WorldWideScience

Sample records for olfactory dysfunction central

  1. Olfactory dysfunction in neuromyelitis optica spectrum disorders

    NARCIS (Netherlands)

    Zhang, L.J.; Zhao, N.; Fu, Y.; Zhang, D.Q.; Wang, J.; Qin, W.; Zhang, N.N.N.; Wood, K.; Liu, Y.; Yu, C.S.; Shi, F.D.; Yang, L.

    2015-01-01

    Few data were available for the understanding of olfactory function in neuromyelitis optica spectrum disorders (NMOSDs). The aims of our study were to investigate the incidence of olfactory dysfunction and characterize olfactory structures, using MRI, in patients with NMOSDs. Olfactory function was

  2. Assessment of Olfactory Memory in Olfactory Dysfunction.

    Science.gov (United States)

    Kollndorfer, Kathrin; Reichert, Johanna; Braunsteiner, Josephine; Schöpf, Veronika

    2017-01-01

    To assess all clinically relevant components of olfactory perception, examinations for olfactory sensitivity, discrimination, and identification are performed. Besides the standard perceptual test battery, episodic olfactory memory might offer additional information about olfactory abilities relative to these standard clinical tests. As both olfactory deficits and memory deficits are early symptoms in neurodegenerative disorders, olfactory memory may be of particular interest. However, to date little is known about episodic olfactory memory performance in patients with decreased olfactory function. This study includes the investigation of olfactory memory performance in 14 hyposmic patients (8 female, mean age 52.6 years) completing two episodic odor memory tests (Sniffin' Test of Odor Memory and Odor Memory Test). To control for a general impairment in memory function, a verbal and a figural memory test were carried out. A regression model with multiple predictors was calculated for both odor memory tests separately. Odor identification was identified as the only significant predictor for both odor memory tasks. From our results, we conclude that currently available olfactory memory tests are highly influenced by odor identification abilities, implying the need for the development and validation of additional tests in this field which could serve as additional olfactory perception variables for clinical assessment.

  3. [Deficits in medical counseling in olfactory dysfunction].

    Science.gov (United States)

    Haxel, B R; Nisius, A; Fruth, K; Mann, W J; Muttray, A

    2012-05-01

    Olfactory dysfunctions are common with a prevalence of up to 20% in the population. An impaired sense of smell can lead to specific dangers, therefore, counseling and warning of hazardous situations to raise patient awareness is an important medical function. In this study 105 patients presenting to the University of Mainz Medical Centre with dysosmia were evaluated using a questionnaire. For quantification of the olfactory dysfunction a standardized olfactory test (Sniffin' Sticks) was used. Of the patients 46% were hyposmic and 40% were functionally anosmic. The median duration of the olfactory impairment was 10 months and the main causes of dysosmia were upper respiratory tract infections and idiopathic disorders. More than 90% of the patients consulted an otorhinolaryngologist and 60% a general practitioner before presenting to the University of Mainz Medical Center. More than two thirds of the patients conducted a professional activity, 95% of patients reported that they had not received any medical counseling and 6% of the subjects were forced to discontinue their profession because of olfactory dysfunction. In patients with olfactory dysfunctions appropriate diagnostics, including olfactometry should be performed. Furthermore, correct medical counseling concerning necessary additional arrangements (e.g. installation of smoke or gas detectors, precautions while cooking or for hygiene) has to be performed. For patients in a profession an analysis of the hazards at work is crucial.

  4. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  5. Discordance between olfactory psychophysical measurements and olfactory event related potentials in five patients with olfactory dysfunction following upper respiratory infection.

    Science.gov (United States)

    Guan, Jing; Ni, Dao-feng; Wang, Jian; Gao, Zhi-qiang

    2009-07-05

    Subjective olfactory tests are easy to perform and popularly applied in the clinic, but using only these, it is difficult to diagnose all disorders of the olfactory system. The olfactory event related potentials technique offers further insight into the olfactory system and is an ideal objective test. This analysis was of subjective and objective data on the olfactory function of twelve patients with loss of smell associated with an upper respiratory infection (URI). We tested the twelve patients with URI induced olfactory loss by medical history, physical examination of the head and neck, olfactory tests and medical imaging. Olfactory function was assessed by Toyota and Takagi olfactometry including olfactory detection and recognition thresholds and olfactory event-related potentials (OERPs) recorded with OEP-98C Olfactometer. An unusual phenomenon was observed in five patients in whom the subjective detection and recognition thresholds were normal, while the expected OERPs were not detectable. We suggest that the discordance between olfactory psychophysical measurements and OERPs might be the results of abnormal electrophysiology related with olfactory neuropathy caused by viral URI. In addition, the measurement of OERPs might play a significant role in evaluating olfactory dysfunction.

  6. Discordance between olfactory psychophysical measurements and olfactory event related potentials in five patients with olfactory dysfunction following upper respiratory infection

    Institute of Scientific and Technical Information of China (English)

    GUAN Jing; NI Dao-feng; WANG Jian; GAO Zhi-qiang

    2009-01-01

    Background Subjective olfactory tests are easy to perform and popularly applied in the clinic, but using only these, it is difficult to diagnose all disorders of the olfactory system. The olfactory event related potentials technique offers further insight into the olfactory system and is an ideal objective test. This analysis was of subjective and objective data on the olfactory function of twelve patients with loss of smell associated with an upper respiratory infection (URI). Methods We tested the twelve patients with URI induced olfactory loss by medical history, physical examination of the head and neck, olfactory tests and medical imaging. Olfactory function was assessed by Toyota and Takagi olfactometry including olfactory detection and recognition thresholds and olfactory event-related potentials (OERPs) recorded with OEP-98C Olfactometer. Results An unusual phenomenon was observed in five patients in whom the subjective detection and recognition thresholds were normal, while the expected OERPs were not detectable. Conclusions We suggest that the discordance between olfactory psychophysical measurements and OERPs might be the results of abnormal electrephysiology related with olfactory neuropathy caused by viral URI. In addition, the measurement of OERPs might play a significant role in evaluating olfactory dysfunction.

  7. Olfactory Dysfunction as an Early Biomarker in Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Michelle E.Fullard; James F.Morley; John E.Duda

    2017-01-01

    Olfactory dysfunction is common in Parkinson's disease (PD) and often predates the diagnosis by years,reflecting early deposition of Lewy pathology,the histologic hallmark of PD,in the olfactory bulb.Clinical tests are available that allow for the rapid characterization of olfactory dysfunction,including tests of odor identification,discrimination,detection,and recognition thresholds,memory,and tests assessing the build-up of odor intensity across increasing suprathreshold stimulus concentrations.The high prevalence of olfactory impairment,along with the ease and low cost of assessment,has fostered great interest in olfaction as a potential biomarker for PD.Hyposmia may help differentiate PD from other causes of parkinsonism,and may also aid in the identification of "pre-motor" PD due to the early pathologic involvement of olfactory pathways.Olfactory function is also correlated with other non-motor features of PD and may serve as a predictor of cognitive decline.In this article,we summarize the existing literature on olfaction in PD,focusing on the potential for olfaction as a biomarker for early or differential diagnosis and prognosis.

  8. Apathy and Olfactory Dysfunction in Early Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jin Yong Hong

    2015-01-01

    Full Text Available Objective Olfactory and emotional dysfunctions are very common in patients with Parkinson’s disease (PD. Olfaction and emotions share common neuroanatomical substrates. Therefore, in this study, we evaluated the association between olfactory and emotional dysfunctions in patients with PD. Methods Parkinson’s disease patients who had been assessed for their olfactory function and neuropsychiatric symptoms including emotional dysfunction were included. A logistic regression analysis was performed to evaluate the association between low olfaction and different neuropsychiatric symptoms. Results The patients with low olfaction (cross cultural smell identification test score ≤ 6 showed a higher prevalence of apathy when compared with those with high olfaction, whereas the frequencies of other neuropsychiatric symptoms were comparable between the two groups. A multivariate logistic regression analysis revealed that the presence of apathy/indifference [odds ratio (OR = 2.859, p = 0.007], age 70 years or more (OR = 2.281, p = 0.009, and the male gender (OR = 1.916, p = 0.030 were significantly associated with low olfaction. Conclusions Our results demonstrate that apathy/indifference is a unique emotional dysfunction associated with olfactory dysfunction in PD. The findings also suggest that PD patients with low olfaction have a high prevalence of apathy.

  9. Olfactory Dysfunction in Narcolepsy with and without Cataplexy

    Czech Academy of Sciences Publication Activity Database

    Bušková, J.; Klaschka, Jan; Šonka, K.; Nevšímalová, S.

    2010-01-01

    Roč. 11, č. 6 (2010), s. 558-561 ISSN 1389-9457 Institutional research plan: CEZ:AV0Z10300504 Keywords : narcolepsy * cataplexy * narcolepsy without cataplexy * RBD * olfactory dysfunction Subject RIV: FH - Neurology Impact factor: 3.430, year: 2010

  10. Olfactory dysfunction in persian patients suffering from parkinson's disease.

    Science.gov (United States)

    Soltanzadeh, Akbar; Shams, Mehdi; Noorolahi, Hamid; Ghorbani, Askar; Fatehi, Farzad

    2011-01-01

    Looking in literature reveals that aging is accompanied by olfactory dysfunction and hyposmia/anosmia is a common manifestation in some neurodegenerative disorders. Olfactory dysfunction is regarded as non-motor manifestations of Parkinson disease (PD). The main goal of this study was to examine the extent of olfactory dysfunction in Persian PD patients. We used seven types of odors including rosewater, mint, lemon, garlic which were produced by Barij Essence Company in Iran. Additionally, coffee and vinegar were used. Subjects had to distinguish and name between seven previously named odors, stimuli were administered to each nostril separately. Totally, 92 patients and 40 controls were recruited. The mean (standard deviation) (SD) age patients was 64.88 (11.30) versus 61.05 (7.93) in controls. The male: female ratio in patients was 50:42 versus 22:18 in control group. Also, mean UPDRS score (SD) in patients was 24.42 (5.08) and the disease duration (SD) was 3.72 (3.53). Regarding the number of truly detected odors, there were a significant higher number of correct identified odors in control group in comparison with the PD patients. Furthermore, there was a significant negative correlation between number of correct diagnosed smells and UPDRS (Pearson Correlation= -0.27, P = 0.009); conversely, no significant correlation between the duration of Parkinson disease and number of correct diagnosed smells (P > 0.05). Smelling dysfunction is a major problem in Persian PD patients and it requires vigilant investigation for the cause of olfactory dysfunction exclusively in elder group and looking for possible PD disease.

  11. Olfactory dysfunction affects thresholds to trigeminal chemosensory sensations.

    Science.gov (United States)

    Frasnelli, J; Schuster, B; Hummel, T

    2010-01-14

    Next to olfaction and gustation, the trigeminal system represents a third chemosensory system. These senses are interconnected; a loss of olfactory function also leads to a reduced sensitivity in the trigeminal chemosensory system. However, most studies so far focused on comparing trigeminal sensitivity to suprathreshold stimuli; much less data is available with regard to trigeminal sensitivity in the perithreshold range. Therefore we assessed detection thresholds for CO(2), a relatively pure trigeminal stimulus in controls and in patients with olfactory dysfunction (OD). We could show that OD patients exhibit higher detection thresholds than controls. In addition, we were able to explore the effects of different etiologies of smell loss on trigeminal detection thresholds. We could show that in younger subjects, patients suffering from olfactory loss due to head trauma are more severely impaired with regard to their trigeminal sensitivity than patients with isolated congenital anosmia. In older patients, we could not observe any differences between different etiologies, probably due to the well known age-related decrease of trigeminal sensitivity. Furthermore we could show that a betterment of the OD was accompanied by decreased thresholds. This was most evident in patients with postviral OD. In conclusion, factors such as age, olfactory status and etiology of olfactory disorder can affect responsiveness to perithreshold trigeminal chemosensory stimuli. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Correlation between olfactory dysfunction and various clinical parameters in patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Kostić Jelena

    2009-01-01

    Full Text Available Background/Aim. Multiple sclerosis (MS is a chronic inflammatory disease of the central nervous system (CNS characterized by myelin destruction and axon loss. Among various clinical manifestations of MS cognitive disorders are frequent. Olfactory disorders are also noticed but they are rarely considered in clinical practice. The aim of the present study was to examine frequency of olfactory dysfunction in patients with MS and its relationship to clinical parameters. Methods. Our study comprised 61 consecutive patients with definite MS who were hospitalized at the Department for Multiple Sclerosis and Other Immune- Mediated Disorders of CNS, Institute of Neurology, Clinical Center of Serbia, Belgrade, and 45 gender-, age- and education-matched healthy voluntaries. The Pocket Smell Test (PST was used for examination of olfactory function. Cognitive functions were analyzed using the tests from the Brief Battery of Neuropsychological Tests: Paced Auditory Serial Addition Test 3-minute Version (PASAT 3', Word List Generation (WLG and Symbol Digit Modalities Test (SDMT. Results. Olfactory dysfunction was found in 26 (43% MS patients and 5 (11% controls (p = 0.001. Statistically significant positive correlation was found only between PST score and WLG scores (r = 0.297, p = 0.030. In comparison with the previously published normative values, our subjects with MS had decrease in the mean indices of the PASAT 3' in 28%, SDMT in 51% and WLG in 90% of the subjects. Conclusion. Olfactory dysfunction is frequent in our population of patients with MS. This disturbance correlates with the impairment of cognitive functions in these patients.

  13. Correlation of olfactory dysfunction of different etiologies in MRI and comparison with subjective and objective olfactometry

    International Nuclear Information System (INIS)

    Goektas, Oender; Fleiner, Franca; Sedlmaier, Benedikt; Bauknecht, Christian

    2009-01-01

    Background: The clinical diagnosis of olfactory dysfunction of different etiologies has been standardized by the German Working Group of Olfactology and Gustology, but there is no agreement about the most suitable imaging modality for diagnosing this disorder. Material and methods: A total of 24 patients (13 women, 11 men; mean age 52 years) with different types of olfactory dysfunction (anosmia, hyposmia) were examined by objective and subjective olfactometry and magnetic resonance imaging (MRI) of the olfactory bulb. Results: There was a positive correlation between objective olfactometry and volumetry of the olfactory bulb but no correlation between subjective olfactometry and MRI. Conclusion: MRI allows an evaluation of the olfactory bulb and appears to be superior to other modalities such as computed tomography (CT). Objective olfactometry remains the gold standard for reliable diagnosis of olfactory dysfunction.

  14. Olfactory Dysfunction Is Associated with the Intake of Macronutrients in Korean Adults.

    Science.gov (United States)

    Kong, Il Gyu; Kim, So Young; Kim, Min-Su; Park, Bumjung; Kim, Jin-Hwan; Choi, Hyo Geun

    2016-01-01

    Olfactory function can impact food selection. However, few large population-based studies have investigated this effect across different age groups. The objective of this study was to assess the association between subjective olfactory dysfunction (anosmia or hyposmia) and macronutrient intake. A total of 24,990 participants aged 20 to 98 years were evaluated based on data collected through the Korea National Health and Nutrition Examination Survey from 2008 through 2012. Olfactory dysfunction was surveyed using a self-reported questionnaire, and the nutritional status was assessed through a validated 24-hour recall method. Simple and multiple linear regression analyses with complex sampling were performed to evaluate the relationships between olfactory dysfunction and protein intake (daily protein intake/recommended protein intake [%]), carbohydrate intake (daily carbohydrate intake/total calories [%]), and fat intake (daily fat intake/total calories [%]) after adjusting for age, sex, body mass index, income, smoking history, alcohol consumption, and stress level. Olfactory dysfunction was reported by 5.4% of Korean adults and was found to be associated with decreased fat consumption (estimated value [EV] of fat intake [%] = -0.57, 95% confidence interval [CI] = -1.13 to -0.13, P = 0.045). A subgroup analysis according to age and sex revealed that among young females, olfactory dysfunction was associated with reduced fat consumption (EV = -2.30, 95% CI = -4.16 to -0.43, P = 0.016) and increased carbohydrate intake (EV = 2.80, 95% CI = 0.55 to 5.05, P = 0.015), and that among middle-aged females, olfactory dysfunction was also associated with reduced fat intake (EV = -1.26, 95% CI = -2.37 to -0.16, P = 0.025). In contrast, among young males, olfactory dysfunction was associated with reduced protein intake (EV = -26.41 95% CI = -45.14 to -7.69, P = 0.006). Olfactory dysfunction was associated with reduced fat intake. Moreover, olfactory dysfunction exerted

  15. Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice.

    Science.gov (United States)

    Hu, Yang; Ding, Wenting; Zhu, Xiaonan; Chen, Ruzhu; Wang, Xuelan

    2016-04-01

    Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.

  16. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    Directory of Open Access Journals (Sweden)

    Katerina Markopoulou

    Full Text Available Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L, which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may

  17. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    Science.gov (United States)

    Markopoulou, Katerina; Chase, Bruce A; Robowski, Piotr; Strongosky, Audrey; Narożańska, Ewa; Sitek, Emilia J; Berdynski, Mariusz; Barcikowska, Maria; Baker, Matt C; Rademakers, Rosa; Sławek, Jarosław; Klein, Christine; Hückelheim, Katja; Kasten, Meike; Wszolek, Zbigniew K

    2016-01-01

    Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L), which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may reflect the

  18. Cigarette Smoke-Induced Cell Death Causes Persistent Olfactory Dysfunction in Aged Mice

    Directory of Open Access Journals (Sweden)

    Rumi Ueha

    2018-06-01

    Full Text Available Introduction: Exposure to cigarette smoke is a cause of olfactory dysfunction. We previously reported that in young mice, cigarette smoke damaged olfactory progenitors and decreased mature olfactory receptor neurons (ORNs, then, mature ORNs gradually recovered after smoking cessation. However, in aged populations, the target cells in ORNs by cigarette smoke, the underlying molecular mechanisms by which cigarette smoke impairs the regenerative ORNs, and the degree of ORN regeneration after smoking cessation remain unclear.Objectives: To explore the effects of cigarette smoke on the ORN cell system using an aged mouse model of smoking, and to investigate the extent to which smoke-induced damage to ORNs recovers following cessation of exposure to cigarette smoke in aged mice.Methods: We intranasally administered a cigarette smoke solution (CSS to 16-month-old male mice over 24 days, then examined ORN existence, cell survival, changes of inflammatory cytokines in the olfactory epithelium (OE, and olfaction using histological analyses, gene analyses and olfactory habituation/dishabituation tests.Results: CSS administration reduced the number of mature ORNs in the OE and induced olfactory dysfunction. These changes coincided with an increase in the number of apoptotic cells and Tumor necrosis factor (TNF expression and a decrease in Il6 expression. Notably, the reduction in mature ORNs did not recover even on day 28 after cessation of treatment with CSS, resulting in persistent olfactory dysfunction.Conclusion: In aged mice, by increasing ORN death, CSS exposure could eventually overwhelm the regenerative capacity of the OE, resulting in continued reduction in the number of mature ORNs and olfactory dysfunction.

  19. The first report of CADASIL in Peru: Olfactory dysfunction on initial presentation

    Directory of Open Access Journals (Sweden)

    Anastasia Vishnevetsky

    2016-12-01

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL is a rare, heritable, small vessel vascular disease caused by mutations in the Notch3 gene that is characterized by migraines, subcortical vascular events, cognitive decline, and mood disturbances. However, many CADASIL cases present with unusual symptoms such as status epilepticus, a movement disorder, or sensory dysfunction. This study describes the clinical, genetic, and radiologic characteristics of a Peruvian family with CADASIL in which multiple family members presented with severe olfactory deficits. Seven members of the family have symptoms suggestive of CADASIL, with genetic testing revealing R133C mutations in the two patients who underwent genetic testing. Cognitive testing and olfactory identification testing (Smell Identification Test were performed in three CADASIL patients revealing total anosmia in two tested patients and severe hyposmia in the other. Olfactory dysfunction has been associated with various neurologic and psychiatric conditions, though few studies have linked it with neurovascular disorders such as CADASIL. This first reported case of CADASIL in Peru emphasizes that symptomatic olfactory dysfunction may be an unusual presentation of CADASIL and that olfactory dysfunction is important to evaluate in CADASIL patients.

  20. Measurement and Analysis of Olfactory Responses with the Aim of Establishing an Objective Diagnostic Method for Central Olfactory Disorders

    Science.gov (United States)

    Uno, Tominori; Wang, Li-Qun; Miwakeichi, Fumikazu; Tonoike, Mitsuo; Kaneda, Teruo

    In order to establish a new diagnostic method for central olfactory disorders and to identify objective indicators, we measured and analyzed brain activities in the parahippocampal gyrus and uncus, region of responsibility for central olfactory disorders. The relationship between olfactory stimulation and brain response at region of responsibility can be examined in terms of fitted responses (FR). FR in these regions may be individual indicators of changes in brain olfactory responses. In the present study, in order to non-invasively and objectively measure olfactory responses, an odor oddball task was conducted on four healthy volunteers using functional magnetic resonance imaging (fMRI) and a odorant stimulator with blast-method. The results showed favorable FR and activation in the parahippocampal gyrus or uncus in all subjects. In some subjects, both the parahippocampal gyrus and uncus were activated. Furthermore, activation was also confirmed in the cingulate gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus and insula. The hippocampus and uncus are known to be involved in the olfactory disorders associated with early-stage Alzheimer's disease and other olfactory disorders. In the future, it will be necessary to further develop the present measurement and analysis method to clarify the relationship between central olfactory disorders and brain activities and establish objective indicators that are useful for diagnosis.

  1. Smoking and olfactory dysfunction: A systematic literature review and meta-analysis.

    Science.gov (United States)

    Ajmani, Gaurav S; Suh, Helen H; Wroblewski, Kristen E; Pinto, Jayant M

    2017-08-01

    A systematic review and meta-analysis of the literature was undertaken, examining the association between tobacco smoking and olfactory function in humans, utilizing PubMed and Web of Science (1970-2015) as data sources. Systematic literature review and meta-analysis. This database review of studies of smoking and olfaction, with a focus on identifying high-quality studies (based on modified versions of the Newcastle-Ottawa Scale), used validated olfactory tests among the generally healthy population. We identified 11 studies meeting inclusion criteria. Of 10 cross-sectional studies, two were excluded from meta-analysis because the cohorts they studied were included in another article in the review. In meta-analysis, current smokers had substantially higher odds of olfactory dysfunction compared to never smokers (odds ratio [OR] = 1.59, 95% confidence interval [CI] = 1.37-1.85). In contrast, former smokers were found to have no difference in risk of impaired olfaction compared to never smokers (OR = 1.05, 95% CI = 0.91-1.21). The single longitudinal study reviewed found a trend toward increased risk of olfactory decline over time in ever smokers; this trend was stronger in current as compared to former smokers. Current smoking, but not former smoking, is associated with significantly increased risk of olfactory dysfunction, suggesting that the effects of smoking on olfaction may be reversible. Future studies that prospectively evaluate the impact of smoking cessation on improvement in olfactory function are warranted. N/A. Laryngoscope, 127:1753-1761, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Epidemiological association of olfactory dysfunction with hearing loss and dysphonia in the Korean population

    Science.gov (United States)

    Park, Jae Hong; Byeon, Hyung Kwon; Park, Ki Nam; Kim, Jae Wook; Lee, Seung Won; Han, Kyung-do; Chang, Jae Won; Kim, Won Shik; Koh, Yoon Woo; Ban, Myung Jin

    2017-01-01

    Abstract The aim of the study is to investigate the association between olfactory dysfunction (OD), hearing loss, and dysphonia. The cross-sectional data for 17,984 adults who completed the Korea National Health and Nutrition Examination Surveys (2010−12) were analyzed. OD, hearing loss, and dysphonia were assessed using self-reporting questionnaires. The association of OD with hearing loss and dysphonia was evaluated. Hearing loss and dysphonia were significantly more prevalent in patients with OD than in those without OD (hearing loss, 28.1% vs 11.3%; dysphonia, 11.1% vs 5.9%; both P dysphonia, and was greater in those with combined hearing loss and dysphonia than in both patients without these dysfunctions and in those with a single dysfunction (odds ratio 3.115, 95% confidence interval 1.973–4.917). OD was significantly associated with hearing loss and dysphonia. PMID:29382018

  3. Peripheral and Central Olfactory Tuning in a Moth

    Science.gov (United States)

    Ong, Rose C.

    2012-01-01

    Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain. PMID:22362866

  4. Peripheral-type benzodiazepine receptors in the central nervous system: localization to olfactory nerves.

    Science.gov (United States)

    Anholt, R R; Murphy, K M; Mack, G E; Snyder, S H

    1984-02-01

    Binding levels of [3H]Ro5-4864, a ligand selective for peripheral-type benzodiazepine receptors, are substantially higher in homogenates of the olfactory bulb than in the rest of the brain. Among peripheral tissues evaluated, high levels of [3H]Ro5-4864 binding are found in the nasal epithelium. Drug displacement studies show that these binding sites are pharmacologically of the peripheral type. Their presence in the nasal epithelium and in the olfactory bulb can be demonstrated in several different mammalian species. Autoradiographic studies of murine nose reveal a bipolar staining pattern around the cell bodies of the olfactory receptor cells, suggesting the presence of peripheral-type benzodiazepine receptors on both processes of these bipolar neurons. In the brain a high density of [3H]Ro5-4864 binding sites occurs in the nerve fiber and glomerular layers of the olfactory bulb. Throughout the rest of the brain [3H]Ro5-4864-associated silver grains are diffusely distributed with intense staining over the choroid plexus and along the ependymal linings of the ventricles. Both the distribution and the ontogenic development of the peripheral-type benzodiazepine receptors differ from the central-type receptors. Intranasal irrigation with 5% ZnSO4 results in a 50% reduction of peripheral-type benzodiazepine receptors in the olfactory bulb without affecting the density of central-type benzodiazepine receptors. Thus, [3H]Ro5-4864 binding sites in the olfactory bulb appear in large part to be localized to olfactory nerves which originate in the nasal epithelium.

  5. Causality Assessment of Olfactory and Gustatory Dysfunction Associated with Intranasal Fluticasone Propionate: Application of the Bradford Hill Criteria

    OpenAIRE

    Muganurmath, Chandrashekhar S.; Curry, Amy L.; Schindzielorz, Andrew H.

    2018-01-01

    Causality assessment is crucial to post-marketing pharmacovigilance and helps optimize safe and appropriate use of medicines by patients in the real world. Self-reported olfactory and gustatory dysfunction are common in the general population as well as in patients with allergic rhinitis and nasal polyposis. Intranasal corticosteroids, including intranasal fluticasone propionate (INFP), are amongst the most effective drugs indicated in the treatment of allergic rhinitis and nasal polyposis. W...

  6. Central Processing Dysfunctions in Children: A Review of Research.

    Science.gov (United States)

    Chalfant, James C.; Scheffelin, Margaret A.

    Research on central processing dysfunctions in children is reviewed in three major areas. The first, dysfunctions in the analysis of sensory information, includes auditory, visual, and haptic processing. The second, dysfunction in the synthesis of sensory information, covers multiple stimulus integration and short-term memory. The third area of…

  7. Correlation of dopaminergic terminal dysfunction and microstructural abnormalities of the basal ganglia and the olfactory tract in Parkinson's disease.

    Science.gov (United States)

    Scherfler, Christoph; Esterhammer, Regina; Nocker, Michael; Mahlknecht, Philipp; Stockner, Heike; Warwitz, Boris; Spielberger, Sabine; Pinter, Bernadette; Donnemiller, Eveline; Decristoforo, Clemens; Virgolini, Irene; Schocke, Michael; Poewe, Werner; Seppi, Klaus

    2013-10-01

    .48, P < 0.01) and between mean putaminal 6-[(18)F] fluorolevodopa uptake and the total odour score (r = 0.58; P < 0.05) as well as the Unified Parkinson's Disease Rating Scale motor score (r = -0.53, P < 0.05). This study reports a significant association between increased mean diffusivity signal and decreased 6-[(18)F] fluorolevodopa uptake, indicating that microstructural degradation of the substantia nigra and the olfactory tract parallels progression of putaminal dopaminergic dysfunction in Parkinson's disease. Since increases in nigral mean diffusivity signal also correlated with motor dysfunction, diffusion tensor imaging may serve as a surrogate marker for disease progression in future studies of putative disease modifying therapies.

  8. Epidemiological association of olfactory dysfunction with hearing loss and dysphonia in the Korean population: A cross-sectional study.

    Science.gov (United States)

    Park, Jae Hong; Byeon, Hyung Kwon; Park, Ki Nam; Kim, Jae Wook; Lee, Seung Won; Han, Kyung-do; Chang, Jae Won; Kim, Won Shik; Koh, Yoon Woo; Ban, Myung Jin

    2017-11-01

    The aim of the study is to investigate the association between olfactory dysfunction (OD), hearing loss, and dysphonia.The cross-sectional data for 17,984 adults who completed the Korea National Health and Nutrition Examination Surveys (2010-12) were analyzed. OD, hearing loss, and dysphonia were assessed using self-reporting questionnaires. The association of OD with hearing loss and dysphonia was evaluated.Hearing loss and dysphonia were significantly more prevalent in patients with OD than in those without OD (hearing loss, 28.1% vs 11.3%; dysphonia, 11.1% vs 5.9%; both P dysphonia, and was greater in those with combined hearing loss and dysphonia than in both patients without these dysfunctions and in those with a single dysfunction (odds ratio 3.115, 95% confidence interval 1.973-4.917).OD was significantly associated with hearing loss and dysphonia. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  9. Association Between Olfactory Dysfunction and Amnestic Mild Cognitive Impairment and Alzheimer Disease Dementia.

    Science.gov (United States)

    Roberts, Rosebud O; Christianson, Teresa J H; Kremers, Walter K; Mielke, Michelle M; Machulda, Mary M; Vassilaki, Maria; Alhurani, Rabe E; Geda, Yonas E; Knopman, David S; Petersen, Ronald C

    2016-01-01

    To increase the opportunity to delay or prevent mild cognitive impairment (MCI) or Alzheimer disease (AD) dementia, markers of early detection are essential. Olfactory impairment may be an important clinical marker and predictor of these conditions and may help identify persons at increased risk. To examine associations of impaired olfaction with incident MCI subtypes and progression from MCI subtypes to AD dementia. Participants enrolled in the population-based, prospective Mayo Clinic Study of Aging between 2004 and 2010 were clinically evaluated at baseline and every 15 months through 2014. Participants (N = 1630) were classified as having normal cognition, MCI (amnestic MCI [aMCI] and nonamnestic MCI [naMCI]), and dementia. We administered the Brief Smell Identification Test (B-SIT) to assess olfactory function. Mild cognitive impairment, AD dementia, and longitudinal change in cognitive performance measures. Of the 1630 participants who were cognitively normal at the time of the smell test, 33 died before follow-up and 167 were lost to follow-up. Among the 1430 cognitively normal participants included, the mean (SD) age was 79.5 (5.3) years, 49.4% were men, the mean duration of education was 14.3 years, and 25.4% were APOE ε4 carriers. Over a mean 3.5 years of follow-up, there were 250 incident cases of MCI among 1430 cognitively normal participants. We observed an association between decreasing olfactory identification, as measured by a decrease in the number of correct responses in B-SIT score, and an increased risk of aMCI. Compared with the upper B-SIT quartile (quartile [Q] 4, best scores), hazard ratios (HRs) (95% CI) were 1.12 (0.65-1.92) for Q3 (P = .68); 1.95 (1.25-3.03) for Q2 (P = .003); and 2.18 (1.36-3.51) for Q1 (P = .001) (worst scores; P for trend dementia cases among 221 prevalent MCI cases. The B-SIT score also predicted progression from aMCI to AD dementia, with a significant dose-response with worsening B-SIT quartiles

  10. Olfactory bulb dysgenesis, mirror neuron system dysfunction, and autonomic dysregulation as the neural basis for autism.

    Science.gov (United States)

    Brang, David; Ramachandran, V S

    2010-05-01

    Autism is a disorder characterized by social withdrawal, impoverished language and empathy, and a profound inability to adopt another's viewpoint - a failure to construct a "theory of mind" for interpreting another person's thoughts and intentions. We previously showed that these symptoms might be explained, in part, by a paucity of mirror neurons. Prompted by an MRI report of an individual with autism, we now suggest that there may be, in addition, a congenital aplasia/dysplasia of the olfactory bulbs with consequent reduction of vasopressin and oxytocin receptor binding. There may also be sub-clinical temporal lobe epilepsy affecting the recently discovered third visual system that is rich in "empathy" related mirror neurons (MNS) and projects (via the TOP junction - just below the inferior parietal lobule) to limbic structures that regulate autonomic outflow. This causes deranged autonomic feedback, resulting in additional deficiencies in MNS with loss of emotional empathy and introspection.

  11. Alterações do olfato na doença de Parkinson Olfactory dysfunction in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Lucas Barasnevicius Quagliato

    2007-09-01

    Full Text Available OBJETIVO: Caracterizar o comprometimento olfatório em 50 pacientes com doença de Parkinson (DP utilizando o teste de identificação de 12 cheiros da Universidade de Pensilvânia (TICUP, comparando-os com 76 indivíduos normais e associá-lo ao quadro clínico e epidemiológico. MÉTODO: Os pacientes foram avaliados na fase "on" com as escalas unificada da doença de Parkinson (UPDRS, Hoehn e Yahr e TICUP e o grupo controle com o TICUP. RESULTADOS: A média geral do número de acertos foi 5,7 nos parkinsonianos e 9 nos controles, com pontuação menor nos que apresentaram como sintoma inicial tremor e naqueles que atualmente apresentavam tremor, rigidez e bradicinesia. A idade e o estágio da DP correlacionaram-se negativamente com o número de acertos, não havendo correlação da perda olfatória com idade de início do quadro e pontuação da UPDRS. CONCLUSÃO: Apresentaram comprometimento olfatório 80% dos pacientes com DP, sendo essa avaliação ferramenta importante no diagnóstico diferencial.OBJECTIVE: To characterize the olfactory dysfunction in 50 Parkinson's disease (PD patients with the University of Pennsylvania 12 smell identification test (UPSIT, establishing a comparison with 76 age-matched healthy controls, and associate with clinical and epidemiologic picture. METHOD: The PD group was evaluated in phase "on" through United Parkinson's disease rating scale, UPSIT, and Hoehn and Yahr stage and the control group with the UPSIT. RESULTS:The mean UPSIT score was 5.7 in PD patients and 9 in the control group. Patients that presented initially resting tremor and those that currently have tremor, rigidity and bradykinesia had a significant lower scores. There were negative correlation between patients' age and PD stage with the UPSIT scores. There were no correlation between olfactory scores, age at the initial PD symptoms and disease duration. CONCLUSION:Among PD patients 80% had olfactory deficit and, therefore, smell evaluation

  12. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    Science.gov (United States)

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  13. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep

    Directory of Open Access Journals (Sweden)

    Masahiro eYamaguchi

    2013-08-01

    Full Text Available Plastic changes in neuronal circuits often occur in association with specific behavioral states. In this review, we focus on an emerging view that neuronal circuits in the olfactory system are reorganized along the wake-sleep cycle. Olfaction is crucial to sustaining the animals’ life, and odor-guided behaviors have to be newly acquired or updated to successfully cope with a changing odor world. It is therefore likely that neuronal circuits in the olfactory system are highly plastic and undergo repeated reorganization in daily life. A remarkably plastic feature of the olfactory system is that newly generated neurons are continually integrated into neuronal circuits of the olfactory bulb (OB throughout life. New neurons in the OB undergo an extensive selection process, during which many are eliminated by apoptosis for the fine tuning of neuronal circuits. The life and death decision of new neurons occurs extensively during a short time window of sleep after food consumption (postprandial sleep, a typical daily olfactory behavior. We review recent studies that explain how olfactory information is transferred between the OB and the olfactory cortex (OC along the course of the wake-sleep cycle. Olfactory sensory input is effectively transferred from the OB to the OC during waking, while synchronized top-down inputs from the OC to the OB are promoted during the slow-wave sleep. We discuss possible neuronal circuit mechanisms for the selection of new neurons in the OB, which involves the encoding of olfactory sensory inputs and memory trace formation during waking and internally generated activities in the OC and OB during subsequent sleep. The plastic changes in the OB and OC are well coordinated along the course of olfactory behavior during wakefulness and postbehavioral rest and sleep. We therefore propose that the olfactory system provides an excellent model in which to understand behavioral state-dependent plastic mechanisms of the neuronal

  14. Erectile dysfunction and central obesity: an Italian perspective

    Directory of Open Access Journals (Sweden)

    Giovanni Corona

    2014-08-01

    Full Text Available Erectile dysfunction (ED is a frequent complication of obesity. The aim of this review is to critically analyze the framework of obesity and ED, dissecting the connections between the two pathological entities. Current clinical evidence shows that obesity, and in particular central obesity, is associated with both arteriogenic ED and reduced testosterone (T levels. It is conceivable that obesity-associated hypogonadism and increased cardiovascular risk might partially justify the higher prevalence of ED in overweight and obese individuals. Conversely, the psychological disturbances related to obesity do not seem to play a major role in the pathogenesis of obesity-related ED. However, both clinical and preclinical data show that the association between ED and visceral fat accumulation is independent from known obesity-associated comorbidities. Therefore, how visceral fat could impair penile microcirculation still remains unknown. This point is particularly relevant since central obesity in ED subjects categorizes individuals at high cardiovascular risk, especially in the youngest ones. The presence of ED in obese subjects might help healthcare professionals in convincing them to initiate a virtuous cycle, where the correction of sexual dysfunction will be the reward for improved lifestyle behavior. Unsatisfying sexual activity represents a meaningful, straightforward motivation for consulting healthcare professionals, who, in turn, should take advantage of the opportunity to encourage obese patients to treat, besides ED, the underlying unfavorable conditions, thus not only restoring erectile function, but also overall health.

  15. [Blockade of the pheromonal effects in rat by central deafferentation of the accessory olfactory system].

    Science.gov (United States)

    Sánchez-Criado, J E

    1979-06-01

    Female rats reared without sex odours from male rats have a five day stral cycle. With exposure to male odour the estral cycle is shortened from five to four days. This pheromonal effect is blocked on deafferenting the vomeronasal system by electrolytically damaging both accessory olfactory bulbs.

  16. Changes in olfactory bulb volume following lateralized olfactory training.

    Science.gov (United States)

    Negoias, S; Pietsch, K; Hummel, T

    2017-08-01

    Repeated exposure to odors modifies olfactory function. Consequently, "olfactory training" plays a significant role in hyposmia treatment. In addition, numerous studies show that the olfactory bulb (OB) volume changes in disorders associated with olfactory dysfunction. Aim of this study was to investigate whether and how olfactory bulb volume changes in relation to lateralized olfactory training in healthy people. Over a period of 4 months, 97 healthy participants (63 females and 34 males, mean age: 23.74 ± 4.16 years, age range: 19-43 years) performed olfactory training by exposing the same nostril twice a day to 4 odors (lemon, rose, eucalyptus and cloves) while closing the other nostril. Before and after olfactory training, magnetic resonance imaging (MRI) scans were performed to measure OB volume. Furthermore, participants underwent lateralized odor threshold and odor identification testing using the "Sniffin' Sticks" test battery.OB volume increased significantly after olfactory training (11.3 % and 13.1 % respectively) for both trained and untrained nostril. No significant effects of sex, duration and frequency of training or age of the subjects were seen. Interestingly, PEA odor thresholds worsened after training, while olfactory identification remained unchanged.These data show for the first time in humans that olfactory training may involve top-down process, which ultimately lead to a bilateral increase in olfactory bulb volume.

  17. Adult neurogenesis in the central olfactory pathway of dendrobranchiate and caridean shrimps: New insights into the evolution of the deutocerebral proliferative system in reptant decapods.

    Science.gov (United States)

    Wittfoth, Christin; Harzsch, Steffen

    2018-04-16

    Persistent neurogenesis in the central olfactory pathway characterizes many reptant decapods such as lobsters, crayfish and crabs. In these animals, the deutocerebral proliferative system generates new neurons which integrate into the neuronal network of the first order processing neuropil of the olfactory system, the deutocerebral chemosensory lobes (also called olfactory lobes). However, differences concerning the phenotype and the mechanisms that drive adult neurogenesis were reported in crayfish versus spiny lobsters. While numerous studies have focussed on these mechanisms and regulation of adult neurogenesis, investigations about the phylogenetic distribution are missing. To contribute an evolutionary perspective on adult neurogenesis in decapods, we investigated two representatives of basally diverging lineages, the dendrobranchiate Penaeus vannamei and the caridean Crangon crangon using the thymidine analogue Bromodeoxyuridine (BrdU) as marker for the S phase of cycling cells. Compared to reptant decapods, our results suggest a simpler mechanism of neurogenesis in the adult brain of dendrobranchiate and caridean shrimps. Observed differences in the rate of proliferation and spatial dimensions are suggested to correlate with the complexity of the olfactory system. We assume that a more complex and mitotically more active proliferative system in reptant decapods evolved with the emergence of another processing neuropil, the accessory lobes. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  18. Intranasal insulin influences the olfactory performance of patients with smell loss, dependent on the body mass index: A pilot study.

    Science.gov (United States)

    Schöpf, V; Kollndorfer, K; Pollak, M; Mueller, C A; Freiherr, J

    2015-12-01

    The application of intranasal insulin in healthy humans has been linked to improved memory function, reduced food intake, and increased olfactory thresholds. There has also been some correlation between the morbidities associated with central nervous system (CNS) insulin resistance, such as type II diabetes mellitus, Alzheimer's disease, obesity, and impaired odour recognition. Given that impaired odour recognition is an important component of olfactory performance, mechanisms that govern these effects may account for impaired olfactory functions in anosmic patients. Ten patients with post-infectious olfactory loss received intranasal administration of 40 IU insulin or a placebo solution, as well as olfactory performance tests before and after administration. When administered insulin, patients exhibited an immediate performance improvement with regard to olfactory sensitivity and olfactory intensity ratings. In addition, more odours were correctly identified. Furthermore, an improvement in the odour identification task was detected in patients with higher body mass index. Results of this pilot study shed light on the link between cerebral insulin level and an impaired sense of smell. This research line might provide a better understanding of olfactory loss in relation to eating and dietary behavior, and could offer opportunities to develop faster therapeutic intervention for patients with olfactory dysfunction.

  19. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae: evidence for a prominent central olfactory pathway?

    Directory of Open Access Journals (Sweden)

    Krieger Jakob

    2010-09-01

    suggest that B. latro has visual and mechanosensory skills that are comparable to those of marine Crustacea. Conclusions In parallel to previous behavioral findings that B. latro has aerial olfaction, our results indicate that their central olfactory pathway is indeed most prominent. Similar findings from the closely related terrestrial hermit crab Coenobita clypeatus suggest that in Coenobitidae, olfaction is a major sensory modality processed by the brain, and that for these animals, exploring the olfactory landscape is vital for survival in their terrestrial habitat. Future studies on terrestrial members of other crustacean taxa such as Isopoda, Amphipoda, Astacida, and Brachyura will shed light on how frequently the establishment of an aerial sense of olfaction evolved in Crustacea during the transition from sea to land. Amounting to ca. 1,000,000, the numbers of interneurons that analyse the olfactory input in B. latro brains surpasses that in other terrestrial arthropods, as e.g. the honeybee Apis mellifera or the moth Manduca sexta, by two orders of magnitude suggesting that B. latro in fact is a land-living arthropod that has devoted a substantial amount of nervous tissue to the sense of smell.

  20. Sympathetic dysfunction of central origin in patients with ALS

    DEFF Research Database (Denmark)

    Karlsborg, M; Andersen, E B; Wiinberg, N

    2003-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe, progressive disease affecting both the central and peripheral parts of the motor nervous system. Some studies have shown unequivocal indications of a more disseminated disease also affecting the autonomic nervous system. We therefore evaluated...

  1. The role of main olfactory and vomeronasal systems in animal ...

    African Journals Online (AJOL)

    In many terrestrial tetrapod, olfactory sensory communication is mediated by two anatomically and functionally distinct sensory systems; the main olfactory system and vomeronasal system (accessory olfactory system). Recent anatomical studies of the central pathways of the olfactory and vomeronasal systems showed that ...

  2. Presence of neuropathic pain may explain poor performances on olfactory testing in diabetes mellitus patients.

    Science.gov (United States)

    Brady, Shauna; Lalli, Paul; Midha, Nisha; Chan, Ayechen; Garven, Alexandra; Chan, Cynthia; Toth, Cory

    2013-07-01

    Olfactory dysfunction in neurodegenerative conditions such as Parkinson's syndrome and Alzheimer's disease can hallmark disease onset. We hypothesized that patients with diabetes mellitus, a condition featuring peripheral and central neurodegeneration, would have decreased olfaction abilities. We examined participants with diabetic peripheral neuropathy, participants with diabetes without diabetic peripheral neuropathy, and control participants in blinded fashion using standardized Sniffin' Sticks. Diabetic peripheral neuropathy severity was quantified using the Utah Early Neuropathy Scale. Further subcategorization of diabetic peripheral neuropathy based on presence of neuropathic pain was performed with Douleur Neuropathique 4 Questionnaires. Participants with diabetes had decreased olfactory sensitivity, impaired olfactory discrimination abilities, and reduced odor identification skills when compared with controls. However, loss of olfaction ability was, at least partially, attributed to presence of neuropathic pain on subcategory assessment, although pain severity was not associated with dysfunction. Those participants with diabetes without diabetic peripheral neuropathy and those with diabetic peripheral neuropathy without neuropathic pain had similar olfactory function as controls in general. The presence of neuropathic pain, associated with limited attention and concentration, may explain at least a portion of the olfactory dysfunction witnessed in the diabetic patient population.

  3. Proteomic Analysis of the Human Olfactory Bulb.

    Science.gov (United States)

    Dammalli, Manjunath; Dey, Gourav; Madugundu, Anil K; Kumar, Manish; Rodrigues, Benvil; Gowda, Harsha; Siddaiah, Bychapur Gowrishankar; Mahadevan, Anita; Shankar, Susarla Krishna; Prasad, Thottethodi Subrahmanya Keshava

    2017-08-01

    The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.

  4. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect.

    Science.gov (United States)

    Rabhi, Kaouther K; Deisig, Nina; Demondion, Elodie; Le Corre, Julie; Robert, Guillaume; Tricoire-Leignel, Hélène; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia

    2016-02-10

    Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes. © 2016 The Author(s).

  5. Cognitive and Emotional Dysfunction after Central Pontine Myelinolysis

    Directory of Open Access Journals (Sweden)

    Tatia M. C. Lee

    2003-01-01

    Full Text Available The case of a 67-year-old right-handed Chinese man with Central Pontine Myelinolysis [CPM] is described to illustrate the resulting cognitive and emotional disturbances. A comparison of the data in this report with that in published studies suggests that ethnicity does not seem to have much effect on the symptoms of CPM. Possible underlying neural-pathological mechanisms are discussed. This case further substantiates the speculation that the brainstem plays a role in higher cognitive processes and emotional regulation.

  6. Olfactory dreams, olfactory interest, and imagery : Relationships to olfactory memory

    OpenAIRE

    Arshamian, Artin

    2007-01-01

    Existing evidence for olfactory imagery is mixed and mainly based on reports from hallucinations and volitional imagery. Using a questionnaire, Stevenson and Case (2005) showed that olfactory dreams provided a good source for olfactory imagery studies. This study applied an extended version of the same questionnaire and examined olfactory dreams and their relation to real-life experienced odors, volitional imagery, and olfactory interest. Results showed that olfactory dreams were similar to r...

  7. Central cholinergic dysfunction could be associated with oropharyngeal dysphagia in early Parkinson's disease.

    Science.gov (United States)

    Lee, Kyung Duck; Koo, Jung Hoi; Song, Sun Hong; Jo, Kwang Deog; Lee, Moon Kyu; Jang, Wooyoung

    2015-11-01

    Dysphagia is an important issue in the prognosis of Parkinson's disease (PD). Although several studies have reported that oropharyngeal dysphagia may be associated with cognitive dysfunction, the exact relationship between cortical function and swallowing function in PD patients is unclear. Therefore, we investigated the association between an electrophysiological marker of central cholinergic function, which reflected cognitive function, and swallowing function, as measured by videofluoroscopic studies (VFSS). We enrolled 29 early PD patients. Using the Swallowing Disturbance Questionnaire (SDQ), we divided the enrolled patients into two groups: PD with dysphagia and PD without dysphagia. The videofluoroscopic dysphagia scale (VDS) was applied to explore the nature of the dysphagia. To assess central cholinergic dysfunction, short latency afferent inhibition (SAI) was evaluated. We analyzed the relationship between central cholinergic dysfunction and oropharyngeal dysphagia and investigated the characteristics of the dysphagia. The SAI values were significantly different between the two groups. The comparison of each VFSS component between the PD with dysphagia group and the PD without dysphagia group showed statistical significance for most of the oral phase components and for a single pharyngeal phase component. The total score on the VDS was higher in the PD with dysphagia group than in the PD without dysphagia group. The Mini-Mental State Examination and SAI values showed significant correlations with the total score of the oral phase components. According to binary logistic regression analysis, SAI value independently contributed to the presence of dysphagia in PD patients. Our findings suggest that cholinergic dysfunction is associated with dysphagia in early PD and that an abnormal SAI value is a good biomarker for predicting the risk of dysphagia in PD patients.

  8. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.

    Science.gov (United States)

    Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo

    2017-07-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Central vestibular dysfunction in an otorhinolaryngological vestibular unit: incidence and diagnostic strategy.

    Science.gov (United States)

    Mostafa, Badr E; Kahky, Ayman O El; Kader, Hisham M Abdel; Rizk, Michael

    2014-07-01

    Introduction Vertigo can be due to a variety of central and peripheral causes. The relative incidence of central causes is underestimated. This may have an important impact of the patients' management and prognosis. Objective The objective of this work is to determine the incidence of central vestibular disorders in patients presenting to a vestibular unit in a tertiary referral academic center. It also aims at determining the best strategy to increase the diagnostic yield of the patients' visit. Methods This is a prospective observational study on 100 consecutive patients with symptoms suggestive of vestibular dysfunction. All patients completed a structured questionnaire and received bedside and vestibular examination and neuroimaging as required. Results There were 69 women and 31 men. Their ages ranged between 28 and 73 (mean 42.48 years). Provisional videonystagmography (VNG) results were: 40% benign paroxysmal positional vertigo (BPPV), 23% suspicious of central causes, 18% undiagnosed, 15% Meniere disease, and 4% vestibular neuronitis. Patients with an unclear diagnosis or central features (41) had magnetic resonance imaging (MRI) and Doppler studies. Combining data from history, VNG, and imaging studies, 23 patients (23%) were diagnosed as having a central vestibular lesion (10 with generalized ischemia/vertebra basilar insufficiency, 4 with multiple sclerosis, 4 with migraine vestibulopathy, 4 with phobic postural vertigo, and 1 with hyperventilation-induced nystagmus). Conclusions Combining a careful history with clinical examination, VNG, MRI, and Doppler studies decreases the number of undiagnosed cases and increases the detection of possible central lesions.

  10. Central Vestibular Dysfunction in an Otorhinolaryngological Vestibular Unit: Incidence and Diagnostic Strategy

    Directory of Open Access Journals (Sweden)

    Mostafa, Badr E.

    2014-03-01

    Full Text Available Introduction Vertigo can be due to a variety of central and peripheral causes. The relative incidence of central causes is underestimated. This may have an important impact of the patients' management and prognosis. Objective The objective of this work is to determine the incidence of central vestibular disorders in patients presenting to a vestibular unit in a tertiary referral academic center. It also aims at determining the best strategy to increase the diagnostic yield of the patients' visit. Methods This is a prospective observational study on 100 consecutive patients with symptoms suggestive of vestibular dysfunction. All patients completed a structured questionnaire and received bedside and vestibular examination and neuroimaging as required. Results There were 69 women and 31 men. Their ages ranged between 28 and 73 (mean 42.48 years. Provisional videonystagmography (VNG results were: 40% benign paroxysmal positional vertigo (BPPV, 23% suspicious of central causes, 18% undiagnosed, 15% Meniere disease, and 4% vestibular neuronitis. Patients with an unclear diagnosis or central features (41 had magnetic resonance imaging (MRI and Doppler studies. Combining data from history, VNG, and imaging studies, 23 patients (23% were diagnosed as having a central vestibular lesion (10 with generalized ischemia/vertebra basilar insufficiency, 4 with multiple sclerosis, 4 with migraine vestibulopathy, 4 with phobic postural vertigo, and 1 with hyperventilation-induced nystagmus. Conclusions Combining a careful history with clinical examination, VNG, MRI, and Doppler studies decreases the number of undiagnosed cases and increases the detection of possible central lesions.

  11. Olfactory neuroblastoma

    International Nuclear Information System (INIS)

    Rashid, D.; Ahmed, B.; Malik, S.M.; Khan, M.

    2000-01-01

    Olfactory neuroblastoma/esthesioneuroblastoma in a rare malignant tumour of the olfactory neuroepithelium. This is a report of 5 cases managed over the last 10 years at Combined Military Hospital, Rawalpindi. Age of the patients at presentation ranged from 27 to 70 years. The main symptoms were unilateral nasal obstruction and intermittent epistaxis. The mean duration of symptoms at presentation was 11 months. Two patients were staged as B and 3 as C at presentation. The stage of the disease correlated with the duration of symptoms. All the cases were diagnosed on histopathology. Three were offered combination of surgery and radiotherapy. One patient received only surgical treatment and one patient received radiotherapy and chemotherapy. Combination of surgery and radiotherapy showed best results. (author)

  12. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    Science.gov (United States)

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  13. Olfactory Memory

    Science.gov (United States)

    Eichenbaum, Howard; Robitsek, R. Jonathan

    2009-01-01

    Odor-recognition memory in rodents may provide a valuable model of cognitive aging. In a recent study we used signal detection analyses to distinguish odor recognition based on recollection versus that based on familiarity. Aged rats were selectively impaired in recollection, with relative sparing of familiarity, and the deficits in recollection were correlated with spatial memory impairments. These results complement electro-physiological findings indicating age-associated deficits in the ability of hippocampal neurons to differentiate contextual information, and this information-processing impairment may underlie the common age-associated decline in olfactory and spatial memory. PMID:19686208

  14. Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study.

    Science.gov (United States)

    Kiparizoska, Sara; Ikuta, Toshikazu

    2017-09-01

    Evidence for olfactory dysfunction in schizophrenia has been firmly established. However, in the typical understanding of schizophrenia, olfaction is not recognized to contribute to or interact with the illness. Despite the solid presence of olfactory dysfunction in schizophrenia, its relation to the rest of the illness remains largely unclear. Here, we aimed to examine functional connectivity of the olfactory bulb, olfactory tract, and piriform cortices and isolate the network that would account for the altered olfaction in schizophrenia. We examined the functional connectivity of these specific olfactory regions in order to isolate other brain regions associated with olfactory processing in schizophrenia. Using the resting state functional MRI data from the Center for Biomedical Research Excellence in Brain Function and Mental Illness, we compared 84 patients of schizophrenia and 90 individuals without schizophrenia. The schizophrenia group showed disconnectivity between the anterior piriform cortex and the nucleus accumbens, between the posterior piriform cortex and the middle frontal gyrus, and between the olfactory tract and the visual cortices. The current results suggest functional disconnectivity of olfactory regions in schizophrenia, which may account for olfactory dysfunction and disrupted integration with other sensory modalities in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  15. Is epicardial adipose tissue, another measure of central obesity, correlated with erectile dysfunction?

    Directory of Open Access Journals (Sweden)

    Chih-Wei Tsao

    2016-01-01

    Full Text Available Background: This study investigated the correlation between epicardial adipose tissue (EAT, a measure of central obesity, and sexual function in males with vasculogenic erectile dysfunction (ED. Materials and Methods: The study was a cross-sectional study of selected males with ED aged <75 years who attended the Urology Outpatient Department of Tri-Service General Hospital. Sixty subjects were included in the study, which employed biochemical data, anthropometric indexes, echocardiography, and questionnaires. Biochemical lipid profiles and associated inflammation markers were recorded. The anthropometric indexes included general and central obesity and bioelectrical impedance analysis. Echocardiography results were assessed by a single experienced cardiologist and included epicardial and pericardial fat thickness measurements. Sexual function was evaluated using the International Index of Erectile Function-5 (IIEF-5 score. Results: According to the analysis of variance and multivariate logistic regression, only the erectile hardness score (EHS was statistically positively correlated with the IIEF-5 score. All other anthropometric indexes and echocardiography parameters, including EAT thickness, pericardial adipose tissue thickness, and ejection fraction (EF, were not significantly associated with sexual function. Conclusions: Only EHS was statistically associated with sexual function in the male subjects with ED. The anthropometric indexes and EAT thickness, a measure of central obesity, were not significantly correlated with sexual function in the male patients with ED.

  16. Olfactory nerve transport of macromolecular drugs to the brain. A problem in olfactory impaired patients

    International Nuclear Information System (INIS)

    Shiga, Hideaki; Yamamoto, Junpei; Miwa, Takaki

    2012-01-01

    Nasal administration of macromolecular drugs (including peptides and nanoparticles) has the potential to enable drug delivery system beyond the blood brain barrier (BBB) via olfactory nerve transport. Basic research on drug deliver systems to the brain via nasal administration has been well reported. Insulin-like growth factor-I (IGF-I) is associated with the development and growth of the central nervous system. Clinical application of IGF-I with nasal administration is intended to enable drug delivery to brain through the BBB. Uptake of IGF-I in the olfactory bulb and central nervous system increased according to the dosage of nasally administered IGF-I in normal ICR mice, however IGF-I uptake in the trigeminal nerve remained unchanged. Olfactory nerve transport is important for the delivery of nasally administered IGF-I to the brain in vivo. Because a safe olfactory nerve tracer has not been clinically available, olfactory nerve transport has not been well studied in humans. Nasal thallium-201 ( 201 Tl) administration has been safely used to assess the direct pathway to the brain via the nose in healthy volunteers with a normal olfactory threshold. 201 Tl olfactory nerve transport has recently been shown to decrease in patients with hyposmia. The olfactory nerve transport function in patients with olfactory disorders will be determined using 201 Tl olfacto-scintigraphy for the exclusion of candidates in a clinical trial to assess the usefulness of nasal administration of IGF-I. (author)

  17. Medical therapy and smell dysfunction

    NARCIS (Netherlands)

    Hellings, P. W.; Rombaux, P.

    2009-01-01

    Olfactory dysfunction is deemed to be a significant contributor to poor quality of life in different nasal inflammatory conditions like common cold, allergic rhinitis, and acute and chronic rhinosinusitis with and without nasal polyps (NP). The mechanism underlying olfactory impairment in

  18. Olfactory Functioning in First-Episode Psychosis.

    Science.gov (United States)

    Kamath, Vidyulata; Lasutschinkow, Patricia; Ishizuka, Koko; Sawa, Akira

    2018-04-06

    Though olfactory deficits are well-documented in schizophrenia, fewer studies have examined olfactory performance profiles across the psychosis spectrum. The current study examined odor identification, discrimination, and detection threshold performance in first-episode psychosis (FEP) patients diagnosed with schizophrenia, schizoaffective disorder, bipolar disorder with psychotic features, major depression with psychotic features, and other psychotic conditions. FEP patients (n = 97) and healthy adults (n = 98) completed birhinal assessments of odor identification, discrimination, and detection threshold sensitivity for lyral and citralva. Participants also completed measures of anticipatory pleasure, anhedonia, and empathy. Differences in olfactory performances were assessed between FEP patients and controls and within FEP subgroups. Sex-stratified post hoc analyses were employed for a complete analysis of sex differences. Relationships between self-report measures and olfactory scores were also examined. Individuals with psychosis had poorer scores across all olfactory measures when compared to the control group. Within the psychosis cohort, patients with schizophrenia-associated psychosis had poorer odor identification, discrimination, and citralva detection threshold scores relative to controls. In schizophrenia patients, greater olfactory disturbance was associated with increased negative symptomatology, greater self-reported anhedonia, and lower self-reported anticipatory pleasure. Patients with mood-associated psychosis performed comparable to controls though men and women in this cohort showed differential olfactory profiles. These findings indicate that olfactory deficits extend beyond measures of odor identification in FEP with greater deficits observed in schizophrenia-related subgroups of psychosis. Studies examining whether greater olfactory dysfunction confers greater risk for developing schizophrenia relative to other forms of psychosis are

  19. Olfactory disfunction and its relation olfactory bulb volume in Parkinson's disease.

    Science.gov (United States)

    Altinayar, S; Oner, S; Can, S; Kizilay, A; Kamisli, S; Sarac, K

    2014-01-01

    Olfactory dysfunction is the most frequently seen non-motor symptom of Idiopathic Parkinson's disease (IPD). The aim of this study is to analyze selective olfactory dysfunction, and olfactory bulb volume (OBV) in subtypes of IPD, and compare them with those of the healthy controls. Our study included 41 patients with IPD and age and gender matched 19 healthy controls. IPD patients were either tremor dominant (65.9%; TDPD) or non-tremor dominant (34.1%; NTDPD) type. All patients underwent neurological, ear, nose, and throat examinations, and orthonasal olfaction testing. Magnetic resonance imaging (MRI) technique was used to measure the volume of the olfactory bulb. A significant decrease in olfactory identification scores was found in the patient group. The patients had difficulty in discriminating between odors of mothballs, chocolate, Turkish coffee and soap. OBV did not differ between the patient, and the control groups. In the TDPD group, odor identification ability was decreased when compared to the control group. However, odor test results of NTDPD, control and TDPD groups were similar. OBV estimates of the TDPD group were not different from those of the control group, while in the NTDPD group OBVs were found to be decreased. In all patients with Parkinson's disease OBV values did not vary with age of the patients, duration of the disease, age at onset of the disease, and Unified Parkinson's Disease Rating Scale motor scores (UPDRS-m). Olfactory function is a complex process involving olfactory, and cortical structures as well. In Idiopathic Parkinson's disease, changes in OBV do not seem to be directly related to olfactory dysfunction.

  20. Olfactory Neuroblastoma: Diagnostic Difficulty

    Directory of Open Access Journals (Sweden)

    Vidya MN,

    2011-01-01

    Full Text Available Olfactory neuroblastoma is an uncommon malignant tumor of sinonasal tract arising from the olfactory neuro epithelium. The olfactory neuroblastomas presenting with divergent histomorphologies like, epithelial appearance of cells, lacking a neuro fibrillary background and absence of rosettes are difficult to diagnose. Such cases require immunohistochemistry to establish the diagnosis. We describe the clinical features, pathological and immunohistochemical findings of grade IV Olfactory neuroblastoma in a 57 year old man

  1. Hypothalamic pituitary dysfunction in acute nonmycobacterial infections of central nervous system

    Directory of Open Access Journals (Sweden)

    Dinesh K Dhanwal

    2011-01-01

    Full Text Available Background and Objective: Acute and chronic central nervous system (CNS infections are not uncommon in tropical countries and are associated with high morbidity and mortality if specific targeted therapy is not instituted in time. Effects of tubercular meningitis, a form of chronic meningitis on hypothalamic pituitary axis, are well known both at the time of diagnosis and after few months to years of illness. However, there are few reports of pituitary dysfunction in subjects with acute CNS infections. Therefore, this study was aimed at evaluating the pituitary hormonal profile in patients with nonmycobacterial acute meningitis at the time of presentation. Materials and Methods: This prospective case series study included 30 untreated adult patients with acute meningitis, meningoencephalitis, or encephalitis, due to various nonmycobacterial agents, admitted and registered with Lok Nayak Hospital, Maulana Aazd Medical College, New Delhi, between September 2007 and March 2009. Patients with preexisting endocrine diseases, tubercular meningitis and patients on steroids were carefully excluded from the study. The basal pituitary hormonal profile was measured by the electrochemilumniscence technique for serum cortisol, luetinizing hormone (LH, follicular stimulating hormone (FSH, prolactin (PRL, thyrotropin (TSH, free tri-iodothyronine (fT3, and free thyroxine (fT4. Results: The cases (n = 30 comprised of patients with acute pyogenic meningitis (n = 23, viral meningoencephalitis (n = 4, brain abscess (n = 2, and cryptococcal meningitis (n = 1. The mean age of patients was 28.97 ± 11.306 years. Out of 30 patients, 14 (46.7% were males and 16 (58.1% were females. Adrenal insufficiency both absolute and relative was seen in seven (23.3% and hyperprolactinemia was seen in nine (30.0% of the patients. One study subject had central hypothyroidism and seven (23.3 showed low levels of LH and/or FSH. None of patients showed clinical features suggestive of

  2. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    Science.gov (United States)

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  3. Olfactory memory traces in Drosophila.

    Science.gov (United States)

    Berry, Jacob; Krause, William C; Davis, Ronald L

    2008-01-01

    In Drosophila, the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological, or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons' response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed researchers to observe cellular memory traces in intact animals. These investigations have revealed interesting temporal and spatial dynamics of cellular memory traces. First, a short-term cellular memory trace was discovered that exists in the antennal lobe, an early site of olfactory processing. This trace represents the recruitment of new synaptic activity into the odor representation and forms for only a short period of time just after training. Second, an intermediate-term cellular memory trace was found in the dorsal paired medial neuron, a neuron thought to play a role in stabilizing olfactory memories. Finally, a long-term protein synthesis-dependent cellular memory trace was discovered in the mushroom bodies, a structure long implicated in olfactory learning and memory. Therefore, it appears that aversive olfactory associations are encoded by multiple cellular memory traces that occur in different regions of the brain with different temporal domains.

  4. Preservation of olfaction in surgery of olfactory groove meningiomas.

    Science.gov (United States)

    Jang, Woo-Youl; Jung, Shin; Jung, Tae-Young; Moon, Kyung-Sub; Kim, In-Young

    2013-08-01

    Olfaction is commonly considered as secondary among the sensory functions, perhaps reflecting a lack of interest in sparing olfaction after surgery for the olfactory groove meningiomas (OGM). However, considering the repercussions of olfaction for the quality of life, the assessment of post-operative olfaction should be necessary. We retrospectively reviewed the olfactory outcome in patients with OGM and investigated the factors associated with sparing the post-operative olfaction. Between 1993 and 2012, 40 patients with OGM underwent surgical resection and estimated the olfactory function using the Korean version of "Sniffin'Sticks" test (KVSS). Variable factors, such as tumor size, degree of preoperative edema, tumor consistency, preoperative olfactory function, surgical approaches, patient's age, and gender were analyzed with attention to the post-operative olfactory function. Anatomical and functional preservation of olfactory structures were achieved in 26 patients (65%) and 22 patients (55%), respectively. Among the variable factors, size of tumor was significant related to the preservation of post-operative olfaction. (78.6% in size4 cm, p=0.035). Sparing the olfaction was significantly better in patients without preoperative olfactory dysfunction (84.6%) compared with ones with preoperative olfactory dysfunction (40.7%, p=0.016). The frontolateral approach achieved much more excellent post-operative olfactory function (71.4%) than the bifrontal approach (36.8%, p=0.032). If the tumor was smaller than 4 cm and the patients did not present olfactory dysfunction preoperatively, the possibility of sparing the post-operative olfaction was high. Among the variable surgical approaches, frontolateral route may be preferable sparing the post-operative olfaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Motor dysfunction of complex regional pain syndrome is related to impaired central processing of proprioceptive information.

    Science.gov (United States)

    Bank, Paulina J M; Peper, C Lieke E; Marinus, Johan; Beek, Peter J; van Hilten, Jacobus J

    2013-11-01

    Our understanding of proprioceptive deficits in complex regional pain syndrome (CRPS) and its potential contribution to impaired motor function is still limited. To gain more insight into these issues, we evaluated accuracy and precision of joint position sense over a range of flexion-extension angles of the wrist of the affected and unaffected sides in 25 chronic CRPS patients and in 50 healthy controls. The results revealed proprioceptive impairment at both the patients' affected and unaffected sides, characterized predominantly by overestimation of wrist extension angles. Precision of the position estimates was more prominently reduced at the affected side. Importantly, group differences in proprioceptive performance were observed not only for tests at identical percentages of each individual's range of wrist motion but also when controls were tested at wrist angles that corresponded to those of the patient's affected side. More severe motor impairment of the affected side was associated with poorer proprioceptive performance. Based on additional sensory tests, variations in proprioceptive performance over the range of wrist angles, and comparisons between active and passive displacements, the disturbances of proprioceptive performance most likely resulted from altered processing of afferent (and not efferent) information and its subsequent interpretation in the context of a distorted "body schema." The present results point at a significant role for impaired central processing of proprioceptive information in the motor dysfunction of CRPS and suggest that therapeutic strategies aimed at identification of proprioceptive impairments and their restoration may promote the recovery of motor function in CRPS patients. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  6. Assessment of olfactory nerve by SPECT-MRI image with nasal thallium-201 administration in patients with olfactory impairments in comparison to healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Hideaki Shiga

    Full Text Available PURPOSE: The aim of this study was to assess whether migration of thallium-201 ((201Tl to the olfactory bulb were reduced in patients with olfactory impairments in comparison to healthy volunteers after nasal administration of (201Tl. PROCEDURES: 10 healthy volunteers and 21 patients enrolled in the study (19 males and 12 females; 26-71 years old. The causes of olfactory dysfunction in the patients were head trauma (n = 7, upper respiratory tract infection (n = 7, and chronic rhinosinusitis (n = 7. (201TlCl was administered unilaterally to the olfactory cleft, and SPECT-CT was conducted 24 h later. Separate MRI images were merged with the SPECT images. (201Tl olfactory migration was also correlated with the volume of the olfactory bulb determined from MRI images, as well as with odor recognition thresholds measured by using T&T olfactometry. RESULTS: Nasal (201Tl migration to the olfactory bulb was significantly lower in the olfactory-impaired patients than in healthy volunteers. The migration of (201Tl to the olfactory bulb was significantly correlated with odor recognition thresholds obtained with T&T olfactometry and correlated with the volume of the olfactory bulb determined from MRI images when all subjects were included. CONCLUSIONS: Assessment of the (201Tl migration to the olfactory bulb was the new method for the evaluation of the olfactory nerve connectivity in patients with impaired olfaction.

  7. Percutaneous endoscopic sigmoid colostomy for irrigation in the management of bowel dysfunction of adults with central neurologic disease.

    Science.gov (United States)

    Ramwell, A; Rice-Oxley, M; Bond, A; Simson, J N L

    2011-10-01

    Bowel dysfunction results in a major lifestyle disruption for many patients with severe central neurologic disease. Percutaneous endoscopic sigmoid colostomy for irrigation (PESCI) allows antegrade irrigation of the distal large bowel for the management of both incontinence and constipation. This study prospectively assessed the safety and efficacy of PESCI. A PESCI tube was placed endoscopically in the sigmoid colon of 25 patients to allow antegrade irrigation. Control of constipation and fecal incontinence was improved for 21 (84%) of the 25 patients. These patients were followed up for 6-83 months (mean, 43 months), with long-term success for 19 (90%) of the patients. No PESCI had to be removed for technical reasons or for PESCI complications. Late removal of the PESCI was necessary for 2 of the 21 patients. A modified St. Marks Fecal Incontinence Score to assess bowel function before and after PESCI showed a highly significant improvement (P irrigation in the management bowel dysfunction for selected patients with central neurologic disease. A successful PESCI is very likely to continue functioning satisfactorily for a long time without technical problems or local complications.

  8. Cytosolic triglycerides and oxidative stress in central obesity : the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure?

    NARCIS (Netherlands)

    Bakker, SJL; IJzerman, RG; Teerlink, T; Westerhoff, HV; Gans, ROB; Heine, RJ

    Central obesity is increasingly recognized as a risk factor for atherosclerosis and type 2 diabetes mellitus. Here we present a hypothesis that may explain the excess atherosclerosis, endothelial dysfunction and progressive beta-cell failure. Central obesity is associated with increased cytosolic

  9. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    Science.gov (United States)

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  10. Caffeine and the olfactory bulb.

    Science.gov (United States)

    Hadfield, M G

    1997-08-01

    Caffeine, a popular CNS stimulant, is the most widely used neuroactive drug. Present in coffee, tea, chocolate, and soft drinks as well as over-the-counter and prescription medications, it influences millions of users. This agent has achieved recent notoriety because its dependency consequences and addictive potential have been re-examined and emphasized. Caffeine's central actions are thought to be mediated through adenosine (A) receptors and monoamine neurotransmitters. The present article suggests that the olfactory bulb (OB) may be an important site in the brain that is responsible for caffeine's central actions in several species. This conclusion is based on the extraordinarily robust and selective effects of caffeine on norepinephrine (NE), dopamine (DA), and particularly serotonin (5HT) utilization in the OB of mice. We believe that these phenomena should be given appropriate consideration as a basis for caffeine's central actions, even in primates. Concurrently, we review a rich rodent literature concerned with A, 5HT, NE, and DA receptors in the OB and related structures along with other monoamine parameters. We also review a more limited literature concerned with the primate OB. Finally, we cite the literature that treats the dependency and addictive effects of caffeine in humans, and relate the findings to possible olfactory mechanisms.

  11. Central nervous system dysfunction associated with Rocky Mountain spotted fever infection in five dogs.

    Science.gov (United States)

    Mikszewski, Jessica S; Vite, Charles H

    2005-01-01

    Five dogs from the northeastern United States were presented with clinical signs of neurological disease associated with Rocky Mountain spotted fever (RMSF) infection. Four of the five dogs had vestibular system dysfunction. Other neurological signs included paresis, tremors, and changes in mentation. All of the dogs had an elevated indirect fluorescent antibody titer or a positive semiquantitative enzyme screening immunoassay titer for Rickettsia rickettsii at the time of presentation. Although a higher mortality rate has been reported for dogs with neurological symptoms and RMSF infection, all of the dogs in this study improved with appropriate medical therapy and supportive care.

  12. Olfactory memory formation in Drosophila: from molecular to systems neuroscience.

    Science.gov (United States)

    Davis, Ronald L

    2005-01-01

    The olfactory nervous system of insects and mammals exhibits many similarities, which suggests that the mechanisms for olfactory learning may be shared. Molecular genetic investigations of Drosophila learning have uncovered numerous genes whose gene products are essential for olfactory memory formation. Recent studies of the products of these genes have continued to expand the range of molecular processes known to underlie memory formation. Recent research has also broadened the neuroanatomical areas thought to mediate olfactory learning to include the antennal lobes in addition to a previously accepted and central role for the mushroom bodies. The roles for neurons extrinsic to the mushroom body neurons are becoming better defined. Finally, the genes identified to participate in Drosophila olfactory learning have conserved roles in mammalian organisms, highlighting the value of Drosophila for gene discovery.

  13. Study of left ventricular diastolic dysfunction in recently diagnosed hypertensives in Central Nepal

    Directory of Open Access Journals (Sweden)

    Shankar Laudari

    2016-03-01

    Full Text Available CORRECTION: The conclusion on the PDF of this article was replaced on 17th April 2016. The corrected PDF is now available by clicking on the link below.Background & Objectives: Ectopic Left ventricular diastolic dysfunction is now well established as a cause of left sided heart failure and as a powerful predictor of cardiovascular events. It is attributed mostly to systemic hypertension. The objective of the study was to determine the prevalence of left ventricular diastolic dysfunction in recently diagnosed hypertensives in Nepalese population using echocardiography. Materials & Methods: Two-dimensional echocardiography was performed on 120 newly diagnosed patients of systemic hypertension. Transmitral Doppler indexes of diastolic function, Valsalva maneuver applied to the same mitral inflow pattern, pulsed tissue Doppler of the mitral annulus, deceleration time, isovolumic relaxation time and pulmonary venous flow pattern.Results: The age of the patients in our study ranged from 20 to 84 years with mean age of 50years±14.13 years (standard deviation and male:female ratio being 1.35:1. Hypertensive patients were highest in age group 45-64 years followed by 25-44 years in both the genders. Majority of the patients had stage 1 hypertension (44.16% followed by stage 2 HTN in 34.17% and pre-hypertension in 21.67%. The majority of the patients in our study had Grade 1 LVDD (66.67%, 10.83% patients had Grade II LVDD, only 2.50% had non-restrictive Grade III LVDD and none had LVDD-IV. Stage II hypertensives had more LVDD(I+II+III: 39/41-95.12% than stage I hypertensives(39/53-73.58% and pre-hypertensives (8/26-30.77%. The association between stages of systemic HTN and LVDD was found to be highly statistically significant (p=0.002. Conclusion: Our study showed that left ventricular diastolic dysfunction is a common entity in Nepalese population with systemic hypertension.JCMS Nepal. 2016;12(1:14-18.

  14. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  15. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  16. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments.

    Science.gov (United States)

    Peng, Katherine Y; Mathews, Paul M; Levy, Efrat; Wilson, Donald A

    2017-02-20

    While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction.

    Science.gov (United States)

    Jeong, Jeong-Won; Lee, Jessica; Kamson, David O; Chugani, Harry T; Juhász, Csaba

    2015-09-01

    To examine whether an objective segmenation of corticospinal tract (CST) associated with hand and leg movements can be used to detect central motor weakness in the corresponding extremities in a pediatric population. This retrospective study included diffusion tensor imaging (DTI) of 25 children with central paresis affecting at least one limb (age: 9.0±4.2years, 15 boys, 5/13/7 children with left/right/both hemispheric lesions including ischemia, cyst, and gliosis), as well as 42 pediatric control subjects with no motor dysfunction (age: 9.0±5.5years, 21 boys, 31 healthy/11 non-lesional epilepsy children). Leg- and hand-related CST pathways were segmented using DTI-maximum a posteriori (DTI-MAP) classification. The resulting CST volumes were then divided by total supratentorial white matter volume, resulting in a marker called "normalized streamline volume ratio (NSVR)" to quantify the degree of axonal loss in separate CST pathways associated with leg and hand motor functions. A receiver operating characteristic curve was applied to measure the accuracy of this marker to identify extremities with motor weakness. NSVR values of hand/leg CST selectively achieved the following values of accuracy/sensitivity/specificity: 0.84/0.84/0.57, 0.82/0.81/0.55, 0.78/0.75/0.55, 0.79/0.81/0.54 at a cut-off of 0.03/0.03/0.03/0.02 for right hand CST, left hand CST, right leg CST, and left leg CST, respectively. Motor weakness of hand and leg was most likely present at the cut-off values of hand and leg NSVR (i.e., 0.029/0.028/0.025/0.020 for left-hand/right-hand/left-leg/right-leg). The control group showed a moderate age-related increase in absolute CST volumes and a biphasic age-related variation of the normalized CST volumes, which were lacking in the paretic children. This study demonstrates that DTI-MAP classification may provide a new imaging tool to quantify axonal loss in children with central motor dysfunction. Using this technique, we found that early-life brain

  18. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: Residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family

    International Nuclear Information System (INIS)

    Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O.

    2005-01-01

    The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs

  19. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  20. Prevalence and determinants of erectile dysfunction among diabetic patients attending in hospitals of central and northwestern zone of Tigray, northern Ethiopia: a cross-sectional study.

    Science.gov (United States)

    Seid, Awole; Gerensea, Hadgu; Tarko, Shambel; Zenebe, Yosef; Mezemir, Rahel

    2017-03-15

    The prevalence of erectile dysfunction among diabetic men varies between 35-90%. Although erectile dysfunction is widespread among men with diabetes, the condition often remains undiagnosed and demands appropriate assessment and prompt treatment. Erectile dysfunction can affect all aspects of a patient's life including physical, emotional, social, sexual, and relationships. The main aim of this study is to determine the prevalence and determinants of erectile dysfunction among diabetic patients attending hospitals in the Central and Northwest zone of Tigray, Ethiopia. A hospital based cross-sectional study was conducted on 249 male diabetic patients attending five hospitals in the Central and Northwestern Zone of Tigray, Ethiopia using systematic random sampling. The data was collected from January 1 - February 30, 2016 and was entered and analyzed using SPSS version 20. Correlation and multivariate logistic regression was employed to test associations between independent and outcome variables. The mean age of study participants was 43.39 years and the mean duration of diabetes diagnosis was 6.22 years. The overall prevalence of erectile dysfunction was 69.9%, with 32.9% suffering from mild, 31.7% moderate, and 5.2% severe erectile dysfunction. Multivariate logistic regression revealed that erective dysfunction was significantly predicted by old age (Adjusted Odds Ratio [AOR] =15.013, CI:3.212-70.166), longer duration of diabetes (AOR = 3.77, CI:1.291-11.051), and lower monthly income (AOR = 0.285, CI:0.132-0.615). No association was found with body mass index, co-morbidity, glycemic control, and alcohol consumption. The prevalence of erective dysfunction in this study population was very high. Age, income, and duration of diabetes were the independent predictors of erectile dysfunction. Nearly all of the patients in the sample (97%) had not been screened or treated for erectile dysfunction. Assessment and management of erectile dysfunction in the

  1. Central-Approach Surgical Repair of Coarctation of the Aorta with a Back-up Left Ventricular Assist Device for an Infant Presenting with Severe Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Tae Hoon Kim

    2015-12-01

    Full Text Available A two-month-old infant presented with coarctation of the aorta, severe left ventricular dysfunction, and moderate to severe mitral regurgitation. Through median sternotomy, the aortic arch was repaired under cardiopulmonary bypass and regional cerebral perfusion. The patient was postoperatively supported with a left ventricular assist device for five days. Left ventricular function gradually improved, eventually recovering with the concomitant regression of mitral regurgitation. Prompt surgical repair of coarctation of the aorta is indicated for patients with severe left ventricular dysfunction. A central approach for surgical repair with a back-up left ventricular assist device is a safe and effective treatment strategy for these patients.

  2. Central-Approach Surgical Repair of Coarctation of the Aorta with a Back-up Left Ventricular Assist Device for an Infant Presenting with Severe Left Ventricular Dysfunction.

    Science.gov (United States)

    Kim, Tae Hoon; Shin, Yu Rim; Kim, Young Sam; Kim, Do Jung; Kim, Hyohyun; Shin, Hong Ju; Htut, Aung Thein; Park, Han Ki

    2015-12-01

    A two-month-old infant presented with coarctation of the aorta, severe left ventricular dysfunction, and moderate to severe mitral regurgitation. Through median sternotomy, the aortic arch was repaired under cardiopulmonary bypass and regional cerebral perfusion. The patient was postoperatively supported with a left ventricular assist device for five days. Left ventricular function gradually improved, eventually recovering with the concomitant regression of mitral regurgitation. Prompt surgical repair of coarctation of the aorta is indicated for patients with severe left ventricular dysfunction. A central approach for surgical repair with a back-up left ventricular assist device is a safe and effective treatment strategy for these patients.

  3. Olfactory identification in amnestic and non-amnestic mild cognitive impairment and its neuropsychological correlates.

    Science.gov (United States)

    Vyhnalek, Martin; Magerova, Hana; Andel, Ross; Nikolai, Tomas; Kadlecova, Alexandra; Laczo, Jan; Hort, Jakub

    2015-02-15

    Olfactory identification impairment in amnestic mild cognitive impairment (aMCI) patients is well documented and considered to be caused by underlying Alzheimer's disease (AD) pathology, contrasting with less clear evidence in non-amnestic MCI (naMCI). The aim was to (a) compare the degree of olfactory identification dysfunction in aMCI, naMCI, controls and mild AD dementia and (b) assess the relation between olfactory identification and cognitive performance in aMCI compared to naMCI. 75 patients with aMCI and 32 with naMCI, 26 patients with mild AD and 27 controls underwent the multiple choice olfactory identification Motol Hospital Smell Test with 18 different odors together with a comprehensive neuropsychological examination. Controlling for age and gender, patients with aMCI and naMCI did not differ significantly in olfactory identification and both performed significantly worse than controls (pmemory and visuospatial tests were significantly related to better olfactory identification ability. Conversely, no cognitive measure was significantly related to olfactory performance in naMCI. Olfactory identification is similarly impaired in aMCI and naMCI. Olfactory impairment is proportional to cognitive impairment in aMCI but not in naMCI. Copyright © 2015. Published by Elsevier B.V.

  4. Time frequency analysis of olfactory induced EEG-power change.

    Directory of Open Access Journals (Sweden)

    Valentin Alexander Schriever

    Full Text Available The objective of the present study was to investigate the usefulness of time-frequency analysis (TFA of olfactory-induced EEG change with a low-cost, portable olfactometer in the clinical investigation of smell function.A total of 78 volunteers participated. The study was composed of three parts where olfactory stimuli were presented using a custom-built olfactometer. Part I was designed to optimize the stimulus as well as the recording conditions. In part II EEG-power changes after olfactory/trigeminal stimulation were compared between healthy participants and patients with olfactory impairment. In Part III the test-retest reliability of the method was evaluated in healthy subjects.Part I indicated that the most effective paradigm for stimulus presentation was cued stimulus, with an interstimulus interval of 18-20s at a stimulus duration of 1000ms with each stimulus quality presented 60 times in blocks of 20 stimuli each. In Part II we found that central processing of olfactory stimuli analyzed by TFA differed significantly between healthy controls and patients even when controlling for age. It was possible to reliably distinguish patients with olfactory impairment from healthy individuals at a high degree of accuracy (healthy controls vs anosmic patients: sensitivity 75%; specificity 89%. In addition we could show a good test-retest reliability of TFA of chemosensory induced EEG-power changes in Part III.Central processing of olfactory stimuli analyzed by TFA reliably distinguishes patients with olfactory impairment from healthy individuals at a high degree of accuracy. Importantly this can be achieved with a simple olfactometer.

  5. Direct transport of inhaled xylene and its metabolites from the olfactory mucosa to the glomeruli of the olfactory bulbs

    International Nuclear Information System (INIS)

    Lewis, J.L.; Dahl, A.R.; Kracko, D.A.

    1994-01-01

    The olfactory epithelium is a unique tissue in that single receptor neurons have dendrites in contact with the external environment at the nasal airway, and axon terminals that penetrate the cribriform plate and synapse in the olfactory bulb. The Central Nervous System (CNS) is protected from systematically circulating toxicants by a blood-brain barrier primarily composed of tight junctions between endothelial cells in cerebral vessels and a high metabolic capacity within these cells. No such barrier has yet been defined to protect the CNS from inhaled toxicants. Because all inhalants do not seem to access the CNS directly, a nose-brain barrier seems plausible. The purpose of the work described here is to determine whether or not a nose-brain barrier exists and to define its components. Although such a barrier is likely to be multi-faceted, the present work focuses only on the importance of gross histologic and metabolic characteristics of the olfactory epithelium in olfactory transport

  6. Impaired olfactory function in patients with polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Sezen Bozkurt Koseoglu

    2016-06-01

    Full Text Available Polycystic ovary syndrome (PCOS is an endocrine disorder which affects 6.6% of women of child-bearing age. Although olfactory dysfunction is frequent in the population and it negatively affects quality of life, neither physicians or patients consider this important. This case-control study included 30 patients diagnosed with PCOS, and 25 healthy age-matched controls. Sniffin' sticks tests (BurghartGmbH, Wedel, Germany were used to analyze olfactory functions, and the Beck Depression Inventory was used to evaluate depressive symptoms. The total odor score was significantly lower in the PCOS group compared to the control group (p<0.005. The Beck depression score was higher in the PCOS group (p<0.005. There was a negative correlation between the total odor score and the Beck Depression Score. Patients with PCOS have impaired olfactory function. This might be related to depressive disorders that are also observed in those patients.

  7. The olfactory gonadotropin-releasing hormone immunoreactive system in mouse.

    Science.gov (United States)

    Jennes, L

    1986-10-29

    to the ganglion terminale induced sprouting mostly at the distal site of the knife cut while most but not all GnRH fibers proximal to the lesion had disappeared. The results of the present study indicate that the olfactory GnRH system is mostly associated with the nervus terminalis. This cranial nerve apparently projects to the central nervous system as well as the periphery. The results of the HRP uptake studies suggest that the GnRH neurons in the nervus terminalis have access to fenestrated capillaries in the subepithelial connective tissue of the nasal mucosa, to the nasal epithelium proper, and to the subarachnoid space.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. Electroantennogram measurement of the olfactory response of Daphnia spp. and its impairment by waterborne copper.

    Science.gov (United States)

    Simbeya, Christy K; Csuzdi, Catherine E; Dew, William A; Pyle, Greg G

    2012-08-01

    In this study an electroantennogram (EAG) method was developed for use on live daphniids. The EAG response of Daphnia magna and Daphnia pulex to a variety of amino acids was measured. The strongest response measured was elicited by L-arginine and was shown to induce a concentration-dependent response indicating the response is olfactory in nature. Subsequent exposures of D. magna to a low, ecologically-relevant concentration of copper (7.5 μg/L) showed a disruption in EAG function. This study utilizes the development of an EAG method for measuring olfactory acuity of live daphniids and demonstrates that at ecologically-relevant concentrations, the olfactory dysfunction caused by copper can be detected. The EAG technique is a useful tool for investigating the olfactory response of daphniids to odourants at the cellular level and detecting the effects of toxicants on the olfactory acuity of daphniids. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Impact of quality management monitoring and intervention on central venous catheter dysfunction in the outpatient chemotherapy infusion setting.

    Science.gov (United States)

    Bansal, Anu; Binkert, Christoph A; Robinson, Malcolm K; Shulman, Lawrence N; Pellerin, Linda; Davison, Brian

    2008-08-01

    To assess the utility of maintaining and analyzing a quality-management database while investigating a subjectively perceived increase in the incidence of tunneled catheter and port dysfunction in a cohort of oncology outpatients. All 152 patients undergoing lytic therapy (2-4 mg alteplase) of a malfunctioning indwelling central venous catheter (CVC) from January through June 2004 at a single cancer center in the United States were included in a quality-management database. Patients were categorized by time to device failure and the initial method of catheter placement (surgery vs interventional radiology). Data were analyzed after 3 months, and areas of possible improvement were identified and acted upon. Three months of follow-up data were then collected and similarly analyzed. In a 6-month period, 152 patients treated for catheter malfunction received a total of 276 doses of lytic therapy. A 3-month interim analysis revealed a disproportionately high rate (34%) of early catheter malfunction (ECM; <30 days from placement). Postplacement radiographs demonstrated suboptimal catheter positioning in 67% of these patients, all of whom had surgical catheter placement. There was a 50% absolute decrease in the number of patients presenting with catheter malfunction in the period from April through June (P < .001). Evaluation of postplacement radiographs in these patients demonstrated a 50% decrease in the incidence of suboptimal positioning (P < .05). Suboptimal positioning was likely responsible for some, but not all, cases of ECM. Maintenance of a quality-management database is a relatively simple intervention that can have a clear and important impact on the quality and cost of patient care.

  10. Olfactory deficits in Niemann-Pick type C1 (NPC1 disease.

    Directory of Open Access Journals (Sweden)

    Marina Hovakimyan

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a rare autosomal recessive lipid storage disease characterized by progressive neurodegeneration. As only a few studies have been conducted on the impact of NPC on sensory systems, we used a mutant mouse model (NPC1(-/- to examine the effects of this disorder to morphologically distinct regions of the olfactory system, namely the olfactory epithelium (OE and olfactory bulb (OB. METHODOLOGY/PRINCIPAL FINDINGS: For structural and functional analysis immunohistochemistry, electron microscopy, western blotting, and electrophysiology have been applied. For histochemistry and western blotting, we used antibodies against a series of neuronal and glia marker proteins, as well as macrophage markers. NPC1(-/- animals present myelin-like lysosomal deposits in virtually all types of cells of the peripheral and central olfactory system. Especially supporting cells of the OE and central glia cells are affected, resulting in pronounced astrocytosis and microgliosis in the OB and other olfactory cortices. Up-regulation of Galectin-3, Cathepsin D and GFAP in the cortical layers of the OB underlines the critical role and location of the OB as a possible entrance gate for noxious substances. Unmyelinated olfactory afferents of the lamina propria seem less affected than ensheathing cells. Supporting the structural findings, electro-olfactometry of the olfactory mucosa suggests that NPC1(-/- animals exhibit olfactory and trigeminal deficits. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a pronounced neurodegeneration and glia activation in the olfactory system of NPC1(-/-, which is accompanied by sensory deficits.

  11. Uptake and transport of manganese in primary and secondary olfactory neurones in pike.

    Science.gov (United States)

    Tjälve, H; Mejàre, C; Borg-Neczak, K

    1995-07-01

    gamma-spectrometry and autoradiography were used to examine the axoplasmic flow of manganese in the olfactory nerves and to study the uptake of the metal in the brain after application of 54Mn2+ in the olfactory chambers of pikes. The results show that the 54Mn2+ is taken up in the olfactory receptor cells and is transported at a constant rate along the primary olfactory neurones into the brain. The maximal velocity for the transported 54Mn2+ was 2.90 +/- 0.21 mm/hr (mean +/- S.E.) at 10 degrees, which was the temperature used in the experiments. The 54Mn2+ accumulated in the entire olfactory bulbs, although most marked in central and caudal parts. The metal was also seen to migrate into large areas of the telencephalon, apparently mainly via the secondary olfactory axons present in the medial olfactory tract. A transfer along fibres of the medial olfactory tract probably also explains the labelling which was seen in the diencephalon down to the hypothalamus. The results also showed that there is a pathway connecting the two olfactory bulbs of the pike and that this can carry the metal. Our data further showed a marked accumulation of 54Mn2+ in the meningeal epithelium and in the contents of the meningeal sacs surrounding the olfactory bulbs. It appears from our study that manganese has the ability to pass the synaptic junctions between the primary and the secondary olfactory neurones in the olfactory bulbs and to migrate along secondary olfactory pathways into the telencephalon and the diencephalon.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Long term serious olfactory loss in colds and/or flu.

    Science.gov (United States)

    de Haro-Licer, Josep; Roura-Moreno, Jordi; Vizitiu, Anabella; González-Fernández, Adela; González-Ares, Josep Antón

    2013-01-01

    In the general population, we can find 2-3% of lifelong olfactory disorders (from hyposmia to anosmia). Two of the most frequent aetiologies are the common cold and flu. The aim of this study was to show the degree of long-term olfactory dysfunction caused by a cold or flu. This study was based on 240 patients, with olfactory loss caused only by flu or a cold. We excluded all patients with concomitant illness (66 patients), the rest of patients (n=174) consisted of 51 men (29.3%) and 123 women (70.7%). They all underwent olfactometry study (i and v cranial nerve) and a nasal sinus computed tomography scan, as well as magnetic resonance imaging of the brain. Results were compared with a control group (n=120). Very significant differences in levels of olfactory impairment for the olfactory nerve (P<.00001) and trigeminal nerve (P<.0001) were confirmed. People that suffer olfactory dysfunction for more than 6 months, from flu or a cold, present serious impairment of olfactory abilities. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  13. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities.

    Science.gov (United States)

    Grimaud, Julien; Lledo, Pierre-Marie

    2016-06-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. © 2016 Grimaud and Lledo; Published by Cold Spring Harbor Laboratory Press.

  14. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities

    Science.gov (United States)

    Grimaud, Julien

    2016-01-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792

  15. State and trait olfactory markers of major depression.

    Directory of Open Access Journals (Sweden)

    Marine Naudin

    Full Text Available Nowadays, depression is a major issue in public health. Because of the partial overlap between the brain structures involved in depression, olfaction and emotion, the study of olfactory function could be a relevant way to find specific cognitive markers of depression. This study aims at determining whether the olfactory impairments are state or trait markers of major depressive episode (MDE through the study of the olfactory parameters involving the central olfactory pathway. In a pilot study, we evaluated prospectively 18 depressed patients during acute episodes of depression and 6 weeks after antidepressant treatment (escitalopram against 54 healthy volunteers, matched by age, gender and smoking status. We investigated the participants' abilities to identify odors (single odors and in binary mixture, to evaluate and discriminate the odors' intensity, and determine the hedonic valence of odors. The results revealed an "olfactory anhedonia" expressed by decrease of hedonic score for high emotional odorant as potential state marker of MDE. Moreover, these patients experienced an "olfactory negative alliesthesia", during the odor intensity evaluation, and failed to identify correctly two odorants with opposite valences in a binary iso-mixture, which constitute potential trait markers of the disease. This study provides preliminary evidence for olfactory impairments associated with MDE (state marker that are persistent after the clinical improvement of depressive symptoms (trait marker. These results could be explained by the chronicity of depression and/or by the impact of therapeutic means used (antidepressant treatment. They need to be confirmed particularly the ones obtained in complex olfactory environment which corresponds a more objective daily life situation.

  16. Olfactory impairment is related to REM sleep deprivation in rotenone model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Mariana F. Aurich

    Full Text Available Introduction: Olfactory dysfunction affects about 85-90% of Parkinson's disease (PD patients with severe deterioration in the ability of discriminate several types of odors. In addition, studies reported declines in olfactory performances during a short period of sleep deprivation. Besides, PD is also known to strongly affect the occurrence and maintenance of rapid eye movement (REM sleep. Methods: Therefore, we investigated the mechanisms involved on discrimination of a social odor (dependent on the vomeronasal system and a non-social odor (related to the main olfactory pathway in the rotenone model of PD. Also, a concomitant impairment in REM sleep was inflicted with the introduction of two periods (24 or 48 h of REM sleep deprivation (REMSD. Rotenone promoted a remarkable olfactory impairment in both social and non-social odors, with a notable modulation induced by 24 h of REMSD for the non-social odor. Results: Our findings demonstrated the occurrence of a strong association between the density of nigral TH-ir neurons and the olfactory discrimination capacity for both odorant stimuli. Specifically, the rotenone-induced decrease of these neurons tends to elicit reductions in the olfactory discrimination ability. Conclusions: These results are consistent with the participation of the nigrostriatal dopaminergic system mainly in the olfactory discrimination of a non-social odor, probably through the main olfactory pathway. Such involvement may have produce relevant impact in the preclinical abnormalities found in PD patients.

  17. Lesion of the olfactory epithelium accelerates prion neuroinvasion and disease onset when prion replication is restricted to neurons.

    Directory of Open Access Journals (Sweden)

    Jenna Crowell

    Full Text Available Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain.

  18. Lesion of the Olfactory Epithelium Accelerates Prion Neuroinvasion and Disease Onset when Prion Replication Is Restricted to Neurons

    Science.gov (United States)

    Crowell, Jenna; Wiley, James A.; Bessen, Richard A.

    2015-01-01

    Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain. PMID:25822718

  19. Olfactory evaluation in Mild Cognitive Impairment: correlation with neurocognitive performance and endothelial function.

    Science.gov (United States)

    Tonacci, Alessandro; Bruno, Rosa M; Ghiadoni, Lorenzo; Pratali, Lorenza; Berardi, Nicoletta; Tognoni, Gloria; Cintoli, Simona; Volpi, Leda; Bonuccelli, Ubaldo; Sicari, Rosa; Taddei, Stefano; Maffei, Lamberto; Picano, Eugenio

    2017-05-01

    Mild Cognitive Impairment (MCI) is an intermediate condition between normal aging and dementia, associated with an increased risk of progression into the latter within months or years. Olfactory impairment, a well-known biomarker for neurodegeneration, might be present in the condition early, possibly representing a signal for future pathological onset. Our study aimed at evaluating olfactory function in MCI and healthy controls in relation to neurocognitive performance and endothelial function. A total of 85 individuals with MCI and 41 healthy controls, matched for age and gender, were recruited. Olfactory function was assessed by Sniffin' Sticks Extended Test (Burghart, Medizintechnik, GmbH, Wedel, Germany). A comprehensive neurocognitive assessment was performed. Endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery by ultrasound. MCI individuals showed an impaired olfactory function compared to controls. The overall olfactory score is able to predict MCI with a good sensitivity and specificity (70.3 and 77.4% respectively). In MCI, olfactory identification score is correlated with a number of neurocognitive abilities, including overall cognitive status, dementia rating, immediate and delayed memory, visuospatial ability and verbal fluency. FMD was reduced in MCI (2.90 ± 2.15 vs. 3.66 ± 1.96%, P = 0.016) and was positively associated with olfactory identification score (ρ s =0.219, P = 0.025). The association remained significant after controlling for age, gender, and smoking. In conclusion, olfactory evaluation is able to discriminate between MCI and healthy individuals. Systemic vascular dysfunction might be involved, at least indirectly, in olfactory dysfunction in MCI. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Dysfunctional Neurotransmitter Systems in Fibromyalgia, Their Role in Central Stress Circuitry and Pharmacological Actions on These Systems

    Directory of Open Access Journals (Sweden)

    Susanne Becker

    2012-01-01

    Full Text Available Fibromyalgia is considered a stress-related disorder, and hypo- as well as hyperactive stress systems (sympathetic nervous system and hypothalamic-pituitary-adrenal axis have been found. Some observations raise doubts on the view that alterations in these stress systems are solely responsible for fibromyalgia symptoms. Cumulative evidence points at dysfunctional transmitter systems that may underlie the major symptoms of the condition. In addition, all transmitter systems found to be altered in fibromyalgia influence the body's stress systems. Since both transmitter and stress systems change during chronic stress, it is conceivable that both systems change in parallel, interact, and contribute to the phenotype of fibromyalgia. As we outline in this paper, subgroups of patients might exhibit varying degrees and types of transmitter dysfunction, explaining differences in symptomatoloy and contributing to the heterogeneity of fibromyalgia. The finding that not all fibromyalgia patients respond to the same medications, targeting dysfunctional transmitter systems, further supports this hypothesis.

  1. Immunocytochemistry of the olfactory marker protein.

    Science.gov (United States)

    Monti-Graziadei, G A; Margolis, F L; Harding, J W; Graziadei, P P

    1977-12-01

    The olfactory marker protein has been localized, by means of immunohistochemical techniques in the primary olfactory neurons of mice. The olfactory marker protein is not present in the staminal cells of the olfactory neuroepithelium, and the protein may be regarded as indicative of the functional stage of the neurons. Our data indicate that the olfactory marker protein is present in the synaptic terminals of the olfactory neurons at the level of the olfactory bulb glomeruli. The postsynaptic profiles of both mitral and periglomerular cells are negative.

  2. Accelerated age-related olfactory decline among type 1 Usher patients.

    Science.gov (United States)

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D

    2016-06-22

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin' Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome.

  3. Accelerated age-related olfactory decline among type 1 Usher patients

    Science.gov (United States)

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D.

    2016-01-01

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin’ Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome. PMID:27329700

  4. Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in central nervous system: the potential roles played by microglia

    Directory of Open Access Journals (Sweden)

    Yang Q

    2013-08-01

    Full Text Available Qingchan Yang,1,* Yan Wang,2,* Jing Feng,2 Jie Cao,2 Baoyuan Chen2 1Graduate School of Tianjin Medical University, 2Respiratory Department, Tianjin Medical University General Hospital, Tianjin, People's Republic of China *These authors contributed equally to this work Abstract: Obstructive sleep apnea (OSA is a common condition characterized by repetitive episodes of complete (apnea or partial (hypopnea obstruction of the upper airway during sleep, resulting in oxygen desaturation and arousal from sleep. Intermittent hypoxia (IH resulting from OSA may cause structural neuron damage and dysfunction in the central nervous system (CNS. Clinically, it manifests as neurocognitive and behavioral deficits with oxidative stress and inflammatory impairment as its pathophysiological basis, which are mediated by microglia at the cellular level. Microglia are dominant proinflammatory cells in the CNS. They induce CNS oxidative stress and inflammation, mainly through mitochondria, reduced nicotinamide adenine dinucleotide phosphate oxidase, and the release of excitatory toxic neurotransmitters. The balance between neurotoxic versus protective and anti- versus proinflammatory microglial factors might determine the final roles of microglia after IH exposure from OSA. Microglia inflammatory impairments will continue and cascade persistently upon activation, ultimately resulting in clinically significant neuron damage and dysfunction in the CNS. In this review article, we summarize the mechanisms of structural neuron damage in the CNS and its concomitant dysfunction due to IH from OSA, and the potential roles played by microglia in this process. Keywords: intermittent hypoxia, obstructive sleep apnea, microglia, inflammation, apoptosis

  5. A phase III, open-label, single-arm study of tenecteplase for restoration of function in dysfunctional central venous catheters.

    Science.gov (United States)

    Tebbi, Cameron; Costanzi, John; Shulman, Robert; Dreisbach, Luke; Jacobs, Brian R; Blaney, Martha; Ashby, Mark; Gillespie, Barbara S; Begelman, Susan M

    2011-08-01

    To evaluate, in a phase III, single-arm study, the safety and efficacy of the thrombolytic agent tenecteplase in restoring function to dysfunctional central venous catheters (CVCs). Pediatric and adult patients with dysfunctional CVCs were eligible to receive as much as 2 mL (2 mg) of intraluminal tenecteplase, which was left to dwell in the CVC lumen for a maximum of 120 minutes. If CVC function was not restored at 120 minutes, a second dose was instilled for an additional 120 minutes. Tenecteplase was administered to 246 patients. Mean patient age was 44 years (range, 0-92 y); 72 patients (29%) were younger than 17 years of age. Chemotherapy was the most common reason for catheter insertion. Restoration of CVC function was achieved in 177 patients (72%) within 120 minutes after the first dose. After instillation of a maximum of two doses of tenecteplase, CVC function was restored in 200 patients (81%), with similar frequencies in pediatric (83%) and adult (80%) patients. Adverse events (AEs) were reported in 31 patients (13%); fever (2%), neutropenia (1%), and nausea (0.8%) were most common. One serious AE, an allergic hypersensitivity reaction, was judged to be related to tenecteplase and/or a chemotherapeutic agent that the patient was receiving concurrently. Consecutive administration of one or two doses of tenecteplase into CVCs showed efficacy in the restoration of catheter function in patients with dysfunctional CVCs. Copyright © 2011 SIR. Published by Elsevier Inc. All rights reserved.

  6. From chemical neuroanatomy to an understanding of the olfactory system

    Directory of Open Access Journals (Sweden)

    L. Oboti

    2011-10-01

    Full Text Available The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB. Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  7. Quantum Dot Distribution in the Olfactory Epithelium After Nasal Delivery

    Science.gov (United States)

    Garzotto, D.; De Marchis, S.

    2010-10-01

    Nanoparticles are used in a wide range of human applications from industrial to bio-medical fields. However, the unique characteristics of nanoparticles, such as the small size, large surface area per mass and high reactivity raises great concern on the adverse effects of these particles on ecological systems and human health. There are several pioneer studies reporting translocation of inhaled particulates to the brain through a potential neuronal uptake mediated by the olfactory nerve (1, 2, 3). However, no direct evidences have been presented up to now on the pathway followed by the nanoparticles from the nose to the brain. In addition to a neuronal pathway, nanoparticles could gain access to the central nervous system through extracellular pathways (perineuronal, perivascular and cerebrospinal fluid paths). In the present study we investigate the localization of intranasally delivered fluorescent nanoparticles in the olfactory epithelium. To this purpose we used quantum dots (QDs), a model of innovative fluorescent semiconductor nanocrystals commonly used in cell and animal biology (4). Intranasal treatments with QDs were performed acutely on adult CD1 mice. The olfactory epithelium was collected and analysed by confocal microscopy at different survival time after treatment. Data obtained indicate that the neuronal components of the olfactory epithelium are not preferentially involved in QDs uptake, thus suggesting nanoparticles can cross the olfactory epithelium through extracellular pathways.

  8. From chemical neuroanatomy to an understanding of the olfactory system

    Science.gov (United States)

    Oboti, L.; Peretto, P.; De Marchis, S.; Fasolo, A.

    2011-01-01

    The olfactory system of mammals is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents. PMID:22297441

  9. Brain correlates of progressive olfactory loss in Parkinson's disease.

    Science.gov (United States)

    Campabadal, Anna; Uribe, Carme; Segura, Barbara; Baggio, Hugo C; Abos, Alexandra; Garcia-Diaz, Anna Isabel; Marti, Maria Jose; Valldeoriola, Francesc; Compta, Yaroslau; Bargallo, Nuria; Junque, Carme

    2017-08-01

    Olfactory dysfunction is present in a large proportion of patients with Parkinson's disease (PD) upon diagnosis. However, its progression over time has been poorly investigated. The few available longitudinal studies lack control groups or MRI data. To investigate the olfactory changes and their structural correlates in non-demented PD over a four-year follow-up. We assessed olfactory function in a sample of 25 PD patients and 24 normal controls of similar age using the University of Pennsylvania Smell Identification test (UPSIT). Structural magnetic resonance imaging data, obtained with a 3-T Siemens Trio scanner, were analyzed using FreeSurfer software. Analysis of variance showed significant group (F = 53.882; P effects, but the group-by-time interaction was not statistically significant. UPSIT performance declined ≥1.5 standard deviations in 5 controls and 7 patients. Change in UPSIT scores of patients correlated positively with volume change in the left putamen, right thalamus, and right caudate nucleus. Olfactory loss over time in PD and controls is similar, but we have observed significant correlation between this loss and basal ganglia volumes only in patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    environmental conditions. By adopting this standpoint, the functional attribution as olfactory or chemotactic sensors to these receptors should not be seen neither as a cause conditioning receptor gene expression, nor as a final effect resulting from genetically predetermined programs, but as a direct...... and odor-decoding processes. However, this type of explanation does not entirely justify the role olfactory receptors have played during evolution, since they are also expressed ectopically in different organs and/or tissues. Homologous olfactory genes have in fact been found in such diverse cells and....../or organs as spermatozoa, testis and kidney where they are assumed to act as chemotactic sensors or renin modulators. To justify their functional diversity, homologous olfactory receptors are assumed to share the same basic role: that of conferring a self-identity to cells or tissues under varying...

  11. Modulation of olfactory sensitivity and glucose sensing by the feeding state in obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Pascaline eAimé

    2014-09-01

    Full Text Available The Zucker fa/fa rat has been widely used as an animal model to study obesity, since it recapitulates most of its behavioral and metabolic dysfunctions, such as hyperphagia, hyperglycemia and insulin resistance. Although it is well established that olfaction is under nutritional and hormonal influences, little is known about the impact of metabolic dysfunctions on olfactory performances and glucose-sensing in the olfactory system of the obese Zucker rat. In the present study, using a behavioral paradigm based on a conditioned olfactory aversion, we have shown that both obese and lean Zucker rats have a better olfactory sensitivity when they are fasted than when they are satiated. Interestingly, the obese Zucker rats displayed a higher olfactory sensitivity than their lean controls. By investigating the molecular mechanisms involved in glucose-sensing in the olfactory system, we demonstrated that sodium-coupled glucose transporters 1 (SGLT1 and insulin dependent glucose transporters 4 (GLUT4 are both expressed in the olfactory bulb (OB. By comparing the expression of GLUT4 and SGLT1 in OB of obese and lean Zucker rats, we found that only SGLT1 is regulated in genotype-dependent manner. Next, we used glucose oxidase biosensors to simultaneously measure in vivo the extracellular fluid glucose concentrations ([Gluc]ECF in the OB and the cortex. Under metabolic steady state, we have determined that the OB contained twice the amount of glucose found in the cortex. In both regions, the [Gluc]ECF was 2 fold higher in obese rats compared to their lean controls. Under induced dynamic glycemia conditions, insulin injection produced a greater decrease of [Gluc]ECF in the OB than in the cortex. Glucose injection did not affect OB [Gluc]ECF in Zucker fa/fa rats. In conclusion, these results emphasize the importance of glucose for the OB network function and provide strong arguments towards establishing the OB glucose-sensing as a key factor for sensory

  12. Evaluation of olfactory memory after coronary artery bypass grafting.

    Science.gov (United States)

    Erdem, Kemalettin; Yurttas, Veysel; Bilgi, Murat; Demırhan, Abdullah; Apuhan, Tayfun; Bugra, Onursal; Daglar, Bahadir

    2014-12-01

    This study determined whether coronary artery bypass grafting (CABG) surgery has any effect on olfactory function, employing the Brief Smell Identification Test (B-SIT). All the participants were informed preoperatively about the B-SIT test and the mode of its application. The test was performed by each patient preoperatively (d0) as well as 1 (d1) and 3 (d3) days following the surgery. C-reactive protein (CRP) levels were recorded at the same time as the smell test. This prospective study included 45 patients. The mean age was 67 ± 7.55, and the group was 29% male. The mean durations of cross clamping and cardiopulmonary bypass were 54 ± 32 min and 62.5 ± 37.0 min, respectively. Eleven different odors were tested. Significant differences were observed for several odors: leather between d0 and d3, pine between d0 and d3, onion between d0 and d1, onion between d0 and d3, and soap between d0 and d1. The postoperative CRP levels were significantly higher than the preoperative levels. The correlation analysis determined that the postoperative CRP levels were negatively correlated with the B-SIT score (r = -0.48, p = 0.001). Our findings suggest that patients after CABG are prone to develop olfactory dysfunction in the early postoperative period and that olfactory dysfunction is associated with postoperative CRP levels.

  13. Effects of Subthalamic Stimulation on Olfactory Function in Parkinson Disease.

    Science.gov (United States)

    Cury, Rubens Gisbert; Carvalho, Margarete de Jesus; Lasteros, Fernando Jeyson Lopez; Dias, Alice Estevo; Dos Santos Ghilardi, Maria Gabriela; Paiva, Anderson Rodrigues Brandão; Coutinho, Artur Martins; Buchpiguel, Carlos Alberto; Teixeira, Manoel J; Barbosa, Egberto Reis; Fonoff, Erich Talamoni

    2018-06-01

    Olfactory dysfunction is a nonmotor symptom of Parkinson disease (PD) associated with reduction in quality of life. There is no evidence on whether improvements in olfaction after subthalamic deep brain stimulation (STN-DBS) may be directly attributable to motor improvement or whether this reflects a direct effect of DBS on olfactory brain areas. The aim of the present study was to evaluate the effect of DBS on olfactory function in PD, as well as to explore the correlation between these changes and changes in motor symptoms and brain metabolism. Thirty-two patients with PD were screened for STN-DBS. Patients were evaluated before and 1 year after surgery. Primary outcome was the change in olfactory function (Sniffin' Sticks odor-identification test [SST]) after surgery among the patients with hyposmia at baseline. Secondary outcomes included the relationship between motor outcomes and olfactory changes and [ 18 F]fluorodeoxyglucose-positron emission tomography analysis between subgroups with improvement versus no improvement of smell. STN-DBS improved SST after surgery (preoperative SST, median 7.3 ± 2.4 vs. postoperative SST, median 8.2 ± 2.1; P = 0.045) in a subset of patients among 29 of 32 patients who presented with hyposmia at baseline. The improvement in SST was correlated with DBS response (r = 0.424; P = 0.035). There was also an increase in glucose metabolism in the midbrain, cerebellum, and right frontal lobe in patients with SST improvement (P < 0.001). STN-DBS improves odor identification in a subset of patients with PD. Motor improvement together with changes in the brain metabolism may be linked to this improvement. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Olfactory groove meningiomas.

    Science.gov (United States)

    Hentschel, Stephen J; DeMonte, Franco

    2003-06-15

    Olfactory groove meningiomas (OGMs) arise over the cribriform plate and may reach very large sizes prior to presentation. They can be differentiated from tuberculum sellae meningiomas because OGMs arise more anterior in the skull base and displace the optic nerve and chiasm inferiorly rather than superiorly. The authors searched the neurosurgery database at the M. D. Anderson Cancer Center for cases of OGM treated between 1993 and 2003. The records of these patients were then reviewed retrospectively for details regarding clinical presentation, imaging findings, surgical results and complications, and follow-up status. Thirteen patients, (12 women and one man, mean age 56 years) harbored OGMs (mean size 5.7 cm). All patients underwent bifrontal craniotomies and biorbital osteotomies. There were 11 complete resections (including the hyperostotic bone and dura of the cribriform plate and any extension into the ethmoid sinuses) and two subtotal resections with minimal residual tumor left in patients with recurrent lesions. No complication directly due to the surgery occurred in any patient. There were no recurrences in a mean follow-up period of 2 years (range 0-5 years). With current microsurgical techniques, the results of OGM resection are excellent, with a high rate of total resection and a low incidence of complications. All hyperostotic bone should be removed with the dura of the anterior skull base to minimize the risk of recurrence.

  15. Olfactory Receptor Database: a sensory chemoreceptor resource

    OpenAIRE

    Skoufos, Emmanouil; Marenco, Luis; Nadkarni, Prakash M.; Miller, Perry L.; Shepherd, Gordon M.

    2000-01-01

    The Olfactory Receptor Database (ORDB) is a WWW-accessible database that has been expanded from an olfactory receptor resource to a chemoreceptor resource. It stores data on six classes of G-protein-coupled sensory chemoreceptors: (i) olfactory receptor-like proteins, (ii) vomeronasal receptors, (iii) insect olfactory receptors, (iv) worm chemoreceptors, (v) taste papilla receptors and (vi) fungal pheromone receptors. A complementary database of the ligands of these receptors (OdorDB) has bee...

  16. Olfactory Memory Impairment in Neurodegenerative Diseases

    OpenAIRE

    Bahuleyan, Biju; Singh, Satendra

    2012-01-01

    Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the prese...

  17. TROPICS 1: a phase III, randomized, double-blind, placebo-controlled study of tenecteplase for restoration of function in dysfunctional central venous catheters.

    Science.gov (United States)

    Gabrail, Nashat; Sandler, Eric; Charu, Veena; Anas, Nick; Lim, Eduardo; Blaney, Martha; Ashby, Mark; Gillespie, Barbara S; Begelman, Susan M

    2010-12-01

    To evaluate the efficacy and safety of the thrombolytic tenecteplase, a fibrin-specific recombinant tissue plasminogen activator, for restoring function to dysfunctional central venous catheters (CVCs). In this double-blind, placebo-controlled study, eligible patients with dysfunctional nonhemodialysis CVCs were randomly assigned to two treatment arms. In the first arm (TNK-TNK-PBO), patients received an initial dose of intraluminal tenecteplase (TNK) (up to 2 mg), a second dose of tenecteplase if indicated, and a third placebo (PBO) dose. In the PBO-TNK-TNK arm, placebo was instilled first followed by up to two doses of tenecteplase, if needed, for restoration of catheter function. After administration of each dose, CVC function was assessed at 15, 30, and 120 minutes. There were 97 patients who received either TNK-TNK-PBO (n = 50) or PBO-TNK-TNK (n = 47). Within 120 minutes of initial study drug instillation, catheter function was restored to 30 patients (60%) in the TNK-TNK-PBO arm and 11 patients (23%) in the PBO-TNK-TNK arm, for a treatment difference of 37 percentage points (95% confidence interval 18-55; P = .0002). Cumulative restoration rates for CVC function increased to 87% after the second dose of tenecteplase in both study arms combined. Two patients developed a deep vein thrombosis (DVT) after exposure to tenecteplase; one DVT was considered to be drug related. No cases of intracranial hemorrhage, major bleeding, embolic events, catheter-related bloodstream infections, or catheter-related complications were reported. Tenecteplase was efficacious for restoration of catheter function in these study patients with dysfunctional CVCs. Copyright © 2010 SIR. Published by Elsevier Inc. All rights reserved.

  18. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    Directory of Open Access Journals (Sweden)

    Jorge A Larriva-Sahd

    2012-06-01

    Full Text Available This study describes the microscopic organization of a wedge-shaped area at the intersection of the main and accessory olfactory bulbs, or olfactory limbus , and an additional component of the anterior olfactory nucleus or alpha accessory olfactory bulb that lies underneath of the accessory olfactory bulb. The olfactory limbus consists of a modified bulbar cortex bounded anteriorly by the main olfactory bulb and posteriorly by the accessory olfactory bulb. In Nissl-stained specimens the olfactory limbus differs from the main olfactory bulb by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the olfactory limbus is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area, a second or necklace glomerular area, and a wedge-shaped or interstitial area crowned by the so-called modified glomeruli that appear to belong to the anterior accessory olfactory bulb. The strategic location and interactions with the main and accessory olfactory bulbs, together with the previously noted functional and connectional evidence, suggest that the olfactory limbus may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 x 150 µm paralleling the base of the accessory olfactory bulb, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells organize into a single bundle that ascends avoiding the accessory olfactory bulb to resolve in a trigone bounded by the edge of the olfactory limbus, the accessory olfactory bulb and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67.

  19. Sniffing and Oxytocin: Effects on Olfactory Memories.

    Science.gov (United States)

    Stoop, Ron

    2016-05-04

    In this issue of Neuron, Oettl et al. (2016) show how oxytocin can boost processing of olfactory information in female rats by a top-downregulation from the anterior olfactory nucleus onto the main olfactory bulb. As a result, interactions with juvenile conspecifics receive more attention and are longer memorized. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effect of irradiation on olfactory function

    International Nuclear Information System (INIS)

    Aiba, Tsunemasa; Sugimoto, Midori; Matsuda, Yasuaki; Sugiura, Yoshikazu; Nakai, Yoshiaki; Nakajima, Toshifumi

    1990-01-01

    The effects of therapeutic irradiation on olfactory function were investigated in 20 patients who received radiation therapy because of a malignant tumor of the nose or paranasal sinuses. The standard olfaction test with a T and T olfactometer and an intravenous olfaction test were given before the radiation therapy, during the period of radiation therapy and 1, 3, 6 and 12 months or more later. Five patients whose olfactory epithelium was outside the radiation field showed no damage to olfactory function. The olfactory function of the other 15 patients whose olfactory epithelium had been exposed to radiation was not obviously changed or damaged at the time of radiation therapy. However, 6 months after irradiation, some patients showed a decline in olfactory function, and after 12 months, 4 of 7 patients showed severe damage to olfactory function. These results suggest that a therapeutic dose of irradiation will not cause severe damage to the olfactory function during the period of radiation therapy, but could cause delayed olfactory disorders in some patients after a few years. These olfactory disorders might be caused by damage to or degeneration of the olfactory epithelium or olfactory nerve. (author)

  1. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    . Between 40-44% of the patients showing olfactory impairments were not aware of their deficit. CONCLUSIONS: Since a significant proportion of the patients showing olfactory impairments were not aware of their deficit, it is recommended than clinicians systematically evaluate olfactory functions using...

  2. Clinical and histologic studies of olfactory outcomes after nasoseptal flap harvesting.

    Science.gov (United States)

    Kim, Sang-Wook; Park, Kyung Bum; Khalmuratova, Roza; Lee, Hong-Kyoung; Jeon, Sea-Yuong; Kim, Dae Woo

    2013-07-01

    Since the introduction of an endonasal endoscopic approach in transsphenoidal pituitary surgery, reports of perioperative olfactory changes have presented conflicting results. We examined the incidence of olfactory loss in cases of endoscopic transsphenoidal pituitary surgery with skull base repair using the nasoseptal flap (NSF) and the effects of monopolar electrocautery commonly used in designing the NSF. Case-control study. Fifteen patients who underwent endoscopic transsphenoidal pituitary surgery with skull base reconstruction using the NSF were divided into cold knife (n = 8) and electrocautery (n = 7) groups according to the device used in the superior incision of the NSF. Patients were followed regularly to monitor the need for dressing or adhesiolysis around the olfactory cleft. All subjects received olfactory tests before and 6 months after surgery. Septal mucosa specimens obtained during posterior septectomy were incised with different devices, and the degree of mucosal damage was evaluated. One patient in the electrocautery group demonstrated olfactory dysfunction postoperatively, but the other 14 patients showed no decrease in olfaction. In histologic analyses, 55.8% and 76.9% of the mucosal surface showed total epithelial loss when the mucosa was cut with cutting- and coagulation-mode electrocautery, respectively. In contrast, only 20% of the mucosal surface exhibited total epithelial loss when the mucosa was cut with a cold knife (P knife in making superior incision may reduce tissue damage with better olfactory outcomes. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Transplanted Human Stem Cell-Derived Interneuron Precursors Mitigate Mouse Bladder Dysfunction and Central Neuropathic Pain after Spinal Cord Injury.

    Science.gov (United States)

    Fandel, Thomas M; Trivedi, Alpa; Nicholas, Cory R; Zhang, Haoqian; Chen, Jiadong; Martinez, Aida F; Noble-Haeusslein, Linda J; Kriegstein, Arnold R

    2016-10-06

    Neuropathic pain and bladder dysfunction represent significant quality-of-life issues for many spinal cord injury patients. Loss of GABAergic tone in the injured spinal cord may contribute to the emergence of these symptoms. Previous studies have shown that transplantation of rodent inhibitory interneuron precursors from the medial ganglionic eminence (MGE) enhances GABAergic signaling in the brain and spinal cord. Here we look at whether transplanted MGE-like cells derived from human embryonic stem cells (hESC-MGEs) can mitigate the pathological effects of spinal cord injury. We find that 6 months after transplantation into injured mouse spinal cords, hESC-MGEs differentiate into GABAergic neuron subtypes and receive synaptic inputs, suggesting functional integration into host spinal cord. Moreover, the transplanted animals show improved bladder function and mitigation of pain-related symptoms. Our results therefore suggest that this approach may be a valuable strategy for ameliorating the adverse effects of spinal cord injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Olfactory memory impairment in neurodegenerative diseases.

    Science.gov (United States)

    Bahuleyan, Biju; Singh, Satendra

    2012-10-01

    Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the present review was to discuss the available scientific knowledge on the olfactory memory and to relate its impairment with neurodegenerative diseases.

  5. Gross anatomy and histology of the olfactory rosette of the shark Heptranchias perlo.

    Science.gov (United States)

    Ferrando, Sara; Gallus, Lorenzo; Amaroli, Andrea; Gambardella, Chiara; Waryani, Baradi; Di Blasi, Davide; Vacchi, Marino

    2017-06-01

    Sharks belonging to the family Hexanchidae have six or seven gill slits, unlike all other elasmobranchs, which have five gill slits. Their olfactory organs have a round shape, which is common for holocephalans, but not for elasmobranchs. Thus, the shape of the olfactory organ represents a further, less striking, peculiarity of this family among elasmobranchs. Despite that, the microscopic anatomy and histology of the olfactory organ have not yet been studied in any species of this family. Here, an anatomical and histological description of the olfactory organ of the sharpnose sevengill shark Heptranchias perlo is given. The organ is a rosette, with a central raphe and 31-34 primary lamellae, which bear secondary lamellae with a more or less branched shape. The elastic connective capsule which envelops the olfactory rosette possibly changes its shape along with water influx. In the olfactory epithelium, the supporting cells also have a secretory function, while no specialized mucous cells are visible; regarding this feature the olfactory epithelium of H. perlo differs from that of other chondrichthyan species. The immunohistochemical investigation of the sensory epithelium shows the absence of immunoreactivity for Gαolf in receptor neurons, which confirms previous observations in Chondrichthyes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Central arterial stiffness and diastolic dysfunction are associated with insulin resistance and abdominal obesity in young women but polycystic ovary syndrome does not confer additional risk.

    Science.gov (United States)

    Rees, E; Coulson, R; Dunstan, F; Evans, W D; Blundell, H L; Luzio, S D; Dunseath, G; Halcox, J P; Fraser, A G; Rees, D A

    2014-09-01

    Are arterial stiffness, carotid intima-media thickness and diastolic dysfunction increased in young women with polycystic ovary syndrome (PCOS) independently of the effects of obesity? Insulin resistance and central obesity are associated with subclinical cardiovascular dysfunction in young women, but a diagnosis of PCOS does not appear to confer additional risk at this age. Some studies have shown that young women with PCOS may have increased measures of cardiovascular risk, including arterial stiffness, carotid intima-media thickness and myocardial dysfunction. However, it is difficult to establish how much of this risk is due to PCOS per se and how much is due to obesity and insulin resistance, which are common in PCOS and themselves associated with greater vascular risk. This cross-sectional study comprised 84 women with PCOS and 95 healthy volunteers, aged 16-45 years. The study was conducted in a university hospital. Subjects underwent a comprehensive assessment of body composition (including computed tomography (CT) assessment of visceral fat; VF), measurements of arterial stiffness (aortic pulse wave velocity; aPWV), common carotid intima-media thickness (ccIMT), diastolic function (longitudinal tissue velocity; e':a') and endocrinological measures. A sample size of 80 in each group gave 80% power for detecting a difference of 0.45 m/s in aPWV or a difference of 0.25 in e':a'. After adjustment for age and body mass index (BMI), PCOS subjects had a greater insulin response (insulin area under the curve-IAUC) following glucose challenge (adjusted difference [AD] 35 900 pmol min/l, P insulin resistance were only partly attenuated by adjusting for logVF. There was no significant relationship between aPWV or e':a' and either testosterone or adiponectin. The study recruited young women meeting the Rotterdam criteria for PCOS diagnosis; hence our findings may not be generalizable to older patients or those meeting other definitions of the syndrome. Biochemical

  7. The effect of non-diabetic chronic renal failure on olfactory function.

    Science.gov (United States)

    Koseoglu, S; Derin, S; Huddam, B; Sahan, M

    2017-05-01

    In chronic renal failure (CRF), deterioration of glomerular filtration results in accumulation of metabolites in the body which affect all organs. This study was performed to investigate the olfactory functions, and determine if hemodialysis or peritoneal dialysis improves olfactory function in non-diabetic CRF patients. The olfactory functions were analyzed in CRF patients not on a dialysis program and had a creatinine level≥2mg/dL, in CRF patients on hemodialysis or peritoneal dialysis, and in healthy controls. Diabetic patients were excluded since diabetes alone is a cause of olfactory dysfunction. The study group consisted of a total of 107 individuals including 38CRF patients on a hemodialysis program, 15 CRF patients on peritoneal dialysis, 30 patients with a creatinine level ≥ 2mg/dL without any need for dialysis, and 24 healthy controls with normal renal functions. Olfactory functions were analyzed with "Sniffin' sticks" test, and the groups were compared for the test results. All test parameters were impaired in patients with CRF. The median TDI scores of the patients with CRF and the healthy subjects were 24.75 (13-36) and 32.5 (27.75-37.75), respectively, with a statistically significant difference in between (P<0.001). The olfactory functions for the dialysis patients were better than those for the CRF patients not on a dialysis program (P=0.020). Non-diabetic CRF affects olfactory functions negatively. Dialysis improves olfactory functions in those patients. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. SMELL-S and SMELL-R: Olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience.

    Science.gov (United States)

    Hsieh, Julien W; Keller, Andreas; Wong, Michele; Jiang, Rong-San; Vosshall, Leslie B

    2017-10-24

    Smell dysfunction is a common and underdiagnosed medical condition that can have serious consequences. It is also an early biomarker of neurodegenerative diseases, including Alzheimer's disease, where olfactory deficits precede detectable memory loss. Clinical tests that evaluate the sense of smell face two major challenges. First, human sensitivity to individual odorants varies significantly, so test results may be unreliable in people with low sensitivity to a test odorant but an otherwise normal sense of smell. Second, prior familiarity with odor stimuli can bias smell test performance. We have developed nonsemantic tests for olfactory sensitivity (SMELL-S) and olfactory resolution (SMELL-R) that use mixtures of odorants that have unfamiliar smells. The tests can be self-administered by healthy individuals with minimal training and show high test-retest reliability. Because SMELL-S uses odor mixtures rather than a single molecule, odor-specific insensitivity is averaged out, and the test accurately distinguished people with normal and dysfunctional smell. SMELL-R is a discrimination test in which the difference between two stimulus mixtures can be altered stepwise. This is an advance over current discrimination tests, which ask subjects to discriminate monomolecular odorants whose difference in odor cannot be quantified. SMELL-R showed significantly less bias in scores between North American and Taiwanese subjects than conventional semantically based smell tests that need to be adapted to different languages and cultures. Based on these proof-of-principle results in healthy individuals, we predict that SMELL-S and SMELL-R will be broadly effective in diagnosing smell dysfunction. Published under the PNAS license.

  9. SMELL-S and SMELL-R: Olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience

    Science.gov (United States)

    Jiang, Rong-San

    2017-01-01

    Smell dysfunction is a common and underdiagnosed medical condition that can have serious consequences. It is also an early biomarker of neurodegenerative diseases, including Alzheimer’s disease, where olfactory deficits precede detectable memory loss. Clinical tests that evaluate the sense of smell face two major challenges. First, human sensitivity to individual odorants varies significantly, so test results may be unreliable in people with low sensitivity to a test odorant but an otherwise normal sense of smell. Second, prior familiarity with odor stimuli can bias smell test performance. We have developed nonsemantic tests for olfactory sensitivity (SMELL-S) and olfactory resolution (SMELL-R) that use mixtures of odorants that have unfamiliar smells. The tests can be self-administered by healthy individuals with minimal training and show high test–retest reliability. Because SMELL-S uses odor mixtures rather than a single molecule, odor-specific insensitivity is averaged out, and the test accurately distinguished people with normal and dysfunctional smell. SMELL-R is a discrimination test in which the difference between two stimulus mixtures can be altered stepwise. This is an advance over current discrimination tests, which ask subjects to discriminate monomolecular odorants whose difference in odor cannot be quantified. SMELL-R showed significantly less bias in scores between North American and Taiwanese subjects than conventional semantically based smell tests that need to be adapted to different languages and cultures. Based on these proof-of-principle results in healthy individuals, we predict that SMELL-S and SMELL-R will be broadly effective in diagnosing smell dysfunction. PMID:29073044

  10. An Olfactory Cinema: Smelling Perfume

    Directory of Open Access Journals (Sweden)

    Jiaying Sim

    2014-09-01

    Full Text Available While technological improvements from the era of silent movies to that of sound cinema have altered and continued to affect audience’s cinematic experiences, the question is not so much how technology has increased possibility of a sensory response to cinema, rather, it is one that exposes how such technological changes only underscore the participation of our senses and the body in one’s experience of watching film, highlighting the inherently sensorial nature of the cinematic experience. This paper aims to address the above question through an olfactory cinema, by close analysis of Perfume: The Story of a Murderer (2006 by Tom Tykwer. What is an olfactory cinema, and how can such an approach better our understanding of sensorial aspects found within a cinema that ostensibly favours audio-visual senses? What can we benefit from an olfactory cinema? Perhaps, it is through an olfactory cinema that one may begin to embrace the sensual quality of cinema that has been overshadowed by the naturalized ways of experiencing films solely with our eyes and ears, so much so that we desensitize ourselves to the role our senses play in cinematic experiences altogether

  11. Olfactory training in patients with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Antje Haehner

    Full Text Available OBJECTIVE: Decrease of olfactory function in Parkinson's disease (PD is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from "training" with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function. METHODS: We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training. Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves. Olfactory testing was performed before and after training using the "Sniffin' Sticks" (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification in addition to threshold tests for the odors used in the training process. RESULTS: Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training. CONCLUSION: The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.

  12. Olfactory dysfunction of human α-synucleinA53T transgenic mice in simulation of early symptoms of Parkinson's disease%模拟帕金森病的表达人α-synucleinA53T转基因小鼠的早期嗅觉功能观察

    Institute of Scientific and Technical Information of China (English)

    章素芳; 李丽喜; 倪俊; 乐卫东

    2012-01-01

    Objective To examine the olfactory function of human α-synucleinA53T transgenic mice, and establish a model for olfactory dysfunction of early Parkinson's disease. Methods Human α-synuclein transgenic (TG) mice of different ages and their wildtype ( WT) littermates were selected. Rotarod test was used to examine the voluntary motion of TG mice aged 10 months, and DAB method was employed to observe the dopaminergic neurons in substantia nigra in mice aged 10 months for identification of motor function. Odor discrimination and habituation tests were used to observe the short-term memory and habituation of familiar scents and identification of novel scents in mice. Long-term memory test with varied intervals was employed to examine the memory of exposed scents. Besides, buried pellet test was used to investigate the perception on scents of food, which reflected the odor threshold. Results Rotarod test and observation of dopaminergic neurons indicated that the voluntary motion in TG mice aged 10 months did not change. TG mice aged 6 months exhibited subtle deficit in odor discrimination, and there was no significant difference between the time of discrimination of novel scents and that of familiar scents (P=0. 120). TG mice aged 10 months exhibited more significant deficit in discrimination of scents ( P =0. 295) . The time for finding food in TG mice aged 6 months was longer than that in WT mice ( P =0. 015). The short memory and habituation of mice of different ages were normal, while TG mice aged 9 months exhibited decrease in long-term memory (60 min, 80 min and 100 min of test intervals). Conclusion Human α-synucleinA53T transgenic mice exhibit deficiency in olfaction before motion function alterations, including the aspects of discrimination, memory and perception of scents, which can well simulate the early olfactory disfunction in Parkinson's disease.%目的 通过对表达人α-synucleinA53T的转基因小鼠嗅觉功能的检测和比较,确立一个可

  13. Prevalence and determinants of erectile dysfunction among diabetic patients attending in hospitals of central and northwestern zone of Tigray, northern Ethiopia: a cross-sectional study

    OpenAIRE

    Seid, Awole; Gerensea, Hadgu; Tarko, Shambel; Zenebe, Yosef; Mezemir, Rahel

    2017-01-01

    Background The prevalence of erectile dysfunction among diabetic men varies between 35?90%. Although erectile dysfunction is widespread among men with diabetes, the condition often remains undiagnosed and demands appropriate assessment and prompt treatment. Erectile dysfunction can affect all aspects of a patient?s life including physical, emotional, social, sexual, and relationships. The main aim of this study is to determine the prevalence and determinants of erectile dysfunction among diab...

  14. Olfactory bulb and olfactory sulcus depths are associated with disease duration and attack frequency in multiple sclerosis patients.

    Science.gov (United States)

    Tanik, Nermin; Serin, Halil Ibrahim; Celikbilek, Asuman; Inan, Levent Ertugrul; Gundogdu, Fatma

    2015-11-15

    Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease that progresses to axonal loss and demyelinization. Olfactory dysfunction in patients with MS has been reported frequently. We were interested in the associations of olfactory bulb (OB) and olfactory sulcus depth (OSD) with disease duration and attack frequency. We included 25 patients with MS and 30 age- and sex-matched controls in this study. The Expanded Disability Status Scale, Beck Depression Inventory, and Mini Mental State Examination were applied. OB, OSD, and magnetic resonance imaging plaque numbers were calculated. OB volume and OSD in patients with MS were significantly lower than those in the control group (right and left OB: p<0.001; right OSD: p=0.001; and left OSD: p=0.039). Disease duration was negatively correlated with right and left OB volume (right OB: r=-0.434, p=0.030 and left OB: r=-0.518, p=0.008). Attack frequency was negatively correlated with left OB volume and left OSD (left OB: r=-0.428, p=0.033 and left OSD: r=-0.431, p=0.032). The OB and OSD were atrophied significantly in patients with MS, and this was correlated with disease duration and attack frequency. The left side tended to be dominant. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Behavioural and neurophysiological study of olfactory perception and learning in honeybees

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eSandoz

    2011-12-01

    Full Text Available The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioural and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odours, based on behavioural, neuroanatomical and neurophysiological approaches. I first address the behavioural study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odour-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odour representation changes as a result of experience. This impressive ensemble of behavioural, neuroanatomical and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion.

  16. Central Serotonin-2A (5-HT2A Receptor Dysfunction in Depression and Epilepsy: The Missing Link?

    Directory of Open Access Journals (Sweden)

    Bruno Pierre Guiard

    2015-03-01

    Full Text Available 5-Hydroxytryptamine 2A receptors (5-HT2A-Rs are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses.

  17. Olfactory memory is impaired in a triple transgenic model of Alzheimer disease.

    Science.gov (United States)

    Cassano, Tommaso; Romano, Adele; Macheda, Teresa; Colangeli, Roberto; Cimmino, Concetta Stefania; Petrella, Antonio; LaFerla, Frank M; Cuomo, Vincenzo; Gaetani, Silvana

    2011-10-31

    Olfactory memory dysfunctions were investigated in the triple-transgenic murine model of Alzheimer's disease (3 × Tg-AD). In the social transmission of food preference test, 3 × Tg-AD mice presented severe deficits in odor-based memory, without gross changes in general odor-ability. Aβ and tau immunoreactivity was not observed in the primary processing regions for odor, the olfactory bulbs (OBs), whereas marked immunostaining was present in the piriform, entorhinal, and orbitofrontal cortex, as well as in the hippocampus. Our results suggest that the impairment in olfactory-based information processing might arise from degenerative mechanisms mostly affecting higher cortical regions and limbic areas, such as the hippocampus. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  19. Effects of radiotherapy on olfactory function

    International Nuclear Information System (INIS)

    Hoelscher, Tobias; Seibt, Annedore; Appold, Steffen; Doerr, Wolfgang; Herrmann, Thomas; Huettenbrink, Karl-Bernd; Hummel, Thomas

    2005-01-01

    Background and Purpose: Changes in olfactory function have been reported in patients receiving significant doses of radiation to the olfactory epithelium. Aim of this study was to investigate severity and time course of changes in olfactory function in patients irradiated for tumours of the head and neck region. Material and Methods: Forty-four patients receiving radiotherapy (RT) for tumours in the area of the head and neck participated (16 women, 28 men; age 11-81 y; mean 55 y). Olfactory function was measured before and bi-weekly during RT for 6 weeks. A subgroup (25 patients) was followed for 12 months. Patients were divided into two groups according to the dose to the olfactory epithelium. Twenty-two patients ('OLF group') had radiation doses to the olfactory epithelium between 23.7 and 79.5 Gy (median 62.2 Gy). In the 22 patients of the 'non-OLF group' the dose applied to the olfactory epithelium was significantly lower (2.9-11.1 Gy, median 5.9 Gy). Total tumour dose (30-76.8 Gy), age, sex distribution, and baseline chemosensory function were not significantly different between groups. Testing was performed for odour identification, odour discrimination, and olfactory thresholds. Results: Odour discrimination, but not odour identification or odour threshold, was significantly decreased 2-6 weeks after begin of therapy in the OLF group. In addition, a significant effect of the radiation dose was observed for odour discrimination. More than 6 months after therapy, OLF group patients had significantly lower odour identification scores compared to the non-OLF group. Conclusion: As indicated through the non-significant change of olfactory thresholds, the olfactory epithelium is relatively resistant against effects of radiation. It is hypothesized that RT has additional effects on the olfactory bulb/orbitofrontal cortex responsible for the observed changes of suprathreshold olfactory function

  20. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    Science.gov (United States)

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  1. Variables associated with olfactory disorders in adults: A U.S. population-based analysis

    Directory of Open Access Journals (Sweden)

    Julia Noel

    2017-03-01

    Full Text Available Objective: Olfactory dysfunction is known to have significant social, psychological, and safety implications. Despite increasingly recognized prevalence, potential risk factors for olfactory loss have been arbitrarily documented and knowledge is limited in scale. The aim of this study is to identify potential demographic and exposure variables correlating with olfactory dysfunction. Methods: Cross-sectional analysis of the 2011–2012 and 2013–2014 editions of the National Health Examination and Nutrition Survey was performed. The utilized survey reports from a nationally representative sample of about 5000 persons each year located in counties across the United States. There is an interview and physical examination component which includes demographic, socioeconomic, dietary, and health-related questions as well as medical, dental, physiologic measurements, and laboratory tests. 3594 adult respondents from 2011 to 2012 and 3708 respondents from 2013 to 2014 were identified from the above population-based database. The frequency of self-reported disorders as well as performance on odor identification testing was determined in relation to demographic factors, occupational or environmental exposures, and urinary levels of environmental and industrial compounds. Results: In both subjective and objective analysis, smell disorders were significantly more common with increasing age. While the non-Hispanic Black and non-Hispanic Asian populations were less likely to report subjective olfactory loss, they, along with Hispanics, performed more poorly on odor identification than Caucasians. Those with limited education had a decreased prevalence of hyposmia. Women outperformed men on smell testing. Those reporting exposure to vapors were more likely to experience olfactory dysfunction, and urinary levels of manganese, 2-Thioxothiazolidine-4-carboxylic acid, and 2-Aminothiazoline-4-carboxylic acid were lower among respondents with subjective smell

  2. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  3. INFLUENCES OF HORMONE REPLACEMENT THERAPY ON OLFACTORY AND COGNITIVE FUNCTION IN THE MENOPAUSE

    Science.gov (United States)

    Doty, Richard L.; Tourbier, Isabelle; Ng, Victoria; Neff, Jessica; Armstrong, Deborah; Battistini, Michelle; Sammel, Mary D.; Gettes, David; Evans, Dwight L.; Mirza, Natasha; Moberg, Paul J.; Connolly, Tim; Sondheimer, Steven J.

    2015-01-01

    Olfactory dysfunction can be an early sign of Alzheimer’s disease (AD). Since hormone replacement therapy (HRT) may protect against developing AD in postmenopausal women, the question arises as to whether it also protects against olfactory dysfunction in such women. Three olfactory and 12 neurocognitive tests were administered to 432 healthy postmenopausal women with varied HRT histories. Serum levels of reproductive hormones were obtained for all subjects; APOE-ε4 haplotype was determined for 77. National Adult Reading Test and Odor Memory/Discrimination Test (OMT) scores were positively influenced by HRT. Odor identification and OMT test scores were lower for women who scored poorly on a delayed recall test, a surrogate for mild cognitive impairment. WAIS-R NI Spatial Span Backwards Test scores were higher in women receiving estrogen plus progestin HRT and directly correlated with serum testosterone levels, the latter implying a positive effect of testosterone on spatial memory. APOE-ε4 was associated with poorer odor threshold test scores. These data suggest that HRT positively influences a limited number of olfactory and cognitive measures in the menopause. PMID:25850354

  4. Adult neurogenesis in the olfactory system shapes odor memory and perception.

    Science.gov (United States)

    Gheusi, Gilles; Lledo, Pierre-Marie

    2014-01-01

    The olfactory system is a dynamic place. In mammals, not only are sensory neurons located in the sensory organ renewed through adult life, but also its first central relay is reconstructed by continuous neuronal recruitment. Despite these numerous morphological and physiological changes, olfaction is a unique sensory modality endowed with a privileged link to memory. This raises a clear conundrum; how does the olfactory system balance its neuronal turnover with its participation in long-term memory? This review concentrates on the functional aspects of adult neurogenesis, addressing how the integration of late-born neurons participates in olfactory perception and memory. After outlining the properties of adult neurogenesis in the olfactory system, and after describing their regulation by internal and environmental factors, we ask how the process of odorant perception can be influenced by constant neuronal turnover. We then explore the possible functional roles that newborn neurons might have for olfactory memory. Throughout this review, and as we concentrate almost exclusively on mammalian models, we stress the idea that adult neurogenesis is yet another form of plasticity used by the brain to copes with a constantly changing olfactory world. © 2014 Elsevier B.V. All rights reserved.

  5. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    Directory of Open Access Journals (Sweden)

    Hong Sjölinder

    Full Text Available Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  6. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    Science.gov (United States)

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-11-18

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  7. Olfactory Nerve—A Novel Invasion Route of Neisseria meningitidis to Reach the Meninges

    Science.gov (United States)

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-01-01

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival. PMID:21124975

  8. Transcriptome profile and cytogenetic analysis of immortalized neuronally restricted progenitor cells derived from the porcine olfactory bulb

    Science.gov (United States)

    Recently, we established and phenotypically characterized an immortalized porcine olfactory bulb neuroblast cell line, OBGF400 (Uebing-Czipura et al., 2008). To facilitate the future application of these cells in studies of neurological dysfunction and neuronal replacement therapies, a comprehensive...

  9. Induction of associative olfactory memory by targeted activation of single olfactory neurons in Drosophila larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-04-25

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by ChR2-mediated optical activation of a specific class of olfactory neurons. We show that targeted activation of the olfactory receptor and the octopaminergic neurons is indeed sufficient for the formation of associative olfactory memory in the larval brain. We also show that targeted stimulation of only a single type of olfactory receptor neurons is sufficient to induce olfactory memory that is indistinguishable from natural memory induced by the activation of multiple olfactory receptor neurons.

  10. Duration and specificity of olfactory nonassociative memory.

    Science.gov (United States)

    Freedman, Kaitlin G; Radhakrishna, Sreya; Escanilla, Olga; Linster, Christiane

    2013-05-01

    Olfactory habituation is a simple form of nonassociative memory in which responsiveness to stable but behaviorally nonsignificant stimuli is decreased. Olfactory habituation has recently become a paradigm widely used to probe the neural substrate underlying olfactory perception and memory. This simple behavioral paradigm has been used successfully used to probe many aspects of olfactory processing, and it has recently become clear that the neural processes underlying olfactory habituation can depend on the task parameters used. We here further investigate memory specificity and duration using 2 variations in task parameters: the number of habituation trials and the time delay between habituation and cross-habituation testing. We find that memory specificity increases with the number of habituation trials but decreases with time after the last habituation trial.

  11. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  12. A Closer Look at Acid-Base Olfactory Titrations

    Science.gov (United States)

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  13. Metal X-ray microanalysis in the olfactory system of rainbow trout exposed to low level of copper

    International Nuclear Information System (INIS)

    Julliard, A.K.; Astic, L.; Saucier, D.

    1995-01-01

    It has recently been shown that a chronic copper exposure induces specific degeneration of olfactory receptor cells in rainbow trout; however, the exact mechanism of action of the metal is not yet known. Using X-ray microanalysis in transmission electron microscopy, we have studied the distribution of metal in the olfactory system of fish exposed for 15,30 and 60 days to 20 μg/l of copper. This was done in order to determine if it was accumulated in receptor cells and transported into the central nervous system via the olfactory nerve. No copper accumulation was detected either in the olfactory epithelium, in the olfactory nerve or in the olfactory bulb. The heavy metal was exclusively found within melanosomes of melanophores located in the lamina propria. After 60 days of exposure, the copper content in melanosomes was about two-fold higher than that in controls. As far as some morphological recovery took place in the olfactory organ during the metal exposure, which lets us suppose that some detoxication mechanism occurs, it could be suggested that metanophores might be somehow involved in such a mechanism. (authors). 57 refs., 15 figs

  14. Olfactory Function and Associated Clinical Correlates in Former National Football League Players

    Science.gov (United States)

    Alosco, Michael L.; Jarnagin, Johnny; Tripodis, Yorghos; Platt, Michael; Martin, Brett; Chaisson, Christine E.; Baugh, Christine M.; Fritts, Nathan G.; Cantu, Robert C.

    2017-01-01

    Abstract Professional American football players incur thousands of repetitive head impacts (RHIs) throughout their lifetime. The long-term consequences of RHI are not well characterized, but may include olfactory dysfunction. RHI has been associated with changes to brain regions involved in olfaction, and olfactory impairment is common after traumatic brain injury. Olfactory dysfunction is a frequent early sequelae of neurodegenerative diseases (e.g., Alzheimer's disease), and RHI is associated with the neurodegenerative disease, chronic traumatic encephalopathy (CTE). We examined olfaction, and its association with clinical measures, in former National Football League (NFL) players. Ninety-five former NFL players (ages 40–69) and 28 same-age controls completed a neuropsychological and neuropsychiatric evaluation as part of a National Institutes of Health–funded study. The Brief Smell Identification Test (B-SIT) assessed olfaction. Principal component analysis generated a four-factor structure of the clinical measures: behavioral/mood, psychomotor speed/executive function, and verbal and visual memory. Former NFL players had worse B-SIT scores relative to controls (p = 0.0096). A B-SIT cutoff of 11 had the greatest accuracy (c-statistic = 0.61) and specificity (79%) for discriminating former NFL players from controls. In the former NFL players, lower B-SIT scores correlated with greater behavioral/mood impairment (p = 0.0254) and worse psychomotor speed/executive functioning (p = 0.0464) after controlling for age and education. Former NFL players exhibited lower olfactory test scores relative to controls, and poorer olfactory test performance was associated with worse neuropsychological and neuropsychiatric functioning. Future work that uses more-comprehensive tests of olfaction and structural and functioning neuroimaging may improve understanding on the association between RHI and olfaction. PMID:27430424

  15. Olfactory Function and Associated Clinical Correlates in Former National Football League Players.

    Science.gov (United States)

    Alosco, Michael L; Jarnagin, Johnny; Tripodis, Yorghos; Platt, Michael; Martin, Brett; Chaisson, Christine E; Baugh, Christine M; Fritts, Nathan G; Cantu, Robert C; Stern, Robert A

    2017-02-15

    Professional American football players incur thousands of repetitive head impacts (RHIs) throughout their lifetime. The long-term consequences of RHI are not well characterized, but may include olfactory dysfunction. RHI has been associated with changes to brain regions involved in olfaction, and olfactory impairment is common after traumatic brain injury. Olfactory dysfunction is a frequent early sequelae of neurodegenerative diseases (e.g., Alzheimer's disease), and RHI is associated with the neurodegenerative disease, chronic traumatic encephalopathy (CTE). We examined olfaction, and its association with clinical measures, in former National Football League (NFL) players. Ninety-five former NFL players (ages 40-69) and 28 same-age controls completed a neuropsychological and neuropsychiatric evaluation as part of a National Institutes of Health-funded study. The Brief Smell Identification Test (B-SIT) assessed olfaction. Principal component analysis generated a four-factor structure of the clinical measures: behavioral/mood, psychomotor speed/executive function, and verbal and visual memory. Former NFL players had worse B-SIT scores relative to controls (p = 0.0096). A B-SIT cutoff of 11 had the greatest accuracy (c-statistic = 0.61) and specificity (79%) for discriminating former NFL players from controls. In the former NFL players, lower B-SIT scores correlated with greater behavioral/mood impairment (p = 0.0254) and worse psychomotor speed/executive functioning (p = 0.0464) after controlling for age and education. Former NFL players exhibited lower olfactory test scores relative to controls, and poorer olfactory test performance was associated with worse neuropsychological and neuropsychiatric functioning. Future work that uses more-comprehensive tests of olfaction and structural and functioning neuroimaging may improve understanding on the association between RHI and olfaction.

  16. Hendra and Nipah virus infection in cultured human olfactory epithelial cells

    NARCIS (Netherlands)

    Borisevich, V. (Viktoriya); Ozdener, M.H. (Mehmet Hakan); Malik, B. (Bilal); B. Rockx (Barry)

    2017-01-01

    textabstractHenipaviruses are emerging zoonotic viruses and causative agents of encephalitis in humans. However, the mechanisms of entry into the central nervous system (CNS) in humans are not known. Here, we evaluated the possible role of olfactory epithelium in virus entry into the CNS. We

  17. Olfactory bulb as an alternative in neurotransplantation

    Directory of Open Access Journals (Sweden)

    Руслан Романович Новиков

    2015-05-01

    Full Text Available The article examines the ethical and legal aspects of transplantation of embryonic neural tissue, structure of the rat olfactory bulb. It is given substantiation for its use as a possible alternative version of the embryonic neural tissue at damage in the cerebral hemispheres in the experiment.Materials and methods. Detailed description of the fault model of the cerebral hemispheres of the brain of rats, olfactory bulb biopsy procedure, cultivation of olfactory bulb suspension and fetal neural tissue, comparison of the functional aspects of transplantation of the olfactory bulb and the embryonic neural tissue.Results. The obtained data are similar to structure of olfactory bulb and fetal tissues during culturing. Recovery in the motor areas varies by the time factor and less intense in the group of the olfactory bulb and the group without tissue transplantation.Conclusions. Comparative analysis of the effectiveness of transplantation of embryonic neural tissue and olfactory bulb in the injured brain allows us to speak about the positive results of these groups to the difference in the duration of the recovery process

  18. Drosophila olfactory memory: single genes to complex neural circuits.

    Science.gov (United States)

    Keene, Alex C; Waddell, Scott

    2007-05-01

    A central goal of neuroscience is to understand how neural circuits encode memory and guide behaviour. Studying simple, genetically tractable organisms, such as Drosophila melanogaster, can illuminate principles of neural circuit organization and function. Early genetic dissection of D. melanogaster olfactory memory focused on individual genes and molecules. These molecular tags subsequently revealed key neural circuits for memory. Recent advances in genetic technology have allowed us to manipulate and observe activity in these circuits, and even individual neurons, in live animals. The studies have transformed D. melanogaster from a useful organism for gene discovery to an ideal model to understand neural circuit function in memory.

  19. Imaging the olfactory tract (Cranial Nerve no.1)

    International Nuclear Information System (INIS)

    Duprez, Thierry P.; Rombaux, Philippe

    2010-01-01

    This review paper browses pros and cons of the different radiological modalities for imaging the olfactory tract and highlights the potential benefits and limitation of more recent advances in MR and CT technology. A systematic pictorial overview of pathological conditions affecting olfactory sense is given. Techniques for collecting quantitative data on olfactory bulb volume and on olfactory sulcus depth are described. At last, insights into functional imaging of olfactory sense are shown.

  20. Clinical diagnosis and treatment of olfactory meningioma

    International Nuclear Information System (INIS)

    Li Xiangdong; Wang Zhong; Zhang Shiming; Zhu Fengqing; Zhou Dai; Hui Guozhen

    2005-01-01

    Objective: To analyze the clinical diagnosis and treatment of olfactory meningioma. Methods: In this group 17 olfactory meningiomas were operated, and the clinical presentations and the surgery results were obtained. Results: The symptoms of psychiatrical disorder, visual disturbances and eclipse at presentation was higher. In 16 cases the grade of resection was Simpson II, 1 case Simpson III, most of the cases had a good recovery. Conclusion: Attention should be paid to the early symptom at presentation such as psychiatrical disorder to obtain an early diagnosis. Microsurgery is useful in the treatment of olfactory meningioma. (authors)

  1. Ancient schwannoma at the olfactory groove mimicking meningioma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Young Jin; Jeong, Hae Woong [Dept. of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2015-12-15

    Schwannomas are benign slow-growing nerve sheath tumors, which can develop in any peripheral or central nerve that contains Schwann cells. Schwannomas located near the olfactory groove are extremely rare and radiological diagnosis can be difficult. Moreover, ancient schwannoma is an uncommon variant, and radiologic findings are rarely reported. Herein, we reported a surgically confirmed case of ancient schwannoma at the olfactory groove in a 44-year-old woman presenting with headache and visual disturbance. Brain magnetic resonance imaging (MRI) showed a solid and cystic extra-axial mass located in the subfrontal area mimicking an olfactory groove meningioma. Histopathologic diagnosis of ancient schwannoma was confirmed by immunohistochemical staining for S100, CD56, vimentin, and other markers. Furthermore, we described the clinical manifestations, MRI characteristics, and histopathologic findings of the case, and presented a review of related literature.

  2. Olfactory cuing of autobiographical memory.

    Science.gov (United States)

    Rubin, D C; Groth, E; Goldsmith, D J

    1984-01-01

    In Experiment 1, subjects were presented with either the odors or the names of 15 common objects. In Experiment 2, subjects were presented with either the odors, photographs, or names of 16 common objects. All subjects were asked to describe an autobiographical memory evoked by each cue, to date each memory, and to rate each memory on vividness, pleasantness, and the number of times that the memory had been thought of and talked about prior to the experiment. Compared with memories evoked by photographs or names, memories evoked by odors were reported to be thought of and talked about less often prior to the experiment and were more likely to be reported as never having been thought of or talked about prior to the experiment. No other effects were consistently found, though there was a suggestion that odors might evoke more pleasant and emotional memories than other types of cues. The relation of these results to the folklore concerning olfactory cuing is discussed.

  3. Ontogenetic development of the nervus terminalis in toothed whales. Evidence for its non-olfactory nature.

    Science.gov (United States)

    Buhl, E H; Oelschläger, H A

    1986-01-01

    For the first time in cetaceans, the development of the terminalis system and its continuity between the olfactory placode and the telencephalon has been demonstrated by light microscopy. In the early development of toothed whales (Odontoceti) this system is partially incorporated within the fila olfactoria which grow out from the olfactory placode. As the peripheral olfactory system is reduced in later stages, a strongly developed ganglionlike structure (terminalis ganglion) remains within the primitive meninx. Peripherally it is connected via the cribriform plate with ganglionic cell clusters near the septal mucosa. Centrally it is attached to the telencephalon (olfactory tubercle, septal region) by several nerve fibre bundles. In contrast to all other mammalian groups, toothed whales and dolphins are anosmatic while being totally adapted to aquatic life. Therefore the remaining ganglion and plexus must have non-olfactory properties. They may be responsible for the autonomic innervation of intracranial arteries and of the large mucous epithelia in the accessory nasal air sacs. The morphology, evolution and functional implications of the terminalis system in odontocetes and other mammals are discussed.

  4. Correlation between the availability of dopamine transporter and olfactory function in healthy subjects

    International Nuclear Information System (INIS)

    Pak, Kyoungjune; Kim, Keunyoung; Kim, In Joo; Lee, Myung Jun; Lee, Jae Meen; Kim, Bum Soo; Kim, Seong-Jang

    2018-01-01

    Olfactory dysfunction in Parkinson's disease is usually prodromal to other symptoms. In this study, we aimed to explore the association of olfactory function with the availabilities of striatal dopamine transporter (DAT) in healthy subjects. Data used in the preparation of this article were obtained from Parkinson's Progression Markers Initiative database (www.ppmi-info.org/data). The study population consisted of healthy controls with screening 123 I-FP-CIT single photon emission tomography (SPECT). University of Pennsylvania Smell Identification Test (UPSIT) was assessed to evaluate the olfactory function. Totally, 181 healthy subjects (117 male, 64 female) with 123 I-FP-CIT SPECT data were included in this study. Specific binding ratios (SBRs) of the caudate nucleus (rho = -0.4217, p < 0.0001), putamen (rho = -0.2292, p = 0.0019), and striatum (rho=-0.3425, p < 0.0001) showed a reduction with ageing. SBRs of the caudate nucleus, putamen, and striatum were positively correlated with UPSIT (rho = 0.3716, p < 0.0001; rho = 0.3655, p < 0.0001; rho = 0.3880, p < 0.0001). After controlling for age by partial correlation, SBRs of the caudate nucleus, putamen, and striatum showed an influence on UPSIT (rho = 0.3288, p < 0.0001; rho = 0.3374, p < 0.0001; rho = 0.3511, p < 0.0001). Olfactory function is associated with the availability of striatal DAT independent of age in healthy subjects. (orig.)

  5. Methods to measure olfactory behavior in mice.

    Science.gov (United States)

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui

    2015-02-02

    Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice, including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors, especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, with respect to both social and nonsocial odors. Copyright © 2015 John Wiley & Sons, Inc.

  6. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  7. Cladistic analysis of olfactory and vomeronasal systems.

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  8. Functional neuroanatomy of Drosophila olfactory memory formation

    OpenAIRE

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry exten...

  9. Cortical feedback control of olfactory bulb circuits.

    Science.gov (United States)

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. CNPase Expression in Olfactory Ensheathing Cells

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2011-01-01

    Full Text Available A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.

  11. Insect olfactory memory in time and space.

    Science.gov (United States)

    Liu, Xu; Davis, Ronald L

    2006-12-01

    Recent studies using functional optical imaging have revealed that cellular memory traces form in different areas of the insect brain after olfactory classical conditioning. These traces are revealed as increased calcium signals or synaptic release from defined neurons, and include a short-lived trace that forms immediately after conditioning in antennal lobe projection neurons, an early trace in dopaminergic neurons, and a medium-term trace in dorsal paired medial neurons. New molecular genetic tools have revealed that for normal behavioral memory performance, synaptic transmission from the mushroom body neurons is required only during retrieval, whereas synaptic transmission from dopaminergic neurons is required at the time of acquisition and synaptic transmission from dorsal paired medial neurons is required during the consolidation period. Such experimental results are helping to identify the types of neurons that participate in olfactory learning and when their participation is required. Olfactory learning often occurs alongside crossmodal interactions of sensory information from other modalities. Recent studies have revealed complex interactions between the olfactory and the visual senses that can occur during olfactory learning, including the facilitation of learning about subthreshold olfactory stimuli due to training with concurrent visual stimuli.

  12. Erectile Dysfunction

    Science.gov (United States)

    ... or other heart problems take medications that contain nitrates to help the blood flow better to the ... erectile dysfunction can affect the way that the nitrates work—and cause blood pressure to drop to ...

  13. Sex effect in mutual olfactory relationships of individually caged rabbits

    Directory of Open Access Journals (Sweden)

    Alessandro Finzi

    2015-12-01

    Full Text Available To assess the sex influence on sniffing behavior of rabbits, sets of three rabbits each were located for seven days in contiguous cages divided by a metal wall with holes that prevented the neighboring rabbits to see each other. A buck was located in the central cage, with a doe at each side. Rabbit behavior was video recorded to observe animals sniffing with the muzzle near the wall. The bucks displayed an olfactory preference towards one of the two does, which decreased in few days. The significance was p  0.05. The interest of bucks towards the does was also characterized by a frenetic scratching of the separation wall, contemporary with intense sniffing, displayed only for the first 35 min of the first day. The sniffing behavior of does at the central cage housing the male was not so marked as in bucks, and it progressively changed across the trial (p < 0.01. In conclusion, rabbits establish a transitory sex-oriented olfactory relationship with the conspecifics housed in contiguous cages, which looks no longer necessary once the rabbits have recognized each other.

  14. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Science.gov (United States)

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  15. Olfactory processing and odor specificity: a meta-analysis of menstrual cycle variation in olfactory sensitivity

    Directory of Open Access Journals (Sweden)

    Martinec Nováková Lenka

    2014-12-01

    Full Text Available Cycle-correlated variation in olfactory threshold, with women becoming more sensitive to odors mid-cycle, is somewhat supported by the literature but the evidence is not entirely consistent, with several studies finding no, or mixed, effects. It has been argued that cyclic shifts in olfactory threshold might be limited to odors relevant to the mating context.

  16. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model.

    Science.gov (United States)

    Jung, Yong Gi; Lane, Andrew P

    2016-06-01

    To determine the effect of a soluble human tumor necrosis factor alpha (TNF-α) receptor blocker (etanercept) on an inducible olfactory inflammation (IOI) mouse model. An in vivo study using a transgenic mouse model. Research laboratory. To study the impact of chronic inflammation on the olfactory system, a transgenic mouse model of chronic rhinosinusitis-associated olfactory loss was utilized (IOI mouse), expressing TNF-α in a temporally controlled fashion within the olfactory epithelium. In one group of mice (n = 4), etanercept was injected intraperitoneally (100 μg/dose, 3 times/week) concurrent with a 2-week period of TNF-α expression. A second group of mice (n = 2) underwent induction of TNF-α expression for 8 weeks, with etanercept treatment administered during the final 2 weeks of inflammation. Olfactory function was assayed by elecro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Each group was compared with an equal-number control group. Compared with nontreated IOI mice, etanercept-treated IOI mice showed significantly improved EOG responses after 2 weeks (P loss of olfactory epithelium and no EOG response in nontreated IOI mice. However, in etanercept-treated mice, regeneration of olfactory epithelium was observed. Concomitant administration of etanercept in IOI mice results in interruption of TNF-α-induced olfactory loss and induction of neuroepithelial regeneration. This demonstrates that etanercept has potential utility as a tool for elucidating the role of TNF-α in other olfactory inflammation models. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  17. BMI, HOMA-IR, and Fasting Blood Glucose Are Significant Predictors of Peripheral Nerve Dysfunction in Adult Overweight and Obese Nondiabetic Nepalese Individuals: A Study from Central Nepal.

    Science.gov (United States)

    Thapa, Lekhjung; Rana, P V S

    2016-01-01

    Objective. Nondiabetic obese individuals have subclinical involvement of peripheral nerves. We report the factors predicting peripheral nerve function in overweight and obese nondiabetic Nepalese individuals. Methodology. In this cross-sectional study, we included 50 adult overweight and obese nondiabetic volunteers without features of peripheral neuropathy and 50 healthy volunteers to determine the normative nerve conduction data. In cases of abnormal function, the study population was classified on the basis of the number of nerves involved, namely, "HOMA-IR) was the significant predictor (P = 0.019, 96% CI = 1.420-49.322) of sensory nerve dysfunction. Body mass index (BMI) was the significant predictor (P = 0.034, 95% CI = 1.018-1.577) in case of ≥2 mixed nerves' involvement. Conclusion. FBG, HOMA-IR, and BMI were significant predictors of peripheral nerve dysfunction in overweight and obese Nepalese individuals.

  18. Amyloid beta inhibits olfactory bulb activity and the ability to smell.

    Directory of Open Access Journals (Sweden)

    Reynaldo Alvarado-Martínez

    Full Text Available Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.

  19. Differential interactions of sex pheromone and plant odour in the olfactory pathway of a male moth.

    Directory of Open Access Journals (Sweden)

    Nina Deisig

    Full Text Available Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants, mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a recordings from individual sensilla to study responses of olfactory receptor neurons, b in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization.

  20. Selective enhancement of main olfactory input to the medial amygdala by GnRH.

    Science.gov (United States)

    Blake, Camille Bond; Meredith, Michael

    2010-03-04

    In male hamsters mating behavior is dependent on chemosensory input from the main olfactory and vomeronasal systems, whose central pathways contain cell bodies and fibers of gonadotropin-releasing hormone (GnRH) neurons. In sexually naive males, vomeronasal organ removal (VNX), but not main olfactory lesions, impairs mating behavior. Intracerebroventricular (i.c.v.)-GnRH restores mating in sexually naive VNX males and enhances medial amygdala (Me) immediate-early gene activation by chemosensory stimulation. In sexually experienced males, VNX does not impair mating and i.c.v.-GnRH suppresses Me activation. Thus, the main olfactory system is sufficient for mating in experienced-VNX males, but not in naive-VNX males. We investigated the possibility that GnRH enhances main olfactory input to the amygdala in naive-VNX males using i.c.v.-GnRH and pharmacological stimulation (bicuculline/D,L-homocysteic acid mixture) of the main olfactory bulb (MOB). In sexually naive intact males there was a robust increase of Fos protein expression in the anteroventral medial amygdala (MeAv) with MOB stimulation, but no effect of GnRH. There was no effect of stimulation or GnRH in posterodorsal medial amygdala (MePd). In naive-VNX animals, GnRH increased Fos in MeAv and MePv. Only combined MOB stimulation and i.c.v.-GnRH produced a significant increase in Fos in the dorsal (reproduction-related) portion of MeP (MePd). When the animals were sexually experienced before VNX, a condition in which GnRH does not enhance mating, i.c.v.-GnRH combined with MOB stimulation suppressed Fos expression in MePd. This suggests a more selective effect of GnRH on olfactory input in MePd than elsewhere in medial amygdala of VNX males. 2009 Elsevier B.V. All rights reserved.

  1. An Olfactory Indicator for Acid-Base Titrations.

    Science.gov (United States)

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  2. Development of the ETOC: a European test of olfactory capabilities

    NARCIS (Netherlands)

    Thomas-Danguin, T.; Rouby, C.; Sicard, G.; Vigouroux, M.; Farget, V.; Johanson, A.; Bengtzon, A.; Hall, G.; Ormel, W.; Graaf, de C.; Rousseau, F.; Dumont, J.P.

    2003-01-01

    A number of smell tests designed to evaluate human olfactory capabilities have been published, but none have been validated cross-culturally. The aim of this study was therefore to develop a reliable and quick olfactory test that could be used to evaluate efficiently the olfactory abilities of a

  3. Cranial nerve vascular compression syndromes of the trigeminal, facial and vago-glossopharyngeal nerves: comparative anatomical study of the central myelin portion and transitional zone; correlations with incidences of corresponding hyperactive dysfunctional syndromes.

    Science.gov (United States)

    Guclu, Bulent; Sindou, Marc; Meyronet, David; Streichenberger, Nathalie; Simon, Emile; Mertens, Patrick

    2011-12-01

    The aim of this study was to evaluate the anatomy of the central myelin portion and the central myelin-peripheral myelin transitional zone of the trigeminal, facial, glossopharyngeal and vagus nerves from fresh cadavers. The aim was also to investigate the relationship between the length and volume of the central myelin portion of these nerves with the incidences of the corresponding cranial dysfunctional syndromes caused by their compression to provide some more insights for a better understanding of mechanisms. The trigeminal, facial, glossopharyngeal and vagus nerves from six fresh cadavers were examined. The length of these nerves from the brainstem to the foramen that they exit were measured. Longitudinal sections were stained and photographed to make measurements. The diameters of the nerves where they exit/enter from/to brainstem, the diameters where the transitional zone begins, the distances to the most distal part of transitional zone from brainstem and depths of the transitional zones were measured. Most importantly, the volume of the central myelin portion of the nerves was calculated. Correlation between length and volume of the central myelin portion of these nerves and the incidences of the corresponding hyperactive dysfunctional syndromes as reported in the literature were studied. The distance of the most distal part of the transitional zone from the brainstem was 4.19  ±  0.81 mm for the trigeminal nerve, 2.86  ±  1.19 mm for the facial nerve, 1.51  ±  0.39 mm for the glossopharyngeal nerve, and 1.63  ±  1.15 mm for the vagus nerve. The volume of central myelin portion was 24.54  ±  9.82 mm(3) in trigeminal nerve; 4.43  ±  2.55 mm(3) in facial nerve; 1.55  ±  1.08 mm(3) in glossopharyngeal nerve; 2.56  ±  1.32 mm(3) in vagus nerve. Correlations (p  nerves and incidences of the corresponding diseases. At present it is rather well-established that primary trigeminal neuralgia, hemifacial spasm and vago

  4. Olfactory circuits and behaviors of nematodes.

    Science.gov (United States)

    Rengarajan, Sophie; Hallem, Elissa A

    2016-12-01

    Over one billion people worldwide are infected with parasitic nematodes. Many parasitic nematodes actively search for hosts to infect using volatile chemical cues, so understanding the olfactory signals that drive host seeking may elucidate new pathways for preventing infections. The free-living nematode Caenorhabditis elegans is a powerful model for parasitic nematodes: because sensory neuroanatomy is conserved across nematode species, an understanding of the microcircuits that mediate olfaction in C. elegans may inform studies of olfaction in parasitic nematodes. Here we review circuit mechanisms that allow C. elegans to respond to odorants, gases, and pheromones. We also highlight work on the olfactory behaviors of parasitic nematodes that lays the groundwork for future studies of their olfactory microcircuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Erectile Dysfunction

    Science.gov (United States)

    ... cut out alcohol. Excess alcohol can contribute to erectile dysfunction. If you choose to drink alcohol, do so in moderation. For healthy adults, that means up to one drink a day for men older than age 65, and up to two drinks ...

  6. Inhibitory neurotransmission and olfactory memory in honeybees.

    Science.gov (United States)

    El Hassani, Abdessalam Kacimi; Giurfa, Martin; Gauthier, Monique; Armengaud, Catherine

    2008-11-01

    In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.

  7. Linking adult olfactory neurogenesis to social behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  8. Enhanced olfactory sensitivity in autism spectrum conditions.

    Science.gov (United States)

    Ashwin, Chris; Chapman, Emma; Howells, Jessica; Rhydderch, Danielle; Walker, Ian; Baron-Cohen, Simon

    2014-01-01

    People with autism spectrum conditions (ASC) report heightened olfaction. Previous sensory experiments in people with ASC have reported hypersensitivity across visual, tactile, and auditory domains, but not olfaction. The aims of the present study were to investigate olfactory sensitivity in ASC, and to test the association of sensitivity to autistic traits. We recruited 17 adult males diagnosed with ASC and 17 typical adult male controls and tested their olfactory sensitivity using the Alcohol Sniff Test (AST), a standardised clinical evaluation of olfactory detection. The AST involves varying the distance between subject and stimulus until an odour is barely detected. Participants with ASC also completed the Autism Spectrum Quotient (AQ) as a measure of autism traits. The ASC group detected the odour at a mean distance of 24.1 cm (SD =11.5) from the nose, compared to the control group, who detected it at a significantly shorter mean distance of 14.4 cm (SD =5.9). Detection distance was independent of age and IQ for both groups, but showed a significant positive correlation with autistic traits in the ASC group (r =0.522). This is the first experimental demonstration, as far as the authors are aware, of superior olfactory perception in ASC and showing that greater olfactory sensitivity is correlated with a higher number of autistic traits. This is consistent with results from previous findings showing hypersensitivity in other sensory domains and may help explain anecdotal and questionnaire accounts of heightened olfactory sensitivity in ASC. Results are discussed in terms of possible underlying neurophysiology.

  9. Olfactory sensations produced by high-energy photon irradiation of the olfactory receptor mucosa in humans

    International Nuclear Information System (INIS)

    Sagar, S.M.; Thomas, R.J.; Loverock, L.T.; Spittle, M.F.

    1991-01-01

    During irradiation of volumes that incorporate the olfactory system, a proportion of patients have complained of a pungent smell. A retrospective study was carried out to determine the prevalence of this side-effect. A questionnaire was sent to 40 patients whose treatment volumes included the olfactory region and also to a control group treated away from this region. The irradiated tumor volumes included the frontal lobe, whole brain, nasopharynx, pituitary fossa, and maxillary antrum. Of the 25 patients who replied, 60% experienced odorous symptoms during irradiation. They described the odor as unpleasant and consistent with ozone. Stimulation of olfactory receptors is considered to be caused by the radiochemical formation of ozone and free radicals in the mucus overlying the olfactory mucosa

  10. Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb.

    Science.gov (United States)

    Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M

    1984-08-01

    A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity.

  11. Olfactory receptor signaling is regulated by the post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) scaffold multi-PDZ domain protein 1.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2009-12-01

    The unique ability of mammals to detect and discriminate between thousands of different odorant molecules is governed by the diverse array of olfactory receptors expressed by olfactory sensory neurons in the nasal epithelium. Olfactory receptors consist of seven transmembrane domain G protein-coupled receptors and comprise the largest gene superfamily in the mammalian genome. We found that approximately 30% of olfactory receptors possess a classical post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) domain binding motif in their C-termini. PDZ domains have been established as sites for protein-protein interaction and play a central role in organizing diverse cell signaling assemblies. In the present study, we show that multi-PDZ domain protein 1 (MUPP1) is expressed in the apical compartment of olfactory sensory neurons. Furthermore, on heterologous co-expression with olfactory sensory neurons, MUPP1 was shown to translocate to the plasma membrane. We found direct interaction of PDZ domains 1 + 2 of MUPP1 with the C-terminus of olfactory receptors in vitro. Moreover, the odorant-elicited calcium response of OR2AG1 showed a prolonged decay in MUPP1 small interfering RNA-treated cells. We have therefore elucidated the first building blocks of the putative \\'olfactosome\\

  12. Olfactory Functioning in Parkinson's Disease: The Effects of Deep Brain Stimulation

    DEFF Research Database (Denmark)

    van Hartevelt, Tim Johannes

    2014-01-01

    The sense of smell is vital for species survival in terms of food selection and detection as well as procreation. Disorders of the sense of smell are not uncommon and can have a significant effect on general health and well-being including quality of life. In Parkinson's disease (PD), the loss...... of sense of smell is one of the most common and earliest symptoms, appearing approximately 5 years prior to any motor symptoms. Deep brain stimulation (DBS) has proven remarkably effective in alleviating the symptoms of PD including olfactory dysfunction. This remains a difficult area to research with many...

  13. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats.

    Science.gov (United States)

    Negroni, Julia; Meunier, Nicolas; Monnerie, Régine; Salesse, Roland; Baly, Christine; Caillol, Monique; Congar, Patrice

    2012-01-01

    Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.

  14. Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory.

    Science.gov (United States)

    Sultan, S; Mandairon, N; Kermen, F; Garcia, S; Sacquet, J; Didier, A

    2010-07-01

    Inhibitory interneurons of the olfactory bulb are subjected to permanent adult neurogenesis. Their number is modulated by learning, suggesting that they could play a role in plastic changes of the bulbar network associated with olfactory memory. Adult male C57BL/6 mice were trained in an associative olfactory task, and we analyzed long-term retention of the task 5, 30, and 90 d post-training. In parallel, we assessed the fate of these newborn cells, mapped their distribution in the olfactory bulb and measured their functional implication using the immediate early gene Zif268. In a second set of experiments, we pharmacologically modulated glutamatergic transmission and using the same behavioral task assessed the consequences on memory retention and neurogenesis. Finally, by local infusion of an antimitotic drug, we selectively blocked neurogenesis during acquisition of the task and looked at the effects on memory retention. First we demonstrated that retrieval of an associative olfactory task recruits the newborn neurons in odor-specific areas of the olfactory bulb selected to survive during acquisition of the task and that it does this in a manner that depends on the strength of learning. We then demonstrated that acquisition is not dependent on neurogenesis if long-term retention of the task is abolished by blocking neurogenesis. Adult-born neurons are thus involved in changes in the neural representation of an odor; this underlies long-term olfactory memory as the strength of learning is linked to the duration of this memory. Neurogenesis thus plays a crucial role in long-term olfactory memory.

  15. Modulation of Olfactory Bulb Network Activity by Serotonin: Synchronous Inhibition of Mitral Cells Mediated by Spatially Localized GABAergic Microcircuits

    Science.gov (United States)

    Schmidt, Loren J.; Strowbridge, Ben W.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles…

  16. Changes in Olfactory Sensory Neuron Physiology and Olfactory Perceptual Learning After Odorant Exposure in Adult Mice.

    Science.gov (United States)

    Kass, Marley D; Guang, Stephanie A; Moberly, Andrew H; McGann, John P

    2016-02-01

    The adult olfactory system undergoes experience-dependent plasticity to adapt to the olfactory environment. This plasticity may be accompanied by perceptual changes, including improved olfactory discrimination. Here, we assessed experience-dependent changes in the perception of a homologous aldehyde pair by testing mice in a cross-habituation/dishabituation behavioral paradigm before and after a week-long ester-odorant exposure protocol. In a parallel experiment, we used optical neurophysiology to observe neurotransmitter release from olfactory sensory neuron (OSN) terminals in vivo, and thus compared primary sensory representations of the aldehydes before and after the week-long ester-odorant exposure in individual animals. Mice could not discriminate between the aldehydes during pre-exposure testing, but ester-exposed subjects spontaneously discriminated between the homologous pair after exposure, whereas home cage control mice cross-habituated. Ester exposure did not alter the spatial pattern, peak magnitude, or odorant-selectivity of aldehyde-evoked OSN input to olfactory bulb glomeruli, but did alter the temporal dynamics of that input to make the time course of OSN input more dissimilar between odorants. Together, these findings demonstrate that odor exposure can induce both physiological and perceptual changes in odor processing, and suggest that changes in the temporal patterns of OSN input to olfactory bulb glomeruli could induce differences in odor quality. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  18. Resistance to Interference of Olfactory Perceptual Learning

    Science.gov (United States)

    Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline

    2007-01-01

    Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…

  19. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing.

    Science.gov (United States)

    Lizbinski, Kristyn M; Dacks, Andrew M

    2017-01-01

    Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a "memory" by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.

  20. Olfactory receptors in non-chemosensory tissues

    Directory of Open Access Journals (Sweden)

    NaNa Kang & JaeHyung Koo*

    2012-11-01

    Full Text Available Olfactory receptors (ORs detect volatile chemicals that lead tothe initial perception of smell in the brain. The olfactory receptor(OR is the first protein that recognizes odorants in theolfactory signal pathway and it is present in over 1,000 genesin mice. It is also the largest member of the G protein-coupledreceptors (GPCRs. Most ORs are extensively expressed in thenasal olfactory epithelium where they perform the appropriatephysiological functions that fit their location. However, recentwhole-genome sequencing shows that ORs have been foundoutside of the olfactory system, suggesting that ORs may playan important role in the ectopic expression of non-chemosensorytissues. The ectopic expressions of ORs and their physiologicalfunctions have attracted more attention recently sinceMOR23 and testicular hOR17-4 have been found to be involvedin skeletal muscle development, regeneration, and humansperm chemotaxis, respectively. When identifying additionalexpression profiles and functions of ORs in non-olfactorytissues, there are limitations posed by the small number ofantibodies available for similar OR genes. This review presentsthe results of a research series that identifies ectopic expressionsand functions of ORs in non-chemosensory tissues toprovide insight into future research directions.

  1. Magnetic resonance imaging of olfactory neuroblastoma

    International Nuclear Information System (INIS)

    Iio, Mitsuhiro; Homma, Akihiro; Furuta, Yasushi; Fukuda, Satoshi

    2006-01-01

    Olfactory neuroblastoma is an uncommon intranasal tumor originating from olfactory neuroepithelium. Despite the development of electron microscopy and immunohistochemical testing, the pathological diagnosis of this tumor is still difficult because of the wide range of histological features. Magnetic resonance imaging (MR) of this tumor and the pattern of contrast enhancement have not been well described. The purpose of this report was to analyze the MR characteristics of olfactory neuroblastomas. The MR signal, pattern of contrast enhancement, and correlation with high-resolution computed tomography (CT) imaging were examined. Seventeen patients with olfactory neuroblastoma were treated at Hokkaido University Hospital and a related hospital during the past 25 years. MR images taken in 12 patients and CT images taken in 9 patients with histologically confirmed olfactory neuroblastoma were retrospectively reviewed. Compared with brain gray matter, 11 tumors were hypointense on T1-weighted images, 9 homogeneously and 2 heterogeneously. Eight tumors were hyperintense on T2-weighted images, 3 homogeneously and 5 heterogeneously, although their appearance was less intense than that of sinusitis. Gadolinium enhancement was moderate in one case and marked in 10 of the 11 cases, 9 homogeneously and 2 heterogeneously. Nine of the 11 tumors showed smooth regular shaped margins; 2 of these tumors exhibited irregular infiltrating margins on gadolinium-enhanced images, compared to the pre-contrast T1-weighted images. Eight of the 11 tumors had clearly demarcated margins, while 3 of the 11 tumors did not exhibit gadolinium enhancement. Six of the 12 cases (50%) exhibited intracranial cysts on the gadolinium-enhanced images. T2-weighted or gadolinium-enhanced images successfully distinguished sinusitis from tumors in 4 cases whereas the CT images failed. Gadolinium enhancement, particularly in the tangential plane, demonstrated intracranial extension not apparent on the CT images

  2. Differential odor processing in two olfactory pathways in the honeybee

    Directory of Open Access Journals (Sweden)

    Nobuhiro Yamagata

    2009-12-01

    Full Text Available An important component in understanding central olfactory processing and coding in the insect brain relates to the characterization of the functional divisions between morphologically distinct types of projection neurons (PN. Using calcium imaging, we investigated how the identity, concentration and mixtures of odors are represented in axon terminals (boutons of two types of PNs - lPN and mPN. In lPN boutons we found less concentration dependence, narrow tuning profiles at a high concentration, which may be optimized for fine, concentration-invariant odor discrimination. In mPN boutons, however, we found clear rising concentration dependence, broader tuning profiles at a high concentration, which may be optimized for concentration coding. In addition, we found more mixture suppression in lPNs than in mPNs, indicating lPNs better adaptation for synthetic mixture processing. These results suggest a functional division of odor processing in both PN types.

  3. Memory Dysfunction

    Science.gov (United States)

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  4. Brief predator sound exposure elicits behavioral and neuronal long-term sensitization in the olfactory system of an insect

    DEFF Research Database (Denmark)

    Anton, S.; Evengaard, K.; Barrozo, R. B.

    2011-01-01

    later in the same way as exposure to the sex pheromone itself. The observed behavioral modification is accompanied by an increase in the sensitivity of olfactory neurons in the antennal lobe. Our data provide thus evidence for cross-modal experience-dependent plasticity not only on the behavioral level...... at the behavioral and central nervous level. Here we show that this effect is not confined to the same sensory modality: the sensitivity of olfactory neurons can also be modulated by exposure to a different sensory stimulus, i.e., a pulsed stimulus mimicking echolocating sounds from attacking insectivorous bats. We...... tested responses of preexposed male moths in a walking bioassay and recorded from neurons in the primary olfactory center, the antennal lobe. We show that brief exposure to a bat call, but not to a behaviorally irrelevant tone, increases the behavioral sensitivity of male moths to sex pheromone 24 h...

  5. Phylogenic aspects of the amphibian dual olfactory system.

    Science.gov (United States)

    Taniguchi, Kazumi; Saito, Shouichiro; Oikawa, Toshihiro; Taniguchi, Kazuyuki

    2008-01-01

    The phylogenic significance of the subdivision of dual olfactory system is reviewed mainly on the basis of our findings by electron microscopy and lectin histochemistry in the three amphibian species. The dual olfactory system is present in common in these species and consists of the projection from the olfactory epithelium (OE) to the main olfactory bulb (MOB) and that from the vomeronasal epithelium (VNE) to the accessory olfactory bulb (AOB). The phylogenic significance of subdivisions in the dual olfactory system in the amphibian must differently be interpreted. The subdivision of the MOB into its dorsal region (D-MOB) and ventral region (V-MOB) in Xenopus laevis must be attributed to the primitive features in their olfactory receptors. The middle cavity epithelium lining the middle cavity of this frog possesses both ciliated sensory cells and microvillous sensory cells, reminding the OE in fish. The subdivision of the AOB into the rostral (R-AOB) and caudal part (C-AOB) in Bufo japonicus formosus must be regarded as an advanced characteristic. The lack of subdivisions in both MOB and AOB in Cynops pyrrhogaster may reflect their phylogenic primitiveness. Since our lectin histochemistry to detect glycoconjugates expressed in the olfactory pathway reveals the subdivisions in the dual olfactory system in the amphibian, the glycoconjugates may deeply participate in the organization and function of olfactory pathways in phylogeny.

  6. Primary olfactory projections and the nervus terminalis in the African lungfish: implications for the phylogeny of cranial nerves.

    Science.gov (United States)

    von Bartheld, C S; Claas, B; Münz, H; Meyer, D L

    1988-08-01

    Primary olfactory and central projections of the nervus terminalis were investigated by injections of horseradish peroxidase into the olfactory epithelium in the African lungfish. In addition, gonadotropin-releasing hormone (GnRH) immunoreactivity of the nervus terminalis system was investigated. The primary olfactory projections are restricted to the olfactory bulb located at the rostral pole of the telencephalon; they do not extend into caudal parts of the telencephalon. A vomeronasal nerve and an accessory olfactory bulb could not be identified. The nervus terminalis courses through the dorsomedial telencephalon. Major targets include the nucleus of the anterior commissure and the nucleus praeopticus pars superior. some fibers cross to the contralateral side. A few fibers reach the diencephalon and mesencephalon. No label is present in the "posterior root of the nervus terminalis" (= "Pinkus's nerve" or "nervus praeopticus"). GnRH immunoreactivity is lacking in the "anterior root of the nervus terminalis," whereas it is abundant in nervus praeopticus (Pinkus's nerve). These findings may suggest that the nervus terminalis system originally consisted of two distinct cranial nerves, which have fused-in evolution-in most vertebrates. Theories of cranial nerve phylogeny are discussed in the light of the assumed "binerval origin" of the nervus terminalis system.

  7. Urban air pollution: influences on olfactory function and pathology in exposed children and young adults.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8+/-8.5 years were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC/25 controls 21.2+/-2.7 years. MC subjects had significantly lower UPSIT scores: 34.24+/-0.42 versus controls 35.76+/-0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE epsilon 4 carriers failed 2.4+/-0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36+/-0.16 items, p=0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid betaA(42) (29/35) and/or alpha-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. Copyright 2009 Elsevier GmbH. All rights reserved.

  8. Sevoflurane impairs post-operative olfactory memory but preserves olfactory function.

    Science.gov (United States)

    Kostopanagiotou, Georgia; Kalimeris, Konstantinos; Kesidis, Kyriakos; Matsota, Paraskevi; Dima, Cleanthi; Economou, Maria; Papageorgiou, Charalambos

    2011-01-01

    The effect of anaesthesia on olfaction has not been systematically studied. Our aim is to compare the effects of general and regional anaesthesia on olfactory acuity and memory in the immediate post-operative period. Sixty adult patients with the American Society of Anesthesiologists I and II status scheduled for elective minor surgery were included. Exclusion criteria were smoking, alcoholism, psychiatric disease and recent or past airway infection with resulting hyposmia. Patients were randomly allocated to one of three groups (in the analysis, n = 16 in each group): epidural anaesthesia (group E), general anaesthesia with propofol (group P) and general anaesthesia with sevoflurane (group S) of 40-120 min duration. The evening before surgery, at 0.5 and at 3 h post-operatively olfactory acuity and memory were tested, along with blood sampling to measure plasma melatonin and oxytocin levels. Olfactory acuity was tested with successive dilutions of n-butyl-alcohol, and olfactory memory (interpretation of odours) with the University of Pennsylvania Smell Identification Test. Patient characteristics did not differ between groups. Olfactory acuity was intact in all patients, before and after anaesthesia. Olfactory memory deteriorated in group S compared to groups P and E at both post-operative time-points. This was accompanied by a significant post-operative reduction of plasma melatonin levels in group S. Oxytocin levels remained constant in all groups. Our results manifest a specific effect of sevoflurane on olfactory memory, not observed with neuraxial or total intravenous anaesthesia. The misinterpretation of odours in the immediate post-operative period by sevoflurane could be mediated by the decreased levels of melatonin.

  9. Executive Dysfunction

    Science.gov (United States)

    Rabinovici, Gil D.; Stephens, Melanie L.; Possin, Katherine L.

    2015-01-01

    Purpose of Review: Executive functions represent a constellation of cognitive abilities that drive goal-oriented behavior and are critical to the ability to adapt to an ever-changing world. This article provides a clinically oriented approach to classifying, localizing, diagnosing, and treating disorders of executive function, which are pervasive in clinical practice. Recent Findings: Executive functions can be split into four distinct components: working memory, inhibition, set shifting, and fluency. These components may be differentially affected in individual patients and act together to guide higher-order cognitive constructs such as planning and organization. Specific bedside and neuropsychological tests can be applied to evaluate components of executive function. While dysexecutive syndromes were first described in patients with frontal lesions, intact executive functioning relies on distributed neural networks that include not only the prefrontal cortex, but also the parietal cortex, basal ganglia, thalamus, and cerebellum. Executive dysfunction arises from injury to any of these regions, their white matter connections, or neurotransmitter systems. Dysexecutive symptoms therefore occur in most neurodegenerative diseases and in many other neurologic, psychiatric, and systemic illnesses. Management approaches are patient specific and should focus on treatment of the underlying cause in parallel with maximizing patient function and safety via occupational therapy and rehabilitation. Summary: Executive dysfunction is extremely common in patients with neurologic disorders. Diagnosis and treatment hinge on familiarity with the clinical components and neuroanatomic correlates of these complex, high-order cognitive processes. PMID:26039846

  10. Olfactory memory traces in Drosophila

    OpenAIRE

    Berry, Jacob; Krause, William C.; Davis, Ronald L.

    2008-01-01

    In Drosophila the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons’ response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed...

  11. Mitochondrial dysfunction in obesity.

    Science.gov (United States)

    de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza

    2018-01-01

    Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Olfactory bulb proteins linked to olfactory memory in C57BL/6J mice.

    Science.gov (United States)

    Li, Lin; Mauric, Veronika; Zheng, Jun-Fang; Kang, Sung Ung; Patil, Sudarshan; Höger, Harald; Lubec, Gert

    2010-08-01

    Information on systematic analysis of olfactory memory-related proteins is poor. In this study, the odor discrimination task to investigate olfactory recognition memory of adult male C57BL/6J mice was used. Subsequently, olfactory bulbs (OBs) were taken, proteins extracted, and run on two-dimensional gel electrophoresis with in-gel-protein digestion, followed by mass spectrometry and quantification of differentially expressed proteins. Dual specificity mitogen-activated protein kinase kinase 1 (MEK1), dihydropyrimidinase-related protein 1 (DRP1), and fascin are related with Lemon odor memory. Microtubule-associated protein RP/EB family member 3 is related to Rose odor memory. Hypoxanthine-guanine phosphoribosyltransferase is related with both Lemon and Rose odors memory. MEK1 and DRP1 levels were increased, while microtubule-associated protein RP/EB family member 3, fascin and hypoxanthine-guanine phosphoribosyltransferase levels were decreased during olfactory memory. In summary, neurogenesis, signal transduction, cytoskeleton, and nucleotide metabolism are involved in olfactory memory formation and storage of C57BL/6J mice.

  13. Nested Expression Domains for Odorant Receptors in Zebrafish Olfactory Epithelium

    Science.gov (United States)

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-11-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system.

  14. File list: Unc.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Olfactory_epithelium.bed ...

  15. File list: Unc.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.20.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.20.AllAg.Olfactory_epithelium.bed ...

  16. File list: Unc.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Olfactory_epithelium mm9 Unclassified Others Olfactory epithelium ...SRX112960 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Olfactory_epithelium.bed ...

  17. Olfactory neuroblastoma complicated by postirradiation pneumocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Fusejima, Toru; Matsumura, Kenichirou; Hayano, Makoto [Mito Saiseikai Hospital (Japan)

    1990-11-01

    A 56-year-old male was admitted with the complaints of nasal bleeding, gait disturbance, and disturbance of consciousness. Neurological examination revealed drowsiness, right hemiparesis, and choked discs. Computed tomography scan showed an enhanced mass at the frontal base, which extended to the left nasal and paranasal cavities. Angiography showed a tumor stain with a mass sign. The intracranial part of the tumor was removed completely and he was discharged ambulatorily. Two months after surgery, however, he was admitted again for the regrowth of the tumor. Ventriculoperitoneal shunting was emplaced and radiation therapy was given to the brain and nasal cavity. After 3000 rad irradiation the clinical condition suddenly became worse because of pneumocephalus. The cranial tumor disappeared after irradiation but he died of metastases and general prostration. Clinically this case was diagnosed as an olfactory groove meningioma at first, but immunohistochemical diagnosis was olfactory neuroblastoma. (author).

  18. Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury.

    Science.gov (United States)

    Radtke, Christine; Wewetzer, Konstantin; Reimers, Kerstin; Vogt, Peter M

    2011-01-01

    Traumatic events, such as work place trauma or motor vehicle accident violence, result in a significant number of severe peripheral nerve lesions, including nerve crush and nerve disruption defects. Transplantation of myelin-forming cells, such as Schwann cells (SCs) or olfactory ensheathing cells (OECs), may be beneficial to the regenerative process because the applied cells could mediate neurotrophic and neuroprotective effects by secretion of chemokines. Moreover, myelin-forming cells are capable of bridging the repair site by establishing an environment permissive to axonal regeneration. The cell types that are subject to intense investigation include SCs and OECs either derived from the olfactory bulb or the olfactory mucosa, stromal cells from bone marrow (mesenchymal stem cells, MSCs), and adipose tissue-derived cells. OECs reside in the peripheral and central nervous system and have been suggested to display unique regenerative properties. However, so far OECs were mainly used in experimental studies to foster central regeneration and it was not until recently that their regeneration-promoting activity for the peripheral nervous system was recognized. In the present review, we summarize recent experimental evidence regarding the regenerative effects of OECs applied to the peripheral nervous system that may be relevant to design novel autologous cell transplantation therapies. © 2011 Cognizant Comm. Corp.

  19. MRI of the olfactory bulbs and sulci in human fetuses

    International Nuclear Information System (INIS)

    Azoulay, Robin; Grabar, Sophie; Kalifa, Gabriel; Adamsbaum, Catherine; Fallet-Bianco, Catherine; Garel, Catherine

    2006-01-01

    There is limited knowledge of the MRI pattern of the development of fetal olfactory bulbs and sulci. To describe the MRI appearance of olfactory bulbs and sulci in normal in vivo fetuses according to gestational age. Olfactory bulbs and sulci were retrospectively assessed on brain MRI examinations of 88 normal fetuses between 24 and 39 weeks gestational age. Two reference centres were involved in the study and both used routine protocols that included axial and coronal T2- and T1-weighted sequences at 1.5 T. The results were compared both with the commonly used neuropathological data in the literature and with personal neuropathological data. Pearson's chi-squared test or Fisher's exact test were performed. One case of olfactory agenesis associated with CHARGE syndrome was identified. T2-weighted coronal sequences were the most sensitive for detecting olfactory bulbs and sulci. Olfactory sulci were significantly better detected from 30 weeks onwards (90.9-100%; P<0.001). MRI showed a posteroanterior development of these sulci. Olfactory bulbs were better detected from 30 to 34 weeks (80-90.9%; P<0.002). Comparison with neuropathological data confirmed the posteroanterior development of the sulci and showed an important delay in detection of the olfactory structures (bulbs and sulci). No difference was observed between the two centres involved. To date, fetal MRI can depict olfactory sulci from 30 weeks gestational age onwards and olfactory bulbs from 30 to 34 weeks gestational age. This preliminary reference standard is useful to assess the normality of the olfactory system and to diagnose olfactory agenesis. (orig.)

  20. Olfactory Information Processing in the Drosophila Antennal Lobe : Anything Goes?

    OpenAIRE

    Silbering, Ana F.; Okada, Ryuichi; Ito, Kei; Galizia, Cosmas Giovanni

    2008-01-01

    When an animal smells an odor, olfactory sensory neurons generate an activity pattern across olfactory glomeruli of the first sensory neuropil, the insect antennal lobe or the vertebrate olfactory bulb. Here, several networks of local neurons interact with sensory neurons and with output neurons-insect projection neurons, or vertebrate mitral/tufted cells. The extent and form of information processing taking place in these local networks has been subject of controversy. To investigate the ro...

  1. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  2. Early Olfactory Processing in Drosophila: Mechanisms and Principles

    OpenAIRE

    Wilson, Rachel I.

    2013-01-01

    In the olfactory system of Drosophila melanogaster, it is relatively straightforward to make in vivo measurements of activity in neurons corresponding to targeted processing. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antenna...

  3. Modeling peripheral olfactory coding in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Derek J Hoare

    Full Text Available The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs, enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%-77% (mean for all odors 45.2% but was always significantly above chance (5.6%. However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain.

  4. Genetic diversity of canine olfactory receptors

    Directory of Open Access Journals (Sweden)

    Hitte Christophe

    2009-01-01

    Full Text Available Abstract Background Evolution has resulted in large repertoires of olfactory receptor (OR genes, forming the largest gene families in mammalian genomes. Knowledge of the genetic diversity of olfactory receptors is essential if we are to understand the differences in olfactory sensory capability between individuals. Canine breeds constitute an attractive model system for such investigations. Results We sequenced 109 OR genes considered representative of the whole OR canine repertoire, which consists of more than 800 genes, in a cohort of 48 dogs of six different breeds. SNP frequency showed the overall level of polymorphism to be high. However, the distribution of SNP was highly heterogeneous among OR genes. More than 50% of OR genes were found to harbour a large number of SNP, whereas the rest were devoid of SNP or only slightly polymorphic. Heterogeneity was also observed across breeds, with 25% of the SNP breed-specific. Linkage disequilibrium within OR genes and OR clusters suggested a gene conversion process, consistent with a mean level of polymorphism higher than that observed for introns and intergenic sequences. A large proportion (47% of SNP induced amino-acid changes and the Ka/Ks ratio calculated for all alleles with a complete ORF indicated a low selective constraint with respect to the high level of redundancy of the olfactory combinatory code and an ongoing pseudogenisation process, which affects dog breeds differently. Conclusion Our demonstration of a high overall level of polymorphism, likely to modify the ligand-binding capacity of receptors distributed differently within the six breeds tested, is the first step towards understanding why Labrador Retrievers and German Shepherd Dogs have a much greater potential for use as sniffer dogs than Pekingese dogs or Greyhounds. Furthermore, the heterogeneity in OR polymorphism observed raises questions as to why, in a context in which most OR genes are highly polymorphic, a subset of

  5. Functional neuroanatomy of Drosophila olfactory memory formation.

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L

    2014-10-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. © 2014 Guven-Ozkan and Davis; Published by Cold Spring Harbor Laboratory Press.

  6. Humans and mice express similar olfactory preferences.

    Directory of Open Access Journals (Sweden)

    Nathalie Mandairon

    Full Text Available In humans, the pleasantness of odors is a major contributor to social relationships and food intake. Smells evoke attraction and repulsion responses, reflecting the hedonic value of the odorant. While olfactory preferences are known to be strongly modulated by experience and learning, it has been recently suggested that, in humans, the pleasantness of odors may be partly explained by the physicochemical properties of the odorant molecules themselves. If odor hedonic value is indeed predetermined by odorant structure, then it could be hypothesized that other species will show similar odor preferences to humans. Combining behavioral and psychophysical approaches, we here show that odorants rated as pleasant by humans were also those which, behaviorally, mice investigated longer and human subjects sniffed longer, thereby revealing for the first time a component of olfactory hedonic perception conserved across species. Consistent with this, we further show that odor pleasantness rating in humans and investigation time in mice were both correlated with the physicochemical properties of the molecules, suggesting that olfactory preferences are indeed partly engraved in the physicochemical structure of the odorant. That odor preferences are shared between mammal species and are guided by physicochemical features of odorant stimuli strengthens the view that odor preference is partially predetermined. These findings open up new perspectives for the study of the neural mechanisms of hedonic perception.

  7. Anatomy, histochemistry and immunohistochemistry of the olfactory subsystems in mice

    Directory of Open Access Journals (Sweden)

    Arthur William Barrios

    2014-07-01

    Full Text Available The four regions of the murine nasal cavity featuring olfactory neurons were studied anatomically and by labelling with lectins and relevant antibodies with a view to establishing criteria for the identification of olfactory subsystems that are readily applicable to other mammals. In the main olfactory epithelium and the septal organ the olfactory sensory neurons (OSNs are embedded in quasi-stratified columnar epithelium; vomeronasal OSNs are embedded in epithelium lining the medial interior wall of the vomeronasal duct and do not make contact with the mucosa of the main nasal cavity; and in Grüneberg’s ganglion a small isolated population of OSNs lies adjacent to, but not within, the epithelium. With the exception of Grüneberg’s ganglion, all the tissues expressing olfactory marker protein (OMP (the above four nasal territories, the vomeronasal and main olfactory nerves, and the main and accessory olfactory bulbs are also labelled by Lycopersicum esculentum agglutinin, while Ulex europaeus agglutinin I labels all and only tissues expressing Gi2 (the apical sensory neurons of the vomeronasal organ, their axons, and their glomerular destinations in the anterior accessory olfactory bulb. These staining patterns of UEA-I and LEA may facilitate the characterization of olfactory anatomy in other species. A 710-section atlas of the anatomy of the murine nasal cavity has been made available on line.

  8. Unprotected daily sun exposure is differently associated with central adiposity and beta-cell dysfunction by gender: The Korean national health and nutrition examination survey (KNHANES) V

    Energy Technology Data Exchange (ETDEWEB)

    Ohn, Jung Hun [Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon (Korea, Republic of); Kwon, In Ho [Department of Dermatology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong (Korea, Republic of); Park, Juri; Ryu, Ohk Hyun; Lee, Seong Jin; Kim, Doo-Man; Ihm, Sung-Hee; Choi, Moon-Gi; Yoo, Hyung Joon [Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon (Korea, Republic of); Hong, Eun-Gyoung, E-mail: hegletter@hallym.or.kr [Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon (Korea, Republic of)

    2014-08-15

    Background: Ultraviolet irradiation by sun exposure has been associated with both harms and benefits to metabolic health. Objective: The objective of this study was to determine whether unprotected daily sun exposure is associated with the prevalence of diabetes and explore the underlying mechanism. Methods: We analyzed the Korean National Health and Nutrition Survey V from 2010 to 2011. Participants 19–60 years of age were asked about the average amount of time they had been exposed to direct sunlight per day since the age of 19. We categorized participants into three groups with different levels of lifetime daily sun exposure and explored the association of sun exposure with the prevalence of diabetes. Results: The risk of diabetes was higher in subjects with more than 5 h of unprotected sun exposure per day, with an odds ratio of 2.39 (95% CI 1.75–3.25), compared to those with less than 2 h of sun exposure, and the association remained significant after adjusting for diabetes risk factors. Long-term sun exposure was associated with increased central obesity and the possibility of an increase in visceral adiposity, especially among women, and with decrease in beta cell function and peripheral adiposity or percent body fat in men. Conclusions: Our study provides a cutoff for upper limit of sun exposure and suggests unprotected daily sun exposure for more than 5 h should be avoided to prevent diabetes. Increased central adiposity and decreased beta cell function were observed in women and men, respectively, who had long-term unprotected daily sun exposure. - Highlights: • Sun exposure for more than 5 h per day is associated with diabetes risk. • Insulin resistance associated with visceral adiposity may play a role in women. • Insulin secretory defect may explain diabetes risk in men.

  9. Unprotected daily sun exposure is differently associated with central adiposity and beta-cell dysfunction by gender: The Korean national health and nutrition examination survey (KNHANES) V

    International Nuclear Information System (INIS)

    Ohn, Jung Hun; Kwon, In Ho; Park, Juri; Ryu, Ohk Hyun; Lee, Seong Jin; Kim, Doo-Man; Ihm, Sung-Hee; Choi, Moon-Gi; Yoo, Hyung Joon; Hong, Eun-Gyoung

    2014-01-01

    Background: Ultraviolet irradiation by sun exposure has been associated with both harms and benefits to metabolic health. Objective: The objective of this study was to determine whether unprotected daily sun exposure is associated with the prevalence of diabetes and explore the underlying mechanism. Methods: We analyzed the Korean National Health and Nutrition Survey V from 2010 to 2011. Participants 19–60 years of age were asked about the average amount of time they had been exposed to direct sunlight per day since the age of 19. We categorized participants into three groups with different levels of lifetime daily sun exposure and explored the association of sun exposure with the prevalence of diabetes. Results: The risk of diabetes was higher in subjects with more than 5 h of unprotected sun exposure per day, with an odds ratio of 2.39 (95% CI 1.75–3.25), compared to those with less than 2 h of sun exposure, and the association remained significant after adjusting for diabetes risk factors. Long-term sun exposure was associated with increased central obesity and the possibility of an increase in visceral adiposity, especially among women, and with decrease in beta cell function and peripheral adiposity or percent body fat in men. Conclusions: Our study provides a cutoff for upper limit of sun exposure and suggests unprotected daily sun exposure for more than 5 h should be avoided to prevent diabetes. Increased central adiposity and decreased beta cell function were observed in women and men, respectively, who had long-term unprotected daily sun exposure. - Highlights: • Sun exposure for more than 5 h per day is associated with diabetes risk. • Insulin resistance associated with visceral adiposity may play a role in women. • Insulin secretory defect may explain diabetes risk in men

  10. Retro- and orthonasal olfactory function in relation to olfactory bulb volume in patients with hypogonadotrophic hypogonadism.

    Science.gov (United States)

    Salihoglu, Murat; Kurt, Onuralp; Ay, Seyid Ahmet; Baskoy, Kamil; Altundag, Aytug; Saglam, Muzaffer; Deniz, Ferhat; Tekeli, Hakan; Yonem, Arif; Hummel, Thomas

    2017-08-24

    Idiopathic hypogonadotrophic hypogonadism (IHH) with an olfactory deficit is defined as Kallmann syndrome (KS) and is distinct from normosmic IHH. Because olfactory perception not only consists of orthonasally gained impressions but also involves retronasal olfactory function, in this study we decided to comprehensively evaluate both retronasal and orthonasal olfaction in patients with IHH. This case-control study included 31 controls and 45 IHH patients. All participants whose olfactory and taste functions were evaluated with orthonasal olfaction (discrimination, identification and threshold), retronasal olfaction, taste function and olfactory bulb volume (OBV) measurement. The patients were separated into three groups according to orthonasal olfaction: anosmic IHH (aIHH), hyposmic IHH (hIHH) and normosmic IHH (nIHH). Discrimination, identification and threshold scores of patients with KS were significantly lower than controls. Threshold scores of patients with nIHH were significantly lower than those of controls, but discrimination and identification scores were not significantly different. Retronasal olfaction was reduced only in the aIHH group compared to controls. Identification of bitter, sweet, sour, and salty tastes was not significantly different when compared between the anosmic, hyposmic, and normosmic IHH groups and controls. OBV was lower bilaterally in all patient groups when compared with controls. The OBV of both sides was found to be significantly correlated with TDI scores in IHH patients. 1) There were no significant differences in gustatory function between controls and IHH patients; 2) retronasal olfaction was reduced only in anosmic patients but not in orthonasally hyposmic participants, possibly indicating presence of effective compensatory mechanisms; 3) olfactory bulb volumes were highly correlated with olfaction scores in the HH group. The current results indicate a continuum from anosmia to normosmia in IHH patients. Copyright © 2017

  11. Dysfunctional Families: One Central Theme in Two Fictional Works of Tony Morrison, Song of Solomon and Sula Familias Disfuncionales: Un Tema Central en Dos Novelas de Toni Morrison, Canción de Salomón y Sula

    Directory of Open Access Journals (Sweden)

    Luís Fernando Gómez R.

    2009-06-01

    Full Text Available Toni Morrison, Nobel Prize winner (1993, has been recognized as one of the most prominent novelists in the USA today. Her novels Song of Solomon and Sula rank enormous and original literary creativity through which she shows what it means to survive as an individual in the black families of America. Hence, this article explores the desperation and vulnerabilities of children who grow up in dysfunctional families and how they experience trauma and pain from their parents' unconventional actions and behaviors. The article accounts of the irregular experiences that the main characters of these two novels have to confront at hostile homes as they grow up changed, different from other children, and lack the essential educational guidance that prepare them for adulthood. Children are forced to assume unnatural roles within their families and, consequently, become dysfunctional members of society.En la actualidad, Toni Morrison, ganadora del premio Nóbel (1993, ha sido reconocida como una de las novelistas más prominentes de los Estados Unidos. Sus novelas Canción de Salomón y Sula gozan de poseer una enorme creatividad literaria a través de la cual presenta lo que significa sobrevivir como un miembro de las familias de raza negra en Norteamérica. Por ello, este artículo explora las vulnerabilidades de niños que crecen dentro de familias disfuncionales y de cómo sufren afectivamente a causa de las acciones y comportamientos poco convencionales de sus padres. El artículo discute las experiencias irregulares que los personajes principales de estas dos novelas tienen que enfrentar en hogares hostiles a medida que crecen diferentes a otros niños, carentes de la orientación educativa esencial que los prepare para la vida adulta. Los menores de edad son obligados a asumir roles anormales dentro de sus familias y en consecuencia se convierten en miembros disfuncionales de la sociedad.

  12. Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus.

    Directory of Open Access Journals (Sweden)

    James C Walton

    Full Text Available Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD and short day lengths (SD for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.

  13. Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions.

    Directory of Open Access Journals (Sweden)

    Masami Watabe-Rudolph

    Full Text Available Atrophy of the olfactory epithelium (OE associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc(-/- with short telomeres compared to wild type mice (mTerc(+/+ with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc(-/- mice compared to mTerc(+/+ mice. Seven days after chemical induced damage, G3 mTerc(-/- mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc(+/+ mice (p = 0.031. Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21 rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people.

  14. Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance.

    Science.gov (United States)

    Tam, Shu K E; Hasan, Sibah; Choi, Harry M C; Brown, Laurence A; Jagannath, Aarti; Hughes, Steven; Hankins, Mark W; Foster, Russell G; Vyazovskiy, Vladyslav V; Bannerman, David M; Peirson, Stuart N

    2017-03-29

    synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod). Copyright © 2017 Tam et al.

  15. Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance

    Science.gov (United States)

    Tam, Shu K.E.; Hasan, Sibah; Brown, Laurence A.; Jagannath, Aarti; Hankins, Mark W.; Foster, Russell G.; Vyazovskiy, Vladyslav V.

    2017-01-01

    synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod). PMID:28264977

  16. Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short term memory task

    Directory of Open Access Journals (Sweden)

    Sasha eDevore

    2012-09-01

    Full Text Available Cholinergic inputs to cortical processing networks have long been associated with attentional and top-down processing. Experimental and theoretical studies suggest that cholinergic inputs to the main olfactory bulb (OB can modulate both neural and behavioral odor discrimination. Previous experiments from our laboratory and others demonstrate that blockade of nicotinic receptors directly impairs olfactory discrimination, whereas blockade of muscarinic receptors only measurably impairs olfactory perception when task demands are made more challenging, such as when very low-concentration odors are used or rats are required to maintain sensory memory over long durations. To further investigate the role of muscarinic signaling in the OB, we developed an olfactory delayed match-to-sample task using a digging-based behavioral paradigm. We find that rats are able to maintain robust short-term odor memory for tens to hundreds of seconds. To investigate the role of muscarinic signaling in task performance, we bilaterally infused scopolamine into the OB. We find that high dosages of scopolamine (38 mM impair performance on the task across all delays tested, including the baseline condition with no delay, whereas lower dosages (7.6 mM and 22.8 mM had no measureable effects. These results indicate that general execution of the match-to-sample task, even with no delay, is at least partially dependent on muscarinic signaling in the OB.

  17. Olfactory lateralization in homing pigeons: a GPS study on birds released with unilateral olfactory inputs.

    Science.gov (United States)

    Gagliardo, Anna; Filannino, Caterina; Ioalè, Paolo; Pecchia, Tommaso; Wikelski, Martin; Vallortigara, Giorgio

    2011-02-15

    A large body of evidence has shown that pigeons rely on an olfactory-based navigational map when homing from unfamiliar locations. Previous studies on pigeons released with one nostril occluded highlighted an asymmetry in favour of the right nostril, particularly concerning the initial orientation performance of naïve birds. Nevertheless, all pigeons experiencing only unilateral olfactory input showed impaired homing, regardless of the side of the occluded nostril. So far this phenomenon has been documented only by observing the birds' vanishing bearings. In the present work we recorded the flight tracks of pigeons with previous homing experience equipped with a GPS data logger and released from an unfamiliar location with the right or the left nostril occluded. The analysis of the tracks revealed that the flight path of the birds with the right nostril occluded was more tortuous than that of unmanipulated controls. Moreover, the pigeons smelling with the left nostril interrupted their journey significantly more frequently and displayed more exploratory activity than the control birds, e.g. during flights around a stopover site. These data suggest a more important involvement of the right olfactory system in processing the olfactory information needed for the operation of the navigational map.

  18. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses

    Directory of Open Access Journals (Sweden)

    Max L Fletcher

    2012-03-01

    Full Text Available The anatomical organization of receptor neuron input into the olfactory bulb (OB allows odor information to be transformed into an odorant-specific spatial map of mitral/tufted cell glomerular activity at the upper level of the olfactory bulb. In other sensory systems, neuronal representations of stimuli can be reorganized or enhanced following learning. While the mammalian OB has been shown to undergo experience-dependent plasticity at the glomerular level, it is still unclear if similar representational change occurs within mitral/tufted cell glomerular odor representations following learning. To address this, odorant-evoked glomerular activity patterns were imaged in mice expressing a GFP-based calcium indicator (GCaMP2 in OB mitral/tufted cells. Glomerular odor responses were imaged before and after olfactory associative conditioning to aversive foot shock. Following conditioning, we found no overall reorganization of the glomerular representation. Training, however, did significantly alter the amplitudes of individual glomeruli within the representation in mice in which the odor was presented together with foot shock. Further, the specific pairing of foot shock with odor presentations lead to increased responses primarily in initially weakly activated glomeruli. Overall, these results suggest that associative conditioning can enhance the initial representation of odors within the olfactory bulb by enhancing responses to the learned odor in some glomeruli.

  19. Long-term potentiation and olfactory memory formation in the carp (Cyprinus carpio L.) olfactory bulb.

    Science.gov (United States)

    Satou, M; Anzai, S; Huruno, M

    2005-05-01

    Long-term potentiation of synaptic transmission is considered to be an elementary process underlying the cellular mechanism of memory formation. In the present study we aimed to examine whether or not the dendrodendritic mitral-to-granule cell synapses in the carp olfactory bulb show plastic changes after their repeated activation. It was found that: (1) the dendrodendritic mitral-to-granule cell synapses showed three types of plasticity after tetanic electrical stimulation applied to the olfactory tract-long-term potentiation (potentiation lasting >1 h), short-term potentiation (potentiation lasting 1 h) of the odor-evoked bulbar response accompanied the electrically-induced LTP, and; (4) repeated olfactory stimulation enhanced dendrodendritic mitral-to-granule cell transmission. Based on these results, it was proposed that long-term potentiation (as well as olfactory memory) occurs at the dendrodendritic mitral-to-granule cell synapses after strong and long-lasting depolarization of granule cells, which follows repeated and simultaneous synaptic activation of both the peripheral and deep dendrites (or somata).

  20. A second look at the structure of human olfactory memory.

    Science.gov (United States)

    White, Theresa L

    2009-07-01

    How do we remember olfactory information? Is the architecture of human olfactory memory unique compared with that of memory for other types of stimuli? Ten years ago, a review article evaluated these questions, as well as the distinction between long- and short-term olfactory memory, with three lines of evidence: capacity differences, coding differences, and neuropsychological evidence, though serial position effects were also considered. From the data available at the time, the article preliminarily suggested that olfactory memory was a two-component system that was not qualitatively different from memory systems for other types of stimuli. The decade that has elapsed since then has ushered in considerable changes in theories of memory structure and provided huge advances in neuroscience capabilities. Not only have many studies exploring various aspects of olfactory memory been published, but a model of olfactory perception that includes an integral unitary memory system also has been presented. Consequently, the structure of olfactory memory is reevaluated in the light of further information currently available with the same theoretical lines of evidence previously considered. This evaluation finds that the preponderance of evidence suggests that, as in memory for other types of sensory stimuli, the short-term-long-term distinction remains a valuable dissociation for conceptualizing olfactory memory, though perhaps not as architecturally separate systems.

  1. Comparison between olfactory function of pregnant women and non ...

    African Journals Online (AJOL)

    A structured questionnaire was administered to obtain participants' information on socio-demographics, pregnancy history, and ability to perceive smell. They subjectively rated their olfactory function on a visual analogue scale of 0 – 100. Olfactory threshold (OT), discrimination (OD), identification (OI) scores and TDI of both ...

  2. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    Science.gov (United States)

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  3. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  4. Odor memories regulate olfactory receptor expression in the sensory periphery.

    Science.gov (United States)

    Claudianos, Charles; Lim, Julianne; Young, Melanie; Yan, Shanzhi; Cristino, Alexandre S; Newcomb, Richard D; Gunasekaran, Nivetha; Reinhard, Judith

    2014-05-01

    Odor learning induces structural and functional modifications throughout the olfactory system, but it is currently unknown whether this plasticity extends to the olfactory receptors (Or) in the sensory periphery. Here, we demonstrate that odor learning induces plasticity in olfactory receptor expression in the honeybee, Apis mellifera. Using quantitative RT-PCR analysis, we show that six putative floral scent receptors were differentially expressed in the bee antennae depending on the scent environment that the bees experienced. Or151, which we characterized using an in vitro cell expression system as a broadly tuned receptor binding floral odorants such as linalool, and Or11, the specific receptor for the queen pheromone 9-oxo-decenoic acid, were significantly down-regulated after honeybees were conditioned with the respective odorants in an olfactory learning paradigm. Electroantennogram recordings showed that the neural response of the antenna was similarly reduced after odor learning. Long-term odor memory was essential for inducing these changes, suggesting that the molecular mechanisms involved in olfactory memory also regulate olfactory receptor expression. Our study demonstrates for the first time that olfactory receptor expression is experience-dependent and modulated by scent conditioning, providing novel insight into how molecular regulation at the periphery contributes to plasticity in the olfactory system. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Neural correlates of taste perception in congenital olfactory impairment

    DEFF Research Database (Denmark)

    Gagnon, Léa; Vestergaard, Martin; Madsen, Kristoffer

    2014-01-01

    taste identification accuracy and its neural correlates using functional magnetic resonance imaging (fMRI) in 12 congenitally olfactory impaired individuals and 8 normosmic controls. Results showed that taste identification was worse in congenitally olfactory impaired compared to control subjects. The fMRI...

  6. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  7. [Microsurgical removal of olfactory groove meningiomas].

    Science.gov (United States)

    Liang, Ri-Sheng; Zhou, Liang-Fu; Mao, Ying; Zhang, Rong; Yang, Wei-Zhong

    2011-01-01

    To explore an effective method for further improving the surgical results of treatment of olfactory groove meningiomas. Sixty seven cases of olfactory groove meningiomas were treated by microneurosurgery, among which fifty seven were de novo cases, eight were recurrent tumors and the other two re-recurrent cases. Modified Derome approach was used in 12 cases, bilateral subfrontal approach in 28 cases, modified pterional approach in 21 cases and unilateral subfrontal approach in six cases. Tumors were resected microsurgically with radical removal of invaded dura, bone, and paranasal sinus mucosa. Reconstruction was performed in patients with skull base defect. Simpson grade I removal was accomplished in 59 cases, grade II in seven cases and grade IV in one case. Among 57 patients with de novo tumor, Simpson I resection was accomplished in 54 cases. Postoperative rhinorrhea and intracranial infection occurred in one case and was cured after temporal lumbar CSF drainage and antibiotic therapy. Two patients (2.9%) died within one month after operation, i.e.one aged patient of heart failure and the other of severe hypothalamus complication. Forty seven patients (72.3%) were followed up from one to ten years with an average of five years and four months. With the exception of two cases died, among the alive 45 patients, there were only three patients with tumor recurrence, which had undergone Simpson II or IV tumor resection. No recurrence was found in cases with Simpson I tumor removal. Previous blurred vision was not improved in three patients, hemiparalysis in two patients, and the other patients recovered well, resuming previous jobs or being able to take care themselves. Total tumor removal (Simpson I) should be the surgical goal for treatment of olfactory groove meningiomas, especially for de novo cases. An appropriate approach is fundamental in the effort to remove an OGM totally. Appropriate anterior skull base reconstruction with vascularized material is

  8. Lateral presynaptic inhibition mediates gain control in an olfactory circuit.

    Science.gov (United States)

    Olsen, Shawn R; Wilson, Rachel I

    2008-04-24

    Olfactory signals are transduced by a large family of odorant receptor proteins, each of which corresponds to a unique glomerulus in the first olfactory relay of the brain. Crosstalk between glomeruli has been proposed to be important in olfactory processing, but it is not clear how these interactions shape the odour responses of second-order neurons. In the Drosophila antennal lobe (a region analogous to the vertebrate olfactory bulb), we selectively removed most interglomerular input to genetically identified second-order olfactory neurons. Here we show that this broadens the odour tuning of these neurons, implying that interglomerular inhibition dominates over interglomerular excitation. The strength of this inhibitory signal scales with total feedforward input to the entire antennal lobe, and has similar tuning in different glomeruli. A substantial portion of this interglomerular inhibition acts at a presynaptic locus, and our results imply that this is mediated by both ionotropic and metabotropic receptors on the same nerve terminal.

  9. Olfactory stimulation modulates the blood glucose level in rats.

    Science.gov (United States)

    Tsuji, Tadataka; Tanaka, Susumu; Bakhshishayan, Sanam; Kogo, Mikihiko; Yamamoto, Takashi

    2018-01-01

    In both humans and animals, chemosensory stimuli, including odors and tastes, induce a variety of physiologic and mental responses related to energy homeostasis, such as glucose kinetics. The present study examined the importance of olfactory function in glucose kinetics following ingestion behavior in a simplified experimental scenario. We applied a conventional glucose tolerance test to rats with and without olfactory function and analyzed subsequent blood glucose (BG) curves in detail. The loss of olfactory input due to experimental damage to the olfactory mucosa induced a marked decrease in the area under the BG curve. Exposure to grapefruit odor and its main component, limonene, both of which activate the sympathetic nerves, before glucose loading also greatly depressed the BG curve. Pre-loading exposure to lavender odor, a parasympathetic activator, stabilized the BG level. These results suggest that olfactory function is important for proper glucose kinetics after glucose intake and that certain fragrances could be utilized as tools for controlling BG levels.

  10. Evaluation of olfactory function in adults with primary hypothyroidism.

    Science.gov (United States)

    Günbey, Emre; Karlı, Rıfat; Gökosmanoğlu, Feyzi; Düzgün, Berkan; Ayhan, Emre; Atmaca, Hulusi; Ünal, Recep

    2015-10-01

    Sufficient clinical data are not available on the effect of hypothyroidism on olfactory function in adults. In this study, we aimed to evaluate the olfactory function of adult patients diagnosed with primary hypothyroidism. Forty-five patients aged between 18 and 60 years who were diagnosed with clinical primary hypothyroidism and 45 healthy controls who had normal thyroid function tests were included in the study. Sniffin' Sticks olfactory test results of the 2 groups were compared. The relationships between thyroid function tests and olfactory parameters were evaluated. Odor threshold, identification, and discrimination scores of the hypothyroid group were significantly lower than those of the control group (p adults with hypothyroidism. FT3 levels were found to have a more significant relationship with olfactory parameters than TSH or FT4 levels. © 2015 ARS-AAOA, LLC.

  11. Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors

    Science.gov (United States)

    Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.

    2015-01-01

    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447

  12. Shared mushroom body circuits underlie visual and olfactory memories in Drosophila

    Science.gov (United States)

    Vogt, Katrin; Schnaitmann, Christopher; Dylla, Kristina V; Knapek, Stephan; Aso, Yoshinori; Rubin, Gerald M; Tanimoto, Hiromu

    2014-01-01

    In nature, animals form memories associating reward or punishment with stimuli from different sensory modalities, such as smells and colors. It is unclear, however, how distinct sensory memories are processed in the brain. We established appetitive and aversive visual learning assays for Drosophila that are comparable to the widely used olfactory learning assays. These assays share critical features, such as reinforcing stimuli (sugar reward and electric shock punishment), and allow direct comparison of the cellular requirements for visual and olfactory memories. We found that the same subsets of dopamine neurons drive formation of both sensory memories. Furthermore, distinct yet partially overlapping subsets of mushroom body intrinsic neurons are required for visual and olfactory memories. Thus, our results suggest that distinct sensory memories are processed in a common brain center. Such centralization of related brain functions is an economical design that avoids the repetition of similar circuit motifs. DOI: http://dx.doi.org/10.7554/eLife.02395.001 PMID:25139953

  13. The functional significance of newly born neurons integrated into olfactory bulb circuits.

    Science.gov (United States)

    Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru

    2014-01-01

    The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons.

  14. Vomeronasal versus olfactory epithelium: is there a cellular basis for human vomeronasal perception?

    Science.gov (United States)

    Witt, Martin; Hummel, Thomas

    2006-01-01

    The vomeronasal organ (VNO) constitutes an accessory olfactory organ that receives chemical stimuli, pheromones, which elicit behavioral, reproductive, or neuroendocrine responses among individuals of the same species. In many macrosmatic animals, the morphological substrate constitutes a separate organ system consisting of a vomeronasal duct (ductus vomeronasalis, VND), equipped with chemosensory cells, and a vomeronasal nerve (nervus vomeronasalis, VNN) conducting information into the accessory olfactory bulb (AOB) in the central nervous system (CNS). Recent data require that the long-accepted dual functionality of a main olfactory system and the VNO be reexamined, since all species without a VNO are nevertheless sexually active, and species possessing a VNO also can sense other than "vomeronasal" stimuli via the vomeronasal epithelium (VNE). The human case constitutes a borderline situation, as its embryonic VNO anlage exerts a developmental track common to most macrosmatics, but later typical structures such as the VNN, AOB, and probably most of the chemoreceptor cells within the still existent VND are lost. This review also presents recent information on the VND including immunohistochemical expression of neuronal markers, intermediate filaments, lectins, integrins, caveolin, CD44, and aquaporins. Further, we will address the issue of human pheromone candidates.

  15. The functional significance of newly born neurons integrated into olfactory bulb circuits

    Directory of Open Access Journals (Sweden)

    Masayuki eSakamoto

    2014-05-01

    Full Text Available The olfactory bulb (OB is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons.

  16. Superior effects of quetiapine compared with aripiprazole and iloperidone on MK-801-induced olfactory memory impairment in female mice.

    Science.gov (United States)

    Mutlu, Ahmet; Mutlu, Oguz; Ulak, Guner; Akar, Furuzan; Kaya, Havva; Erden, Faruk; Tanyeri, Pelin

    2017-05-01

    Cognitive dysfunction is commonly observed in schizophrenic patients and the administration of antipsychotic treatments results in different outcomes. Although the typical antipsychotic treatments, such as haloperidol, appear to be unable to improve cognition dysfunction, the atypical antipsychotic drugs (quetiapine, aripiprazole and iloperidone) exert a beneficial effect. The purpose of the current study was to investigate the effects of atypical antipsychotics on olfactory memory in mice, utilizing the social transmission of food preference (STFP) tests to evaluate the effects of drugs on MK-801-induced cognitive dysfunction. Female BALB/c mice were treated with quetiapine (5 and 10 mg/kg), aripiprazole (3 and 6 mg/kg), iloperidone (0.5 and 1 mg/kg) or MK-801 (0.1 mg/kg) alone or concurrently prior to retention sessions of STFP tests. In the STFP tests, quetiapine (10 mg/kg; P<0.05), aripiprazole (3 and 6 mg/kg; P<0.01 and P<0.001, respectively), iloperidone (0.5 and 1 mg/kg; P<0.01 and P<0.001, respectively) and MK-801 (P<0.001) significantly decreased cued/total food eaten (%). Quetiapine (5 mg/kg; P<0.05) significantly increased MK-801-induced decreases in cued/total food eaten (%), while aripiprazole and iloperidone demonstrated no significant effects. The results revealed that all of the drugs disturbed olfactory memory in the naive mice; however, only quetiapine reversed MK-801-induced memory impairment in the STFP test.

  17. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  18. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease.

    Science.gov (United States)

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.

  19. Multiple reversal olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  20. [Is olfactory function impaired in moderate height?].

    Science.gov (United States)

    Kühn, M; Welsch, H; Zahnert, T; Hummel, Thomas

    2009-09-01

    The human sense of smell seems to be influenced by the surrounding barometric pressure. These factors appear to be especially important during flights, for example, in order to recognize the smell of fire etc. Thus, questions are whether pilots or passengers exhibit an impaired smell sensitivity when tested at moderate heights, or, whether changes in humidity would affect the sense of smell. Using climate chambers, odor discrimination and butanol odor thresholds were tested in 77 healthy normosmic volunteers (5 female, 72 male; aged 25+/-8 years from 18 up to 53 years) under hypobaric (2 700+/-20 m, 20 degrees C+/-1 K, rh=50+/-5%) and hyperbaric, (10+/-0.5 m (2 bar)) and different humidity conditions (30 vs. 80%, 20 degrees C+/-1 K, normobaric). During all conditions cognitive performance was tested. Among other effects, olfactory sensitivity was impaired at threshold, but not suprathreshold level, in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests. During flight hypobaric conditions, mild hypoxia and dry air may cause impaired sensitivity of smell. Georg Thieme Verlag KG Stuttgart * New York.

  1. A model of olfactory associative learning

    Science.gov (United States)

    Tavoni, Gaia; Balasubramanian, Vijay

    We propose a mechanism, rooted in the known anatomy and physiology of the vertebrate olfactory system, by which presentations of rewarded and unrewarded odors lead to formation of odor-valence associations between piriform cortex (PC) and anterior olfactory nucleus (AON) which, in concert with neuromodulators release in the bulb, entrains a direct feedback from the AON representation of valence to a group of mitral cells (MCs). The model makes several predictions concerning MC activity during and after associative learning: (a) AON feedback produces synchronous divergent responses in a localized subset of MCs; (b) such divergence propagates to other MCs by lateral inhibition; (c) after learning, MC responses reconverge; (d) recall of the newly formed associations in the PC increases feedback inhibition in the MCs. These predictions have been confirmed in disparate experiments which we now explain in a unified framework. For cortex, our model further predicts that the response divergence developed during learning reshapes odor representations in the PC, with the effects of (a) decorrelating PC representations of odors with different valences, (b) increasing the size and reliability of those representations, and enabling recall correction and redundancy reduction after learning. Simons Foundation for Mathematical Modeling of Living Systems.

  2. Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography

    International Nuclear Information System (INIS)

    Lancet, D.; Greer, C.A.; Kauer, J.S.; Shepherd, G.M.

    1982-01-01

    The spatial distribution of odor-induced neuronal activity in the olfactory bulb, the first relay station of the olfactory pathway, is believed to reflect important aspects of chemosensory coding. We report here the application of high-resolution 2-deoxyglucose autoradiography to the mapping of spatial patterns of metabolic activity at the level of single neurons in the olfactory bulb. It was found that glomeruli, which are synaptic complexes containing the first synaptic relay, tend to be uniformly active or inactive during odor exposure. Differential 2-deoxyglucose uptake was also observed in the somata of projection neurons (mitral cells) and interneurons (periglomerular and granule cells). This confirms and extends our previous studies in which odor-specific laminar and focal uptake patterns were revealed by the conventional x-ray film 2-deoxyglucose method due to Sokoloff and colleagues [Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O. and Shinohara, M. (1977) J. Neurochem. 28, 897-916]. Based on results obtained by the two methods, it is suggested that the glomerulus as a whole serves as a functional unit of activity. The high-resolution results are interpreted in terms of the well-characterized synaptic organization of the olfactory bulb and also serve to illustrate the capability of the 2-deoxyglucose autoradiographic technique to map metabolic activity in single neurons of the vertebrate central nervous system

  3. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  4. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset.

    Science.gov (United States)

    Ignatieva, Elena V; Levitsky, Victor G; Yudin, Nikolay S; Moshkin, Mikhail P; Kolchanov, Nikolay A

    2014-01-01

    The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100-1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  5. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset

    Directory of Open Access Journals (Sweden)

    Elena V. Ignatieva

    2014-03-01

    Full Text Available The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors, which are activated by olfactory stimuli (ligands. Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter (a region of DNA about 100–1000 base pairs long located upstream of the transcription start site. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.. In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  6. Neurobiology of mammalian olfactory learning that occurs during sensitive periods

    Directory of Open Access Journals (Sweden)

    Hideto KABA

    2010-12-01

    Full Text Available This review examines the organizational principles underlying olfactory learning in three specialized contexts that occur during sensitive periods of enhanced neural plasticity and emphasizes some of their common features. All three forms of olfactory learning are associated with neural changes in the olfactory bulb (OB at the first stage of sensory processing. These changes require the association of the olfactory and somatosensory signals in the OB. They all depend on somatosensory stimulation-induced release of noradrenaline that induces structural and functional changes at mitral-granule cell reciprocal synapses in the OB, resulting in increases in inhibitory transmission. In the accessory olfactory bulb, this represents the enhanced self-inhibition of mitral cells, which selectively disrupts the transmission of the mating male’s pregnancy-blocking signal at this level. In contrast, an extensive network of secondary dendrites of mitral cells in the main olfactory bulb probably results in a sharpening of the odor-induced pattern of activity, due to increases in lateral inhibition, leading to offspring recognition in sheep and neonatal learning in rats and rabbits. These findings show that inhibitory interneurons play a critical role in olfactory learning. Further work on how these neurons shape olfactory circuit function could provide important clues to understand memory functions of interneurons in other systems. Moreover, recent research has suggested that three forms of olfactory learning are controlled by synergistic, redundant, and distributed neural mechanisms. This has general implications regarding the mechanisms that may contribute to the robustness of memories [Current Zoology 56 (6: 819–833, 2010].

  7. Gender-typical olfactory regulation of sexual behavior in goldfish

    Directory of Open Access Journals (Sweden)

    Makito eKobayashi

    2014-04-01

    Full Text Available It is known that olfaction is essential for the occurrence of sexual behavior in male goldfish. Sex pheromones from ovulatory females elicit male sexual behavior, chasing and sperm releasing act. In female goldfish, ovarian prostaglandin F2α (PGF elicits female sexual behavior, egg releasing act. It has been considered that olfaction does not affect sexual behavior in female goldfish. In the present study, we reexamined the involvement of olfaction in sexual behavior of female goldfish. Olfaction was blocked in male and female goldfish by two methods: nasal occlusion (NO which blocks the reception of olfactants, and olfactory tract section (OTX which blocks transmission of olfactory information from the olfactory bulb to the telencephalon. Sexual behavior of goldfish was induced by administration of PGF to females, an established method for inducing goldfish sexual behavior in both sexes. Sexual behavior in males was suppressed by NO and OTX as previously reported because of lack of pheromone stimulation. In females, NO suppressed sexual behavior but OTX did not affect the occurrence of sexual behavior. Females treated with both NO and OTX performed sexual behavior normally. These results indicate that olfaction is essential in female goldfish to perform sexual behavior as in males but in a different manner. The lack of olfaction in males causes lack of pheromonal stimulation, resulting in no behavior elicited. Whereas the results of female experiments suggest that lack of olfaction in females causes strong inhibition of sexual behavior mediated by the olfactory pathway. Olfactory tract section is considered to block the pathway and remove this inhibition, resulting in the resumption of the behavior. By subtract sectioning of the olfactory tract, it was found that this inhibition was mediated by the medial olfactory tracts, not the lateral olfactory tracts. Thus, it is concluded that goldfish has gender-typical olfactory regulation for sexual

  8. Neonatal citalopram exposure decreases serotonergic fiber density in the olfactory bulb of male but not female adult rats

    Directory of Open Access Journals (Sweden)

    Junlin eZhang

    2013-05-01

    Full Text Available Manipulation of serotonin (5HT during early development has been shown to induce long-lasting morphological changes within the raphe nuclear complex and serotonergic circuitry throughout the brain. Recent studies have demonstrated altered raphe-derived 5HT transporter (SERT immunoreactive axonal expression in several cortical target sites after brief perinatal exposure to selective 5HT reuptake inhibitors such as citalopram (CTM. Since the serotonergic raphe nuclear complex projects to the olfactory bulb (OB and perinatal 5HT disruption has been shown to disrupt olfactory behaviors, the goal of this study was to further investigate such developmental effects in the OB of CTM exposed animals. Male and female rat pups were exposed to CTM from postnatal day 8-21. After animals reach adulthood (>90 days, OB tissue sections were processed immunohistochemically for SERT antiserum. Our data revealed that the density of the SERT immunoreactive fibers decreased ~40% in the OB of CTM exposed male rats, but not female rats. Our findings support a broad and long-lasting change throughout most of the 5HT system, including the OB, after early manipulation of 5HT. Because dysfunction of the early 5HT system has been implicated in the etiology of neurodevelopmental disorders such as autism spectrum disorders (ASDs, these new findings may offer insight into the abnormal olfactory perception often noted in patients with ASD.

  9. Bladder, Bowel, and Sexual Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Ryuji Sakakibara

    2011-01-01

    Full Text Available Bladder dysfunction (urinary urgency/frequency, bowel dysfunction (constipation, and sexual dysfunction (erectile dysfunction (also called “pelvic organ” dysfunctions are common nonmotor disorders in Parkinson's disease (PD. In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and “prokinetic” drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life.

  10. Bladder, bowel, and sexual dysfunction in Parkinson's disease.

    Science.gov (United States)

    Sakakibara, Ryuji; Kishi, Masahiko; Ogawa, Emina; Tateno, Fuyuki; Uchiyama, Tomoyuki; Yamamoto, Tatsuya; Yamanishi, Tomonori

    2011-01-01

    Bladder dysfunction (urinary urgency/frequency), bowel dysfunction (constipation), and sexual dysfunction (erectile dysfunction) (also called "pelvic organ" dysfunctions) are common nonmotor disorders in Parkinson's disease (PD). In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity) involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions) and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus) are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection) in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and "prokinetic" drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life.

  11. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    2015-05-01

    Full Text Available Olfactory receptor neurons (ORNs convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs. We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.

  12. Face detection for interactive tabletop viewscreen system using olfactory display

    Science.gov (United States)

    Sakamoto, Kunio; Kanazawa, Fumihiro

    2009-10-01

    An olfactory display is a device that delivers smells to the nose. It provides us with special effects, for example to emit smell as if you were there or to give a trigger for reminding us of memories. The authors have developed a tabletop display system connected with the olfactory display. For delivering a flavor to user's nose, the system needs to recognition and measure positions of user's face and nose. In this paper, the authors describe an olfactory display which enables to detect the nose position for an effective delivery.

  13. Neural correlates of olfactory processing in congenital blindness

    DEFF Research Database (Denmark)

    Kupers, R; Beaulieu-Lefebvre, M; Schneider, F C

    2011-01-01

    Adaptive neuroplastic changes have been well documented in congenitally blind individuals for the processing of tactile and auditory information. By contrast, very few studies have investigated olfactory processing in the absence of vision. There is ample evidence that the olfactory system...... magnetic resonance imaging to measure changes in the blood-oxygenation level-dependent signal in congenitally blind and blindfolded sighted control subjects during a simple odor detection task. We found several group differences in task-related activations. Compared to sighted controls, congenitally blind......, linking it also to olfactory processing in addition to tactile and auditory processing....

  14. Changes of pressure and humidity affect olfactory function.

    Science.gov (United States)

    Kuehn, Michael; Welsch, Heiko; Zahnert, Thomas; Hummel, Thomas

    2008-03-01

    The present study aimed at investigating the question whether olfactory function changes in relation to barometric pressure and humidity. Using climate chambers, odor threshold and discrimination for butanol were tested in 75 healthy volunteers under hypobaric and hyperbaric, and different humidity conditions. Among other effects, olfactory sensitivity at threshold level, but not suprathreshold odor discrimination, was impaired in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests.

  15. Paraneoplastic limbic encephalitis associated with mixed olfactory neuroblastoma and craniopharyngioma: A case report and literature review.

    Science.gov (United States)

    Nagafuji, Hiroshi; Yokoi, Hidenori; Fujiwara, Masachika; Sato, Dai; Saito, Koichiro

    2018-06-01

    Paraneoplastic limbic encephalitis (PLE) is a rare disorder of the nervous system associated with malignant disease. It has a subacute onset with the following symptoms: cognitive dysfunction, seizures, irritability, hallucinations, and short-term memory loss. Herein, we report the case of a 35-year-old man with PLE, an olfactory neuroblastoma (ONB) admixed with craniopharyngioma, and serum anti-Hu antibodies. The patient presented with generalized seizures, short-term memory loss, and a polypoid mass located high in the nasal cavity. He underwent surgical resection of the tumor and postoperative chemoradiotherapy with concurrent intra-arterial cisplatin administration. Pathological examination indicated an ONB admixed with craniopharyngioma. The patient's neurological symptoms gradually diminished after surgery. No evidence of recurrence was observed during a 4-year follow-up. We reported a histologically unusual heterogeneous tumor that comprised ONB and craniopharyngioma. This is the first reported case of PLE with anti-Hu antibodies possibly associated with ONB admixed with craniopharyngioma.

  16. Olfactory groove meningiomas: approaches and complications.

    Science.gov (United States)

    Aguiar, Paulo Henrique Pires de; Tahara, Adriana; Almeida, Antonio Nogueira; Simm, Renata; Silva, Arnaldo Neves da; Maldaun, Marcos Vinicius Calfatt; Panagopoulos, Alexandros Theodoros; Zicarelli, Carlos Alexandre; Silva, Pedro Gabriel

    2009-09-01

    Olfactory groove meningiomas (OGM) account for 4.5% of all intracranial meningiomas. We report 21 patients with OGMs. Tumors were operated on using three surgical approaches: bifrontal (7 patients), fronto-pterional (11 patients) and fronto-orbital (3 patients). Total tumor removal (Simpson Grade 1) was achieved in 13 patients and Simpson II in 8 patients. Perioperative mortality was 4.76%. The average size of the OGM was 4.3+/-1.1cm. The overall recurrence rate was 19%. We preferred to use the pterional approach, which provides quick access to the tumor with less brain exposure. It also allows complete drainage of cisternal cerebrospinal fluid, providing a good level of brain relaxation during surgery. However, for long, thin tumors, hemostasis can be difficult using this approach.

  17. Fault tolerant architecture for artificial olfactory system

    International Nuclear Information System (INIS)

    Lotfivand, Nasser; Hamidon, Mohd Nizar; Abdolzadeh, Vida

    2015-01-01

    In this paper, to cover and mask the faults that occur in the sensing unit of an artificial olfactory system, a novel architecture is offered. The proposed architecture is able to tolerate failures in the sensors of the array and the faults that occur are masked. The proposed architecture for extracting the correct results from the output of the sensors can provide the quality of service for generated data from the sensor array. The results of various evaluations and analysis proved that the proposed architecture has acceptable performance in comparison with the classic form of the sensor array in gas identification. According to the results, achieving a high odor discrimination based on the suggested architecture is possible. (paper)

  18. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  19. Proton-Beam Therapy for Olfactory Neuroblastoma

    International Nuclear Information System (INIS)

    Nishimura, Hideki; Ogino, Takashi; Kawashima, Mitsuhiko; Nihei, Keiji; Arahira, Satoko; Onozawa, Masakatsu; Katsuta, Shoichi; Nishio, Teiji

    2007-01-01

    Purpose: To analyze the feasibility and efficacy of proton-beam therapy (PBT) for olfactory neuroblastoma (ONB) as a definitive treatment, by reviewing our preliminary experience. Olfactory neuroblastoma is a rare disease, and a standard treatment strategy has not been established. Radiation therapy for ONB is challenging because of the proximity of ONBs to critical organs. Proton-beam therapy can provide better dose distribution compared with X-ray irradiation because of its physical characteristics, and is deemed to be a feasible treatment modality. Methods and Materials: A retrospective review was performed on 14 patients who underwent PBT for ONB as definitive treatment at the National Cancer Center Hospital East (Kashiwa, Chiba, Japan) from November 1999 to February 2005. A total dose of PBT was 65 cobalt Gray equivalents (Gy E ), with 2.5-Gy E once-daily fractionations. Results: The median follow-up period for surviving patients was 40 months. One patient died from disseminated disease. There were two persistent diseases, one of which was successfully salvaged with surgery. The 5-year overall survival rate was 93%, the 5-year local progression-free survival rate was 84%, and the 5-year relapse-free survival rate was 71%. Liquorrhea was observed in one patient with Kadish's stage C disease (widely destroying the skull base). Most patients experienced Grade 1 to 2 dermatitis in the acute phase. No other adverse events of Grade 3 or greater were observed according to the RTOG/EORTC acute and late morbidity scoring system. Conclusions: Our preliminary results of PBT for ONB achieved excellent local control and survival outcomes without serious adverse effects. Proton-beam therapy is considered a safe and effective modality that warrants further study

  20. A specialized odor memory buffer in primary olfactory cortex.

    Science.gov (United States)

    Zelano, Christina; Montag, Jessica; Khan, Rehan; Sobel, Noam

    2009-01-01

    The neural substrates of olfactory working memory are unknown. We addressed the questions of whether olfactory working memory involves a verbal representation of the odor, or a sensory image of the odor, or both, and the location of the neural substrates of these processes. We used functional magnetic resonance imaging to measure activity in the brains of subjects who were remembering either nameable or unnameable odorants. We found a double dissociation whereby remembering nameable odorants was reflected in sustained activity in prefrontal language areas, and remembering unnameable odorants was reflected in sustained activity in primary olfactory cortex. These findings suggest a novel dedicated mechanism in primary olfactory cortex, where odor information is maintained in temporary storage to subserve ongoing tasks.

  1. Surgical Management of Olfactory Groove Meningiomas | El-Naggar ...

    African Journals Online (AJOL)

    Objective: To study the bifrontal approach to olfactory groove meningiomas ... in all patients was Grade I meningiomas (World Health Organization grading). ... Bifrontal approach offers excellent exposure, and when combined with modern ...

  2. Hydrodynamic Interactions Between Olfactory Appendages and Odor Plumes

    National Research Council Canada - National Science Library

    Koseff, Jeffrey

    2000-01-01

    .... A model lobster was then placed in the laboratory flume and we measured the odor concentration distribution around the olfactory appendage using high-speed video and laser-induced fluorescence techniques...

  3. Olfactory ensheathing glia : their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord

    NARCIS (Netherlands)

    Franssen, Elske H P; de Bree, Freddy M; Verhaagen, J.

    2007-01-01

    Olfactory ensheathing glia (OEG) are a specialized type of glia that guide primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. The primary olfactory system is able to regenerate after a lesion and OEG contribute to this process by providing a growth-supportive

  4. Effect of strong fragrance on olfactory detection threshold.

    Science.gov (United States)

    Fasunla, Ayotunde James; Douglas, David Dayo; Adeosun, Aderemi Adeleke; Steinbach, Silke; Nwaorgu, Onyekwere George Benjamin

    2014-09-01

    To assess the olfactory threshold of healthy volunteers at the University College Hospital, Ibadan and to investigate the effect of perfume on their olfactory detection thresholds. A quasi-experimental study on olfactory detection thresholds of healthy volunteers from September 2013 to November 2013. Tertiary health institution. A structured questionniare was administered to the participants in order to obtain information on sociodemographics, occupation, ability to perceive smell, use of perfume, effects of perfume on appetite and self-confidence, history of allergy, and previous nasal surgery. Participants subjectively rated their olfactory performance. Subsequently, they had olfactory detection threshold testing done at baseline and after exposure to perfume with varied concentrations of n-butanol in a forced triple response and staircase fashion. Healthy volunteers, 37 males and 63 females, were evaluated. Their ages ranged from 19 to 59 years with a mean of 31 years ± 8. Subjectively, 94% of the participants had excellent olfactory function. In the pre-exposure forced triple response, 88% were able to detect the odor at ≤.25 mmol/l concentration while in the post-exposure forced triple response, only 66% were able to detect the odor at ≤.25 mmol/l concentration. There is also a statistical significant difference in the olfactory detection threshold score between the pre-exposure and post-exposure period in the participants (P fragrances affects the olfactory detection threshold. Therefore patients and clinicians should be aware of this and its effects on the outcome of test of olfaction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  5. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  6. A Specialized Odor Memory Buffer in Primary Olfactory Cortex

    OpenAIRE

    Zelano, Christina; Montag, Jessica; Khan, Rehan; Sobel, Noam

    2009-01-01

    Background The neural substrates of olfactory working memory are unknown. We addressed the questions of whether olfactory working memory involves a verbal representation of the odor, or a sensory image of the odor, or both, and the location of the neural substrates of these processes. Methodology/Principal Findings We used functional magnetic resonance imaging to measure activity in the brains of subjects who were remembering either nameable or unnameable odorants. We found a double dissociat...

  7. Olfactory identification and its relationship to executive functions, memory, and disability one year after severe traumatic brain injury.

    Science.gov (United States)

    Sigurdardottir, Solrun; Andelic, Nada; Skandsen, Toril; Anke, Audny; Roe, Cecilie; Holthe, Oyvor Oistensen; Wehling, Eike

    2016-01-01

    To explore the frequency of posttraumatic olfactory (dys)function 1 year after severe traumatic brain injury (TBI) and determine whether there is a relationship between olfactory identification and neuropsychological test performance, injury severity and TBI-related disability. A population-based multicenter study including 129 individuals with severe TBI (99 males; 16 to 85 years of age) that could accomplish neuropsychological examinations. Olfactory (dys)function (anosmia, hyposmia, normosmia) was assessed by the University of Pennsylvania Smell Identification Test (UPSIT) or the Brief Smell Identification Test (B-SIT). Three tests of the Delis-Kaplan Executive Function System (D-KEFS) were used to assess processing speed, verbal fluency, inhibition and set-shifting, and the California Verbal Learning Test-II was used to examine verbal memory. The Glasgow Outcome Scale-Extended (GOSE) was used to measure disability level. Employing 2 different smell tests in 2 equal-sized subsamples, the UPSIT sample (n = 65) classified 34% with anosmia and 52% with hyposmia, while the B-SIT sample (n = 64) classified 20% with anosmia and 9% with hyposmia. Individuals classified with anosmia by the B-SIT showed significantly lower scores for set-shifting, category switching fluency and delayed verbal memory compared to hyposmia and normosmia groups. Only the B-SIT scores were significantly correlated with neuropsychological performance and GOSE scores. Brain injury severity (Rotterdam CT score) and subarachnoid hemorrhage were related to anosmia. Individuals classified with anosmia demonstrated similar disability as those with hyposmia/normosmia. Different measures of olfaction may yield different estimates of anosmia. Nevertheless, around 1 third of individuals with severe TBI suffered from anosmia, which may also indicate poorer cognitive outcome. (c) 2015 APA, all rights reserved).

  8. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin.

    Science.gov (United States)

    Lietzau, Grazyna; Davidsson, William; Östenson, Claes-Göran; Chiazza, Fausto; Nathanson, David; Pintana, Hiranya; Skogsberg, Josefin; Klein, Thomas; Nyström, Thomas; Darsalia, Vladimer; Patrone, Cesare

    2018-02-23

    Recent data suggest that olfactory deficits could represent an early marker and a pathogenic mechanism at the basis of cognitive decline in type 2 diabetes (T2D). However, research is needed to further characterize olfactory deficits in diabetes, their relation to cognitive decline and underlying mechanisms.The aim of this study was to determine whether T2D impairs odour detection, olfactory memory as well as neuroplasticity in two major brain areas responsible for olfaction and odour coding: the main olfactory bulb (MOB) and the piriform cortex (PC), respectively. Dipeptidyl peptidase-4 inhibitors (DPP-4i) are clinically used T2D drugs exerting also beneficial effects in the brain. Therefore, we aimed to determine whether DPP-4i could reverse the potentially detrimental effects of T2D on the olfactory system.Non-diabetic Wistar and T2D Goto-Kakizaki rats, untreated or treated for 16 weeks with the DPP-4i linagliptin, were employed. Odour detection and olfactory memory were assessed by using the block, the habituation-dishabituation and the buried pellet tests. We assessed neuroplasticity in the MOB by quantifying adult neurogenesis and GABAergic inhibitory interneurons positive for calbindin, parvalbumin and carletinin. In the PC, neuroplasticity was assessed by quantifying the same populations of interneurons and a newly identified form of olfactory neuroplasticity mediated by post-mitotic doublecortin (DCX) + immature neurons.We show that T2D dramatically reduced odour detection and olfactory memory. Moreover, T2D decreased neurogenesis in the MOB, impaired the differentiation of DCX+ immature neurons in the PC and altered GABAergic interneurons protein expression in both olfactory areas. DPP-4i did not improve odour detection and olfactory memory. However, it normalized T2D-induced effects on neuroplasticity.The results provide new knowledge on the detrimental effects of T2D on the olfactory system. This knowledge could constitute essentials for

  9. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. Copyright © 2015 the authors 0270-6474/15/357833-17$15.00/0.

  10. Olfactory neural cells: an untapped diagnostic and therapeutic resource. The 2000 Ogura Lecture.

    Science.gov (United States)

    Perry, Christopher; Mackay-Sim, Alan; Feron, Francois; McGrath, John

    2002-04-01

    This is an overview of the cellular biology of upper nasal mucosal cells that have special characteristics that enable them to be used to diagnose and study congenital neurological diseases and to aid neural repair. After mapping the distribution of neural cells in the upper nose, the authors' investigations moved to the use of olfactory neurones to diagnose neurological diseases of development, especially schizophrenia. Olfactory-ensheathing glial cells (OEGs) from the cranial cavity promote axonal penetration of the central nervous system and aid spinal cord repair in rodents. The authors sought to isolate these cells from the more accessible upper nasal cavity in rats and in humans and prove they could likewise promote neural regeneration, making these cells suitable for human spinal repair investigations. The schizophrenia-diagnosis aspect of the study entailed the biopsy of the olfactory areas of 10 schizophrenic patients and 10 control subjects. The tissue samples were sliced and grown in culture medium. The ease of cell attachment to fibronectin (artificial epithelial basement membrane), as well as the mitotic and apoptotic indices, was studied in the presence and absence of dopamine in those cell cultures. The neural repair part of the study entailed a harvesting and insertion of first rat olfactory lamina propria rich in OEGs between cut ends of the spinal cords and then later the microinjection of an OEG-rich suspension into rat spinal cords previously transected by open laminectomy. Further studies were done in which OEG insertion was performed up to 1 month after rat cord transection and also in monkeys. Schizophrenic patients' olfactory tissues do not easily attach to basement membrane compared with control subjects, adding evidence to the theory that cell wall anomalies are part of the schizophrenic "lesion" of neurones. Schizophrenic patient cell cultures had higher mitotic and apoptotic indices compared with control subjects. The addition of

  11. Accumulation of [35S]taurine in peripheral layers of the olfactory bulb

    International Nuclear Information System (INIS)

    Quinn, M.R.; Wysocki, C.J.; Sturman, J.A.; Wen, G.Y.

    1981-01-01

    Accumulation of [ 35 S]taurine in the laminae of the olfactory bulb of the adult cat, rat, mouse and rabbit was examined autoradiographically. [ 35 S]Taurine was administered either i.p. or i.v. and olfactory bulbs were excised 24 h post-injection. High concentrations of [ 35 S]taurine were restricted to the olfactory nerve and glomerular layers of the olfactory bulb in all species examined. Olfactory neurons are continuously renewed and the results obtained suggest that taurine may have an important role in olfactory receptor axons. (Auth.)

  12. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.

    Science.gov (United States)

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  13. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae Based on Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Yinliang Wang

    Full Text Available The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs, 10 chemosensory proteins (CSPs, 34 odorant receptors (ORs, 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, Aqua

  14. Induction of Associative Olfactory Memory by Targeted Activation of Single Olfactory Neurons in Drosophila Larvae

    OpenAIRE

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-01-01

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by C...

  15. Organization and distribution of glomeruli in the bowhead whale olfactory bulb

    Directory of Open Access Journals (Sweden)

    Takushi Kishida

    2015-04-01

    Full Text Available Although modern baleen whales (Mysticeti retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals.

  16. Neural representations of novel objects associated with olfactory experience.

    Science.gov (United States)

    Ghio, Marta; Schulze, Patrick; Suchan, Boris; Bellebaum, Christian

    2016-07-15

    Object conceptual knowledge comprises information related to several motor and sensory modalities (e.g. for tools, how they look like, how to manipulate them). Whether and to which extent conceptual object knowledge is represented in the same sensory and motor systems recruited during object-specific learning experience is still a controversial question. A direct approach to assess the experience-dependence of conceptual object representations is based on training with novel objects. The present study extended previous research, which focused mainly on the role of manipulation experience for tool-like stimuli, by considering sensory experience only. Specifically, we examined the impact of experience in the non-dominant olfactory modality on the neural representation of novel objects. Sixteen healthy participants visually explored a set of novel objects during the training phase while for each object an odor (e.g., peppermint) was presented (olfactory-visual training). As control conditions, a second set of objects was only visually explored (visual-only training), and a third set was not part of the training. In a post-training fMRI session, participants performed an old/new task with pictures of objects associated with olfactory-visual and visual-only training (old) and no training objects (new). Although we did not find any evidence of activations in primary olfactory areas, the processing of olfactory-visual versus visual-only training objects elicited greater activation in the right anterior hippocampus, a region included in the extended olfactory network. This finding is discussed in terms of different functional roles of the hippocampus in olfactory processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Expression of olfactory signaling genes in the eye.

    Directory of Open Access Journals (Sweden)

    Alexey Pronin

    Full Text Available To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors.Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy.We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles.Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment.

  18. Early olfactory environment influences social behaviour in adult Octodon degus.

    Science.gov (United States)

    Márquez, Natalia; Martínez-Harms, Jaime; Vásquez, Rodrigo A; Mpodozis, Jorge

    2015-01-01

    We evaluated the extent to which manipulation of early olfactory environment can influence social behaviours in the South American Hystricognath rodent Octodon degus. The early olfactory environment of newborn degus was manipulated by scenting all litter members with eucalyptol during the first month of life. The social behaviour of sexually mature animals (5-7 months old) towards conspecifics was then assessed using a y-maze to compare the response of control (naïve) and treated animals to two different olfactory configurations (experiment 1): (i) a non-familiarized conspecific impregnated with eucalyptol (eucalyptol arm) presented against (ii) a non-familiarized unscented conspecific (control arm). In addition, in dyadic encounters, we assessed the behaviour of control and eucalyptol treated animals towards a non-familiarized conspecific scented with eucalyptol (experiment 2). We found that control subjects explored and spent significantly less time in the eucalyptol arm, indicating neophobic behaviours towards the artificially scented conspecific. Treated subjects explored and spent similar time in both arms of the maze, showing the same interest for both olfactory stimuli presented. During dyadic encounters in experiment 2, an interaction effect between early experience and sex was observed. Control males escaped and avoided their scented partner more frequently than eucalyptol treated male subjects and than females. Both groups did not differ in the exploration of their scented partners, suggesting that avoidance within agonistic context does not relate to neophobic behaviours. Our results suggest that the exposure to eucalyptol during early ontogeny decreases evasive behaviours within an agonistic context as a result of olfactory learning. Altogether, these results indicate that olfactory cues learned in early ontogeny can influence olfactory-guided behaviours in adult degus.

  19. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  20. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    Science.gov (United States)

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  1. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura: evidence for aerial olfaction?

    Directory of Open Access Journals (Sweden)

    Jakob Krieger

    2015-12-01

    Full Text Available Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the “true crabs” (Brachyura, a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal’s life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task.

  2. Are mammal olfactory signals hiding right under our noses?

    Science.gov (United States)

    Apps, Peter James

    2013-06-01

    Chemical communication via olfactory semiochemicals plays a central role in the social behaviour and reproduction of mammals, but even after four decades of research, only a few mammal semiochemicals have been chemically characterized. Expectations that mammal chemical signals are coded by quantitative relationships among multiple components have persisted since the earliest studies of mammal semiochemistry, and continue to direct research strategies. Nonetheless, the chemistry of mammal excretions and secretions and the characteristics of those semiochemicals that have been identified show that mammal semiochemicals are as likely to be single compounds as to be mixtures, and are as likely to be coded by the presence and absence of chemical compounds as by their quantities. There is very scant support for the view that mammal semiochemicals code signals as specific ratios between components, and no evidence that they depend on a Gestalt or a chemical image. Of 31 semiochemicals whose chemical composition is known, 15 have a single component and 16 are coded by presence/absence, one may depend on a ratio between two compounds and none of them are chemical images. The expectation that mammal chemical signals have multiple components underpins the use of multivariate statistical analyses of chromatographic data, but the ways in which multivariate statistics are commonly used to search for active mixtures leads to single messenger compounds and signals that are sent by the presence and absence of compounds being overlooked. Research on mammal semiochemicals needs to accommodate the possibility that simple qualitative differences are no less likely than complex quantitative differences to encode chemical signals.

  3. Active forgetting of olfactory memories in Drosophila.

    Science.gov (United States)

    Berry, Jacob A; Davis, Ronald L

    2014-01-01

    Failure to remember, or forgetting, is a phenomenon familiar to everyone and despite more than a century of scientific inquiry, why we forget what we once knew remains unclear. If the brain marshals significant resources to form and store memories, why is it that these memories become lost? In the last century, psychological studies have divided forgetting into decay theory, in which memory simply dissipates with time, and interference theory, in which additional learning or mental activity hinders memory by reducing its stability or retrieval (for review, Dewar et al., 2007; Wixted, 2004). Importantly, these psychological models of forgetting posit that forgetting is a passive property of the brain and thus a failure of the brain to retain memories. However, recent neuroscience research on olfactory memory in Drosophila has offered evidence for an alternative conclusion that forgetting is an "active" process, with specific, biologically regulated mechanisms that remove existing memories (Berry et al., 2012; Shuai et al., 2010). Similar to the bidirectional regulation of cell number by mitosis and apoptosis, protein concentration by translation and lysosomal or proteomal degradation, and protein phosphate modification by kinases and phosphatases, biologically regulated memory formation and removal would be yet another example in biological systems where distinct and separate pathways regulate the creation and destruction of biological substrates. © 2014 Elsevier B.V. All rights reserved.

  4. Effects of olfactory sense on chocolate craving.

    Science.gov (United States)

    Firmin, Michael W; Gillette, Aubrey L; Hobbs, Taylor E; Wu, Di

    2016-10-01

    In the present study, we assessed the effect of the olfactory sense on chocolate craving in college females. Building on previous research by Kemps and Tiggemann (2013), we hypothesized that a fresh scent would decrease one's craving level for chocolate food. While the precursor study only addressed the decrease of chocolate craving, we also hypothesized that a sweet scent would increase one's craving level for chocolate foods. In the present experiment, participants rated their craving levels after viewing images of chocolate foods and inhaling essential oils: one fresh (Slique™ essence), and one sweet (vanilla). Results supported both of the hypotheses: inhaling a fresh scent reduced females' craving levels; similarly, when a sweet scent was inhaled, the participants' craving levels for chocolate food increased. These findings are particularly beneficial for women seeking weight loss and the findings can be applied in contexts such as weight loss programs, therapy, and maintenance programs, even beyond college settings. The results are particularly useful for helping women regarding stimuli that might serve as triggers for chocolate cravings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fos Expression in the Olfactory Pathway of High- and Low-Sexually Performing Rams Exposed to Urine from Estrous or Ovariectomized Ewes

    Science.gov (United States)

    Mirto, AJ; Austin, KJ; Uthlaut, VA; Roselli, CE; Alexander, BM

    2015-01-01

    Exposure to estrous ewe urine stimulates investigation and mounting activity in sexually active but not sexually inactive rams. It was hypothesized sexual indifference may result from an inability to detect olfactory cues or an interruption of the pathway from detection of the olfactory stimulus to the motor response. Sexually active (n=4) and inactive (n=3) rams were exposed to urine from estrous ewes. An additional group of sexually active rams (n=3) were exposed to urine from ovariectomized ewes. Rams were exsanguinated following 1 h of exposure to stimulus. Neural activity was determined in tissues of interest by the presence of fos and fos-related proteins detected by immunohistochemistry procedures. Sexually active rams exposed to urine from ovariectomized ewes had more (P ≤ 0.05) fos-positive cells in the olfactory bulb, but fewer (P = 0.03) fos-positive cells in the cortical amygdala compared to sexually active rams exposed to urine from estrous ewes. Sexually inactive rams had similar (P ≥ 0.13) numbers of fos positive neurons in the olfactory bulb and medial amygdala but fewer (P ≤ 0.04) in the central amygdala, bed nucleus of the stria terminalis and the medial preoptic area compared to sexually active rams exposed to urine from estrous ewes. Sexual inactivity was not associated with decreased hypothalamic function since fos activity was similar (P ≥ 0.14) among groups in the suprachiasmatic and ventral medial nucleus. Sexual inactivity is not likely due to an impaired ability to detect or process olfactory stimuli by the main olfactory bulb and medial-cortical amygdala. Sexually inactive rams may have reduced attentiveness to sexual stimuli and/or decreased responsiveness of regions in the brain which regulate reproductive behaviors. PMID:28348447

  6. Heightened Olfactory Sensitivity in Young Females with Recent-Onset Anorexia Nervosa and Recovered Individuals

    DEFF Research Database (Denmark)

    Bentz, Mette; Guldberg, Johanne; Vangkilde, Signe

    2017-01-01

    INTRODUCTION: Olfaction may be related to food restriction and weight loss. However, reports regarding olfactory function in individuals with anorexia nervosa (AN) have been inconclusive. OBJECTIVE: Characterize olfactory sensitivity and identification in female adolescents and young adults...

  7. No evidence for visual context-dependency of olfactory learning in Drosophila

    Science.gov (United States)

    Yarali, Ayse; Mayerle, Moritz; Nawroth, Christian; Gerber, Bertram

    2008-08-01

    How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.

  8. The anatomical and functional changes in the primary olfactory cortex of alzheimer disease and mild cognitive impairment patients

    International Nuclear Information System (INIS)

    Yin Jianzhong; Wang Jianli; Yang Qingxian; Qi Ji

    2010-01-01

    Objective: To determine the volume reduction of the primary olfactory cortex (POC) in patients with Alzheimer disease (AD) and investigate the potential relationship of functional olfactory activation and anatomical atrophy changes. Methods: Twelve patients with AD, eight patients with mild cognitive impairment (MCI) and twenty normal controls (NC) underwent standardized UPSIT (University of Pennsylvania smell identification test) behavior smell test and neuropsychological tests. Then all of the subjects underwent the high resolution MRI and an olfactory fMRI scan on a 3T system. Volumetric measurement of the POC was conducted and the areas were also saved as a ROI which would be used during the processing of fMRI data to get the activation voxels in local region. The Kruskal-Wallis rank test was used to examine the significance of POC volume and activation in three groups, If P-value was less than 0.05, Bonferroni method was used for multiple comparisons. The correlation between the anatomical volume and functional activation was analyzed with partial correlation adjusted for age. Results: The POC volume of NC, MCI and AD groups were 3024-4734, 1409-4553 and 1561-3759 mm 3 , and the medians were 3749, 2752 and 2156 mm 3 . The activation voxels of each group were 0-2360, 0-2160 and 0-100 mm 3 , while the medians were 430, 40 and 0 mm 3 . There were significant differences of both POC volume atrophy and activation between the three groups, with a trend of reduction from NC to MCI to AD group (H is 14.942 and 16.587, both P<0.05). The volume of olfactory activation at POC was highly correlated with the volume of POC (r=0.364, P=0.023). Conclusions: In this study, we explored the morphological and functional changes in the POC. It is revealed that POC suffers prominent local atrophy and dysfunction as well as hippocampus in AD. These results can provide neuropathological and neurofunctional bases for olfactory deficit in Alzheimer Disease. (authors)

  9. Neuronal basis of innate olfactory attraction to ethanol in Drosophila.

    Directory of Open Access Journals (Sweden)

    Andrea Schneider

    Full Text Available The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine - the invertebrate analogue of noradrenaline - in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b. Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse, the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.

  10. Olfactory insights into sleep-dependent learning and memory.

    Science.gov (United States)

    Shanahan, Laura K; Gottfried, Jay A

    2014-01-01

    Sleep is pervasive throughout most of the animal kingdom-even jellyfish and honeybees do it. Although the precise function of sleep remains elusive, research increasingly suggests that sleep plays a key role in memory consolidation. Newly formed memories are highly labile and susceptible to interference, and the sleep period offers an optimal window in which memories can be strengthened or modified. Interestingly, a small but growing research area has begun to explore the ability of odors to modulate memories during sleep. The unique anatomical organization of the olfactory system, including its intimate overlap with limbic systems mediating emotion and memory, and the lack of a requisite thalamic intermediary between the nasal periphery and olfactory cortex, suggests that odors may have privileged access to the brain during sleep. Indeed, it has become clear that the long-held assumption that odors have no impact on the sleeping brain is no longer tenable. Here, we summarize recent studies in both animal and human models showing that odor stimuli experienced in the waking state modulate olfactory cortical responses in sleep-like states, that delivery of odor contextual cues during sleep can enhance declarative memory and extinguish fear memory, and that olfactory associative learning can even be achieved entirely within sleep. Data reviewed here spotlight the emergence of a new research area that should hold far-reaching implications for future neuroscientific investigations of sleep, learning and memory, and olfactory system function. © 2014 Elsevier B.V. All rights reserved.

  11. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  12. Sad man's nose: Emotion induction and olfactory perception.

    Science.gov (United States)

    Flohr, Elena L R; Erwin, Elena; Croy, Ilona; Hummel, Thomas

    2017-03-01

    Emotional and olfactory processing is frequently shown to be closely linked both anatomically and functionally. Depression, a disease closely related to the emotional state of sadness, has been shown to be associated with a decrease in olfactory sensitivity. The present study focuses on the state of sadness in n = 31 healthy subjects in order to investigate the specific contribution of this affective state in the modulation of olfactory processing. A sad or indifferent affective state was induced using 2 movies that were presented on 2 separate days. Afterward, chemosensory-evoked potentials were recorded after stimulation with an unpleasant (hydrogen sulfide: "rotten eggs") or a pleasant (phenyl ethyl alcohol: "rose") odorant. Latencies of N1 and P2 peaks were longer after induction of the sad affective state. Additionally, amplitudes were lower in a sad affective state when being stimulated with the unpleasant odorant. Processing of olfactory input has thus been reduced under conditions of the sad affective state. We argue that the affective state per se could at least partially account for the reduced olfactory sensitivity in depressed patients. To our knowledge, the present study is the first to show influence of affective state on chemosensory event-related potentials. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Autistic traits associated with food neophobia but not olfactory sensitivity.

    Science.gov (United States)

    Stafford, Lorenzo D; Tsang, Irene; López, Beatriz; Severini, Martina; Iacomini, Silvia

    2017-09-01

    Food neophobia has been shown to be associated with a range of personality traits (including anxiety, lower sensation seeking) and additionally sensory aspects of food such as taste and texture. Running parallel to that work, research has demonstrated higher incidences of food neophobia in autistic populations and separately evidence of hypersensitivity in some sensory domains. The aim of the current study was to extend our understanding by exploring whether the broader aspects of autistic traits can predict food neophobia in a non-autistic population and whether this is mediated by differences in olfactory sensitivity. In the present study, student participants (N = 50) completed questionnaires measuring their food neophobia (FNS) and preferences for foreign cuisine, autistic traits (Autistic Quotient, AQ), and then completed an olfactory threshold test for a food related odour. The findings demonstrated a positive association between food neophobia and the magnitude of autistic traits and interestingly, an inverse relation between preference for foreign cuisine and olfactory sensitivity; those individuals less inclined toward foreign cuisine had poorer sensitivity to a food related odour. Since AQ was not related to olfactory sensitivity, these findings suggest the relation between autistic traits and food neophobia is unlikely to be mediated by olfactory sensitivity. More broadly however, our sense of smell is associated with experiencing a wider diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of Olfactory and Gustatory Function of HIV Infected Women

    Directory of Open Access Journals (Sweden)

    Ayotunde James Fasunla

    2016-01-01

    Full Text Available Background. Compliance with medication requires good sense of smell and taste. Objective. To evaluate the olfactory and gustatory function of HIV infected women in Ibadan, Nigeria. Methods. A case control study of women comprising 83 HIV infected women and 79 HIV uninfected women. Subjective self-rating of taste and smell function was by visual analogue scale. Olfactory function was measured via olfactory threshold (OT, olfactory discrimination (OD, olfactory identification (OI, and TDI using “Sniffin’ sticks” kits and taste function (Total Taste Strips (TTS score measurement was by taste strips. Results. The mean age of the HIV infected women was 43.67 years ± 10.72 and control was 41.48 years ± 10.99. There was no significant difference in the self-reported assessment of smell (p=0.67 and taste (p=0.84 of HIV infected and uninfected women. Although the mean OT, OD, OI, TDI, and TTS scores of HIV infected and uninfected women were within the normosmic and normogeusic values, the values were significantly higher in the controls (p<0.05. Hyposmia was in 39.7% of subjects and 12.6% of controls while hypogeusia was in 15.7% of subjects and 1.3% of controls. Conclusions. Hyposmia and hypogeusia are commoner among the HIV infected women than the HIV uninfected women and the risk increases with an increased duration of highly active antiretroviral therapy.

  15. Properties and mechanisms of olfactory learning and memory

    Directory of Open Access Journals (Sweden)

    Michelle T Tong

    2014-07-01

    Full Text Available Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system -- particularly olfactory bulb -- comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal and cumulative (adult appetitive odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  16. Burden of Sexual Dysfunction.

    Science.gov (United States)

    Balon, Richard

    2017-01-02

    Similar to the burden of other diseases, the burden of sexual dysfunction has not been systematically studied. However, there is growing evidence of various burdens (e.g., economic, symptomatic, humanistic) among patients suffering from sexual dysfunctions. The burden of sexual dysfunction has been studied a bit more often in men, namely the burden of erectile dysfunction (ED), premature ejaculation (PE) and testosterone deficiency syndrome (TDS). Erectile dysfunction is frequently associated with chronic conditions such as cardiovascular disease, diabetes, and depression. These conditions could go undiagnosed, and ED could be a marker of those diseases. The only available report from the United Kingdom estimated the total economic burden of ED at £53 million annually in terms of direct costs and lost productivity. The burden of PE includes significant psychological distress: anxiety, depression, lack of sexual confidence, poor self-esteem, impaired quality of life, and interpersonal difficulties. Some suggest that increase in female sexual dysfunction is associated with partner's PE, in addition to significant interpersonal difficulties. The burden of TDS includes depression, sexual dysfunction, mild cognitive impairment, and osteoporosis. One UK estimate of the economic burden of female sexual dysfunctions demonstrated that the average cost per patient was higher than the per annum cost of ED. There are no data on burden of paraphilic disorders. The burden of sexual dysfunctions is underappreciated and not well studied, yet it is significant for both the patients and the society.

  17. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level

    OpenAIRE

    CADIOU , Hervé; AOUDE , Imad; Tazir , Bassim; Molinas , Adrien; Forbes Fenech , Claire; Meunier , Nicolas; Grosmaitre , Xavier

    2014-01-01

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of...

  18. Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System

    OpenAIRE

    DeMaria, Shannon; Berke, Allison P.; Van Name, Eric; Heravian, Anisa; Ferreira, Todd; Ngai, John

    2013-01-01

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the “one receptor, one neuron” rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the...

  19. Gut dysfunction in Parkinson's disease

    Science.gov (United States)

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-01-01

    Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  20. File list: InP.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.05.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX143806,SRX185883,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.05.AllAg.Olfactory_epithelium.bed ...

  1. File list: InP.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.50.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX185883,SRX143806,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.50.AllAg.Olfactory_epithelium.bed ...

  2. File list: Oth.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.05.AllAg.Olfactory_epithelium.bed ...

  3. File list: Pol.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX112963,SRX143827 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.20.AllAg.Olfactory_epithelium.bed ...

  4. File list: InP.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.20.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX185883,SRX143806,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.20.AllAg.Olfactory_epithelium.bed ...

  5. File list: InP.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.10.AllAg.Olfactory_epithelium mm9 Input control Others Olfactory epithelium... SRX112965,SRX185883,SRX143806,SRX378545,SRX378544 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.10.AllAg.Olfactory_epithelium.bed ...

  6. File list: NoD.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.10.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.10.AllAg.Olfactory_epithelium.bed ...

  7. File list: Pol.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX112963,SRX143827 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.50.AllAg.Olfactory_epithelium.bed ...

  8. File list: ALL.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Olfactory_epithelium mm9 All antigens Others Olfactory epithelium ...536,SRX378534,SRX378544,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Olfactory_epithelium.bed ...

  9. File list: DNS.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Olfactory_epithelium.bed ...

  10. File list: NoD.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.05.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.05.AllAg.Olfactory_epithelium.bed ...

  11. File list: ALL.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Olfactory_epithelium mm9 All antigens Others Olfactory epithelium ...534,SRX378545,SRX378544,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.20.AllAg.Olfactory_epithelium.bed ...

  12. File list: Pol.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.10.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX112963,SRX143827 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.10.AllAg.Olfactory_epithelium.bed ...

  13. File list: His.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX37...378533,SRX472910,SRX378534,SRX378536 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Olfactory_epithelium.bed ...

  14. File list: NoD.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.20.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.20.AllAg.Olfactory_epithelium.bed ...

  15. File list: ALL.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Olfactory_epithelium mm9 All antigens Others Olfactory epithelium ...533,SRX472910,SRX378534,SRX378536 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.05.AllAg.Olfactory_epithelium.bed ...

  16. File list: His.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX18...378531,SRX378536,SRX378534,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Olfactory_epithelium.bed ...

  17. File list: His.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX11...472910,SRX378534,SRX378533,SRX378536 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.AllAg.Olfactory_epithelium.bed ...

  18. File list: Oth.Oth.10.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Olfactory_epithelium.bed ...

  19. File list: Oth.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.50.AllAg.Olfactory_epithelium.bed ...

  20. File list: DNS.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.50.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.50.AllAg.Olfactory_epithelium.bed ...

  1. File list: Oth.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.20.AllAg.Olfactory_epithelium mm9 TFs and others Others Olfactory epithelium... SRX143828 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.20.AllAg.Olfactory_epithelium.bed ...

  2. File list: NoD.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.50.AllAg.Olfactory_epithelium mm9 No description Others Olfactory epithelium... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.50.AllAg.Olfactory_epithelium.bed ...

  3. File list: His.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Olfactory_epithelium mm9 Histone Others Olfactory epithelium SRX18...378533,SRX378536,SRX378534,SRX472910 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.20.AllAg.Olfactory_epithelium.bed ...

  4. File list: DNS.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.20.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.20.AllAg.Olfactory_epithelium.bed ...

  5. File list: Pol.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.AllAg.Olfactory_epithelium mm9 RNA polymerase Others Olfactory epithelium... SRX143827,SRX112963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.05.AllAg.Olfactory_epithelium.bed ...

  6. Increased dopaminergic signaling impairs aversive olfactory memory retention in Drosophila.

    Science.gov (United States)

    Zhang, Shixing; Yin, Yan; Lu, Huimin; Guo, Aike

    2008-05-23

    Dopamine is necessary for the aversive olfactory associative memory formation in Drosophila, but its effect on other stages of memory is not known. Herein, we studied the effect of enhanced dopaminergic signaling on aversive olfactory memory retention in flies. We used l-3,4-dihydroxyphenylalanine (l-DOPA) to elevate dopamine levels: l-DOPA-treated flies exhibited a normal learning performance, but a decrease in 1-h memory. Dopamine transporter (DAT) mutant flies or flies treated with the DAT inhibitor desipramine exhibited poor memory retention. Flies subjected to heat stress after training exhibited a decrease in memory. Memory was restored by blocking dopaminergic neuronal output during heat stress, suggesting that dopamine is involved in heat stress-induced memory impairment in flies. Taken together, our findings suggest that increased dopaminergic signaling impairs aversive olfactory memory retention in flies.

  7. Evidence for a Peripheral Olfactory Memory in Imprinted Salmon

    Science.gov (United States)

    Nevitt, Gabrielle A.; Dittman, Andrew H.; Quinn, Thomas P.; Moody, William J., Jr.

    1994-05-01

    The remarkable homing ability of salmon relies on olfactory cues, but its cellular basis is unknown. To test the role of peripheral olfactory receptors in odorant memory retention, we imprinted coho salmon (Oncorhynchus kisutch) to micromolar concentrations of phenyl ethyl alcohol during parr-smolt transformation. The following year, we measured phenyl ethyl alcohol responses in the peripheral receptor cells using patch clamp. Cells from imprinted fish showed increased sensitivity to phenyl ethyl alcohol compared either to cells from naive fish or to sensitivity to another behaviorally important odorant (L-serine). Field experiments verified an increased behavioral preference for phenyl ethyl alcohol by imprinted salmon as adults. Thus, some component of the imprinted olfactory homestream memory appears to be retained peripherally.

  8. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment

    Science.gov (United States)

    Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann

    2010-01-01

    Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782

  9. Self-grounding visual, auditory and olfactory autobiographical memories.

    Science.gov (United States)

    Knez, Igor; Ljunglöf, Louise; Arshamian, Artin; Willander, Johan

    2017-07-01

    Given that autobiographical memory provides a cognitive foundation for the self, we investigated the relative importance of visual, auditory and olfactory autobiographical memories for the self. Thirty subjects, with a mean age of 35.4years, participated in a study involving a three×three within-subject design containing nine different types of autobiographical memory cues: pictures, sounds and odors presented with neutral, positive and negative valences. It was shown that visual compared to auditory and olfactory autobiographical memories involved higher cognitive and emotional constituents for the self. Furthermore, there was a trend showing positive autobiographical memories to increase their proportion to both cognitive and emotional components of the self, from olfactory to auditory to visually cued autobiographical memories; but, yielding a reverse trend for negative autobiographical memories. Finally, and independently of modality, positive affective states were shown to be more involved in autobiographical memory than negative ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Atypical olfactory groove meningioma associated with uterine fibromatosis; case report

    Directory of Open Access Journals (Sweden)

    Toma I. Papacocea

    2016-11-01

    Full Text Available The concomitant presence of the olfactory groove meningioma with uterine fibrosis is very rare. Our report presents the case of a giant olfactory groove meningioma revealed after a uterine fibroma resection in a 44 years-old female, due to a generalized seizure 10 days after operation. Cranial CT-scan identified the tumor as an olfactory groove meningioma. The tumor was operated with a macroscopically complete resection; the endothermal coagulation of the dura attachment was performed (Simpson II with a good postoperative evolution. Laboratory results showed the presence of receptors for steroid hormones both in meningioma and uterine tumor, and the histopathological examination revealed an atypical meningioma with 17% proliferation markers. Our findings suggest that even though meningiomas are benign tumors and a complete resection usually indicates a good prognosis, the association with uterine fibromatosis and the presence of high percentage of steroid receptors creates a higher risk to relapse, imposing therefore a good monitoring.

  11. Olfactory memory: a case study in cognitive psychology.

    Science.gov (United States)

    Annett, J M

    1996-05-01

    Over the last decade, interest in the general applicability of psychological research has increased significantly, leading to doubts among some critics of cognitive psychology regarding the usefulness of the modern information-processing approach. In particular, current cognitive models of memory address mainly visual and verbal information processing, with little acknowledgement of the existence of other sensory modalities. However, since the mid-1970's, the literature on olfactory memory has expanded rapidly, and it has remained relatively independent of mainstream memory research. This article outlines the olfactory literature, which has focused principally on examination of the Proustian characteristics of smell. The relationship between olfactory and other types of memory is also examined. The author notes that there is evidence that models of memory intended to be general have taken insufficient account of findings from olfaction and other sensory modalities, an approach that could be considered symptomatic of dangerous tendency to base purportedly general theories on databases that are too narrow.

  12. Associative cortex features in the first olfactory brain relay station.

    Science.gov (United States)

    Doucette, Wilder; Gire, David H; Whitesell, Jennifer; Carmean, Vanessa; Lucero, Mary T; Restrepo, Diego

    2011-03-24

    Synchronized firing of mitral cells (MCs) in the olfactory bulb (OB) has been hypothesized to help bind information together in olfactory cortex (OC). In this survey of synchronized firing by suspected MCs in awake, behaving vertebrates, we find the surprising result that synchronized firing conveys information on odor value ("Is it rewarded?") rather than odor identity ("What is the odor?"). We observed that as mice learned to discriminate between odors, synchronous firing responses to the rewarded and unrewarded odors became divergent. Furthermore, adrenergic blockage decreases the magnitude of odor divergence of synchronous trains, suggesting that MCs contribute to decision-making through adrenergic-modulated synchronized firing. Thus, in the olfactory system information on stimulus reward is found in MCs one synapse away from the sensory neuron. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The olfactory tubercle encodes odor valence in behaving mice.

    Science.gov (United States)

    Gadziola, Marie A; Tylicki, Kate A; Christian, Diana L; Wesson, Daniel W

    2015-03-18

    Sensory information acquires meaning to adaptively guide behaviors. Despite odors mediating a number of vital behaviors, the components of the olfactory system responsible for assigning meaning to odors remain unclear. The olfactory tubercle (OT), a ventral striatum structure that receives monosynaptic input from the olfactory bulb, is uniquely positioned to transform odor information into behaviorally relevant neural codes. No information is available, however, on the coding of odors among OT neurons in behaving animals. In recordings from mice engaged in an odor discrimination task, we report that the firing rate of OT neurons robustly and flexibly encodes the valence of conditioned odors over identity, with rewarded odors evoking greater firing rates. This coding of rewarded odors occurs before behavioral decisions and represents subsequent behavioral responses. We predict that the OT is an essential region whereby odor valence is encoded in the mammalian brain to guide goal-directed behaviors. Copyright © 2015 the authors 0270-6474/15/354515-13$15.00/0.

  14. Expression of RPRM/rprm in the Olfactory System of Embryonic Zebrafish (Danio rerio)

    Science.gov (United States)

    Stanic, Karen; Quiroz, Alonso; Lemus, Carmen G.; Wichmann, Ignacio A.; Corvalán, Alejandro H.; Owen, Gareth I.; Opazo, Juan C.; Concha, Miguel L.; Amigo, Julio D.

    2018-01-01

    The Reprimo (RPRM) family is composed of highly conserved single-exon genes. The expression pattern of this gene family has been recently described during zebrafish (Danio rerio) embryogenesis, and primarily locates in the nervous system. Its most characterized member, RPRM, which duplicated to give rise rprma and rprmb in the fish lineage, is known to act as a tumor-suppressor gene in mammalian models. Here, we describe in detail the spatiotemporal expression of three rprm genes (rprma, rprmb, and rprml) within distinct anatomical structures in the developing peripheral and central nervous system. In the zebrafish, rprma mRNA is expressed in the olfactory placodes (OP) and olfactory epithelium (OE), rprmb is observed in the tectum opticum (TeO) and trigeminal ganglion (Tg), whereas rprml is found primarily in the telencephalon (Tel). At protein level, RPRM is present in a subset of cells in the OP, and neurons in the OE, TeO, hindbrain and sensory peripheral structures. Most importantly, the expression of RPRM has been conserved between teleosts and mammals. Thus, we provide a reference dataset describing the expression patterns of RPRM gene products during zebrafish and mouse development as a first step to approach the physiological role of the RPRM gene family. PMID:29636669

  15. Somesthetic, gustatory, olfactory function and salivary flow in patients with neuropathic trigeminal pain.

    Science.gov (United States)

    Siviero, M; Teixeira, M J; de Siqueira, J T T; Siqueira, S R D T

    2010-07-01

    To determine somesthetic, olfactory, gustative and salivary abnormalities in patients with burning mouth syndrome (BMS), idiopathic trigeminal neuralgia (ITN) and trigeminal postherpetic neuralgia (PHN). Twenty patients from each group (BMS, ITN, PHN) and 60 healthy controls were evaluated with a systematized quantitative approach of thermal (cold and warm), mechanical, pain, gustation, olfaction and salivary flow; data were analyzed with ANOVA, Tukey, Kruskal-Wallis and Dunn tests with a level of significance of 5%. There were no salivary differences among the groups with matched ages; the cold perception was abnormal only at the mandibular branch of PHN (P = 0.001) and warm was abnormal in all trigeminal branches of PHN and BMS; mechanical sensitivity was altered at the mandibular branch of PHN and in all trigeminal branches of BMS. The salty, sweet and olfactory thresholds were higher in all studied groups; the sour threshold was lower and there were no differences of bitter. All groups showed abnormal thresholds of gustation and olfaction; somesthetic findings were discrete in ITN and more common in PHN and BMS; central mechanisms of balance of sensorial inputs might be underlying these observations.

  16. Expression of RPRM/rprm in the Olfactory System of Embryonic Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Karen Stanic

    2018-03-01

    Full Text Available The Reprimo (RPRM family is composed of highly conserved single-exon genes. The expression pattern of this gene family has been recently described during zebrafish (Danio rerio embryogenesis, and primarily locates in the nervous system. Its most characterized member, RPRM, which duplicated to give rise rprma and rprmb in the fish lineage, is known to act as a tumor-suppressor gene in mammalian models. Here, we describe in detail the spatiotemporal expression of three rprm genes (rprma, rprmb, and rprml within distinct anatomical structures in the developing peripheral and central nervous system. In the zebrafish, rprma mRNA is expressed in the olfactory placodes (OP and olfactory epithelium (OE, rprmb is observed in the tectum opticum (TeO and trigeminal ganglion (Tg, whereas rprml is found primarily in the telencephalon (Tel. At protein level, RPRM is present in a subset of cells in the OP, and neurons in the OE, TeO, hindbrain and sensory peripheral structures. Most importantly, the expression of RPRM has been conserved between teleosts and mammals. Thus, we provide a reference dataset describing the expression patterns of RPRM gene products during zebrafish and mouse development as a first step to approach the physiological role of the RPRM gene family.

  17. The circuitry of olfactory projection neurons in the brain of the honeybee, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Hanna Zwaka

    2016-09-01

    Full Text Available In the honeybee brain, two prominent tracts - the medial and the lateral antennal lobe tract - project from the primary olfactory center, the antennal lobes, to the central brain, the mushroom bodies, and the protocerebral lobe. Intracellularly stained uniglomerular projection neurons (uPN were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the mushroom body lip neuropil. Projection neurons of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the mushroom body calyces and the protocerebral lobe. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral mushroom body lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between projection neurons, octopaminergic-, and GABAergic cells in the mushroom body calyces. For the first time, we found evidence for connections between both tracts within the antennal lobe.

  18. Cholinergic innervation of the zebrafish olfactory bulb.

    Science.gov (United States)

    Edwards, Jeffrey G; Greig, Ann; Sakata, Yoko; Elkin, Dimitry; Michel, William C

    2007-10-20

    A number of fish species receive forebrain cholinergic input but two recent reports failed to find evidence of cholinergic cell bodies or fibers in the olfactory bulbs (OBs) of zebrafish. In the current study we sought to confirm these findings by examining the OBs of adult zebrafish for choline acetyltransferase (ChAT) immunoreactivity. We observed a diffuse network of varicose ChAT-positive fibers associated with the nervus terminalis ganglion innervating the mitral cell/glomerular layer (MC/GL). The highest density of these fibers occurred in the anterior region of the bulb. The cellular targets of this cholinergic input were identified by exposing isolated OBs to acetylcholine receptor (AChR) agonists in the presence of agmatine (AGB), a cationic probe that permeates some active ion channels. Nicotine (50 microM) significantly increased the activity-dependent labeling of mitral cells and juxtaglomerular cells but not of tyrosine hydroxlase-positive dopaminergic neurons (TH(+) cells) compared to control preparations. The nAChR antagonist mecamylamine, an alpha7-nAChR subunit-specific antagonist, calcium-free artificial cerebrospinal fluid, or a cocktail of ionotropic glutamate receptor (iGluR) antagonists each blocked nicotine-stimulated labeling, suggesting that AGB does not enter the labeled neurons through activated nAChRs but rather through activated iGluRs following ACh-stimulated glutamate release. Deafferentation of OBs did not eliminate nicotine-stimulated labeling, suggesting that cholinergic input is primarily acting on bulbar neurons. These findings confirm the presence of a functioning cholinergic system in the zebrafish OB.

  19. The role of dopamine in Drosophila larval classical olfactory conditioning.

    Directory of Open Access Journals (Sweden)

    Mareike Selcho

    Full Text Available Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt as well as appetitive (odor-sugar associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive

  20. Functional MRI of the olfactory system in conscious dogs.

    Directory of Open Access Journals (Sweden)

    Hao Jia

    Full Text Available We depend upon the olfactory abilities of dogs for critical tasks such as detecting bombs, landmines, other hazardous chemicals and illicit substances. Hence, a mechanistic understanding of the olfactory system in dogs is of great scientific interest. Previous studies explored this aspect at the cellular and behavior levels; however, the cognitive-level neural substrates linking them have never been explored. This is critical given the fact that behavior is driven by filtered sensory representations in higher order cognitive areas rather than the raw odor maps of the olfactory bulb. Since sedated dogs cannot sniff, we investigated this using functional magnetic resonance imaging of conscious dogs. We addressed the technical challenges of head motion using a two pronged strategy of behavioral training to keep dogs' head as still as possible and a single camera optical head motion tracking system to account for residual jerky movements. We built a custom computer-controlled odorant delivery system which was synchronized with image acquisition, allowing the investigation of brain regions activated by odors. The olfactory bulb and piriform lobes were commonly activated in both awake and anesthetized dogs, while the frontal cortex was activated mainly in conscious dogs. Comparison of responses to low and high odor intensity showed differences in either the strength or spatial extent of activation in the olfactory bulb, piriform lobes, cerebellum, and frontal cortex. Our results demonstrate the viability of the proposed method for functional imaging of the olfactory system in conscious dogs. This could potentially open up a new field of research in detector dog technology.

  1. Olfactory interference during inhibitory backward pairing in honey bees.

    Directory of Open Access Journals (Sweden)

    Matthieu Dacher

    Full Text Available Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing, the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity.If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds after the sucrose (backward pairing. We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference.Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.

  2. Stimulus-response functions of single avian olfactory bulb neurones.

    Science.gov (United States)

    McKeegan, Dorothy E F; Demmers, Theodorus G M; Wathes, Christopher M; Jones, R Bryan; Gentle, Michael J

    2002-10-25

    This study investigated olfactory processing in a functional context by examining the responses of single avian olfactory bulb neurones to two biologically important gases over relevant concentration ranges. Recordings of extracellular spike activity were made from 80 single units in the left olfactory bulb of 11 anaesthetised, freely breathing adult hens (Gallus domesticus). The units were spontaneously active, exhibiting widely variable firing rates (0.07-47.28 spikes/s) and variable temporal firing patterns. Single units were tested for their response to an ascending concentration series of either ammonia (2.5-100 ppm) or hydrogen sulphide (1-50 ppm), delivered directly to the olfactory epithelium. Stimulation with a calibrated gas delivery system resulted in modification of spontaneous activity causing either inhibition (47% of units) or excitation (53%) of firing. For ammonia, 20 of the 35 units tested exhibited a response, while for hydrogen sulphide, 25 of the 45 units tested were responsive. Approximate response thresholds for ammonia (median threshold 3.75 ppm (range 2.5-60 ppm, n=20)) and hydrogen sulphide (median threshold 1 ppm (range 1-10 ppm, n=25)) were determined with most units exhibiting thresholds near the lower end of these ranges. Stimulus response curves were constructed for 23 units; 16 (the most complete) were subjected to a linear regression analysis to determine whether they were best fitted by a linear, log or power function. No single function provided the best fit for all the curves (seven were linear, eight were log, one was power). These findings show that avian units respond to changes in stimulus concentration in a manner generally consistent with reported responses in mammalian olfactory bulb neurones. However, this study illustrates a level of fine-tuning to small step changes in concentration (<5 ppm) not previously demonstrated in vertebrate single olfactory bulb neurones.

  3. Loss of hfe function reverses impaired recognition memory caused by olfactory manganese exposure in mice.

    Science.gov (United States)

    Ye, Qi; Kim, Jonghan

    2015-03-01

    Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson's disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout (Hfe (-/-)) and wild-type (Hfe (+/+)) mice mice were intranasally-instilled with manganese chloride (MnCl2 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in Hfe (+/+) mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, Hfe (-/-) mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in Hfe (+/+) mice, but not in Hfe (-/-) mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of

  4. Loneliness and Sexual Dysfunctions.

    Science.gov (United States)

    Mijuskovic, Ben

    1987-01-01

    Argues that sexual dysfunctions result from early childhood experiences which were originally nonsexual in nature. Contends that psychological difficulties centered around problems of loneliness tend to generate certain sexual dysfunctions. Extends and explores suggestion that genesis of sexual conflicts is in nonsexual infant separation anxiety…

  5. Preserved olfactory cuing of autobiographical memories in old age.

    Science.gov (United States)

    Maylor, Elizabeth A; Carter, Sarah M; Hallett, Emma L

    2002-01-01

    The authors investigated whether olfactory cues can facilitate memory retrieval and whether they retain their effectiveness in old age. In Phase 1, 57 young and 57 old adults (mean ages of 21 and 84 years, respectively) were asked to recall autobiographical memories associated with each of six cue words. In Phase 2, the same words were presented again with instructions to recall new memories; on this second occasion, half of the words were accompanied by their appropriate odors. Both age groups recalled more than twice as many memories in Phase 2 with the odor than without the odor, providing evidence for substantial olfactory cuing that is remarkably intact in old age.

  6. Processing of Sensory Information in the Olfactory System

    DEFF Research Database (Denmark)

    The olfactory system is an attractive model system due to the easy control of sensory input and the experimental accessibility in animal studies. The odorant signals are processed from receptor neurons to a neural network of mitral and granular cells while various types of nonlinear behaviour can...... and equation-free techniques allow for a better reproduction and understanding of recent experimental findings. Talks: Olfaction as a Model System for Sensory-Processing Neural Networks (Jens Midtgaard, University of Copenhagen, Denmark) Nonlinear Effects of Signal Transduction in Olfactory Sensory Neurons...

  7. Risk factors for hazardous events in olfactory-impaired patients.

    Science.gov (United States)

    Pence, Taylor S; Reiter, Evan R; DiNardo, Laurence J; Costanzo, Richard M

    2014-10-01

    Normal olfaction provides essential cues to allow early detection and avoidance of potentially hazardous situations. Thus, patients with impaired olfaction may be at increased risk of experiencing certain hazardous events such as cooking or house fires, delayed detection of gas leaks, and exposure to or ingestion of toxic substances. To identify risk factors and potential trends over time in olfactory-related hazardous events in patients with impaired olfactory function. Retrospective cohort study of 1047 patients presenting to a university smell and taste clinic between 1983 and 2013. A total of 704 patients had both clinical olfactory testing and a hazard interview and were studied. On the basis of olfactory function testing results, patients were categorized as normosmic (n = 161), mildly hyposmic (n = 99), moderately hyposmic (n = 93), severely hyposmic (n = 142), and anosmic (n = 209). Patient evaluation including interview, examination, and olfactory testing. Incidence of specific olfaction-related hazardous events (ie, burning pots and/or pans, starting a fire while cooking, inability to detect gas leaks, inability to detect smoke, and ingestion of toxic substances or spoiled foods) by degree of olfactory impairment. The incidence of having experienced any hazardous event progressively increased with degree of impairment: normosmic (18.0%), mildly hyposmic (22.2%), moderately hyposmic (31.2%), severely hyposmic (32.4%), and anosmic (39.2%). Over 3 decades there was no significant change in the overall incidence of hazardous events. Analysis of demographic data (age, sex, race, smoking status, and etiology) revealed significant differences in the incidence of hazardous events based on age (among 397 patients hazardous event, vs 31 of 146 patients ≥65 years [21.3%]; P hazardous event, vs 73 of 265 men [27.6%]; P = .009), and race (among 98 African Americans, 41 [41.8%] with hazardous event, vs 134 of 434 whites [30.9%]; P = .04

  8. Lifetime olfactory memory in the cricket Gryllus bimaculatus.

    Science.gov (United States)

    Matsumoto, Y; Mizunami, M

    2002-05-01

    The time span of olfactory memory retention in the cricket Gryllus bimaculatus was studied. Third- or fourth-instar nymph crickets were trained to associate one odor with water and another odor with saline solution. At 6 weeks and 10 weeks after training, adult crickets exhibited significantly greater preferences for the odor associated with water over that associated with saline solution. The learned preference was altered when they were given reversal training at 6 weeks after training. We conclude that crickets are capable of retaining olfactory memory practically for their lifetime and of easily rewriting it in accordance with experience.

  9. [Social dysfunction in schizotypy].

    Science.gov (United States)

    de Wachter, O; De La Asuncion, J; Sabbe, B; Morrens, M

    2016-01-01

    Schizotypy is a personality organisation that is closely related to schizotypal personality disorder and schizophrenia and is characterised by deficits in social functioning. Although the dimensions of social dysfunction have not yet been fully explored certain aspects of social dysfunction are promising predictive markers for schizophrenia. To describe schizotypy and its influence on social functioning. We reviewed the literature systematically using the online databases PubMed and PsycINFO. The disorder known as schizotypy lies at the basis of schizotypal personality disorder. Both disorders are characterised by an increased risk for schizophrenia. The social dysfunctioning seen in schizotypy corresponds to the social dysfunction seen in schizophrenia. Impairments in social cognition are causal factors of this social dysfunction. Both the negative and the positive dimension of schizotypy influence social cognition. More focused, objective and interactive research to the various aspects of social functioning in schizotypy is needed in order to discover potential premorbid markers for schizophrenia.

  10. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.

    Science.gov (United States)

    Liu, He; Zhou, Bangyu; Yan, Wenjun; Lei, Zhengchang; Zhao, Xiaoliang; Zhang, Ke; Guo, Aike

    2014-09-01

    Astrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure. In this study, using in vivo calcium imaging, we found that astrocyte-like glial cells exhibited spontaneous microdomain calcium elevations. Using simultaneous manipulation of glial activity and monitoring of neuronal function, we found that the astrocyte-like glial activation, but not ensheathing glial activation, could inhibit odor-evoked responses of PNs. Ensheathing glial cells are another subtype of glia, and are of functional importance in the AL. Electrophysiological experiments indicated that astrocyte-like glial activation decreased the amplitude and slope of excitatory postsynaptic potentials evoked through electrical stimulation of the antennal nerve. These results suggest that astrocyte-like glial cells may regulate olfactory processing through negative regulation of ORN-PN synaptic strength. Beyond the antennal lobe we observed astrocyte-like glial spontaneous calcium activities in the ventromedial protocerebrum, indicating that astrocyte-like glial spontaneous calcium elevations might be general in the adult fly brain. Overall, our study demonstrates a new function for astrocyte-like glial cells in the physiological modulation of olfactory information transmission, possibly through regulating ORN-PN synapse strength. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  12. The Alzheimer's β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Rajapaksha Tharinda W

    2011-12-01

    Full Text Available Abstract Background The β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1, is a prime therapeutic target for lowering cerebral β-amyloid (Aβ levels in Alzheimer's disease (AD. Clinical development of BACE1 inhibitors is being intensely pursued. However, little is known about the physiological functions of BACE1, and the possibility exists that BACE1 inhibition may cause mechanism-based side effects. Indeed, BACE1-/- mice exhibit a complex neurological phenotype. Interestingly, BACE1 co-localizes with presynaptic neuronal markers, indicating a role in axons and/or terminals. Moreover, recent studies suggest axon guidance molecules are potential BACE1 substrates. Here, we used a genetic approach to investigate the function of BACE1 in axon guidance of olfactory sensory neurons (OSNs, a well-studied model of axon targeting in vivo. Results We bred BACE1-/- mice with gene-targeted mice in which GFP is expressed from the loci of two odorant-receptors (ORs, MOR23 and M72, and olfactory marker protein (OMP to produce offspring that were heterozygous for MOR23-GFP, M72-GFP, or OMP-GFP and were either BACE1+/+ or BACE1-/-. BACE1-/- mice had olfactory bulbs (OBs that were smaller and weighed less than OBs of BACE1+/+ mice. In wild-type mice, BACE1 was present in OSN axon terminals in OB glomeruli. In whole-mount preparations and tissue sections, many OB glomeruli from OMP-GFP; BACE1-/- mice were malformed compared to wild-type glomeruli. MOR23-GFP; BACE1-/- mice had an irregular MOR23 glomerulus that was innervated by randomly oriented, poorly fasciculated OSN axons compared to BACE1+/+ mice. Most importantly, M72-GFP; BACE1-/- mice exhibited M72 OSN axons that were mis-targeted to ectopic glomeruli, indicating impaired axon guidance in BACE1-/- mice. Conclusions Our results demonstrate that BACE1 is required for the accurate targeting of OSN axons and the proper formation of glomeruli in the OB, suggesting a role for BACE1 in

  13. Gamma Knife radiosurgery of olfactory groove meningiomas provides a method to preserve subjective olfactory function.

    Science.gov (United States)

    Gande, Abhiram; Kano, Hideyuki; Bowden, Gregory; Mousavi, Seyed H; Niranjan, Ajay; Flickinger, John C; Lunsford, L Dade

    2014-02-01

    Anosmia is a common outcome after resection of olfactory groove meningioma(s) (OGM) and for some patients represents a significant disability. To evaluate long term tumor control rates and preservation of subjective olfaction after Gamma Knife (GK) stereotactic radiosurgery (SRS) of OGM. We performed a retrospective chart review and telephone assessments of 41 patients who underwent GK SRS between 1987 and 2008. Clinical outcomes were stratified by full, partial or no subjective olfaction, whereas tumor control was assessed by changes in volume greater or lesser than 25%. The median clinical and imaging follow-up were 76 and 65 months, respectively. Prior to SRS, 19 (46%) patients had surgical resections and two (5%) had received fractionated radiation therapy. Twenty four patients (59%) reported a normal sense of smell, 12 (29%) reported a reduced sense of smell and five (12%) had complete anosmia. The median tumor volume was 8.5 cm(3) (range 0.6-56.1), the mean radiation dose at the tumor margin was 13 Gy (range 10-20) and the median estimated dose to the olfactory nerve was 5.1 Gy (range 1.1-18.1). At follow-up, 27 patients (66%) reported intact olfaction (three (7%) described return to a normal sense of smell), nine (22%) described partial anosmia, and five (12%) had complete anosmia. No patient reported deterioration in olfaction after SRS. Thirteen patients (32%) showed significant tumor regression, 26 (63%) had no further growth and two (5%) had progressed. The progression free tumor control rates were 97% at 1 year and 95% at 2, 10 and 20 years. Symptomatic adverse radiation effects occurred in three (7%) patients. Stereotactic radiosurgery provided both long term tumor control and preservation of olfaction.

  14. Ulex europaeus I and glycine max bind to the human olfactory bulb.

    Science.gov (United States)

    Nagao, M; Oka, N; Kamo, H; Akiguchi, I; Kimura, J

    1993-12-24

    The distribution of binding sites for the fucose-selective lectin Ulex europaeus I and the terminal N-acetylgalactosamine-selective lectin glycine max in the human olfactory bulb were studied. These lectins bound to primary olfactory axons in the olfactory nerve layer and the glomerular layer. They also bound to fibers located in the deeper layers such as the external plexiform layer and the granular layer. Furthermore they projected to the olfactory stalk but not in the cerebrum. The deeper projections of the lectin binding fibers may affect the function of the olfactory bulb in humans.

  15. Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory.

    Directory of Open Access Journals (Sweden)

    Florence Kermen

    Full Text Available BACKGROUND: It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days, but not a massed (within day, learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. CONCLUSION/SIGNIFICANCE: We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.

  16. Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory.

    Science.gov (United States)

    Kermen, Florence; Sultan, Sébastien; Sacquet, Joëlle; Mandairon, Nathalie; Didier, Anne

    2010-08-13

    It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.

  17. Diastolic dysfunction characterizes cirrhotic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Piyush O. Somani

    2014-11-01

    Conclusions: Present study shows that although diastolic dysfunction is a frequent event in cirrhosis, it is usually of mild degree and does not correlate with severity of liver dysfunction. There are no significant differences in echocardiographic parameters between alcoholic and non-alcoholic cirrhosis. HRS is not correlated to diastolic dysfunction in cirrhotic patients. There is no difference in survival at one year between patients with or without diastolic dysfunction. Diastolic dysfunction in cirrhosis is unrelated to circulatory dysfunction, ascites and HRS.

  18. Extrabulbar olfactory system and nervus terminalis FMRFamide immunoreactive components in Xenopus laevis ontogenesis.

    Science.gov (United States)

    Pinelli, Claudia; D'Aniello, Biagio; Polese, Gianluca; Rastogi, Rakesh K

    2004-09-01

    The extrabulbar olfactory system (EBOS) is a collection of nerve fibers which originate from primary olfactory receptor-like neurons and penetrate into the brain bypassing the olfactory bulbs. Our description is based upon the application of two neuronal tracers (biocytin, carbocyanine DiI) in the olfactory sac, at the cut end of the olfactory nerve and in the telencephalon of the developing clawed frog. The extrabulbar olfactory system was observed already at stage 45, which is the first developmental stage compatible with our techniques; at this stage, the extrabulbar olfactory system fibers terminated diffusely in the preoptic area. A little later in development, i.e. at stage 50, the extrabulbar olfactory system was maximally developed, extending as far caudally as the rhombencephalon. In the metamorphosing specimens, the extrabulbar olfactory system appeared reduced in extension; caudally, the fiber terminals did not extend beyond the diencephalon. While a substantial overlapping of biocytin/FMRFamide immunoreactivity was observed along the olfactory pathways as well as in the telencephalon, FMRFamide immunoreactivity was never observed to be colocalized in the same cellular or fiber components visualized by tracer molecules. The question whether the extrabulbar olfactory system and the nervus terminalis (NT) are separate anatomical entities or represent an integrated system is discussed.

  19. Olfactory neuroblastoma: a single-center experience.

    Science.gov (United States)

    König, Marton; Osnes, Terje; Jebsen, Peter; Evensen, Jan Folkvard; Meling, Torstein R

    2018-01-01

    Olfactory neuroblastoma (ONB) is a potentially curable disease, despite being an aggressive malignancy with a poor natural history. Our goal was to evaluate management outcomes for patients with ONB treated at our institution. Our prospective database for brain tumors and the pathology registry of head and neck cancers at Oslo University Hospital were searched to identify all patients treated for ONB between 1998 and 2016. Variables extracted from these databases, supplemented by retrospective chart reviews, underwent thorough analysis. All cases were formally re-examined by a dedicated head and neck pathologist. Twenty patients were identified. Follow-up was 100%. Mean follow-up was 81.5 months for the entire cohort and 120.3 months for patients with no evidence of disease. Fourteen patients underwent treatment of choice including craniofacial resection (CFR) with or without radiotherapy (XRT). Six patients could only receive less extensive treatment; three patients underwent lateral rhinotomy (LR) with or without XRT after being deemed medically unsuitable for CFR, while another three patients received only supportive, non-surgical treatment (due to positive lymph node status in two and to extensive tumor size in one case). Overall and disease-specific survival rates were 100% after 10 years of follow-up when negative surgical margins were achieved by CFR. Positive margins were associated with poorer outcome with no patients surviving longer than 44 months. Long-term survival was also achieved in two cases among patients not eligible for CFR: one case after radical LR and one case after radio-chemotherapy. Advanced disease at presentation (tumor size ≥40 mm, Kadish grades C and D, or TNM IVa and IVb) and positive surgical margins were correlated to significantly dismal survival. Our study suggests that CFR with or without adjuvant XRT is safe and leads to excellent long-time overall and disease-specific survival. Negative surgical margins, tumor size <40

  20. Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis.

    Science.gov (United States)

    van Wijk, Michiel; Wadman, Wytse J; Sabelis, Maurice W

    2006-01-01

    The predatory mite Phytoseiulus persimilis locates its prey, the two-spotted spider mite, by means of herbivore-induced plant volatiles. The olfactory response to this quantitatively and qualitatively variable source of information is particularly well documented. The mites perform this task with a peripheral olfactory system that consists of just five putative olfactory sensilla that reside in a dorsal field at the tip of their first pair of legs. The receptor cells innervate a glomerular olfactory lobe just ventral of the first pedal ganglion. We have made a 3D reconstruction of the caudal half of the olfactory lobe in adult females. The glomerular organization as well as the glomerular innervation appears conserved across different individuals. The adult females have, by approximation, a 1:1 ratio of olfactory receptor cells to olfactory glomeruli.

  1. Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions

    DEFF Research Database (Denmark)

    Karstensen, Helena Gásdal; Vestergaard, Martin; Baaré, William F C

    2018-01-01

    differently in individuals who suffer from lifelong olfactory deprivation relative to healthy normosmic individuals. To address this question, we examined if regional variations in gray matter volume were associated with smell ability in seventeen individuals with isolated congenital olfactory impairment (COI...... in left middle frontal gyrus and right superior frontal sulcus (SFS). COI subjects with severe olfactory impairment (anosmia) had reduced grey matter volume in the left mOFC and increased volume in right piriform cortex and SFS. Within the COI group olfactory ability, measured with the "Sniffin' Sticks...... piriform cortex, while olfactory identification was negatively associated with right SFS volume. Our findings suggest that lifelong olfactory deprivation trigger changes in the cortical volume of prefrontal and limbic brain regions previously linked to olfactory memory....

  2. Newborn neurons in the olfactory bulb selected for long-term survival through olfactory learning are prematurely suppressed when the olfactory memory is erased.

    Science.gov (United States)

    Sultan, Sébastien; Rey, Nolwen; Sacquet, Joelle; Mandairon, Nathalie; Didier, Anne

    2011-10-19

    A role for newborn neurons in olfactory memory has been proposed based on learning-dependent modulation of olfactory bulb neurogenesis in adults. We hypothesized that if newborn neurons support memory, then they should be suppressed by memory erasure. Using an ecological approach in mice, we showed that behaviorally breaking a previously learned odor-reward association prematurely suppressed newborn neurons selected to survive during initial learning. Furthermore, intrabulbar infusions of the caspase pan-inhibitor ZVAD (benzyloxycarbonyl-Val-Ala-Asp) during the behavioral odor-reward extinction prevented newborn neurons death and erasure of the odor-reward association. Newborn neurons thus contribute to the bulbar network plasticity underlying long-term memory.

  3. Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales

    Science.gov (United States)

    McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.

    2008-01-01

    Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…

  4. Virtual vision system with actual flavor by olfactory display

    Science.gov (United States)

    Sakamoto, Kunio; Kanazawa, Fumihiro

    2010-11-01

    The authors have researched multimedia system and support system for nursing studies on and practices of reminiscence therapy and life review therapy. The concept of the life review is presented by Butler in 1963. The process of thinking back on one's life and communicating about one's life to another person is called life review. There is a famous episode concerning the memory. It is called as Proustian effects. This effect is mentioned on the Proust's novel as an episode that a story teller reminds his old memory when he dipped a madeleine in tea. So many scientists research why smells trigger the memory. The authors pay attention to the relation between smells and memory although the reason is not evident yet. Then we have tried to add an olfactory display to the multimedia system so that the smells become a trigger of reminding buried memories. An olfactory display is a device that delivers smells to the nose. It provides us with special effects, for example to emit smell as if you were there or to give a trigger for reminding us of memories. The authors have developed a tabletop display system connected with the olfactory display. For delivering a flavor to user's nose, the system needs to recognition and measure positions of user's face and nose. In this paper, the authors describe an olfactory display which enables to detect the nose position for an effective delivery.

  5. Olfactory-Induced Synesthesias: A Review and Model

    Science.gov (United States)

    Stevenson, Richard J.; Tomiczek, Caroline

    2007-01-01

    Recent reviews of synesthesia concentrate upon rare neurodevelopmental examples and exclude common olfactory-induced experiences with which they may profitably be compared. Like the neurodevelopmental synesthesias, odor-induced experiences involve different sensory modalities; are reliable, asymmetric (concurrents cannot induce), and automatic;…

  6. Rapidly acquired multisensory association in the olfactory cortex.

    Science.gov (United States)

    Karunanayaka, Prasanna R; Wilson, Donald A; Vasavada, Megha; Wang, Jianli; Martinez, Brittany; Tobia, Michael J; Kong, Lan; Eslinger, Paul; Yang, Qing X

    2015-11-01

    The formation of an odor percept in humans is strongly associated with visual information. However, much less is known about the roles of learning and memory in shaping the multisensory nature of odor representations in the brain. The dynamics of odor and visual association in olfaction was investigated using three functional magnetic resonance imaging (fMRI) paradigms. In two paradigms, a visual cue was paired with an odor. In the third, the same visual cue was never paired with an odor. In this experimental design, if the visual cue was not influenced by odor-visual pairing, then the blood-oxygen-level-dependent (BOLD) signal elicited by subsequent visual cues should be similar across all three paradigms. Additionally, intensity, a major dimension of odor perception, was used as a modulator of associative learning which was characterized in terms of the spatiotemporal behavior of the BOLD signal in olfactory structures. A single odor-visual pairing cue could subsequently induce primary olfactory cortex activity when only the visual cue was presented. This activity was intensity dependent and was also detected in secondary olfactory structures and hippocampus. This study provides evidence for a rapid learning response in the olfactory system by a visual cue following odor and visual cue pairing. The novel data and paradigms suggest new avenues to explore the dynamics of odor learning and multisensory representations that contribute to the construction of a unified odor percept in the human brain.

  7. Olfactory memories are intensity specific in larval Drosophila.

    Science.gov (United States)

    Mishra, Dushyant; Chen, Yi-Chun; Yarali, Ayse; Oguz, Tuba; Gerber, Bertram

    2013-05-01

    Learning can rely on stimulus quality, stimulus intensity, or a combination of these. Regarding olfaction, the coding of odour quality is often proposed to be combinatorial along the olfactory pathway, and working hypotheses are available concerning short-term associative memory trace formation of odour quality. However, it is less clear how odour intensity is coded, and whether olfactory memory traces include information about the intensity of the learnt odour. Using odour-sugar associative conditioning in larval Drosophila, we first describe the dose-effect curves of learnability across odour intensities for four different odours (n-amyl acetate, 3-octanol, 1-octen-3-ol and benzaldehyde). We then chose odour intensities such that larvae were trained at an intermediate odour intensity, but were tested for retention with either that trained intermediate odour intensity, or with respectively higher or lower intensities. We observed a specificity of retention for the trained intensity for all four odours used. This adds to the appreciation of the richness in 'content' of olfactory short-term memory traces, even in a system as simple as larval Drosophila, and to define the demands on computational models of associative olfactory memory trace formation. We suggest two kinds of circuit architecture that have the potential to accommodate intensity learning, and discuss how they may be implemented in the insect brain.

  8. A Robust Feedforward Model of the Olfactory System.

    Directory of Open Access Journals (Sweden)

    Yilun Zhang

    2016-04-01

    Full Text Available Most natural odors have sparse molecular composition. This makes the principles of compressed sensing potentially relevant to the structure of the olfactory code. Yet, the largely feedforward organization of the olfactory system precludes reconstruction using standard compressed sensing algorithms. To resolve this problem, recent theoretical work has shown that signal reconstruction could take place as a result of a low dimensional dynamical system converging to one of its attractor states. However, the dynamical aspects of optimization slowed down odor recognition and were also found to be susceptible to noise. Here we describe a feedforward model of the olfactory system that achieves both strong compression and fast reconstruction that is also robust to noise. A key feature of the proposed model is a specific relationship between how odors are represented at the glomeruli stage, which corresponds to a compression, and the connections from glomeruli to third-order neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mushroom body of insects, which in the model corresponds to reconstruction. We show that should this specific relationship hold true, the reconstruction will be both fast and robust to noise, and in particular to the false activation of glomeruli. The predicted connectivity rate from glomeruli to third-order neurons can be tested experimentally.

  9. True navigation in migrating gulls requires intact olfactory nerves

    DEFF Research Database (Denmark)

    Wikelski, Martin; Arriero, Elena; Gagliardo, Anna

    2015-01-01

    debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to ... of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances....

  10. Odor memory stability after reinnervation of the olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Eduardo Blanco-Hernández

    Full Text Available The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP. Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.

  11. Olfactory Imagination and Odor Processing: Three Same-Different Experiments

    NARCIS (Netherlands)

    Koster, E.P.; Stelt, van der O.; Nixdorf, R.R.; Linschoten, M.R.I.; Mojet, J.; Wijk, de R.A.

    2014-01-01

    Do people who claim to have olfactory imagination process odors more efficiently? In three same–different experiments, using all possible combinations of odors and odor names as primes and targets, selected high imagers (n¿=¿12) were faster (±230 ms; P¿

  12. Refining the dual olfactory hypothesis: pheromone reward and odour experience.

    Science.gov (United States)

    Martínez-García, Fernando; Martínez-Ricós, Joana; Agustín-Pavón, Carmen; Martínez-Hernández, Jose; Novejarque, Amparo; Lanuza, Enrique

    2009-06-25

    In rodents, sexual advertisement and gender recognition are mostly (if not exclusively) mediated by chemosignals. Specifically, there is ample evidence indicating that female mice are 'innately' attracted by male sexual pheromones that have critical non-volatile components and are detected by the vomeronasal organ. These pheromones can only get access to the vomeronasal organ by active pumping mechanisms that require close contact with the source of the stimulus (e.g. urine marks) during chemoinvestigation. We have hypothesised that male sexual pheromones are rewarding to female mice. Indeed, male-soiled bedding can be used as a reinforcer to induce conditioned place preference, provided contact with the bedding is allowed. The neural mechanisms of pheromone reward seem, however, different from those employed by other natural reinforcers, such as the sweetness or postingestive effects of sucrose. In contrast to vomeronasal-detected male sexual pheromones, male-derived olfactory stimuli (volatiles) are not intrinsically attractive to female mice. However, after repeated exposure to male-soiled bedding, intact female mice develop an acquired preference for male odours. On the contrary, in females whose accessory olfactory bulbs have been lesioned, exposure to male-soiled bedding induces aversion to male odorants. These considerations, together with data on the different properties of olfactory and vomeronasal receptors, lead us to make a proposal for the complementary roles that the olfactory and vomeronasal systems play in intersexual attraction and in other forms of intra- or inter-species communication.

  13. Mushroom body glycolysis is required for olfactory memory in Drosophila.

    Science.gov (United States)

    Wu, Chia-Lin; Chang, Ching-Ching; Wu, Jie-Kai; Chiang, Meng-Hsuan; Yang, Chu-Huai; Chiang, Hsueh-Cheng

    2018-04-01

    Glucose catabolism, also known as glycolysis, is important for energy generation and involves a sequence of enzymatic reactions that convert a glucose molecule into two pyruvate molecules. The glycolysis process generates adenosine triphosphate as a byproduct. In this study, we investigated whether glycolysis plays a role in maintaining neuronal functions in the Drosophila mushroom bodies (MBs), which are generally accepted to be an olfactory learning and memory center. Our data showed that individual knockdown of glycolytic enzymes in the MBs, including hexokinase (HexA), phosphofructokinase (Pfk), or pyruvate kinase (PyK), disrupts olfactory memory. Whole-mount brain immunostaining indicated that pyruvate kinase is strongly expressed in the MB αβ, α'β', and γ neuron subsets. We conclude that HexA, Pfk, and PyK are required in each MB neuron subset for olfactory memory formation. Our data therefore indicates that glucose catabolism in the MBs is important for olfactory memory formation in Drosophila. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Olfactory and imaging features in atypical Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Huihong Zhang

    2018-02-01

    Full Text Available Cognition and speech disorders are the most common symptoms of dementia in neurodegenerative disease. Here, we present a detailed clinical evaluation of a case of logopenic variant of primary progressive aphasia (lv-PPA, an atypical form of Alzheimer disease (AD, including cognitive testing over time, brain imaging, electrophysiology, and tests of olfactory function.

  15. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Chase R.; Gallagher, Evan P., E-mail: evang3@u.washington.edu

    2013-09-15

    Highlights: •Low Cd exposures elicited significant olfactory mediated behavioral changes independent of histological injury. •The olfactory behavioral deficits persisted following a 16-day depuration. •Olfactory molecular biomarkers expression was strongly linked to injury to the olfactory epithelium. •Cd induced a strong antioxidant response in the coho salmon olfactory system. •Results suggest a sensitivity of salmonids to waterborne Cd. -- Abstract: The olfactory system of salmonids is sensitive to the adverse effects of metals such as copper and cadmium. In the current study, we analyzed olfactory-mediated alarm responses, epithelial injury and recovery, and a suite of olfactory molecular biomarkers encoding genes critical in maintaining olfactory function in juvenile coho salmon receiving acute exposures to cadmium (Cd). The molecular biomarkers analyzed included four G-protein coupled receptors (GPCRs) representing the two major classes of odorant receptors (salmon olfactory receptor sorb and vomeronasal receptors svra, svrb, and gpr27), as well as markers of neurite outgrowth (nrn1) and antioxidant responses to metals, including heme oxygenase 1 (hmox1), and peroxiredoxin 1 (prdx1). Coho received acute (8–168 h) exposures to 3.7 ppb and 347 ppb Cd, and a subset of fish was analyzed following a 16-day depuration. Coho exposed to 347 ppb Cd over 48 h exhibited a reduction in freeze responses, and an extensive loss of olfaction accompanied by histological injury to the olfactory epithelium. The olfactory injury in coho exposed to 347 ppb Cd was accompanied at the gene level by significant decreases in expression of the olfactory GPCRs and increased expression of hmox1. Persistent behavioral deficits, histological injury and altered expression of a subset of olfactory biomarkers were still evident in Cd-exposed coho following a 16-day depuration in clean water. Exposure to 3.7 ppb Cd also resulted in reduced freeze responses and histological changes

  16. Selenomethionine Ameliorates Neuropathology in the Olfactory Bulb of a Triple Transgenic Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Zhong-Hao Zhang

    2016-09-01

    Full Text Available Olfactory dysfunction is an early and common symptom in Alzheimer′s disease (AD and is reported to be related to several pathologic changes, including the deposition of Aβ and hyperphosphorylated tau protein as well as synaptic impairment. Selenomethionine (Se-Met, the major form of selenium in animals and humans, may be a promising therapeutic option for AD as it decreases the deposition of Aβ and tau hyperphosphorylation in a triple transgenic mouse model of AD (3× Tg-AD. In this study, 4-month-old AD mice were treated with 6 µg/mL Se-Met in drinking water for 12 weeks and the effect of Se-Met on neuropathological deficits in olfactory bulb (OB of 3× Tg-AD mice was investigated. The administration of Se-Met effectively decreased the production and deposition of Aβ by inhibiting β-site amyloid precursor protein cleaving enzyme 1 (BACE1-regulated amyloid precursor protein (APP processing and reduced the level of total tau and phosphorylated tau, which depended on depressing the activity and expression of glycogen synthase kinase-3β (GSK-3β and cyclin-dependent kinase 5 (CDK5. Meanwhile, Se-Met reduced glial activation, relieved neuroinflammation and attenuated neuronal cell death in the OB of AD mice. So Se-Met could improve pathologic changes of AD in the OB, which further demonstrated the potential therapeutic effect of Se-Met in AD.

  17. Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hayoz Sébastien

    2012-05-01

    Full Text Available Abstract Background ATP is an extracellular signaling molecule with many ascribed functions in sensory systems, including the olfactory epithelium. The mechanism(s by which ATP is released in the olfactory epithelium has not been investigated. Quantitative luciferin-luciferase assays were used to monitor ATP release, and confocal imaging of the fluorescent ATP marker quinacrine was used to monitor ATP release via exocytosis in Swiss Webster mouse neonatal olfactory epithelial slices. Results Under control conditions, constitutive release of ATP occurs via exocytosis, hemichannels and ABC transporters and is inhibited by vesicular fusion inhibitor Clostridium difficile toxin A and hemichannel and ABC transporter inhibitor probenecid. Constitutive ATP release is negatively regulated by the ATP breakdown product ADP through activation of P2Y receptors, likely via the cAMP/PKA pathway. In vivo studies indicate that constitutive ATP may play a role in neuronal homeostasis as inhibition of exocytosis inhibited normal proliferation in the OE. ATP-evoked ATP release is also present in mouse neonatal OE, triggered by several ionotropic P2X purinergic receptor agonists (ATP, αβMeATP and Bz-ATP and a G protein-coupled P2Y receptor agonist (UTP. Calcium imaging of P2X2-transfected HEK293 “biosensor” cells confirmed the presence of evoked ATP release. Following purinergic receptor stimulation, ATP is released via calcium-dependent exocytosis, activated P2X1,7 receptors, activated P2X7 receptors that form a complex with pannexin channels, or ABC transporters. The ATP-evoked ATP release is inhibited by the purinergic receptor inhibitor PPADS, Clostridium difficile toxin A and two inhibitors of pannexin channels: probenecid and carbenoxolone. Conclusions The constitutive release of ATP might be involved in normal cell turn-over or modulation of odorant sensitivity in physiological conditions. Given the growth-promoting effects of ATP, ATP-evoked ATP

  18. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  19. Radial nerve dysfunction (image)

    Science.gov (United States)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  20. Chronic pelvic floor dysfunction.

    Science.gov (United States)

    Hartmann, Dee; Sarton, Julie

    2014-10-01

    The successful treatment of women with vestibulodynia and its associated chronic pelvic floor dysfunctions requires interventions that address a broad field of possible pain contributors. Pelvic floor muscle hypertonicity was implicated in the mid-1990s as a trigger of major chronic vulvar pain. Painful bladder syndrome, irritable bowel syndrome, fibromyalgia, and temporomandibular jaw disorder are known common comorbidities that can cause a host of associated muscular, visceral, bony, and fascial dysfunctions. It appears that normalizing all of those disorders plays a pivotal role in reducing complaints of chronic vulvar pain and sexual dysfunction. Though the studies have yet to prove a specific protocol, physical therapists trained in pelvic dysfunction are reporting success with restoring tissue normalcy and reducing vulvar and sexual pain. A review of pelvic anatomy and common findings are presented along with suggested physical therapy management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Sacroiliac joint dysfunction.

    Science.gov (United States)

    Ilaslan, Hakan; Arslan, Ahmet; Koç, Omer Nadir; Dalkiliç, Turker; Naderi, Sait

    2010-07-01

    Sacroiliac joint dysfunction is a disorder presenting with low back and groin pain. It should be taken into consideration during the preoperative differential diagnosis of lumbar disc herniation, lumbar spinal stenosis and facet syndrome. Four cases with sacroiliac dysfunction are presented. The clinical and radiological signs supported the evidence of sacroiliac dysfunction, and exact diagnosis was made after positive response to sacroiliac joint block. A percutaneous sacroiliac fixation provided pain relief in all cases. The mean VAS scores reduced from 8.2 to 2.2. It is concluded that sacroiliac joint dysfunction diagnosis requires a careful physical examination of the sacroiliac joints in all cases with low back and groin pain. The diagnosis is made based on positive response to the sacroiliac block. Sacroiliac fixation was found to be effective in carefully selected cases.

  2. Erec tile dysfunction

    African Journals Online (AJOL)

    2009-01-29

    Jan 29, 2009 ... Successful treatment of ED has been demonstrated to ... Incidence. Sexual dysfunction is highly prevalent in men and women. ... an important role in the integration and control of reproductive and sexual .... stress disorder.

  3. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat.

    Directory of Open Access Journals (Sweden)

    Rebecca Lethbridge

    Full Text Available Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A receptor agonist. A glomerular GABA(A receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

  4. Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task.

    Science.gov (United States)

    Devore, Sasha; Manella, Laura C; Linster, Christiane

    2012-01-01

    Cholinergic inputs to cortical processing networks have long been associated with attentional and top-down processing. Experimental and theoretical studies suggest that cholinergic inputs to the main olfactory bulb (OB) can modulate both neural and behavioral odor discrimination. Previous experiments from our laboratory and others demonstrate that blockade of nicotinic receptors directly impairs olfactory discrimination, whereas blockade of muscarinic receptors only measurably impairs olfactory perception when task demands are made more challenging, such as when very low-concentration odors are used or rats are required to maintain sensory memory over long durations. To further investigate the role of muscarinic signaling in the OB, we developed an olfactory delayed match-to-sample task using a digging-based behavioral paradigm. We find that rats are able to maintain robust short-term odor memory for 10-100 s. To investigate the role of muscarinic signaling in task performance, we bilaterally infused scopolamine into the OB. We find that high dosages of scopolamine (38 mM) impair performance on the task across all delays tested, including the baseline condition with no delay, whereas lower dosages (7.6 mM and 22.8 mM) had no measureable effects. These results indicate that general execution of the match-to-sample task, even with no delay, is at least partially dependent on muscarinic signaling in the OB.

  5. Regulation of spike timing-dependent plasticity of olfactory inputs in mitral cells in the rat olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Teng-Fei Ma

    Full Text Available The recent history of activity input onto granule cells (GCs in the main olfactory bulb can affect the strength of lateral inhibition, which functions to generate contrast enhancement. However, at the plasticity level, it is unknown whether and how the prior modification of lateral inhibition modulates the subsequent induction of long-lasting changes of the excitatory olfactory nerve (ON inputs to mitral cells (MCs. Here we found that the repetitive stimulation of two distinct excitatory inputs to the GCs induced a persistent modification of lateral inhibition in MCs in opposing directions. This bidirectional modification of inhibitory inputs differentially regulated the subsequent synaptic plasticity of the excitatory ON inputs to the MCs, which was induced by the repetitive pairing of excitatory postsynaptic potentials (EPSPs with postsynaptic bursts. The regulation of spike timing-dependent plasticity (STDP was achieved by the regulation of the inter-spike-interval (ISI of the postsynaptic bursts. This novel form of inhibition-dependent regulation of plasticity may contribute to the encoding or processing of olfactory information in the olfactory bulb.

  6. Associations of olfactory bulb and depth of olfactory sulcus with basal ganglia and hippocampus in patients with Parkinson's disease.

    Science.gov (United States)

    Tanik, Nermin; Serin, Halil Ibrahim; Celikbilek, Asuman; Inan, Levent Ertugrul; Gundogdu, Fatma

    2016-05-04

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by hyposmia in the preclinical stages. We investigated the relationships of olfactory bulb (OB) volume and olfactory sulcus (OS) depth with basal ganglia and hippocampal volumes. The study included 25 patients with PD and 40 age- and sex-matched control subjects. Idiopathic PD was diagnosed according to published diagnostic criteria. The Hoehn and Yahr (HY) scale, the motor subscale of the Unified Parkinson's Disease Rating Scale (UPDRS III), and the Mini-Mental State Examination (MMSE) were administered to participants. Volumetric measurements of olfactory structures, the basal ganglia, and hippocampus were performed using magnetic resonance imaging (MRI). OB volume and OS depth were significantly reduced in PD patients compared to healthy control subjects (p<0.001 and p<0.001, respectively). The OB and left putamen volumes were significantly correlated (p=0.048), and the depth of the right OS was significantly correlated with right hippocampal volume (p=0.018). We found significant correlations between OB and putamen volumes and OS depth and hippocampal volume. Our study is the first to demonstrate associations of olfactory structures with the putamen and hippocampus using MRI volumetric measurements. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Pseudotumor Cerebri and Glymphatic Dysfunction

    Directory of Open Access Journals (Sweden)

    Marcio Luciano de Souza Bezerra

    2018-01-01

    Full Text Available In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF through the brain parenchyma along paravascular spaces (PVSs and by exchanges with the interstitial fluid (IF. Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH. The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer’s disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses.

  8. Pseudotumor Cerebri and Glymphatic Dysfunction.

    Science.gov (United States)

    Bezerra, Marcio Luciano de Souza; Ferreira, Ana Carolina Andorinho de Freitas; de Oliveira-Souza, Ricardo

    2017-01-01

    In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF) through the brain parenchyma along paravascular spaces (PVSs) and by exchanges with the interstitial fluid (IF). Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH). The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i) visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii) there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii) glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer's disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses.

  9. Localization of α1-2 Fucose Glycan in the Mouse Olfactory Pathway.

    Science.gov (United States)

    Kondoh, Daisuke; Kamikawa, Akihiro; Sasaki, Motoki; Kitamura, Nobuo

    2017-01-01

    Glycoconjugates in the olfactory system play critical roles in neuronal formation, and α1-2 fucose (α1-2Fuc) glycan mediates neurite outgrowth and synaptic plasticity. Histochemical findings of α1-2Fuc glycan in the mouse olfactory system detected using Ulex europaeus agglutinin-I (UEA-I) vary. This study histochemically assessed the main olfactory and vomeronasal pathways in male and female ICR and C57BL/6J mice aged 3-4 months using UEA-I. Ulex europaeus agglutinin-I reacted with most receptor cells arranged mainly at the basal region of the olfactory epithelium. The olfactory nerve layer and glomerular layer of the main olfactory bulb were speckled with positive UEA-I staining, and positive fibers were scattered from the glomerular to the internal plexiform layer. The lateral olfactory tract and rostral migratory stream were also positive for UEA-I. We identified superficial short-axon cells, interneurons of the external plexiform layer, external, middle and internal tufted cells, mitral cells and granule cells as the origins of the UEA-I-positive fibers in the main olfactory bulb. The anterior olfactory nucleus, anterior piriform cortex and olfactory tubercle were negative for UEA-I. Most receptor cells in the vomeronasal epithelium and most glomeruli of the accessory olfactory bulb were positive for UEA-I. Our findings indicated that α1-2Fuc glycan is located within the primary and secondary, but not the ternary, pathways of the main olfactory system, in local circuits of the main olfactory bulb and within the primary, but not secondary, pathway of the vomeronasal system. © 2016 S. Karger AG, Basel.

  10. Neuronal nitric oxide synthase in the olfactory system of an adult teleost fish Oreochromis mossambicus.

    Science.gov (United States)

    Singru, Praful S; Sakharkar, Amul J; Subhedar, Nishikant

    2003-07-11

    The aim of the present study is to explore the distribution of nitric oxide synthase in the olfactory system of an adult teleost, Oreochromis mossambicus using neuronal nitric oxide synthase (nNOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry methods. Intense nNOS immunoreactivity was noticed in several olfactory receptor neurons (ORNs), in their axonal extensions over the olfactory nerve and in some basal cells of the olfactory epithelium. nNOS containing fascicles of the ORNs enter the bulb from its rostral pole, spread in the olfactory nerve layer in the periphery of the bulb and display massive innervation of the olfactory glomeruli. Unilateral ablation of the olfactory organ resulted in dramatic loss of nNOS immunoreactivity in the olfactory nerve layer of the ipsilateral bulb. In the olfactory bulb of intact fish, some granule cells showed intense immunoreactivity; dendrites arising from the granule cells could be traced to the glomerular layer. Of particular interest is the occurrence of nNOS immunoreactivity in the ganglion cells of the nervus terminalis. nNOS containing fibers were also encountered in the medial olfactory tracts as they extend to the telencephalon. The NADPHd staining generally coincides with that of nNOS suggesting that it may serve as a marker for nNOS in the olfactory system of this fish. However, mismatch was encountered in the case of mitral cells, while all are nNOS-negative, few were NADPHd positive. The present study for the first time revealed the occurrence of nNOS immunoreactivity in the ORNs of an adult vertebrate and suggests a role for nitric oxide in the transduction of odor stimuli, regeneration of olfactory epithelium and processing of olfactory signals.

  11. Fos Protein Expression in Olfactory-Related Brain Areas after Learning and after Reactivation of a Slowly Acquired Olfactory Discrimination Task in the Rat

    Science.gov (United States)

    Roullet, Florence; Lienard, Fabienne; Datiche, Frederique; Cattarelli, Martine

    2005-01-01

    Fos protein immunodetection was used to investigate the neuronal activation elicited in some olfactory-related areas after either learning of an olfactory discrimination task or its reactivation 10 d later. Trained rats (T) progressively acquired the association between one odor of a pair and water-reward in a four-arm maze. Two groups of…

  12. Transgenic expression of B-50/GAP-43 in mature olfactory neurons triggers downregulation of native B-50/GAP-43 expression in immature olfactory neurons

    NARCIS (Netherlands)

    Holtmaat, Anthony J D G; Huizinga, C T; Margolis, F L; Gispen, Willem Hendrik; Verhaagen, J

    1999-01-01

    The adult mammalian olfactory neuroepithelium is an unusual neural tissue, since it maintains its capacity to form new neurons throughout life. Newly formed neurons differentiate in the basal layers of the olfactory neuroepithelium and express B-50/GAP-43, a protein implicated in neurite outgrowth.

  13. Animal models of erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Snehlata V Gajbhiye

    2015-01-01

    Full Text Available Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were "ED and experimental models," "ED and nervous stimulation," "ED and cavernous nerve stimulation," "ED and central stimulation," "ED and diabetes mellitus," "ED and ageing," "ED and hypercholesteremia," "ED and Peyronie′s disease," "radiation induced ED," "telemetric recording," "ED and mating test" and "ED and non-contact erection test."

  14. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila.

    Directory of Open Access Journals (Sweden)

    Takahiro Chihara

    2014-06-01

    Full Text Available Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity, we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs, Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.

  15. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila.

    Science.gov (United States)

    Chihara, Takahiro; Kitabayashi, Aki; Morimoto, Michie; Takeuchi, Ken-ichi; Masuyama, Kaoru; Tonoki, Ayako; Davis, Ronald L; Wang, Jing W; Miura, Masayuki

    2014-06-01

    Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity), we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs), Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.

  16. Gross morphology and histology of the olfactory organ of the Greenland shark Somniosus microcephalus

    DEFF Research Database (Denmark)

    Ferrando, S.; Gallus, L.; Ghigliotti, L.

    2016-01-01

    The Greenland shark (Somniosus microcephalus) is the largest predatory fish in Arctic waters. Knowledge of the fundamental biology and ecological role of the Greenland shark is limited, and the sensory biology of the Greenland shark has been poorly studied. Given the potential relevant contribution...... of chemoreception to the sensory capability of the Greenland shark to forage and navigate in low-light environments, we examined the architecture of the peripheral olfactory organ (the olfactory rosette) through morphological, histological and immunohistochemical assays. We found that each olfactory rosette...... neurons, presence of unusually large cells along the olfactory fiber bundles) deserve further investigation. Overall, the structure of the olfactory rosette suggests a well-developed olfactory capability for the Greenland shark coherent with a bentho-pelagic lifestyle....

  17. Interactions of carbon dioxide and food odours in Drosophila: olfactory hedonics and sensory neuron properties.

    Directory of Open Access Journals (Sweden)

    Cécile P Faucher

    Full Text Available Behavioural responses of animals to volatiles in their environment are generally dependent on context. Most natural odours are mixtures of components that can each induce different behaviours when presented on their own. We have investigated how a complex of two olfactory stimuli is evaluated by Drosophila flies in a free-flying two-trap choice assay and how these stimuli are encoded in olfactory receptor neurons. We first observed that volatiles from apple cider vinegar attracted flies while carbon dioxide (CO2 was avoided, confirming their inherent positive and negative values. In contradiction with previous results obtained from walking flies in a four-field olfactometer, in the present assay the addition of CO2 to vinegar increased rather than decreased the attractiveness of vinegar. This effect was female-specific even though males and females responded similarly to CO2 and vinegar on their own. To test whether the female-specific behavioural response to the mixture correlated with a sexual dimorphism at the peripheral level we recorded from olfactory receptor neurons stimulated with vinegar, CO2 and their combination. Responses to vinegar were obtained from three neuron classes, two of them housed with the CO2-responsive neuron in ab1 sensilla. Sensitivity of these neurons to both CO2 and vinegar per se did not differ between males and females and responses from female neurons did not change when CO2 and vinegar were presented simultaneously. We also found that CO2-sensitive neurons are particularly well adapted to respond rapidly to small concentration changes irrespective of background CO2 levels. The ability to encode temporal properties of stimulations differs considerably between CO2- and vinegar-sensitive neurons. These properties may have important implications for in-flight navigation when rapid responses to fragmented odour plumes are crucial to locate odour sources. However, the flies' sex-specific response to the CO2-vinegar

  18. Biology of Sexual Dysfunction

    Directory of Open Access Journals (Sweden)

    Anil Kumar Mysore Nagaraj

    2009-05-01

    Full Text Available Sexual activity is a multifaceted activity, involving complex interactions between the nervous system, the endocrine system, the vascular system and a variety of structures that are instrumental in sexual excitement, intercourse and satisfaction. Sexual function has three components i.e., desire, arousal and orgasm. Many sexual dysfunctions can be categorized according to the phase of sexual response that is affected. In actual clinical practice however, sexual desire, arousal and orgasmic difficulties more often than not coexist, suggesting an integration of phases. Sexual dysfunction can result from a wide variety of psychological and physiological causes including derangements in the levels of sex hormones and neurotrensmitters. This review deals with the biology of different phases of sexual function as well as implications of hormones and neurotransmitters in sexual dysfunction

  19. Exercise and reproductive dysfunction.

    Science.gov (United States)

    Chen, E C; Brzyski, R G

    1999-01-01

    To provide an overview of our current understanding of exercise-induced reproductive dysfunction and an approach to its evaluation and management. A MEDLINE search was performed to review all articles with title words related to menstrual dysfunction, amenorrhea, oligomenorrhea, exercise, and athletic activities from 1966 to 1998. The pathophysiology, proposed mechanisms, clinical manifestations, evaluation, and management of exercise-associated reproductive dysfunction were compiled. Exercise-induced menstrual irregularity appears to be multifactorial in origin and remains a diagnosis of exclusion. The underlying mechanisms are mainly speculative. Clinical manifestations range from luteal phase deficiency to anovulation, amenorrhea, and even delayed menarche. Evaluation should include a thorough history and a complete physical plus pelvic examination. Most cases are reversible with dietary and exercise modifications. Hormonal replacement in cases of a prolonged hypoestrogenic state with evidence of increased bone loss is recommended, although the long-term consequences of prolonged hormonal deficiency are ill-defined.

  20. Olfactory neural tumours - the role of external beam radiotherapy

    International Nuclear Information System (INIS)

    Slevin, N.J.; Irwin, C.J.R.; Banerjee, S.S.; Path, F.R.C.; Gupta, N.K.; Farrington, W.T.

    1996-01-01

    Olfactory neuroblastoma is an uncommon tumour arising in the nasal cavity or paranasal sinuses. We report the management of nine cases treated with external beam radiotherapy subsequent to surgery, either attempted definitive removal or biopsy only. Recent refinements in pathological evaluation of these tumours are discussed. Seven cases were deemed classical olfactory neuroblastoma whilst two were classified as neuroendocrine carcinoma. The clinical features, radiotherapy technique and variable natural history are presented. Seven of eight patients treated radically were controlled locally, with a minimum follow-up of two years. Three patients developed cervical lymph node disease and three patients died of systemic metastatic disease. Suggestions are made as to which patients should have en-bloc resection rather than definitive radiotherapy. (author)

  1. Insect olfactory coding and memory at multiple timescales.

    Science.gov (United States)

    Gupta, Nitin; Stopfer, Mark

    2011-10-01

    Insects can learn, allowing them great flexibility for locating seasonal food sources and avoiding wily predators. Because insects are relatively simple and accessible to manipulation, they provide good experimental preparations for exploring mechanisms underlying sensory coding and memory. Here we review how the intertwining of memory with computation enables the coding, decoding, and storage of sensory experience at various stages of the insect olfactory system. Individual parts of this system are capable of multiplexing memories at different timescales, and conversely, memory on a given timescale can be distributed across different parts of the circuit. Our sampling of the olfactory system emphasizes the diversity of memories, and the importance of understanding these memories in the context of computations performed by different parts of a sensory system. Published by Elsevier Ltd.

  2. Interference with olfactory memory by visual and verbal tasks.

    Science.gov (United States)

    Annett, J M; Cook, N M; Leslie, J C

    1995-06-01

    It has been claimed that olfactory memory is distinct from memory in other modalities. This study investigated the effectiveness of visual and verbal tasks in interfering with olfactory memory and included methodological changes from other recent studies. Subjects were allocated to one of four experimental conditions involving interference tasks [no interference task; visual task; verbal task; visual-plus-verbal task] and presented 15 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Recognition and recall performance both showed effects of interference of visual and verbal tasks but there was no effect for time of testing. While the results may be accommodated within a dual coding framework, further work is indicated to resolve theoretical issues relating to task complexity.

  3. Just follow your nose: homing by olfactory cues in ants.

    Science.gov (United States)

    Steck, Kathrin

    2012-04-01

    How is an ant-equipped with a brain that barely exceeds the size of a pinhead-capable of achieving navigational marvels? Even though evidences suggest that navigation is a multimodal process, ants heavily depend on olfactory cues-of pheromonal and non-pheromonal nature-for foraging and orientation. Recent studies have directed their attention to the efficiency of pheromone trail networks. Advances in neurophysiological techniques make it possible to investigate trail pheromone processing in the ant's brain. In addition to relying on pheromone odours, ants also make use of volatiles emanating from the nest surroundings. Deposited in the vicinity of the nest, these home-range markings help the ants to home after a foraging run. Furthermore, olfactory landmarks associated with the nest enhance ants' homing abilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Superior Orthonasal but Not Retronasal Olfactory Skills in Congenital Blindness

    DEFF Research Database (Denmark)

    Gagnon, Lea; Ismaili, Abd Rahman Alaoui; Ptito, Maurice

    2015-01-01

    olfactory but reduced taste perception. In this study we tested the hypothesis that congenitally blind subjects have enhanced orthonasal but not retronasal olfactory skills. Twelve congenitally blind and 14 sighted control subjects, matched in age, gender and body mass index, were asked to identify odours...... using grocery-available food powders. Results showed that blind subjects were significantly faster and tended to be better at identifying odours presented orthonasally. This was not the case when odorants were presented retronasally. We also found a significant group x route interaction, showing...... that although both groups performed better for retronasally compared to orthonasally presented odours, this gain was less pronounced for blind subjects. Finally, our data revealed that blind subjects were more familiar with the orthonasal odorants and used the retronasal odorants less often for cooking than...

  5. Olfactory stimuli as context cues in human memory.

    Science.gov (United States)

    Cann, A; Ross, D A

    1989-01-01

    Olfactory stimuli were used as context cues in a recognition memory paradigm. Male college students were exposed to 50 slides of the faces of college females while in the presence of a pleasant or an unpleasant odor. During the acquisition phase, ratings of physical attractiveness of the slides were collected. After a 48-hr delay, a recognition test was given using the original 50 slides and 50 new slides. The recognition test was conducted with either the original odor or the alternative odor present. A no-odor control group did not receive olfactory cues. The attractiveness ratings indicated that the odor variations had no effect on these social judgments. Analyses of d' scores, hits, and false alarms for the recognition performance indicated support for the predicted interaction in which presence of the same odor at both sessions led to better overall performance.

  6. Organization of the olfactory system of nymphalidae butterflies.

    Science.gov (United States)

    Carlsson, Mikael A; Schäpers, Alexander; Nässel, Dick R; Janz, Niklas

    2013-05-01

    Olfaction is in many species the most important sense, essential for food search, mate finding, and predator avoidance. Butterflies have been considered a microsmatic group of insects that mainly rely on vision due to their diurnal lifestyle. However, an emerging number of studies indicate that butterflies indeed use the sense of smell for locating food and oviposition sites. To unravel the neural substrates for olfaction, we performed an anatomical study of 2 related butterfly species that differ in food and host plant preference. We found many of the anatomical structures and pathways, as well as distribution of neuroactive substances, to resemble that of their nocturnal relatives among the Lepidoptera. The 2 species differed in the number of one type of olfactory sensilla, thus indicating a difference in sensitivity to certain compounds. Otherwise no differences could be observed. Our findings suggest that the olfactory system in Lepidoptera is well conserved despite the long evolutionary time since butterflies and moths diverged from a common ancestor.

  7. [A new case of "olfactory schwannoma"; presentation and literature review].

    Science.gov (United States)

    Martínez-Soto, L; Alfaro-Baca, R; Torrecilla-Sardón, M V; Fernández-Vallejo, B; Ferreira-Muñóz, R; De Diego, T

    2009-06-01

    We report the case of a 54-year-old man who presented at the Emergency Department with intense headache of 6-days duration and sporadic nominal dysphasia. He did not present anosmia and the rest of the examination was normal. The emergency CT and the posterior cerebral MR showed a great subfrontal extra-axial mass of 7 x 6 x 5 cm, over the right side of the cribiform plate, hetereogeneously enhancing after gadolinium administration. Preoperative diagnosis was olfactory groove meningioma. After total removal by bifrontal craniotomy the histopathological diagnosis was schwannoma of the conventional type. Owing to the unusual frequency of this kind of tumors (26 to the date), we review the literature, the possible radiological differences with olfactory groove meningiomas and the different theories about their origin.

  8. Olfactory memory capacity of the cricket Gryllus bimaculatus.

    Science.gov (United States)

    Matsumoto, Yukihisa; Mizunami, Makoto

    2006-12-22

    Olfactory learning in insects is a useful model for studying neural mechanisms underlying learning and memory, but memory storage capacity for olfactory learning in insects has not been studied. We investigate whether crickets are capable of simultaneously memorizing seven odour pairs. Fourteen odours were grouped into seven A/B pairs, and crickets in one group were trained to associate A odours with water reward and B odours with saline punishment for all the seven pairs. Crickets in another group were trained with the opposite stimulus arrangement. Crickets in all the groups exhibited significantly greater preference for the odours associated with water reward for all the seven odour pairs. We conclude that crickets are capable of memorizing seven odour pairs at the same time.

  9. Immune dysfunction in cirrhosis

    Science.gov (United States)

    Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria

    2014-01-01

    Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality. PMID:24627592

  10. Neuromodulation in bladder dysfunction.

    Science.gov (United States)

    Hasan, S T; Neal, D E

    1998-10-01

    Neuromodulation is one option for the management of a wide variety of lower urinary tract disorders, including non-neuropathic and neuropathic bladder dysfunctions. The mechanisms of action of the reported techniques remain unclear; urodynamic changes are minimal, but symptomatic improvements are common. Although the treatment is relatively free from side-effects compared with more aggressive surgical options, the placebo effect is likely to be significant. Its exact cost effectiveness is unclear, but the technology is a welcome addition to the range of treatment options for lower urinary tract dysfunctions, such as urgency and urge incontinence.

  11. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated.Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect.The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation

  12. Oxytocin administration selectively improves olfactory detection thresholds for lyral in patients with schizophrenia

    OpenAIRE

    Woolley, JD; Lam, O; Chuang, B; Ford, JM; Mathalon, DH; Vinogradov, S

    2015-01-01

    © 2015. Background: Olfaction plays an important role in mammalian social behavior. Olfactory deficits are common in schizophrenia and correlate with negative symptoms and low social drive. Despite their prominence and possible clinical relevance, little is understood about the pathological mechanisms underlying olfactory deficits in schizophrenia and there are currently no effective treatments for these deficits. The prosocial neuropeptide oxytocin may affect the olfactory system when admini...

  13. Mechanisms and potential treatments for declining olfactory function and neurogenesis in the ageing brain

    OpenAIRE

    Broad, K. D.

    2017-01-01

    The role of olfactory function in maintaining quality of life and as a potential surrogate marker of neurogenic activity in the elderly brain is an underappreciated topic. The olfactory system is complex and is unusual in that its function is maintained by neurogenesis at multiple sites throughout the lifetime of an organism, which in humans may be over 80 years in length. Declines in olfactory function are common with advancing age and this is associated with reductions in the qu...

  14. EOL-1, the homolog of the mammalian Dom3Z, regulates olfactory learning in C. elegans

    OpenAIRE

    Zhang, J; Calarco, JA; Shen, Y; Zhang, Y

    2014-01-01

    Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates ...

  15. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Science.gov (United States)

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. Copyright © 2016 the American Physiological Society.

  16. Hunger state affects both olfactory abilities and gustatory sensitivity.

    Science.gov (United States)

    Hanci, Deniz; Altun, Huseyin

    2016-07-01

    Chemical senses such as odor, taste and appearance are directly related with appetite. Understanding the relation between appetite and flavor is getting more important due to increasing number of obese patients worldwide. The literature on the studies investigating the change in olfactory abilities and gustatory sensitivity mostly performed using food-related odors and tastes rather than standardized tests were developed to study olfaction and gustation. Therefore, results are inconsistent and the relationship between olfactory and gustatory sensitivity with respect to the actual state of human satiety is still not completely understood. Here, for the first time in literature, we investigated the change in both olfactory abilities and gustatory sensitivity in hunger and in satiety using 123 subjects (37 men, 86 women; mean age 31.4 years, age range 21-41 years). The standardized Sniffin' Sticks Extended Test and Taste Strips were used for olfactory testing and gustatory sensitivity, respectively. TDI score (range 1-48) was calculated as the collective scores of odor threshold (T), odor discrimination (D) and odor identification (I). The evaluation was performed in two successive days where the hunger state of test subjects was confirmed by blood glucose test strips (mean blood glucose level 90.0 ± 5.6 mg/dl in hunger and 131.4 ± 8.1 mg/dl in satiety). The results indicated statistically significant decrease in olfaction in satiety compared to hunger (mean TDI 39.3 ± 1.1 in hunger, 37.4 ± 1.1 in satiety, p hunger (p hunger state.

  17. Olfactory systems and neural circuits that modulate predator odor fear

    OpenAIRE

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator ...

  18. Short-term memory in olfactory network dynamics

    OpenAIRE

    Stopfer, Mark; Laurent, Gilles

    1999-01-01

    Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clo...

  19. Adult neurogenesis supports short-term olfactory memory.

    Science.gov (United States)

    Arenkiel, Benjamin R

    2010-06-01

    Adult neurogenesis has captivated neuroscientists for decades, with hopes that understanding the programs underlying this phenomenon may provide unique insight toward avenues for brain repair. Interestingly, however, despite intense molecular and cellular investigation, the evolutionary roles and biological functions for ongoing neurogenesis have remained elusive. Here I review recent work published in the Journal of Neuroscience that reveals a functional role for continued neurogenesis toward forming short-term olfactory memories.

  20. CENTRAL REINFORCING EFFECTS OF ETHANOL ARE BLOCKED BY CATALASE INHIBITION

    OpenAIRE

    Nizhnikov, Michael Edward; Molina, Juan Carlos; Spear, Norman

    2007-01-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol’s positive reinforcing effects. Central administrations of ethanol (25–200 mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn’s response to a surrogate nipple scented with the CS. It has been shown that ethanol’s first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous sy...

  1. The effect of desflurane on postoperative olfactory memory.

    Science.gov (United States)

    Yildiz, I; Bayır, H; Saglam, I; Sereflican, M; Bilgi, M; Yurttas, V; Demirhan, A; Tekelioglu, U Y; Kocoglu, H

    2016-05-01

    In this study, we investigated the effects of desflurane 6%, on olfactory memory. This is a prospective clinical study performed with 40 patients aged 18-60 who had elective surgery and American Society of Anesthesiologists (ASA) physical status I-III. The Brief Smell Identification Test (BSIT) was used for evaluating patients' olfactory memories before and after the surgery. Patients received standard general anesthesia protocol and routine monitoring. For induction, 1.5 mg/kg of fentanyl, 2 mg/kg of propofol, and 0.5 mg/kg of rocuronium bromide were administered. Anesthesia was maintained with the inhalational of anesthetic desflurane (6%). The scores are recorded 30 minutes before the surgery and when the Aldrete Recovery Score reached 10 in the postoperative period. Preoperative and postoperative results were compared and p-values 0.05). We have observed for the first time in the literature that general anesthesia using desflurane (6%) did not affect short-term olfactory memory. Further studies will be necessary to confirm our findings with larger sample size.

  2. Short-term memory in olfactory network dynamics

    Science.gov (United States)

    Stopfer, Mark; Laurent, Gilles

    1999-12-01

    Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas.. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clock. Here we examine, using locusts, the changes in population dynamics of projection-neuron assemblies over repeated odour stimulations, as would occur when an animal first encounters and then repeatedly samples an odour for identification or localization. We find that the responses of these assemblies rapidly decrease in intensity, while they show a marked increase in spike time precision and inter-neuronal oscillatory coherence. Once established, this enhanced precision in the representation endures for several minutes. This change is stimulus-specific, and depends on events within the antennal lobe circuits, independent of olfactory receptor adaptation: it may thus constitute a form of sensory memory. Our results suggest that this progressive change in olfactory network dynamics serves to converge, over repeated odour samplings, on a more precise and readily classifiable odour representation, using relational information contained across neural assemblies.

  3. Teaching children with autism spectrum disorder to tact olfactory stimuli.

    Science.gov (United States)

    Dass, Tina K; Kisamore, April N; Vladescu, Jason C; Reeve, Kenneth F; Reeve, Sharon A; Taylor-Santa, Catherine

    2018-05-28

    Research on tact acquisition by children with autism spectrum disorder (ASD) has often focused on teaching participants to tact visual stimuli. It is important to evaluate procedures for teaching tacts of nonvisual stimuli (e.g., olfactory, tactile). The purpose of the current study was to extend the literature on secondary target instruction and tact training by evaluating the effects of a discrete-trial instruction procedure involving (a) echoic prompts, a constant prompt delay, and error correction for primary targets; (b) inclusion of secondary target stimuli in the consequent portion of learning trials; and (c) multiple exemplar training on the acquisition of item tacts of olfactory stimuli, emergence of category tacts of olfactory stimuli, generalization of category tacts, and emergence of category matching, with three children diagnosed with ASD. Results showed that all participants learned the item and category tacts following teaching, participants demonstrated generalization across category tacts, and category matching emerged for all participants. © 2018 Society for the Experimental Analysis of Behavior.

  4. Introducing Computational Fluid Dynamics Simulation into Olfactory Display

    Science.gov (United States)

    Ishida, Hiroshi; Yoshida, Hitoshi; Nakamoto, Takamichi

    An olfactory display is a device that delivers various odors to the user's nose. It can be used to add special effects to movies and games by releasing odors relevant to the scenes shown on the screen. In order to provide high-presence olfactory stimuli to the users, the display must be able to generate realistic odors with appropriate concentrations in a timely manner together with visual and audio playbacks. In this paper, we propose to use computational fluid dynamics (CFD) simulations in conjunction with the olfactory display. Odor molecules released from their source are transported mainly by turbulent flow, and their behavior can be extremely complicated even in a simple indoor environment. In the proposed system, a CFD solver is employed to calculate the airflow field and the odor dispersal in the given environment. An odor blender is used to generate the odor with the concentration determined based on the calculated odor distribution. Experimental results on presenting odor stimuli synchronously with movie clips show the effectiveness of the proposed system.

  5. Predators are attracted to the olfactory signals of prey.

    Directory of Open Access Journals (Sweden)

    Nelika K Hughes

    2010-09-01

    Full Text Available Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking.To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals.This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not.

  6. Floral to green: mating switches moth olfactory coding and preference.

    Science.gov (United States)

    Saveer, Ahmed M; Kromann, Sophie H; Birgersson, Göran; Bengtsson, Marie; Lindblom, Tobias; Balkenius, Anna; Hansson, Bill S; Witzgall, Peter; Becher, Paul G; Ignell, Rickard

    2012-06-22

    Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores.

  7. Immobilization of olfactory receptors onto gold electrodes for electrical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Casuso, Ignacio [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain)], E-mail: icasuso@pcb.ub.es; Pla-Roca, Mateu [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain); Gomila, Gabriel [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain)], E-mail: ggomila@pcb.ub.es; Samitier, Josep [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain); Minic, Jasmina; Persuy, Marie A.; Salesse, Roland; Pajot-Augy, Edith [INRA, Neurobiologie de l' Olfaction et de la Prise Alimentaire, Equipe Recepteurs et Communication Chimique, Domaine de Vilvert, Jouy en Josas Cedex (France)

    2008-07-01

    We investigate the immobilization of native nanovesicles containing functional olfactory receptors onto gold electrodes by means of atomic force microscopy in liquid. We show that nanovesicles can be adsorbed without disrupting them presenting sizes once immobilized ranging from 50 nm to 200 nm in diameter. The size of the nanovesicles shows no dependence on the electrode hydrophobicity being constant in a height/width ratio close to 1:3. Nevertheless, electrode hydrophobicity does affect the surface coverage, the surface coverage is five times higher in hydrophilic electrodes than on hydrophobic ones. Surface coverage is also affected by nanovesicles dimensions in suspension, the size homogenization to around 50 nm yields a further five fold increment in surface coverage achieving a coverage of about 50% close to the hard spheres jamming limit (54.7%). A single layer of nanovesicles is always formed with no particle overlap. Present results provide insights into the immobilization on electrodes of olfactory receptors for further olfactory electrical biosensor development.

  8. Experimental evolution of olfactory memory in Drosophila melanogaster.

    Science.gov (United States)

    Mery, Frederic; Pont, Juliette; Preat, Thomas; Kawecki, Tadeusz J

    2007-01-01

    In order to address the nature of genetic variation in learning performance, we investigated the response to classical olfactory conditioning in "high-learning" Drosophila melanogaster lines previously subject to selection for the ability to learn an association between the flavor of an oviposition medium and bitter taste. In a T-maze choice test, the seven high-learning lines were better at avoiding an odor previously associated with aversive mechanical shock than were five unselected "low-learning" lines originating from the same natural population. Thus, the evolved improvement in learning ability of high-learning lines generalized to another aversion learning task involving a different aversive stimulus (shock instead of bitter taste) and a different behavioral context than that used to impose selection. In this olfactory shock task, the high-learning lines showed improvements in the learning rate as well as in two forms of consolidated memory: anesthesia-resistant memory and long-term memory. Thus, genetic variation underlying the experimental evolution of learning performance in the high-learning lines affected several phases of memory formation in the course of olfactory aversive learning. However, the two forms of consolidated memory were negatively correlated among replicate high-learning lines, which is consistent with a recent hypothesis that these two forms of consolidated memory are antagonistic.

  9. Ancestral amphibian v2rs are expressed in the main olfactory epithelium

    Science.gov (United States)

    Syed, Adnan S.; Sansone, Alfredo; Nadler, Walter; Manzini, Ivan; Korsching, Sigrun I.

    2013-01-01

    Mammalian olfactory receptor families are segregated into different olfactory organs, with type 2 vomeronasal receptor (v2r) genes expressed in a basal layer of the vomeronasal epithelium. In contrast, teleost fish v2r genes are intermingled with all other olfactory receptor genes in a single sensory surface. We report here that, strikingly different from both lineages, the v2r gene family of the amphibian Xenopus laevis is expressed in the main olfactory as well as the vomeronasal epithelium. Interestingly, late diverging v2r genes are expressed exclusively in the vomeronasal epithelium, whereas “ancestral” v2r genes, including the single member of v2r family C, are restricted to the main olfactory epithelium. Moreover, within the main olfactory epithelium, v2r genes are expressed in a basal zone, partially overlapping, but clearly distinct from an apical zone of olfactory marker protein and odorant receptor-expressing cells. These zones are also apparent in the spatial distribution of odor responses, enabling a tentative assignment of odor responses to olfactory receptor gene families. Responses to alcohols, aldehydes, and ketones show an apical localization, consistent with being mediated by odorant receptors, whereas amino acid responses overlap extensively with the basal v2r-expressing zone. The unique bimodal v2r expression pattern in main and accessory olfactory system of amphibians presents an excellent opportunity to study the transition of v2r gene expression during evolution of higher vertebrates. PMID:23613591

  10. Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization

    Directory of Open Access Journals (Sweden)

    Gianluca Polese

    2016-05-01

    Full Text Available The cephalopod olfactory organ was described for the first time in 1844 by von Kölliker, who was attracted to the pair of small pits of ciliated cells on each side of the head, below the eyes close to the mantle edge, in both octopuses and squids. Several functional studies have been conducted on decapods but very little is known about octopods. The morphology of the octopus olfactory system has been studied, but only to a limited extent on post-hatching specimens, and the only paper on adult octopus gives a minimal description of the olfactory organ. Here, we describe the detailed morphology of young male and female Octopus vulgaris olfactory epithelium, and using a combination of classical morphology and 3D reconstruction techniques, we propose a new classification for O. vulgaris olfactory sensory neurons. Furthermore, using specific markers such as olfactory marker protein (OMP and proliferating cell nuclear antigen (PCNA we have been able to identify and differentially localize both mature olfactory sensory neurons and olfactory sensory neurons involved in epithelium turnover. Taken together, our data suggest that the O. vulgaris olfactory organ is extremely plastic, capable of changing its shape and also proliferating its cells in older specimens.

  11. Olfactory short-term memory encoding and maintenance - an event-related potential study.

    Science.gov (United States)

    Lenk, Steffen; Bluschke, Annet; Beste, Christian; Iannilli, Emilia; Rößner, Veit; Hummel, Thomas; Bender, Stephan

    2014-09-01

    This study examined whether the memory encoding and short term maintenance of olfactory stimuli is associated with neurophysiological activation patterns which parallel those described for sensory modalities such as vision and auditory. We examined olfactory event-related potentials in an olfactory change detection task in twenty-four healthy adults and compared the measured activation to that found during passive olfactory stimulation. During the early olfactory post-processing phase, we found a sustained negativity over bilateral frontotemporal areas in the passive perception condition which was enhanced in the active memory task. There was no significant lateralization in either experimental condition. During the maintenance interval at the end of the delay period, we still found sustained activation over bilateral frontotemporal areas which was more negative in trials with correct - as compared to incorrect - behavioural responses. This was complemented by a general significantly stronger frontocentral activation. Summarizing, we were able to show that olfactory short term memory involves a parallel sequence of activation as found in other sensory modalities. In addition to olfactory-specific frontotemporal activations in the memory encoding phase, we found slow cortical potentials over frontocentral areas during the memory maintenance phase indicating the activation of a supramodal memory maintenance system. These findings could represent the neurophysiological underpinning of the 'olfactory flacon', the olfactory counter-part to the visual sketchpad and phonological loop embedded in Baddeley's working memory model. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss

    Directory of Open Access Journals (Sweden)

    K. Kollndorfer

    2015-01-01

    The results of this study indicate that an olfactory training program can reorganize functional networks, although, initially, no differences in the spatial distribution of neural activation were observed.

  13. CD36 is involved in oleic acid detection by the murine olfactory system.

    Directory of Open Access Journals (Sweden)

    Sonja eOberland

    2015-09-01

    Full Text Available Olfactory signals influence food intake in a variety of species. To maximize the chances of finding a source of calories, an animal’s preference for fatty foods and triglycerides already becomes apparent during olfactory food search behavior. However, the molecular identity of both receptors and ligands mediating olfactory-dependent fatty acid recognition are, so far, undescribed. We here describe that a subset of olfactory sensory neurons expresses the fatty acid receptor CD36 and demonstrate a receptor-like localization of CD36 in olfactory cilia by STED microscopy. CD36-positive olfactory neurons share olfaction-specific transduction elements and project to numerous glomeruli in the ventral olfactory bulb. In accordance with the described roles of CD36 as fatty acid receptor or co-receptor in other sensory systems, the number of olfactory neurons responding to oleic acid, a major milk component, in Ca2+ imaging experiments is drastically reduced in young CD36 knock-out mice. Strikingly, we also observe marked age-dependent changes in CD36 localization, which is prominently present in the ciliary compartment only during the suckling period. Our results support the involvement of CD36 in fatty acid detection by the mammalian olfactory system.

  14. Increased Regenerative Capacity of the Olfactory Epithelium in Niemann–Pick Disease Type C1

    Directory of Open Access Journals (Sweden)

    Anja Meyer

    2017-04-01

    Full Text Available Niemann–Pick disease type C1 (NPC1 is a fatal neurovisceral lysosomal lipid storage disorder. The mutation of the NPC1 protein affects the homeostasis and transport of cholesterol and glycosphingolipids from late endosomes/lysosomes to the endoplasmic reticulum resulting in progressive neurodegeneration. Since olfactory impairment is one of the earliest symptoms in many neurodegenerative disorders, we focused on alterations of the olfactory epithelium in an NPC1 mouse model. Previous findings revealed severe morphological and immunohistochemical alterations in the olfactory system of NPC1−/− mutant mice compared with healthy controls (NPC1+/+. Based on immunohistochemical evaluation of the olfactory epithelium, we analyzed the impact of neurodegeneration in the olfactory epithelium of NPC1−/− mice and observed considerable loss of mature olfactory receptor neurons as well as an increased number of proliferating and apoptotic cells. Additionally, after administration of two different therapy approaches using either a combination of miglustat, 2-hydroxypropyl-β-cyclodextrin (HPβCD and allopregnanolone or a monotherapy with HPβCD, we recorded a remarkable reduction of morphological damages in NPC1−/− mice and an up to four-fold increase of proliferating cells within the olfactory epithelium. Numbers of mature olfactory receptor neurons doubled after both therapy approaches. Interestingly, we also observed therapy-induced alterations in treated NPC1+/+ controls. Thus, olfactory testing may provide useful information to monitor pharmacologic treatment approaches in human NPC1.

  15. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?

    Science.gov (United States)

    Martin, Claire; Ravel, Nadine

    2014-01-01

    Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to "bind" distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz) and gamma (60-100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  16. Beta and gamma oscillatory activities associated with olfactory memory tasks: Different rhythms for different functional networks?

    Directory of Open Access Journals (Sweden)

    Claire eMartin

    2014-06-01

    Full Text Available Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform and entorhinal cortices and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to ‘bind’ distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz and gamma (60-100 Hz. While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  17. Smelly primes – when olfactory primes do or do not work

    Directory of Open Access Journals (Sweden)

    Monique A Smeets

    2014-02-01

    Full Text Available In applied olfactory cognition the effects that olfactory stimulation can have on (human behavior are investigated. To enable an efficient application of olfactory stimuli a model of how they may lead to a change in behavior is proposed. To this end we use the concept of olfactory priming. Olfactory priming may prompt a special view on priming as the olfactory sense has some unique properties which make odors special types of primes. Examples of such properties are the ability of odors to influence our behavior outside of awareness, to lead to strong affective evaluations, to evoke specific memories, and to associate easily and quickly to other environmental stimuli. Opportunities and limitations for using odors as primes are related to these properties, and alternative explanations for reported findings are offered. Implications for olfactory semantic, construal, behavior and goal priming are given based on a brief overview of the priming literature from social psychology and from olfactory perception science. We end by formulating recommendations and ideas for a future research agenda and applications for olfactory priming.

  18. Postirradiation cardiovascular dysfunction

    International Nuclear Information System (INIS)

    Hawkins, R.N.; Cockerham, L.G.

    1987-01-01

    Cardiovascular dysfunction may be defined as the inability of any element of the cardiovascular system to perform adequately upon demand, leading to inadequate performance and nutritive insufficiency of various parts of the body. Exposure to supralethal doses of radiation (accidental and therapeutic) has been show to induce significant alterations in cardiovascular function in man. These findings indicate that, after irradiation, cardiovascular function is a major determinant of continued performance and even survival. For the two persons who received massive radiation doses (45 and 88 Gy, respectively) in criticality accidents, the inability to maintain systematic arterial blood pressure (AP) was the immediate cause of death. In a study of cancer patients given partial-body irradiation, two acute lethalities were attributed to myocardial infarction after an acute hypotensive episode during the first few hours postexposure. Although radiation-induced cardiovascular dysfunction has been observed in many species, its severity, duration, and even etiology may vary with the species, level of exposure, and dose rate. For this reason, our consideration of the effects of radiation on cardiovascular performance is limited to the circulatory derangements that occur in rat, dog, and monkey after supralethal doses and lead to radiation-induced cardiovascular dysfunction in these experimental models. The authors consider other recent data as they pertain to the etiology of cardiovascular dysfunction in irradiated animals

  19. Female sexual dysfunction

    DEFF Research Database (Denmark)

    Giraldi, Annamaria; Wåhlin-Jacobsen, Sarah

    2016-01-01

    Female sexual dysfunction (FSD) is a controversial condition, which has prompted much debate regarding its aetiology, components, and even its existence. Our inability to work together as clinicians, psychologists, patients, and advocates hinders our understanding of FSD, and we will only improve...

  20. Mitochondrial Dysfunction in Gliomas

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Anni, H.; Dráber, Pavel

    2013-01-01

    Roč. 20, č. 3 (2013), s. 216-227 ISSN 1071-9091 R&D Projects: GA MŠk LH12050 Institutional support: RVO:68378050 Keywords : gliomas * mitochondrial dysfunction * microtubule proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.883, year: 2013

  1. Erectile Dysfunction (ED)

    Science.gov (United States)

    ... Talking to Your Kids About VirginityTalking to Your Kids About Sex Home Diseases and Conditions Erectile Dysfunction (ED) Condition ... Well-Being Mental Health Sex and Birth Control Sex and Sexuality Birth Control ... and Toddlers Kids and Teens Pregnancy and Childbirth Women Men Seniors ...

  2. Mitochondrial dysfunction in epilepsy

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava; Kunz, W.S.

    2012-01-01

    Roč. 12, č. 1 (2012), s. 35-40 ISSN 1567-7249 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR GA309/08/0292 Institutional research plan: CEZ:AV0Z50110509 Keywords : epilepsy * mitochondrial dysfunction * neurodegeneration Subject RIV: FH - Neurology Impact factor: 4.025, year: 2012

  3. Role of olfactory bulb serotonin in olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae).

    Science.gov (United States)

    Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Haupt, Moritz; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel

    2010-09-17

    The role of olfactory bulb (OB) serotonin [5-hydroxytryptamine (5-HT)] in olfactory learning and memory was tested in the greater short-nosed fruit bat, Cynopterus sphinx (family Pteropodidae). Graded concentrations (25, 40, and 60microg) of 5,7-dihydroxytryptamine (5,7-DHT) or saline were injected into the OB of bats one day before training to the novel odor. In a behavioral test, 5,7-DHT (60microg) injected bats made significantly fewer feeding attempts and bouts when compared to saline-injected bats during learning and in the memory test. Subsequent biochemical analysis showed that 5-HT level was effectively depleted in the OB of 5,7-DHT injected bats. To test odor-induced 5-HT mediated changes in 5-HT receptors and second messenger cascade in the OB, we examined the expression of 5-HT receptors and mitogen-activated protein kinase (MAPK)/Erk cascade after training to the novel odor. We found that odor stimulation up-regulated the expression of 5-HT(1A) receptor, Erk1 and Creb1 mRNA, and phosphorylation of ERK1 and CREB1. Odor stimulation failed to induce expression in 5-HT-depleted bats, which is similar to control bats and significantly low compared to saline-treated bats. Together these data revealed that the level of 5-HT in the OB may regulate olfactory learning and memory in C. sphinx through Erk and CREB.

  4. Chronically reinforced, operant olfactory conditioning increases the number of newborn GABAergic olfactory periglomerular neurons in the adult rat.

    Science.gov (United States)

    Tapia-Rodríguez, Miguel; Esquivelzeta-Rabell, José F; Gutiérrez-Ospina, Gabriel

    2012-12-01

    The mammalian brain preserves the ability to replace olfactory periglomerular cells (PGC) throughout life. Even though we have detailed a great deal the mechanisms underlying stem and amplifying cells maintenance and proliferation, as well as those modulating migration and differentiation, our knowledge on PGC phenotypic plasticity is at best fragmented and controversial. Here we explored whether chronically reinforced olfactory conditioning influences the phenotype of newborn PGC. Accordingly, olfactory conditioned rats showed increased numbers of GAD 65/67 positive PGC. Because such phenotypic change was not accompanied neither by increments in the total number of PGC, or periglomerular cell nuclei labeled with bromodeoxyuridine, nor by reductions in the number of tyrosine hydroxylase (TH), calbindin (CB) or calretinin (CR) immunoreactive PGC, we speculate that increments in the number of GABAergic PGC occur at the expense of other PGC phenotypes. In any event, these results support that adult newborn PGC phenotype may be subjected to phenotypic plasticity influenced by sensory stimulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. On the nose: Olfactory disturbances in patients with transient epileptic amnesia.

    Science.gov (United States)

    Savage, Sharon A; Butler, Christopher R; Milton, Fraser; Han, Yang; Zeman, Adam Z

    2017-01-01

    While olfactory hallucinations are relatively rare in epilepsy, a high prevalence (up to 42%) has been reported in one form - Transient Epileptic Amnesia (TEA). TEA is characterized by recurring amnestic seizures and is commonly associated with persistent interictal memory deficits. Despite reports of changes in smell, olfactory ability has not been objectively assessed in this group. The aim of this study was to measure olfactory ability in patients with TEA and explore whether olfactory symptoms relate to other clinical variables. Fifty-five participants with TEA were recruited from The Impairment of Memory in Epilepsy project database. The presence of olfactory symptoms was obtained via case notes and clinical interview. Participants completed questionnaires to evaluate their olfaction and memory function subjectively. Olfactory ability was measured using the University of Pennsylvania Smell Identification Test (UPSIT). TEA participants' performance was compared to 50 matched healthy control participants. A subset of TEA participants (n=26) also completed a battery of memory tests including standard neuropsychological measures, and assessment of accelerated long-term forgetting and autobiographical memory. Olfactory hallucinations were reported in 55% of patients with TEA. A significant reduction in smell identification (UPSIT) was found between patients with TEA and healthy controls (polfactory hallucinations, were not predictive of olfactory ability. Patients reported ongoing memory difficulties and performed below normative values on objective tests. While no correlation was found between objective measures of memory and olfactory performance, subjective complaints of route finding difficulty was associated with UPSIT score. Impairments in odor identification are common in patients with TEA and exceed changes that occur in normal aging. Olfactory hallucinations occurs in approximately half of patients with TEA, but do not always coincide with reduced sense of

  6. Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe.

    Science.gov (United States)

    Twick, Isabell; Lee, John Anthony; Ramaswami, Mani

    2014-01-01

    A ubiquitous feature of an animal's response to an odorant is that it declines when the odorant is frequently or continuously encountered. This decline in olfactory response, termed olfactory habituation, can have temporally or mechanistically different forms. The neural circuitry of the fruit fly Drosophila melanogaster's olfactory system is well defined in terms of component cells, which are readily accessible to functional studies and genetic manipulation. This makes it a particularly useful preparation for the investigation of olfactory habituation. In addition, the insect olfactory system shares many architectural and functional similarities with mammalian olfactory systems, suggesting that olfactory mechanisms in insects may be broadly relevant. In this chapter, we discuss the likely mechanisms of olfactory habituation in context of the participating cell types, their connectivity, and their roles in sensory processing. We overview the structure and function of key cell types, the mechanisms that stimulate them, and how they transduce and process odor signals. We then consider how each stage of olfactory processing could potentially contribute to behavioral habituation. After this, we overview a variety of recent mechanistic studies that point to an important role for potentiation of inhibitory synapses in the primary olfactory processing center, the antennal lobe, in driving the reduced response to familiar odorants. Following the discussion of mechanisms for short- and long-term olfactory habituation, we end by considering how these mechanisms may be regulated by neuromodulators, which likely play key roles in the induction, gating, or suppression of habituated behavior, and speculate on the relevance of these processes for other forms of learning and memory. © 2014 Elsevier B.V. All rights reserved.

  7. Dysfunctions in public psychiatric bureaucracies.

    Science.gov (United States)

    Marcos, L R

    1988-03-01

    The author describes common dysfunctions in public psychiatric organizations according to the model of bureaucracy articulated by Max Weber. Dysfunctions are divided into the categories of goal displacement, outside interference, unclear authority structure and hierarchy, and informal relations in the work place. The author emphasizes the bureaucratic nature of public psychiatry and the need for mental health professionals to understand the dysfunctions of the organizations in which they work, including the impact of these dysfunctions on the provision of quality care.

  8. Central presbycusis: an emerging view.

    Science.gov (United States)

    Gates, George A

    2012-07-01

    Age-related dysfunction of the central auditory system (central presbycusis) is common but rarely looked for by those who provide aural rehabilitation. Patients who complain of difficulty hearing in noise--the key symptom of central presbycusis--are generally disadvantaged with conventional rehabilitation. This symptom should be documented with commercially available speech-in-noise tests, which use materials that are uncomplicated to administer. Those patients who perform poorly on such tests should have a customized rehabilitation program aimed at optimizing their remaining communication abilities. Otolaryngologists who provide auditory rehabilitation may wish to consider expanding their practices to meet the communication needs of older patients with central presbycusis. Central presbycusis is an emerging area for basic and clinical research in auditory neurotology, particularly in the relation of cognitive dysfunction to impaired auditory processing.

  9. [Thyroid dysfunction and amiodarone].

    Science.gov (United States)

    Lima, Jandira; Carvalho, Patrícia; Molina, M Auxiliadora; Rebelo, Marta; Dias, Patrícia; Vieira, José Diniz; Costa, José M Nascimento

    2013-02-01

    Although most patients remain clinically euthyroid, some develop amiodarone-induced hyperthyroidism (HPEAI) or hypothyroidism (HPOAI). The authors present a retrospective analysis of ten patients with amiodarone-induced thyroid dysfunction. Six patients were female and mean amiodarone intake was 17.7 months. HPOIA was more common (six patients). From all the patients with HPEAI, two had type 2, one had type 1, and one had type 3 hyperthyroidism. Symptoms suggestive of thyroid dysfunction occurred in five patients, most of them with HPOAI. In HPEAI, the most frequent symptom was exacerbation of arrhythmia (three patients). Discontinuation of amiodarone and treatment with levothyroxine was chosen in 83.3% of the HPOAI cases, while thyonamide treatment with corticosteroids and without amiodarone was the option in 75% of the HPEAI cases. There were three deaths, all in patients with HPEAI. HPEAI is potentially fatal. The clinical picture may be vague, so the thyroid monitoring is mandatory.

  10. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  11. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  12. Roles for Drosophila Mushroom Body Neurons in Olfactory Learning and Memory

    Science.gov (United States)

    Zong, Lin; Tanaka, Nobuaki K.; Ito, Kei; Davis, Ronald L.; Akalal, David-Benjamin G.; Wilson, Curtis F.

    2006-01-01

    Olfactory learning assays in Drosophila have revealed that distinct brain structures known as mushroom bodies (MBs) are critical for the associative learning and memory of olfactory stimuli. However, the precise roles of the different neurons comprising the MBs are still under debate. The confusion surrounding the roles of the different neurons…

  13. A functional study of the rat olfactory bulb through autoradiography with 14C-2-deoxyglucose

    International Nuclear Information System (INIS)

    Verrier, Marie; Leveteau, Jean; Giachetti, Ismene; MacLeod, Patrick

    1978-01-01

    The autoradiographic methods has been used in the rat to map active regions in the olfactory bulb after a pulse of 14 C-2-deoxyglucose with electrical stimulation of the lateral olfactory tract. The highest optical densities were found at the external plexiform, mural, internal plexiform and granular layers: the lowest was found in the glomerular layer [fr

  14. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    NARCIS (Netherlands)

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs)

  15. Morphology and cytology of the olfactory organs in small juvenile Dascyllus aruanus and Amphiprion ocellaris (Pisces

    DEFF Research Database (Denmark)

    Arvedlund, Michael; Brolund, Thea Marie; Nielsen, Lis Engdahl

    2003-01-01

    The olfactory organs in juvenile Dascyllus aruanus and Amphiprion ocellaris, studied by scanning and transmission electron microscopy (SEM and TEM), consisted of two bilaterally radial rosettes per specimen, fan-shaped, located medio-ventrally, one in each of two olfactory chambers. In D. aruanus...

  16. An FMRI Study of Olfactory Cues to Perception of Conspecific Stress

    Science.gov (United States)

    2010-04-01

    Petrovic P, Ingvar M, Stone-Elander S, Petersson KM, Hansson P (1999) A PET activation study of dynamic mechanical allodynia in patients with...state on olfactory sensitivity suggest odor specificity. Biol Psychol 71: 244-247. 67. Mair RG, Bouffard JA, Engen T, Morton TH (1978) Olfactory

  17. The essence of appetite: Does olfactory receptor variation play a role?

    Science.gov (United States)

    Olfactory receptors are G-protein coupled chemoreceptors expressed on millions of olfactory sensory neurons within the nasal cavity. These receptors detect environmental odorants and signal the brain regarding the location of feed, potential mates, and the presence of possible threats (e.g., predato...

  18. Main causes and diagnostic evaluation in patients with primary complaint of olfactory disturbances

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Fornazieri

    2014-06-01

    Full Text Available INTRODUCTION: Establishing a diagnosis in patients with olfactory disturbances has always been challenging for physicians.One reason for this is the rarity of some of the diseases that affect this sense, such as Kallmann's syndrome and post-viral olfactory loss. OBJECTIVE: To identify the major causes of olfactory disturbances and to describe the diagnostic evaluation in outpatients attended to at an ambulatory clinic specialized in olfaction disorders. METHODS: A retrospective analysis was performed in outpatients with primary olfactory complaint attended to between June 1, 2011 and September 30, 2013 in a center specialized in olfactory disorders. Patient history, nasofibroscopy, and the University of Pennsylvania Smell Identification Test (UPSIT comprised the examination. RESULTS: Sixty-two patients were evaluated. The major causes were chronic rhinosinusitis (31%; rhinitis, primarily the allergic type (19%; post-viral olfactory loss (13%; and post-traumatic loss (8%. UPSIT scores were statistically different among different etiologies (p = 0.01. CONCLUSIONS: The major diagnoses that should be part of the physician assessment when a patient complains of olfactory disturbance are chronic rhinosinusitis with and without polyps, allergic rhinitis, post-viral olfactory loss, and post-traumatic loss.

  19. The olfactory deficit and fMRI in the Alzheimer's disease

    International Nuclear Information System (INIS)

    Yin Jianzhong; Wang Jianli; Yang Qingxian; Qi Ji

    2008-01-01

    Olfactory deficit is a common symptom occurring at the early stage of Alzheimer's disease, the purpose of this review is to summarize MRI research on olfactory deficit in the Alzheimer's disease and potential clinical relevance of fMRI in this area. (authors)

  20. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis

    OpenAIRE

    Leduc, Antoine O. H. C.; Munday, Philip L.; Brown, Grant E.; Ferrari, Maud C. O.

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Wh...

  1. A novel neural substrate for the transformation of olfactory inputs into motor output.

    Directory of Open Access Journals (Sweden)

    Dominique Derjean

    2010-12-01

    Full Text Available It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.

  2. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hatt Hanns

    2011-08-01

    Full Text Available Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  3. Thyroid dysfunction in pregnancy

    Directory of Open Access Journals (Sweden)

    El Baba KA

    2012-03-01

    Full Text Available Khalid A El Baba1, Sami T Azar21Department of Internal Medicine, Division of Endocrinology, Bahrain Specialist Hospital, Manama, Bahrain; 2Department of Internal Medicine, Division of Endocrinology, American University of Beirut-Medical Center, New York, NY, USAAbstract: Timely treatment of thyroid disease during pregnancy is important in preventing adverse maternal and fetal outcomes. Thyroid abnormalities are very often subclinical in nature and not easily recognized without specific screening programs. Even mild maternal thyroid hormone deficiency may lead to neurodevelopment complications in the fetus. The main diagnostic indicator of thyroid disease is the measurement of serum thyroid-stimulating hormone and free thyroxine levels. Availability of gestation-age-specific thyroid-stimulating hormone thresholds is an important aid in the accurate diagnosis and treatment of thyroid dysfunction. Pregnancy-specific free thyroxine thresholds not presently available are also required. Large-scale intervention trials are urgently needed to assess the efficacy of preconception or early pregnancy screening for thyroid disorders. Accurate interpretation of both antepartum and postpartum levels of thyroid hormones is important in preventing pregnancy-related complication secondary to thyroid dysfunction. This article sheds light on the best ways of management of thyroid dysfunction during pregnancy in order to prevent any possible maternal or fetal complication.Keywords: TSH, HCG, TBG

  4. Electrophysiological evidence for a direct link between the main and accessory olfactory bulbs in the adult rat

    Directory of Open Access Journals (Sweden)

    Victor eVargas-Barroso

    2016-01-01

    Full Text Available It is accepted that the main- and accessory- olfactory systems exhibit overlapping responses to pheromones and odorants. We performed whole-cell patch-clamp recordings in adult rat olfactory bulb slices to define a possible interaction between the first central relay of these systems: the accessory olfactory bulb (AOB and the main olfactory bulb (MOB. This was tested by applying electrical field stimulation in the dorsal part of the MOB while recording large principal cells (LPCs of the anterior AOB (aAOB. Additional recordings of LPCs were performed at either side of the plane of intersection between the aAOB and posterior-AOB (pAOB halves, or linea alba, while applying field stimulation to the opposite half. A total of 92 recorded neurons were filled during whole-cell recordings with biocytin and studied at the light microscope. Neurons located in the aAOB (n = 6, 8% send axon collaterals to the MOB since they were antidromically activated in the presence of glutamate receptor antagonists (APV and CNQX. Recorded LPCs evoked orthodromic excitatory post-synaptic responses (n = 6, aAOB; n = 1, pAOB or antidromic action potentials (n = 8, aAOB; n = 7, pAOB when applying field stimulation to the opposite half of the recording site (e.g. recording in aAOB; stimulating in pAOB and vice-versa. Observation of the filled neurons revealed that indeed, LPCs send axon branches that cross the linea alba to resolve in the internal cellular layer. Additionally, LPCs of the aAOB send axon collaterals to dorsal-MOB territory. Notably, while performing AOB recordings we found a sub-population of neurons (24 % of the total that exhibited voltage-dependent bursts of action potentials. Our findings support the existence of: 1. a direct projection from aAOB LPCs to dorsal-MOB, 2. physiologically active synapses linking aAOB and pAOB, and 3. pacemaker-like neurons in both AOB halves. This work was presented in the form of an Abstract on SfN 2014 (719.14/EE17.

  5. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  6. Size matters - The olfactory bulb as a marker for depression.

    Science.gov (United States)

    Rottstaedt, F; Weidner, K; Strauß, T; Schellong, J; Kitzler, H; Wolff-Stephan, S; Hummel, T; Croy, I

    2018-03-15

    Major Depression is mainly related to structural and functional alterations in brain networks involving limbic and prefrontal regions. Reduced olfactory sensitivity in depression is associated with reduced olfactory bulb (OB) volume. We determined if the OB volume reduction is a specific biomarker for depression and whether its diagnostic accuracy allows its use as a valid biomarker to support its diagnosis. 84 in-patients with mixed mental disorders and 51 age-matched healthy controls underwent structural MR imaging with a spin-echo T2-wheighted sequence. Individual OB volume was calculated manually (interrater-reliability = .81, p < .001) and compared between groups. Multiple regression analysis with OB volume as dependent variable and Receiver Operator Characteristic analysis to obtain its diagnostic accuracy for depression were ruled out. Patients exhibited a 13.5% reduced OB volume. Multiple regression analysis showed that the OB volume variation was best explained by depression (β = -.19), sex (β = -.31) and age (β = -.29), but not by any other mental disorder. OB volume attained a diagnostic accuracy of 68.1% for depression. The patient group mainly contained highly comorbid patients with mostly internalizing disorders which limits the generalisability of the results of the regression analysis. The OB may serve as a marker for depression. We assume that reduced neural olfactory input to subsequent limbic and salience processing structures moderates this relation. However, the OB was in an inferior position compared to conventional questionnaires for diagnosis of depression. Combination with further structural or functional measurements is suggested. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Olfactory specialization for perfume collection in male orchid bees.

    Science.gov (United States)

    Mitko, Lukasz; Weber, Marjorie G; Ramirez, Santiago R; Hedenström, Erik; Wcislo, William T; Eltz, Thomas

    2016-05-15

    Insects rely on the olfactory system to detect a vast diversity of airborne molecules in their environment. Highly sensitive olfactory tuning is expected to evolve when detection of a particular chemical with great precision is required in the context of foraging and/or finding mates. Male neotropical orchid bees (Euglossini) collect odoriferous substances from multiple sources, store them in specialized tibial pouches and later expose them at display sites, presumably as mating signals to females. Previous analysis of tibial compounds among sympatric species revealed substantial chemical disparity in chemical composition among lineages with outstanding divergence between closely related species. Here, we tested whether specific perfume phenotypes coevolve with matching olfactory adaptations in male orchid bees to facilitate the location and harvest of species-specific perfume compounds. We conducted electroantennographic (EAG) measurements on males of 15 sympatric species in the genus Euglossa that were stimulated with 18 compounds present in variable proportions in male hind tibiae. Antennal response profiles were species-specific across all 15 species, but there was no conspicuous differentiation between closely related species. Instead, we found that the observed variation in EAG activity follows a Brownian motion model of trait evolution, where the probability of differentiation increases proportionally with lineage divergence time. However, we identified strong antennal responses for some chemicals that are present as major compounds in the perfume of the same species, thus suggesting that sensory specialization has occurred within multiple lineages. This sensory specialization was particularly apparent for semi-volatile molecules ('base note' compounds), thus supporting the idea that such compounds play an important role in chemical signaling of euglossine bees. Overall, our study found no close correspondence between antennal responses and behavioral

  8. Olfactory systems and neural circuits that modulate predator odor fear

    Science.gov (United States)

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  9. Clinical, radiological, surgical, and pathological determinants of olfactory groove schwannoma

    Directory of Open Access Journals (Sweden)

    Andi Sadayandi Ramesh

    2014-01-01

    Full Text Available Background: Olfactory groove schwannomas (OGS are rare anterior cranial fossa base tumors with only 41 cases reported in literature. Olfactory ensheathing cell schwannoma (OECS has similar clinico-radiological features as OGS, but a different cell of origin. In recent years, there is growing interest in OECS as more cases are being reported. Aims: The objective was to study the clinico-radiological features of OGS and define the histological differentiation from OECS. Materials and Methods: We retrospectively analyzed clinical, radiological, surgical and histopathological picture of all cases of OGS managed in our institute. Immuno histochemical studies were performed in these tumors for differentiating from OECS. A comprehensive review of articles published until date describing the operative treatment was done. Results: All three cases had presented with seizures, two had anosmia and papilledema. Gross-total resection was achieved in all our patients. One patient expired in the postoperative period due to septicemia. Positive expression to newer immuno histochemical biomarker CD57 (Leu7, with negative staining to smooth muscle α-actin (SMA was helpful in confirming the diagnosis of OGS and differentiating it from OECS in all our cases. Conclusions: OECS, though rare has to be differentiated from OGS using immuno histochemistry. Gross-total resection of OGS with preservation of olfactory function is often possible and curative. Although these tumors are commonly treated with microsurgical skull base approaches, an endoscopic endonasal approach can be considered in some cases, with repair using mucoperiosteal pedicled flap to prevent cerebrospinal fluid leak.

  10. Olfactory discrimination and memory deficits in the Flinders Sensitive Line rodent model of depression.

    Science.gov (United States)

    Cook, A; Pfeiffer, L-M; Thiele, S; Coenen, V A; Döbrössy, M D

    2017-10-01

    Major Depressive Disorder (MDD) is a heterogeneous psychiatric disorder with broad symptomatic manifestations. The current study examined, for the first time, olfactory memory and discrimination in the Flinders Sensitive Line (FSL) rodent model of depression. Male FSL rats and controls were trained on an Olfactory Discrimination (OD) and a Social Interaction (SI) test. On the OD test, the FSL and controls performed similarly at the shortest inter-trial interval (5min), however, with extended delay of 30min, the FSLs had a recall and odour discrimination deficit. At the longest delay (60min) both groups performed poorly. The FSL rats i.) had a deficit in olfactory discrimination suggesting impairment in olfactory memory and recall; ii.) were less likely to socialize with unfamiliar rats. The data suggests that FSL animals have an impaired olfactory information processing capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nervus terminalis, olfactory nerve, and optic nerve representation of luteinizing hormone-releasing hormone in primates.

    Science.gov (United States)

    Witkin, J W

    1987-01-01

    The luteinizing hormone-releasing hormone (LHRH) system was examined immunocytochemically in olfactory bulbs of adult monkeys, including two New World species (squirrel monkey, Saimiri sciureus and owl monkey, Aotus trivirgatus) and one Old World species (cynomolgus macaque, Macaca fasciculata), and in the brain and nasal region of a fetal rhesus macaque Macaca mulatta. LHRH neurons and fibers were found sparsely distributed in the olfactory bulbs in all adult monkeys. There was more LHRH in the accessory olfactory bulb (which is absent in Old World monkeys). In the fetal macaque there was a rich distribution of LHRH neurons and fibers along the pathway of the nervus terminalis, anterior and ventral to the olfactory bulb, and in the nasal septum, with fibers branching into the olfactory epithelium. In addition, there were LHRH neurons and fibers in the optic nerve.

  12. Ectopic olfactory neuroblastoma: report of four cases and a review of the literature.

    LENUS (Irish Health Repository)

    Wormald, R

    2011-04-01

    Our objective is to present a short series of four rare cases of ectopic olfactory neuroblastoma. Our methods present four case reports of ectopic olfactory neuroblastoma and a review of the literature for management and treatment of this disease. The results indicate short case series reports of ectopic olfactory neuroblastoma arising from the anterior ethmoidal sinuses, the nasopharynx, the lateral nasal wall and the floor of the nose. The discussion focuses on likely origins of ectopic olfactory neuroblastoma, its clinical features and management. We conclude that ectopic olfactory neuroblastoma is a rare disease. Treatment principles are the same for non-ectopic disease and guided by extension into adjacent structures such as the orbit or anterior cranial fossa and usually involves surgery with or without adjuvant radiotherapy.

  13. The terminal nerve plays a prominent role in GnRH-1 neuronal migration independent from proper olfactory and vomeronasal connections to the olfactory bulbs

    Directory of Open Access Journals (Sweden)

    Ed Zandro M. Taroc

    2017-10-01

    Yoshihara et al., 2005. Our data prove that correct development of the OBs and axonal connection of the olfactory/vomeronasal sensory neurons to the forebrain are not required for GnRH-1 ns migration, and suggest that the terminal nerve, which forms the GnRH-1 migratory scaffold, follows different guidance cues and differs in gene expression from olfactory/vomeronasal sensory neurons.

  14. Olfactory LOVER: Behavioral and neural correlates of autobiographical odor memory

    Directory of Open Access Journals (Sweden)

    Maria eLarsson

    2014-04-01

    Full Text Available Autobiographical memories (AMs are personally experienced events that may be localized in time and space. In the present work we present an overview targeting memories evoked by the sense of smell. Overall, research indicates that autobiographical odor memory is different than memories evoked by our primary sensory systems; sight and hearing. Here, observed differences from a behavioral and neuroanatomical perspective are presented. The key features of an olfactory evoked AM may be referred to the LOVER acronym - Limbic, Old, Vivid, Emotional, and Rare.

  15. The role of Drosophila mushroom body signaling in olfactory memory.

    Science.gov (United States)

    McGuire, S E; Le, P T; Davis, R L

    2001-08-17

    The mushroom bodies of the Drosophila brain are important for olfactory learning and memory. To investigate the requirement for mushroom body signaling during the different phases of memory processing, we transiently inactivated neurotransmission through this region of the brain by expressing a temperature-sensitive allele of the shibire dynamin guanosine triphosphatase, which is required for synaptic transmission. Inactivation of mushroom body signaling through alpha/beta neurons during different phases of memory processing revealed a requirement for mushroom body signaling during memory retrieval, but not during acquisition or consolidation.

  16. Women have better olfactory perception for wine aromas

    Directory of Open Access Journals (Sweden)

    Wurz Douglas André

    2017-01-01

    Full Text Available The objective of this work was to verify the influence of the gender on the olfactory perception of aromas found in the wines, as well as to identify the aromatic groups most perceived by men and women. Twenty different aromas of different aromatic classes described in the wines were used: fruity, spices, wood, herbaceous, floral, buttery, defects. The different aromatic groups were packed in Erlenmeyer glasses wrapped with aluminum paper in order to avoid the visualization of the aromas by the participants. Fifty people, 25 men and 25 women, aged between 21 and 65 years, were ramdomly separated in groups of 10 people to participate of the evaluation. The influence of the gender on the ability to identify aromas was verified. Women matched 56.8% of the aromas, while men matched 44.6%. In relation to the aromatic class, a greater index of the feminine gender in all the aromatic classes was verified, being spices the group of aromas that women most perceived, with 80.6% of hits, followed by the floral aromas with 50% accuracy. For men, the aromatic class with the highest index of accuracy was also the spices, however, with a success rate of 58.4%, followed by the herbaceous group with 38.2% of correct answers. Both females and males obtained high scores for the group of wine defects (acetic acid and ethyl acetate, 85.2% and 81.0%, respectively, overcoming the other aromatic classes. Buttery aromas were the ones least recognized by women, with 30.8% of hits, whereas the least perceived aroma for men were the floral ones, with no hits observed in any group of participants. The results found in this study show that there are differences in olfactory perception between men and women, and this factor, in addition to the wine service temperature, wine glass type, olfactory memory, must also be considered in sensory analysis. Female gender has a greater ability to identify aromas in relation to the male gender, since women have a greater number of cells

  17. Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys

    Directory of Open Access Journals (Sweden)

    Christian Pifl

    2017-05-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA and serotonin (5-hydroxytryptamine, 5-HT and their metabolites, of noradrenaline (NA and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP treated Macaca fascicularis in different stages, including monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms.

  18. Neural circuits containing olfactory neurons are involved in prepulse inhibition of the startle reflex in rats

    Directory of Open Access Journals (Sweden)

    Haichen eNiu

    2015-03-01

    Full Text Available Many neuropsychiatric disorders, such as schizophrenia, have been associated with abnormalities in the function of the olfactory system and prepulse inhibition (PPI of the startle reflex. However, whether these two abnormalities are related is unclear. The present study was designed to determine whether inhibiting olfactory sensory input via the infusion of zinc sulfate (ZnE, 0.17 M, 0.5 ml into the olfactory naris disrupts PPI. Furthermore, lidocaine/MK801 was bilaterally microinjected into the olfactory bulb (OB to examine whether the blockade of olfactory sensory input impairs PPI. To identify the neural projections that connect the olfaction- and PPI-related areas of the CNS, trans-synaptic retrograde tracing using a recombinant pseudorabies virus (PRV was performed. Our results demonstrated that blocking olfactory sensory input altered olfaction-related behavior. At the functional level, we demonstrated that the inhibition of olfactory sensory input impaired PPI of the startle response subsequent to a decrease in c-fos expression in relevant brain regions. Furthermore, the results of a similar and more robust experiment indicated that blocking olfactory sensory input via the microinjection of lidocaine/MK801 into the OB impaired PPI. At the circuit level, based on trans-synaptic retrograde tracing using PRV, we demonstrated that a large portion of the labeled neurons in several regions of the olfactory cortices connected to the pedunculopontine tegmental nucleus (PPTg. Thus, these data suggest that the olfactory system participates in the regulation of PPI and plays a role in the effect of PPI on the startle response in rats.

  19. Olfactory function in patients with chronic rhinosinusitis before and after functional endoscopic sinus surgery.

    Science.gov (United States)

    Jiang, Rong-San; Lu, Fung-Jou; Liang, Kai-Li; Shiao, Jiun-Yi; Su, Mao-Chang; Hsin, Chung-Han; Chen, Wen-Kang

    2008-01-01

    The olfactory loss in patients with chronic rhinosinusitis has been measured by different methods. However, the results have been variable and it is not clear whether functional endoscopic sinus surgery (FESS) significantly improves olfactory function. This study was performed to evaluate the influences of FESS on olfactory function in patients with chronic rhinosinusitis using three different types of olfactory tests. Seventy patients with chronic rhinosinusitis were administered the University of Pennsylvania Smell Identification Test (UPSIT), a single staircase phenyl ethyl alcohol odor detection threshold test (STT), and a short-term odor memory/discrimination test a day before and 6 months after FESS. A questionnaire inquiring about the patients' self-perception of olfactory function was administered also. Independent ratings of the severity of chronic rhinosinusitis before FESS were established from CT scans. Fifty-two (74.3%) of the patients reported that their olfactory function was impaired before surgery, and 68.6% of the patients reported impaired olfactory function after surgery, a difference that was not significant. No meaningful changes in any of the olfactory test scores were noted 6 or more months after FESS. Preoperatively, small correlations between CT scores and the symptom scores (r = 0.278; p = 0.024), threshold scores (r = -0.27; p = 0.031), and UPSIT scores (r = -0.36; p = 0.003) were observed. In patients with severe rhinosinusitis, FESS had little impact on the ability to smell, regardless of the method for assessing smell function. Subtle associations between olfactory function and the severity of chronic rhinosinusitis determined by CT were observed, however, preoperatively. The olfactory test measures were correlated with one another both pre- and postoperatively.

  20. Neuropeptide Y in the olfactory system, forebrain and pituitary of the teleost, Clarias batrachus.

    Science.gov (United States)

    Gaikwad, Archana; Biju, K C; Saha, Subhash G; Subhedar, Nishikant

    2004-03-01

    Distribution of neuropeptide Y (NPY)-like immunoreactivity in the forebrain of catfish Clarias batrachus was examined with immunocytochemistry. Conspicuous immunoreactivity was seen in the olfactory receptor neurons (ORNs), their projections in the olfactory nerve, fascicles of the olfactory nerve layer in the periphery of bulb and in the medial olfactory tracts as they extend to the telencephalic lobes. Ablation of the olfactory organ resulted in loss of immunoreactivity in the olfactory nerve layer of the bulb and also in the fascicles of the medial olfactory tracts. This evidence suggests that NPY may serve as a neurotransmitter in the ORNs and convey chemosensory information to the olfactory bulb, and also to the telencephalon over the extrabulbar projections. In addition, network of beaded immunoreactive fibers was noticed throughout the olfactory bulb, which did not respond to ablation experiment. These fibers may represent centrifugal innervation of the bulb. Strong immunoreactivity was encountered in some ganglion cells of nervus terminalis. Immunoreactive fibers and terminal fields were widely distributed in the telencephalon. Several neurons of nucleus entopeduncularis were moderately immunoreactive; and a small population of neurons in nucleus preopticus periventricularis was also labeled. Immunoreactive terminal fields were particularly conspicuous in the preoptic, the tuberal areas, and the periventricular zone around the third ventricle and inferior lobes. NPY immunoreactive cells and fibers were detected in all the lobes of the pituitary gland. Present results describing the localization of NPY in the forebrain of C. batrachus are in concurrence with the pattern of the immunoreactivity encountered in other teleosts. However, NPY in olfactory system of C. batrachus is a novel feature that suggests a role for the peptide in processing of chemosensory information.