (KO) mice showed significantly enhanced memory 24 hours after training as measured by percent freezing. In addition, we found that membrane association and interaction with Kv4.2 of KChIP3 protein was significantly decreased and nuclear KChIP3 expression was increased six hours after the fear conditioning training paradigm with no significant change in KChIP3 mRNA. In addition, prodynorphin mRNA expression was significantly decreased six hours after fear conditioning training in wild-type (WT) but not in KO animals. These data suggest a role for regulation of gene expression by KChIP3/DREAM/calsenilin in consolidation of contextual fear conditioning memories.

  12. Gradients of fear: How perception influences fear generalization.

    Science.gov (United States)

    Struyf, Dieter; Zaman, Jonas; Hermans, Dirk; Vervliet, Bram

    2017-06-01

    The current experiment investigated whether overgeneralization of fear could be due to an inability to perceptually discriminate the initial fear-evoking stimulus from similar stimuli, as fear learning-induced perceptual impairments have been reported but their influence on generalization gradients remain to be elucidated. Three hundred and sixty-eight healthy volunteers participated in a differential fear conditioning paradigm with circles of different sizes as conditioned stimuli (CS), of which one was paired to an aversive IAPS picture. During generalization, each subject was presented with one of 10 different sized circles including the CSs, and were asked to categorize the stimulus as either a CS or as novel after fear responses were recorded. Linear mixed models were used to investigate differences in fear generalization gradients depending on the participant's perception of the test stimulus. We found that the incorrect perception of a novel stimulus as the initial fear-evoking stimulus strongly boosted fear responses. The current findings demonstrate that a significant number of novel stimuli used to assess generalization are incorrectly identified as the initial fear-evoking stimulus, providing a perceptual account for the observed overgeneralization in panic and anxiety disorders. Accordingly, enhancing perceptual processing may be a promising treatment for targeting excessive fear generalization. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Withdrawal from Chronic Nicotine Administration Impairs Contextual Fear Conditioning in C57BL/6 Mice

    OpenAIRE

    Davis, Jennifer A.; James, John R.; Siegel, Steven J.; Gould, Thomas J.

    2005-01-01

    The effects of acute nicotine administration (0.09 mg/kg nicotine), chronic nicotine administration (6.3 mg/kg/d nicotine for 14 d), and withdrawal from chronic nicotine administration on fear conditioning in C57BL/6 mice were examined. Mice were trained using two coterminating conditioned stimulus (30 s; 85 dB white noise)– unconditioned stimulus (2 s; 0.57 mA foot shock) pairings and tested 24 h later for contextual and cued fear conditioning. Acute nicotine administration enhanced contextu...

  14. COCAINE AND PAVLOVIAN FEAR CONDITIONING: DOSE-EFFECT ANALYSIS

    OpenAIRE

    Wood, Suzanne C.; Fay, Jonathon; Sage, Jennifer R.; Anagnostaras, Stephan G.

    2006-01-01

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1 – 15 mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15 mg/kg) displayed significantly less cont...

  15. A Discrete Population of Neurons in the Lateral Amygdala Is Specifically Activated by Contextual Fear Conditioning

    Science.gov (United States)

    Wilson, Yvette M.; Murphy, Mark

    2009-01-01

    There is no clear identification of the neurons involved in fear conditioning in the amygdala. To search for these neurons, we have used a genetic approach, the "fos-tau-lacZ" (FTL) mouse, to map functionally activated expression in neurons following contextual fear conditioning. We have identified a discrete population of neurons in the lateral…

  16. Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats.

    Science.gov (United States)

    Noble, L J; Gonzalez, I J; Meruva, V B; Callahan, K A; Belfort, B D; Ramanathan, K R; Meyers, E; Kilgard, M P; Rennaker, R L; McIntyre, C K

    2017-08-22

    Exposure-based therapies help patients with post-traumatic stress disorder (PTSD) to extinguish conditioned fear of trauma reminders. However, controlled laboratory studies indicate that PTSD patients do not extinguish conditioned fear as well as healthy controls, and exposure therapy has high failure and dropout rates. The present study examined whether vagus nerve stimulation (VNS) augments extinction of conditioned fear and attenuates PTSD-like symptoms in an animal model of PTSD. To model PTSD, rats were subjected to a single prolonged stress (SPS) protocol, which consisted of restraint, forced swim, loss of consciousness, and 1 week of social isolation. Like PTSD patients, rats subjected to SPS show impaired extinction of conditioned fear. The SPS procedure was followed, 1 week later, by auditory fear conditioning (AFC) and extinction. VNS or sham stimulation was administered during half of the extinction days, and was paired with presentations of the conditioned stimulus. One week after completion of extinction training, rats were given a battery of behavioral tests to assess anxiety, arousal and avoidance. Results indicated that rats given SPS 1 week prior to AFC (PTSD model) failed to extinguish the freezing response after eleven consecutive days of extinction. Administration of VNS reversed the extinction impairment and attenuated reinstatement of the conditioned fear response. Delivery of VNS during extinction also eliminated the PTSD-like symptoms, such as anxiety, hyperarousal and social avoidance for more than 1 week after VNS treatment. These results provide evidence that extinction paired with VNS treatment can lead to remission of fear and improvements in PTSD-like symptoms. Taken together, these findings suggest that VNS may be an effective adjunct to exposure therapy for the treatment of PTSD.

  17. Systemic or Intra-Amygdala Injection of a Benzodiazepine (Midazolam) Impairs Extinction but Spares Re-Extinction of Conditioned Fear Responses

    Science.gov (United States)

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of fear conditioning and extinction, injected with a benzodiazepine, midazolam, before the first or second extinction, and tested for long-term inhibition of fear responses (freezing). In Experiment 1, inhibition of context-conditioned fear was spared when midazolam was injected before the second…

  18. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    OpenAIRE

    Poplawski, Shane G.; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has recei...

  19. Inhaled Lavandula angustifolia essential oil inhibits consolidation of contextual- but not tone-fear conditioning in rats.

    Science.gov (United States)

    Coelho, Laura Segismundo; Correa-Netto, Nelson Francisco; Masukawa, Marcia Yuriko; Lima, Ariadiny Caetano; Maluf, Samia; Linardi, Alessandra; Santos-Junior, Jair Guilherme

    2018-04-06

    Although the current treatment for anxiety is effective, it promotes a number of adverse reactions and medical interactions. Inhaled essential oils have a prominent action on the central nervous system, with minimal systemic effects, primarily because of reduced systemic bioavailability. The effects of drugs on the consolidation of fear conditioning reflects its clinical efficacy in preventing a vicious cycle of anticipatory anxiety leading to fearful cognition and anxiety symptoms. In this study, we investigated the effects of inhaled Lavandula angustifolia essential oil on the consolidation of aversive memories and its influence on c-Fos expression. Adult male Wistar rats were subjected to a fear conditioning protocol. Immediately after the training session, the rats were exposed to vaporized water or essential oil (1%, 2.5% and 5% solutions) for 4h. The next day, the rats underwent contextual- or tone-fear tests and 90min after the test they were euthanized and their brains processed for c-Fos immunohistochemistry. In the contextual-fear test, essential oil at 2.5% and 5% (but not 1%) reduced the freezing response and its respective c-Fos expression in the ventral hippocampus and amygdala. In the tone-fear test, essential oil did not reduce the freezing response during tone presentation. However, rats that inhaled essential oil at 2.5% and 5% (but not 1%) showed decreased freezing in the three minutes after tone presentation, as well as reduced c-Fos expression in the prefrontal cortex and amygdala. These results show that the inhalation of L. angustifolia essential oil inhibited the consolidation of contextual- but not tone-fear conditioning and had an anxiolytic effect in a conditioned animal model of anxiety. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    David S Reis

    2013-10-01

    Full Text Available The cellular mechanisms supporting plasticity during memory consolidation have been a subject of considerable interest. De novo protein and mRNA synthesis in several brain areas are critical, and more recently protein degradation, mediated by the ubiquitin-proteasome system (UPS, has been shown to be important. Previous work clearly establishes a relationship between protein synthesis and protein degradation in the amygdala, but it is unclear whether cortical mechanisms of memory consolidation are similar to those in the amygdala. Recent work demonstrating a critical role for prefrontal cortex (PFC in the acquisition and consolidation of fear memory allows us to address this question. Here we use a PFC-dependent fear conditioning protocol to determine whether UPS mediated protein degradation is necessary for memory consolidation in PFC. Groups of rats were trained with auditory delay or trace fear conditioning and sacrificed 60 min after training. PFC tissue was then analyzed to quantify the amount of polyubiquinated protein. Other animals were trained with similar procedures but were infused with either a proteasome inhibitor (clasto-lactacystin β-lactone or a translation inhibitor (anisomycin in the PFC immediately after training. Our results show increased UPS-mediated protein degradation in the PFC following trace but not delay fear conditioning. Additionally, post-training proteasome or translation inhibition significantly impaired trace but not delay fear memory when tested the next day. Our results further support the idea that the PFC is critical for trace but not delay fear conditioning highlight the role of UPS-mediated degradation as critical for synaptic plasticity.

  1. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a Pavlovian model.

    Directory of Open Access Journals (Sweden)

    Jun-Li Liu

    Full Text Available BACKGROUND: In auditory fear conditioning, repeated presentation of the tone in the absence of shock leads to extinction of the acquired fear responses. The glutamate N-methyl-D-aspartate receptor (NMDAR is thought to be involved in the extinction of the conditioned fear responses, but its detailed role in initiating and consolidating or maintaining the fear extinction memory is unclear. Here we investigated this issue by using a NMDAR antagonist, MK-801. METHODS/MAIN FINDINGS: The effects of immediate (beginning at 10 min after the conditioning and delayed (beginning at 24 h after conditioning extinctions were first compared with the finding that delayed extinction caused a better and long-lasting (still significant on the 20(th day after extinction depression on the conditioned fear responses. In a second experiment, MK-801 was intraperitoneally (i.p. injected at 40 min before, 4 h or 12 h after the delayed extinction, corresponding to critical time points for initiating, consolidating or maintaining the fear extinction memory. i.p. injection of MK-801 at either 40 min before or 4 h after delayed extinction resulted in an impairment of initiating and consolidating fear extinction memory, which caused a long lasting increased freezing score that was still significant on the 7th day after extinction, compared with extinction group. However, MK-801 administered at 12 h after the delayed extinction, when robust consolidation has been occurred and stabilized, did not affect the established extinction memory. Furthermore, the changed freezing behaviors was not due to an alteration in general anxiety levels, since MK-801 treatment had no effect on the percentage of open-arm time or open-arm entries in an Elevated Plus Maze (EPM task. CONCLUSIONS/SIGNIFICANCE: Our data suggested that the activation of NMDARs plays important role in initiation and consolidation but not maintenance of fear extinction memory. Together with the fact that NMDA receptor is

  2. Individual differences in discriminatory fear learning under conditions of ambiguity: A vulnerability factor for anxiety disorders?

    Directory of Open Access Journals (Sweden)

    Inna eArnaudova

    2013-05-01

    Full Text Available Complex fear learning procedures might be better suited than the common differential fear conditioning paradigm for detecting individual differences related to vulnerability for anxiety disorders. Two such procedures are the blocking procedure and the protection-from-overshadowing procedure. Their comparison allows for the examination of discriminatory fear learning under conditions of ambiguity. The present study examined the role of individual differences in such discriminatory fear learning. We hypothesized that heightened trait anxiety would be related to a deficit in discriminatory fear learning. Participants gave US-expectancy ratings as an index for the threat value of individual CSs following blocking and protection-from-overshadowing training. The difference in threat value at test between the protected-from-overshadowing CS and the blocked CS was negatively correlated with scores on a self-report tension-stress scale that approximates facets of generalized anxiety disorder (DASS-S, but not with other individual difference variables. In addition, a behavioral test showed that only participants scoring high on the DASS-S avoided the protected-from-overshadowing CS. This observed deficit in discriminatory fear learning for participants with high levels of tension-stress might be an underlying mechanism for fear overgeneralization in diffuse anxiety disorders such as generalized anxiety disorder.

  3. Time-Dependent Expression of Arc and Zif268 after Acquisition of Fear Conditioning

    Directory of Open Access Journals (Sweden)

    Mary E. Lonergan

    2010-01-01

    Full Text Available Memory consolidation requires transcription and translation of new protein. Arc, an effector immediate early gene, and zif268, a regulatory transcription factor, have been implicated in synaptic plasticity underlying learning and memory. This study explored the temporal expression profiles of these proteins in the rat hippocampus following fear conditioning. We observed a time-dependent increase of Arc protein in the dorsal hippocampus 30-to-90-minute post training, returning to basal levels at 4 h. Zif268 protein levels, however, gradually increased at 30-minute post training before peaking in expression at 60 minute. The timing of hippocampal Arc and zif268 expression coincides with the critical period for protein synthesis-dependent memory consolidation following fear conditioning. However, the expression of Arc protein appears to be driven by context exploration, whereas, zif268 expression may be more specifically related to associative learning. These findings suggest that altered Arc and zif268 expression are related to neural plasticity during the formation of fear memory.

  4. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    Science.gov (United States)

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  5. Contextual change after fear acquisition affects conditioned responding and the time course of extinction learning – Implications for renewal research

    Directory of Open Access Journals (Sweden)

    Rachel eSjouwerman

    2015-12-01

    Full Text Available Context plays a central role in retrieving (fear memories. Accordingly, context manipulations are inherent to most return of fear (ROF paradigms (in particular renewal, involving contextual changes after fear extinction. Context changes are, however, also often embedded during earlier stages of ROF experiments such as context changes between fear acquisition and extinction (e.g. in ABC and ABA renewal. Previous studies using these paradigms have however focused exclusively on the context switch after extinction (i.e. renewal. Thus, the possibility of a general effect of a context switch on conditioned responding that may not be conditional to preceding extinction learning remains unstudied.Hence, the current study investigated the impact of a context switch between fear acquisition and extinction on immediate conditioned responding and on the time-course of extinction learning by using a multimodal approach. A group that underwent contextual change after fear conditioning (AB; n = 36 was compared with a group without a contextual change from acquisition to extinction (AA; n = 149, while measuring autonomic (skin conductance and fear potentiated startle measures and subjective fear ratings. Contextual change between fear acquisition and extinction had a pronounced effect on both immediate conditioned responding and on the time course of extinction learning in skin conductance responses and subjective fear ratings. This may have important implications for the mechanisms underlying and the interpretation of the renewal effect (i.e. contextual switch after extinction. Consequently, future studies should incorporate designs and statistical tests that disentangle general effects of contextual change from genuine ROF effects.

  6. Olfactory short-term memory encoding and maintenance - an event-related potential study.

    Science.gov (United States)

    Lenk, Steffen; Bluschke, Annet; Beste, Christian; Iannilli, Emilia; Rößner, Veit; Hummel, Thomas; Bender, Stephan

    2014-09-01

    This study examined whether the memory encoding and short term maintenance of olfactory stimuli is associated with neurophysiological activation patterns which parallel those described for sensory modalities such as vision and auditory. We examined olfactory event-related potentials in an olfactory change detection task in twenty-four healthy adults and compared the measured activation to that found during passive olfactory stimulation. During the early olfactory post-processing phase, we found a sustained negativity over bilateral frontotemporal areas in the passive perception condition which was enhanced in the active memory task. There was no significant lateralization in either experimental condition. During the maintenance interval at the end of the delay period, we still found sustained activation over bilateral frontotemporal areas which was more negative in trials with correct - as compared to incorrect - behavioural responses. This was complemented by a general significantly stronger frontocentral activation. Summarizing, we were able to show that olfactory short term memory involves a parallel sequence of activation as found in other sensory modalities. In addition to olfactory-specific frontotemporal activations in the memory encoding phase, we found slow cortical potentials over frontocentral areas during the memory maintenance phase indicating the activation of a supramodal memory maintenance system. These findings could represent the neurophysiological underpinning of the 'olfactory flacon', the olfactory counter-part to the visual sketchpad and phonological loop embedded in Baddeley's working memory model. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia.

    Science.gov (United States)

    Piantadosi, Patrick T; Floresco, Stan B

    2014-09-01

    Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS-, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity.

  8. The smell of fear: innate threat of 2,5-dihydro-2,4,5-trimethylthiazoline, a single molecule component of a predator odor

    Science.gov (United States)

    Rosen, Jeffrey B.; Asok, Arun; Chakraborty, Trisha

    2015-01-01

    In the last several years, the importance of understanding what innate threat and fear is, in addition to learning of threat and fear, has become evident. Odors from predators are ecologically relevant stimuli used by prey animals as warnings for the presence of danger. Of importance, these odors are not necessarily noxious or painful, but they have innate threat-like properties. This review summarizes the progress made on the behavioral and neuroanatomical fundamentals of innate fear of the predator odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a component of fox feces. TMT is one of several single molecule components of predator odors that have been isolated in the last several years. Isolation of these single molecules has allowed for rapid advances in delineating the behavioral constraints and selective neuroanatomical pathways of predator odor induced fear. In naïve mice and rats, TMT induces a number of fear and defensive behaviors, including robust freezing, indicating it is an innate threat stimulus. However, there are a number of behavioral constraints that we do not yet understand. Similarly, while some of the early olfactory sensory pathways for TMT-induced fear are being delineated, the pathways from olfactory systems to emotional and motor output regions are less well understood. This review will focus on what we know and what we still need to learn about the behavior and neuroanatomy of TMT-induced fear. PMID:26379483

  9. Systemic blockade of D2-like dopamine receptors facilitates extinction of conditioned fear in mice

    OpenAIRE

    Ponnusamy, Ravikumar; Nissim, Helen A.; Barad, Mark

    2005-01-01

    Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized that blockade of D2 receptors might facilitate extinction in mice, while agonists should block extinction, as they do in rats. One day after fear con...

  10. Olfactory conditioned same-sex partner preference in female rats: Role of ovarian hormones.

    Science.gov (United States)

    Tecamachaltzi-Silvaran, M B; Barradas-Moctezuma, M; Herrera-Covarrubias, D; Carrillo, P; Corona-Morales, A A; Perez, C A; García, L I; Manzo, J; Coria-Avila, Genaro A

    2017-11-01

    The dopamine D2-type receptor agonist quinpirole (QNP) facilitates the development of conditioned same-sex partner preference in males during cohabitation, but not in ovariectomized (OVX) females, primed with estradiol benzoate (EB) and progesterone (P). Herein we tested the effects of QNP on OVX, EB-only primed females. Females received a systemic injection (every four days) of either saline (Saline-conditioned) or QNP (QNP-conditioned) and then cohabited for 24h with lemon-scented stimulus females (CS+), during three trials. In test 1 (female-female) preference was QNP-free, and females chose between the CS+ female and a novel female. In test 2 (male-female) they chose between the CS+ female and a sexually experienced male. In test 1 Saline-conditioned females displayed more hops & darts towards the novel female, but QNP-conditioned females displayed more sexual solicitations towards the CS+ female. In test 2 Saline-conditioned females displayed a clear preference for the male, whereas QNP-conditioned females displayed what we considered a bisexual preference. We discuss the effect of dopamine and ovarian hormones on the development of olfactory conditioned same-sex preference in females. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Reciprocal Patterns of c-Fos Expression in the Medial Prefrontal Cortex and Amygdala after Extinction and Renewal of Conditioned Fear

    Science.gov (United States)

    Knapska, Ewelina; Maren, Stephen

    2009-01-01

    After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry.…

  12. Pre-Training Reversible Inactivation of the Basal Amygdala (BA Disrupts Contextual, but Not Auditory, Fear Conditioning, in Rats.

    Directory of Open Access Journals (Sweden)

    Elisa Mari Akagi Jordão

    Full Text Available The basolateral amygdala complex (BLA, including the lateral (LA, basal (BA and accessory basal (AB nuclei, is involved in acquisition of contextual and auditory fear conditioning. The BA is one of the main targets for hippocampal information, a brain structure critical for contextual learning, which integrates several discrete stimuli into a single configural representation. Congruent with the hodology, selective neurotoxic damage to the BA results in impairments in contextual, but not auditory, fear conditioning, similarly to the behavioral impairments found after hippocampal damage. This study evaluated the effects of muscimol-induced reversible inactivation of the BA during a simultaneous contextual and auditory fear conditioning training on later fear responses to both the context and the tone, tested separately, without muscimol administration. As compared to control rats micro-infused with vehicle, subjects micro-infused with muscimol before training exhibited, during testing without muscimol, significant reduction of freezing responses to the conditioned context, but not to the conditioned tone. Therefore, reversible inactivation of the BA during training impaired contextual, but not auditory fear conditioning, thus confirming and extending similar behavioral observations following selective neurotoxic damage to the BA and, in addition, revealing that this effect is not related to the lack of a functional BA during testing.

  13. Psychosocial job conditions, fear avoidance beliefs and expected return to work following acute coronary syndrome: a cross-sectional study of fear-avoidance as a potential mediator.

    Science.gov (United States)

    Söderberg, Mia; Rosengren, Annika; Gustavsson, Sara; Schiöler, Linus; Härenstam, Annika; Torén, Kjell

    2015-12-21

    Despite improvements in treatment, acute coronary syndrome remains a substantial cause for prolonged sick absences and premature retirement. Knowledge regarding what benefits return to work is limited, especially the effect of psychological processes and psychosocial work factors. The purposes of this cross-sectional study were two-fold: to examine associations between adverse psychosocial job conditions and fear-avoidance beliefs towards work, and to determine whether such beliefs mediated the relationship between work conditions and expected return to work in acute coronary syndrome survivors. Study inclusion criteria: acute myocardial infarction or unstable angina diagnosis, below 65 years of age, being a resident in the West county of Sweden and currently working. In all, 509 individuals (21.8 % women) accepted study participation and for whom all data of study interest were available for analysis. Psychosocial work variables; job demand-control and effort-reward imbalance, were assessed with standard questionnaire batteries. Linear regression models were used to investigate relationships between psychosocial factors and fear-avoidance, and to evaluate mediator effects for fear-avoidance. Both total sample and gender stratified analyses were calculated. Fear-avoidance beliefs about work were associated to psychosocial job environments characterized by high strain (β 1.4; CI 1.2-1.6), active and passive work and high effort-reward imbalance (β 0.6; CI 0.5-0.7). Further, such beliefs also mediated the relationship between adverse work conditions and expected time for return to work. However, these results were only observed in total sample analyses or among or male participants. For women only high strain was linked to fear-avoidance, and these relationships became non-significant when entering chosen confounders. This cross-sectional study showed that acute coronary syndrome survivors, who laboured under adverse psychosocial work conditions, held fear

  14. Consequences of adolescent ethanol exposure in male Sprague-Dawley rats on fear conditioning and extinction in adulthood

    Science.gov (United States)

    Broadwater, Margaret A.

    Some evidence suggests that adolescents are more vulnerable than adults to alcohol-induced cognitive deficits and that these deficits may persist into adulthood. Five experiments were conducted to assess long-term consequences of ethanol exposure on tone and context Pavlovian fear conditioning in male Sprague-Dawley rats. Experiment 1 examined age-related differences in sensitivity to ethanol-induced disruptions of fear conditioning to a pre-conditioning ethanol challenge. Experiments 2 examined fear conditioning 22 days after early-mid adolescent (P28-48) or adult (P70-90) exposure to 4 g/kg i.g. ethanol or water given every other day (total of 11 exposures). In Experiment 3, mid-late adolescents (P35-55) were exposed in the same manner to assess whether timing of ethanol exposure within the adolescent period would differentially affect later fear conditioning. Experiment 4 assessed the influence of prior adolescent or adult ethanol exposure on the disrupting effects of a pre-conditioning ethanol challenge. In Experiment 5, neurogenesis (doublecortin---DCX) and cholinergic (choline acetyltransferase---ChAT) markers were measured to assess potential long-term ethanol-induced changes in neural mechanisms important for learning and memory. Results indicated that the long-lasting behavioral effects of ethanol exposure varied depending on exposure age, with early-mid adolescent exposed animals showing attenuated context fear retention (a relatively hippocampal-dependent task), whereas mid-late adolescent and adult exposed animals showed slower context extinction (thought to be reliant on the mPFC). Early-mid adolescent ethanol-exposed animals also had significantly less DCX and ChAT expression than their water-exposed counterparts, possibly contributing to deficits in context fear. Tone fear was not influenced by prior ethanol exposure at any age. In terms of age differences in ethanol sensitivity, adolescents were less sensitive than adults to ethanol

  15. Olfactory disfunction and its relation olfactory bulb volume in Parkinson's disease.

    Science.gov (United States)

    Altinayar, S; Oner, S; Can, S; Kizilay, A; Kamisli, S; Sarac, K

    2014-01-01

    Olfactory dysfunction is the most frequently seen non-motor symptom of Idiopathic Parkinson's disease (IPD). The aim of this study is to analyze selective olfactory dysfunction, and olfactory bulb volume (OBV) in subtypes of IPD, and compare them with those of the healthy controls. Our study included 41 patients with IPD and age and gender matched 19 healthy controls. IPD patients were either tremor dominant (65.9%; TDPD) or non-tremor dominant (34.1%; NTDPD) type. All patients underwent neurological, ear, nose, and throat examinations, and orthonasal olfaction testing. Magnetic resonance imaging (MRI) technique was used to measure the volume of the olfactory bulb. A significant decrease in olfactory identification scores was found in the patient group. The patients had difficulty in discriminating between odors of mothballs, chocolate, Turkish coffee and soap. OBV did not differ between the patient, and the control groups. In the TDPD group, odor identification ability was decreased when compared to the control group. However, odor test results of NTDPD, control and TDPD groups were similar. OBV estimates of the TDPD group were not different from those of the control group, while in the NTDPD group OBVs were found to be decreased. In all patients with Parkinson's disease OBV values did not vary with age of the patients, duration of the disease, age at onset of the disease, and Unified Parkinson's Disease Rating Scale motor scores (UPDRS-m). Olfactory function is a complex process involving olfactory, and cortical structures as well. In Idiopathic Parkinson's disease, changes in OBV do not seem to be directly related to olfactory dysfunction.

  16. Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats.

    Science.gov (United States)

    Trivedi, Mehul A; Coover, Gary D

    2006-04-03

    Pavlovian delay conditioning, in which a conditioned stimulus (CS) and unconditioned stimulus (US) co-terminate, is thought to reflect non-declarative memory. In contrast, trace conditioning, in which the CS and US are temporally separate, is thought to reflect declarative memory. Hippocampal lesions impair acquisition and expression of trace conditioning measured by the conditioned freezing and eyeblink responses, while having little effect on the acquisition of delay conditioning. Recent evidence suggests that lesions of the ventral hippocampus (VH) impair conditioned fear under conditions in which dorsal hippocampal (DH) lesions have little effect. In the present study, we examined the time-course of fear expression after delay and trace conditioning using the fear-potentiated startle (FPS) reflex, and the effects of pre- and post-training lesions to the VH and DH on trace-conditioned FPS. We found that both delay- and trace-conditioned rats displayed significant FPS near the end of the CS relative to the unpaired control group. In contrast, trace-conditioned rats displayed significant FPS throughout the duration of the trace interval, whereas FPS decayed rapidly to baseline after CS offset in delay-conditioned rats. In experiment 2, both DH and VH lesions were found to significantly reduce the overall magnitude of FPS compared to the control group, however, no differences were found between the DH and VH groups. These findings support a role for both the DH and VH in trace fear conditioning, and suggest that the greater effect of VH lesions on conditioned fear might be specific to certain measures of fear.

  17. Sevoflurane impairs post-operative olfactory memory but preserves olfactory function.

    Science.gov (United States)

    Kostopanagiotou, Georgia; Kalimeris, Konstantinos; Kesidis, Kyriakos; Matsota, Paraskevi; Dima, Cleanthi; Economou, Maria; Papageorgiou, Charalambos

    2011-01-01

    The effect of anaesthesia on olfaction has not been systematically studied. Our aim is to compare the effects of general and regional anaesthesia on olfactory acuity and memory in the immediate post-operative period. Sixty adult patients with the American Society of Anesthesiologists I and II status scheduled for elective minor surgery were included. Exclusion criteria were smoking, alcoholism, psychiatric disease and recent or past airway infection with resulting hyposmia. Patients were randomly allocated to one of three groups (in the analysis, n = 16 in each group): epidural anaesthesia (group E), general anaesthesia with propofol (group P) and general anaesthesia with sevoflurane (group S) of 40-120 min duration. The evening before surgery, at 0.5 and at 3 h post-operatively olfactory acuity and memory were tested, along with blood sampling to measure plasma melatonin and oxytocin levels. Olfactory acuity was tested with successive dilutions of n-butyl-alcohol, and olfactory memory (interpretation of odours) with the University of Pennsylvania Smell Identification Test. Patient characteristics did not differ between groups. Olfactory acuity was intact in all patients, before and after anaesthesia. Olfactory memory deteriorated in group S compared to groups P and E at both post-operative time-points. This was accompanied by a significant post-operative reduction of plasma melatonin levels in group S. Oxytocin levels remained constant in all groups. Our results manifest a specific effect of sevoflurane on olfactory memory, not observed with neuraxial or total intravenous anaesthesia. The misinterpretation of odours in the immediate post-operative period by sevoflurane could be mediated by the decreased levels of melatonin.

  18. Individual differences in discriminatory fear learning under conditions of ambiguity: a vulnerability factor for anxiety disorders?

    NARCIS (Netherlands)

    Arnaudova, I.; Krypotos, A.M.; Effting, M.; Boddez, Y.; Kindt, M.; Beckers, T.

    2013-01-01

    Complex fear learning procedures might be better suited than the common differential fear-conditioning paradigm for detecting individual differences related to vulnerability for anxiety disorders. Two such procedures are the blocking procedure and the protection-from-overshadowing procedure. Their

  19. Instructed fear learning, extinction, and recall: additive effects of cognitive information on emotional learning of fear.

    Science.gov (United States)

    Javanbakht, Arash; Duval, Elizabeth R; Cisneros, Maria E; Taylor, Stephan F; Kessler, Daniel; Liberzon, Israel

    2017-08-01

    The effects of instruction on learning of fear and safety are rarely studied. We aimed to examine the effects of cognitive information and experience on fear learning. Fourty healthy participants, randomly assigned to three groups, went through fear conditioning, extinction learning, and extinction recall with two conditioned stimuli (CS+). Information was presented about the presence or absence of conditioned stimulus-unconditioned stimulus (CS-US) contingency at different stages of the experiment. Information about the CS-US contingency prior to fear conditioning enhanced fear response and reduced extinction recall. Information about the absence of CS-US contingency promoted extinction learning and recall, while omission of this information prior to recall resulted in fear renewal. These findings indicate that contingency information can facilitate fear expression during fear learning, and can facilitate extinction learning and recall. Information seems to function as an element of the larger context in which conditioning occurs.

  20. Stimulation of the Locus Ceruleus Modulates Signal-to-Noise Ratio in the Olfactory Bulb.

    Science.gov (United States)

    Manella, Laura C; Petersen, Nicholas; Linster, Christiane

    2017-11-29

    Norepinephrine (NE) has been shown to influence sensory, and specifically olfactory processing at the behavioral and physiological levels, potentially by regulating signal-to-noise ratio (S/N). The present study is the first to look at NE modulation of olfactory bulb (OB) in regards to S/N in vivo We show, in male rats, that locus ceruleus stimulation and pharmacological infusions of NE into the OB modulate both spontaneous and odor-evoked neural responses. NE in the OB generated a non-monotonic dose-response relationship, suppressing mitral cell activity at high and low, but not intermediate, NE levels. We propose that NE enhances odor responses not through direct potentiation of the afferent signal per se, but rather by reducing the intrinsic noise of the system. This has important implications for the ways in which an animal interacts with its olfactory environment, particularly as the animal shifts from a relaxed to an alert behavioral state. SIGNIFICANCE STATEMENT Sensory perception can be modulated by behavioral states such as hunger, fear, stress, or a change in environmental context. Behavioral state often affects neural processing via the release of circulating neurochemicals such as hormones or neuromodulators. We here show that the neuromodulator norepinephrine modulates olfactory bulb spontaneous activity and odor responses so as to generate an increased signal-to-noise ratio at the output of the olfactory bulb. Our results help interpret and improve existing ideas for neural network mechanisms underlying behaviorally observed improvements in near-threshold odor detection and discrimination. Copyright © 2017 the authors 0270-6474/17/3711605-11$15.00/0.

  1. Inhibitory neurotransmission and olfactory memory in honeybees.

    Science.gov (United States)

    El Hassani, Abdessalam Kacimi; Giurfa, Martin; Gauthier, Monique; Armengaud, Catherine

    2008-11-01

    In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.

  2. Olfactory Neuroblastoma: Diagnostic Difficulty

    Directory of Open Access Journals (Sweden)

    Vidya MN,

    2011-01-01

    Full Text Available Olfactory neuroblastoma is an uncommon malignant tumor of sinonasal tract arising from the olfactory neuro epithelium. The olfactory neuroblastomas presenting with divergent histomorphologies like, epithelial appearance of cells, lacking a neuro fibrillary background and absence of rosettes are difficult to diagnose. Such cases require immunohistochemistry to establish the diagnosis. We describe the clinical features, pathological and immunohistochemical findings of grade IV Olfactory neuroblastoma in a 57 year old man

  3. Brain Region-Specific Activity Patterns after Recent or Remote Memory Retrieval of Auditory Conditioned Fear

    Science.gov (United States)

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-01-01

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or…

  4. Effects of Post-Training Hippocampal Injections of Midazolam on Fear Conditioning

    Science.gov (United States)

    Gafford, Georgette M.; Parsons, Ryan G.; Helmstetter, Fred J.

    2005-01-01

    Benzodiazepines have been useful tools for investigating mechanisms underlying learning and memory. The present set of experiments investigates the role of hippocampal GABA[subscript A]/benzodiazepine receptors in memory consolidation using Pavlovian fear conditioning. Rats were prepared with cannulae aimed at the dorsal hippocampus and trained…

  5. Differential Dynamics of Amino Acid Release in the Amygdala and Olfactory Cortex during Odor Fear Acquisition as Revealed with Simultaneous High Temporal Resolution Microdialysis

    Science.gov (United States)

    Hegoburu, Chloe; Sevelinges, Yannick; Thevenet, Marc; Gervais, Remi; Parrot, Sandrine; Mouly, Anne-Marie

    2009-01-01

    Although the amygdala seems to be essential to the formation and storage of fear memories, it might store only some aspects of the aversive event and facilitate the storage of more specific sensory aspects in cortical areas. We addressed the time course of amygdala and cortical activation in the context of odor fear conditioning in rats. Using…

  6. Cadmium Exposure Impairs Cognition and Olfactory Memory in Male C57BL/6 Mice.

    Science.gov (United States)

    Wang, Hao; Zhang, Liang; Abel, Glen M; Storm, Daniel R; Xia, Zhengui

    2018-01-01

    Cadmium (Cd) is a heavy metal of high interest to the superfund initiative. Recent epidemiology studies have suggested a possible association between Cd exposure and cognitive as well as olfactory impairments in humans. However, studies in animal models are needed to establish a direct causal relationship between Cd exposure and impairments in cognition and olfaction. This study aims to investigate the toxic effect of Cd on cognition and olfactory function in mice. One group of 8-week-old C57BL/6 male mice was exposed to 3 mg/l Cd (in the form of CdCl2) through drinking water for 20 weeks for behavior tests and final blood Cd concentration analysis. The behavior tests were conducted before, during, and after Cd exposure to analyze the effects of Cd on cognition and olfactory function. Upon completion of behavior tests, blood was collected to measure final blood Cd concentration. Two additional groups of mice were similarly exposed to Cd for 5 or 13 weeks for peak blood Cd concentration measurement. The peak blood Cd concentration was 2.125-2.25 μg/l whereas the final blood Cd concentration was 0.18 μg/l. At this exposure level, Cd impaired hippocampus-dependent learning and memory in novel object location test, T-maze test, and contextual fear memory test. It also caused deficits in short-term olfactory memory and odor-cued olfactory learning and memory. Results in this study demonstrate a direct relationship between Cd exposure and cognitive as well as olfactory impairments in an animal model. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Extinction of conditioned fear is better learned and recalled in the morning than in the evening.

    Science.gov (United States)

    Pace-Schott, Edward F; Spencer, Rebecca M C; Vijayakumar, Shilpa; Ahmed, Nafis A K; Verga, Patrick W; Orr, Scott P; Pitman, Roger K; Milad, Mohammed R

    2013-11-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N = 109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCRs) to 2 differently colored lamps (CS+), but not a third color (CS-), within the computer image of a room (conditioning context). One CS+ (CS + E) but not the other (CS + U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 h (within AM or PM), 12 h (morning-to-evening or evening-to-morning) or 24 h (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p = .002). Collapsing across CS + type, there was smaller morning differential SCR at both extinction recall (p = .003) and fear renewal (p = .005). Morning extinction recall showed better generalization from the CS + E to CS + U with the response to the CS + U significantly larger than to the CS + E only in the evening (p = .028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicted better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Does ambient noise or hypobaric atmosphere influence olfactory and gustatory function?

    Science.gov (United States)

    Rahne, Torsten; Köppke, Robert; Nehring, Michael; Plontke, Stefan K; Fischer, Hans-Georg

    2018-01-01

    Multidimensional food perception is based mainly on gustatory and olfactory function. Recent research has demonstrated that hypobaric pressure impairs gustatory function and that background noise or distracting auditory stimulation impairs olfactory function. Using a hypobaric chamber, the odor identification, discrimination, and thresholds as well as taste identification and threshold scores were measured in 16 healthy male volunteers under normal and hypobaric (6380 ft) conditions using clinically validated tests. In both conditions, background noise was either canceled out or replaced by white noise presentation (70 dB sound pressure level). Olfactory sensitivity for n-butanol and gustatory sensitivity were impaired in a hypobaric atmosphere. White noise did not influence the odor test results. White noise stimulation impaired sensitivity for sour and sweet but not for bitter or salty tastants. We conclude that hypobaric or noisy environments could impair gustatory and olfactory sensitivity selectively for particular tastants and odorants.

  9. Skin Conductance Responses and Neural Activations During Fear Conditioning and Extinction Recall Across Anxiety Disorders.

    Science.gov (United States)

    Marin, Marie-France; Zsido, Rachel G; Song, Huijin; Lasko, Natasha B; Killgore, William D S; Rauch, Scott L; Simon, Naomi M; Milad, Mohammed R

    2017-06-01

    The fear conditioning and extinction neurocircuitry has been extensively studied in healthy and clinical populations, with a particular focus on posttraumatic stress disorder. Despite significant overlap of symptoms between posttraumatic stress disorder and anxiety disorders, the latter has received less attention. Given that dysregulated fear levels characterize anxiety disorders, examining the neural correlates of fear and extinction learning may shed light on the pathogenesis of underlying anxiety disorders. To investigate the psychophysiological and neural correlates of fear conditioning and extinction recall in anxiety disorders and to document how these features differ as a function of multiple diagnoses or anxiety severity. This investigation was a cross-sectional, case-control, functional magnetic resonance imaging study at an academic medical center. Participants were healthy controls and individuals with at least 1 of the following anxiety disorders: generalized anxiety disorder, social anxiety disorder, specific phobia, and panic disorder. The study dates were between March 2013 and May 2015. Two-day fear conditioning and extinction paradigm. Skin conductance responses, blood oxygenation level-dependent responses, trait anxiety scores from the State Trait Anxiety Inventory-Trait Form, and functional connectivity. This study included 21 healthy controls (10 women) and 61 individuals with anxiety disorders (36 women). P values reported for the neuroimaging results are all familywise error corrected. Skin conductance responses during extinction recall did not differ between individuals with anxiety disorders and healthy controls (ηp2 = 0.001, P = .79), where ηp2 is partial eta squared. The anxiety group had lower activation of the ventromedial prefrontal cortex (vmPFC) during extinction recall (ηp2 = 0.178, P = .02). A similar hypoactive pattern was found during early conditioning (ηp2 = 0.106, P = .009). The vmPFC hypoactivation

  10. Effect of irradiation on olfactory function

    International Nuclear Information System (INIS)

    Aiba, Tsunemasa; Sugimoto, Midori; Matsuda, Yasuaki; Sugiura, Yoshikazu; Nakai, Yoshiaki; Nakajima, Toshifumi

    1990-01-01

    The effects of therapeutic irradiation on olfactory function were investigated in 20 patients who received radiation therapy because of a malignant tumor of the nose or paranasal sinuses. The standard olfaction test with a T and T olfactometer and an intravenous olfaction test were given before the radiation therapy, during the period of radiation therapy and 1, 3, 6 and 12 months or more later. Five patients whose olfactory epithelium was outside the radiation field showed no damage to olfactory function. The olfactory function of the other 15 patients whose olfactory epithelium had been exposed to radiation was not obviously changed or damaged at the time of radiation therapy. However, 6 months after irradiation, some patients showed a decline in olfactory function, and after 12 months, 4 of 7 patients showed severe damage to olfactory function. These results suggest that a therapeutic dose of irradiation will not cause severe damage to the olfactory function during the period of radiation therapy, but could cause delayed olfactory disorders in some patients after a few years. These olfactory disorders might be caused by damage to or degeneration of the olfactory epithelium or olfactory nerve. (author)

  11. Immunocytochemistry of the olfactory marker protein.

    Science.gov (United States)

    Monti-Graziadei, G A; Margolis, F L; Harding, J W; Graziadei, P P

    1977-12-01

    The olfactory marker protein has been localized, by means of immunohistochemical techniques in the primary olfactory neurons of mice. The olfactory marker protein is not present in the staminal cells of the olfactory neuroepithelium, and the protein may be regarded as indicative of the functional stage of the neurons. Our data indicate that the olfactory marker protein is present in the synaptic terminals of the olfactory neurons at the level of the olfactory bulb glomeruli. The postsynaptic profiles of both mitral and periglomerular cells are negative.

  12. Enhanced discriminative fear learning of phobia-irrelevant stimuli in spider-fearful individuals

    Directory of Open Access Journals (Sweden)

    Carina eMosig

    2014-10-01

    Full Text Available Avoidance is considered as a central hallmark of all anxiety disorders. The acquisition and expression of avoidance which leads to the maintenance and exacerbation of pathological fear is closely linked to Pavlovian and operant conditioning processes. Changes in conditionability might represent a key feature of all anxiety disorders but the exact nature of these alterations might vary across different disorders. To date, no information is available on specific changes in conditionability for disorder-irrelevant stimuli in specific phobia (SP. The first aim of this study was to investigate changes in fear acquisition and extinction in spider-fearful individuals as compared to non-fearful participants by using the de novo fear conditioning paradigm. Secondly, we aimed to determine whether differences in the magnitude of context-dependent fear retrieval exist between spider-fearful and non-fearful individuals. Our findings point to an enhanced fear discrimination in spider-fearful individuals as compared to non-fearful individuals at both the physiological and subjective level. The enhanced fear discrimination in spider-fearful individuals was neither mediated by increased state anxiety, depression, nor stress tension. Spider-fearful individuals displayed no changes in extinction learning and/or fear retrieval. Surprisingly, we found no evidence for context-dependent modulation of fear retrieval in either group. Here we provide first evidence that spider-fearful individuals show an enhanced discriminative fear learning of phobia-irrelevant (de novo stimuli. Our findings provide novel insights into the role of fear acquisition and expression for the development and maintenance of maladaptive responses in the course of SP.

  13. Extinction of Conditioned Fear is Better Learned and Recalled in the Morning than in the Evening

    OpenAIRE

    Pace-Schott, Edward F.; Spencer, Rebecca M.C.; Vijayakumar, Shilpa; Ahmed, Nafis; Verga, Patrick W.; Orr, Scott P.; Pitman, Roger K.; Milad, Mohammed R.

    2013-01-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N=109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCR) to 2 d...

  14. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  15. Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory.

    Science.gov (United States)

    Sultan, S; Mandairon, N; Kermen, F; Garcia, S; Sacquet, J; Didier, A

    2010-07-01

    Inhibitory interneurons of the olfactory bulb are subjected to permanent adult neurogenesis. Their number is modulated by learning, suggesting that they could play a role in plastic changes of the bulbar network associated with olfactory memory. Adult male C57BL/6 mice were trained in an associative olfactory task, and we analyzed long-term retention of the task 5, 30, and 90 d post-training. In parallel, we assessed the fate of these newborn cells, mapped their distribution in the olfactory bulb and measured their functional implication using the immediate early gene Zif268. In a second set of experiments, we pharmacologically modulated glutamatergic transmission and using the same behavioral task assessed the consequences on memory retention and neurogenesis. Finally, by local infusion of an antimitotic drug, we selectively blocked neurogenesis during acquisition of the task and looked at the effects on memory retention. First we demonstrated that retrieval of an associative olfactory task recruits the newborn neurons in odor-specific areas of the olfactory bulb selected to survive during acquisition of the task and that it does this in a manner that depends on the strength of learning. We then demonstrated that acquisition is not dependent on neurogenesis if long-term retention of the task is abolished by blocking neurogenesis. Adult-born neurons are thus involved in changes in the neural representation of an odor; this underlies long-term olfactory memory as the strength of learning is linked to the duration of this memory. Neurogenesis thus plays a crucial role in long-term olfactory memory.

  16. Time frequency analysis of olfactory induced EEG-power change.

    Directory of Open Access Journals (Sweden)

    Valentin Alexander Schriever

    Full Text Available The objective of the present study was to investigate the usefulness of time-frequency analysis (TFA of olfactory-induced EEG change with a low-cost, portable olfactometer in the clinical investigation of smell function.A total of 78 volunteers participated. The study was composed of three parts where olfactory stimuli were presented using a custom-built olfactometer. Part I was designed to optimize the stimulus as well as the recording conditions. In part II EEG-power changes after olfactory/trigeminal stimulation were compared between healthy participants and patients with olfactory impairment. In Part III the test-retest reliability of the method was evaluated in healthy subjects.Part I indicated that the most effective paradigm for stimulus presentation was cued stimulus, with an interstimulus interval of 18-20s at a stimulus duration of 1000ms with each stimulus quality presented 60 times in blocks of 20 stimuli each. In Part II we found that central processing of olfactory stimuli analyzed by TFA differed significantly between healthy controls and patients even when controlling for age. It was possible to reliably distinguish patients with olfactory impairment from healthy individuals at a high degree of accuracy (healthy controls vs anosmic patients: sensitivity 75%; specificity 89%. In addition we could show a good test-retest reliability of TFA of chemosensory induced EEG-power changes in Part III.Central processing of olfactory stimuli analyzed by TFA reliably distinguishes patients with olfactory impairment from healthy individuals at a high degree of accuracy. Importantly this can be achieved with a simple olfactometer.

  17. Resting heart rate variability predicts safety learning and fear extinction in an interoceptive fear conditioning paradigm.

    Directory of Open Access Journals (Sweden)

    Meike Pappens

    Full Text Available This study aimed to investigate whether interindividual differences in autonomic inhibitory control predict safety learning and fear extinction in an interoceptive fear conditioning paradigm. Data from a previously reported study (N = 40 were extended (N = 17 and re-analyzed to test whether healthy participants' resting heart rate variability (HRV - a proxy of cardiac vagal tone - predicts learning performance. The conditioned stimulus (CS was a slight sensation of breathlessness induced by a flow resistor, the unconditioned stimulus (US was an aversive short-lasting suffocation experience induced by a complete occlusion of the breathing circuitry. During acquisition, the paired group received 6 paired CS-US presentations; the control group received 6 explicitly unpaired CS-US presentations. In the extinction phase, both groups were exposed to 6 CS-only presentations. Measures included startle blink EMG, skin conductance responses (SCR and US-expectancy ratings. Resting HRV significantly predicted the startle blink EMG learning curves both during acquisition and extinction. In the unpaired group, higher levels of HRV at rest predicted safety learning to the CS during acquisition. In the paired group, higher levels of HRV were associated with better extinction. Our findings suggest that the strength or integrity of prefrontal inhibitory mechanisms involved in safety- and extinction learning can be indexed by HRV at rest.

  18. Extensive Extinction in Multiple Contexts Eliminates the Renewal of Conditioned Fear in Rats

    Science.gov (United States)

    Thomas, Brian L.; Vurbic, Drina; Novak, Cheryl

    2009-01-01

    Two studies examined whether nonreinforcement of a stimulus in multiple contexts, instead of a single context, would decrease renewal of conditioned fear in rats (as assessed by conditioned suppression of lever pressing). In Experiment 1, renewal was measured after 36 nonreinforced CS trials delivered during six extinction sessions in a single…

  19. Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear.

    Science.gov (United States)

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J; Striessnig, Jörg; Singewald, Nicolas

    2008-05-01

    Dihydropyridine (DHP) L-type Ca(2+) channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. Ca(V)1.2 and Ca(V)1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive Ca(V)1.2 LTCCs (Ca(V)1.2DHP(-/-) mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in Ca(V)1.2DHP(-/-) mice, indicating that it is mediated by Ca(V)1.2, but not by Ca(V)1.3 LTCCs. Supporting this conclusion, Ca(V)1.3-deficient mice (Ca(V)1.3(-/-)) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral Ca(V)1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in Ca(V)1.2DHP(-/-) mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the Ca(V)1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly Ca(V)1.3) is not sufficient to accelerate extinction of conditioned fear in mice.

  20. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the infralimbic prefrontal cortex to the amygdala.

    Directory of Open Access Journals (Sweden)

    David Frausto Peña

    2014-09-01

    Full Text Available Fearful experiences can produce long-lasting and debilitating memories. Extinction of the fear response requires consolidation of new memories that compete with fearful associations. Subjects with posttraumatic stress disorder (PTSD show impaired extinction of conditioned fear, which is associated with decreased ventromedial prefrontal cortex (vmPFC control over amygdala activity. Vagus nerve stimulation (VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here we investigated whether pairing VNS with extinction learning facilitates plasticity between the infralimbic (IL medial prefrontal cortex and the basolateral complex of the amygdala (BLA. Rats were trained on an auditory fear conditioning task, which was followed by a retention test and one day of extinction training. Vagus nerve stimulation or sham-stimulation was administered concurrently with exposure to the fear-conditioned stimulus and retention of fear conditioning was tested again 24 hours later. VNS-treated rats demonstrated a significant reduction in freezing after a single extinction training session similar to animals that received 5x the number of extinction pairings. To study plasticity in the IL-BLA pathway, we recorded evoked field potentials in the BLA in anesthetized animals 24 h after retention testing. Brief burst stimulation in the IL produced LTD in the BLA field response in fear-conditioned and sham-treated animals. In contrast, the same stimulation resulted in potentiation of the IL-BLA pathway in the VNS-treated group. The present findings suggest that VNS promotes plasticity in the IL-BLA pathway to facilitate extinction of conditioned fear responses.

  1. Testing the effects of Delta 9-THC and D-cycloserine on extinction of conditioned fear in humans

    NARCIS (Netherlands)

    Klumpers, Floris; Denys, Damiaan; Kenemans, J. Leon; Grillon, Christian; van der Aart, Jasper; Baas, Johanna M. P.

    2012-01-01

    Preclinical evidence implicates several neurotransmitter systems in the extinction of conditioned fear. These results are of great interest, because the reduction of acquired fear associations is critical in therapies for anxiety disorders. We tested whether findings with respect to the

  2. Testing the effects of Delta9-THC and D-cycloserine on extinction of conditioned fear in humans

    NARCIS (Netherlands)

    Klumpers, F.; Denys, D.; Kenemans, J.L.; Grillon, C.; van der Aart, J.; Baas, J.M.

    2012-01-01

    Preclinical evidence implicates several neurotransmitter systems in the extinction of conditioned fear. These results are of great interest, because the reduction of acquired fear associations is critical in therapies for anxiety disorders. We tested whether findings with respect to the

  3. Object-location training elicits an overlapping but temporally distinct transcriptional profile from contextual fear conditioning.

    Science.gov (United States)

    Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted

    2014-12-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    Science.gov (United States)

    Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102

  5. Lack of predictive power of trait fear and anxiety for conditioned pain modulation (CPM).

    Science.gov (United States)

    Horn-Hofmann, Claudia; Priebe, Janosch A; Schaller, Jörg; Görlitz, Rüdiger; Lautenbacher, Stefan

    2016-12-01

    In recent years the association of conditioned pain modulation (CPM) with trait fear and anxiety has become a hot topic in pain research due to the assumption that such variables may explain the low CPM efficiency in some individuals. However, empirical evidence concerning this association is still equivocal. Our study is the first to investigate the predictive power of fear and anxiety for CPM by using a well-established psycho-physiological measure of trait fear, i.e. startle potentiation, in addition to two self-report measures of pain-related trait anxiety. Forty healthy, pain-free participants (female: N = 20; age: M = 23.62 years) underwent two experimental blocks in counter-balanced order: (1) a startle paradigm with affective picture presentation and (2) a CPM procedure with hot water as conditioning stimulus (CS) and contact heat as test stimulus (TS). At the end of the experimental session, pain catastrophizing (PCS) and pain anxiety (PASS) were assessed. PCS score, PASS score and startle potentiation to threatening pictures were entered as predictors in a linear regression model with CPM magnitude as criterion. We were able to show an inhibitory CPM effect in our sample: pain ratings of the heat stimuli were significantly reduced during hot water immersion. However, CPM was neither predicted by self-report of pain-related anxiety nor by startle potentiation as psycho-physiological measure of trait fear. These results corroborate previous negative findings concerning the association between trait fear/anxiety and CPM efficiency and suggest that shifting the focus from trait to state measures might be promising.

  6. Effects of chemogenetic excitation or inhibition of the ventrolateral periaqueductal gray on the acquisition and extinction of Pavlovian fear conditioning.

    Science.gov (United States)

    Arico, Carolyn; Bagley, Elena E; Carrive, Pascal; Assareh, Neda; McNally, Gavan P

    2017-10-01

    The midbrain periaqueductal gray (PAG) has been implicated in the generation and transmission of a prediction error signal that instructs amygdala-based fear and extinction learning. However, the PAG also plays a key role in the expression of conditioned fear responses. The evidence for a role of the PAG in fear learning and extinction learning has been obtained almost exclusively using PAG-dependent fear responses. It is less clear whether the PAG regulates fear learning when other measures of learned fear are used. Here we combined a chemogenetic approach, permitting excitation or inhibition of neurons in the ventrolateral PAG (VLPAG), with conditioned suppression as the measure of learned fear to assess the role of VLPAG in the acquisition and extinction of fear learning. We show that chemogenetic excitation of VLPAG (with some encroachment on lateral PAG [LPAG]) impairs acquisition of fear and, conversely, chemogenetic inhibition impairs extinction of fear. These effects on fear and extinction learning were specific to the combination of DREADD expression and injection of CNO because they were observed relative to both eYFP controls injected with CNO as well as DREADD expressing controls injected with vehicle. Taken together, these results show that activity of L/VLPAG neurons regulates both the acquisition and extinction of Pavlovian fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    Science.gov (United States)

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  8. Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short term memory task

    Directory of Open Access Journals (Sweden)

    Sasha eDevore

    2012-09-01

    Full Text Available Cholinergic inputs to cortical processing networks have long been associated with attentional and top-down processing. Experimental and theoretical studies suggest that cholinergic inputs to the main olfactory bulb (OB can modulate both neural and behavioral odor discrimination. Previous experiments from our laboratory and others demonstrate that blockade of nicotinic receptors directly impairs olfactory discrimination, whereas blockade of muscarinic receptors only measurably impairs olfactory perception when task demands are made more challenging, such as when very low-concentration odors are used or rats are required to maintain sensory memory over long durations. To further investigate the role of muscarinic signaling in the OB, we developed an olfactory delayed match-to-sample task using a digging-based behavioral paradigm. We find that rats are able to maintain robust short-term odor memory for tens to hundreds of seconds. To investigate the role of muscarinic signaling in task performance, we bilaterally infused scopolamine into the OB. We find that high dosages of scopolamine (38 mM impair performance on the task across all delays tested, including the baseline condition with no delay, whereas lower dosages (7.6 mM and 22.8 mM had no measureable effects. These results indicate that general execution of the match-to-sample task, even with no delay, is at least partially dependent on muscarinic signaling in the OB.

  9. Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task.

    Science.gov (United States)

    Devore, Sasha; Manella, Laura C; Linster, Christiane

    2012-01-01

    Cholinergic inputs to cortical processing networks have long been associated with attentional and top-down processing. Experimental and theoretical studies suggest that cholinergic inputs to the main olfactory bulb (OB) can modulate both neural and behavioral odor discrimination. Previous experiments from our laboratory and others demonstrate that blockade of nicotinic receptors directly impairs olfactory discrimination, whereas blockade of muscarinic receptors only measurably impairs olfactory perception when task demands are made more challenging, such as when very low-concentration odors are used or rats are required to maintain sensory memory over long durations. To further investigate the role of muscarinic signaling in the OB, we developed an olfactory delayed match-to-sample task using a digging-based behavioral paradigm. We find that rats are able to maintain robust short-term odor memory for 10-100 s. To investigate the role of muscarinic signaling in task performance, we bilaterally infused scopolamine into the OB. We find that high dosages of scopolamine (38 mM) impair performance on the task across all delays tested, including the baseline condition with no delay, whereas lower dosages (7.6 mM and 22.8 mM) had no measureable effects. These results indicate that general execution of the match-to-sample task, even with no delay, is at least partially dependent on muscarinic signaling in the OB.

  10. Induction of associative olfactory memory by targeted activation of single olfactory neurons in Drosophila larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-04-25

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by ChR2-mediated optical activation of a specific class of olfactory neurons. We show that targeted activation of the olfactory receptor and the octopaminergic neurons is indeed sufficient for the formation of associative olfactory memory in the larval brain. We also show that targeted stimulation of only a single type of olfactory receptor neurons is sufficient to induce olfactory memory that is indistinguishable from natural memory induced by the activation of multiple olfactory receptor neurons.

  11. Sad man's nose: Emotion induction and olfactory perception.

    Science.gov (United States)

    Flohr, Elena L R; Erwin, Elena; Croy, Ilona; Hummel, Thomas

    2017-03-01

    Emotional and olfactory processing is frequently shown to be closely linked both anatomically and functionally. Depression, a disease closely related to the emotional state of sadness, has been shown to be associated with a decrease in olfactory sensitivity. The present study focuses on the state of sadness in n = 31 healthy subjects in order to investigate the specific contribution of this affective state in the modulation of olfactory processing. A sad or indifferent affective state was induced using 2 movies that were presented on 2 separate days. Afterward, chemosensory-evoked potentials were recorded after stimulation with an unpleasant (hydrogen sulfide: "rotten eggs") or a pleasant (phenyl ethyl alcohol: "rose") odorant. Latencies of N1 and P2 peaks were longer after induction of the sad affective state. Additionally, amplitudes were lower in a sad affective state when being stimulated with the unpleasant odorant. Processing of olfactory input has thus been reduced under conditions of the sad affective state. We argue that the affective state per se could at least partially account for the reduced olfactory sensitivity in depressed patients. To our knowledge, the present study is the first to show influence of affective state on chemosensory event-related potentials. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Altered Olfactory Processing of Stress Related Body Odors and Artificial Odors in Patients with Panic Disorder

    OpenAIRE

    Wintermann, Gloria-Beatrice; Donix, Markus; Joraschky, Peter; Gerber, Johannes; Petrowski, Katja

    2014-01-01

    Background: Patients with Panic Disorder (PD) direct their attention towards potential threat, followed by panic attacks, and increased sweat production. Onés own anxiety sweat odor influences the attentional focus, and discrimination of threat or non-threat. Since olfactory projection areas overlap with neuronal areas of a panic-specific fear network, the present study investigated the neuronal processing of odors in general and of stress-related sweat odors in particular in patients with PD...

  13. Declarative virtual water maze learning and emotional fear conditioning in primary insomnia.

    Science.gov (United States)

    Kuhn, Marion; Hertenstein, Elisabeth; Feige, Bernd; Landmann, Nina; Spiegelhalder, Kai; Baglioni, Chiara; Hemmerling, Johanna; Durand, Diana; Frase, Lukas; Klöppel, Stefan; Riemann, Dieter; Nissen, Christoph

    2018-05-02

    Healthy sleep restores the brain's ability to adapt to novel input through memory formation based on activity-dependent refinements of the strength of neural transmission across synapses (synaptic plasticity). In line with this framework, patients with primary insomnia often report subjective memory impairment. However, investigations of memory performance did not produce conclusive results. The aim of this study was to further investigate memory performance in patients with primary insomnia in comparison to healthy controls, using two well-characterized learning tasks, a declarative virtual water maze task and emotional fear conditioning. Twenty patients with primary insomnia according to DSM-IV criteria (17 females, three males, 43.5 ± 13.0 years) and 20 good sleeper controls (17 females, three males, 41.7 ± 12.8 years) were investigated in a parallel-group study. All participants completed a hippocampus-dependent virtual Morris water maze task and amygdala-dependent classical fear conditioning. Patients with insomnia showed significantly delayed memory acquisition in the virtual water maze task, but no significant difference in fear acquisition compared with controls. These findings are consistent with the notion that memory processes that emerge from synaptic refinements in a hippocampal-neocortical network are particularly sensitive to chronic disruptions of sleep, while those in a basic emotional amygdala-dependent network may be more resilient. © 2018 European Sleep Research Society.

  14. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model.

    Science.gov (United States)

    Jung, Yong Gi; Lane, Andrew P

    2016-06-01

    To determine the effect of a soluble human tumor necrosis factor alpha (TNF-α) receptor blocker (etanercept) on an inducible olfactory inflammation (IOI) mouse model. An in vivo study using a transgenic mouse model. Research laboratory. To study the impact of chronic inflammation on the olfactory system, a transgenic mouse model of chronic rhinosinusitis-associated olfactory loss was utilized (IOI mouse), expressing TNF-α in a temporally controlled fashion within the olfactory epithelium. In one group of mice (n = 4), etanercept was injected intraperitoneally (100 μg/dose, 3 times/week) concurrent with a 2-week period of TNF-α expression. A second group of mice (n = 2) underwent induction of TNF-α expression for 8 weeks, with etanercept treatment administered during the final 2 weeks of inflammation. Olfactory function was assayed by elecro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Each group was compared with an equal-number control group. Compared with nontreated IOI mice, etanercept-treated IOI mice showed significantly improved EOG responses after 2 weeks (P loss of olfactory epithelium and no EOG response in nontreated IOI mice. However, in etanercept-treated mice, regeneration of olfactory epithelium was observed. Concomitant administration of etanercept in IOI mice results in interruption of TNF-α-induced olfactory loss and induction of neuroepithelial regeneration. This demonstrates that etanercept has potential utility as a tool for elucidating the role of TNF-α in other olfactory inflammation models. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  15. Olfactory evaluation in Mild Cognitive Impairment: correlation with neurocognitive performance and endothelial function.

    Science.gov (United States)

    Tonacci, Alessandro; Bruno, Rosa M; Ghiadoni, Lorenzo; Pratali, Lorenza; Berardi, Nicoletta; Tognoni, Gloria; Cintoli, Simona; Volpi, Leda; Bonuccelli, Ubaldo; Sicari, Rosa; Taddei, Stefano; Maffei, Lamberto; Picano, Eugenio

    2017-05-01

    Mild Cognitive Impairment (MCI) is an intermediate condition between normal aging and dementia, associated with an increased risk of progression into the latter within months or years. Olfactory impairment, a well-known biomarker for neurodegeneration, might be present in the condition early, possibly representing a signal for future pathological onset. Our study aimed at evaluating olfactory function in MCI and healthy controls in relation to neurocognitive performance and endothelial function. A total of 85 individuals with MCI and 41 healthy controls, matched for age and gender, were recruited. Olfactory function was assessed by Sniffin' Sticks Extended Test (Burghart, Medizintechnik, GmbH, Wedel, Germany). A comprehensive neurocognitive assessment was performed. Endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery by ultrasound. MCI individuals showed an impaired olfactory function compared to controls. The overall olfactory score is able to predict MCI with a good sensitivity and specificity (70.3 and 77.4% respectively). In MCI, olfactory identification score is correlated with a number of neurocognitive abilities, including overall cognitive status, dementia rating, immediate and delayed memory, visuospatial ability and verbal fluency. FMD was reduced in MCI (2.90 ± 2.15 vs. 3.66 ± 1.96%, P = 0.016) and was positively associated with olfactory identification score (ρ s =0.219, P = 0.025). The association remained significant after controlling for age, gender, and smoking. In conclusion, olfactory evaluation is able to discriminate between MCI and healthy individuals. Systemic vascular dysfunction might be involved, at least indirectly, in olfactory dysfunction in MCI. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    Science.gov (United States)

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  17. Reduced Consolidation, Reinstatement, and Renewal of Conditioned Fear Memory by Repetitive Treatment of Radix Polygalae in Mice

    Directory of Open Access Journals (Sweden)

    Jung-Won Shin

    2017-05-01

    Full Text Available The therapeutic goal for the treatment of posttraumatic stress disorder (PTSD is to promote extinction and to prevent the relapse of fearful memories. Research has identified pharmacological treatments that may regulate the formation and extinction of fear memories, but not many reagents that block the relapse of extinguished fear are known. Radix Polygalae (RP is an Asian herb used for sedation, and its ingredients have anxiolytic and antidepressant properties. As various neurological effects have been identified, we tested whether RP affects the relapse of fear. Freezing in response to a conditioned context and cues was used to measure the effects of RP in mice. In cohort 1 (n = 30, consolidation, extinction, and reinstatement were tested during the course of 18 days of treatment. In cohort 2 (n = 30, consolidation, extinction, and renewal were tested during 10 days of treatment. The consolidation, extinction, reinstatement, and possibly the renewal of context-induced freezing were inhibited due to the administration of RP in animal subjects. However, the effects of RP on the freezing responses of subjects elicited by conditioned auditory cues were less obvious. Because it effectively suppresses the consolidation of fear memories, RP may be used for primary and secondary prevention of symptoms in PTSD patients. Additionally, because it effectively suppresses the reinstatement and renewal of fear memories, RP may be applied for the prevention of fear relapse in PTSD patients who have undergone exposure therapy.

  18. Infant rats can learn time intervals before the maturation of the striatum: evidence from odor fear conditioning

    Directory of Open Access Journals (Sweden)

    Julie eBoulanger Bertolus

    2014-05-01

    Full Text Available Interval timing refers to the ability to perceive, estimate and discriminate durations in the range of seconds to minutes. Very little is currently known about the ontogeny of interval timing throughout development. On the other hand, even though the neural circuit sustaining interval timing is a matter of debate, the striatum has been suggested to be an important component of the system and its maturation occurs around the third post-natal week in rats. The global aim of the present study was to investigate interval timing abilities at an age for which striatum is not yet mature. We used odor fear conditioning, as it can be applied to very young animals. In odor fear conditioning, an odor is presented to the animal and a mild footshock is delivered after a fixed interval. Adult rats have been shown to learn the temporal relationships between the odor and the shock after a few associations. The first aim of the present study was to assess the activity of the striatum during odor fear conditioning using 2-Deoxyglucose autoradiography during development in rats. The data showed that although fear learning was displayed at all tested ages, activation of the striatum was observed in adults but not in juvenile animals. Next, we assessed the presence of evidence of interval timing in ages before and after the inclusion of the striatum into the fear conditioning circuit. We used an experimental setup allowing the simultaneous recording of freezing and respiration that have been demonstrated to be sensitive to interval timing in adult rats. This enabled the detection of duration-related temporal patterns for freezing and/or respiration curves in infants as young as 12 days post-natal during odor-fear conditioning. This suggests that infants are able to encode time durations as well as and as quickly as adults while their striatum is not yet functional. Alternative networks possibly sustaining interval timing in infant rats are discussed.

  19. Olfactory nerve transport of macromolecular drugs to the brain. A problem in olfactory impaired patients

    International Nuclear Information System (INIS)

    Shiga, Hideaki; Yamamoto, Junpei; Miwa, Takaki

    2012-01-01

    Nasal administration of macromolecular drugs (including peptides and nanoparticles) has the potential to enable drug delivery system beyond the blood brain barrier (BBB) via olfactory nerve transport. Basic research on drug deliver systems to the brain via nasal administration has been well reported. Insulin-like growth factor-I (IGF-I) is associated with the development and growth of the central nervous system. Clinical application of IGF-I with nasal administration is intended to enable drug delivery to brain through the BBB. Uptake of IGF-I in the olfactory bulb and central nervous system increased according to the dosage of nasally administered IGF-I in normal ICR mice, however IGF-I uptake in the trigeminal nerve remained unchanged. Olfactory nerve transport is important for the delivery of nasally administered IGF-I to the brain in vivo. Because a safe olfactory nerve tracer has not been clinically available, olfactory nerve transport has not been well studied in humans. Nasal thallium-201 ( 201 Tl) administration has been safely used to assess the direct pathway to the brain via the nose in healthy volunteers with a normal olfactory threshold. 201 Tl olfactory nerve transport has recently been shown to decrease in patients with hyposmia. The olfactory nerve transport function in patients with olfactory disorders will be determined using 201 Tl olfacto-scintigraphy for the exclusion of candidates in a clinical trial to assess the usefulness of nasal administration of IGF-I. (author)

  20. Cross-modal interaction between visual and olfactory learning in Apis cerana.

    Science.gov (United States)

    Zhang, Li-Zhen; Zhang, Shao-Wu; Wang, Zi-Long; Yan, Wei-Yu; Zeng, Zhi-Jiang

    2014-10-01

    The power of the small honeybee brain carrying out behavioral and cognitive tasks has been shown repeatedly to be highly impressive. The present study investigates, for the first time, the cross-modal interaction between visual and olfactory learning in Apis cerana. To explore the role and molecular mechanisms of cross-modal learning in A. cerana, the honeybees were trained and tested in a modified Y-maze with seven visual and five olfactory stimulus, where a robust visual threshold for black/white grating (period of 2.8°-3.8°) and relatively olfactory threshold (concentration of 50-25%) was obtained. Meanwhile, the expression levels of five genes (AcCREB, Acdop1, Acdop2, Acdop3, Actyr1) related to learning and memory were analyzed under different training conditions by real-time RT-PCR. The experimental results indicate that A. cerana could exhibit cross-modal interactions between visual and olfactory learning by reducing the threshold level of the conditioning stimuli, and that these genes may play important roles in the learning process of honeybees.

  1. Neural representations of novel objects associated with olfactory experience.

    Science.gov (United States)

    Ghio, Marta; Schulze, Patrick; Suchan, Boris; Bellebaum, Christian

    2016-07-15

    Object conceptual knowledge comprises information related to several motor and sensory modalities (e.g. for tools, how they look like, how to manipulate them). Whether and to which extent conceptual object knowledge is represented in the same sensory and motor systems recruited during object-specific learning experience is still a controversial question. A direct approach to assess the experience-dependence of conceptual object representations is based on training with novel objects. The present study extended previous research, which focused mainly on the role of manipulation experience for tool-like stimuli, by considering sensory experience only. Specifically, we examined the impact of experience in the non-dominant olfactory modality on the neural representation of novel objects. Sixteen healthy participants visually explored a set of novel objects during the training phase while for each object an odor (e.g., peppermint) was presented (olfactory-visual training). As control conditions, a second set of objects was only visually explored (visual-only training), and a third set was not part of the training. In a post-training fMRI session, participants performed an old/new task with pictures of objects associated with olfactory-visual and visual-only training (old) and no training objects (new). Although we did not find any evidence of activations in primary olfactory areas, the processing of olfactory-visual versus visual-only training objects elicited greater activation in the right anterior hippocampus, a region included in the extended olfactory network. This finding is discussed in terms of different functional roles of the hippocampus in olfactory processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fish as aquatic “sniffer dogs”: Olfactory-mediated behaviors and conditioning of common carps to cadaver odors

    Directory of Open Access Journals (Sweden)

    Brian Wade Jamandre

    2015-12-01

    Full Text Available Even with the aide of modern technology, the search for cadaver or human remains underwater is still assisted by sniffer dogs mainly because of their superior sense of olfaction. However, dogs rely on volatile organic compounds in the air and that this may constraint their ability when searching for submerged cadavers. On the other hand, it has long been recognized that fishes use olfaction to sample odors from their surroundings to accomplish a task and are capable of acquiring new skills through training or conditioning. Despite decades of experimental and observational studies of the olfactory sensitivities of fishes, its potential application to forensic sciences has never been truly explored. In this pioneering research, we explore the possibility of using fish olfaction in detecting cadaver odors (porcine origin, using common carps Cyprinus carpio as model species in a series of experiments under laboratory conditions. We first observed the innate behavior of carps towards cadaver odors. Afterwards, the carps were trained in two-choice chamber experimental tanks by appetitive olfactory conditioning and odor masking methods. We also experimented on the effects of cadaver odors by early exposure using eggs and larval impregnation techniques, and observing the behaviors when they develop to early juveniles. In general, we found out that common carps are naturally repelled to cadaver odors. However using our devised conditioning protocol, results show that the conditioned carps were able to learn to be attracted to cadaver odors despite their innate aversion. The development of fish for cadaver detection is a simple but innovative idea and that it may present a cost-effective and reliable solution for the shortcomings of the existing methods in underwater cadaver search. We anticipate that this research will open up a variety of different studies in pursuit of developing fishes as biosensors and its application to forensic sciences.

  3. Fearing shades of grey: individual differences in fear responding towards generalisation stimuli.

    Science.gov (United States)

    Arnaudova, Inna; Krypotos, Angelos-Miltiadis; Effting, Marieke; Kindt, Merel; Beckers, Tom

    2017-09-01

    Individual differences in fear generalisation have been proposed to play a role in the aetiology and/or maintenance of anxiety disorders, but few data are available to directly support that claim. The research that is available has focused mostly on generalisation of peripheral and central physiological fear responses. Far less is known about the generalisation of avoidance, the behavioural component of fear. In two experiments, we evaluated how neuroticism, a known vulnerability factor for anxiety, modulates an array of fear responses, including avoidance tendencies, towards generalisation stimuli (GS). Participants underwent differential fear conditioning, in which one conditioned stimulus (CS+) was repeatedly paired with an aversive outcome (shock; unconditioned stimulus, US), whereas another was not (CS-). Fear generalisation was observed across measures in Experiment 1 (US expectancy and evaluative ratings) and Experiment 2 (US expectancy, evaluative ratings, skin conductance, startle responses, safety behaviours), with overall highest responding to the CS+, lowest to the CS- and intermediate responding to the GSs. Neuroticism had very little impact on fear generalisation (but did affect GS recognition rates in Experiment 1), in line with the idea that fear generalisation is largely an adaptive process.

  4. The Development of Skin Conductance Fear Conditioning in Children from Ages 3 to 8 Years

    Science.gov (United States)

    Gao, Yu; Raine, Adrian; Venables, Peter H.; Dawson, Michael E.; Mednick, Sarnoff A.

    2010-01-01

    Although fear conditioning is an important psychological construct implicated in behavioral and emotional problems, little is known about how it develops in early childhood. Using a differential, partial reinforcement conditioning paradigm, this longitudinal study assessed skin conductance conditioned responses in 200 children at ages 3, 4, 5, 6,…

  5. Coming to terms with fear

    Science.gov (United States)

    LeDoux, Joseph E.

    2014-01-01

    The brain mechanisms of fear have been studied extensively using Pavlovian fear conditioning, a procedure that allows exploration of how the brain learns about and later detects and responds to threats. However, mechanisms that detect and respond to threats are not the same as those that give rise to conscious fear. This is an important distinction because symptoms based on conscious and nonconscious processes may be vulnerable to different predisposing factors and may also be treatable with different approaches in people who suffer from uncontrolled fear or anxiety. A conception of so-called fear conditioning in terms of circuits that operate nonconsciously, but that indirectly contribute to conscious fear, is proposed as way forward. PMID:24501122

  6. Olfactory training in patients with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Antje Haehner

    Full Text Available OBJECTIVE: Decrease of olfactory function in Parkinson's disease (PD is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from "training" with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function. METHODS: We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training. Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves. Olfactory testing was performed before and after training using the "Sniffin' Sticks" (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification in addition to threshold tests for the odors used in the training process. RESULTS: Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training. CONCLUSION: The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.

  7. Early life stress in rats sex-dependently affects remote endocrine rather than behavioral consequences of adult exposure to contextual fear conditioning.

    Science.gov (United States)

    Fuentes, Sílvia; Daviu, Núria; Gagliano, Humberto; Belda, Xavier; Armario, Antonio; Nadal, Roser

    2018-05-30

    Exposure to electric foot-shocks can induce in rodents contextual fear conditioning, generalization of fear to other contexts and sensitization of the hypothalamic-pituitary-adrenal (HPA) axis to further stressors. All these aspects are relevant for the study of post-traumatic stress disorder. In the present work we evaluated in rats the sex differences and the role of early life stress (ELS) in fear memories, generalization and sensitization. During the first postnatal days subjects were exposed to restriction of nesting material along with exposure to a "substitute" mother. In the adulthood they were exposed to (i) a contextual fear conditioning to evaluate long-term memory and extinction and (ii) to a novel environment to study cognitive fear generalization and HPA axis heterotypic sensitization. ELS did not alter acquisition, expression or extinction of context fear conditioned behavior (freezing) in either sex, but reduced activity in novel environments only in males. Fear conditioning associated hypoactivity in novel environments (cognitive generalization) was greater in males than females but was not specifically affected by ELS. Although overall females showed greater basal and stress-induced levels of ACTH and corticosterone, an interaction between ELS, shock exposure and sex was found regarding HPA hormones. In males, ELS did not affect ACTH response in any situation, whereas in females, ELS reduced both shock-induced sensitization of ACTH and its conditioned response to the shock context. Also, shock-induced sensitization of corticosterone was only observed in males and ELS specifically reduced corticosterone response to stressors in males but not females. In conclusion, ELS seems to have only a minor impact on shock-induced behavioral conditioning, while affecting the unconditioned and conditioned responses of HPA hormones in a sex-dependent manner. Copyright © 2018. Published by Elsevier Inc.

  8. Effects of radiotherapy on olfactory function

    International Nuclear Information System (INIS)

    Hoelscher, Tobias; Seibt, Annedore; Appold, Steffen; Doerr, Wolfgang; Herrmann, Thomas; Huettenbrink, Karl-Bernd; Hummel, Thomas

    2005-01-01

    Background and Purpose: Changes in olfactory function have been reported in patients receiving significant doses of radiation to the olfactory epithelium. Aim of this study was to investigate severity and time course of changes in olfactory function in patients irradiated for tumours of the head and neck region. Material and Methods: Forty-four patients receiving radiotherapy (RT) for tumours in the area of the head and neck participated (16 women, 28 men; age 11-81 y; mean 55 y). Olfactory function was measured before and bi-weekly during RT for 6 weeks. A subgroup (25 patients) was followed for 12 months. Patients were divided into two groups according to the dose to the olfactory epithelium. Twenty-two patients ('OLF group') had radiation doses to the olfactory epithelium between 23.7 and 79.5 Gy (median 62.2 Gy). In the 22 patients of the 'non-OLF group' the dose applied to the olfactory epithelium was significantly lower (2.9-11.1 Gy, median 5.9 Gy). Total tumour dose (30-76.8 Gy), age, sex distribution, and baseline chemosensory function were not significantly different between groups. Testing was performed for odour identification, odour discrimination, and olfactory thresholds. Results: Odour discrimination, but not odour identification or odour threshold, was significantly decreased 2-6 weeks after begin of therapy in the OLF group. In addition, a significant effect of the radiation dose was observed for odour discrimination. More than 6 months after therapy, OLF group patients had significantly lower odour identification scores compared to the non-OLF group. Conclusion: As indicated through the non-significant change of olfactory thresholds, the olfactory epithelium is relatively resistant against effects of radiation. It is hypothesized that RT has additional effects on the olfactory bulb/orbitofrontal cortex responsible for the observed changes of suprathreshold olfactory function

  9. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  10. Cat odor causes long-lasting contextual fear conditioning and increased pituitary-adrenal activation, without modifying anxiety.

    Science.gov (United States)

    Muñoz-Abellán, Cristina; Daviu, Nuria; Rabasa, Cristina; Nadal, Roser; Armario, Antonio

    2009-10-01

    A single exposure to a cat or cat odors has been reported by some groups to induce contextual and auditory fear conditioning and long-lasting changes in anxiety-like behaviour, but there is no evidence for parallel changes in biological stress markers. In the present study we demonstrated in male rats that exposure to a novel environment containing a cloth impregnated with cat fur odor resulted in avoidance of the odor, lower levels of activity and higher pituitary-adrenal (PA) response as compared to those exposed to the novel environment containing a clean cloth, suggesting increased levels of stress in the former animals. When re-exposed 9 days later to the same environment with a clean cloth, previously cat fur exposed rats again showed avoidance of the cloth area and lower levels of activity, suggesting development of contextual fear conditioning, which again was associated with a higher PA activation. In contrast, unaltered both anxiety-like behaviour and PA responsiveness to an elevated plus-maze were found 7 days after cat odor exposure. It is concluded that: (i) PA activation is able to reflect both the stressful properties of cat fur odor and odor-induced contextual fear conditioning; (ii) development of cat odor-induced contextual fear conditioning is independent of the induction of long-lasting changes in anxiety-like behaviour; and (iii) greater PA activation during exposure to the odor context is not explained by non-specific sensitization of the PA axis caused by previous exposure to cat fur odor.

  11. Olfactory memory impairment in neurodegenerative diseases.

    Science.gov (United States)

    Bahuleyan, Biju; Singh, Satendra

    2012-10-01

    Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the present review was to discuss the available scientific knowledge on the olfactory memory and to relate its impairment with neurodegenerative diseases.

  12. The Writer’s Condition and the Concept of Fear

    Directory of Open Access Journals (Sweden)

    Alina Beatrice Chesca

    2010-07-01

    Full Text Available This paper approaches Otto Rank’s theory according to which the main cause of anxiety is the individual’s separation from the loved beings and objects. Along one’s life, anxiety takes two forms: the fear of life and the fear of death. The fear of life is the anxiety which appears when the person becomes aware of his creative abilities which could separate him from the existing relationships. Writers like Emil Cioran, Mihail Sebastian, Octavian Paler, Yukio Mishima, Ernest Hemingway suffered from the fear of life, they were haunted by a tragic that brought about theloneliness of death. It is what Kierkegaard called: ”the fatal disease”, the sin of the artist’s existence. The artistic process implies an oscillation between acceptance and rejection, satisfaction and negation, life and death, loneliness and happiness.

  13. Memory suppression trades prolonged fear and sleep-dependent fear plasticity for the avoidance of current fear

    Science.gov (United States)

    Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu

    2013-07-01

    Sleep deprivation immediately following an aversive event reduces fear by preventing memory consolidation during homeostatic sleep. This suggests that acute insomnia might act prophylactically against the development of posttraumatic stress disorder (PTSD) even though it is also a possible risk factor for PTSD. We examined total sleep deprivation and memory suppression to evaluate the effects of these interventions on subsequent aversive memory formation and fear conditioning. Active suppression of aversive memory impaired retention of event memory. However, although the remembered fear was more reduced in sleep-deprived than sleep-control subjects, suppressed fear increased, and seemed to abandon the sleep-dependent plasticity of fear. Active memory suppression, which provides a psychological model for Freud's ego defense mechanism, enhances fear and casts doubt on the potential of acute insomnia as a prophylactic measure against PTSD. Our findings bring into question the role of sleep in aversive-memory consolidation in clinical PTSD pathophysiology.

  14. Stressor controllability modulates fear extinction in humans

    Science.gov (United States)

    Hartley, Catherine A.; Gorun, Alyson; Reddan, Marianne C.; Ramirez, Franchesca; Phelps, Elizabeth A.

    2014-01-01

    Traumatic events are proposed to play a role in the development of anxiety disorders, however not all individuals exposed to extreme stress experience a pathological increase in fear. Recent studies in animal models suggest that the degree to which one is able to control an aversive experience is a critical factor determining its behavioral consequences. In this study, we examined whether stressor controllability modulates subsequent conditioned fear expression in humans. Participants were randomly assigned to an escapable stressor condition, a yoked inescapable stressor condition, or a control condition involving no stress exposure. One week later, all participants underwent fear conditioning, fear extinction, and a test of extinction retrieval the following day. Participants exposed to inescapable stress showed impaired fear extinction learning and increased fear expression the following day. In contrast, escapable stress improved fear extinction and prevented the spontaneous recovery of fear. Consistent with the bidirectional controllability effects previously reported in animal models, these results suggest that one's degree of control over aversive experiences may be an important factor influencing the development of psychological resilience or vulnerability in humans. PMID:24333646

  15. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice

    Science.gov (United States)

    Smith, Kiersten S.; Engin, Elif; Meloni, Edward G.; Rudolph, Uwe

    2012-01-01

    GABAA receptor modulating drugs such as benzodiazepines (BZs) have been used to treat anxiety disorders for over five decades. In order to determine whether the same or different GABAA receptor subtypes are necessary for the anxiolytic-like action of BZs in unconditioned anxiety and conditioned fear models, we investigated the role of different GABAA receptor subtypes by challenging wild type, α1(H101R), α2(H101R) and α3(H126R) mice bred on the C57BL/6J background with diazepam or chlordiazepoxide in the elevated plus maze and the fear-potentiated startle paradigms. Both drugs significantly increased open arm exploration in the elevated plus maze in wild type, α1(H101R) and α3(H126R), but this effect was abolished in α2(H101R) mice; these were expected results based on previous published results. In contrast, while administration of diazepam and chlordiazepoxide significantly attenuated fear-potentiated startle (FPS) in wild type mice and α3(H126R) mice, the fear-reducing effects of these drugs were absent in both α1(H101R) and α2(H101R) point mutants, indicating that both α1- and α2-containing GABAA receptors are necessary for BZs to exert their effects on conditioned fear responses.. Our findings illustrate both an overlap and a divergence between the GABAA receptor subtype requirements for the impact of BZs, specifically that both α1- and α2-containing GABAA receptors are necessary for BZs to reduce conditioned fear whereas only α2-containing GABAA receptors are needed for BZ-induced anxiolysis in unconditioned tests of anxiety. This raises the possibility that GABAergic pharmacological interventions for specific anxiety disorders can be differentially tailored. PMID:22465203

  16. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    Science.gov (United States)

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  17. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    Science.gov (United States)

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  18. Molecular mechanisms of fear learning and memory.

    Science.gov (United States)

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Interference effects of transcranial direct current stimulation over the right frontal cortex and adrenergic system on conditioned fear.

    Science.gov (United States)

    Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza

    2017-11-01

    The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.

  20. Olfactory dysfunction in neuromyelitis optica spectrum disorders

    NARCIS (Netherlands)

    Zhang, L.J.; Zhao, N.; Fu, Y.; Zhang, D.Q.; Wang, J.; Qin, W.; Zhang, N.N.N.; Wood, K.; Liu, Y.; Yu, C.S.; Shi, F.D.; Yang, L.

    2015-01-01

    Few data were available for the understanding of olfactory function in neuromyelitis optica spectrum disorders (NMOSDs). The aims of our study were to investigate the incidence of olfactory dysfunction and characterize olfactory structures, using MRI, in patients with NMOSDs. Olfactory function was

  1. Olfactory bulb proteins linked to olfactory memory in C57BL/6J mice.

    Science.gov (United States)

    Li, Lin; Mauric, Veronika; Zheng, Jun-Fang; Kang, Sung Ung; Patil, Sudarshan; Höger, Harald; Lubec, Gert

    2010-08-01

    Information on systematic analysis of olfactory memory-related proteins is poor. In this study, the odor discrimination task to investigate olfactory recognition memory of adult male C57BL/6J mice was used. Subsequently, olfactory bulbs (OBs) were taken, proteins extracted, and run on two-dimensional gel electrophoresis with in-gel-protein digestion, followed by mass spectrometry and quantification of differentially expressed proteins. Dual specificity mitogen-activated protein kinase kinase 1 (MEK1), dihydropyrimidinase-related protein 1 (DRP1), and fascin are related with Lemon odor memory. Microtubule-associated protein RP/EB family member 3 is related to Rose odor memory. Hypoxanthine-guanine phosphoribosyltransferase is related with both Lemon and Rose odors memory. MEK1 and DRP1 levels were increased, while microtubule-associated protein RP/EB family member 3, fascin and hypoxanthine-guanine phosphoribosyltransferase levels were decreased during olfactory memory. In summary, neurogenesis, signal transduction, cytoskeleton, and nucleotide metabolism are involved in olfactory memory formation and storage of C57BL/6J mice.

  2. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala.

    Science.gov (United States)

    Katz, Ira K; Lamprecht, Raphael

    2015-02-01

    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  3. Within-session analysis of the extinction of pavlovian fear-conditioning using robust regression

    Directory of Open Access Journals (Sweden)

    Vargas-Irwin, Cristina

    2010-06-01

    Full Text Available Traditionally , the analysis of extinction data in fear conditioning experiments has involved the use of standard linear models, mostly ANOVA of between-group differences of subjects that have undergone different extinction protocols, pharmacological manipulations or some other treatment. Although some studies report individual differences in quantities such as suppression rates or freezing percentages, these differences are not included in the statistical modeling. Withinsubject response patterns are then averaged using coarse-grain time windows which can overlook these individual performance dynamics. Here we illustrate an alternative analytical procedure consisting of 2 steps: the estimation of a trend for within-session data and analysis of group differences in trend as main outcome. This procedure is tested on real fear-conditioning extinction data, comparing trend estimates via Ordinary Least Squares (OLS and robust Least Median of Squares (LMS regression estimates, as well as comparing between-group differences and analyzing mean freezing percentage versus LMS slopes as outcomes

  4. Behavioural and neurophysiological study of olfactory perception and learning in honeybees

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eSandoz

    2011-12-01

    Full Text Available The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioural and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odours, based on behavioural, neuroanatomical and neurophysiological approaches. I first address the behavioural study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odour-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odour representation changes as a result of experience. This impressive ensemble of behavioural, neuroanatomical and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion.

  5. Fear activation and distraction during the emotional processing of claustrophobic fear

    NARCIS (Netherlands)

    Telch, M.J.; Valentiner, D.P.; Ilai, D.; Young, P.R.; Powers, M.B.; Smits, J.A.J.

    2012-01-01

    We tested several hypotheses derived from the emotional processing theory of fear reduction by manipulating claustrophobic participants' focus of attention during in vivo exposure. Sixty participants displaying marked claustrophobic fear were randomized to one of four exposure conditions. Each

  6. Olfactory Memory Impairment in Neurodegenerative Diseases

    OpenAIRE

    Bahuleyan, Biju; Singh, Satendra

    2012-01-01

    Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the prese...

  7. Mechanisms of social buffering of fear in zebrafish.

    Science.gov (United States)

    Faustino, Ana I; Tacão-Monteiro, André; Oliveira, Rui F

    2017-03-31

    Some humans thrive whereas others resign when exposed to threatening situations throughout life. Social support has been identified as an important modulator of these discrepancies in human behaviour, and other social animals also exhibit phenomena in which individuals recover better from aversive events when conspecifics are present - aka social buffering. Here we studied social buffering in zebrafish, by exposing focal fish to an aversive stimulus (alarm substance - AS) either in the absence or presence of conspecific cues. When exposed to AS in the presence of both olfactory (shoal water) and visual (sight of shoal) conspecific cues, focal fish exhibited a lower fear response than when tested alone, demonstrating social buffering in zebrafish. When separately testing each cue's effectiveness, we verified that the visual cue was more effective than the olfactory in reducing freezing in a persistent threat scenario. Finally, we verified that social buffering was independent of shoal size and coincided with a distinct pattern of co-activation of brain regions known to be involved in mammalian social buffering. Thus, this study suggests a shared evolutionary origin for social buffering in vertebrates, bringing new evidence on the behavioural, sensory and neural mechanisms underlying this phenomenon.

  8. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices.

    Science.gov (United States)

    Song, Chenghui; Ehlers, Vanessa L; Moyer, James R

    2015-09-30

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC-BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted extinction of trace fear conditioning. Significance statement: Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel combination of electrophysiological recordings from fluorescently labeled mPFC-to-amygdala projection neurons in rats with acquisition and extinction of trace fear conditioning to determine how

  9. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    . Between 40-44% of the patients showing olfactory impairments were not aware of their deficit. CONCLUSIONS: Since a significant proportion of the patients showing olfactory impairments were not aware of their deficit, it is recommended than clinicians systematically evaluate olfactory functions using...

  10. Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb.

    Science.gov (United States)

    Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M

    1984-08-01

    A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity.

  11. Evidence for a role of GABA- and glutamate-gated chloride channels in olfactory memory.

    Science.gov (United States)

    Boumghar, Katia; Couret-Fauvel, Thomas; Garcia, Mikael; Armengaud, Catherine

    2012-11-01

    In the honeybee, we investigated the role of transmissions mediated by GABA-gated chloride channels and glutamate-gated chloride channels (GluCls) of the mushroom bodies (MBs) on olfactory learning using a single-trial olfactory conditioning paradigm. The GABAergic antagonist picrotoxin (PTX) or the GluCl antagonist L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC) was injected alone or in combination into the α-lobes of MBs. PTX impaired early long-term olfactory memory when injected before conditioning or before testing. L-trans-PDC alone induced no significant effect on learning and memory but induced a less specific response to the conditioned odor. When injected before PTX, L-trans-PDC was able to modulate PTX effects. These results emphasize the role of MB GABA-gated chloride channels in consolidation processes and strongly support that GluCls are involved in the perception of the conditioned stimulus.

  12. Proteomic Analysis of the Human Olfactory Bulb.

    Science.gov (United States)

    Dammalli, Manjunath; Dey, Gourav; Madugundu, Anil K; Kumar, Manish; Rodrigues, Benvil; Gowda, Harsha; Siddaiah, Bychapur Gowrishankar; Mahadevan, Anita; Shankar, Susarla Krishna; Prasad, Thottethodi Subrahmanya Keshava

    2017-08-01

    The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.

  13. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice.

    Directory of Open Access Journals (Sweden)

    Dawn H Loh

    Full Text Available BACKGROUND: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD cycle. Such "jet lag" treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. METHODOLOGY/PRINCIPAL FINDINGS: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. CONCLUSIONS/SIGNIFICANCE: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.

  14. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  15. The impact of a context switch and context instructions on the return of verbally conditioned fear

    NARCIS (Netherlands)

    Mertens, Gaëtan; De Houwer, Jan

    BACKGROUND AND OBJECTIVES: Repeated exposure to a conditioned stimulus can lead to a reduction of conditioned fear responses towards this stimulus (i.e., extinction). However, this reduction is often fragile and sensitive to contextual changes. In the current study, we investigated whether

  16. Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus.

    Directory of Open Access Journals (Sweden)

    James C Walton

    Full Text Available Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD and short day lengths (SD for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.

  17. Fear inhibition in high trait anxiety.

    Directory of Open Access Journals (Sweden)

    Merel Kindt

    Full Text Available Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  18. A fully automated Drosophila olfactory classical conditioning and testing system for behavioral learning and memory assessment.

    Science.gov (United States)

    Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L; Page, Terry L; Bhuva, Bharat; Broadie, Kendal

    2016-03-01

    Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement. The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators. This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. [Is olfactory function impaired in moderate height?].

    Science.gov (United States)

    Kühn, M; Welsch, H; Zahnert, T; Hummel, Thomas

    2009-09-01

    The human sense of smell seems to be influenced by the surrounding barometric pressure. These factors appear to be especially important during flights, for example, in order to recognize the smell of fire etc. Thus, questions are whether pilots or passengers exhibit an impaired smell sensitivity when tested at moderate heights, or, whether changes in humidity would affect the sense of smell. Using climate chambers, odor discrimination and butanol odor thresholds were tested in 77 healthy normosmic volunteers (5 female, 72 male; aged 25+/-8 years from 18 up to 53 years) under hypobaric (2 700+/-20 m, 20 degrees C+/-1 K, rh=50+/-5%) and hyperbaric, (10+/-0.5 m (2 bar)) and different humidity conditions (30 vs. 80%, 20 degrees C+/-1 K, normobaric). During all conditions cognitive performance was tested. Among other effects, olfactory sensitivity was impaired at threshold, but not suprathreshold level, in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests. During flight hypobaric conditions, mild hypoxia and dry air may cause impaired sensitivity of smell. Georg Thieme Verlag KG Stuttgart * New York.

  20. Olfactory interference during inhibitory backward pairing in honey bees.

    Directory of Open Access Journals (Sweden)

    Matthieu Dacher

    Full Text Available Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing, the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity.If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds after the sucrose (backward pairing. We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference.Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.

  1. Anterograde effects of a single electroconvulsive shock on inhibitory avoidance and on cued fear conditioning

    Directory of Open Access Journals (Sweden)

    Oliveira M.G.M.

    1998-01-01

    Full Text Available A single electroconvulsive shock (ECS or a sham ECS was administered to male 3-4-month-old Wistar rats 1, 2, and 4 h before training in an inhibitory avoidance test and in cued classical fear conditioning (measured by means of freezing time in a new environment. ECS impaired inhibitory avoidance at all times and, at 1 or 2 h before training, reduced freezing time before and after re-presentation of the ECS. These results are interpreted as a transient conditioned stimulus (CS-induced anxiolytic or analgesic effect lasting about 2 h after a single treatment, in addition to the known amnesic effect of the stimulus. This suggests that the effect of anterograde learning impairment is demonstrated unequivocally only when the analgesic/anxiolytic effect is over (about 4 h after ECS administration and that this impairment of learning is selective, affecting inhibitory avoidance but not classical fear conditioning to a discrete stimulus.

  2. Multimodal assessment of long-term memory recall and reinstatement in a combined cue and context fear conditioning and extinction paradigm in humans.

    Directory of Open Access Journals (Sweden)

    Jan Haaker

    Full Text Available Learning to predict danger via associative learning processes is critical for adaptive behaviour. After successful extinction, persisting fear memories often emerge as returning fear. Investigation of return of fear phenomena, e.g. reinstatement, have only recently began and to date, many critical questions with respect to reinstatement in human populations remain unresolved. Few studies have separated experimental phases in time even though increasing evidence shows that allowing for passage of time (and consolidation between experimental phases has a major impact on the results. In addition, studies have relied on a single psychophysiological dimension only (SCRs/SCL or FPS which hampers comparability between different studies that showed both differential or generalized return of fear following a reinstatement manipulation. In 93 participants, we used a multimodal approach (fear-potentiated startle, skin conductance responses, fear ratings to asses fear conditioning (day 1, extinction (day 2 as well as delayed memory recall and reinstatement (day 8 in a paradigm that probed contextual and cued fear intra-individually. Our findings show persistence of conditioning and extinction memory over time and demonstrate that reinstated fear responses were qualitatively different between dependent variables (subjective fear ratings, FPS, SCRs as well as between cued and contextual CSs. While only the arousal-related measurement (SCRs showed increasing reactions following reinstatement to the cued CSs, no evidence of reinstatement was observed for the subjective ratings and fear-related measurement (FPS. In contrast, for contextual CSs, reinstatement was evident as differential and generalized reinstatement in fear ratings as well as generally elevated physiological fear (FPS and arousal (SCRs related measurements to all contextual CSs (generalized non-differential reinstatement. Returning fear after reinstatement likely depends on a variety of variables

  3. Forming Competing Fear Learning and Extinction Memories in Adolescence Makes Fear Difficult to Inhibit

    Science.gov (United States)

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages.…

  4. Fear appeals and confronting information campaigns. [Previously: Fear-based information campaigns.

    OpenAIRE

    2007-01-01

    Fear appeals or confronting information campaigns confront people in an often hard and sometimes even shocking way with the consequences of risky behaviour. This can have a positive impact on the attitudes and behavioural intentions of the target group, but only if key conditions are met. Those conditions are that the information does not only evoke fear, but also informs the target group individuals of their personal risk and provides them with feasible and effective behavioural alternatives...

  5. Olfactory sensations produced by high-energy photon irradiation of the olfactory receptor mucosa in humans

    International Nuclear Information System (INIS)

    Sagar, S.M.; Thomas, R.J.; Loverock, L.T.; Spittle, M.F.

    1991-01-01

    During irradiation of volumes that incorporate the olfactory system, a proportion of patients have complained of a pungent smell. A retrospective study was carried out to determine the prevalence of this side-effect. A questionnaire was sent to 40 patients whose treatment volumes included the olfactory region and also to a control group treated away from this region. The irradiated tumor volumes included the frontal lobe, whole brain, nasopharynx, pituitary fossa, and maxillary antrum. Of the 25 patients who replied, 60% experienced odorous symptoms during irradiation. They described the odor as unpleasant and consistent with ozone. Stimulation of olfactory receptors is considered to be caused by the radiochemical formation of ozone and free radicals in the mucus overlying the olfactory mucosa

  6. Presence of neuropathic pain may explain poor performances on olfactory testing in diabetes mellitus patients.

    Science.gov (United States)

    Brady, Shauna; Lalli, Paul; Midha, Nisha; Chan, Ayechen; Garven, Alexandra; Chan, Cynthia; Toth, Cory

    2013-07-01

    Olfactory dysfunction in neurodegenerative conditions such as Parkinson's syndrome and Alzheimer's disease can hallmark disease onset. We hypothesized that patients with diabetes mellitus, a condition featuring peripheral and central neurodegeneration, would have decreased olfaction abilities. We examined participants with diabetic peripheral neuropathy, participants with diabetes without diabetic peripheral neuropathy, and control participants in blinded fashion using standardized Sniffin' Sticks. Diabetic peripheral neuropathy severity was quantified using the Utah Early Neuropathy Scale. Further subcategorization of diabetic peripheral neuropathy based on presence of neuropathic pain was performed with Douleur Neuropathique 4 Questionnaires. Participants with diabetes had decreased olfactory sensitivity, impaired olfactory discrimination abilities, and reduced odor identification skills when compared with controls. However, loss of olfaction ability was, at least partially, attributed to presence of neuropathic pain on subcategory assessment, although pain severity was not associated with dysfunction. Those participants with diabetes without diabetic peripheral neuropathy and those with diabetic peripheral neuropathy without neuropathic pain had similar olfactory function as controls in general. The presence of neuropathic pain, associated with limited attention and concentration, may explain at least a portion of the olfactory dysfunction witnessed in the diabetic patient population.

  7. A Closer Look at Acid-Base Olfactory Titrations

    Science.gov (United States)

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  8. Duration of inhibition of ventral tegmental area dopamine neurons encodes a level of conditioned fear.

    Science.gov (United States)

    Mileykovskiy, Boris; Morales, Marisela

    2011-05-18

    It is widely accepted that midbrain dopamine (DA) neurons encode actual and expected reward values by phasic alterations in firing rate. However, how DA neurons encode negative events in the environment is still unclear because some DA neurons appear to be depressed and others excited by aversive stimuli. Here, we show that exposing fear-conditioned rats to stimuli predicting electrical shock elicited three types of biphasic responses, each of which contained an inhibitory pause, in neurochemically identified ventral tegmental area (VTA) DA neurons. The duration of the inhibitory pause in these responses of VTA DA neurons was in direct proportion to the increase in respiratory rate reflecting the level of conditioned fear. Our results suggest that the duration of inhibition of VTA DA neurons encodes negative emotional values of signals predicting aversive events in the environment.

  9. Olfactory bulb as an alternative in neurotransplantation

    Directory of Open Access Journals (Sweden)

    Руслан Романович Новиков

    2015-05-01

    Full Text Available The article examines the ethical and legal aspects of transplantation of embryonic neural tissue, structure of the rat olfactory bulb. It is given substantiation for its use as a possible alternative version of the embryonic neural tissue at damage in the cerebral hemispheres in the experiment.Materials and methods. Detailed description of the fault model of the cerebral hemispheres of the brain of rats, olfactory bulb biopsy procedure, cultivation of olfactory bulb suspension and fetal neural tissue, comparison of the functional aspects of transplantation of the olfactory bulb and the embryonic neural tissue.Results. The obtained data are similar to structure of olfactory bulb and fetal tissues during culturing. Recovery in the motor areas varies by the time factor and less intense in the group of the olfactory bulb and the group without tissue transplantation.Conclusions. Comparative analysis of the effectiveness of transplantation of embryonic neural tissue and olfactory bulb in the injured brain allows us to speak about the positive results of these groups to the difference in the duration of the recovery process

  10. Olfactory memories are intensity specific in larval Drosophila.

    Science.gov (United States)

    Mishra, Dushyant; Chen, Yi-Chun; Yarali, Ayse; Oguz, Tuba; Gerber, Bertram

    2013-05-01

    Learning can rely on stimulus quality, stimulus intensity, or a combination of these. Regarding olfaction, the coding of odour quality is often proposed to be combinatorial along the olfactory pathway, and working hypotheses are available concerning short-term associative memory trace formation of odour quality. However, it is less clear how odour intensity is coded, and whether olfactory memory traces include information about the intensity of the learnt odour. Using odour-sugar associative conditioning in larval Drosophila, we first describe the dose-effect curves of learnability across odour intensities for four different odours (n-amyl acetate, 3-octanol, 1-octen-3-ol and benzaldehyde). We then chose odour intensities such that larvae were trained at an intermediate odour intensity, but were tested for retention with either that trained intermediate odour intensity, or with respectively higher or lower intensities. We observed a specificity of retention for the trained intensity for all four odours used. This adds to the appreciation of the richness in 'content' of olfactory short-term memory traces, even in a system as simple as larval Drosophila, and to define the demands on computational models of associative olfactory memory trace formation. We suggest two kinds of circuit architecture that have the potential to accommodate intensity learning, and discuss how they may be implemented in the insect brain.

  11. Olfactory Receptor Database: a sensory chemoreceptor resource

    OpenAIRE

    Skoufos, Emmanouil; Marenco, Luis; Nadkarni, Prakash M.; Miller, Perry L.; Shepherd, Gordon M.

    2000-01-01

    The Olfactory Receptor Database (ORDB) is a WWW-accessible database that has been expanded from an olfactory receptor resource to a chemoreceptor resource. It stores data on six classes of G-protein-coupled sensory chemoreceptors: (i) olfactory receptor-like proteins, (ii) vomeronasal receptors, (iii) insect olfactory receptors, (iv) worm chemoreceptors, (v) taste papilla receptors and (vi) fungal pheromone receptors. A complementary database of the ligands of these receptors (OdorDB) has bee...

  12. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    OpenAIRE

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to ...

  13. Effect of juvenile hormone on short-term olfactory memory in young honeybees (Apis mellifera).

    Science.gov (United States)

    Maleszka, R; Helliwell, P

    2001-11-01

    Reliable retention of olfactory learning following a 1-trial classical conditioning of the proboscis extension reflex (PER) is not achieved in honeybees until they are 6-7 days old. Here we show that treatment of newly emerged honeybees with juvenile hormone (JH) has a profound effect on the maturation of short-term olfactory memory. JH-treated individuals display excellent short-term (1 h) memory of associative learning at times as early as 3 days of age and perform consistently better than untreated bees for at least the first week of their lives. By contrast, the retention of long-term (24 h) memory following a 3-trial conditioning of the PER is not significantly improved in JH-treated bees. Our study also shows that experience and (or) chemosensory activation are not essential to improve learning performance in olfactory tasks. The lack of accelerated development of long-term retention of olfactory memories in JH-treated honeybees is discussed in the context of neural circuits suspected to mediate memory formation and retrieval in the honeybee brain. Copyright 2001 Academic Press.

  14. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory.

    Science.gov (United States)

    Fernandez Espejo, Emilio

    2003-03-01

    Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (ploss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short

  15. Circadian Rhythms in Fear Conditioning: An Overview of Behavioral, Brain System, and Molecular Interactions

    Directory of Open Access Journals (Sweden)

    Anne Albrecht

    2017-01-01

    Full Text Available The formation of fear memories is a powerful and highly evolutionary conserved mechanism that serves the behavioral adaptation to environmental threats. Accordingly, classical fear conditioning paradigms have been employed to investigate fundamental molecular processes of memory formation. Evidence suggests that a circadian regulation mechanism allows for a timestamping of such fear memories and controlling memory salience during both their acquisition and their modification after retrieval. These mechanisms include an expression of molecular clocks in neurons of the amygdala, hippocampus, and medial prefrontal cortex and their tight interaction with the intracellular signaling pathways that mediate neural plasticity and information storage. The cellular activities are coordinated across different brain regions and neural circuits through the release of glucocorticoids and neuromodulators such as acetylcholine, which integrate circadian and memory-related activation. Disturbance of this interplay by circadian phase shifts or traumatic experience appears to be an important factor in the development of stress-related psychopathology, considering these circadian components are of critical importance for optimizing therapeutic approaches to these disorders.

  16. The olfactory tubercle encodes odor valence in behaving mice.

    Science.gov (United States)

    Gadziola, Marie A; Tylicki, Kate A; Christian, Diana L; Wesson, Daniel W

    2015-03-18

    Sensory information acquires meaning to adaptively guide behaviors. Despite odors mediating a number of vital behaviors, the components of the olfactory system responsible for assigning meaning to odors remain unclear. The olfactory tubercle (OT), a ventral striatum structure that receives monosynaptic input from the olfactory bulb, is uniquely positioned to transform odor information into behaviorally relevant neural codes. No information is available, however, on the coding of odors among OT neurons in behaving animals. In recordings from mice engaged in an odor discrimination task, we report that the firing rate of OT neurons robustly and flexibly encodes the valence of conditioned odors over identity, with rewarded odors evoking greater firing rates. This coding of rewarded odors occurs before behavioral decisions and represents subsequent behavioral responses. We predict that the OT is an essential region whereby odor valence is encoded in the mammalian brain to guide goal-directed behaviors. Copyright © 2015 the authors 0270-6474/15/354515-13$15.00/0.

  17. Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila.

    Science.gov (United States)

    Séjourné, Julien; Plaçais, Pierre-Yves; Aso, Yoshinori; Siwanowicz, Igor; Trannoy, Séverine; Thoma, Vladimiros; Tedjakumala, Stevanus R; Rubin, Gerald M; Tchénio, Paul; Ito, Kei; Isabel, Guillaume; Tanimoto, Hiromu; Preat, Thomas

    2011-06-19

    Aversive olfactory memory is formed in the mushroom bodies in Drosophila melanogaster. Memory retrieval requires mushroom body output, but the manner in which a memory trace in the mushroom body drives conditioned avoidance of a learned odor remains unknown. To identify neurons that are involved in olfactory memory retrieval, we performed an anatomical and functional screen of defined sets of mushroom body output neurons. We found that MB-V2 neurons were essential for retrieval of both short- and long-lasting memory, but not for memory formation or memory consolidation. MB-V2 neurons are cholinergic efferent neurons that project from the mushroom body vertical lobes to the middle superiormedial protocerebrum and the lateral horn. Notably, the odor response of MB-V2 neurons was modified after conditioning. As the lateral horn has been implicated in innate responses to repellent odorants, we propose that MB-V2 neurons recruit the olfactory pathway involved in innate odor avoidance during memory retrieval.

  18. Phylogenic aspects of the amphibian dual olfactory system.

    Science.gov (United States)

    Taniguchi, Kazumi; Saito, Shouichiro; Oikawa, Toshihiro; Taniguchi, Kazuyuki

    2008-01-01

    The phylogenic significance of the subdivision of dual olfactory system is reviewed mainly on the basis of our findings by electron microscopy and lectin histochemistry in the three amphibian species. The dual olfactory system is present in common in these species and consists of the projection from the olfactory epithelium (OE) to the main olfactory bulb (MOB) and that from the vomeronasal epithelium (VNE) to the accessory olfactory bulb (AOB). The phylogenic significance of subdivisions in the dual olfactory system in the amphibian must differently be interpreted. The subdivision of the MOB into its dorsal region (D-MOB) and ventral region (V-MOB) in Xenopus laevis must be attributed to the primitive features in their olfactory receptors. The middle cavity epithelium lining the middle cavity of this frog possesses both ciliated sensory cells and microvillous sensory cells, reminding the OE in fish. The subdivision of the AOB into the rostral (R-AOB) and caudal part (C-AOB) in Bufo japonicus formosus must be regarded as an advanced characteristic. The lack of subdivisions in both MOB and AOB in Cynops pyrrhogaster may reflect their phylogenic primitiveness. Since our lectin histochemistry to detect glycoconjugates expressed in the olfactory pathway reveals the subdivisions in the dual olfactory system in the amphibian, the glycoconjugates may deeply participate in the organization and function of olfactory pathways in phylogeny.

  19. Flexibility in the face of fear: Hippocampal-prefrontal regulation of fear and avoidance.

    Science.gov (United States)

    Moscarello, Justin M; Maren, Stephen

    2018-02-01

    Generating appropriate defensive behaviors in the face of threat is essential to survival. Although many of these behaviors are 'hard-wired', they are also flexible. For example, Pavlovian fear conditioning generates learned defensive responses, such as conditioned freezing, that can be suppressed through extinction. The expression of extinguished responses is highly context-dependent, allowing animals to engage behavioral responses appropriate to the contexts in which threats are encountered. Likewise, animals and humans will avoid noxious outcomes if given the opportunity. In instrumental avoidance learning, for example, animals overcome conditioned defensive responses, including freezing, in order to actively avoid aversive stimuli. Recent work has greatly advanced understanding of the neural basis of these phenomena and has revealed common circuits involved in the regulation of fear. Specifically, the hippocampus and medial prefrontal cortex play pivotal roles in gating fear reactions and instrumental actions, mediated by the amygdala and nucleus accumbens, respectively. Because an inability to adaptively regulate fear and defensive behavior is a central component of many anxiety disorders, the brain circuits that promote flexible responses to threat are of great clinical significance.

  20. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    Science.gov (United States)

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  1. A Model of Amygdala-Hippocampal-Prefrontal Interaction in Fear Conditioning and Extinction in Animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2013-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus…

  2. Immediate extinction promotes the return of fear.

    Science.gov (United States)

    Merz, Christian J; Hamacher-Dang, Tanja C; Wolf, Oliver T

    2016-05-01

    Accumulating evidence indicates that immediate extinction is less effective than delayed extinction in attenuating the return of fear. This line of fear conditioning research impacts the proposed onset of psychological interventions after threatening situations. In the present study, forty healthy men were investigated in a differential fear conditioning paradigm with fear acquisition in context A, extinction in context B, followed by retrieval testing in both contexts 24h later to test fear renewal. Differently coloured lights served as conditioned stimuli (CS): two CS (CS+) were paired with an electrical stimulation that served as unconditioned stimulus, the third CS was never paired (CS-). Extinction took place immediately after fear acquisition or 24h later. One CS+ was extinguished whereas the second CS+ remained unextinguished to control for different time intervals between fear acquisition and retrieval testing. Immediate extinction led to larger skin conductance responses during fear retrieval to both the extinguished and unextinguished CS relative to the CS-, indicating a stronger return of fear compared to delayed extinction. Taken together, immediate extinction is less potent than delayed extinction and is associated with a stronger renewal effect. Thus, the time-point of psychological interventions relative to the offset of threatening situations needs to be carefully considered to prevent relapses. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Immunization against social fear learning.

    Science.gov (United States)

    Golkar, Armita; Olsson, Andreas

    2016-06-01

    Social fear learning offers an efficient way to transmit information about potential threats; little is known, however, about the learning processes that counteract the social transmission of fear. In three separate experiments, we found that safety information transmitted from another individual (i.e., demonstrator) during preexposure prevented subsequent observational fear learning (Experiments 1-3), and this effect was maintained in a new context involving direct threat confrontation (Experiment 3). This protection from observational fear learning was specific to conditions in which information about both safety and danger was transmitted from the same demonstrator (Experiments 2-3) and was unaffected by increasing the number of the safety demonstrators (Experiment 3). Collectively, these findings demonstrate that observational preexposure can limit social transmission of fear. Future research is needed to better understand the conditions under which such effects generalize across individual demonstrators. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. The first report of CADASIL in Peru: Olfactory dysfunction on initial presentation

    Directory of Open Access Journals (Sweden)

    Anastasia Vishnevetsky

    2016-12-01

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL is a rare, heritable, small vessel vascular disease caused by mutations in the Notch3 gene that is characterized by migraines, subcortical vascular events, cognitive decline, and mood disturbances. However, many CADASIL cases present with unusual symptoms such as status epilepticus, a movement disorder, or sensory dysfunction. This study describes the clinical, genetic, and radiologic characteristics of a Peruvian family with CADASIL in which multiple family members presented with severe olfactory deficits. Seven members of the family have symptoms suggestive of CADASIL, with genetic testing revealing R133C mutations in the two patients who underwent genetic testing. Cognitive testing and olfactory identification testing (Smell Identification Test were performed in three CADASIL patients revealing total anosmia in two tested patients and severe hyposmia in the other. Olfactory dysfunction has been associated with various neurologic and psychiatric conditions, though few studies have linked it with neurovascular disorders such as CADASIL. This first reported case of CADASIL in Peru emphasizes that symptomatic olfactory dysfunction may be an unusual presentation of CADASIL and that olfactory dysfunction is important to evaluate in CADASIL patients.

  5. (+)-Borneol suppresses conditioned fear recall and anxiety-like behaviors in mice.

    Science.gov (United States)

    Cao, Bo; Ni, Huan-Yu; Li, Jun; Zhou, Ying; Bian, Xin-Lan; Tao, Yan; Cai, Cheng-Yun; Qin, Cheng; Wu, Hai-Yin; Chang, Lei; Luo, Chun-Xia; Zhu, Dong-Ya

    2018-01-08

    Fear- and anxiety-related psychiatric disorders have been one of the major chronic diseases afflicting patients for decades, and new compounds for treating such disorders remain to be developed. (+)-Borneol, a bicyclic monoterpene found in several species of Artemisia and Dipterocarpaceae, is widely used for anxiety, pain and anesthesia in Chinese medicine. Meanwhile, it can potentiate GABA (γ-aminobutyric acid) activity directly in recombinant GABAA receptors. The present study was to investigate the effects of (+)-Borneol on both contextual and cued fear recall. Interestingly, microinjection of (+)-Borneol into the dorsal hippocampus inhibited 24 h and 7 d contextual fear, whereas its infusion into ventral hippocampus only reduced 24 h cued fear responses. Moreover, microinjection of (+)-Borneol into dorsal but not ventral hippocampus suppressed anxiety-like behaviors in the open field test, light/dark exploration and the elevated plus maze test. As selective GABA A receptor antagonist bicuculline reversed the effect of (+)-Borneol on contextual fear paradigm and the drug potentiated GABA-evoked currents in acute hippocampus slices, modulation of the GABAergic neurotransmission may explain the effects of (+)-Borneol. Our findings suggest that (+)-Borneol can serve as a new therapeutic in fear- and anxiety-related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Olfactory neuroblastoma complicated by postirradiation pneumocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Fusejima, Toru; Matsumura, Kenichirou; Hayano, Makoto [Mito Saiseikai Hospital (Japan)

    1990-11-01

    A 56-year-old male was admitted with the complaints of nasal bleeding, gait disturbance, and disturbance of consciousness. Neurological examination revealed drowsiness, right hemiparesis, and choked discs. Computed tomography scan showed an enhanced mass at the frontal base, which extended to the left nasal and paranasal cavities. Angiography showed a tumor stain with a mass sign. The intracranial part of the tumor was removed completely and he was discharged ambulatorily. Two months after surgery, however, he was admitted again for the regrowth of the tumor. Ventriculoperitoneal shunting was emplaced and radiation therapy was given to the brain and nasal cavity. After 3000 rad irradiation the clinical condition suddenly became worse because of pneumocephalus. The cranial tumor disappeared after irradiation but he died of metastases and general prostration. Clinically this case was diagnosed as an olfactory groove meningioma at first, but immunohistochemical diagnosis was olfactory neuroblastoma. (author).

  7. Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study.

    Science.gov (United States)

    Kiparizoska, Sara; Ikuta, Toshikazu

    2017-09-01

    Evidence for olfactory dysfunction in schizophrenia has been firmly established. However, in the typical understanding of schizophrenia, olfaction is not recognized to contribute to or interact with the illness. Despite the solid presence of olfactory dysfunction in schizophrenia, its relation to the rest of the illness remains largely unclear. Here, we aimed to examine functional connectivity of the olfactory bulb, olfactory tract, and piriform cortices and isolate the network that would account for the altered olfaction in schizophrenia. We examined the functional connectivity of these specific olfactory regions in order to isolate other brain regions associated with olfactory processing in schizophrenia. Using the resting state functional MRI data from the Center for Biomedical Research Excellence in Brain Function and Mental Illness, we compared 84 patients of schizophrenia and 90 individuals without schizophrenia. The schizophrenia group showed disconnectivity between the anterior piriform cortex and the nucleus accumbens, between the posterior piriform cortex and the middle frontal gyrus, and between the olfactory tract and the visual cortices. The current results suggest functional disconnectivity of olfactory regions in schizophrenia, which may account for olfactory dysfunction and disrupted integration with other sensory modalities in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  8. Response-Specific Sex Difference in the Retention of Fear Extinction

    Science.gov (United States)

    Voulo, Meagan E.; Parsons, Ryan G.

    2017-01-01

    Fear conditioning studies in rodents allow us to assess vulnerability factors which might underlie fear-based psychopathology such as post-traumatic stress disorder (PTSD). Despite PTSD being more prevalent in females than males, very few fear conditioning studies in rodents have tested females. Our study assessed fear conditioning and extinction…

  9. Cortical Metabolic Arrangement During Olfactory Processing: Proposal for a 18F FDG PET/CT Methodological Approach

    Science.gov (United States)

    Micarelli, Alessandro; Pagani, Marco; Chiaravalloti, Agostino; Bruno, Ernesto; Pavone, Isabella; Candidi, Matteo; Danieli, Roberta; Schillaci, Orazio; Alessandrini, Marco

    2014-01-01

    Abstract The aim of this article is to investigate the cortical metabolic arrangements in olfactory processing by using 18F fluorodeoxyglucose (FDG) positron emission tomography/computed tomography. Twenty-six normosmic individuals (14 women and 12 men; mean age 46.7 ± 10 years) were exposed to a neutral olfactory condition (NC) and, after 1 month, to a pure olfactory condition (OC) in a relatively ecological environment, that is, outside the scanner. All the subjects were injected with 185–210 megabecquerel of 18F FDG during both stimulations. Statistical parametric mapping version 2 was used in order to assess differences between NC and OC. As a result, we found a significant higher glucose consumption during OC in the cuneus, lingual, and parahippocampal gyri, mainly in the left hemisphere. During NC, our results show a relative higher glucose metabolism in the left superior, inferior, middle, medial frontal, and orbital gyri as well as in the anterior cingulate cortex. The present investigation, performed with a widely available functional imaging clinical tool, may help to better understand the neural responses associated to olfactory processing in healthy individuals and in patients with olfactory disorders by acquiring data in an ecologic, noise-free, and resting condition in which possible cerebral activations related to unwanted attentional processes might be avoided. PMID:25340494

  10. Measurement and Analysis of Olfactory Responses with the Aim of Establishing an Objective Diagnostic Method for Central Olfactory Disorders

    Science.gov (United States)

    Uno, Tominori; Wang, Li-Qun; Miwakeichi, Fumikazu; Tonoike, Mitsuo; Kaneda, Teruo

    In order to establish a new diagnostic method for central olfactory disorders and to identify objective indicators, we measured and analyzed brain activities in the parahippocampal gyrus and uncus, region of responsibility for central olfactory disorders. The relationship between olfactory stimulation and brain response at region of responsibility can be examined in terms of fitted responses (FR). FR in these regions may be individual indicators of changes in brain olfactory responses. In the present study, in order to non-invasively and objectively measure olfactory responses, an odor oddball task was conducted on four healthy volunteers using functional magnetic resonance imaging (fMRI) and a odorant stimulator with blast-method. The results showed favorable FR and activation in the parahippocampal gyrus or uncus in all subjects. In some subjects, both the parahippocampal gyrus and uncus were activated. Furthermore, activation was also confirmed in the cingulate gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus and insula. The hippocampus and uncus are known to be involved in the olfactory disorders associated with early-stage Alzheimer's disease and other olfactory disorders. In the future, it will be necessary to further develop the present measurement and analysis method to clarify the relationship between central olfactory disorders and brain activities and establish objective indicators that are useful for diagnosis.

  11. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    Directory of Open Access Journals (Sweden)

    Sarah Boukezzi

    2017-06-01

    Full Text Available Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD. Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS during eye movement desensitization and reprocessing (EMDR therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to determine if these previous results found in animals can be reproduced in humans. Twenty-two healthy participants took part in a classical fear conditioning, extinction, and extinction recall paradigm. Behavioral responses (fear expectations as well as psychophysiological measures (skin conductance responses, SCRs were recorded. The results showed a significant fear expectation decrease during fear extinction with BLS. Additionally, SCR for fear extinction retrieval were significantly lower with BLS. Our results demonstrate the importance of BLS to reduce negative emotions, and provide a successful model to further explore the neural mechanisms underlying the sole BLS effect in the EMDR.

  12. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    Directory of Open Access Journals (Sweden)

    Hong Sjölinder

    Full Text Available Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  13. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    Science.gov (United States)

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-11-18

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  14. Olfactory Nerve—A Novel Invasion Route of Neisseria meningitidis to Reach the Meninges

    Science.gov (United States)

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-01-01

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival. PMID:21124975

  15. Immediate Extinction Causes a Less Durable Loss of Performance than Delayed Extinction following Either Fear or Appetitive Conditioning

    Science.gov (United States)

    Woods, Amanda M.; Bouton, Mark E.

    2008-01-01

    Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In…

  16. Dissociating response systems: erasing fear from memory.

    Science.gov (United States)

    Soeter, Marieke; Kindt, Merel

    2010-07-01

    In addition to the extensive evidence in animals, we previously showed that disrupting reconsolidation by noradrenergic blockade produced amnesia for the original fear response in humans. Interestingly, the declarative memory for the fear association remained intact. These results asked for a solid replication. Moreover, given the constructive nature of memories, the intact recollection of the fear association could eventually 'rebuild' the fear memory, resulting in the spontaneous recovery of the fear response. Yet, perseverance of the amnesic effects would have substantial clinical implications, as even the most effective treatments for psychiatric disorders display high percentages of relapse. Using a differential fear conditioning procedure in humans, we replicated our previous findings by showing that administering propranolol (40mg) prior to memory reactivation eliminated the startle fear response 24h later. But most importantly, this effect persisted at one month follow-up. Notably, the propranolol manipulation not only left the declarative memory for the acquired contingency untouched, but also skin conductance discrimination. In addition, a close association between declarative knowledge and skin conductance responses was found. These findings are in line with the supposed double dissociation of fear conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. They support the view that skin conductance conditioning primarily reflects contingency learning, whereas the startle response is a rather specific measure of fear. Furthermore, the results indicate the absence of a causal link between the actual knowledge of a fear association and its fear response, even though they often operate in parallel. Interventions targeting the amygdalar fear memory may be essential in specifically and persistently dampening the emotional impact of fear. From a clinical and ethical perspective, disrupting reconsolidation points to promising

  17. The central amygdala circuits in fear regulation

    Science.gov (United States)

    Li, Bo

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.

  18. Duration and specificity of olfactory nonassociative memory.

    Science.gov (United States)

    Freedman, Kaitlin G; Radhakrishna, Sreya; Escanilla, Olga; Linster, Christiane

    2013-05-01

    Olfactory habituation is a simple form of nonassociative memory in which responsiveness to stable but behaviorally nonsignificant stimuli is decreased. Olfactory habituation has recently become a paradigm widely used to probe the neural substrate underlying olfactory perception and memory. This simple behavioral paradigm has been used successfully used to probe many aspects of olfactory processing, and it has recently become clear that the neural processes underlying olfactory habituation can depend on the task parameters used. We here further investigate memory specificity and duration using 2 variations in task parameters: the number of habituation trials and the time delay between habituation and cross-habituation testing. We find that memory specificity increases with the number of habituation trials but decreases with time after the last habituation trial.

  19. The effect of the mGlu5 negative allosteric modulator MTEP and NMDA receptor partial agonist D-cycloserine on Pavlovian conditioned fear.

    Science.gov (United States)

    Handford, Charlotte E; Tan, Shawn; Lawrence, Andrew J; Kim, Jee Hyun

    2014-09-01

    The metabotropic glutamate receptor 5 (mGlu5) and N-methyl-D-aspartate (NMDA) receptor are critical for processes underlying synaptic plasticity, such as long-term potentiation. mGlu5 signaling increases neuronal excitability and potentiates NMDA receptor currents in the amygdala and the hippocampus. The present study examined the involvement of mGlu5 in the acquisition and consolidation of conditioned fear to a tone and context in mice, and explored the functional relationship between mGlu5 and NMDA receptors in this regard. Experiment 1 showed that systemic administration of the mGlu5 negative allosteric modulator 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) prior to conditioning significantly attenuated cue-elicited freezing during fear conditioning, which suggests that mGlu5 is necessary for the formation of a tone-shock association. This effect was dose-related (Experiment 2) and not due to any effects of MTEP on shock sensitivity or state-dependency (Experiment 3). Post-conditioning injection of MTEP had no effects (Experiment 4). Although post-conditioning injection of the NMDA receptor partial agonist D-cycloserine (DCS) alone facilitated consolidation of conditioned fear (Experiment 6), it was not able to rescue the acquisition deficit caused by MTEP (Experiment 5). Taken together, these findings indicate a crucial role for mGlu5 signaling in acquisition and NMDA receptor signaling in consolidation of conditioned fear.

  20. Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits.

    Directory of Open Access Journals (Sweden)

    Erika Navarrete

    Full Text Available Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB. We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1, pups were randomly assigned to one of the following conditions: intact pups (INT, intact pups fed by enteral gavage (INT+ENT, sham operated pups (SHAM, pups with unilateral lesions of the olfactory bulb (OBx-UNI, and pups with bilateral lesions of the olfactory bulb (OBx-BI. At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00, and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb.

  1. Early survival factor deprivation in the olfactory epithelium enhances activity-dependent survival

    Directory of Open Access Journals (Sweden)

    Adrien eFrançois

    2013-12-01

    Full Text Available The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs. However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226. We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population towards detection of environmental odorants.

  2. CNPase Expression in Olfactory Ensheathing Cells

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2011-01-01

    Full Text Available A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.

  3. Repeated exposure to conditioned fear stress increases anxiety and delays sleep recovery following exposure to an acute traumatic stressor

    Directory of Open Access Journals (Sweden)

    Benjamin N Greenwood

    2014-10-01

    Full Text Available Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep-wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by humans, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to either no, mild (10, or severe (100 acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced REM and NREM sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep / wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep / wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders.

  4. Multiple reversal olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  5. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory

    Science.gov (United States)

    Koenig, Stephan; Uengoer, Metin; Lachnit, Harald

    2017-01-01

    We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L), partial (P), and high (H) shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L H). During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention. PMID:28588466

  6. Assessment of olfactory nerve by SPECT-MRI image with nasal thallium-201 administration in patients with olfactory impairments in comparison to healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Hideaki Shiga

    Full Text Available PURPOSE: The aim of this study was to assess whether migration of thallium-201 ((201Tl to the olfactory bulb were reduced in patients with olfactory impairments in comparison to healthy volunteers after nasal administration of (201Tl. PROCEDURES: 10 healthy volunteers and 21 patients enrolled in the study (19 males and 12 females; 26-71 years old. The causes of olfactory dysfunction in the patients were head trauma (n = 7, upper respiratory tract infection (n = 7, and chronic rhinosinusitis (n = 7. (201TlCl was administered unilaterally to the olfactory cleft, and SPECT-CT was conducted 24 h later. Separate MRI images were merged with the SPECT images. (201Tl olfactory migration was also correlated with the volume of the olfactory bulb determined from MRI images, as well as with odor recognition thresholds measured by using T&T olfactometry. RESULTS: Nasal (201Tl migration to the olfactory bulb was significantly lower in the olfactory-impaired patients than in healthy volunteers. The migration of (201Tl to the olfactory bulb was significantly correlated with odor recognition thresholds obtained with T&T olfactometry and correlated with the volume of the olfactory bulb determined from MRI images when all subjects were included. CONCLUSIONS: Assessment of the (201Tl migration to the olfactory bulb was the new method for the evaluation of the olfactory nerve connectivity in patients with impaired olfaction.

  7. A preregistered, direct replication attempt of the retrieval-extinction effect in cued fear conditioning in rats.

    Science.gov (United States)

    Luyten, Laura; Beckers, Tom

    2017-10-01

    In 2009, Monfils and colleagues proposed a behavioral procedure that was said to result in a permanent attenuation of a previously established fear memory, thereby precluding a possible return of fear after extinction (Monfils, Cowansage, Klann, & LeDoux, 2009). By presenting a single retrieval trial one hour before standard extinction training, they found an enduring reduction of fear. The retrieval-extinction procedure holds great clinical potential, particularly for anxiety patients, but the findings are not undisputed, and several conceptual replications have failed to reproduce the effect. These failures have largely been attributed to small procedural differences. This preregistered study is the first endeavor to exactly replicate three key experiments of the original report by Monfils et al. (2009), thereby gauging the robustness of their seminal findings. Despite adhering to the original procedures as closely as possible, we did not find any evidence for reduced return of fear with the retrieval-extinction procedure relative to regular extinction training, as assessed through spontaneous recovery, reinstatement and renewal. Behavior of animals in the control condition (extinction only) was comparable to that in the original studies and provided an adequate baseline to reveal differences with the retrieval-extinction condition. Our null findings indicate that the effect sizes in the original paper may have been inflated and question the legitimacy of previously proposed moderators of the retrieval-extinction effect. We argue that direct experimental evaluation of purported moderators of the retrieval-extinction effect will be key to shed more light on its nature and prerequisites. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Attentional Control and Fear Extinction in Subclinical Fear: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Eduard Forcadell

    2017-09-01

    Full Text Available Attentional control (AC and fear extinction learning are known to be involved in pathological anxiety. In this study we explored whether individual differences in non-emotional AC were associated with individual differences in the magnitude and gradient of fear extinction (learning and recall. In 50 individuals with fear of spiders, we collected measures of non-emotional AC by means of self-report and by assessing the functioning of the major attention networks (executive control, orienting, and alerting. The participants then underwent a paradigm assessing fear extinction learning and extinction recall. The two components of the orienting network functioning (costs and benefits were significantly associated with fear extinction gradient over and above the effects of trait anxiety. Specifically, participants with enhanced orienting costs (i.e., difficulties in disengaging attention from cues not relevant for the task showed faster extinction learning, while those with enhanced orienting benefits (i.e., attention facilitated by valid cues exhibited faster extinction recall as measured by fear-potentiated startle and Unconditioned Stimulus expectancies, respectively. Our findings suggest that, in non-emotional conditions, the orienting component of attention may be predictive of fear extinction. They also show that the use of fear extinction gradients and the exploration of individual differences in non-emotional AC (using performance-based measures of attentional network functioning can provide a better understanding of individual differences in fear learning. Our findings also may help to understand differences in exposure therapy outcomes.

  9. Distinct roles of prelimbic and infralimbic proBDNF in extinction of conditioned fear.

    Science.gov (United States)

    Sun, Wei; Li, Xiaoliang; An, Lei

    2018-03-15

    Brain-derived neurotrophic factor (BDNF) has been investigated for its positive role in regulation of fear acquisition and memory. The precursor of BDNF, proBDNF, has been identified as different protein from its mature form. The prelimbic (PL) and infralimbic (IL) sub-regions of the medial prefrontal cortex (mPFC) are functionally distinct in fear behavior. However, the role of PL and IL proBDNF in fear memory is unclear. Here, through the infusion of cleavage-resistant proBDNF and its antibody, we identified the dissociable roles of PL and IL proBDNF in fear expression and extinction memory as well as explored proBDNF's potential mechanism of action. The results suggest that the infusion of proBDNF in the IL facilitates induction of fear extinction, while infusion in the PL depresses fear expression. Blocking proBDNF by using its antibody disrupted the acquisition of fear extinction in the IL, but not the PL. Furthermore, proBDNF-induced extinction was sufficient for extinguishing new and older memories, and required NR2B, but not NR2A, -containing NMDA receptors. We also observed extinction-related proBDNF expression increased in the PL and IL during successful fear expression and extinction, respectively. Importantly, enhanced proBDNF was required for maintaining an extinguished behavior. The extinction effects of proBDNF did not involve degrading the original fear memory. Therefore, proBDNF in the IL and PL differentially contribute to the inhibitory control of fear extinction behavior. Our findings provide a strong link between proBDNF activity and deficits in fear extinction, a hallmark of several psychiatric disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments.

    Science.gov (United States)

    Peng, Katherine Y; Mathews, Paul M; Levy, Efrat; Wilson, Donald A

    2017-02-20

    While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Forming competing fear learning and extinction memories in adolescence makes fear difficult to inhibit

    OpenAIRE

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages. We examined neural correlates of impaired extinction retention by detection of phosphorylated mitogen-activated protein kinase immunoreactivity (pMA...

  12. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin.

    Science.gov (United States)

    Lietzau, Grazyna; Davidsson, William; Östenson, Claes-Göran; Chiazza, Fausto; Nathanson, David; Pintana, Hiranya; Skogsberg, Josefin; Klein, Thomas; Nyström, Thomas; Darsalia, Vladimer; Patrone, Cesare

    2018-02-23

    Recent data suggest that olfactory deficits could represent an early marker and a pathogenic mechanism at the basis of cognitive decline in type 2 diabetes (T2D). However, research is needed to further characterize olfactory deficits in diabetes, their relation to cognitive decline and underlying mechanisms.The aim of this study was to determine whether T2D impairs odour detection, olfactory memory as well as neuroplasticity in two major brain areas responsible for olfaction and odour coding: the main olfactory bulb (MOB) and the piriform cortex (PC), respectively. Dipeptidyl peptidase-4 inhibitors (DPP-4i) are clinically used T2D drugs exerting also beneficial effects in the brain. Therefore, we aimed to determine whether DPP-4i could reverse the potentially detrimental effects of T2D on the olfactory system.Non-diabetic Wistar and T2D Goto-Kakizaki rats, untreated or treated for 16 weeks with the DPP-4i linagliptin, were employed. Odour detection and olfactory memory were assessed by using the block, the habituation-dishabituation and the buried pellet tests. We assessed neuroplasticity in the MOB by quantifying adult neurogenesis and GABAergic inhibitory interneurons positive for calbindin, parvalbumin and carletinin. In the PC, neuroplasticity was assessed by quantifying the same populations of interneurons and a newly identified form of olfactory neuroplasticity mediated by post-mitotic doublecortin (DCX) + immature neurons.We show that T2D dramatically reduced odour detection and olfactory memory. Moreover, T2D decreased neurogenesis in the MOB, impaired the differentiation of DCX+ immature neurons in the PC and altered GABAergic interneurons protein expression in both olfactory areas. DPP-4i did not improve odour detection and olfactory memory. However, it normalized T2D-induced effects on neuroplasticity.The results provide new knowledge on the detrimental effects of T2D on the olfactory system. This knowledge could constitute essentials for

  13. Cortical feedback control of olfactory bulb circuits.

    Science.gov (United States)

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Changes in Olfactory Sensory Neuron Physiology and Olfactory Perceptual Learning After Odorant Exposure in Adult Mice.

    Science.gov (United States)

    Kass, Marley D; Guang, Stephanie A; Moberly, Andrew H; McGann, John P

    2016-02-01

    The adult olfactory system undergoes experience-dependent plasticity to adapt to the olfactory environment. This plasticity may be accompanied by perceptual changes, including improved olfactory discrimination. Here, we assessed experience-dependent changes in the perception of a homologous aldehyde pair by testing mice in a cross-habituation/dishabituation behavioral paradigm before and after a week-long ester-odorant exposure protocol. In a parallel experiment, we used optical neurophysiology to observe neurotransmitter release from olfactory sensory neuron (OSN) terminals in vivo, and thus compared primary sensory representations of the aldehydes before and after the week-long ester-odorant exposure in individual animals. Mice could not discriminate between the aldehydes during pre-exposure testing, but ester-exposed subjects spontaneously discriminated between the homologous pair after exposure, whereas home cage control mice cross-habituated. Ester exposure did not alter the spatial pattern, peak magnitude, or odorant-selectivity of aldehyde-evoked OSN input to olfactory bulb glomeruli, but did alter the temporal dynamics of that input to make the time course of OSN input more dissimilar between odorants. Together, these findings demonstrate that odor exposure can induce both physiological and perceptual changes in odor processing, and suggest that changes in the temporal patterns of OSN input to olfactory bulb glomeruli could induce differences in odor quality. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Sniffing and Oxytocin: Effects on Olfactory Memories.

    Science.gov (United States)

    Stoop, Ron

    2016-05-04

    In this issue of Neuron, Oettl et al. (2016) show how oxytocin can boost processing of olfactory information in female rats by a top-downregulation from the anterior olfactory nucleus onto the main olfactory bulb. As a result, interactions with juvenile conspecifics receive more attention and are longer memorized. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Long-term potentiation and olfactory memory formation in the carp (Cyprinus carpio L.) olfactory bulb.

    Science.gov (United States)

    Satou, M; Anzai, S; Huruno, M

    2005-05-01

    Long-term potentiation of synaptic transmission is considered to be an elementary process underlying the cellular mechanism of memory formation. In the present study we aimed to examine whether or not the dendrodendritic mitral-to-granule cell synapses in the carp olfactory bulb show plastic changes after their repeated activation. It was found that: (1) the dendrodendritic mitral-to-granule cell synapses showed three types of plasticity after tetanic electrical stimulation applied to the olfactory tract-long-term potentiation (potentiation lasting >1 h), short-term potentiation (potentiation lasting 1 h) of the odor-evoked bulbar response accompanied the electrically-induced LTP, and; (4) repeated olfactory stimulation enhanced dendrodendritic mitral-to-granule cell transmission. Based on these results, it was proposed that long-term potentiation (as well as olfactory memory) occurs at the dendrodendritic mitral-to-granule cell synapses after strong and long-lasting depolarization of granule cells, which follows repeated and simultaneous synaptic activation of both the peripheral and deep dendrites (or somata).

  17. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors.

    Science.gov (United States)

    Shimshek, Derya R; Bus, Thorsten; Kim, Jinhyun; Mihaljevic, Andre; Mack, Volker; Seeburg, Peter H; Sprengel, Rolf; Schaefer, Andreas T

    2005-11-01

    Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q), both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic") among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.

  18. Involvement of right piriform cortex in olfactory familiarity judgments. : Familiarity judgment in olfaction

    OpenAIRE

    Plailly , Jane; Bensafi , Moustafa; Pachot-Clouard , Mathilde; Delon-Martin , Chantal; Kareken , David ,; Rouby , Catherine; Segebarth , Christoph; Royet , Jean ,

    2005-01-01

    International audience; Previous studies have shown activation of right orbitofrontal cortex during judgments of odor familiarity. In the present study, we sought to extend our knowledge about the neural circuits involved in such a task by exploring the involvement of the right prefrontal areas and limbic/primary olfactory structures. Fourteen right-handed male subjects were tested using fMRI with a single functional run of two olfactory conditions (odor detection and familiarity judgments). ...

  19. Modulation of olfactory sensitivity and glucose sensing by the feeding state in obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Pascaline eAimé

    2014-09-01

    Full Text Available The Zucker fa/fa rat has been widely used as an animal model to study obesity, since it recapitulates most of its behavioral and metabolic dysfunctions, such as hyperphagia, hyperglycemia and insulin resistance. Although it is well established that olfaction is under nutritional and hormonal influences, little is known about the impact of metabolic dysfunctions on olfactory performances and glucose-sensing in the olfactory system of the obese Zucker rat. In the present study, using a behavioral paradigm based on a conditioned olfactory aversion, we have shown that both obese and lean Zucker rats have a better olfactory sensitivity when they are fasted than when they are satiated. Interestingly, the obese Zucker rats displayed a higher olfactory sensitivity than their lean controls. By investigating the molecular mechanisms involved in glucose-sensing in the olfactory system, we demonstrated that sodium-coupled glucose transporters 1 (SGLT1 and insulin dependent glucose transporters 4 (GLUT4 are both expressed in the olfactory bulb (OB. By comparing the expression of GLUT4 and SGLT1 in OB of obese and lean Zucker rats, we found that only SGLT1 is regulated in genotype-dependent manner. Next, we used glucose oxidase biosensors to simultaneously measure in vivo the extracellular fluid glucose concentrations ([Gluc]ECF in the OB and the cortex. Under metabolic steady state, we have determined that the OB contained twice the amount of glucose found in the cortex. In both regions, the [Gluc]ECF was 2 fold higher in obese rats compared to their lean controls. Under induced dynamic glycemia conditions, insulin injection produced a greater decrease of [Gluc]ECF in the OB than in the cortex. Glucose injection did not affect OB [Gluc]ECF in Zucker fa/fa rats. In conclusion, these results emphasize the importance of glucose for the OB network function and provide strong arguments towards establishing the OB glucose-sensing as a key factor for sensory

  20. Olfactory neuroblastoma

    International Nuclear Information System (INIS)

    Rashid, D.; Ahmed, B.; Malik, S.M.; Khan, M.

    2000-01-01

    Olfactory neuroblastoma/esthesioneuroblastoma in a rare malignant tumour of the olfactory neuroepithelium. This is a report of 5 cases managed over the last 10 years at Combined Military Hospital, Rawalpindi. Age of the patients at presentation ranged from 27 to 70 years. The main symptoms were unilateral nasal obstruction and intermittent epistaxis. The mean duration of symptoms at presentation was 11 months. Two patients were staged as B and 3 as C at presentation. The stage of the disease correlated with the duration of symptoms. All the cases were diagnosed on histopathology. Three were offered combination of surgery and radiotherapy. One patient received only surgical treatment and one patient received radiotherapy and chemotherapy. Combination of surgery and radiotherapy showed best results. (author)

  1. Beyond Extinction: Prolonged Conditioning and Repeated Threat Exposure Abolish Contextual Renewal of Fear-Potentiated Startle Discrimination but Leave Expectancy Ratings Intact.

    Science.gov (United States)

    Leer, Arne; Haesen, Kim; Vervliet, Bram

    2018-01-01

    Extinction treatments decrease fear via repeated exposures to the conditioned stimulus (CS) and are associated with a return of fear. Alternatively, fear can be reduced via reductions in the perceived intensity of the unconditioned stimulus (US), e.g., through repeated exposures to the US. Promisingly, the few available studies show that repeated US exposures outperform standard extinction. US exposure treatments can decrease fear via two routes: (1) by weakening the CS-US association (extinction-like mechanism), and/or (2) by weakening the subjective US aversiveness (habituation-like mechanism). The current study further investigated the conditions under which US exposure treatment may reduce renewal, by adding a group in which CS-US pairings continued following fear acquisition. During acquisition, participants learned that one of two visual stimuli (CS+/CS-) predicted the occurrence of an aversive electrocutaneous stimulus (US). Next, the background context changed and participants received one of three interventions: repeated CS exposures, (2) repeated US exposures, or (3) continued CS-US pairings. Following repeated CS exposures, test presentations of the CSs in the original conditioning context revealed intact CS+/CS- differentiation in the fear-potentiated startle reflex, while the differentiation was abolished in the other two groups. Differential US expectancy ratings, on the other hand, were intact in all groups. Skin conductance data were inconclusive because standard context renewal following CS exposures did not occur. Unexpectedly, there was no evidence for a habituation-like process having taken place during US exposures or continued CS-US pairings. The results provide further evidence that US exposures outperform the standard extinction treatment and show that effects are similar when US exposures are part of CS-US pairings.

  2. Role of L-Type Ca[superscript 2+] Channel Isoforms in the Extinction of Conditioned Fear

    Science.gov (United States)

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J.; Striessnig, Jorg; Singewald, Nicolas

    2008-01-01

    Dihydropyridine (DHP) L-type Ca[superscript 2+] channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the…

  3. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala.

    Science.gov (United States)

    Kim, Woong Bin; Cho, Jun-Hyeong

    2017-08-30

    In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparison of inbred mouse substrains reveals segregation of maladaptive fear phenotypes

    Directory of Open Access Journals (Sweden)

    Stephanie J Temme

    2014-08-01

    Full Text Available Maladaptive fear, such as fear that is persistent or easily generalized to a nonthreatening stimuli, is associated with anxiety-related disorders in humans. In the laboratory, maladaptive fear can be modeled in rodents using Pavlovian fear conditioning. Recently, an inbred mouse strain known as 129S1/SvImJ, or 129S1 have been reported as exhibiting impairments in fear extinction and enhanced fear generalization. With a long-term goal of identifying segregating genetic markers of maladaptive fear, we used Pavlovian fear conditioning to characterize a closely related substrain designated as 129S6/SvEvTac, or 129S6. Here we report that, like 129S1 animals, 129S6 mice exhibit appropriate levels of fear upon conditioning, but are unable to extinguish fear memories once they are consolidated. Importantly, the maladaptive fear phenotype in this inbred stain can be segregated by sub-strain when probed using conditioning protocols designed to assess generalized fear. We find that unlike the 129S1 substrain, mice from the 129S6 sub-strain do not generalize conditioned fear to previously novel contexts and can learn to discriminate between two similar contexts when trained using a discrimination protocol. These results suggest that at least two forms of maladaptive fear (deficits in fear extinction and fear generalization can be can be functionally segregated, further suggesting that the underlying neurobiology is heritable. Given the observation that two closely related sub-strains can exhibit different constellations of maladaptive fear suggests that these findings could be exploited to facilitate the identification of candidate genes for anxiety-related disorders.

  5. Neurobiology of Fear and Specific Phobias

    Science.gov (United States)

    Garcia, René

    2017-01-01

    Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized…

  6. Triggers of fear: perceptual cues versus conceptual information in spider phobia.

    Science.gov (United States)

    Peperkorn, Henrik M; Alpers, Georg W; Mühlberger, Andreas

    2014-07-01

    Fear reactions in spider-phobic patients can be activated by specific perceptual cues or by conceptual fear-related information. Matching perceptual fear cues and fear-related information were expected to result in maximal fear responses, perceptual fear cues alone in less fear, and information alone in the weakest responses. We used virtual reality to manipulate the available cues and information. Forty-eight phobic patients and 48 healthy participants were repeatedly exposed to either a perceptual cue, information, or a combination of both. In conditions with a fear-relevant perceptual cue, phobic patients reported increased fear compared to the condition with information only. Across exposures trials, these reactions diminished. Skin conductance in phobic patients was significantly higher in the combined than in the cue or the information condition. Perceptual cues are essential for phobic fear reactions in spider phobia. In combination with fear-relevant information, perceptual cues activate an intense and persistent fear reaction. © 2013 Wiley Periodicals, Inc.

  7. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory

    Directory of Open Access Journals (Sweden)

    Stephan Koenig

    2017-05-01

    Full Text Available We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L, partial (P, and high (H shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L < P < H and the uncertainty of their prediction (L < P > H. During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention.

  8. Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory.

    Directory of Open Access Journals (Sweden)

    Florence Kermen

    Full Text Available BACKGROUND: It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days, but not a massed (within day, learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. CONCLUSION/SIGNIFICANCE: We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.

  9. Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory.

    Science.gov (United States)

    Kermen, Florence; Sultan, Sébastien; Sacquet, Joëlle; Mandairon, Nathalie; Didier, Anne

    2010-08-13

    It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.

  10. In the vicious circle of fear

    International Nuclear Information System (INIS)

    Zischka, A.

    1980-01-01

    Fear is the great driving force, the basic effect, without which there would be no adaption to new living conditions, and no provision for the future. But fear has a positive influence only as long as it does not gain the upper hand, for then it makes human beings blind and stifles activity. What is important, and will remain so, is the equilibrium between fear and courage, caution and the desire for action, optimism und pessimism. This equilibrium has now been disturbed in the western countries - and only here. Our present fears give rise to hardly any positive measures, but prevent provision for the future. We are threatened with failure due to the manipulated conversion of fear from the maintenance of life to an effect which destroys life. In this way we got into a vicious circle of fear: we must try to weaken the imagined dangers by emphasising the true conditions. The author discusses how the viscious circle can be broken. (orig.) 891 UA/orig. 892 MKO [de

  11. Oxytocin Signaling in Basolateral and Central Amygdala Nuclei Differentially Regulates the Acquisition, Expression, and Extinction of Context-Conditioned Fear in Rats

    Science.gov (United States)

    Campbell-Smith, Emma J.; Holmes, Nathan M.; Lingawi, Nura W.; Panayi, Marios C.; Westbrook, R. Frederick

    2015-01-01

    The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the…

  12. Effects of medial prefrontal cortex lesions in rats on the what-where-when memory of a fear conditioning event.

    Science.gov (United States)

    Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min

    2011-03-17

    Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Repeated Recall and PKM? Maintain Fear Memories in Juvenile Rats

    Science.gov (United States)

    Oliver, Chicora F.; Kabitzke, Patricia; Serrano, Peter; Egan, Laura J.; Barr, Gordon A.; Shair, Harry N.; Wiedenmayer, Christoph

    2016-01-01

    We examined the neural substrates of fear memory formation and maintenance when repeated recall was used to prevent forgetting in young animals. In contrast to adult rats, juveniles failed to show contextual fear responses at 4 d post-fear conditioning. Reconsolidation sessions 3 and 6 d after conditioning restored contextual fear responses in…

  14. Retrieving fear memories, as time goes by…

    Science.gov (United States)

    Do Monte, Fabricio H.; Quirk, Gregory J.; Li, Bo; Penzo, Mario A.

    2016-01-01

    Fear conditioning researches have led to a comprehensive picture of the neuronal circuit underlying the formation of fear memories. In contrast, knowledge about the retrieval of fear memories is much more limited. This disparity may stem from the fact that fear memories are not rigid, but reorganize over time. To bring clarity and raise awareness on the time-dependent dynamics of retrieval circuits, we review current evidence on the neuronal circuitry participating in fear memory retrieval at both early and late time points after conditioning. We focus on the temporal recruitment of the paraventricular nucleus of the thalamus, and its BDNFergic efferents to the central nucleus of the amygdala, for the retrieval and maintenance of fear memories. Finally, we speculate as to why retrieval circuits change across time, and the functional benefits of recruiting structures such as the paraventricular nucleus into the retrieval circuit. PMID:27217148

  15. Olfactory memory formation and the influence of reward pathway during appetitive learning by honey bees.

    Science.gov (United States)

    Wright, Geraldine A; Mustard, Julie A; Kottcamp, Sonya M; Smith, Brian H

    2007-11-01

    Animals possess the ability to assess food quality via taste and via changes in state that occur after ingestion. Here, we investigate the extent to which a honey bee's ability to assess food quality affected the formation of association with an odor stimulus and the retention of olfactory memories associated with reward. We used three different conditioning protocols in which the unconditioned stimulus (food) was delivered as sucrose stimulation to the proboscis (mouthparts), the antennae or to both proboscis and antennae. All means of delivery of the unconditioned stimulus produced robust associative conditioning with an odor. However, the memory of a conditioned odor decayed at a significantly greater rate for subjects experiencing antennal-only stimulation after either multiple- or single-trial conditioning. Finally, to test whether the act of feeding on a reward containing sucrose during conditioning affected olfactory memory formation, we conditioned honey bees to associate an odor with antennal stimulation with sucrose followed by feeding on a water droplet. We observed that a honey bee's ability to recall the conditioned odor was not significantly different from that of subjects conditioned with an antennal-only sucrose stimulus. Our results show that stimulation of the sensory receptors on the proboscis and/or ingestion of the sucrose reward during appetitive olfactory conditioning are necessary for long-term memory formation.

  16. Emotional Perseveration: An Update on Prefrontal-Amygdala Interactions in Fear Extinction

    Science.gov (United States)

    Sotres-Bayon, Francisco; Bush, David E. A.; LeDoux, Joseph E.

    2004-01-01

    Fear extinction refers to the ability to adapt as situations change by learning to suppress a previously learned fear. This process involves a gradual reduction in the capacity of a fear-conditioned stimulus to elicit fear by presenting the conditioned stimulus repeatedly on its own. Fear extinction is context-dependent and is generally considered…

  17. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  18. Cladistic analysis of olfactory and vomeronasal systems.

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  19. A novel perceptual discrimination training task: Reducing fear overgeneralization in the context of fear learning.

    Science.gov (United States)

    Ginat-Frolich, Rivkah; Klein, Zohar; Katz, Omer; Shechner, Tomer

    2017-06-01

    Generalization is an adaptive learning mechanism, but it can be maladaptive when it occurs in excess. A novel perceptual discrimination training task was therefore designed to moderate fear overgeneralization. We hypothesized that improvement in basic perceptual discrimination would translate into lower fear overgeneralization in affective cues. Seventy adults completed a fear-conditioning task prior to being allocated into training or placebo groups. Predesignated geometric shape pairs were constructed for the training task. A target shape from each pair was presented. Thereafter, participants in the training group were shown both shapes and asked to identify the image that differed from the target. Placebo task participants only indicated the location of each shape on the screen. All participants then viewed new geometric pairs and indicated whether they were identical or different. Finally, participants completed a fear generalization test consisting of perceptual morphs ranging from the CS + to the CS-. Fear-conditioning was observed through physiological and behavioural measures. Furthermore, the training group performed better than the placebo group on the assessment task and exhibited decreased fear generalization in response to threat/safety cues. The findings offer evidence for the effectiveness of the novel discrimination training task, setting the stage for future research with clinical populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Olfactory processing and odor specificity: a meta-analysis of menstrual cycle variation in olfactory sensitivity

    Directory of Open Access Journals (Sweden)

    Martinec Nováková Lenka

    2014-12-01

    Full Text Available Cycle-correlated variation in olfactory threshold, with women becoming more sensitive to odors mid-cycle, is somewhat supported by the literature but the evidence is not entirely consistent, with several studies finding no, or mixed, effects. It has been argued that cyclic shifts in olfactory threshold might be limited to odors relevant to the mating context.

  1. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  2. The role of main olfactory and vomeronasal systems in animal ...

    African Journals Online (AJOL)

    In many terrestrial tetrapod, olfactory sensory communication is mediated by two anatomically and functionally distinct sensory systems; the main olfactory system and vomeronasal system (accessory olfactory system). Recent anatomical studies of the central pathways of the olfactory and vomeronasal systems showed that ...

  3. MRI of the olfactory bulbs and sulci in human fetuses

    International Nuclear Information System (INIS)

    Azoulay, Robin; Grabar, Sophie; Kalifa, Gabriel; Adamsbaum, Catherine; Fallet-Bianco, Catherine; Garel, Catherine

    2006-01-01

    There is limited knowledge of the MRI pattern of the development of fetal olfactory bulbs and sulci. To describe the MRI appearance of olfactory bulbs and sulci in normal in vivo fetuses according to gestational age. Olfactory bulbs and sulci were retrospectively assessed on brain MRI examinations of 88 normal fetuses between 24 and 39 weeks gestational age. Two reference centres were involved in the study and both used routine protocols that included axial and coronal T2- and T1-weighted sequences at 1.5 T. The results were compared both with the commonly used neuropathological data in the literature and with personal neuropathological data. Pearson's chi-squared test or Fisher's exact test were performed. One case of olfactory agenesis associated with CHARGE syndrome was identified. T2-weighted coronal sequences were the most sensitive for detecting olfactory bulbs and sulci. Olfactory sulci were significantly better detected from 30 weeks onwards (90.9-100%; P<0.001). MRI showed a posteroanterior development of these sulci. Olfactory bulbs were better detected from 30 to 34 weeks (80-90.9%; P<0.002). Comparison with neuropathological data confirmed the posteroanterior development of the sulci and showed an important delay in detection of the olfactory structures (bulbs and sulci). No difference was observed between the two centres involved. To date, fetal MRI can depict olfactory sulci from 30 weeks gestational age onwards and olfactory bulbs from 30 to 34 weeks gestational age. This preliminary reference standard is useful to assess the normality of the olfactory system and to diagnose olfactory agenesis. (orig.)

  4. Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats.

    Science.gov (United States)

    Moaddab, Mahsa; Dabrowska, Joanna

    2017-07-15

    Oxytocin (OT) is a hypothalamic neuropeptide that modulates fear and anxiety-like behaviors. Dorsolateral bed nucleus of the stria terminalis (BNST dl ) plays a critical role in the regulation of fear and anxiety, and expresses high levels of OT receptor (OTR). However, the role of OTR neurotransmission within the BNST dl in mediating these behaviors is unknown. Here, we used adult male Sprague-Dawley rats to investigate the role of OTR neurotransmission in the BNST dl in the modulation of the acoustic startle response, as well as in the acquisition and consolidation of conditioned fear using fear potentiated startle (FPS) paradigm. Bilateral intra-BNST dl administration of OT (100 ng) did not affect the acquisition of conditioned fear response. However, intra-BNST dl administration of specific OTR antagonist (OTA), (d(CH 2 ) 5 1 , Tyr(Me) 2 , Thr 4 , Orn 8 , des-Gly-NH 2 9 )-vasotocin, (200 ng), prior to the fear conditioning session, impaired the acquisition of cued fear, without affecting a non-cued fear component of FPS. Neither OTA, nor OT affected baseline startle or shock reactivity during fear conditioning. Therefore, the observed impairment of cued fear after OTA infusion resulted from the specific effect on the formation of cued fear. In contrast to the acquisition, neither OTA nor OT affected the consolidation of FPS, when administered after the completion of fear conditioning session. Taken together, these results reveal the important role of OTR neurotransmission in the BNST dl in the formation of conditioned fear to a discrete cue. This study also highlights the role of the BNST dl in learning to discriminate between threatening and safe stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Eye Movements Index Implicit Memory Expression in Fear Conditioning.

    Directory of Open Access Journals (Sweden)

    Lauren S Hopkins

    Full Text Available The role of contingency awareness in simple associative learning experiments with human participants is currently debated. Since prior work suggests that eye movements can index mnemonic processes that occur without awareness, we used eye tracking to better understand the role of awareness in learning aversive Pavlovian conditioning. A complex real-world scene containing four embedded household items was presented to participants while skin conductance, eye movements, and pupil size were recorded. One item embedded in the scene served as the conditional stimulus (CS. One exemplar of that item (e.g. a white pot was paired with shock 100 percent of the time (CS+ while a second exemplar (e.g. a gray pot was never paired with shock (CS-. The remaining items were paired with shock on half of the trials. Participants rated their expectation of receiving a shock during each trial, and these expectancy ratings were used to identify when (i.e. on what trial each participant became aware of the programmed contingencies. Disproportionate viewing of the CS was found both before and after explicit contingency awareness, and patterns of viewing distinguished the CS+ from the CS-. These observations are consistent with "dual process" models of fear conditioning, as they indicate that learning can be expressed in patterns of viewing prior to explicit contingency awareness.

  6. Organization and distribution of glomeruli in the bowhead whale olfactory bulb

    Directory of Open Access Journals (Sweden)

    Takushi Kishida

    2015-04-01

    Full Text Available Although modern baleen whales (Mysticeti retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals.

  7. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Derya R Shimshek

    2005-11-01

    Full Text Available Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q, both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic" among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.

  8. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.

    Science.gov (United States)

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  9. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae Based on Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Yinliang Wang

    Full Text Available The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs, 10 chemosensory proteins (CSPs, 34 odorant receptors (ORs, 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, Aqua

  10. Experimental evolution of olfactory memory in Drosophila melanogaster.

    Science.gov (United States)

    Mery, Frederic; Pont, Juliette; Preat, Thomas; Kawecki, Tadeusz J

    2007-01-01

    In order to address the nature of genetic variation in learning performance, we investigated the response to classical olfactory conditioning in "high-learning" Drosophila melanogaster lines previously subject to selection for the ability to learn an association between the flavor of an oviposition medium and bitter taste. In a T-maze choice test, the seven high-learning lines were better at avoiding an odor previously associated with aversive mechanical shock than were five unselected "low-learning" lines originating from the same natural population. Thus, the evolved improvement in learning ability of high-learning lines generalized to another aversion learning task involving a different aversive stimulus (shock instead of bitter taste) and a different behavioral context than that used to impose selection. In this olfactory shock task, the high-learning lines showed improvements in the learning rate as well as in two forms of consolidated memory: anesthesia-resistant memory and long-term memory. Thus, genetic variation underlying the experimental evolution of learning performance in the high-learning lines affected several phases of memory formation in the course of olfactory aversive learning. However, the two forms of consolidated memory were negatively correlated among replicate high-learning lines, which is consistent with a recent hypothesis that these two forms of consolidated memory are antagonistic.

  11. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    Science.gov (United States)

    Markopoulou, Katerina; Chase, Bruce A; Robowski, Piotr; Strongosky, Audrey; Narożańska, Ewa; Sitek, Emilia J; Berdynski, Mariusz; Barcikowska, Maria; Baker, Matt C; Rademakers, Rosa; Sławek, Jarosław; Klein, Christine; Hückelheim, Katja; Kasten, Meike; Wszolek, Zbigniew K

    2016-01-01

    Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L), which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may reflect the

  12. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    Directory of Open Access Journals (Sweden)

    Katerina Markopoulou

    Full Text Available Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L, which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may

  13. Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions.

    Directory of Open Access Journals (Sweden)

    Masami Watabe-Rudolph

    Full Text Available Atrophy of the olfactory epithelium (OE associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc(-/- with short telomeres compared to wild type mice (mTerc(+/+ with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc(-/- mice compared to mTerc(+/+ mice. Seven days after chemical induced damage, G3 mTerc(-/- mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc(+/+ mice (p = 0.031. Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21 rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people.

  14. An Olfactory Cinema: Smelling Perfume

    Directory of Open Access Journals (Sweden)

    Jiaying Sim

    2014-09-01

    Full Text Available While technological improvements from the era of silent movies to that of sound cinema have altered and continued to affect audience’s cinematic experiences, the question is not so much how technology has increased possibility of a sensory response to cinema, rather, it is one that exposes how such technological changes only underscore the participation of our senses and the body in one’s experience of watching film, highlighting the inherently sensorial nature of the cinematic experience. This paper aims to address the above question through an olfactory cinema, by close analysis of Perfume: The Story of a Murderer (2006 by Tom Tykwer. What is an olfactory cinema, and how can such an approach better our understanding of sensorial aspects found within a cinema that ostensibly favours audio-visual senses? What can we benefit from an olfactory cinema? Perhaps, it is through an olfactory cinema that one may begin to embrace the sensual quality of cinema that has been overshadowed by the naturalized ways of experiencing films solely with our eyes and ears, so much so that we desensitize ourselves to the role our senses play in cinematic experiences altogether

  15. Cognitive Processing of Fear-Arousing Message Content.

    Science.gov (United States)

    Hale, Jerold L.; And Others

    1995-01-01

    Investigates two models (the Elaboration Likelihood Model and the Heuristic-Systematic Model) of the cognitive processing of fear-arousing messages in undergraduate students. Finds in three of the four conditions (low fear, high fear, high trait anxiety) that cognitive processing appears to be antagonistic. Finds some evidence of concurrent…

  16. Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning

    OpenAIRE

    Woods, Amanda M.; Bouton, Mark E.

    2008-01-01

    Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In all experiments, conditioning and extinction were accomplished in single sessions, and retention testing took place 24 h after extinction. In both f...

  17. Resting-state functional connectivity between amygdala and the ventromedial prefrontal cortex following fear reminder predicts fear extinction

    Science.gov (United States)

    Feng, Pan; Zheng, Yong

    2016-01-01

    Investigations of fear conditioning have elucidated the neural mechanisms of fear acquisition, consolidation and extinction, but it is not clear how the neural activation following fear reminder influence the following extinction. To address this question, we measured human brain activity following fear reminder using resting-state functional magnetic resonance imaging, and investigated whether the extinction effect can be predicted by resting-state functional connectivity (RSFC). Behaviorally, we found no significant differences of fear ratings between the reminder group and the no reminder group at the fear acquisition and extinction stages, but spontaneous recovery during re-extinction stage appeared only in the no reminder group. Imaging data showed that functional connectivity between ventromedial prefrontal cortex (vmPFC) and amygdala in the reminder group was greater than that in the no reminder group after fear memory reactivation. More importantly, the functional connectivity between amygdala and vmPFC of the reminder group after fear memory reactivation was positively correlated with extinction effect. These results suggest RSFC between amygdala and the vmPFC following fear reminder can predict fear extinction, which provide important insight into the neural mechanisms of fear memory after fear memory reactivation. PMID:27013104

  18. Not all stressors are equal: behavioral and endocrine evidence for development of contextual fear conditioning after a single session of footshocks but not of immobilization.

    Science.gov (United States)

    Daviu, Núria; Delgado-Morales, Raúl; Nadal, Roser; Armario, Antonio

    2012-01-01

    Exposure of animals to footshocks (FS) in absence of any specific cue results in the development of fear to the compartment where shocks were given (contextual fear conditioning), and this is usually evaluated by time spent freezing. However, the extent to which contextual fear conditioning always develops when animals are exposed to other stressors is not known. In the present work we firstly demonstrated, using freezing, that exposure of adult rats to a single session of FS resulted in short-term and long-term contextual fear conditioning (freezing) that was paralleled by increased hypothalamic-pituitary-adrenal (HPA) activation. In contrast, using a similar design, no HPA or behavioral evidence for such conditioning was found after exposure to immobilization on boards (IMO), despite this stressor being of similar severity as FS on the basis of standard physiological measures of stress, including HPA activation. In a final experiment we directly compared the exposure to the two stressors in the same type of context and tested for the development of conditioning to the context and to a specific cue for IMO (the board). We observed the expected high levels of freezing and the conditioned HPA activation after FS, but not after IMO, regardless of the presence of the board during testing. Therefore, it can be concluded that development of fear conditioning to context or particular cues, as evaluated by either behavioral or endocrine measures, appears to be dependent on the nature of the aversive stimuli, likely to be related to biologically preparedness to establish specific associations.

  19. Habitat-dependent olfactory discrimination in three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Hiermes, Meike; Mehlis, Marion; Rick, Ingolf P; Bakker, Theo C M

    2015-07-01

    The ability to recognize conspecifics is indispensible for differential treatment of particular individuals in social contexts like grouping behavior. The advantages of grouping are multifarious, and there exist numerous additional benefits of joining aggregations of conspecifics. Recognition is based on different signals and transmitted via multiple channels, among others the olfactory channel. The sensory system or the combination of sensory modalities used in recognition processes is highly dependent on the availability and effectiveness of modalities, which are a function of the environmental conditions. Using F1-generations of six three-spined stickleback (Gasterosteus aculeatus) populations from two habitat types (tea-stained and clear-water lakes) from the Outer Hebrides, Scotland, we investigated whether individuals are able to recognize members of their own population solely based on olfactory cues and whether the habitat type an individual originated from had an influence on its recognition abilities. When given the choice (own vs. foreign population) sticklebacks from tea-stained lakes significantly preferred the odor of their own population, whereas fish from clear-water habitats did not show any preference. Moreover, fish from the two habitat types differed significantly in their recognition abilities, indicating that olfactory communication is better developed when visual signaling is disturbed. Thus, the observed odor preferences appear to be the consequence of different selective constraints and adaptations as a result of the differences in environmental conditions that have acted on the parental generations. These adaptations are likely genetically based as the differences are present in the F1-generation that had been reared under identical laboratory conditions.

  20. Preservation of olfaction in surgery of olfactory groove meningiomas.

    Science.gov (United States)

    Jang, Woo-Youl; Jung, Shin; Jung, Tae-Young; Moon, Kyung-Sub; Kim, In-Young

    2013-08-01

    Olfaction is commonly considered as secondary among the sensory functions, perhaps reflecting a lack of interest in sparing olfaction after surgery for the olfactory groove meningiomas (OGM). However, considering the repercussions of olfaction for the quality of life, the assessment of post-operative olfaction should be necessary. We retrospectively reviewed the olfactory outcome in patients with OGM and investigated the factors associated with sparing the post-operative olfaction. Between 1993 and 2012, 40 patients with OGM underwent surgical resection and estimated the olfactory function using the Korean version of "Sniffin'Sticks" test (KVSS). Variable factors, such as tumor size, degree of preoperative edema, tumor consistency, preoperative olfactory function, surgical approaches, patient's age, and gender were analyzed with attention to the post-operative olfactory function. Anatomical and functional preservation of olfactory structures were achieved in 26 patients (65%) and 22 patients (55%), respectively. Among the variable factors, size of tumor was significant related to the preservation of post-operative olfaction. (78.6% in size4 cm, p=0.035). Sparing the olfaction was significantly better in patients without preoperative olfactory dysfunction (84.6%) compared with ones with preoperative olfactory dysfunction (40.7%, p=0.016). The frontolateral approach achieved much more excellent post-operative olfactory function (71.4%) than the bifrontal approach (36.8%, p=0.032). If the tumor was smaller than 4 cm and the patients did not present olfactory dysfunction preoperatively, the possibility of sparing the post-operative olfaction was high. Among the variable surgical approaches, frontolateral route may be preferable sparing the post-operative olfaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, Maurizio, E-mail: maurizio.lazzari@unibo.it; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-15

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L{sup −1}. Densitometric values of cONS, immunostained with anti-G {sub αolf}, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G {sub

  2. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    International Nuclear Information System (INIS)

    Lazzari, Maurizio; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-01-01

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L"−"1. Densitometric values of cONS, immunostained with anti-G _α_o_l_f, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G _

  3. State and trait olfactory markers of major depression.

    Directory of Open Access Journals (Sweden)

    Marine Naudin

    Full Text Available Nowadays, depression is a major issue in public health. Because of the partial overlap between the brain structures involved in depression, olfaction and emotion, the study of olfactory function could be a relevant way to find specific cognitive markers of depression. This study aims at determining whether the olfactory impairments are state or trait markers of major depressive episode (MDE through the study of the olfactory parameters involving the central olfactory pathway. In a pilot study, we evaluated prospectively 18 depressed patients during acute episodes of depression and 6 weeks after antidepressant treatment (escitalopram against 54 healthy volunteers, matched by age, gender and smoking status. We investigated the participants' abilities to identify odors (single odors and in binary mixture, to evaluate and discriminate the odors' intensity, and determine the hedonic valence of odors. The results revealed an "olfactory anhedonia" expressed by decrease of hedonic score for high emotional odorant as potential state marker of MDE. Moreover, these patients experienced an "olfactory negative alliesthesia", during the odor intensity evaluation, and failed to identify correctly two odorants with opposite valences in a binary iso-mixture, which constitute potential trait markers of the disease. This study provides preliminary evidence for olfactory impairments associated with MDE (state marker that are persistent after the clinical improvement of depressive symptoms (trait marker. These results could be explained by the chronicity of depression and/or by the impact of therapeutic means used (antidepressant treatment. They need to be confirmed particularly the ones obtained in complex olfactory environment which corresponds a more objective daily life situation.

  4. Effect of strong fragrance on olfactory detection threshold.

    Science.gov (United States)

    Fasunla, Ayotunde James; Douglas, David Dayo; Adeosun, Aderemi Adeleke; Steinbach, Silke; Nwaorgu, Onyekwere George Benjamin

    2014-09-01

    To assess the olfactory threshold of healthy volunteers at the University College Hospital, Ibadan and to investigate the effect of perfume on their olfactory detection thresholds. A quasi-experimental study on olfactory detection thresholds of healthy volunteers from September 2013 to November 2013. Tertiary health institution. A structured questionniare was administered to the participants in order to obtain information on sociodemographics, occupation, ability to perceive smell, use of perfume, effects of perfume on appetite and self-confidence, history of allergy, and previous nasal surgery. Participants subjectively rated their olfactory performance. Subsequently, they had olfactory detection threshold testing done at baseline and after exposure to perfume with varied concentrations of n-butanol in a forced triple response and staircase fashion. Healthy volunteers, 37 males and 63 females, were evaluated. Their ages ranged from 19 to 59 years with a mean of 31 years ± 8. Subjectively, 94% of the participants had excellent olfactory function. In the pre-exposure forced triple response, 88% were able to detect the odor at ≤.25 mmol/l concentration while in the post-exposure forced triple response, only 66% were able to detect the odor at ≤.25 mmol/l concentration. There is also a statistical significant difference in the olfactory detection threshold score between the pre-exposure and post-exposure period in the participants (P fragrances affects the olfactory detection threshold. Therefore patients and clinicians should be aware of this and its effects on the outcome of test of olfaction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  5. Olfactory ensheathing glia : their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord

    NARCIS (Netherlands)

    Franssen, Elske H P; de Bree, Freddy M; Verhaagen, J.

    2007-01-01

    Olfactory ensheathing glia (OEG) are a specialized type of glia that guide primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. The primary olfactory system is able to regenerate after a lesion and OEG contribute to this process by providing a growth-supportive

  6. Retro- and orthonasal olfactory function in relation to olfactory bulb volume in patients with hypogonadotrophic hypogonadism.

    Science.gov (United States)

    Salihoglu, Murat; Kurt, Onuralp; Ay, Seyid Ahmet; Baskoy, Kamil; Altundag, Aytug; Saglam, Muzaffer; Deniz, Ferhat; Tekeli, Hakan; Yonem, Arif; Hummel, Thomas

    2017-08-24

    Idiopathic hypogonadotrophic hypogonadism (IHH) with an olfactory deficit is defined as Kallmann syndrome (KS) and is distinct from normosmic IHH. Because olfactory perception not only consists of orthonasally gained impressions but also involves retronasal olfactory function, in this study we decided to comprehensively evaluate both retronasal and orthonasal olfaction in patients with IHH. This case-control study included 31 controls and 45 IHH patients. All participants whose olfactory and taste functions were evaluated with orthonasal olfaction (discrimination, identification and threshold), retronasal olfaction, taste function and olfactory bulb volume (OBV) measurement. The patients were separated into three groups according to orthonasal olfaction: anosmic IHH (aIHH), hyposmic IHH (hIHH) and normosmic IHH (nIHH). Discrimination, identification and threshold scores of patients with KS were significantly lower than controls. Threshold scores of patients with nIHH were significantly lower than those of controls, but discrimination and identification scores were not significantly different. Retronasal olfaction was reduced only in the aIHH group compared to controls. Identification of bitter, sweet, sour, and salty tastes was not significantly different when compared between the anosmic, hyposmic, and normosmic IHH groups and controls. OBV was lower bilaterally in all patient groups when compared with controls. The OBV of both sides was found to be significantly correlated with TDI scores in IHH patients. 1) There were no significant differences in gustatory function between controls and IHH patients; 2) retronasal olfaction was reduced only in anosmic patients but not in orthonasally hyposmic participants, possibly indicating presence of effective compensatory mechanisms; 3) olfactory bulb volumes were highly correlated with olfaction scores in the HH group. The current results indicate a continuum from anosmia to normosmia in IHH patients. Copyright © 2017

  7. [Deficits in medical counseling in olfactory dysfunction].

    Science.gov (United States)

    Haxel, B R; Nisius, A; Fruth, K; Mann, W J; Muttray, A

    2012-05-01

    Olfactory dysfunctions are common with a prevalence of up to 20% in the population. An impaired sense of smell can lead to specific dangers, therefore, counseling and warning of hazardous situations to raise patient awareness is an important medical function. In this study 105 patients presenting to the University of Mainz Medical Centre with dysosmia were evaluated using a questionnaire. For quantification of the olfactory dysfunction a standardized olfactory test (Sniffin' Sticks) was used. Of the patients 46% were hyposmic and 40% were functionally anosmic. The median duration of the olfactory impairment was 10 months and the main causes of dysosmia were upper respiratory tract infections and idiopathic disorders. More than 90% of the patients consulted an otorhinolaryngologist and 60% a general practitioner before presenting to the University of Mainz Medical Center. More than two thirds of the patients conducted a professional activity, 95% of patients reported that they had not received any medical counseling and 6% of the subjects were forced to discontinue their profession because of olfactory dysfunction. In patients with olfactory dysfunctions appropriate diagnostics, including olfactometry should be performed. Furthermore, correct medical counseling concerning necessary additional arrangements (e.g. installation of smoke or gas detectors, precautions while cooking or for hygiene) has to be performed. For patients in a profession an analysis of the hazards at work is crucial.

  8. SMELL-S and SMELL-R: Olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience.

    Science.gov (United States)

    Hsieh, Julien W; Keller, Andreas; Wong, Michele; Jiang, Rong-San; Vosshall, Leslie B

    2017-10-24

    Smell dysfunction is a common and underdiagnosed medical condition that can have serious consequences. It is also an early biomarker of neurodegenerative diseases, including Alzheimer's disease, where olfactory deficits precede detectable memory loss. Clinical tests that evaluate the sense of smell face two major challenges. First, human sensitivity to individual odorants varies significantly, so test results may be unreliable in people with low sensitivity to a test odorant but an otherwise normal sense of smell. Second, prior familiarity with odor stimuli can bias smell test performance. We have developed nonsemantic tests for olfactory sensitivity (SMELL-S) and olfactory resolution (SMELL-R) that use mixtures of odorants that have unfamiliar smells. The tests can be self-administered by healthy individuals with minimal training and show high test-retest reliability. Because SMELL-S uses odor mixtures rather than a single molecule, odor-specific insensitivity is averaged out, and the test accurately distinguished people with normal and dysfunctional smell. SMELL-R is a discrimination test in which the difference between two stimulus mixtures can be altered stepwise. This is an advance over current discrimination tests, which ask subjects to discriminate monomolecular odorants whose difference in odor cannot be quantified. SMELL-R showed significantly less bias in scores between North American and Taiwanese subjects than conventional semantically based smell tests that need to be adapted to different languages and cultures. Based on these proof-of-principle results in healthy individuals, we predict that SMELL-S and SMELL-R will be broadly effective in diagnosing smell dysfunction. Published under the PNAS license.

  9. SMELL-S and SMELL-R: Olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience

    Science.gov (United States)

    Jiang, Rong-San

    2017-01-01

    Smell dysfunction is a common and underdiagnosed medical condition that can have serious consequences. It is also an early biomarker of neurodegenerative diseases, including Alzheimer’s disease, where olfactory deficits precede detectable memory loss. Clinical tests that evaluate the sense of smell face two major challenges. First, human sensitivity to individual odorants varies significantly, so test results may be unreliable in people with low sensitivity to a test odorant but an otherwise normal sense of smell. Second, prior familiarity with odor stimuli can bias smell test performance. We have developed nonsemantic tests for olfactory sensitivity (SMELL-S) and olfactory resolution (SMELL-R) that use mixtures of odorants that have unfamiliar smells. The tests can be self-administered by healthy individuals with minimal training and show high test–retest reliability. Because SMELL-S uses odor mixtures rather than a single molecule, odor-specific insensitivity is averaged out, and the test accurately distinguished people with normal and dysfunctional smell. SMELL-R is a discrimination test in which the difference between two stimulus mixtures can be altered stepwise. This is an advance over current discrimination tests, which ask subjects to discriminate monomolecular odorants whose difference in odor cannot be quantified. SMELL-R showed significantly less bias in scores between North American and Taiwanese subjects than conventional semantically based smell tests that need to be adapted to different languages and cultures. Based on these proof-of-principle results in healthy individuals, we predict that SMELL-S and SMELL-R will be broadly effective in diagnosing smell dysfunction. PMID:29073044

  10. Molecular mechanisms of D-cycloserine in facilitating fear extinction: insights from RNAseq.

    Science.gov (United States)

    Malan-Müller, Stefanie; Fairbairn, Lorren; Daniels, Willie M U; Dashti, Mahjoubeh Jalali Sefid; Oakeley, Edward J; Altorfer, Marc; Kidd, Martin; Seedat, Soraya; Gamieldien, Junaid; Hemmings, Sîan Megan Joanna

    2016-02-01

    D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.

  11. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    Science.gov (United States)

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  12. The Topological Properties of Stimuli Influence Fear Generalization and Extinction in Humans.

    Science.gov (United States)

    Xu, Liang; Su, Hongyu; Xie, Xiaoyuan; Yan, Pei; Li, Junjiao; Zheng, Xifu

    2018-01-01

    Fear generalization is an etiologically significant indicator of anxiety disorders, and understanding how to inhibit it is important in their treatment. Prior studies have found that reducing fear generalization using a generalization stimulus (GS) is ineffective in removing a conditioned fear that incorporates local features, and that topological properties appear to play a comparatively more significant role in the processes of perception and categorization. Our study utilized a conditioned-fear generalization design to examine whether the topological properties of stimuli influence the generalization and return of fear. Fear was indexed using online expectancy ratings and skin conductance responses (SCRs). The study's 52 participants were divided into three groups: Group 1, conditioned danger cue (CS+) extinction; Group 2, extinction of one GS; Group 3, extinction of three GSs. We found that the three groups acquired conditioned fear at the same level. In the generalization and extinction phase, fear was transferred to the GS with the same topological properties as CS+, and gradual decreases in both shock expectancy and SCRs over non-reinforced extinction trials were observed. In the test phase, participants' online expectancy ratings indicated that fear did not return in Group 1, but did return in Groups 2 and 3. All three groups demonstrated successful GS fear extinction, but only Group 1 did not show a return of fear for CS+. Regarding SCRs results, none of the groups demonstrated a return of fear, suggesting that utilization of topological properties successfully reduced the return of conditioned fear. Our results indicate that, in clinical settings, using GS with topological equivalence to CS+ might offer a potential method with which to extinct conditioned fear.

  13. The Topological Properties of Stimuli Influence Fear Generalization and Extinction in Humans

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2018-03-01

    Full Text Available Fear generalization is an etiologically significant indicator of anxiety disorders, and understanding how to inhibit it is important in their treatment. Prior studies have found that reducing fear generalization using a generalization stimulus (GS is ineffective in removing a conditioned fear that incorporates local features, and that topological properties appear to play a comparatively more significant role in the processes of perception and categorization. Our study utilized a conditioned-fear generalization design to examine whether the topological properties of stimuli influence the generalization and return of fear. Fear was indexed using online expectancy ratings and skin conductance responses (SCRs. The study’s 52 participants were divided into three groups: Group 1, conditioned danger cue (CS+ extinction; Group 2, extinction of one GS; Group 3, extinction of three GSs. We found that the three groups acquired conditioned fear at the same level. In the generalization and extinction phase, fear was transferred to the GS with the same topological properties as CS+, and gradual decreases in both shock expectancy and SCRs over non-reinforced extinction trials were observed. In the test phase, participants’ online expectancy ratings indicated that fear did not return in Group 1, but did return in Groups 2 and 3. All three groups demonstrated successful GS fear extinction, but only Group 1 did not show a return of fear for CS+. Regarding SCRs results, none of the groups demonstrated a return of fear, suggesting that utilization of topological properties successfully reduced the return of conditioned fear. Our results indicate that, in clinical settings, using GS with topological equivalence to CS+ might offer a potential method with which to extinct conditioned fear.

  14. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset.

    Science.gov (United States)

    Ignatieva, Elena V; Levitsky, Victor G; Yudin, Nikolay S; Moshkin, Mikhail P; Kolchanov, Nikolay A

    2014-01-01

    The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100-1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  15. Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression.

    Directory of Open Access Journals (Sweden)

    Dominic Landgraf

    Full Text Available The state of being helpless is regarded as a central aspect of depression, and therefore the learned helplessness paradigm in rodents is commonly used as an animal model of depression. The term 'learned helplessness' refers to a deficit in escaping from an aversive situation after an animal is exposed to uncontrollable stress specifically, with a control/comparison group having been exposed to an equivalent amount of controllable stress. A key feature of learned helplessness is the transferability of helplessness to different situations, a phenomenon called 'trans-situationality'. However, most studies in mice use learned helplessness protocols in which training and testing occur in the same environment and with the same type of stressor. Consequently, failures to escape may reflect conditioned fear of a particular environment, not a general change of the helpless state of an animal. For mice, there is no established learned helplessness protocol that includes the trans-situationality feature. Here we describe a simple and reliable learned helplessness protocol for mice, in which training and testing are carried out in different environments and with different types of stressors. We show that with our protocol approximately 50% of mice develop learned helplessness that is not attributable to fear conditioning.

  16. Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression.

    Science.gov (United States)

    Landgraf, Dominic; Long, Jaimie; Der-Avakian, Andre; Streets, Margo; Welsh, David K

    2015-01-01

    The state of being helpless is regarded as a central aspect of depression, and therefore the learned helplessness paradigm in rodents is commonly used as an animal model of depression. The term 'learned helplessness' refers to a deficit in escaping from an aversive situation after an animal is exposed to uncontrollable stress specifically, with a control/comparison group having been exposed to an equivalent amount of controllable stress. A key feature of learned helplessness is the transferability of helplessness to different situations, a phenomenon called 'trans-situationality'. However, most studies in mice use learned helplessness protocols in which training and testing occur in the same environment and with the same type of stressor. Consequently, failures to escape may reflect conditioned fear of a particular environment, not a general change of the helpless state of an animal. For mice, there is no established learned helplessness protocol that includes the trans-situationality feature. Here we describe a simple and reliable learned helplessness protocol for mice, in which training and testing are carried out in different environments and with different types of stressors. We show that with our protocol approximately 50% of mice develop learned helplessness that is not attributable to fear conditioning.

  17. Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance.

    Science.gov (United States)

    Tam, Shu K E; Hasan, Sibah; Choi, Harry M C; Brown, Laurence A; Jagannath, Aarti; Hughes, Steven; Hankins, Mark W; Foster, Russell G; Vyazovskiy, Vladyslav V; Bannerman, David M; Peirson, Stuart N

    2017-03-29

    Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light ( r LL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 ( Per1 and Per2 ), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under r LL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under r LL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by

  18. Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance

    Science.gov (United States)

    Tam, Shu K.E.; Hasan, Sibah; Brown, Laurence A.; Jagannath, Aarti; Hankins, Mark W.; Foster, Russell G.; Vyazovskiy, Vladyslav V.

    2017-01-01

    Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by

  19. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning

    Science.gov (United States)

    Keifer, Orion P.; Hurt, Robert C.; Ressler, Kerry J.

    2015-01-01

    The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively. PMID:26328883

  20. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    Science.gov (United States)

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  1. Serine/threonine-protein phosphatase 1 α levels are paralleling olfactory memory formation in the CD1 mouse.

    Science.gov (United States)

    Winding, Christiana; Sun, Yanwei; Höger, Harald; Bubna-Littitz, Hermann; Pollak, Arnold; Schmidt, Peter; Lubec, Gert

    2011-06-01

    Although olfactory discrimination has already been studied in several mouse strains, data on protein levels linked to olfactory memory are limited. Wild mouse strains Mus musculus musculus, Mus musculus domesticus and CD1 laboratory outbred mice were tested in a conditioned odor preference task and trained to discriminate between two odors, Rose and Lemon, by pairing one odor with a sugar reward. Six hours following the final test, mice were sacrificed and olfactory bulbs (OB) were taken for gel-based proteomics analyses and immunoblotting. OB proteins were extracted, separated by 2-DE and quantified using specific software (Proteomweaver). Odor-trained mice showed a preference for the previously rewarded odor suggesting that conditioned odor preference occurred. In CD1 mice levels, one out of 482 protein spots was significantly increased in odor-trained mice as compared with the control group; it was in-gel digested by trypsin and chymotrypsin and analyzed by tandem mass spectrometry (nano-ESI-LC-MS/MS). The spot was unambiguously identified as serine/threonine-protein phosphatase PP1-α catalytic subunit (PP-1A) and differential levels observed in gel-based proteomic studies were verified by immunoblotting. PP-1A is a key signalling element in synaptic plasticity and memory processes and is herein shown to be paralleling olfactory discrimination representing olfactory memory. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An Olfactory Indicator for Acid-Base Titrations.

    Science.gov (United States)

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  3. Fear of Life, Fear of Death, and Fear of Causing Death: How Legislative Changes on Assisted Dying Are Doomed to Fail.

    Science.gov (United States)

    Häyry, Matti

    2018-01-01

    Fear of life, fear of death, and fear of causing death form a combination that prevents reasoned changes in laws concerning end-of-life situations. This is shown systematically in this article using the methods of conceptual analysis. Prevalent fears are explicated and interpreted to see how their meanings differ depending on the chosen normative stance. When the meanings have been clarified, the impact of the fears on the motivations and justifications of potential legislative reforms are assessed. Two main normative stances are evoked. The first makes an appeal to individual self-determination, or autonomy, and the second to the traditional professional ethics of physicians. These views partly share qualifying elements, including incurability and irreversibility of the patient's medical condition, proximity of death, the unbearable nature of suffering, and issues of voluntariness further shade the matter. The conclusion is that although many motives to change end-of-life laws are admirable, they are partly contradictory, as are calls for autonomy and appeals to professional ethics; to a degree that good, principled legislative solutions remain improbable in the foreseeable future.

  4. Using Retrieval Cues to Attenuate Return of Fear in Individuals With Public Speaking Anxiety.

    Science.gov (United States)

    Shin, Ki Eun; Newman, Michelle G

    2018-03-01

    Even after successful exposure, relapse is not uncommon. Based on the retrieval model of fear extinction (e.g., Vervliet, Craske, & Hermans, 2013), return of fear can occur after exposure due to an elapse of time (spontaneous recovery) or change in context (contextual renewal). The use of external salient stimuli presented throughout extinction (i.e., retrieval cues [RCs]) has been suggested as a potential solution to this problem (Bouton, 2002). The current study examined whether RCs attenuated return of fear in individuals with public speaking anxiety. Sixty-five participants completed a brief exposure while presented with two RC stimuli aimed at a variety of senses (visual, tactile, olfactory, and auditory). Later, half the participants were tested for return of fear in a context different from the exposure context, and the other half in the same context. Half of each context group were presented with the same cues as in exposure, while the other half were not. Return of fear due to an elapse of time, change in context, and effects of RCs were evaluated on subjective, behavioral, and physiological measures of anxiety. Although contextual renewal was not observed, results supported effects of RCs in reducing spontaneous recovery on behavioral and physiological measures of anxiety. There was also evidence that participants who were reminded of feeling anxious during exposure by the RCs benefited more from using them at follow-up, whereas those who perceived the cues as comforting (safety signals) benefited less. Clinical implications of the findings are discussed. Copyright © 2017. Published by Elsevier Ltd.

  5. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset

    Directory of Open Access Journals (Sweden)

    Elena V. Ignatieva

    2014-03-01

    Full Text Available The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors, which are activated by olfactory stimuli (ligands. Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter (a region of DNA about 100–1000 base pairs long located upstream of the transcription start site. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.. In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  6. Smelly primes – when olfactory primes do or do not work

    Directory of Open Access Journals (Sweden)

    Monique A Smeets

    2014-02-01

    Full Text Available In applied olfactory cognition the effects that olfactory stimulation can have on (human behavior are investigated. To enable an efficient application of olfactory stimuli a model of how they may lead to a change in behavior is proposed. To this end we use the concept of olfactory priming. Olfactory priming may prompt a special view on priming as the olfactory sense has some unique properties which make odors special types of primes. Examples of such properties are the ability of odors to influence our behavior outside of awareness, to lead to strong affective evaluations, to evoke specific memories, and to associate easily and quickly to other environmental stimuli. Opportunities and limitations for using odors as primes are related to these properties, and alternative explanations for reported findings are offered. Implications for olfactory semantic, construal, behavior and goal priming are given based on a brief overview of the priming literature from social psychology and from olfactory perception science. We end by formulating recommendations and ideas for a future research agenda and applications for olfactory priming.

  7. No evidence for visual context-dependency of olfactory learning in Drosophila

    Science.gov (United States)

    Yarali, Ayse; Mayerle, Moritz; Nawroth, Christian; Gerber, Bertram

    2008-08-01

    How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.

  8. IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning.

    Science.gov (United States)

    Liu, Zhihui; Chen, Zijun; Shang, Congping; Yan, Fei; Shi, Yingchao; Zhang, Jiajing; Qu, Baole; Han, Hailin; Wang, Yanying; Li, Dapeng; Südhof, Thomas C; Cao, Peng

    2017-07-05

    During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca 2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Refining the dual olfactory hypothesis: pheromone reward and odour experience.

    Science.gov (United States)

    Martínez-García, Fernando; Martínez-Ricós, Joana; Agustín-Pavón, Carmen; Martínez-Hernández, Jose; Novejarque, Amparo; Lanuza, Enrique

    2009-06-25

    In rodents, sexual advertisement and gender recognition are mostly (if not exclusively) mediated by chemosignals. Specifically, there is ample evidence indicating that female mice are 'innately' attracted by male sexual pheromones that have critical non-volatile components and are detected by the vomeronasal organ. These pheromones can only get access to the vomeronasal organ by active pumping mechanisms that require close contact with the source of the stimulus (e.g. urine marks) during chemoinvestigation. We have hypothesised that male sexual pheromones are rewarding to female mice. Indeed, male-soiled bedding can be used as a reinforcer to induce conditioned place preference, provided contact with the bedding is allowed. The neural mechanisms of pheromone reward seem, however, different from those employed by other natural reinforcers, such as the sweetness or postingestive effects of sucrose. In contrast to vomeronasal-detected male sexual pheromones, male-derived olfactory stimuli (volatiles) are not intrinsically attractive to female mice. However, after repeated exposure to male-soiled bedding, intact female mice develop an acquired preference for male odours. On the contrary, in females whose accessory olfactory bulbs have been lesioned, exposure to male-soiled bedding induces aversion to male odorants. These considerations, together with data on the different properties of olfactory and vomeronasal receptors, lead us to make a proposal for the complementary roles that the olfactory and vomeronasal systems play in intersexual attraction and in other forms of intra- or inter-species communication.

  10. Anatomy, histochemistry and immunohistochemistry of the olfactory subsystems in mice

    Directory of Open Access Journals (Sweden)

    Arthur William Barrios

    2014-07-01

    Full Text Available The four regions of the murine nasal cavity featuring olfactory neurons were studied anatomically and by labelling with lectins and relevant antibodies with a view to establishing criteria for the identification of olfactory subsystems that are readily applicable to other mammals. In the main olfactory epithelium and the septal organ the olfactory sensory neurons (OSNs are embedded in quasi-stratified columnar epithelium; vomeronasal OSNs are embedded in epithelium lining the medial interior wall of the vomeronasal duct and do not make contact with the mucosa of the main nasal cavity; and in Grüneberg’s ganglion a small isolated population of OSNs lies adjacent to, but not within, the epithelium. With the exception of Grüneberg’s ganglion, all the tissues expressing olfactory marker protein (OMP (the above four nasal territories, the vomeronasal and main olfactory nerves, and the main and accessory olfactory bulbs are also labelled by Lycopersicum esculentum agglutinin, while Ulex europaeus agglutinin I labels all and only tissues expressing Gi2 (the apical sensory neurons of the vomeronasal organ, their axons, and their glomerular destinations in the anterior accessory olfactory bulb. These staining patterns of UEA-I and LEA may facilitate the characterization of olfactory anatomy in other species. A 710-section atlas of the anatomy of the murine nasal cavity has been made available on line.

  11. Olfactory lateralization in homing pigeons: a GPS study on birds released with unilateral olfactory inputs.

    Science.gov (United States)

    Gagliardo, Anna; Filannino, Caterina; Ioalè, Paolo; Pecchia, Tommaso; Wikelski, Martin; Vallortigara, Giorgio

    2011-02-15

    A large body of evidence has shown that pigeons rely on an olfactory-based navigational map when homing from unfamiliar locations. Previous studies on pigeons released with one nostril occluded highlighted an asymmetry in favour of the right nostril, particularly concerning the initial orientation performance of naïve birds. Nevertheless, all pigeons experiencing only unilateral olfactory input showed impaired homing, regardless of the side of the occluded nostril. So far this phenomenon has been documented only by observing the birds' vanishing bearings. In the present work we recorded the flight tracks of pigeons with previous homing experience equipped with a GPS data logger and released from an unfamiliar location with the right or the left nostril occluded. The analysis of the tracks revealed that the flight path of the birds with the right nostril occluded was more tortuous than that of unmanipulated controls. Moreover, the pigeons smelling with the left nostril interrupted their journey significantly more frequently and displayed more exploratory activity than the control birds, e.g. during flights around a stopover site. These data suggest a more important involvement of the right olfactory system in processing the olfactory information needed for the operation of the navigational map.

  12. Early Olfactory Processing in Drosophila: Mechanisms and Principles

    OpenAIRE

    Wilson, Rachel I.

    2013-01-01

    In the olfactory system of Drosophila melanogaster, it is relatively straightforward to make in vivo measurements of activity in neurons corresponding to targeted processing. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antenna...

  13. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  14. Regulation of spike timing-dependent plasticity of olfactory inputs in mitral cells in the rat olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Teng-Fei Ma

    Full Text Available The recent history of activity input onto granule cells (GCs in the main olfactory bulb can affect the strength of lateral inhibition, which functions to generate contrast enhancement. However, at the plasticity level, it is unknown whether and how the prior modification of lateral inhibition modulates the subsequent induction of long-lasting changes of the excitatory olfactory nerve (ON inputs to mitral cells (MCs. Here we found that the repetitive stimulation of two distinct excitatory inputs to the GCs induced a persistent modification of lateral inhibition in MCs in opposing directions. This bidirectional modification of inhibitory inputs differentially regulated the subsequent synaptic plasticity of the excitatory ON inputs to the MCs, which was induced by the repetitive pairing of excitatory postsynaptic potentials (EPSPs with postsynaptic bursts. The regulation of spike timing-dependent plasticity (STDP was achieved by the regulation of the inter-spike-interval (ISI of the postsynaptic bursts. This novel form of inhibition-dependent regulation of plasticity may contribute to the encoding or processing of olfactory information in the olfactory bulb.

  15. Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis.

    Science.gov (United States)

    van Wijk, Michiel; Wadman, Wytse J; Sabelis, Maurice W

    2006-01-01

    The predatory mite Phytoseiulus persimilis locates its prey, the two-spotted spider mite, by means of herbivore-induced plant volatiles. The olfactory response to this quantitatively and qualitatively variable source of information is particularly well documented. The mites perform this task with a peripheral olfactory system that consists of just five putative olfactory sensilla that reside in a dorsal field at the tip of their first pair of legs. The receptor cells innervate a glomerular olfactory lobe just ventral of the first pedal ganglion. We have made a 3D reconstruction of the caudal half of the olfactory lobe in adult females. The glomerular organization as well as the glomerular innervation appears conserved across different individuals. The adult females have, by approximation, a 1:1 ratio of olfactory receptor cells to olfactory glomeruli.

  16. Predators are attracted to the olfactory signals of prey.

    Directory of Open Access Journals (Sweden)

    Nelika K Hughes

    2010-09-01

    Full Text Available Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking.To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals.This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not.

  17. Evaluation of olfactory function in adults with primary hypothyroidism.

    Science.gov (United States)

    Günbey, Emre; Karlı, Rıfat; Gökosmanoğlu, Feyzi; Düzgün, Berkan; Ayhan, Emre; Atmaca, Hulusi; Ünal, Recep

    2015-10-01

    Sufficient clinical data are not available on the effect of hypothyroidism on olfactory function in adults. In this study, we aimed to evaluate the olfactory function of adult patients diagnosed with primary hypothyroidism. Forty-five patients aged between 18 and 60 years who were diagnosed with clinical primary hypothyroidism and 45 healthy controls who had normal thyroid function tests were included in the study. Sniffin' Sticks olfactory test results of the 2 groups were compared. The relationships between thyroid function tests and olfactory parameters were evaluated. Odor threshold, identification, and discrimination scores of the hypothyroid group were significantly lower than those of the control group (p adults with hypothyroidism. FT3 levels were found to have a more significant relationship with olfactory parameters than TSH or FT4 levels. © 2015 ARS-AAOA, LLC.

  18. Zinc Transporter 3 Is Involved in Learned Fear and Extinction, but Not in Innate Fear

    Science.gov (United States)

    Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P.

    2010-01-01

    Synaptically released Zn[superscript 2+] is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles,…

  19. Pharmacological interference with metabotropic glutamate receptor subtype 7 but not subtype 5 differentially affects within- and between-session extinction of Pavlovian conditioned fear.

    Science.gov (United States)

    Toth, Iulia; Dietz, Monika; Peterlik, Daniel; Huber, Sabine E; Fendt, Markus; Neumann, Inga D; Flor, Peter J; Slattery, David A

    2012-03-01

    Fear extinction is defined as the attenuation of a conditioned-fear memory by re-exposing animals to the conditioned stimulus without the aversive stimulus. This process is known to be effectively enhanced via administration of D-cycloserine (DCS), a partial NMDA-receptor agonist. However, other glutamatergic mechanisms, such as interference with metabotropic glutamate receptor (mGluR) subtypes 5 and 7 in the extinction of aversive memories are insufficiently understood. Using the allosteric mGluR5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), the mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082), and DCS for comparison, we aimed to study how pharmacological blockade of mGluR5 and activation of mGluR7 influenced within- and between-session conditioned-fear extinction training and extinction retention in rats. We show that when injected before extinction training, mGluR7 activation with AMN082 enhanced freezing and thereby attenuated within-session fear extinction, whereas both DCS and the mGluR5 receptor antagonist MPEP had no effect on this process. However, these differential drug effects were not long lasting, as no difference in extinction retention were observed 24 h later. Therefore, we assessed whether the compounds affect 24 h consolidation of extinction training following incomplete extinction training (between-session extinction). Similar to DCS, AMN082- but not MPEP-treated rats showed facilitated extinction retention, as exhibited by decreased freezing. Finally, using fluoxetine, we provide evidence that the effect of AMN082 on between-session extinction retention is most likely not via increasing 5-HT transmission. These findings demonstrate that mGluR7 activation differentially modulates conditioned-fear extinction, in dependence on the protocol employed, and suggests drugs with AMN082-like mechanisms as potential add-on drugs following exposure-based psychotherapy for fear-related human

  20. Gender-typical olfactory regulation of sexual behavior in goldfish

    Directory of Open Access Journals (Sweden)

    Makito eKobayashi

    2014-04-01

    Full Text Available It is known that olfaction is essential for the occurrence of sexual behavior in male goldfish. Sex pheromones from ovulatory females elicit male sexual behavior, chasing and sperm releasing act. In female goldfish, ovarian prostaglandin F2α (PGF elicits female sexual behavior, egg releasing act. It has been considered that olfaction does not affect sexual behavior in female goldfish. In the present study, we reexamined the involvement of olfaction in sexual behavior of female goldfish. Olfaction was blocked in male and female goldfish by two methods: nasal occlusion (NO which blocks the reception of olfactants, and olfactory tract section (OTX which blocks transmission of olfactory information from the olfactory bulb to the telencephalon. Sexual behavior of goldfish was induced by administration of PGF to females, an established method for inducing goldfish sexual behavior in both sexes. Sexual behavior in males was suppressed by NO and OTX as previously reported because of lack of pheromone stimulation. In females, NO suppressed sexual behavior but OTX did not affect the occurrence of sexual behavior. Females treated with both NO and OTX performed sexual behavior normally. These results indicate that olfaction is essential in female goldfish to perform sexual behavior as in males but in a different manner. The lack of olfaction in males causes lack of pheromonal stimulation, resulting in no behavior elicited. Whereas the results of female experiments suggest that lack of olfaction in females causes strong inhibition of sexual behavior mediated by the olfactory pathway. Olfactory tract section is considered to block the pathway and remove this inhibition, resulting in the resumption of the behavior. By subtract sectioning of the olfactory tract, it was found that this inhibition was mediated by the medial olfactory tracts, not the lateral olfactory tracts. Thus, it is concluded that goldfish has gender-typical olfactory regulation for sexual

  1. Neuroimaging of Fear-Associated Learning

    Science.gov (United States)

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning. PMID:26294108

  2. Olfactory Dysfunction as an Early Biomarker in Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Michelle E.Fullard; James F.Morley; John E.Duda

    2017-01-01

    Olfactory dysfunction is common in Parkinson's disease (PD) and often predates the diagnosis by years,reflecting early deposition of Lewy pathology,the histologic hallmark of PD,in the olfactory bulb.Clinical tests are available that allow for the rapid characterization of olfactory dysfunction,including tests of odor identification,discrimination,detection,and recognition thresholds,memory,and tests assessing the build-up of odor intensity across increasing suprathreshold stimulus concentrations.The high prevalence of olfactory impairment,along with the ease and low cost of assessment,has fostered great interest in olfaction as a potential biomarker for PD.Hyposmia may help differentiate PD from other causes of parkinsonism,and may also aid in the identification of "pre-motor" PD due to the early pathologic involvement of olfactory pathways.Olfactory function is also correlated with other non-motor features of PD and may serve as a predictor of cognitive decline.In this article,we summarize the existing literature on olfaction in PD,focusing on the potential for olfaction as a biomarker for early or differential diagnosis and prognosis.

  3. A second look at the structure of human olfactory memory.

    Science.gov (United States)

    White, Theresa L

    2009-07-01

    How do we remember olfactory information? Is the architecture of human olfactory memory unique compared with that of memory for other types of stimuli? Ten years ago, a review article evaluated these questions, as well as the distinction between long- and short-term olfactory memory, with three lines of evidence: capacity differences, coding differences, and neuropsychological evidence, though serial position effects were also considered. From the data available at the time, the article preliminarily suggested that olfactory memory was a two-component system that was not qualitatively different from memory systems for other types of stimuli. The decade that has elapsed since then has ushered in considerable changes in theories of memory structure and provided huge advances in neuroscience capabilities. Not only have many studies exploring various aspects of olfactory memory been published, but a model of olfactory perception that includes an integral unitary memory system also has been presented. Consequently, the structure of olfactory memory is reevaluated in the light of further information currently available with the same theoretical lines of evidence previously considered. This evaluation finds that the preponderance of evidence suggests that, as in memory for other types of sensory stimuli, the short-term-long-term distinction remains a valuable dissociation for conceptualizing olfactory memory, though perhaps not as architecturally separate systems.

  4. Long term serious olfactory loss in colds and/or flu.

    Science.gov (United States)

    de Haro-Licer, Josep; Roura-Moreno, Jordi; Vizitiu, Anabella; González-Fernández, Adela; González-Ares, Josep Antón

    2013-01-01

    In the general population, we can find 2-3% of lifelong olfactory disorders (from hyposmia to anosmia). Two of the most frequent aetiologies are the common cold and flu. The aim of this study was to show the degree of long-term olfactory dysfunction caused by a cold or flu. This study was based on 240 patients, with olfactory loss caused only by flu or a cold. We excluded all patients with concomitant illness (66 patients), the rest of patients (n=174) consisted of 51 men (29.3%) and 123 women (70.7%). They all underwent olfactometry study (i and v cranial nerve) and a nasal sinus computed tomography scan, as well as magnetic resonance imaging of the brain. Results were compared with a control group (n=120). Very significant differences in levels of olfactory impairment for the olfactory nerve (P<.00001) and trigeminal nerve (P<.0001) were confirmed. People that suffer olfactory dysfunction for more than 6 months, from flu or a cold, present serious impairment of olfactory abilities. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  5. Nested Expression Domains for Odorant Receptors in Zebrafish Olfactory Epithelium

    Science.gov (United States)

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-11-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system.

  6. Interference with olfactory memory by visual and verbal tasks.

    Science.gov (United States)

    Annett, J M; Cook, N M; Leslie, J C

    1995-06-01

    It has been claimed that olfactory memory is distinct from memory in other modalities. This study investigated the effectiveness of visual and verbal tasks in interfering with olfactory memory and included methodological changes from other recent studies. Subjects were allocated to one of four experimental conditions involving interference tasks [no interference task; visual task; verbal task; visual-plus-verbal task] and presented 15 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Recognition and recall performance both showed effects of interference of visual and verbal tasks but there was no effect for time of testing. While the results may be accommodated within a dual coding framework, further work is indicated to resolve theoretical issues relating to task complexity.

  7. Olfactory memory traces in Drosophila.

    Science.gov (United States)

    Berry, Jacob; Krause, William C; Davis, Ronald L

    2008-01-01

    In Drosophila, the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological, or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons' response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed researchers to observe cellular memory traces in intact animals. These investigations have revealed interesting temporal and spatial dynamics of cellular memory traces. First, a short-term cellular memory trace was discovered that exists in the antennal lobe, an early site of olfactory processing. This trace represents the recruitment of new synaptic activity into the odor representation and forms for only a short period of time just after training. Second, an intermediate-term cellular memory trace was found in the dorsal paired medial neuron, a neuron thought to play a role in stabilizing olfactory memories. Finally, a long-term protein synthesis-dependent cellular memory trace was discovered in the mushroom bodies, a structure long implicated in olfactory learning and memory. Therefore, it appears that aversive olfactory associations are encoded by multiple cellular memory traces that occur in different regions of the brain with different temporal domains.

  8. Olfactory circuits and behaviors of nematodes.

    Science.gov (United States)

    Rengarajan, Sophie; Hallem, Elissa A

    2016-12-01

    Over one billion people worldwide are infected with parasitic nematodes. Many parasitic nematodes actively search for hosts to infect using volatile chemical cues, so understanding the olfactory signals that drive host seeking may elucidate new pathways for preventing infections. The free-living nematode Caenorhabditis elegans is a powerful model for parasitic nematodes: because sensory neuroanatomy is conserved across nematode species, an understanding of the microcircuits that mediate olfaction in C. elegans may inform studies of olfaction in parasitic nematodes. Here we review circuit mechanisms that allow C. elegans to respond to odorants, gases, and pheromones. We also highlight work on the olfactory behaviors of parasitic nematodes that lays the groundwork for future studies of their olfactory microcircuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Clinical diagnosis and treatment of olfactory meningioma

    International Nuclear Information System (INIS)

    Li Xiangdong; Wang Zhong; Zhang Shiming; Zhu Fengqing; Zhou Dai; Hui Guozhen

    2005-01-01

    Objective: To analyze the clinical diagnosis and treatment of olfactory meningioma. Methods: In this group 17 olfactory meningiomas were operated, and the clinical presentations and the surgery results were obtained. Results: The symptoms of psychiatrical disorder, visual disturbances and eclipse at presentation was higher. In 16 cases the grade of resection was Simpson II, 1 case Simpson III, most of the cases had a good recovery. Conclusion: Attention should be paid to the early symptom at presentation such as psychiatrical disorder to obtain an early diagnosis. Microsurgery is useful in the treatment of olfactory meningioma. (authors)

  10. Extinction after fear memory reactivation fails to eliminate renewal in rats.

    Science.gov (United States)

    Goode, Travis D; Holloway-Erickson, Crystal M; Maren, Stephen

    2017-07-01

    Retrieving fear memories just prior to extinction has been reported to effectively erase fear memories and prevent fear relapse. The current study examined whether the type of retrieval procedure influences the ability of extinction to impair fear renewal, a form of relapse in which responding to a conditional stimulus (CS) returns outside of the extinction context. Rats first underwent Pavlovian fear conditioning with an auditory CS and footshock unconditional stimulus (US); freezing behavior served as the index of conditioned fear. Twenty-four hours later, the rats underwent a retrieval-extinction procedure. Specifically, 1h prior to extinction (45 CS-alone trials; 44 for rats receiving a CS reminder), fear memory was retrieved by either a single exposure to the CS alone, the US alone, a CS paired with the US, or exposure to the conditioning context itself. Over the next few days, conditional freezing to the extinguished CS was tested in the extinction and conditioning context in that order (i.e., an ABBA design). In the extinction context, rats that received a CS+US trial before extinction exhibited higher levels of conditional freezing than animals in all other groups, which did not differ from one another. In the renewal context, all groups showed renewal, and none of the reactivation procedures reduced renewal relative to a control group that did not receive a reactivation procedure prior to extinction. These data suggest retrieval-extinction procedures may have limited efficacy in preventing fear renewal. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated.Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect.The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation

  12. The olfactory gonadotropin-releasing hormone immunoreactive system in mouse.

    Science.gov (United States)

    Jennes, L

    1986-10-29

    The olfactory gonadotropin-releasing hormone (GnRH) system in mice was studied with immunofluorescence in combination with lesions of the olfactory bulb and retrograde transport of horseradish peroxidase (HRP) which was administered intravascularly, intranasally or into the subarachnoid space. GnRH-positive neurons were located in the two major branches forming the septal roots of the nervus terminalis, in the ganglion terminale, within the fascicles of the nervus terminalis throughout its extent, in a conspicuous band which connects the ventral neck of the caudal olfactory bulb with the accessory olfactory bulb and in the nasal mucosa. GnRH-positive fibers were seen in all areas in which neurons were found, i.e. in the rostral septum, the ganglion and nervus terminalis and in the nasal subepithelium. In addition, a broad bundle of fibers was observed to surround the entire caudal olfactory bulb, connecting the rostral sulcus rhinalis with the ventrocaudal olfactory bulb. Fibers were seen in close association with the main and accessory olfactory bulb, with the fila olfactoria and with the nasal mucosa. Throughout the olfactory bulb and the nasal epithelium, an association of GnRH fibers with blood vessels was apparent. Intravascular and intranasal injection of HRP resulted in labeling of certain GnRH neurons in the septal roots of the nervus terminalis, the ganglion terminale, the nervus terminalis, the caudal ventrodorsal connection and in the accessory olfactory bulb. After placement of HRP into the subarachnoid space dorsal to the accessory olfactory bulb, about 50% of the GnRH neurons in the accessory olfactory bulb and in the ventrodorsal connection were labeled with HRP. Also, a few GnRH neurons in the rostral septum, the ganglion terminale and in the fascicles of the nervus terminalis had taken up the enzyme. Lesions of the nervus terminalis caudal to the ganglion terminale resulted in sprouting of GnRH fibers at both sites of the knife cut. Lesions rostral

  13. Dopamine D1 receptor-dependent regulation of extracellular citrulline level in the rat nucleus accumbens during conditioned fear response.

    Science.gov (United States)

    Saulskaya, Natalia B; Fofonova, Nellia V; Sudorghina, Polina V; Saveliev, Sergey A

    2008-08-01

    Nucleus accumbens (N.Acc) contains a subclass of nitric oxide (NO)-generating interneurons that are presumably regulated by the dopamine input. Receptor mechanisms underlying dopamine-NO interaction in the N.Acc are poorly understood. In the current study, we used in vivo microdialysis combined with high-performance liquid chromatography to examine participation of dopamine D1 receptors in regulation of extracellular levels of citrulline (an NO co-product) in the medial N.Acc of Sprague-Dawley rats during both pharmacological challenge and a conditioned fear response. The intraaccumbal infusion of the D1 receptor agonist SKF-38393 (100-500 microM) increased dose-dependently the local dialysate citrulline levels. The SKF-38393-induced increase in extracellular citrulline was prevented by intraaccumbal infusions of 500 microM 7-nitroindazole, a neuronal NO synthase inhibitor. In behavioral microdialysis experiment, the accumbal levels of extracellular citrulline markedly increased in rats given a mild footshock paired with tone. The presentation of the tone previously paired with footshock (the conditioned fear response) produced a "conditioned" rise of extracellular citrulline levels in the N.Acc which was attenuated by intraaccumbal infusion of 100 microM SCH-23390, a dopamine D1 receptor antagonist, and prevented by intraaccumbal infusion of 500 microM 7-nitroindazole. The results suggest that in the N.Acc, the dopamine D1 receptors might regulate the neuronal NO synthase activity; this dopamine-dependent mechanism seems to participate in activation of the neuronal NO synthase and probably NO formation in this brain area during the conditioned fear response.

  14. Histone Modifications around Individual BDNF Gene Promoters in Prefrontal Cortex Are Associated with Extinction of Conditioned Fear

    Science.gov (United States)

    Bredy, Timothy W.; Wu, Hao; Crego, Cortney; Zellhoefer, Jessica; Sun, Yi E.; Barad, Mark

    2007-01-01

    Extinction of conditioned fear is an important model both of inhibitory learning and of behavior therapy for human anxiety disorders. Like other forms of learning, extinction learning is long-lasting and depends on regulated gene expression. Epigenetic mechanisms make an important contribution to persistent changes in gene expression; therefore,…

  15. Olfactory receptors in non-chemosensory tissues

    Directory of Open Access Journals (Sweden)

    NaNa Kang & JaeHyung Koo*

    2012-11-01

    Full Text Available Olfactory receptors (ORs detect volatile chemicals that lead tothe initial perception of smell in the brain. The olfactory receptor(OR is the first protein that recognizes odorants in theolfactory signal pathway and it is present in over 1,000 genesin mice. It is also the largest member of the G protein-coupledreceptors (GPCRs. Most ORs are extensively expressed in thenasal olfactory epithelium where they perform the appropriatephysiological functions that fit their location. However, recentwhole-genome sequencing shows that ORs have been foundoutside of the olfactory system, suggesting that ORs may playan important role in the ectopic expression of non-chemosensorytissues. The ectopic expressions of ORs and their physiologicalfunctions have attracted more attention recently sinceMOR23 and testicular hOR17-4 have been found to be involvedin skeletal muscle development, regeneration, and humansperm chemotaxis, respectively. When identifying additionalexpression profiles and functions of ORs in non-olfactorytissues, there are limitations posed by the small number ofantibodies available for similar OR genes. This review presentsthe results of a research series that identifies ectopic expressionsand functions of ORs in non-chemosensory tissues toprovide insight into future research directions.

  16. Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization

    Directory of Open Access Journals (Sweden)

    Gianluca Polese

    2016-05-01

    Full Text Available The cephalopod olfactory organ was described for the first time in 1844 by von Kölliker, who was attracted to the pair of small pits of ciliated cells on each side of the head, below the eyes close to the mantle edge, in both octopuses and squids. Several functional studies have been conducted on decapods but very little is known about octopods. The morphology of the octopus olfactory system has been studied, but only to a limited extent on post-hatching specimens, and the only paper on adult octopus gives a minimal description of the olfactory organ. Here, we describe the detailed morphology of young male and female Octopus vulgaris olfactory epithelium, and using a combination of classical morphology and 3D reconstruction techniques, we propose a new classification for O. vulgaris olfactory sensory neurons. Furthermore, using specific markers such as olfactory marker protein (OMP and proliferating cell nuclear antigen (PCNA we have been able to identify and differentially localize both mature olfactory sensory neurons and olfactory sensory neurons involved in epithelium turnover. Taken together, our data suggest that the O. vulgaris olfactory organ is extremely plastic, capable of changing its shape and also proliferating its cells in older specimens.

  17. Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants

    DEFF Research Database (Denmark)

    Guerrieri, Fernando Javier; D'Ettorre, Patrizia; Deveaud, J-M.

    2011-01-01

    -chain hydrocarbons, one paired with sucrose and the other with quinine solution. Differential conditioning leads to the formation of a long-term memory retrievable at least 72¿h after training. Long-term memory consolidation was impaired by the ingestion of cycloheximide, a protein synthesis blocker, prior...... to conditioning. Cycloheximide did not impair acquisition of either short-term memory (10¿min) or early and late mid-term memories (1 or 12¿h). These results show that, upon olfactory learning, ants form different memories with variable molecular bases. While short- and mid-term memories do not require protein...... synthesis, long-term memories are stabilised via protein synthesis. Our behavioural protocol opens interesting research avenues to explore the cellular and molecular bases of olfactory learning and memory in ants....

  18. Accumulation of [35S]taurine in peripheral layers of the olfactory bulb

    International Nuclear Information System (INIS)

    Quinn, M.R.; Wysocki, C.J.; Sturman, J.A.; Wen, G.Y.

    1981-01-01

    Accumulation of [ 35 S]taurine in the laminae of the olfactory bulb of the adult cat, rat, mouse and rabbit was examined autoradiographically. [ 35 S]Taurine was administered either i.p. or i.v. and olfactory bulbs were excised 24 h post-injection. High concentrations of [ 35 S]taurine were restricted to the olfactory nerve and glomerular layers of the olfactory bulb in all species examined. Olfactory neurons are continuously renewed and the results obtained suggest that taurine may have an important role in olfactory receptor axons. (Auth.)

  19. Neural coding in antennal olfactory cells of tsetse flies (Glossina spp.)

    NARCIS (Netherlands)

    Voskamp, K.E; Noorman, N; Mastebroek, H.A K; van Schoot, N.E.G.; den Otter, C.J

    1998-01-01

    Spike trains from individual antennal olfactory cells of tsetse flies (Glossina spp.) obtained during steady-state conditions (spontaneous as well as during stimulation with 1-octen-3-ol) and dynamic stimulation with repetitive pulses of 1-octen-3-ol were investigated by studying the spike frequency

  20. Neurobiology of mammalian olfactory learning that occurs during sensitive periods

    Directory of Open Access Journals (Sweden)

    Hideto KABA

    2010-12-01

    Full Text Available This review examines the organizational principles underlying olfactory learning in three specialized contexts that occur during sensitive periods of enhanced neural plasticity and emphasizes some of their common features. All three forms of olfactory learning are associated with neural changes in the olfactory bulb (OB at the first stage of sensory processing. These changes require the association of the olfactory and somatosensory signals in the OB. They all depend on somatosensory stimulation-induced release of noradrenaline that induces structural and functional changes at mitral-granule cell reciprocal synapses in the OB, resulting in increases in inhibitory transmission. In the accessory olfactory bulb, this represents the enhanced self-inhibition of mitral cells, which selectively disrupts the transmission of the mating male’s pregnancy-blocking signal at this level. In contrast, an extensive network of secondary dendrites of mitral cells in the main olfactory bulb probably results in a sharpening of the odor-induced pattern of activity, due to increases in lateral inhibition, leading to offspring recognition in sheep and neonatal learning in rats and rabbits. These findings show that inhibitory interneurons play a critical role in olfactory learning. Further work on how these neurons shape olfactory circuit function could provide important clues to understand memory functions of interneurons in other systems. Moreover, recent research has suggested that three forms of olfactory learning are controlled by synergistic, redundant, and distributed neural mechanisms. This has general implications regarding the mechanisms that may contribute to the robustness of memories [Current Zoology 56 (6: 819–833, 2010].

  1. Kinase activity in the olfactory bulb is required for odor memory consolidation.

    Science.gov (United States)

    Tong, Michelle T; Kim, Tae-Young P; Cleland, Thomas A

    2018-05-01

    Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)-a process that is closely associated with BDNF signaling. We sought to elucidate the role of neurotrophin signaling within the OB on odor memory consolidation. Male mice were trained on odor-reward associative discriminations after bilateral infusion of the kinase inhibitor K252a, or vehicle control, into the OB. K252a is a partially selective inhibitor of tyrosine kinase (Trk) receptors, including the TrkB receptor for BDNF, though it also inhibits other plasticity-related kinases such as PKC and CaMKII/IV. K252a infusion into the OB did not impair odor acquisition or short-term (2 h) memory for the learned discriminations, but significantly impaired long-term (48 h) odor memory (LTM). This LTM deficit also was associated with reduced selectivity for the conditioned odorant in a reward-seeking digging task. Infusions of K252a immediately prior to testing did not impair LTM recall. These results indicate that kinase activation in the OB is required for the consolidation of odor memory of incrementally acquired information. © 2018 Tong et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Expression of olfactory signaling genes in the eye.

    Directory of Open Access Journals (Sweden)

    Alexey Pronin

    Full Text Available To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors.Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy.We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles.Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment.

  3. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  4. Localization of α1-2 Fucose Glycan in the Mouse Olfactory Pathway.

    Science.gov (United States)

    Kondoh, Daisuke; Kamikawa, Akihiro; Sasaki, Motoki; Kitamura, Nobuo

    2017-01-01

    Glycoconjugates in the olfactory system play critical roles in neuronal formation, and α1-2 fucose (α1-2Fuc) glycan mediates neurite outgrowth and synaptic plasticity. Histochemical findings of α1-2Fuc glycan in the mouse olfactory system detected using Ulex europaeus agglutinin-I (UEA-I) vary. This study histochemically assessed the main olfactory and vomeronasal pathways in male and female ICR and C57BL/6J mice aged 3-4 months using UEA-I. Ulex europaeus agglutinin-I reacted with most receptor cells arranged mainly at the basal region of the olfactory epithelium. The olfactory nerve layer and glomerular layer of the main olfactory bulb were speckled with positive UEA-I staining, and positive fibers were scattered from the glomerular to the internal plexiform layer. The lateral olfactory tract and rostral migratory stream were also positive for UEA-I. We identified superficial short-axon cells, interneurons of the external plexiform layer, external, middle and internal tufted cells, mitral cells and granule cells as the origins of the UEA-I-positive fibers in the main olfactory bulb. The anterior olfactory nucleus, anterior piriform cortex and olfactory tubercle were negative for UEA-I. Most receptor cells in the vomeronasal epithelium and most glomeruli of the accessory olfactory bulb were positive for UEA-I. Our findings indicated that α1-2Fuc glycan is located within the primary and secondary, but not the ternary, pathways of the main olfactory system, in local circuits of the main olfactory bulb and within the primary, but not secondary, pathway of the vomeronasal system. © 2016 S. Karger AG, Basel.

  5. Increases in the numerical density of GAT-1 positive puncta in the barrel cortex of adult mice after fear conditioning.

    Directory of Open Access Journals (Sweden)

    Ewa Siucinska

    Full Text Available Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS with a tail shock (unconditioned stimulus, UCS expands the representation of "trained" vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1 increases GABAergic markers in the hollows of "trained" barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS led to increase expression of neuronal and astroglial GAT-1 puncta in the "trained" row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.

  6. Assessing fear following retrieval+extinction through suppression of baseline reward seeking vs. freezing

    Directory of Open Access Journals (Sweden)

    Jason eShumake

    2015-12-01

    Full Text Available Freezing has become the predominant measure used in rodent studies of conditioned fear, but conditioned suppression of reward-seeking behavior may provide a measure that is more relevant to human anxiety disorders; that is, a measure of how fear interferes with the enjoyment of pleasurable activities. Previous work has found that an isolated presentation of a fear conditioned stimulus prior to extinction training (retrieval + extinction results in a more robust and longer-lasting reduction in fear. The objective of this study was to assess whether the retrieval + extinction effect is evident using conditioned suppression of reward seeking, operationalized as a reduction in baseline licking (without prior water deprivation for a 10% sucrose solution. We found that, compared to freezing, conditioned suppression of reward seeking was much more sensitive to fear conditioning and far less responsive to extinction training. As in previous work, we found that retrieval + extinction reduced post-extinction fear reinstatement when measured as freezing, but it did not reduce fear reinstatement when measured as conditioned suppression. This suggests that there is still residual fear following retrieval + extinction, or that this procedure only modifies memory traces in neural circuits relevant to the expression of freezing, but not to the suppression of reward seeking.

  7. Direct transport of inhaled xylene and its metabolites from the olfactory mucosa to the glomeruli of the olfactory bulbs

    International Nuclear Information System (INIS)

    Lewis, J.L.; Dahl, A.R.; Kracko, D.A.

    1994-01-01

    The olfactory epithelium is a unique tissue in that single receptor neurons have dendrites in contact with the external environment at the nasal airway, and axon terminals that penetrate the cribriform plate and synapse in the olfactory bulb. The Central Nervous System (CNS) is protected from systematically circulating toxicants by a blood-brain barrier primarily composed of tight junctions between endothelial cells in cerebral vessels and a high metabolic capacity within these cells. No such barrier has yet been defined to protect the CNS from inhaled toxicants. Because all inhalants do not seem to access the CNS directly, a nose-brain barrier seems plausible. The purpose of the work described here is to determine whether or not a nose-brain barrier exists and to define its components. Although such a barrier is likely to be multi-faceted, the present work focuses only on the importance of gross histologic and metabolic characteristics of the olfactory epithelium in olfactory transport

  8. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  9. Magnetic resonance imaging of olfactory neuroblastoma

    International Nuclear Information System (INIS)

    Iio, Mitsuhiro; Homma, Akihiro; Furuta, Yasushi; Fukuda, Satoshi

    2006-01-01

    Olfactory neuroblastoma is an uncommon intranasal tumor originating from olfactory neuroepithelium. Despite the development of electron microscopy and immunohistochemical testing, the pathological diagnosis of this tumor is still difficult because of the wide range of histological features. Magnetic resonance imaging (MR) of this tumor and the pattern of contrast enhancement have not been well described. The purpose of this report was to analyze the MR characteristics of olfactory neuroblastomas. The MR signal, pattern of contrast enhancement, and correlation with high-resolution computed tomography (CT) imaging were examined. Seventeen patients with olfactory neuroblastoma were treated at Hokkaido University Hospital and a related hospital during the past 25 years. MR images taken in 12 patients and CT images taken in 9 patients with histologically confirmed olfactory neuroblastoma were retrospectively reviewed. Compared with brain gray matter, 11 tumors were hypointense on T1-weighted images, 9 homogeneously and 2 heterogeneously. Eight tumors were hyperintense on T2-weighted images, 3 homogeneously and 5 heterogeneously, although their appearance was less intense than that of sinusitis. Gadolinium enhancement was moderate in one case and marked in 10 of the 11 cases, 9 homogeneously and 2 heterogeneously. Nine of the 11 tumors showed smooth regular shaped margins; 2 of these tumors exhibited irregular infiltrating margins on gadolinium-enhanced images, compared to the pre-contrast T1-weighted images. Eight of the 11 tumors had clearly demarcated margins, while 3 of the 11 tumors did not exhibit gadolinium enhancement. Six of the 12 cases (50%) exhibited intracranial cysts on the gadolinium-enhanced images. T2-weighted or gadolinium-enhanced images successfully distinguished sinusitis from tumors in 4 cases whereas the CT images failed. Gadolinium enhancement, particularly in the tangential plane, demonstrated intracranial extension not apparent on the CT images

  10. Egr-1 antisense oligodeoxynucleotide administration into the olfactory bulb impairs olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx.

    Science.gov (United States)

    Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Balamurugan, Krishnaswamy; Ragu Varman, Durairaj; Rajan, Koilmani Emmanuvel

    2012-08-30

    Postsynaptic densities (PSDs) contain proteins that regulate synaptic transmission. We examined two important examples of these, calcium/calmodulin-dependent protein kinase II (CaMKII) and PSD-95, in regard to the functional role of early growth response gene-1 (egr-1) in regulation of olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx (family Pteropodidae). To test whether activation of egr-1 in the olfactory bulb (OB) is required for olfactory memory of these bats, bilaterally canulated individuals were infused with antisense (AS) or non-sense (NS)-oligodeoxynucleotides (ODN) of egr-1, or with phosphate buffer saline (PBS), 2h before the olfactory training. Our results showed that behavioral training significantly up-regulates immediate early gene (IEG) EGR-1 and key synaptic proteins Synaptotagmin-1(SYT-1), CaMKII and PSD-95, and phosphorylation of CaMKII in the OB at the protein level per se. Subsequently, we observed that egr-1 antisense-ODN infusion in the OB impaired olfactory memory and down regulates the expression of CaMKII and PSD-95, and the phosphorylation of CaMKII but not SYT-1. In contrast, NS-ODN or PBS had no effect on the expression of the PSDs CaMKII or PSD-95, or on the phosphorylation of CaMKII. When the egr-1 NS-ODN was infused in the OB after training for the novel odor there was no effect on olfactory memory. These findings suggest that egr-1 control the activation of CaMKII and PSD-95 during the process of olfactory memory formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Cortisol modifies extinction learning of recently acquired fear in men

    Science.gov (United States)

    Hermann, Andrea; Stark, Rudolf; Wolf, Oliver Tobias

    2014-01-01

    Exposure therapy builds on the mechanism of fear extinction leading to decreased fear responses. How the stress hormone cortisol affects brain regions involved in fear extinction in humans is unknown. For this reason, we tested 32 men randomly assigned to receive either 30 mg hydrocortisone or placebo 45 min before fear extinction. In fear acquisition, a picture of a geometrical figure was either partially paired (conditioned stimulus; CS+) or not paired (CS−) with an electrical stimulation (unconditioned stimulus; UCS). In fear extinction, each CS was presented again, but no UCS occurred. Cortisol increased conditioned skin conductance responses in early and late extinction. In early extinction, higher activation towards the CS− than to the CS+ was found in the amygdala, hippocampus and posterior parahippocampal gyrus. This pattern might be associated with the establishment of a new memory trace. In late extinction, the placebo compared with the cortisol group displayed enhanced CS+/CS− differentiation in the amygdala, medial frontal cortex and nucleus accumbens. A change from early deactivation to late activation of the extinction circuit as seen in the placebo group seems to be needed to enhance extinction and to reduce fear. Cortisol appears to interfere with this process thereby impairing extinction of recently acquired conditioned fear. PMID:23945999

  12. Selective enhancement of main olfactory input to the medial amygdala by GnRH.

    Science.gov (United States)

    Blake, Camille Bond; Meredith, Michael

    2010-03-04

    In male hamsters mating behavior is dependent on chemosensory input from the main olfactory and vomeronasal systems, whose central pathways contain cell bodies and fibers of gonadotropin-releasing hormone (GnRH) neurons. In sexually naive males, vomeronasal organ removal (VNX), but not main olfactory lesions, impairs mating behavior. Intracerebroventricular (i.c.v.)-GnRH restores mating in sexually naive VNX males and enhances medial amygdala (Me) immediate-early gene activation by chemosensory stimulation. In sexually experienced males, VNX does not impair mating and i.c.v.-GnRH suppresses Me activation. Thus, the main olfactory system is sufficient for mating in experienced-VNX males, but not in naive-VNX males. We investigated the possibility that GnRH enhances main olfactory input to the amygdala in naive-VNX males using i.c.v.-GnRH and pharmacological stimulation (bicuculline/D,L-homocysteic acid mixture) of the main olfactory bulb (MOB). In sexually naive intact males there was a robust increase of Fos protein expression in the anteroventral medial amygdala (MeAv) with MOB stimulation, but no effect of GnRH. There was no effect of stimulation or GnRH in posterodorsal medial amygdala (MePd). In naive-VNX animals, GnRH increased Fos in MeAv and MePv. Only combined MOB stimulation and i.c.v.-GnRH produced a significant increase in Fos in the dorsal (reproduction-related) portion of MeP (MePd). When the animals were sexually experienced before VNX, a condition in which GnRH does not enhance mating, i.c.v.-GnRH combined with MOB stimulation suppressed Fos expression in MePd. This suggests a more selective effect of GnRH on olfactory input in MePd than elsewhere in medial amygdala of VNX males. 2009 Elsevier B.V. All rights reserved.

  13. Extinction training during the reconsolidation window prevents recovery of fear.

    Science.gov (United States)

    Schiller, Daniela; Raio, Candace M; Phelps, Elizabeth A

    2012-08-24

    Fear is maladaptive when it persists long after circumstances have become safe. It is therefore crucial to develop an approach that persistently prevents the return of fear. Pavlovian fear-conditioning paradigms are commonly employed to create a controlled, novel fear association in the laboratory. After pairing an innocuous stimulus (conditioned stimulus, CS) with an aversive outcome (unconditioned stimulus, US) we can elicit a fear response (conditioned response, or CR) by presenting just the stimulus alone. Once fear is acquired, it can be diminished using extinction training, whereby the conditioned stimulus is repeatedly presented without the aversive outcome until fear is no longer expressed. This inhibitory learning creates a new, safe representation for the CS, which competes for expression with the original fear memory. Although extinction is effective at inhibiting fear, it is not permanent. Fear can spontaneously recover with the passage of time. Exposure to stress or returning to the context of initial learning can also cause fear to resurface. Our protocol addresses the transient nature of extinction by targeting the reconsolidation window to modify emotional memory in a more permanent manner. Ample evidence suggests that reactivating a consolidated memory returns it to a labile state, during which the memory is again susceptible to interference. This window of opportunity appears to open shortly after reactivation and close approximately 6 hrs later, although this may vary depending on the strength and age of the memory. By allowing new information to incorporate into the original memory trace, this memory may be updated as it reconsolidates. Studies involving non-human animals have successfully blocked the expression of fear memory by introducing pharmacological manipulations within the reconsolidation window, however, most agents used are either toxic to humans or show equivocal effects when used in human studies. Our protocol addresses these

  14. Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety.

    Science.gov (United States)

    Yen, Yi-Chun; Mauch, Christoph P; Dahlhoff, Maik; Micale, Vincenzo; Bunck, Mirjam; Sartori, Simone B; Singewald, Nicolas; Landgraf, Rainer; Wotjak, Carsten T

    2012-07-01

    Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    Science.gov (United States)

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  16. Development of the ETOC: a European test of olfactory capabilities

    NARCIS (Netherlands)

    Thomas-Danguin, T.; Rouby, C.; Sicard, G.; Vigouroux, M.; Farget, V.; Johanson, A.; Bengtzon, A.; Hall, G.; Ormel, W.; Graaf, de C.; Rousseau, F.; Dumont, J.P.

    2003-01-01

    A number of smell tests designed to evaluate human olfactory capabilities have been published, but none have been validated cross-culturally. The aim of this study was therefore to develop a reliable and quick olfactory test that could be used to evaluate efficiently the olfactory abilities of a

  17. Activation of the Infralimbic Cortex in a Fear Context Enhances Extinction Learning

    Science.gov (United States)

    Thompson, Brittany M.; Baratta, Michael V.; Biedenkapp, Joseph C.; Rudy, Jerry W.; Watkins, Linda R.; Maier, Steven F.

    2010-01-01

    Activation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) reduces conditioned fear in a variety of situations, and the IL is thought to play an important role in the extinction of conditioned fear. Here we report a series of experiments using contextual fear conditioning in which the IL is activated with the GABAa antagonist…

  18. Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress

    Science.gov (United States)

    Belnoue, Laure; Malvaut, Sarah; Ladevèze, Elodie; Abrous, Djoher Nora; Koehl, Muriel

    2016-01-01

    Maternal stress is associated with an altered mother-infant relationship that endangers offspring development, leading to emotional/behavioral problems. However, little research has investigated the stress-induced alterations of the maternal brain that could underlie such a disruption of mother-infant bonding. Olfactory cues play an extensive role in the coordination of mother-infant interactions, suggesting that motherhood may be associated to enhanced olfactory performances, and that this effect may be abolished by maternal stress. To test this hypothesis, we analyzed the impact of motherhood under normal conditions or after gestational stress on olfactory functions in C57BL/6 J mice. We report that gestational stress alters maternal behavior and prevents both mothers’ ability to discriminate pup odors and motherhood-induced enhancement in odor memory. We investigated adult bulbar neurogenesis as a potential mechanism of the enhanced olfactory function in mothers and found that motherhood was associated with an increased complexity of the dendritic tree of newborn neurons. This motherhood-evoked remodeling was totally prevented by gestational stress. Altogether, our results may thus provide insight into the neural changes that could contribute to altered maternal behavior in stressed mothers. PMID:27886228

  19. On the nose: Olfactory disturbances in patients with transient epileptic amnesia.

    Science.gov (United States)

    Savage, Sharon A; Butler, Christopher R; Milton, Fraser; Han, Yang; Zeman, Adam Z

    2017-01-01

    While olfactory hallucinations are relatively rare in epilepsy, a high prevalence (up to 42%) has been reported in one form - Transient Epileptic Amnesia (TEA). TEA is characterized by recurring amnestic seizures and is commonly associated with persistent interictal memory deficits. Despite reports of changes in smell, olfactory ability has not been objectively assessed in this group. The aim of this study was to measure olfactory ability in patients with TEA and explore whether olfactory symptoms relate to other clinical variables. Fifty-five participants with TEA were recruited from The Impairment of Memory in Epilepsy project database. The presence of olfactory symptoms was obtained via case notes and clinical interview. Participants completed questionnaires to evaluate their olfaction and memory function subjectively. Olfactory ability was measured using the University of Pennsylvania Smell Identification Test (UPSIT). TEA participants' performance was compared to 50 matched healthy control participants. A subset of TEA participants (n=26) also completed a battery of memory tests including standard neuropsychological measures, and assessment of accelerated long-term forgetting and autobiographical memory. Olfactory hallucinations were reported in 55% of patients with TEA. A significant reduction in smell identification (UPSIT) was found between patients with TEA and healthy controls (polfactory hallucinations, were not predictive of olfactory ability. Patients reported ongoing memory difficulties and performed below normative values on objective tests. While no correlation was found between objective measures of memory and olfactory performance, subjective complaints of route finding difficulty was associated with UPSIT score. Impairments in odor identification are common in patients with TEA and exceed changes that occur in normal aging. Olfactory hallucinations occurs in approximately half of patients with TEA, but do not always coincide with reduced sense of

  20. An experimental demonstration that fear, but not disgust, is associated with return of fear in phobias.

    Science.gov (United States)

    Edwards, Sarah; Salkovskis, Paul M

    2006-01-01

    It has been suggested that disgust, rather than anxiety, may be important in some phobias. Correlational studies have been ambiguous, indicating either that disgust increases phobic anxiety or that phobic anxiety potentiates disgust. In the experimental study reported here, disgust and phobic anxiety were manipulated in the context of habituation to phobic stimuli. Spider fearful participants were randomly allocated to conditions in which neutral, disgusting, and phobic anxiety provoking stimuli were introduced into a video-based spider phobic habituation sequence. Exposure to the phobic stimulus resulted in a return of self-reported fear and disgust levels. However, exposure to disgusting stimulus increased disgust levels, but not anxiety levels. Results are most consistent with the hypothesis that fear enhances the disgust response in phobias, but that disgust alone does not enhance the fear response. Previously observed links between disgust and spider phobia may be a consequence of fear enhancing disgust.

  1. Heightened fear in response to a safety cue and extinguished fear cue in a rat model of maternal immune activation

    Directory of Open Access Journals (Sweden)

    Susan eSangha

    2014-05-01

    Full Text Available Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia and autism in the offspring. Hence, changes in an array of behaviors, including behavioral flexibility, consistent with altered functioning of cortico-limbic circuits have been reported in rodent models of maternal immune activation. Surprisingly, previous studies have not examined the effect of maternal immune activation on the extinction of fear conditioning which depends on cortico-limbic circuits. Thus, we tested the effects of treating pregnant Long Evans rats with the viral mimetic polyI:C (gestational day 15; 4 mg/kg; i.v. on fear conditioning and extinction in the male offspring using two different tasks. In the first experiment, we observed no effect of polyI:C treatment on the acquisition or extinction of a classically conditioned fear memory in a non-discriminative auditory cue paradigm. However, polyI:C-treated offspring did increase contextual freezing during the recall of fear extinction in this non-discriminative paradigm. The second experiment utilized a recently developed task to explicitly test the ability of rats to discriminate among cues signifying fear, reward, and safety; a task that requires behavioral flexibility. To our surprise, polyI:C-treated rats acquired the task in a manner similar to saline-treated rats. However, upon subsequent extinction training, they showed significantly faster extinction of the freezing response to the fear cue. In contrast, during the extinction recall test, polyI:C-treated offspring showed enhanced freezing behavior before and after presentation of the fear cue, suggesting an impairment in their ability to regulate fear behavior. These behavioral results are integrated into the literature suggesting impairments in cortico-limbic brain function in the offspring of rats treated with polyI:C during pregnancy.

  2. Temporal properties of fear extinction--does time matter?

    Science.gov (United States)

    Golkar, Armita; Bellander, Martin; Öhman, Arne

    2013-02-01

    Fear extinction can be defined as the weakening of the expression of a conditioned response (CR) by extended experience of nonreinforcement. Conceptually, two distinct models have been invoked to account for extinction. R. A. Rescorla and A. R. Wagner (1972, A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement, in A. H. B. W. F. Prokasy (Ed.), Classical conditioning: II. Current research and theory, pp. 64-99, New York, NY, Appleton-Century-Crofts) postulated that the number of exposure trials is the primary determinant of CR decrement, whereas C. R. Gallistel and J. Gibbon (2000, Time, rate, and conditioning, Psychological Review, Vol. 107, pp. 289-344) proposed that the decisive event is the cumulated exposure time to the nonreinforced conditioned stimulus (CS) elapsed after the last CS reinforcement. We evaluated these two accounts in a human differential fear conditioning study in which CR was measured with the fear-potentiated startle response. Cumulated duration of nonreinforcement fails to explain our findings, whereas the number of trials appeared critical. In fact, many CS trials with a duration shorter than the acquisition CS duration facilitated within-session extinction, but this effect did not predict the recovery of fear. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  3. Olfactory stimulation modulates the blood glucose level in rats.

    Science.gov (United States)

    Tsuji, Tadataka; Tanaka, Susumu; Bakhshishayan, Sanam; Kogo, Mikihiko; Yamamoto, Takashi

    2018-01-01

    In both humans and animals, chemosensory stimuli, including odors and tastes, induce a variety of physiologic and mental responses related to energy homeostasis, such as glucose kinetics. The present study examined the importance of olfactory function in glucose kinetics following ingestion behavior in a simplified experimental scenario. We applied a conventional glucose tolerance test to rats with and without olfactory function and analyzed subsequent blood glucose (BG) curves in detail. The loss of olfactory input due to experimental damage to the olfactory mucosa induced a marked decrease in the area under the BG curve. Exposure to grapefruit odor and its main component, limonene, both of which activate the sympathetic nerves, before glucose loading also greatly depressed the BG curve. Pre-loading exposure to lavender odor, a parasympathetic activator, stabilized the BG level. These results suggest that olfactory function is important for proper glucose kinetics after glucose intake and that certain fragrances could be utilized as tools for controlling BG levels.

  4. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  5. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Science.gov (United States)

    Kittelberger, Kara A; Piazza, Fabrizio; Tesco, Giuseppina; Reijmers, Leon G

    2012-01-01

    Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  6. Natural Amyloid-Beta Oligomers Acutely Impair the Formation of a Contextual Fear Memory in Mice

    Science.gov (United States)

    Kittelberger, Kara A.; Piazza, Fabrizio; Tesco, Giuseppina; Reijmers, Leon G.

    2012-01-01

    Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss. PMID:22238679

  7. Linking adult olfactory neurogenesis to social behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  8. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    Science.gov (United States)

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Olfactory memory formation in Drosophila: from molecular to systems neuroscience.

    Science.gov (United States)

    Davis, Ronald L

    2005-01-01

    The olfactory nervous system of insects and mammals exhibits many similarities, which suggests that the mechanisms for olfactory learning may be shared. Molecular genetic investigations of Drosophila learning have uncovered numerous genes whose gene products are essential for olfactory memory formation. Recent studies of the products of these genes have continued to expand the range of molecular processes known to underlie memory formation. Recent research has also broadened the neuroanatomical areas thought to mediate olfactory learning to include the antennal lobes in addition to a previously accepted and central role for the mushroom bodies. The roles for neurons extrinsic to the mushroom body neurons are becoming better defined. Finally, the genes identified to participate in Drosophila olfactory learning have conserved roles in mammalian organisms, highlighting the value of Drosophila for gene discovery.

  10. Hypobaric hypoxia impairs cued and contextual fear memory in rats.

    Science.gov (United States)

    Kumari, Punita; Kauser, Hina; Wadhwa, Meetu; Roy, Koustav; Alam, Shahnawaz; Sahu, Surajit; Kishore, Krishna; Ray, Koushik; Panjwani, Usha

    2018-04-26

    Fear memory is essential for survival, and its dysregulation leads to disorders. High altitude hypobaric hypoxia (HH) is known to induce cognitive decline. However, its effect on fear memory is still an enigma. We aimed to investigate the temporal effect of HH on fear conditioning and the underlying mechanism. Adult male Sprague-Dawley rats were trained for fear conditioning and exposed to simulated HH equivalent to 25,000 ft for different durations (1, 3, 7, 14 and 21 days). Subsequently, rats were tested for cued and contextual fear conditioning. Neuronal morphology, apoptosis and DNA fragmentation were studied in the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). We observed significant deficit in cued and contextual fear acquisition (at 1, 3 and 7 days) and consolidation (cued at 1 and 3 days and contextual fear at 1, 3 and 7 days) under HH. HH exposure with retraining showed the earlier restoration of contextual fear memory. Further, we found a gradual increase in the number of pyknotic and apoptotic neurons together with the increase in DNA fragmentation in mPFC, hippocampus, and BLA up to 7 days of HH exposure. The present study concludes that HH exposure equivalent to 25000 ft induced cued and contextual fear memory deficit (acquisition and consolidation) which is found to be correlated with the neurodegenerative changes in the limbic brain regions. Copyright © 2018. Published by Elsevier B.V.

  11. Olfactory deficits in Niemann-Pick type C1 (NPC1 disease.

    Directory of Open Access Journals (Sweden)

    Marina Hovakimyan

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a rare autosomal recessive lipid storage disease characterized by progressive neurodegeneration. As only a few studies have been conducted on the impact of NPC on sensory systems, we used a mutant mouse model (NPC1(-/- to examine the effects of this disorder to morphologically distinct regions of the olfactory system, namely the olfactory epithelium (OE and olfactory bulb (OB. METHODOLOGY/PRINCIPAL FINDINGS: For structural and functional analysis immunohistochemistry, electron microscopy, western blotting, and electrophysiology have been applied. For histochemistry and western blotting, we used antibodies against a series of neuronal and glia marker proteins, as well as macrophage markers. NPC1(-/- animals present myelin-like lysosomal deposits in virtually all types of cells of the peripheral and central olfactory system. Especially supporting cells of the OE and central glia cells are affected, resulting in pronounced astrocytosis and microgliosis in the OB and other olfactory cortices. Up-regulation of Galectin-3, Cathepsin D and GFAP in the cortical layers of the OB underlines the critical role and location of the OB as a possible entrance gate for noxious substances. Unmyelinated olfactory afferents of the lamina propria seem less affected than ensheathing cells. Supporting the structural findings, electro-olfactometry of the olfactory mucosa suggests that NPC1(-/- animals exhibit olfactory and trigeminal deficits. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a pronounced neurodegeneration and glia activation in the olfactory system of NPC1(-/-, which is accompanied by sensory deficits.

  12. Extrabulbar olfactory system and nervus terminalis FMRFamide immunoreactive components in Xenopus laevis ontogenesis.

    Science.gov (United States)

    Pinelli, Claudia; D'Aniello, Biagio; Polese, Gianluca; Rastogi, Rakesh K

    2004-09-01

    The extrabulbar olfactory system (EBOS) is a collection of nerve fibers which originate from primary olfactory receptor-like neurons and penetrate into the brain bypassing the olfactory bulbs. Our description is based upon the application of two neuronal tracers (biocytin, carbocyanine DiI) in the olfactory sac, at the cut end of the olfactory nerve and in the telencephalon of the developing clawed frog. The extrabulbar olfactory system was observed already at stage 45, which is the first developmental stage compatible with our techniques; at this stage, the extrabulbar olfactory system fibers terminated diffusely in the preoptic area. A little later in development, i.e. at stage 50, the extrabulbar olfactory system was maximally developed, extending as far caudally as the rhombencephalon. In the metamorphosing specimens, the extrabulbar olfactory system appeared reduced in extension; caudally, the fiber terminals did not extend beyond the diencephalon. While a substantial overlapping of biocytin/FMRFamide immunoreactivity was observed along the olfactory pathways as well as in the telencephalon, FMRFamide immunoreactivity was never observed to be colocalized in the same cellular or fiber components visualized by tracer molecules. The question whether the extrabulbar olfactory system and the nervus terminalis (NT) are separate anatomical entities or represent an integrated system is discussed.

  13. Optogenetic stimulation of a hippocampal engram activates fear memory recall.

    Science.gov (United States)

    Liu, Xu; Ramirez, Steve; Pang, Petti T; Puryear, Corey B; Govindarajan, Arvind; Deisseroth, Karl; Tonegawa, Susumu

    2012-03-22

    A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.

  14. Fear and Aggression in German Shepherd, Boxer and Rottweiler Dogs

    Directory of Open Access Journals (Sweden)

    Krassimira Uzunova

    2015-05-01

    Full Text Available As a result of long-term active fear, variable moods can occur – howling, whimpering, crying, tremor, tics, manias, depressions, etc. It is now acknowledged that fear and aggression are closely related. It is also known that the different dog breeds manifest a various extent of fear and aggression. The study aimed to provide answers to two questions - classification of factors invoking fear and aggression according to their significance and which of investigated dog breeds – German Shepherd, Rottweiler or Boxer is the most resistant to fear and aggression episodes? The exclusion of all factors on the cultivation of three breeds of dogs / they complied with the norms / found that the causes of fear aggressive conditions are listed as follows – first of fear and aggression depend on the temperament of the dog and on the second place of the breed origin, growing conditions and the associated level of primary and secondary socialization. Fear aggressive manifestations occur at least in dogs with sanguine and choleric temperament. Representatives of the breed "Boxer" and "German Shepherd" are at the same level on the manifestations of fear and aggression. Rottweiler breed is in third place in this direction.

  15. Olfactory source localization in the open field using one or both nostrils.

    Science.gov (United States)

    Welge-Lussen, A; Looser, G L; Westermann, B; Hummel, T

    2014-03-01

    This study aims to examine humans ́ abilities to localize odorants within the open field. Young participants were tested on a localization task using a relatively selective olfactory stimulus (2-phenylethyl-alcohol, PEA) and cineol, an odorant with a strong trigeminal component. Participants were blindfolded and had to localize an odorant source at 2 m distance (far-field condition) and a 0.4 m distance (near-field condition) with either two nostrils open or only one open nostril. For the odorant with trigeminal properties, the number of correct trials did not differ when one or both nostrils were used, while more PEA localization trials were correctly completed with both rather than one nostril. In the near-field condition, correct localization was possible in 72-80% of the trials, irrespective of the odorant and the number of nostrils used. Localization accuracy, measured as spatial deviation from the olfactory source, was significantly higher in the near-field compared to the far-field condition, but independent of the odorant being localized. Odorant localization within the open field is difficult, but possible. In contrast to the general view, humans seem to be able to exploit the two-nostril advantage with increasing task difficulty.

  16. Olfactory Performance Can Be Influenced by the Presentation Order, Background Noise, and Positive Concurrent Feedback.

    Science.gov (United States)

    Walliczek-Dworschak, Ute; Pellegrino, Robert; Lee, Shangwa; Hummel, Cornelia; Hähner, Antje; Hummel, Thomas

    2016-10-01

    Sniffin' Sticks have become a popular procedure to measure overall olfactory functionality with 3 subtest: phenyl ethyl alcohol threshold test (T), discrimination (D), and identification (I). However, several procedural components specified by the original paper have not been tested nor has the impact of deviations been measured. The aim of the present work was to measure olfactory performance under modified testing procedures. First, the reverse order of subtests (IDT) was compared with more standard practices (TDI). Next, the possible impact of background noise and positive concurrent feedback were assessed. A total of 120 individuals participated in the study where the 3 conditional experiments, each involving 40 participants, were completed. Testing procedures that reversed the presentation order of subtests (I->D->T) scored a significantly lower overall TDI score than standard testing order with the threshold subtest being the most influenced. Additionally, nonverbal background noise lowered overall olfactory performance while concurrent feedback modulated threshold performance. These results emphasize the importance of testing parameters where olfactory perception and tasks may be modulated by adaptation and attentional distraction, respectively. This study helped furthermore to demonstrate that the investigated 3 deviations from the standard procedure revealed a significant impact on the performance outcome in olfactory assessment using the Sniffin' Sticks. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Behavioral analysis of NR2C knockout mouse reveals deficit in acquisition of conditioned fear and working memory.

    Science.gov (United States)

    Hillman, Brandon G; Gupta, Subhash C; Stairs, Dustin J; Buonanno, Andres; Dravid, Shashank M

    2011-05-01

    N-methyl-D-aspartate (NMDA) receptors play an important role in excitatory neurotransmission and mediate synaptic plasticity associated with learning and memory. NMDA receptors are composed of two NR1 and two NR2 subunits and the identity of the NR2 subunit confers unique electrophysiologic and pharmacologic properties to the receptor. The precise role of NR2C-containing receptors in vivo is poorly understood. We have performed a battery of behavioral tests on NR2C knockout/nβ-galactosidase knock-in mice and found no difference in spontaneous activity, basal anxiety, forced-swim immobility, novel object recognition, pain sensitivity and reference memory in comparison to wildtype counterparts. However, NR2C knockout mice were found to exhibit deficits in fear acquisition and working memory compared to wildtype mice. Deficit in fear acquisition correlated with lack of fear conditioning-induced plasticity at the thalamo-amygdala synapse. These findings suggest a unique role of NR2C-containing receptors in associative and executive learning representing a novel therapeutic target for deficits in cognition. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Modification of Fear Memory by Pharmacological and Behavioural Interventions during Reconsolidation.

    Science.gov (United States)

    Thome, Janine; Koppe, Georgia; Hauschild, Sophie; Liebke, Lisa; Schmahl, Christian; Lis, Stefanie; Bohus, Martin

    2016-01-01

    Dysfunctional fear responses play a central role in many mental disorders. New insights in learning and memory suggest that pharmacological and behavioural interventions during the reconsolidation of reactivated fear memories may increase the efficacy of therapeutic interventions. It has been proposed that interventions applied during reconsolidation may modify the original fear memory, and thus prevent the spontaneous recovery and reinstatement of the fear response. We investigated whether pharmacological (propranolol) and behavioural (reappraisal, multisensory stimulation) interventions reduce fear memory, and prevent reinstatement of fear in comparison to a placebo control group. Eighty healthy female subjects underwent a differential fear conditioning procedure with three stimuli (CS). Two of these (CS+) were paired with an electric shock on day 1. On day 2, 20 subjects were pseudo-randomly assigned to either the propranolol or placebo condition, or underwent one of the two behavioural interventions after one of the two CS+ was reactivated. On day 3, all subjects underwent an extinction phase, followed by a reinstatement test. Dependent variables were US expectancy ratings, fear-potentiated startle, and skin conductance response. Differential fear responses to the reactivated and non-reactivated CS+ were observed only in the propranolol condition. Here, the non-reactivated CS+ evoked stronger fear-potentiated startle-responses compared to the placebo group. None of the interventions prevented the return of the extinguished fear response after re-exposure to the unconditioned stimulus. Our data are in line with an increasing body of research stating that the occurrence of reconsolidation may be constrained by boundary conditions such as subtle differences in experimental manipulations and instructions. In conclusion, our findings do not support a beneficial effect in using reconsolidation processes to enhance effects of psychotherapeutic interventions. This

  19. Modification of Fear Memory by Pharmacological and Behavioural Interventions during Reconsolidation

    Science.gov (United States)

    Thome, Janine; Koppe, Georgia; Hauschild, Sophie; Liebke, Lisa; Schmahl, Christian; Lis, Stefanie; Bohus, Martin

    2016-01-01

    Background Dysfunctional fear responses play a central role in many mental disorders. New insights in learning and memory suggest that pharmacological and behavioural interventions during the reconsolidation of reactivated fear memories may increase the efficacy of therapeutic interventions. It has been proposed that interventions applied during reconsolidation may modify the original fear memory, and thus prevent the spontaneous recovery and reinstatement of the fear response. Methods We investigated whether pharmacological (propranolol) and behavioural (reappraisal, multisensory stimulation) interventions reduce fear memory, and prevent reinstatement of fear in comparison to a placebo control group. Eighty healthy female subjects underwent a differential fear conditioning procedure with three stimuli (CS). Two of these (CS+) were paired with an electric shock on day 1. On day 2, 20 subjects were pseudo-randomly assigned to either the propranolol or placebo condition, or underwent one of the two behavioural interventions after one of the two CS+ was reactivated. On day 3, all subjects underwent an extinction phase, followed by a reinstatement test. Dependent variables were US expectancy ratings, fear-potentiated startle, and skin conductance response. Results Differential fear responses to the reactivated and non-reactivated CS+ were observed only in the propranolol condition. Here, the non-reactivated CS+ evoked stronger fear-potentiated startle-responses compared to the placebo group. None of the interventions prevented the return of the extinguished fear response after re-exposure to the unconditioned stimulus. Conclusions Our data are in line with an increasing body of research stating that the occurrence of reconsolidation may be constrained by boundary conditions such as subtle differences in experimental manipulations and instructions. In conclusion, our findings do not support a beneficial effect in using reconsolidation processes to enhance effects of

  20. Newborn neurons in the olfactory bulb selected for long-term survival through olfactory learning are prematurely suppressed when the olfactory memory is erased.

    Science.gov (United States)

    Sultan, Sébastien; Rey, Nolwen; Sacquet, Joelle; Mandairon, Nathalie; Didier, Anne

    2011-10-19

    A role for newborn neurons in olfactory memory has been proposed based on learning-dependent modulation of olfactory bulb neurogenesis in adults. We hypothesized that if newborn neurons support memory, then they should be suppressed by memory erasure. Using an ecological approach in mice, we showed that behaviorally breaking a previously learned odor-reward association prematurely suppressed newborn neurons selected to survive during initial learning. Furthermore, intrabulbar infusions of the caspase pan-inhibitor ZVAD (benzyloxycarbonyl-Val-Ala-Asp) during the behavioral odor-reward extinction prevented newborn neurons death and erasure of the odor-reward association. Newborn neurons thus contribute to the bulbar network plasticity underlying long-term memory.

  1. Fear affects parental care, which predicts juvenile survival and exacerbates the total cost of fear on demography.

    Science.gov (United States)

    Dudeck, Blair P; Clinchy, Michael; Allen, Marek C; Zanette, Liana Y

    2018-01-01

    Fear itself (perceived predation risk) can affect wildlife demography, but the cumulative impact of fear on population dynamics is not well understood. Parental care is arguably what most distinguishes birds and mammals from other taxa, yet only one experiment on wildlife has tested fear effects on parental food provisioning and the repercussions this has for the survival of dependent offspring, and only during early-stage care. We tested the effect of fear on late-stage parental care of mobile dependent offspring, by locating radio-tagged Song Sparrow fledglings and broadcasting predator or non-predator playbacks in their vicinity, measuring their parent's behavior and their own, and tracking the offspring's survival to independence. Fear significantly reduced late-stage parental care, and parental fearfulness (as indexed by their reduction in provisioning when hearing predators) significantly predicted their offspring's condition and survival. Combining results from this experiment with that on early-stage care, we project that fear itself is powerful enough to reduce late-stage survival by 24%, and cumulatively reduce the number of young reaching independence by more than half, 53%. Experiments in invertebrate and aquatic systems demonstrate that fear is commonly as important as direct killing in affecting prey demography, and we suggest focusing more on fear effects and on offspring survival will reveal the same for wildlife. © 2017 by the Ecological Society of America.

  2. The etiology of childhood dental fear: The role of dental and conditioning experiences.

    NARCIS (Netherlands)

    ten Berge, M.; Veerkamp, J.S.J.; Hoogstraten, J.

    2002-01-01

    This study aimed to examine the relative importance of invasive treatment experiences in the acquisition of dental fear in children. For this purpose, the complete dental history of 401 children (aged 5-10 years) was studied. The level of dental fear in these children was assessed using the Dental

  3. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Science.gov (United States)

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  4. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  5. The influence of serotonin on fear learning.

    Directory of Open Access Journals (Sweden)

    Catherine Hindi Attar

    Full Text Available Learning of associations between aversive stimuli and predictive cues is the basis of Pavlovian fear conditioning and is driven by a mismatch between expectation and outcome. To investigate whether serotonin modulates the formation of such aversive cue-outcome associations, we used functional magnetic resonance imaging (fMRI and dietary tryptophan depletion to reduce brain serotonin (5-HT levels in healthy human subjects. In a Pavlovian fear conditioning paradigm, 5-HT depleted subjects compared to a non-depleted control group exhibited attenuated autonomic responses to cues indicating the upcoming of an aversive event. These results were closely paralleled by reduced aversive learning signals in the amygdala and the orbitofrontal cortex, two prominent structures of the neural fear circuit. In agreement with current theories of serotonin as a motivational opponent system to dopamine in fear learning, our data provide first empirical evidence for a role of serotonin in representing formally derived learning signals for aversive events.

  6. Oxytocin differentially modulates pavlovian cue and context fear acquisition.

    Science.gov (United States)

    Cavalli, Juliana; Ruttorf, Michaela; Pahi, Mario Rosero; Zidda, Francesca; Flor, Herta; Nees, Frauke

    2017-06-01

    Fear acquisition and extinction have been demonstrated as core mechanisms for the development and maintenance of mental disorders, with different contributions of processing cues vs contexts. The hypothalamic peptide oxytocin (OXT) may have a prominent role in this context, as it has been shown to affect fear learning. However, investigations have focused on cue conditioning, and fear extinction. Its differential role for cue and context fear acquisition is still not known. In a randomized, double-blind, placebo (PLC)-controlled design, we administered an intranasal dose of OXT or PLC before the acquisition of cue and context fear conditioning in healthy individuals (n = 52), and assessed brain responses, skin conductance responses and self-reports (valence/arousal/contingency). OXT compared with PLC significantly induced decreased responses in the nucleus accumbens during early cue and context acquisition, and decreased responses of the anterior cingulate cortex and insula during early as well as increased hippocampal response during late context, but not cue acquisition. The OXT group additionally showed significantly higher arousal in late cue and context acquisition. OXT modulates various aspects of cue and context conditioning, which is relevant from a mechanism-based perspective and might have implications for the treatment of fear and anxiety. © The Author (2017). Published by Oxford University Press.

  7. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Directory of Open Access Journals (Sweden)

    Kara A Kittelberger

    Full Text Available Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD. It has been proposed that soluble amyloid-beta (Abeta oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  8. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Simone B Sartori

    Full Text Available The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB, or normal (NAB anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i for identifying biological factors underlying misguided conditioned fear responses and (ii for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.

  9. A specialized odor memory buffer in primary olfactory cortex.

    Science.gov (United States)

    Zelano, Christina; Montag, Jessica; Khan, Rehan; Sobel, Noam

    2009-01-01

    The neural substrates of olfactory working memory are unknown. We addressed the questions of whether olfactory working memory involves a verbal representation of the odor, or a sensory image of the odor, or both, and the location of the neural substrates of these processes. We used functional magnetic resonance imaging to measure activity in the brains of subjects who were remembering either nameable or unnameable odorants. We found a double dissociation whereby remembering nameable odorants was reflected in sustained activity in prefrontal language areas, and remembering unnameable odorants was reflected in sustained activity in primary olfactory cortex. These findings suggest a novel dedicated mechanism in primary olfactory cortex, where odor information is maintained in temporary storage to subserve ongoing tasks.

  10. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level

    OpenAIRE

    CADIOU , Hervé; AOUDE , Imad; Tazir , Bassim; Molinas , Adrien; Forbes Fenech , Claire; Meunier , Nicolas; Grosmaitre , Xavier

    2014-01-01

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of...

  11. Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System

    OpenAIRE

    DeMaria, Shannon; Berke, Allison P.; Van Name, Eric; Heravian, Anisa; Ferreira, Todd; Ngai, John

    2013-01-01

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the “one receptor, one neuron” rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the...

  12. Uptake and transport of manganese in primary and secondary olfactory neurones in pike.

    Science.gov (United States)

    Tjälve, H; Mejàre, C; Borg-Neczak, K

    1995-07-01

    gamma-spectrometry and autoradiography were used to examine the axoplasmic flow of manganese in the olfactory nerves and to study the uptake of the metal in the brain after application of 54Mn2+ in the olfactory chambers of pikes. The results show that the 54Mn2+ is taken up in the olfactory receptor cells and is transported at a constant rate along the primary olfactory neurones into the brain. The maximal velocity for the transported 54Mn2+ was 2.90 +/- 0.21 mm/hr (mean +/- S.E.) at 10 degrees, which was the temperature used in the experiments. The 54Mn2+ accumulated in the entire olfactory bulbs, although most marked in central and caudal parts. The metal was also seen to migrate into large areas of the telencephalon, apparently mainly via the secondary olfactory axons present in the medial olfactory tract. A transfer along fibres of the medial olfactory tract probably also explains the labelling which was seen in the diencephalon down to the hypothalamus. The results also showed that there is a pathway connecting the two olfactory bulbs of the pike and that this can carry the metal. Our data further showed a marked accumulation of 54Mn2+ in the meningeal epithelium and in the contents of the meningeal sacs surrounding the olfactory bulbs. It appears from our study that manganese has the ability to pass the synaptic junctions between the primary and the secondary olfactory neurones in the olfactory bulbs and to migrate along secondary olfactory pathways into the telencephalon and the diencephalon.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Neural correlates of olfactory processing in congenital blindness

    DEFF Research Database (Denmark)

    Kupers, R; Beaulieu-Lefebvre, M; Schneider, F C

    2011-01-01

    Adaptive neuroplastic changes have been well documented in congenitally blind individuals for the processing of tactile and auditory information. By contrast, very few studies have investigated olfactory processing in the absence of vision. There is ample evidence that the olfactory system...... magnetic resonance imaging to measure changes in the blood-oxygenation level-dependent signal in congenitally blind and blindfolded sighted control subjects during a simple odor detection task. We found several group differences in task-related activations. Compared to sighted controls, congenitally blind......, linking it also to olfactory processing in addition to tactile and auditory processing....

  14. Ulex europaeus I and glycine max bind to the human olfactory bulb.

    Science.gov (United States)

    Nagao, M; Oka, N; Kamo, H; Akiguchi, I; Kimura, J

    1993-12-24

    The distribution of binding sites for the fucose-selective lectin Ulex europaeus I and the terminal N-acetylgalactosamine-selective lectin glycine max in the human olfactory bulb were studied. These lectins bound to primary olfactory axons in the olfactory nerve layer and the glomerular layer. They also bound to fibers located in the deeper layers such as the external plexiform layer and the granular layer. Furthermore they projected to the olfactory stalk but not in the cerebrum. The deeper projections of the lectin binding fibers may affect the function of the olfactory bulb in humans.

  15. Anxiety symptoms and children's eye gaze during fear learning.

    Science.gov (United States)

    Michalska, Kalina J; Machlin, Laura; Moroney, Elizabeth; Lowet, Daniel S; Hettema, John M; Roberson-Nay, Roxann; Averbeck, Bruno B; Brotman, Melissa A; Nelson, Eric E; Leibenluft, Ellen; Pine, Daniel S

    2017-11-01

    The eye region of the face is particularly relevant for decoding threat-related signals, such as fear. However, it is unclear if gaze patterns to the eyes can be influenced by fear learning. Previous studies examining gaze patterns in adults find an association between anxiety and eye gaze avoidance, although no studies to date examine how associations between anxiety symptoms and eye-viewing patterns manifest in children. The current study examined the effects of learning and trait anxiety on eye gaze using a face-based fear conditioning task developed for use in children. Participants were 82 youth from a general population sample of twins (aged 9-13 years), exhibiting a range of anxiety symptoms. Participants underwent a fear conditioning paradigm where the conditioned stimuli (CS+) were two neutral faces, one of which was randomly selected to be paired with an aversive scream. Eye tracking, physiological, and subjective data were acquired. Children and parents reported their child's anxiety using the Screen for Child Anxiety Related Emotional Disorders. Conditioning influenced eye gaze patterns in that children looked longer and more frequently to the eye region of the CS+ than CS- face; this effect was present only during fear acquisition, not at baseline or extinction. Furthermore, consistent with past work in adults, anxiety symptoms were associated with eye gaze avoidance. Finally, gaze duration to the eye region mediated the effect of anxious traits on self-reported fear during acquisition. Anxiety symptoms in children relate to face-viewing strategies deployed in the context of a fear learning experiment. This relationship may inform attempts to understand the relationship between pediatric anxiety symptoms and learning. © 2017 Association for Child and Adolescent Mental Health.

  16. Role of NPY Y1 receptor on acquisition, consolidation and extinction on contextual fear conditioning: dissociation between anxiety, locomotion and non-emotional memory behavior.

    Science.gov (United States)

    Lach, Gilliard; de Lima, Thereza Christina Monteiro

    2013-07-01

    Neuropeptide Y (NPY) is the most abundant peptide in the central nervous system (CNS) and is densely localized in the brain regions involved in stress, memory, fear and anxiety. Although previous research supports a role for NPY in the mediation of rodent and human emotional behavior, there is currently a lack of information on the effects of low doses of NPY that could have a potential therapeutic advantage, minimizing side-effects such as cognition impairment or sedation. Herein, we assessed the effects of intracerebroventricular (i.c.v.) administration of low doses of NPY, and of the Y1-agonist Leu31Pro34-NPY (LP-NPY) on contextual fear conditioning (CFC), as they have no effect on unconditioned anxiety-like, locomotor activity and non-emotional memory. NPY (3 pmol) and LP-NPY (1 pmol) inhibited freezing behavior when administered in the acquisition or consolidation stages, indicating a reduction of fear. When injected in the extinction phase, only NPY inhibited freezing behavior on CFC. Pre-treatment with the Y1-antagonist BIBO3304 before NPY and LP-NPY was able to prevent the inhibition of fear responses induced by both NPY agonists. Taken together, our results demonstrate robust fear-inhibiting effects of i.c.v. injection of NPY on contextual fear conditioning in rats, a response that is mediated, at least in part, by the Y1 receptor. Moreover, these treatments were unable to change locomotor activity or to show an anxiolytic-like effect, as evaluated in an open-field and an elevated plus-maze. This specific fear reduction effect may underlie resilience systems in the CNS and has potential therapeutic relevance in PTSD. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Increases in extracellular zinc in the amygdala in acquisition and recall of fear experience and their roles in response to fear.

    Science.gov (United States)

    Takeda, A; Tamano, H; Imano, S; Oku, N

    2010-07-14

    The amygdala is enriched with histochemically reactive zinc, which is dynamically coupled with neuronal activity and co-released with glutamate. The dynamics of the zinc in the amygdala was analyzed in rats, which were subjected to inescapable stress, to understand the role of the zinc in emotional behavior. In the communication box, two rats were subjected to foot shock stress and anxiety stress experiencing emotional responses of foot-shocked rat under amygdalar perfusion. Extracellular zinc was increased by foot shock stress, while decreased by anxiety stress, suggesting that the differential changes in extracellular zinc are associated with emotional behavior. In rats conditioned with foot shock, furthermore, extracellular zinc was increased again in the recall of fear (foot shock) in the same box without foot shock. When this recall was performed under perfusion with CaEDTA, a membrane-impermeable zinc chelator, to examine the role of the increase in extracellular zinc, the time of freezing behavior was more increased, suggesting that zinc released in the lateral amygdala during the recall of fear participates in freezing behavior. To examine the role of the increase in extracellular zinc during fear conditioning, fear conditioning was also performed under perfusion with CaEDTA. The time of freezing behavior was more increased in the contextual recall, suggesting that zinc released in the lateral nucleus during fear conditioning also participates in freezing behavior in the recall. In brain slice experiment, CaEDTA enhanced presynaptic activity (exocytosis) in the lateral nucleus after activation of the entorhinal cortex. The present paper demonstrates that zinc released in the lateral amygdala may participate in emotional behavior in response to fear. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Pre-exposure and retrieval effects on generalization of contextual fear

    NARCIS (Netherlands)

    Sevenster, D.; de Oliveira Alvares, L.; D'Hooge, R.

    2018-01-01

    The degree of generalization from a fearful context to other contexts is determined by precision of the original fear memory. Experiences before and after fear learning affect memory precision. Pre-exposure to a similar context before context conditioning results in increased generalization to the

  19. Accelerated age-related olfactory decline among type 1 Usher patients.

    Science.gov (United States)

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D

    2016-06-22

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin' Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome.

  20. Effect of the coadministration of citalopram with mirtazapine or atipamezole on rat contextual conditioned fear

    Directory of Open Access Journals (Sweden)

    Masuda T

    2014-02-01

    Full Text Available Takahiro Masuda,1,2 Takeshi Inoue,1 Yan An,1 Naoki Takamura,1,3 Shin Nakagawa,1 Yuji Kitaichi,1 Tsukasa Koyama,1 Ichiro Kusumi1 1Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo Japan; 2Medical Affairs, Dainippon Sumitomo Pharma, Co, Ltd, Tokyo, Japan; 3Regenerative and Cellular Medicine Office, Dainippon Sumitomo Pharma, Co, Ltd, Osaka, Japan Background: Mirtazapine, a noradrenergic and specific serotonergic antidepressant, which blocks the α2-adrenergic autoreceptors and heteroreceptors, has shown anxiolytic properties in clinical trials and preclinical animal experiments. The addition of mirtazapine to selective serotonin reuptake inhibitors (SSRIs is clinically suggested to be more effective for anxiety disorders. In this study, we examined the combined effects of mirtazapine and citalopram, an SSRI, on the freezing behavior of rats, which was induced by contextual conditioned fear as an index of anxiety or fear. Methods: Male Sprague Dawley rats individually received footshocks in a shock chamber, and 24 hours later, they were given citalopram and/or mirtazapine injections. One hour after citalopram and 30 minutes after mirtazapine administration, freezing behavior was analyzed in the same shock chamber without shocks. Results: Mirtazapine decreased freezing in a dose-dependent manner, which is consistent with a previous report; it also enhanced an anxiolytic-like effect at a high dose (30 mg/kg of citalopram. Because mirtazapine blocks α2-adrenoreceptors, the combined effect of atipamezole, a selective α2 receptor antagonist, with citalopram was also examined. Similar to mirtazapine, atipamezole reduced freezing dose-dependently, but the enhancement of citalopram's effects by atipamezole was not clear when compared with mirtazapine. Conclusion: The present findings suggest that mirtazapine has an anxiolytic-like effect and may enhance the anxiolytic-like effect of SSRIs, but this enhancement may not be

  1. D-Cycloserine Does Not Facilitate Fear Extinction by Reducing Conditioned Stimulus Processing or Promoting Conditioned Inhibition to Contextual Cues

    Science.gov (United States)

    Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick

    2012-01-01

    The NMDA receptor partial agonist d-cycloserine (DCS) enhances the extinction of learned fear in rats and exposure therapy in humans with anxiety disorders. Despite these benefits, little is known about the mechanisms by which DCS promotes the loss of fear. The present study examined whether DCS augments extinction retention (1) through reductions…

  2. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    Science.gov (United States)

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  3. Chronic fluoxetine dissociates contextual from auditory fear memory.

    Science.gov (United States)

    Sanders, Jeff; Mayford, Mark

    2016-10-06

    Fluoxetine is a medication used to treat Major Depressive Disorder and other psychiatric conditions. These experiments studied the effects of chronic fluoxetine treatment on the contextual versus auditory fear memory of mice. We found that chronic fluoxetine treatment of adult mice impaired their contextual fear memory, but spared auditory fear memory. Hippocampal perineuronal nets, which are involved in contextual fear memory plasticity, were unaltered by fluoxetine treatment. These data point to a selective inability to form contextual fear memory as a result of fluoxetine treatment, and they suggest that a blunting of hippocampal-mediated aversive memory may be a therapeutic action for this medication. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Individual differences in learning predict the return of fear.

    Science.gov (United States)

    Gershman, Samuel J; Hartley, Catherine A

    2015-09-01

    Using a laboratory analogue of learned fear (Pavlovian fear conditioning), we show that there is substantial heterogeneity across individuals in spontaneous recovery of fear following extinction training. We propose that this heterogeneity might stem from qualitative individual differences in the nature of extinction learning. Whereas some individuals tend to form a new memory during extinction, leaving their fear memory intact, others update the original threat association with new safety information, effectively unlearning the fear memory. We formalize this account in a computational model of fear learning and show that individuals who, according to the model, are more likely to form new extinction memories tend to show greater spontaneous recovery compared to individuals who appear to only update a single memory. This qualitative variation in fear and extinction learning may have important implications for understanding vulnerability and resilience to fear-related psychiatric disorders.

  5. File list: Unc.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Olfactory_epithelium.bed ...

  6. File list: Unc.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.20.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.20.AllAg.Olfactory_epithelium.bed ...

  7. File list: Unc.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Olfactory_epithelium.bed ...

  8. Effects of postretrieval-extinction learning on return of contextually controlled cued fear.

    Science.gov (United States)

    Meir Drexler, Shira; Merz, Christian J; Hamacher-Dang, Tanja C; Marquardt, Veronica; Fritsch, Nathalie; Otto, Tobias; Wolf, Oliver T

    2014-08-01

    Reactivation of an already consolidated memory makes it labile for a period of several hrs, which are required for its reconsolidation. Evidence suggests that the return of conditioned fear through spontaneous recovery, reinstatement, or renewal can be prevented by blockading this reconsolidation process using pharmacological or behavioral interventions. Postretrieval-extinction learning has been shown to prevent the return of cued fear in humans using fear-irrelevant stimuli, as well as cued and contextual fear in rodents. The effects of postretrieval extinction on human contextually controlled cued fear to fear-relevant stimuli remain unknown, and are the focus of the present study. The experimental design was based on 3 consecutive days: acquisition, reactivation and extinction, and re-extinction. For the fear conditioning, 2 zoo frames served as different contexts, 5 fear-relevant stimuli (aversive animal pictures) served as conditioned stimuli (CS), electric shocks served as unconditioned stimuli (UCS). Expectancy ratings and skin-conductance response (SCR) were used as measures of fear responses; spontaneous recovery and renewal were used as indicators of the return of fear. The expectancy ratings and SCR results indicated spontaneous recovery on the third day, regardless of retrieval prior to extinction. No robust renewal effect was seen. It is suggested that the use of fear-relevant stimuli, the context salience, or reactivation context may explain the lack of reconsolidation effect. Our study indicates that the beneficial effects of postretrieval-extinction learning are sensitive to subtle methodological changes.

  9. File list: DNS.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Olfactory_epithelium.bed ...

  10. File list: DNS.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.50.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.50.AllAg.Olfactory_epithelium.bed ...

  11. File list: DNS.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.20.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.20.AllAg.Olfactory_epithelium.bed ...

  12. Encoding of Fear Memory in High and Low Fear Mice

    Science.gov (United States)

    2013-11-18

    contextual fear conditioning and retrieval. Brain structure & function   15.  Black AH, Young GA. 1972.  Electrical  activity of the hippocampus and cortex...0 Cara Olsen Statistician 0.12 0 SUBTOTALS 0

  13. Counterconditioned Fear Responses Exhibit Greater Renewal than Extinguished Fear Responses

    Science.gov (United States)

    Holmes, Nathan M.; Leung, Hiu T.; Westbrook, R. Frederick

    2016-01-01

    This series of experiments used rats to compare counterconditioning and extinction of conditioned fear responses (freezing) with respect to the effects of a context shift. In each experiment, a stimulus was paired with shock in context A, extinguished or counterconditioned through pairings with sucrose in context B, and then tested for renewal…

  14. Fear appeals and confronting information campaigns. [Previously: Fear-based information campaigns.

    NARCIS (Netherlands)

    2007-01-01

    Fear appeals or confronting information campaigns confront people in an often hard and sometimes even shocking way with the consequences of risky behaviour. This can have a positive impact on the attitudes and behavioural intentions of the target group, but only if key conditions are met. Those

  15. Are fear memories erasable? –reconsolidation of learned fear with fear relevant and fear-irrelevant stimuli

    OpenAIRE

    Armita eGolkar; Martin eBellander; Andreas eOlsson; Arne eÖhman

    2012-01-01

    Recent advances in the field of fear learning have demonstrated that a single reminder exposure prior to extinction training can prevent the return of extinguished fear by disrupting the process of reconsolidation. These findings have however proven hard to replicate in humans. Given the significant implications of preventing the return of fear, the purpose of the present study was to further study the prerequisites for the putative effects of disrupting reconsolidation. In two experiments, w...

  16. Postreactivation glucocorticoids impair recall of established fear memory.

    Science.gov (United States)

    Cai, Wen-Hui; Blundell, Jacqueline; Han, Jie; Greene, Robert W; Powell, Craig M

    2006-09-13

    Pavlovian fear conditioning provides one of the best rodent models of acquired anxiety disorders, including posttraumatic stress disorder. Injection of a variety of drugs after training in fear-conditioning paradigms can impair consolidation of fear memories. Indeed, early clinical trials suggest that immediate administration of such drugs after a traumatic event may decrease the risk of developing posttraumatic stress disorder in humans (Pitman et al., 2002; Vaiva et al., 2003). The use of such a treatment is limited by the difficulty of treating every patient at risk and by the difficulty in predicting which patients will experience chronic adverse consequences. Recent clinical trials suggest that administration of glucocorticoids may have a beneficial effect on established posttraumatic stress disorder (Aerni et al., 2004) and specific phobia (Soravia et al., 2006). Conversely, glucocorticoid administration after training is known to enhance memory consolidation (McGaugh and Roozendaal, 2002; Roozendaal, 2002). From a clinical perspective, enhancement of a fear memory or a reactivated fear memory would not be desirable. We report here that when glucocorticoids are administered immediately after reactivation of a contextual fear memory, subsequent recall is significantly diminished. Additional experiments support the interpretation that glucocorticoids not only decrease fear memory retrieval but, in addition, augment consolidation of fear memory extinction rather than decreasing reconsolidation. These findings provide a rodent model for a potential treatment of established acquired anxiety disorders in humans, as suggested by others (Aerni et al., 2004; Schelling et al., 2004), based on a mechanism of enhanced extinction.

  17. Lateral presynaptic inhibition mediates gain control in an olfactory circuit.

    Science.gov (United States)

    Olsen, Shawn R; Wilson, Rachel I

    2008-04-24

    Olfactory signals are transduced by a large family of odorant receptor proteins, each of which corresponds to a unique glomerulus in the first olfactory relay of the brain. Crosstalk between glomeruli has been proposed to be important in olfactory processing, but it is not clear how these interactions shape the odour responses of second-order neurons. In the Drosophila antennal lobe (a region analogous to the vertebrate olfactory bulb), we selectively removed most interglomerular input to genetically identified second-order olfactory neurons. Here we show that this broadens the odour tuning of these neurons, implying that interglomerular inhibition dominates over interglomerular excitation. The strength of this inhibitory signal scales with total feedforward input to the entire antennal lobe, and has similar tuning in different glomeruli. A substantial portion of this interglomerular inhibition acts at a presynaptic locus, and our results imply that this is mediated by both ionotropic and metabotropic receptors on the same nerve terminal.

  18. File list: Oth.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.05.AllAg.Olfactory_epithelium.bed ...

  19. File list: Oth.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Olfactory_epithelium.bed ...

  20. File list: Oth.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.50.AllAg.Olfactory_epithelium.bed ...