WorldWideScience

Sample records for oleoyl-estrone metabolic effects

  1. Oleoyl-estrone metabolic effects in relation with caloric restriction in inbred Beta rats with spontaneous obesity and type 2 diabetes Efectos metabólicos de la oleoil-estrona en relación con la restricción calórica en ratas Beta endocriadas, con obesidad espontánea y diabetes tipo II

    Directory of Open Access Journals (Sweden)

    Marta D. Posadas

    2004-08-01

    Full Text Available Spontaneously hypertriacylglycerolemic obese and diabetic inbred IIM Beta rats were treated with oleoyl- estrone for 10 days. Pair-feeding was performed to determine some oleoyl-estrone effects dependent on the caloric restriction it promotes. Twenty-five 200 day-old Beta males receiving a daily gavage of 0.2 ml sunflower oil were divided into the following groups: 1 daily dose of 10 nmol/g oleoyl-estrone; 2 pair-fed; 3 control. The variables measured were: whole body protein, water and lipid; retroperitoneal and epididymal fat depot weights; plasma urea, glucose, insulin, triacylglycerols and cholesterol. Biomass and food intake were assessed daily. Oleoyl-estrone and pair-fed groups expressed similar variations in body composition and significant body weight losses due to reduction in food intake. Oleoyl-estrone and pair-fed treatments significantly reduced retroperitoneal fat depot weights, but not epididymal ones. In oleoyl-estrone and pair-fed groups hyperglycemia decreased and insulinemia lowered significantly. Plasma normal total cholesterolemia and hypertriacylglycerolemia values typical of Beta rats decreased strongly compared to controls, though attaining significantly different values between oleoyl-estrone and pair-fed groups. Plasma total cholesterol appeared as more sensitive to caloric restriction than triacylglycerols through a specific oleoyl-estrone- mediated effect.Ratas endocriadas de la línea IIMBeta con obesidad, hipertriacilglicerolemia y diabetes espontáneas fueron tratadas con oleoil-estrona durante 10 días. Un grupo con restricción alimentaria fue incluido en el estudio a fin de aislar algunos efectos de la oleoil-estrona dependientes de la restricción calórica que ésta promueve. Veinticinco ratas Beta macho de 200 días de edad a los que se suministró 0.2 ml de aceite de girasol por día se dividieron en los siguientes grupos: (1 dosis diaria de 10 nmol/g de oleoil-estrona; (2 restringido; (3 control. Las

  2. Site-specific modulation of white adipose tissue lipid metabolism by oleoyl-estrone and/or rosiglitazone in overweight rats.

    Science.gov (United States)

    Ferrer-Lorente, R; Cabot, C; Fernández-López, J A; Alemany, M

    2010-04-01

    In spite of their shared decrease of insulin resistance, oleoyl-estrone [OE], and rosiglitazone show diverging effects on body fat mass and distribution. In this study, we studied whether their effects on white adipose tissue [WAT] were due to a shared or synergistic mechanism of action. Combined effects of OE and rosiglitazone 10-day treatment on WAT lipid, cell mass/number, and the expression of key lipid metabolism and regulatory agents were studied using an adult male overweight rat model. OE decreased WAT cell mass and lipids, parameters not changed by rosiglitazone. The effects of OE and--specially--rosiglitazone were more marked in small-cell WAT (i.e., mesenteric and subcutaneous sites) than in larger cell WAT (retroperitoneal and perigonadal). OE decreased the expressions in WAT of lipogenic enzymes, lipoprotein lipase, PPARs, and SREBP1c, effects symmetrically reversed by rosiglitazone. OE showed no effects on hormone-sensitive lipase expression, which was increased by rosiglitazone. OE strongly inhibited WAT lipogenesis, leaving lipolysis unchanged, thus unbalancing (and helping mobilize) WAT lipid stores. Rosiglitazone acted practically only on small-cell WAT sites, where it favored lipogenesis, but also stimulated lipolysis, which resulted in limited changes in lipid stores. Combination of OE and rosiglitazone induced less fat loss than OE alone.

  3. Treatment of pregnant rats with oleoyl-estrone slows down pup fat deposition after weaning

    Directory of Open Access Journals (Sweden)

    Vilà Ruth

    2008-06-01

    Full Text Available Abstract Background In rats, oral oleoyl-estrone (OE decreases food intake and body lipid content. The aim of this study was to determine whether OE treatment affects the energy metabolism of pregnant rats and eventually, of their pups; i.e. changes in normal growth patterns and the onset of obesity after weaning. Methods Pregnant Wistar rats were treated with daily intragastric gavages of OE in 0.2 ml sunflower oil from days 11 to 21 of pregnancy (i.e. 10 nmol oleoyl-estrone/g/day. Control animals received only the vehicle. Plasma and hormone metabolites were determined together with variations in cellularity of adipose tissue. Results Treatment decreased food intake and lowered weight gain during late pregnancy, mainly because of reduced adipose tissue accumulation in different sites. OE-treated pregnant rats' metabolic pattern after delivery was similar to that of controls. Neonates from OE-treated rats weighed the same as those from controls. They also maintained the same growth rate up to weaning, but pups from OE-treated rats slowed their growth rate afterwards, despite only limited differences in metabolite concentrations. Conclusion The OE influences on pup growth can be partially buffered by maternal lipid mobilization during the second half of pregnancy. This maternal metabolic "imprinting" may condition the eventual accumulation of adipose tissue after weaning, and its effects can affect the regulation of body weight up to adulthood.

  4. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    Directory of Open Access Journals (Sweden)

    Remesar Xavier

    2007-08-01

    Full Text Available Abstract Background Short-term OE (oleoyl-estrone treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL were decreased by 52%, those of Fatty Acid Synthase (FAS by 95%, those of Hormone Sensible Lipase (HSL by 32%, those of Acetyl CoA Carboxylase (ACC by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b by 45%, and those of Fatty Acid Transport Protein 1 (FATP1 and Adipocyte Fatty Acid Binding Protein (FABP4 by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα values showed overexpression (198%. Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  5. Oleoyl-estrone increases adrenal corticosteroid synthesis gene expression in overweight male rats.

    Science.gov (United States)

    Romero, María del Mar; Vilà, Ruth; Fernández-López, José Antonio; Esteve, Montserrat; Alemany, Marià

    2010-01-01

    Oleoyl-estrone (OE) induces a marked loss of body fat in rats by maintaining energy expenditure, body protein and blood glucose despite decreasing food intake. OE increases glucocorticoids, but they arrest OE lipid-mobilization. We studied here whether OE induces a direct effect on adrenal glands function as part of this feedback regulation. Dietary overweight male rats were given oral 10nmol/g OE gavages for ten days. A group (PF) of pair-fed to OE rats, and controls received vehicle-only gavages. OE rats lost slightly more body than PF, but had larger adrenal glands. Tissue corticosterone levels, and gene expressions for glucocorticoid-synthesizing enzymes were increased in OE versus controls and PF; thus, we assumed that adrenal growth affected essentially its cortex since OE also lowered the expression of the medullar catecholamine synthesis enzyme genes. Serum corticosterone was higher in PF than in OE and controls, but liver expression of corticosteroid-disposing steroid 5alpha-reductase was 3x larger in OE than PF and controls. Circulating glucocorticoids changed little under OE, in spite of higher adrenal gland and liver content, hinting at modulation of glucocorticoid turnover as instrumental in their purported increased activity. In conclusion, we have observed that OE considerable enhanced the expression of the genes controlling the synthesis of glucocorticoids from cholesterol in the rat and increasing the adrenal glands' corticosterone, size and cellularity, but also the liver disposal of corticosteroids, suggesting that OE increases corticosterone synthesis and degradation (i.e. serum turnover), a process not driven by limited energy availability but directly related to the administration of OE.

  6. Fluoroacetylcarnitine: metabolism and metabolic effects in mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, J.; Davis, E.J.

    1973-01-01

    The metabolism and metabolic effects of fluoroacetylcarnitine have been investigated. Carnitineacetyltransferase transfers the fluoro-acetyl group of fluoroacetylcarnitine nearly as rapidly to CoA as the acetyl group of acetylcarnitine. Fluorocitrate is then formed by citrate synthase, but this second reaction is relatively slow. The fluorocitrate formed intramitochondrially inhibits the metabolism of citrate. In heart and skeletal muscle mitochondria the accumulated citrate inhibits citrate synthesis and the ..beta..-oxidation of fatty acids. Free acetate is formed, presumably because accumulated acetyl-CoA is hydrolyzed. In liver mitochondria the accumulation of citrate leads to a relatively increased rate of ketogenesis. Increased ketogenesis is obtained also upon the addition of citrate to the reaction mixture.

  7. Metabolic Effects of Intermittent Fasting.

    Science.gov (United States)

    Patterson, Ruth E; Sears, Dorothy D

    2017-08-21

    The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms "intermittent fasting," "fasting," "time-restricted feeding," and "food timing." Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.

  8. Metabolic effects of smoking cessation.

    Science.gov (United States)

    Harris, Kindred K; Zopey, Mohan; Friedman, Theodore C

    2016-05-01

    Smoking continues to be the leading cause of preventable death in the USA, despite the vast and widely publicized knowledge about the negative health effects of tobacco smoking. Data show that smoking cessation is often accompanied by weight gain and an improvement in insulin sensitivity over time. However, paradoxically, post-cessation-related obesity might contribute to insulin resistance. Furthermore, post-cessation weight gain is reportedly the number one reason why smokers, especially women, fail to initiate smoking cessation or relapse after initiating smoking cessation. In this Review, we discuss the metabolic effects of stopping smoking and highlight future considerations for smoking cessation programs and therapies to be designed with an emphasis on reducing post-cessation weight gain.

  9. Metabolic effects of continuous feeding.

    Science.gov (United States)

    Wolever, T M

    1990-09-01

    To study the metabolic effects of slowing absorption, as a possible mechanism for the blood glucose and lipid-lowering effects of soluble fiber and low glycemic index (GI) foods, seven healthy men consumed a liquid formula diet either as three equal meals at 4-hour intervals, or by continuously sipping the same amount of formula over the 12-hour study period. Meal-related fluctuations of blood glucose, insulin, and triglycerides were seen during three meals, but not during sipping. Mean 12-hour levels of blood glucose and beta-hydroxybutyrate (beta OHB) were equivalent on sipping and three meals. The total integrated insulin area was reduced by 32% on sipping (P less than .01), but this was not explained by the 16% (NS) reduction in serum C-peptide response. Mean serum free fatty acid (FFA) and cholesterol levels were reduced by 20% and 2.6%, respectively (P less than .01). It is concluded that the reduced glycemic responses seen after soluble fiber-enriched meals and low GI foods can be explained by slow absorption. Although the overall mean daily blood glucose levels may not be reduced by slowing carbohydrate absorption in nondiabetic subjects, this is achieved at considerably lower ambient serum insulin concentrations. The reduction of insulin levels may be an important mechanism for the serum cholesterol-lowering effect of soluble fiber and low GI foods.

  10. Metabolic Side Effects of Lithium

    Directory of Open Access Journals (Sweden)

    M. Cagdas Eker

    2010-04-01

    Full Text Available Lithium is an alkaline ion being used since 19th century. After its widespread use in psychiatric disorders, observed side effects caused skepticism about its therapeutic efficacy. Despite several disadvantages, lithium is one of the indispensible drugs used in affective disorders, especially in bipolar disorder. It became a necessity for physicians to recognize its side effects since lithium is still accepted as a gold standard in the treatment of bipolar disorder. Adverse effects of chronic administration of lithium on several organ systems are widely known. In this article metabolic effects of lithium on thyroid and parathyroid glands, body mass index and kidneys will be discussed along with their mechanisms, clinical findings, possible risk factors and treatment. One of the most common side effect of lithium is hypothyroidism. It has the same clinical and biochemical properties as primary hypothyroidism and observed as subclinical hypothyroidism in the first place. Hypothyroidism, even its subclinical form, may be associated with non-response or inadequate response and is indicated as a risk factor for development of rapid cycling bipolar disorder. Therefore, hypothyroidism should be screened no matter how severe it is and should be treated with thyroid hormone in the presence of clinical hypothyroidism. Weight gain due to lithium administration disturbs the compliance to treatment and negatively affects the course of the illness. Increased risk for diabetes, hypertension, ischemic heart disease and stroke because of weight gain constitute other centers of problem. Indeed, it is of importance to determine the risk factors before treatment, to follow up the weight, to re-organize nutritional habits and to schedule exercises. Another frequent problematic side effect of lithium treatment is renal dysfunction which clinically present as nephrogenic diabetes insipidus with the common symptoms of polyuria and polydipsia. Nephrogenic diabetes

  11. Metabolic effects of hypergravity on experimental animals

    Science.gov (United States)

    Oyama, J.

    1982-01-01

    Several experiments concerned with the exposure of animals to acute or chronic centrifugation are described. The effects of hypergravity particularly discussed include the decreased growth rate and body weight, increased metabolic rate, skeletal deformation, and loss of body fat.

  12. Metabolic effects of hypergravity on experimental animals

    Science.gov (United States)

    Oyama, J.

    1982-01-01

    Several experiments concerned with the exposure of animals to acute or chronic centrifugation are described. The effects of hypergravity particularly discussed include the decreased growth rate and body weight, increased metabolic rate, skeletal deformation, and loss of body fat.

  13. Effects of hyperammonemia on brain energy metabolism

    DEFF Research Database (Denmark)

    Schousboe, Arne; Waagepetersen, Helle S.; Leke, Renata;

    2014-01-01

    The literature related to the effects of elevated plasma ammonia levels on brain energy metabolism is abundant, but heterogeneous in terms of the conclusions. Thus, some studies claim that ammonia has a direct, inhibitory effect on energy metabolism whereas others find no such correlation...... but related to the fact that hepatic encephalopathy is always associated with reduced brain activity, a condition clearly characterized by a decreased CMRO2. Whether this may be related to changes in GABAergic function remains to be elucidated....

  14. METABOLIC EFFECTS OF NON-NUTRITIVE SWEETENERS

    Science.gov (United States)

    Pepino, M. Yanina

    2015-01-01

    Until recently, the general belief was that non-nutritive sweeteners (NNS) were healthy sugar substitutes because they provide sweet taste without calories or glycemic effects. However, data from several epidemiological studies have found that consumption of NNS, mainly in diet sodas, is associated with increased risk to develop obesity, metabolic syndrome, and type 2 diabetes. The main purpose of this article is to review recent scientific evidence supporting potential mechanisms that explain how “metabolically inactive” NNS, which have few, if any, calories, might promote metabolic dysregulation. Three potential mechanisms, which are not mutually exclusive, are presented: 1) NNS interfere with learned responses that contribute to control glucose and energy homeostasis, 2) NNS interfere with gut microbiota and induce glucose intolerance, and 3) NNS interact with sweet-taste receptors expressed throughout the digestive system that play a role in glucose absorption and trigger insulin secretion. In addition, recent findings from our laboratory showing an association between individual taste sensitivity to detect sucralose and sucralose’s acute effects on metabolic response to an oral glucose load are reported. Taken as a whole, data support the notion that NNS have metabolic effects. More research is needed to elucidate the mechanisms by which NNS may drive metabolic dysregulation and better understand potential effects of these commonly used food additives. PMID:26095119

  15. Metabolic effects of non-nutritive sweeteners.

    Science.gov (United States)

    Pepino, M Yanina

    2015-12-01

    Until recently, the general belief was that non-nutritive sweeteners (NNSs) were healthy sugar substitutes because they provide sweet taste without calories or glycemic effects. However, data from several epidemiological studies have found that consumption of NNSs, mainly in diet sodas, is associated with increased risk to develop obesity, metabolic syndrome, and type 2 diabetes. The main purpose of this article is to review recent scientific evidence supporting potential mechanisms that explain how "metabolically inactive" NNSs, which have few, if any, calories, might promote metabolic dysregulation. Three potential mechanisms, which are not mutually exclusive, are presented: 1) NNSs interfere with learned responses that contribute to control glucose and energy homeostasis, 2) NNSs interfere with gut microbiota and induce glucose intolerance, and 3) NNSs interact with sweet-taste receptors expressed throughout the digestive system that play a role in glucose absorption and trigger insulin secretion. In addition, recent findings from our laboratory showing an association between individual taste sensitivity to detect sucralose and sucralose's acute effects on metabolic response to an oral glucose load are reported. Taken as a whole, data support the notion that NNSs have metabolic effects. More research is needed to elucidate the mechanisms by which NNSs may drive metabolic dysregulation and better understand potential effects of these commonly used food additives.

  16. Targeting Cancer Metabolism - Revisiting the Warburg Effects

    Science.gov (United States)

    Tran, Quangdon; Lee, Hyunji; Park, Jisoo; Kim, Seon-Hwan; Park, Jongsun

    2016-01-01

    After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism. PMID:27437085

  17. Metabolic effects of low glycaemic index diets

    Directory of Open Access Journals (Sweden)

    Rusu Emilia

    2009-01-01

    Full Text Available Abstract The persistence of an epidemic of obesity and type 2 diabetes suggests that new nutritional strategies are needed if the epidemic is to be overcome. A promising nutritional approach suggested by this thematic review is metabolic effect of low glycaemic-index diet. The currently available scientific literature shows that low glycaemic-index diets acutely induce a number of favorable effects, such as a rapid weight loss, decrease of fasting glucose and insulin levels, reduction of circulating triglyceride levels and improvement of blood pressure. The long-term effect of the combination of these changes is at present not known. Based on associations between these metabolic parameters and risk of cardiovascular disease, further controlled studies on low-GI diet and metabolic disease are needed.

  18. Emerging evidence of ozone metabolic effects and potential mechanisms

    Science.gov (United States)

    SOT 2014 Abstract: Invitational Emerging evidence of ozone metabolic effects and potential mechanisms U.P. Kodavanti NHEERL, USEPA, Research Triangle Park, NC Recent evidence suggests that air pollutants are linked to metabolic syndrome and impact several key metabolic proce...

  19. Metabolic effects of thyroid hormone derivatives.

    Science.gov (United States)

    Moreno, Maria; de Lange, Pieter; Lombardi, Assunta; Silvestri, Elena; Lanni, Antonia; Goglia, Fernando

    2008-02-01

    The processes and pathways mediating the intermediary metabolism of carbohydrates, lipids, and proteins are all affected by thyroid hormones (THs) in almost all tissues. Particular attention has been devoted by scientists to the effects of THs on lipid metabolism. Among others, effects related to cholesterol, lipid handling, and cardiac performance have been the subject of study. Many reports are present in the literature concerning the calorigenic effect of THs, with most of them aimed at identifying the molecular basis of this effect. However, at the moment the mechanism(s) underlying the metabolic effects of THs remain to be elucidated. THs exert most of their effects though TH receptors (TRs). However, some effects of THs cannot be explained by a nuclear-mediated pathway, and recently an increasing number of nonnuclear actions have been described, which can provide a regulatory system of which the effects differ from those mediated on the transcriptional level by TRs. Some of the TH derivatives (naturally occurring metabolites and analogs) possess biological activities. TH-related biological effects have been described for physiological products such as tetraiodothyroacetic acid (Tetrac) and triiodothyroacetic acid (Triac) (via oxidative deamination and decarboxylation of thyroxine [T4] and triiodothyronine [T3] alanine chain), 3,3',5'-triiodothyronine (rT3) (via T4 and T3 deiodination), 3,3'-diiodothyronine (3,3'-T2) and 3,5-diiodothyronine (T2) (via T4, T3, and rT3 deiodination), and 3-iodothyronamine (T1AM) and thyronamine (T0AM) (via T4 and T3 deiodination and amino acid decarboxylation), as well as for TH structural analogs, such as 3,5,3'-triiodothyropropionic acid (Triprop), 3,5-dibromo-3-pyridazinone-l-thyronine (L-940901), N-[3,5-dimethyl-4-(4'-hydroxy-3'-isopropylphenoxy)-phenyl]-oxamic acid (CGS 23425), 3,5-dimethyl-4[(4'-hydroxy-3'-isopropylbenzyl)-phenoxy] acetic acid (GC-1), 3,5-dichloro-4[(4-hydroxy-3-isopropylphenoxy)phenyl] acetic acid (KB-141

  20. Metabolic and Cardiovascular Effects of Ghrelin

    Directory of Open Access Journals (Sweden)

    Manfredi Tesauro

    2010-01-01

    Ghrelin receptors have been detected in the hypothalamus and the pituitary, but also in the cardiovascular system, where ghrelin exerts beneficial hemodynamic activities. Ghrelin administration acutely improves endothelial dysfunction by increasing nitric oxide bioavailability and normalizes the altered balance between endothelin-1 and nitric oxide within the vasculature of patients with metabolic syndrome. Other cardiovascular effects of ghrelin include improvement of left ventricular contractility and cardiac output, as well as reduction of arterial pressure and systemic vascular resistance. In addition, antinflammatory and antiapoptotic actions of ghrelin have been reported both in vivo and in vitro. This review summarizes the most recent findings on the metabolic and cardiovascular effects of ghrelin through GH-dependent and -independent mechanisms and the possible role of ghrelin as a therapeutic molecule for treating cardiovascular diseases.

  1. Metabolic and cardiovascular effects of ghrelin

    Directory of Open Access Journals (Sweden)

    E V Kirienkova

    2012-03-01

    Full Text Available Ghrelin is an endogenous ligand for growth hormone receptor, which is synthesized as a prohormone, and then proteolytically converted into 28-amino acid peptide. This peptide stimulates the secretion of growth hormone, regulates food intake, effect on carbohydrate and lipid metabolism. Ghrelin enhances the bioavailability of nitric oxide and maintains the balance between endothelin-1 and nitric oxide in the vascular wall. It increases cardiac output, and reduces blood pressure and systemic vascular resistance. Antiinflammatory effect of ghrelin is also appreciated. Since ghrelin is a circulating peptide that stimulates appetite and regulate energy balance, and its role in the development of obesity and type 2 diabetes it is the subject of intense research. A variety of metabolic functions of ghrelin requires extreme caution in the use of therapeutic approaches aimed at the stimulation or blockade of its action.

  2. Metabolic effects of discontinuing growth hormone treatment

    OpenAIRE

    Cowan, F; Evans, W.; Gregory, J

    1999-01-01

    AIMS—To evaluate the effects of discontinuing growth hormone (GH) treatment on energy expenditure and body composition, which might help predict those most likely to benefit from early reintroduction of GH treatment in young adult life.
METHODS—Body composition was calculated from skinfold thicknesses and dual energy x ray absorptometry (DXA). Resting metabolic rate (RMR) and whole body bone mineral content (BMC) were also measured. Measurements were made before stoppi...

  3. Metabolism

    Science.gov (United States)

    ... Surgery? Choosing the Right Sport for You Shyness Metabolism KidsHealth > For Teens > Metabolism Print A A A ... food through a process called metabolism. What Is Metabolism? Metabolism (pronounced: meh-TAB-uh-lih-zem) is ...

  4. Metabolic Effect Level Index Links Multivariate Metabolic Fingerprints to Ecotoxicological Effect Assessment.

    Science.gov (United States)

    Riedl, Janet; Schreiber, René; Otto, Matthias; Heilmeier, Hermann; Altenburger, Rolf; Schmitt-Jansen, Mechthild

    2015-07-07

    A major goal of ecotoxicology is the prediction of adverse outcomes for populations from sensitive and early physiological responses. A snapshot of the physiological state of an organism can be provided by metabolic fingerprints. However, to inform chemical risk assessment, multivariate metabolic fingerprints need to be converted to readable end points suitable for effect estimation and comparison. The concentration- and time-dependent responsiveness of metabolic fingerprints to the PS-II inhibitor isoproturon was investigated by use of a Myriophyllum spicatum bioassay. Hydrophilic and lipophilic leaf extracts were analyzed with gas chromatography-mass spectrometry (GC-MS) and preprocessed with XCMS. Metabolic changes were aggregated in the quantitative metabolic effect level index (MELI), allowing effect estimation from Hill-based concentration-response models. Hereby, the most sensitive response on the concentration scale was revealed by the hydrophilic MELI, followed by photosynthetic efficiency and, 1 order of magnitude higher, by the lipophilic MELI and shoot length change. In the hydrophilic MELI, 50% change compares to 30% inhibition of photosynthetic efficiency and 10% inhibition of dry weight change, indicating effect development on different response levels. In conclusion, aggregated metabolic fingerprints provide quantitative estimates and span a broad response spectrum, potentially valuable for establishing adverse outcome pathways of chemicals in environmental risk assessment.

  5. Metabolic and Cardiovascular Effects of Ghrelin

    Science.gov (United States)

    Tesauro, Manfredi; Schinzari, Francesca; Caramanti, Miriam; Lauro, Renato; Cardillo, Carmine

    2010-01-01

    Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is synthesized as a preprohormone and then proteolytically processed to yield a 28-amino acid peptide. This peptide was originally reported to induce growth hormone release; large evidence, however, has indicated many other physiological activities of ghrelin, including regulation of food intake and energy balance, as well as of lipid and glucose metabolism. Ghrelin receptors have been detected in the hypothalamus and the pituitary, but also in the cardiovascular system, where ghrelin exerts beneficial hemodynamic activities. Ghrelin administration acutely improves endothelial dysfunction by increasing nitric oxide bioavailability and normalizes the altered balance between endothelin-1 and nitric oxide within the vasculature of patients with metabolic syndrome. Other cardiovascular effects of ghrelin include improvement of left ventricular contractility and cardiac output, as well as reduction of arterial pressure and systemic vascular resistance. In addition, antinflammatory and antiapoptotic actions of ghrelin have been reported both in vivo and in vitro. This review summarizes the most recent findings on the metabolic and cardiovascular effects of ghrelin through GH-dependent and -independent mechanisms and the possible role of ghrelin as a therapeutic molecule for treating cardiovascular diseases. PMID:20798901

  6. Cardiovascular and metabolic effects of natriuretic peptides.

    Science.gov (United States)

    Moro, Cédric; Berlan, Michel

    2006-02-01

    Natriuretic peptides (NP) are essential in mammals to regulate blood volume and pressure. The functional roles of NP are not limited to natriuresis and diuresis. Several peripheral and central actions of the peptides have been characterized. Studies on transgenic mice have revealed their key function in the regulation of cardiomyocyte growth. Plasma NP levels increase in patients with cardiovascular disorders and heart failure. They represent useful clinical markers for clinicians to diagnose heart diseases. The recent discovery of their potent lipolytic action in adipose tissue is a breakthrough in cardiovascular medicine. This new function of NP in the regulation of lipid metabolism offers interesting questions in the field of obesity, diabetes and cardiovascular diseases. This review will briefly describe the effects of NP on the cardiovascular system and lipid metabolism.

  7. Metabolic and adverse effects of diuretics.

    Science.gov (United States)

    Wilcox, C S

    1999-11-01

    Diuretics are among the most frequently prescribed drugs. They enjoy a very high clinical reputation for safety and efficacy. However, more than 3 decades of clinical investigation have disclosed a number of abnormalities in fluid electrolyte handling, metabolism, and other adverse effects that can complicate therapy with diuretic drugs. Some of these complications are a direct extension of the wanted action of the drug. These include extracellular fluid volume depletion, associated orthostatic hypotension, and prerenal azotemia. Others are not a direct action of the diuretic, but can be explained as an intranephronal compensation to the diuretic action. These include hypokalemia, in part to increased potassium secretion secondary to the enhanced tubular fluid flow and aldosterone secretion induced by diuretic administration. Metabolic abnormalities are usually mild. Hyperglycemia and carbohydrate intolerance have been related to diuretic-induced hypokalemia, which inhibits insulin secretion by the beta cells, and reductions in extracellular fluid volume and cardiac output. This is compounded by increases in catecholamines from sympathetic nerve activity which decrease peripheral glucose utilization. A mild increase in serum cholesterol concentration is seen frequently during initiation of diuretic therapy, but during steady state therapy after 6 to 12 months, values usually return to baseline. Knowledge of the more common adverse effects induced by diuretics helps the physician in predicting patients at risk and taking effective steps to anticipate or treat adverse responses.

  8. Ketone ester effects on metabolism and transcription.

    Science.gov (United States)

    Veech, Richard L

    2014-10-01

    Ketosis induced by starvation or feeding a ketogenic diet has widespread and often contradictory effects due to the simultaneous elevation of both ketone bodies and free fatty acids. The elevation of ketone bodies increases the energy of ATP hydrolysis by reducing the mitochondrial NAD couple and oxidizing the coenzyme Q couple, thus increasing the redox span between site I and site II. In contrast, metabolism of fatty acids leads to a reduction of both mitochondrial NAD and mitochondrial coenzyme Q causing a decrease in the ΔG of ATP hydrolysis. In contrast, feeding ketone body esters leads to pure ketosis, unaccompanied by elevation of free fatty acids, producing a physiological state not previously seen in nature. The effects of pure ketosis on transcription and upon certain neurodegenerative diseases make approach not only interesting, but of potential therapeutic value.

  9. Metabolic effects of milk protein intake strongly depend on pre-existing metabolic and exercise status

    Science.gov (United States)

    2013-01-01

    Milk protein intake has recently been suggested to improve metabolic health. This Perspective provides evidence that metabolic effects of milk protein intake have to be regarded in the context of the individual’s pre-existing metabolic and exercise status. Milk proteins provide abundant branched-chain amino acids (BCAAs) and glutamine. Plasma BCAAs and glutamine are increased in obesity and insulin resistance, but decrease after gastric bypass surgery resulting in weight loss and improved insulin sensitivity. Milk protein consumption results in postprandial hyperinsulinemia in obese subjects, increases body weight of overweight adolescents and may thus deteriorate pre-existing metabolic disturbances of obese, insulin resistant individuals. PMID:24225036

  10. Metabolic effects as a cause of myotoxic effects of fluoroquinolones.

    Science.gov (United States)

    Metterlein, Thomas; Schuster, Frank; Hager, Martin; Roewer, Norbert; Anetseder, Martin

    2015-01-01

    To investigate if fluoroquinolones (FQs) influence skeletal muscle metabolism of healthy and malignant hyperthermia susceptible (MHS) pigs. After approval from of the Animal Care Committee, 10 MHS pigs, and 6 MHS pigs were anesthetized with hemodynamic and systemic metabolic monitoring. Microdialysis catheters were placed intramuscularly. After equilibration, levofloxacin and ciprofloxacin were injected as a rapid bolus and continuous infusions. Lactate was measured in the dialysate and statistically analyzed was done (Wilcoxon-test; U-test; P < 0.05). There were no differences in age, weight, and baseline lactate levels between the groups. Both applications of levofloxacin- and ciprofloxacin-induced an increase of local lactate levels in healthy and MHS pigs. No difference between the two groups was observed. FQs influence skeletal muscle metabolism. Myotoxic effects of FQs can, therefore, be explained by an influence on the cellular energy balance.

  11. Effects of obesity on bone metabolism

    Directory of Open Access Journals (Sweden)

    Cao Jay J

    2011-06-01

    Full Text Available Abstract Obesity is traditionally viewed to be beneficial to bone health because of well-established positive effect of mechanical loading conferred by body weight on bone formation, despite being a risk factor for many other chronic health disorders. Although body mass has a positive effect on bone formation, whether the mass derived from an obesity condition or excessive fat accumulation is beneficial to bone remains controversial. The underline pathophysiological relationship between obesity and bone is complex and continues to be an active research area. Recent data from epidemiological and animal studies strongly support that fat accumulation is detrimental to bone mass. To our knowledge, obesity possibly affects bone metabolism through several mechanisms. Because both adipocytes and osteoblasts are derived from a common multipotential mesenchymal stem cell, obesity may increase adipocyte differentiation and fat accumulation while decrease osteoblast differentiation and bone formation. Obesity is associated with chronic inflammation. The increased circulating and tissue proinflammatory cytokines in obesity may promote osteoclast activity and bone resorption through modifying the receptor activator of NF-κB (RANK/RANK ligand/osteoprotegerin pathway. Furthermore, the excessive secretion of leptin and/or decreased production of adiponectin by adipocytes in obesity may either directly affect bone formation or indirectly affect bone resorption through up-regulated proinflammatory cytokine production. Finally, high-fat intake may interfere with intestinal calcium absorption and therefore decrease calcium availability for bone formation. Unraveling the relationship between fat and bone metabolism at molecular level may help us to develop therapeutic agents to prevent or treat both obesity and osteoporosis. Obesity, defined as having a body mass index ≥ 30 kg/m2, is a condition in which excessive body fat accumulates to a degree that adversely

  12. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation.

    Science.gov (United States)

    Asgari, Yazdan; Zabihinpour, Zahra; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2015-05-01

    The Warburg effect means higher glucose uptake of cancer cells compared to normal tissues, whereas a smaller fraction of this glucose is employed for oxidative phosphorylation. With the advent of high throughput technologies and computational systems biology, cancer cell metabolism has been reinvestigated over the last decades toward identifying various events underlying "how" and "why" a cancer cell employs aerobic glycolysis. Significant progress has been shaped to revise the Warburg effect. In this study, we have integrated the gene expression of 13 different cancer cells with the genome-scale metabolic network of human (Recon1) based on the E-Flux method, and analyzed them based on constraint-based modeling. Results show that regardless of significant up- and down-regulated metabolic genes, the distribution of metabolic changes is similar in different cancer types. These findings support the theory that the Warburg effect is a consequence of metabolic adaptation in cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Some metabolic effects of overeating in man.

    Science.gov (United States)

    Welle, S L; Seaton, T B; Campbell, R G

    1986-12-01

    Metabolic responses to 20 days of overeating were examined in five healthy volunteers. Overfeeding caused a variable increase (1-18%) in basal metabolic rate but no change in metabolic rate during light exercise. Postprandial resting metabolic rate was 8-40% higher (mean 18%) during overeating. The increase in oxygen consumption during a norepinephrine infusion was the same before (20 +/- 2%) and after (17 +/- 3%) overfeeding. Overfeeding elevated basal insulin concentrations in all subjects and increased the insulin response to intravenous glucose in four of five subjects. Overfeeding did not significantly alter mean serum T3 concentrations or erythrocyte 86Rb uptake (an index of Na+,K+-ATPase activity). These data do not confirm reports that overfeeding increases metabolic rate more during exercise than during rest. They also suggest that the increase in resting metabolic rate during overfeeding is not caused by increased responsiveness to norepinephrine or increased serum T3 concentrations.

  14. Genetic/metabolic effect of iron metabolism and rare anemias

    Directory of Open Access Journals (Sweden)

    Clara Camaschella

    2013-03-01

    Full Text Available Advances in iron metabolism have allowed a novel classification of iron disorders and to identify previously unknown diseases. These disorders include genetic iron overload (hemochromatosis and inherited iron-related anemias, in some cases accompanied by iron overload. Rare inherited anemias may affect the hepcidin pathway, iron absorption, transport, utilization and recycling. Among the genetic iron-related anemias the most common form is likely the iron-refractory iron-deficiency anemia (IRIDA, due to mutations of the hepcidin inhibitor TMPRSS6 encoding the serine protease matriptase-2. IRIDA is characterized by hepcidin up-regulation, decrease iron absorption and macrophage recycling and by microcytic- hypochromic anemia, unresponsive to oral iron. High serum hepcidin levels may suggest the diagnosis, which requires demonstrating the causal TMPRSS6 mutations by gene sequencing. Other rare microcytic hypochromic anemias associated with defects of iron transport-uptake are the rare hypotransferrinemia, and DMT1 and STEAP3 mutations. The degree of anemia is variable and accompanied by secondary iron overload even in the absence of blood transfusions. This is due to the iron-deficient or expanded erythropoiesis that inhibits hepcidin transcription, increases iron absorption, through the erythroid regulator, as in untransfused beta-thalassemia. Sideroblastic anemias are due to decreased mitochondrial iron utilization for heme or sulfur cluster synthesis. Their diagnosis requires demonstrating ringed sideroblasts by Perl’s staining of the bone marrow smears. The commonest X-linked form is due to deltaamino- levulinic-synthase-2-acid (ALAS2 mutations. The recessive, more severe form, affects SLC25A38, which encodes a potential mitochondrial importer of glycine, an amino acid essential for ALA synthesis and thus results in heme deficiency. Two disorders affect iron/sulfur cluster biogenesis: deficiency of the ATP-binding cassette B7 (ABCB7 causes X

  15. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  16. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  17. Metabolic activity, experiment M171. [space flight effects on human metabolism

    Science.gov (United States)

    Michel, E. L.; Rummel, J. A.

    1973-01-01

    The Skylab metabolic activity experiment determines if man's metabolic effectiveness in doing mechanical work is progressively altered by a simulated Skylab environment, including environmental factors such as slightly increased pCO2. This test identified several hardware/procedural anomalies. The most important of these were: (1) the metabolic analyzer measured carbon dioxide production and expired water too high; (2) the ergometer load module failed under continuous high workload conditions; (3) a higher than desirable number of erroneous blood pressure measurements were recorded; (4) vital capacity measurements were unreliable; and (5) anticipated crew personal exercise needs to be more structured.

  18. Metabolic changes in cancer: beyond the Warburg effect

    Institute of Scientific and Technical Information of China (English)

    Weihua Wu; Shimin Zhao

    2013-01-01

    Altered metabolism is one of the hallmarks of cancer cells.The best-known metabolic abnormality in cancer cells is the Warburg effect,which demonstrates an increased glycolysis even in the presence of oxygen.However,tumor-related metabolic abnormalities are not limited to altered balance between glucose fermentation and oxidative phosphorylation.Key tumor genes such as p53 and c-myc are found to be master regulators of metabolism.Metabolic enzymes such as succinate dehydrogenase,fumarate hydratase,pyruvate kinase,and isocitrate dehydrogenase mutations or expressing level alterations are all linked to tumorigenesis.In this review,we introduce some of the cancer-associated metabolic disorders and current understanding of their molecular tumorigenic mechanisms.

  19. Effects of central gastrin-releasing peptide on glucose metabolism

    NARCIS (Netherlands)

    Jha, Pawan Kumar; Foppen, Ewout; Challet, Etienne; Kalsbeek, A.

    2015-01-01

    Gastrin-releasing peptide (GRP) mediated signals in the central nervous system (CNS) influence many functions associated with energy metabolism. The purpose of the present study was to investigate the central effect of GRP on glucose metabolism in the male rat. Intracerebroventricular (icv) administ

  20. Cancer proliferation and therapy: the Warburg effect and quantum metabolism

    Directory of Open Access Journals (Sweden)

    Tuszynski Jack A

    2010-01-01

    Full Text Available Abstract Background Most cancer cells, in contrast to normal differentiated cells, rely on aerobic glycolysis instead of oxidative phosphorylation to generate metabolic energy, a phenomenon called the Warburg effect. Model Quantum metabolism is an analytic theory of metabolic regulation which exploits the methodology of quantum mechanics to derive allometric rules relating cellular metabolic rate and cell size. This theory explains differences in the metabolic rates of cells utilizing OxPhos and cells utilizing glycolysis. This article appeals to an analytic relation between metabolic rate and evolutionary entropy - a demographic measure of Darwinian fitness - to: (a provide an evolutionary rationale for the Warburg effect, and (b propose methods based on entropic principles of natural selection for regulating the incidence of OxPhos and glycolysis in cancer cells. Conclusion The regulatory interventions proposed on the basis of quantum metabolism have applications in therapeutic strategies to combat cancer. These procedures, based on metabolic regulation, are non-invasive, and complement the standard therapeutic methods involving radiation and chemotherapy

  1. Artificial sweeteners: a systematic review of metabolic effects in youth.

    Science.gov (United States)

    Brown, Rebecca J; de Banate, Mary Ann; Rother, Kristina I

    2010-08-01

    Epidemiological data have demonstrated an association between artificial sweetener use and weight gain. Evidence of a causal relationship linking artificial sweetener use to weight gain and other metabolic health effects is limited. However, recent animal studies provide intriguing information that supports an active metabolic role of artificial sweeteners. This systematic review examines the current literature on artificial sweetener consumption in children and its health effects. Eighteen studies were identified. Data from large, epidemiologic studies support the existence of an association between artificially-sweetened beverage consumption and weight gain in children. Randomized controlled trials in children are very limited, and do not clearly demonstrate either beneficial or adverse metabolic effects of artificial sweeteners. Presently, there is no strong clinical evidence for causality regarding artificial sweetener use and metabolic health effects, but it is important to examine possible contributions of these common food additives to the global rise in pediatric obesity and diabetes.

  2. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism.

    Science.gov (United States)

    Maki, Kevin C; Phillips-Eakley, Alyssa K; Smith, Kristen N

    2016-05-01

    Findings from epidemiologic studies indicate that there are associations between breakfast consumption and a lower risk of type 2 diabetes mellitus (T2DM) and metabolic syndrome, prompting interest in the influence of breakfast on carbohydrate metabolism and indicators of T2DM risk. The objective of this review was to summarize the available evidence from randomized controlled trials assessing the impact of breakfast on variables related to carbohydrate metabolism and metabolic wellness. Consuming compared with skipping breakfast appeared to improve glucose and insulin responses throughout the day. Breakfast composition may also be important. Dietary patterns high in rapidly available carbohydrate were associated with elevated T2DM risk. Therefore, partial replacement of rapidly available carbohydrate with other dietary components, such as whole grains and cereal fibers, proteins, and unsaturated fatty acids (UFAs), at breakfast may be a useful strategy for producing favorable metabolic outcomes. Consumption of fermentable and viscous dietary fibers at breakfast lowers glycemia and insulinemia. Fermentable fibers likely act through enhancing insulin sensitivity later in the day, and viscous fibers have an acute effect to slow the rate of carbohydrate absorption. Partially substituting protein for rapidly available carbohydrate enhances satiety and diet-induced thermogenesis, and also favorably affects lipoprotein lipids and blood pressure. Partially substituting UFA for carbohydrate has been associated with improved insulin sensitivity, lipoprotein lipids, and blood pressure. Overall, the available evidence suggests that consuming breakfast foods high in whole grains and cereal fiber, while limiting rapidly available carbohydrate, is a promising strategy for metabolic health promotion.

  3. Nutrition in the spotlight: metabolic effects of environmental light.

    Science.gov (United States)

    Versteeg, Ruth I; Stenvers, Dirk J; Kalsbeek, Andries; Bisschop, Peter H; Serlie, Mireille J; la Fleur, Susanne E

    2016-11-01

    Use of artificial light resulted in relative independence from the natural light-dark (LD) cycle, allowing human subjects to shift the timing of food intake and work to convenient times. However, the increase in artificial light exposure parallels the increase in obesity prevalence. Light is the dominant Zeitgeber for the central circadian clock, which resides within the hypothalamic suprachiasmatic nucleus, and coordinates daily rhythm in feeding behaviour and metabolism. Eating during inappropriate light conditions may result in metabolic disease via changes in the biological clock. In this review, we describe the physiological role of light in the circadian timing system and explore the interaction between the circadian timing system and metabolism. Furthermore, we discuss the acute and chronic effects of artificial light exposure on food intake and energy metabolism in animals and human subjects. We propose that living in synchrony with the natural daily LD cycle promotes metabolic health and increased exposure to artificial light at inappropriate times of day has adverse effects on metabolism, feeding behaviour and body weight regulation. Reducing the negative side effects of the extensive use of artificial light in human subjects might be useful in the prevention of metabolic disease.

  4. Effect of estrogen on iron metabolism in mammals.

    Science.gov (United States)

    Yang, Xiao; Xu, Man-Man; Wang, Jun; Xie, Jun-Xia

    2016-10-25

    Estrogen is a steroid hormone produced mainly by the ovaries. It combines with the nuclear receptors to exert the biological effects influencing the metabolism of body. Elevated levels of estrogen are often associated with altered iron levels in mammals. Furthermore, the findings of estrogen response element (ERE) have demonstrated that estrogen affects iron metabolism directly in peripheral tissues. In this review, we will briefly summarize the effect of estrogen on iron metabolism in mammals, and discuss recent progress in the mechanisms of estrogen on some iron related proteins in order to provide guidance for clinical use of estrogen. Estrogen and iron metabolism are closely related, but the exact regulatory mechanisms still need further exploration.

  5. Effect of Mediterranean diet with and without weight loss on apolipoprotein B100 metabolism in men with metabolic syndrome

    Science.gov (United States)

    The objective of this study was to assess the effect of a Mediterranean diet (MedDiet) with and without weight loss (WL) on apolipoprotein B100 (apoB100) metabolism in men with metabolic syndrome. The diet of 19 men with metabolic syndrome (age, 24–62 years) was first standardized to a North America...

  6. The effect of mitochondrial dysfunction on cytosolic nucleotide metabolism

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Lykke, Anne; Rasmussen, Lene Juel

    2010-01-01

    of cytosolic ribonucleotides and deoxyribonucleotides, which in turn can result in aberrant RNA and DNA synthesis. Mitochondrial dysfunction has been linked to genomic instability, and it is possible that the limiting effect of mitochondrial dysfunction on the levels of nucleotides and resulting aberrant RNA...... and DNA synthesis in part can be responsible for this link. This paper summarizes the parts of the metabolic pathways responsible for nucleotide metabolism that can be affected by mitochondrial dysfunction....

  7. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  8. Pharmacodynamic effects of rosiglitazone in nondiabetic patients with metabolic syndrome.

    Science.gov (United States)

    Aquilante, Christina L; Kosmiski, Lisa A; Zineh, Issam; Rome, Lucille Capo; Knutsen, Shannon D

    2010-03-01

    To determine the effects of the thiazolidinedione rosiglitazone on the adipocyte-derived cytokines adiponectin (an antiinflammatory and insulin-sensitizing cytokine; low levels have been associated with metabolic syndrome) and resistin (an inflammation mediator; high levels have been associated with metabolic syndrome) in nondiabetic patients with metabolic syndrome, and to characterize the effects of rosiglitazone on other components of the metabolic syndrome phenotype in this population. Prospective, randomized, double-blind, placebo-controlled study. Outpatient general clinical research center. Thirty-two nondiabetic men and women with a clinical diagnosis of metabolic syndrome (as defined in the American Heart Association-National Heart, Lung, and Blood Institute scientific statement). Patients were randomly assigned to receive either oral rosiglitazone 4 mg/day or matching placebo for 12 weeks. The primary end point was change in serum adiponectin concentrations from baseline to week 12. Secondary end points were changes in serum resistin concentrations, insulin resistance, fasting glucose level, fasting insulin level, body weight, lipid levels, systolic and diastolic blood pressure, and waist circumference from baseline to week 12. Also, changes from baseline in adiponectin and resistin concentrations and insulin resistance were assessed over time at weeks 2, 4, 8, and 12. Rosiglitazone was associated with a significant increase in serum adiponectin concentration after 12 weeks compared with placebo (45.8% vs 2.6%, p=0.002). The increase in adiponectin concentration occurred quickly, with a significant difference observed after 2 weeks of therapy. Compared with placebo, rosiglitazone was not associated with significant 12-week changes in serum resistin concentrations, insulin resistance, fasting glucose level, fasting insulin level, body weight, lipid levels, systolic or diastolic blood pressure, or waist circumference. Rosiglitazone had beneficial effects on

  9. Beyond Warburg effect – dual metabolic nature of cancer cells

    Science.gov (United States)

    Xie, Jiansheng; Wu, Hao; Dai, Chunyan; Pan, Qiangrong; Ding, Zonghui; Hu, Danqing; Ji, Bingyan; Luo, Yan; Hu, Xun

    2014-01-01

    Warburg effect is a dominant phenotype of most cancer cells. Here we show that this phenotype depends on its environment. When cancer cells are under regular culture condition, they show Warburg effect; whereas under lactic acidosis, they show a nonglycolytic phenotype, characterized by a high ratio of oxygen consumption rate over glycolytic rate, negligible lactate production and efficient incorporation of glucose carbon(s) into cellular mass. These two metabolic modes are intimately interrelated, for Warburg effect generates lactic acidosis that promotes a transition to a nonglycolytic mode. This dual metabolic nature confers growth advantage to cancer cells adapting to ever changing microenvironment. PMID:24820099

  10. Hyper-gravitational effects on metabolism and thermoregulation

    Science.gov (United States)

    Oyama, J.

    1984-01-01

    Animal hypergravitational effects on metabolism and thermoregulation was studied. The two major problem areas investigated are: initial and short-term exposure effects, and chronic, long-term exposure effects involving developmental and adaptational effects. Investigations focused on: (1) quantifying changes in thermoregulation with graded G-intensities in rats; (2) further delineating the effects of duration on gluconeogenesis, gluconeogenic hormones and substrates, and glucose homeostasis; and (3) reproduction and neonatal survival rates under different G-intensities.

  11. Metabolic effects of fructose and the worldwide increase in obesity.

    Science.gov (United States)

    Tappy, Luc; Lê, Kim-Anne

    2010-01-01

    While virtually absent in our diet a few hundred years ago, fructose has now become a major constituent of our modern diet. Our main sources of fructose are sucrose from beet or cane, high fructose corn syrup, fruits, and honey. Fructose has the same chemical formula as glucose (C(6)H(12)O(6)), but its metabolism differs markedly from that of glucose due to its almost complete hepatic extraction and rapid hepatic conversion into glucose, glycogen, lactate, and fat. Fructose was initially thought to be advisable for patients with diabetes due to its low glycemic index. However, chronically high consumption of fructose in rodents leads to hepatic and extrahepatic insulin resistance, obesity, type 2 diabetes mellitus, and high blood pressure. The evidence is less compelling in humans, but high fructose intake has indeed been shown to cause dyslipidemia and to impair hepatic insulin sensitivity. Hepatic de novo lipogenesis and lipotoxicity, oxidative stress, and hyperuricemia have all been proposed as mechanisms responsible for these adverse metabolic effects of fructose. Although there is compelling evidence that very high fructose intake can have deleterious metabolic effects in humans as in rodents, the role of fructose in the development of the current epidemic of metabolic disorders remains controversial. Epidemiological studies show growing evidence that consumption of sweetened beverages (containing either sucrose or a mixture of glucose and fructose) is associated with a high energy intake, increased body weight, and the occurrence of metabolic and cardiovascular disorders. There is, however, no unequivocal evidence that fructose intake at moderate doses is directly related with adverse metabolic effects. There has also been much concern that consumption of free fructose, as provided in high fructose corn syrup, may cause more adverse effects than consumption of fructose consumed with sucrose. There is, however, no direct evidence for more serious metabolic

  12. Effects of activation of endocannabinoid system on myocardial metabolism

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2016-05-01

    Full Text Available Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  13. METABOLISM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective: To determine the allele frequencies of genetic variants 373 Ala→Pro and 451 Arg→Gln of cholesteryl ester transfer protein (CETP) and to explore their potential impacts on serum lipid metabolism. Methods: The genotypes in CETP codon 373 and 451 in 91 German healthy students and 409 an-

  14. Acute effects of ghrelin administration on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Vestergaard, Esben Thyssen; Djurhuus, Christian Born; Gjedsted, Jakob;

    2007-01-01

    CONTEXT: Ghrelin infusion increases plasma glucose and nonesterified fatty acids, but it is uncertain whether this is secondary to the concomitant release of GH. OBJECTIVE: Our objective was to study direct effects of ghrelin on substrate metabolism. DESIGN: This was a randomized, single-blind, p......CONTEXT: Ghrelin infusion increases plasma glucose and nonesterified fatty acids, but it is uncertain whether this is secondary to the concomitant release of GH. OBJECTIVE: Our objective was to study direct effects of ghrelin on substrate metabolism. DESIGN: This was a randomized, single...

  15. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    Directory of Open Access Journals (Sweden)

    Olivier F. Noel

    2016-01-01

    Full Text Available Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes.

  16. Effects of St. John's wort on irinotecan metabolism

    NARCIS (Netherlands)

    A.H.J. Mathijssen (Ron); J. Verweij (Jaap); P. de Bruijn (Peter); W.J. Loos (Walter); A. Sparreboom (Alex)

    2002-01-01

    textabstractSt. John's wort (SJW), a widely used herbal product, has been implicated in drug interactions resulting from the induced expression of the cytochrome P450 CYP3A4 isoform. In this study, we determined the effect of SJW on the metabolism of irinotecan, a pro-drug of SN-38

  17. Berberine: metabolic and cardiovascular effects in preclinical and clinical trials

    Directory of Open Access Journals (Sweden)

    Arrigo FG Cicero

    2009-09-01

    Full Text Available Arrigo FG Cicero1, Sibel Ertek21Internal Medicine, Aging and Kidney Diseases Department, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; 2Ufuk University, Medical Faculty, Dr Ridvan Ege Hospital, Department of Endocrinology and Metabolic Diseases, Ankara, TurkeyAbstract: Berberine is a plant alkaloid with numerous biological activities. A large body of preclinical in vitro and in vivo studies support different pharmacological actions of berberine that could be potentially useful in the management of metabolic diseases associated with high cardiovascular disease risk, such as mixed hyperlipidemia, insulin resistance, metabolic syndrome, and type 2 diabetes. Moreover, it seems that berberine also exerts anti-inflammatory and antiproliferative effects that could play a role in the development of atherosclerosis and its clinical consequences. Recently, the metabolic effects of berberine have been demonstrated in humans, opening new perspectives for the use of this molecule in patient therapy. Larger and longer clinical studies need to be carried out to implement the definition of the therapeutic role of berberine in humans.Keywords: berberine, cardiovascular disease, diabetes, cholesterol

  18. The Adverse Effects of Alcohol on Vitamin A Metabolism

    Directory of Open Access Journals (Sweden)

    William S. Blaner

    2012-05-01

    Full Text Available The objective of this review is to explore the relationship between alcohol and the metabolism of the essential micronutrient, vitamin A; as well as the impact this interaction has on alcohol-induced disease in adults. Depleted hepatic vitamin A content has been reported in human alcoholics, an observation that has been confirmed in animal models of chronic alcohol consumption. Indeed, alcohol consumption has been associated with declines in hepatic levels of retinol (vitamin A, as well as retinyl ester and retinoic acid; collectively referred to as retinoids. Through the use of animal models, the complex interplay between alcohol metabolism and vitamin A homeostasis has been studied; the reviewed research supports the notion that chronic alcohol consumption precipitates a decline in hepatic retinoid levels through increased breakdown, as well as increased export to extra-hepatic tissues. While the precise biochemical mechanisms governing alcohol’s effect remain to be elucidated, its profound effect on hepatic retinoid status is irrefutable. In addition to a review of the literature related to studies on tissue retinoid levels and the metabolic interactions between alcohol and retinoids, the significance of altered hepatic retinoid metabolism in the context of alcoholic liver disease is also considered.

  19. Metabolic disturbances, side effect profile and effectiveness of clozapine in adolescents

    Directory of Open Access Journals (Sweden)

    Sandeep Grover

    2016-01-01

    Full Text Available Introduction: Data on effect of clozapine on metabolic syndrome in adolescent patients with psychosis are limited. This study aimed to evaluate the prevalence and incidence of metabolic syndrome in children and adolescents with psychotic disorders prior to clozapine and while receiving clozapine. Secondary aims were to study the effectiveness and side effect profile of clozapine. Materials and Methods: Thirteen child and adolescent patients were evaluated at baseline, 3 months, and a follow-up beyond 6 months. Assessments were made for metabolic profile, effectiveness by positive and negative syndrome scale (PANSS, and side effects. Results: Prior to starting of clozapine, the prevalence of metabolic syndrome was 23%. After 3 months on clozapine, 38.5% (5/13 patients fulfilled criteria of metabolic syndrome and further on follow-up beyond 6 months (with last observation carried forward 46.2% (6/13 had developed metabolic syndrome. There was a significant reduction in PANSS scores at 3 months and follow-up more so in those who developed metabolic syndrome at 3 months. Among the other side effects, hypersalivation was the most common side effect (100% followed by sedation (69%. Conclusion: Half the prevalence of metabolic syndrome in adolescents on clozapine can be attributed to other factors prior to starting of clozapine, and another half can be attributed to clozapine. Clozapine is effective in an adolescent population.

  20. Effect of captopril on collagen metabolisms in keloid fibroblast cells.

    Science.gov (United States)

    Chen, Junjie; Zhao, Sha; Liu, Yong; Cen, Ying; Nicolas, Crook

    2016-12-01

    Keloid is a proliferative disease of fibrous tissues. The mechanism and consistently effective treatments of keloid remained unknown. Although there was a report about treating keloid with topical captopril, the further investigation about captopril affecting keloid has not been performed so far. The aim of this study was to analyse the effect of captopril on collagen metabolisms in keloid fibroblast cells, and to provide information for the mechanism and therapy of keloid. To investigate the effects and relative mechanism of captopril on keloid fibroblast cells, we examined the changes of collagen metabolism, expression of angiotensin, transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF)-BB and heat shock protein 47 (HSP47), and cellular proliferation in keloid fibroblast cells. We found that all collagen metabolisms, expression of TGF-β1, PDGF-BB and HSP47, and cellular proliferation decreased significantly with effective captopril concentrations in keloid fibroblast cells. With a comprehensive analysis of test results, we proposed that captopril may decrease the expression of angiotensin, PDGF-BB, TGF-β1 and HSP47, and further inhibit proliferation and collagen synthesis of keloid fibroblast cells, which were the key in keloid formation. © 2014 Royal Australasian College of Surgeons.

  1. Metabolic Effects of Berries with Structurally Diverse Anthocyanins

    Directory of Open Access Journals (Sweden)

    John Overall

    2017-02-01

    Full Text Available Overconsumption of energy dense foods and sedentary lifestyle are considered as major causes of obesity-associated insulin resistance and abnormal glucose metabolism. Results from both cohort studies and randomized trials suggested that anthocyanins from berries may lower metabolic risks, however these reports are equivocal. The present study was designed to examine effects of six berries with structurally diverse anthocyanin profiles (normalized to 400 µg/g total anthocyanin content on development of metabolic risk factors in the C57BL/6 mouse model of polygenic obesity. Diets supplemented with blackberry (mono-glycosylated cyanidins, black raspberry (acylated mono-glycosylated cyanidins, blackcurrant (mono- and di-glycosylated cyanidins and delphinidins, maqui berry (di-glycosylated delphinidins, Concord grape (acylated mono-glycosylated delphinidins and petunidins, and blueberry (mono-glycosylated delphinidins, malvidins, and petunidins showed a prominent discrepancy between biological activities of delphinidin/malvidin-versus cyanidin-type anthocyanins that could be explained by differences in their structure and metabolism in the gut. Consumption of berries also resulted in a strong shift in the gastrointestinal bacterial communities towards obligate anaerobes that correlated with decrease in the gastrointestinal luminal oxygen and oxidative stress. Further work is needed to understand mechanisms that lead to nearly anoxic conditions in the gut lumens, including the relative contributions of host, diet and/or microbial oxidative activity, and their implication to human health.

  2. Metabolic Effects of Berries with Structurally Diverse Anthocyanins

    Science.gov (United States)

    Overall, John; Bonney, Sierra A.; Wilson, Mickey; Beermann, Arnold; Grace, Mary H.; Esposito, Debora; Lila, Mary Ann; Komarnytsky, Slavko

    2017-01-01

    Overconsumption of energy dense foods and sedentary lifestyle are considered as major causes of obesity-associated insulin resistance and abnormal glucose metabolism. Results from both cohort studies and randomized trials suggested that anthocyanins from berries may lower metabolic risks, however these reports are equivocal. The present study was designed to examine effects of six berries with structurally diverse anthocyanin profiles (normalized to 400 µg/g total anthocyanin content) on development of metabolic risk factors in the C57BL/6 mouse model of polygenic obesity. Diets supplemented with blackberry (mono-glycosylated cyanidins), black raspberry (acylated mono-glycosylated cyanidins), blackcurrant (mono- and di-glycosylated cyanidins and delphinidins), maqui berry (di-glycosylated delphinidins), Concord grape (acylated mono-glycosylated delphinidins and petunidins), and blueberry (mono-glycosylated delphinidins, malvidins, and petunidins) showed a prominent discrepancy between biological activities of delphinidin/malvidin-versus cyanidin-type anthocyanins that could be explained by differences in their structure and metabolism in the gut. Consumption of berries also resulted in a strong shift in the gastrointestinal bacterial communities towards obligate anaerobes that correlated with decrease in the gastrointestinal luminal oxygen and oxidative stress. Further work is needed to understand mechanisms that lead to nearly anoxic conditions in the gut lumens, including the relative contributions of host, diet and/or microbial oxidative activity, and their implication to human health. PMID:28212306

  3. The effect of various avocado oils on skin collagen metabolism.

    Science.gov (United States)

    Werman, M J; Mokady, S; Nimni, M E; Neeman, I

    1991-01-01

    The effects of various avocado oils on collagen metabolism in skin were studied in growing rats fed diets containing 10% (w/w) of the tested oils. Rats fed the unrefined avocado oil extracted with hexane from the intact fruit, its unsaponifiables or the avocado seed oil, showed significant increases in soluble collagen content in skin, though total collagen content was not affected. The increased soluble collagen content appears to be a consequence of the inhibition of lysyl oxidase activity. The active factor was found to be present in the unrefined avocado oil and probably originated from the avocado seed, since collagen metabolism was affected only by fractions which contained lipids fraction from the seed. In comparison rats fed the refined or unrefined soybean oils showed no effects.

  4. Metabolism and aging: effects of cold exposure on metabolic rate, body composition, and longevity in mice.

    Science.gov (United States)

    Vaanholt, Lobke M; Daan, Serge; Schubert, Kristin A; Visser, G Henk

    2009-01-01

    The proposition that increased energy expenditure shortens life has a long history. The rate-of-living theory (Pearl 1928 ) states that life span and average mass-specific metabolic rate are inversely proportional. Originally based on interspecific allometric comparisons between species of mammals, the theory was later rejected on the basis of comparisons between taxa (e.g., birds have higher metabolic rates than mammals of the same size and yet live longer). It has rarely been experimentally tested within species. Here, we investigated the effects of increased energy expenditure, induced by cold exposure, on longevity in mice. Longevity was measured in groups of 60 male mice maintained at either 22 degrees C (WW) or 10 degrees C (CC) throughout adult life. Forty additional mice were maintained at both of these temperatures to determine metabolic rate (by stable isotope turnover, gas exchange, and food intake) as well as the mass of body and organs of subsets of animals at four different ages. Because energy expenditure might affect longevity by either accumulating damage or by instantaneously affecting mortality rate, we included a third group of mice exposed to 10 degrees C early in life and to 22 degrees C afterward (CW). Exposure to cold increased mean daily energy expenditure by ca. 48% (from 47.8 kJ d(-1) in WW to 70.6 kJ d(-1) in CC mice, with CW intermediate at 59.9 kJ d(-1)). However, we observed no significant differences in median life span among the groups (WW, 832 d; CC, 834 d; CW, 751 d). CC mice had reduced body mass (lifetime mean 30.7 g) compared with WW mice (33.8 g), and hence their lifetime energy potential (LEP) per gram whole-body mass had an even larger excess than per individual. Greenberg ( 1999 ) has pointed out that the size of the energetically costly organs, rather than that of the whole body, may be relevant for the rate-of-living idea. We therefore expressed LEP also in terms of energy expenditure per gram dry lean mass or per gram

  5. Temperature stress effects in Quercus suber leaf metabolism.

    Science.gov (United States)

    Chaves, Inês; Passarinho, José António P; Capitão, Cláudio; Chaves, Maria Manuela; Fevereiro, Pedro; Ricardo, Cândido P P

    2011-10-15

    Based on projections that climate changes are will intensify in the near future, it is important to understand how plants respond to climate. Consequently, we have been studying the effect of contrasting temperatures on leaf metabolism of Quercus suber, an important Mediterranean oak. Potted plants were grown under controlled conditions for 53 days at 28°C or 10°C. The accumulation of major soluble metabolites was analyzed by NMR. The relative levels of transcripts of genes encoding key enzymes of the shikimate and phenylpropanoid pathway (CS, PAL, CAD and ChS) were examined by means of quantitative, real-time RT-PCR. At 10°C, in the pre-existing leaves, the concentrations of sucrose, quercitol and catechin were higher, as were PAL and ChS transcripts. At 28°C, however, it was the concentration of quinic acid that was higher, as were the concentrations of CS and CAD transcripts. We conclude that contrasting temperatures greatly influence Q. suber metabolism and that a deeper analysis of the effects of more extreme temperatures is needed to understand the possible effects of temperature changes on Q. suber metabolism and physiology.

  6. Adrenergic Metabolic and Hemodynamic Effects of Octopamine in the Liver

    Directory of Open Access Journals (Sweden)

    Adelar Bracht

    2013-11-01

    Full Text Available The fruit extracts of Citrus aurantium (bitter orange are traditionally used as weight-loss products and as appetite suppressants. A component of these extracts is octopamine, which is an adrenergic agent. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of octopamine on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways and hemodynamics. Octopamine increased glycogenolysis, glycolysis, oxygen uptake, gluconeogenesis and the portal perfusion pressure. Octopamine also accelerated the oxidation of exogenous fatty acids (octanoate and oleate, as revealed by the increase in 14CO2 production derived from 14C labeled precursors. The changes in glycogenolysis, oxygen uptake and perfusion pressure were almost completely abolished by α1-adrenergic antagonists. The same changes were partly sensitive to the β-adrenergic antagonist propranolol. It can be concluded that octopamine accelerates both catabolic and anabolic processes in the liver via adrenergic stimulation. Acceleration of oxygen uptake under substrate-free perfusion conditions also means acceleration of the oxidation of endogenous fatty acids, which are derived from lipolysis. All these effects are compatible with an overall stimulating effect of octopamine on metabolism, which is compatible with its reported weight-loss effects in experimental animals.

  7. Metabolic and Blood Pressure Effects of Walnut Supplementation in a Mouse Model of the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Nicola J. A. Scott

    2017-07-01

    Full Text Available There is extensive evidence that walnut consumption is protective against cardiovascular disease and diabetes in the healthy population, but the beneficial effects of walnut consumption in individuals with the metabolic syndrome (MetS remain uncertain. We compared a range of cardio-metabolic traits and related tissue gene expression associated with 21 weeks of dietary walnut supplementation in a mouse model of MetS (MetS-Tg and wild-type (WT mice (n = 10 per genotype per diet, equal males and females. Compared to standard diet, walnuts did not significantly alter food consumption or body weight trajectory of either MetS-Tg or WT mice. In MetS-Tg mice, walnuts were associated with reductions in oral glucose area under the curve (gAUC, standard diet 1455 ± 54, walnut 1146 ± 91, p = 0.006 and mean arterial blood pressure (MAP, standard diet 100.6 ± 1.9, walnut 73.2 ± 1.8 mmHg, p < 0.001, with neutral effects on gAUC and MAP in WT mice. However, in MetS-Tg mice, walnuts were also associated with trends for higher plasma cholesterol (standard diet 4.73 ± 0.18, walnut 7.03 ± 1.99 mmol/L, p = 0.140 and triglyceride levels (standard diet 2.4 ± 0.5, walnut 5.4 ± 1.6 mmol/L, p = 0.061, despite lowering cholesterol and having no effect on triglycerides in WT mice. Moreover, in both MetS-Tg and WT mice, walnuts were associated with significantly increased liver expression of genes associated with metabolism (Fabp1, Insr, cell stress (Atf6, Ddit3, Eif2ak3, fibrosis (Hgf, Sp1, Timp1 and inflammation (Tnf, Ptpn22, Pparg. In conclusion, dietary walnuts were associated with modest favourable effects in WT mice, but a combination of beneficial and adverse effects in MetS-Tg mice, and up-regulation of hepatic pro-fibrotic and pro-inflammatory genes in both mouse strains.

  8. Effects of ambient and preceding temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly.

    Science.gov (United States)

    Wong, Swee Chong; Oksanen, Alma; Mattila, Anniina L K; Lehtonen, Rainer; Niitepõld, Kristjan; Hanski, Ilkka

    2016-02-01

    Flight is essential for foraging, mate searching and dispersal in many insects, but flight metabolism in ectotherms is strongly constrained by temperature. Thermal conditions vary greatly in natural populations and may hence restrict fitness-related activities. Working on the Glanville fritillary butterfly (Melitaea cinxia), we studied the effects of temperature experienced during the first 2 days of adult life on flight metabolism, genetic associations between flight metabolic rate and variation in candidate metabolic genes, and genotype-temperature interactions. The maximal flight performance was reduced by 17% by 2 days of low ambient temperature (15 °C) prior to the flight trial, mimicking conditions that butterflies commonly encounter in nature. A SNP in phosphoglucose isomerase (Pgi) had a significant association on flight metabolic rate in males and a SNP in triosephosphate isomerase (Tpi) was significantly associated with flight metabolic rate in females. In the Pgi SNP, AC heterozygotes had higher flight metabolic rate than AA homozygotes following low preceding temperature, but the trend was reversed following high preceding temperature, consistent with previous results on genotype-temperature interaction for this SNP. We suggest that these results on 2-day old butterflies reflect thermal effect on the maturation of flight muscles. These results highlight the consequences of variation in thermal conditions on the time scale of days, and they contribute to a better understanding of the complex dynamics of flight metabolism and flight-related activities under conditions that are relevant for natural populations living under variable thermal conditions.

  9. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    Science.gov (United States)

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  10. Metabolic and Blood Pressure Effects of Walnut Supplementation in a Mouse Model of the Metabolic Syndrome.

    Science.gov (United States)

    Scott, Nicola J A; Ellmers, Leigh J; Pilbrow, Anna P; Thomsen, Lotte; Richards, Arthur Mark; Frampton, Chris M; Cameron, Vicky A

    2017-07-07

    There is extensive evidence that walnut consumption is protective against cardiovascular disease and diabetes in the healthy population, but the beneficial effects of walnut consumption in individuals with the metabolic syndrome (MetS) remain uncertain. We compared a range of cardio-metabolic traits and related tissue gene expression associated with 21 weeks of dietary walnut supplementation in a mouse model of MetS (MetS-Tg) and wild-type (WT) mice (n = 10 per genotype per diet, equal males and females). Compared to standard diet, walnuts did not significantly alter food consumption or body weight trajectory of either MetS-Tg or WT mice. In MetS-Tg mice, walnuts were associated with reductions in oral glucose area under the curve (gAUC, standard diet 1455 ± 54, walnut 1146 ± 91, p = 0.006) and mean arterial blood pressure (MAP, standard diet 100.6 ± 1.9, walnut 73.2 ± 1.8 mmHg, p walnuts were also associated with trends for higher plasma cholesterol (standard diet 4.73 ± 0.18, walnut 7.03 ± 1.99 mmol/L, p = 0.140) and triglyceride levels (standard diet 2.4 ± 0.5, walnut 5.4 ± 1.6 mmol/L, p = 0.061), despite lowering cholesterol and having no effect on triglycerides in WT mice. Moreover, in both MetS-Tg and WT mice, walnuts were associated with significantly increased liver expression of genes associated with metabolism (Fabp1, Insr), cell stress (Atf6, Ddit3, Eif2ak3), fibrosis (Hgf, Sp1, Timp1) and inflammation (Tnf, Ptpn22, Pparg). In conclusion, dietary walnuts were associated with modest favourable effects in WT mice, but a combination of beneficial and adverse effects in MetS-Tg mice, and up-regulation of hepatic pro-fibrotic and pro-inflammatory genes in both mouse strains.

  11. Metabolic Effects of the Very-Low-Carbohydrate Diets: Misunderstood "Villains" of Human Metabolism

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2004-12-01

    Full Text Available Abstract During very low carbohydrate intake, the regulated and controlled production of ketone bodies causes a harmless physiological state known as dietary ketosis. Ketone bodies flow from the liver to extra-hepatic tissues (e.g., brain for use as a fuel; this spares glucose metabolism via a mechanism similar to the sparing of glucose by oxidation of fatty acids as an alternative fuel. In comparison with glucose, the ketone bodies are actually a very good respiratory fuel. Indeed, there is no clear requirement for dietary carbohydrates for human adults. Interestingly, the effects of ketone body metabolism suggest that mild ketosis may offer therapeutic potential in a variety of different common and rare disease states. Also, the recent landmark study showed that a very-low-carbohydrate diet resulted in a significant reduction in fat mass and a concomitant increase in lean body mass in normal-weight men. Contrary to popular belief, insulin is not needed for glucose uptake and utilization in man. Finally, both muscle fat and carbohydrate burn in an amino acid flame.

  12. Metabolic effects of exercise on childhood obesity: a current view

    Directory of Open Access Journals (Sweden)

    Santiago Tavares Paes

    2015-03-01

    Full Text Available OBJECTIVE: To review the current literature concerning the effects of physical exercise on several metabolic variables related to childhood obesity. DATA SOURCE: A search was performed in Pubmed/MEDLINE and Web of Science databases. The keywords used were as follows: Obesity, Children Obesity, Childhood Obesity, Exercise and Physical Activity. The online search was based on studies published in English, from April 2010 to December 2013. DATA SYNTHESIS: Search queries returned 88,393 studies based on the aforementioned keywords; 4,561 studies were selected by crossing chosen keywords. After applying inclusion criteria, four studies were selected from 182 eligible titles. Most studies found that aerobic and resistance training improves body composition, lipid profile and metabolic and inflammatory status of obese children and adolescents; however, the magnitude of these effects is associated with the type, intensity and duration of practice. CONCLUSIONS: Regardless of the type, physical exercise promotes positive adaptations to childhood obesity, mainly acting to restore cellular and cardiovascular homeostasis, to improve body composition, and to activate metabolism; therefore, physical exercise acts as a co-factor in fighting obesity.

  13. Metabolic effects of exercise on childhood obesity: a current view

    Science.gov (United States)

    Paes, Santiago Tavares; Marins, João Carlos Bouzas; Andreazzi, Ana Eliza

    2015-01-01

    OBJECTIVE: To review the current literature concerning the effects of physical exercise on several metabolic variables related to childhood obesity. DATA SOURCE: A search was performed in Pubmed/MEDLINE and Web of Science databases. The keywords used were as follows: Obesity, Children Obesity, Childhood Obesity, Exercise and Physical Activity. The online search was based on studies published in English, from April 2010 to December 2013. DATA SYNTHESIS: Search queries returned 88,393 studies based on the aforementioned keywords; 4,561 studies were selected by crossing chosen keywords. After applying inclusion criteria, four studies were selected from 182 eligible titles. Most studies found that aerobic and resistance training improves body composition, lipid profile and metabolic and inflammatory status of obese children and adolescents; however, the magnitude of these effects is associated with the type, intensity and duration of practice. CONCLUSIONS: Regardless of the type, physical exercise promotes positive adaptations to childhood obesity, mainly acting to restore cellular and cardiovascular homeostasis, to improve body composition, and to activate metabolism; therefore, physical exercise acts as a co-factor in fighting obesity. PMID:25662015

  14. [Metabolic effects of exercise on childhood obesity: a current view].

    Science.gov (United States)

    Paes, Santiago Tavares; Marins, João Carlos Bouzas; Andreazzi, Ana Eliza

    2015-01-01

    To review the current literature concerning the effects of physical exercise on several metabolic variables related to childhood obesity. A search was performed in Pubmed/Medline and Web of Science databases. The keywords used were as follows: Obesity, Children Obesity, Childhood Obesity, Exercise and Physical Activity. The online search was based on studies published in English, from April 2010 to December 2013. Search queries returned 88,393 studies based on the aforementioned keywords; 4,561 studies were selected by crossing chosen keywords. After applying inclusion criteria, four studies were selected from 182 eligible titles. Most studies have found that aerobic and resistance training improves body composition, lipid profile and metabolic and inflammatory status of obese children and adolescents; however, the magnitude of the effects is associated with the type, intensity and duration of practice. Regardless of type, physical exercise promotes positive adaptations to childhood obesity, mainly acting to restore cellular and cardiovascular homeostasis, to improve body composition, and to activate metabolism; therefore, physical exercise acts as a co-factor in combating obesity. Copyright © 2014 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  15. Effects of vasoactive and metabolic active substances (measurement of RCBF)

    Energy Technology Data Exchange (ETDEWEB)

    Herrschaft, H.

    1986-09-29

    Methods, principles, normal values, reproducibility and clinical indications of rCBF-measurements, using the intraartrial 133-Xenon-clearance-technique, are presented. The effect of vaso- and metabolically active drugs on cerebral blood flow was examined in 215 patients, suffering from cerebral ischemia. Significant increase of rCBF was ascertained after intravenous injection of centrophenoxine, pyrithioxine, extractum sanguis deproteinatus, piracetam and solutions of low molecular dextran. All the other drugs tested proved to be either without any effect or caused decrease of rCBF. In 130 patients with obstructive disease of internal carotid artery after surgery at an interval of 6 - 8 weeks and 1 year a significant increase of CBF could be stated. The rank of psychological tests and quantitative EEF-investigations relating to evidence of efficacy of metabolically active drugs is discussed critically. Therapeutic efficacy and clinical relevance of vaso- and metabolically active drugs in cerebral ischemia of man are to be substantiated only by double-blind controlled studies.

  16. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements.

    Science.gov (United States)

    Swithers, Susan E

    2013-09-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements.

  17. Bioavailability, metabolism and potential health protective effects of dietary flavonoids

    DEFF Research Database (Denmark)

    Bredsdorff, Lea

    the association between exposure to dietary flavonoids and the risk of acute coronary syndrome (ACS) in a nested case-control study. The bioavailability and metabolism of hesperetin and naringenin was investigated by analysing urine and plasma from 16 subjects after consumption of three treatments of orange juice...... epidemiological studies but the evidence is inconclusive. One major obstacle for epidemiological studies investigating associations between flavonoid intake and risk of CHD is the estimation of flavonoid intake. There is a vast variety of flavonoids in commonly eaten food products but only limited knowledge...... of their content. In addition, variation in individual metabolic genotype and microflora may greatly affect the actual flavonoid exposure. The preventive effects of flavonoids on CHD are mainly ascribed to their anti-inflammatory and antioxidant activities. Several mechanisms of anti-inflammatory and antioxidant...

  18. Direct and indirect effects of leptin on adipocyte metabolism.

    Science.gov (United States)

    Harris, Ruth B S

    2014-03-01

    Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Pill formulations and their effect on lipid and carbohydrate metabolism.

    Science.gov (United States)

    Brooks, P G

    1984-07-01

    Recent data on oral contraceptives (OCs) employing new low-dose formulations appear to indicate that most of the previously reported metabolic effects are minimized, particularly when a product is neigher ovverly estrogenic nor progestational. Evidence suggests that elevated levels of cholesterol and triglycerides in the plasma are correlated with the risk of cardiovascular disease. Epidemiologic students have indicated a correlation between elevation of low denisty lipoprotein (LDL) cholesterol and coronary heart disease, and a correlation between decreases in high density lipoprotein (HDL) cholesterol and arterial disease. Epidemiologic evidence seems to suggest that combination OCs are associated with increased cardiovascular risk, especially risks of venous thrombosis, myocardial infarction, and stroke. There is some debate as to whether OCs themselves are an independent risk factor or whether they increase the effects of other risk factors. Women using combination OCs have been reported to have higher total serum triglyceride and cholesterol concentrations, related primarily to the estrogen dose. While most of the earlier literature associated estrogens with a higher risk of cardiovascular disease, recent studies have increasingly implicated the progestin component. Increasing potencies of progestin have been found to proportionally lower the HDL-cholesterol level. There is a positive association between the estrogen dose and HDL-cholesterol level. Among combination pill users, HDL levels gevverally depend on the relative amounts and potencies of both components. It is generally agreed that there are some high-risk women who should be carefully monitored while using the pill or who should not use it at all. Steroid type and dosage both play a role in affecting carbohydrate metabolism. Ethinyl estradiol (EE), the estrogen component in most OCs, does not seem to have the same biphasic effect on carbohydrate metaolism as most other estrogens. Most of the recent

  20. Mineral balance, experiment M071. [space flight effects on human mineral metabolism

    Science.gov (United States)

    Whedon, G. D.; Rambaut, P. C.; Smith, M. C., Jr.

    1973-01-01

    Concern for the long term metabolic consequences of weightless flight was the basis for the conception of the Skylab medical experiment to measure mineral balance. Proper interpretation of obtained data that diminished atmospheric pressure has no appreciable effect, or at least no protective effect, on calcium metabolism. The absence of changes in calcium metabolism indicates that a stable baseline observation has been made for Skylab as far as the effects of atmosphere or calcium metabolism are concerned.

  1. The effects of fasting on metabolism and performance.

    Science.gov (United States)

    Maughan, R J; Fallah, J; Coyle, E F

    2010-06-01

    An overnight fast of 8-10 h is normal for most people. Fasting is characterised by a coordinated set of metabolic changes designed to spare carbohydrate and increase reliance on fat as a substrate for energy supply. As well as sparing the limited endogenous carbohydrate, and increased rate of gluconeogenesis from amino acids, glycerol and ketone bodies help maintain the supply of carbohydrate. Many individuals undergo periodic fasts for health, religious or cultural reasons. Ramadan fasting, involving 1 month of abstention from food and fluid intake during daylight hours, is practised by a large part of the world population. This period involves a shift in the pattern of intake from daytime to the hours of darkness. There seems to be little effect on overall daily dietary intake and only small metabolic effects, but there may be implications for both physical and cognitive function. The limited evidence suggests that effects of Ramadan-style fasting on exercise performance are generally small. This needs to be balanced, however, against the observation that small differences in performance are critical in determining the outcomes of sporting events. Studies involving challenging sporting events (prolonged sustained or intermittent high-intensity events, hot and humid environments) are needed. Increases in subjective sensations of fatigue may be the result of loss of sleep or disruption of normal sleep patterns. Modifications to the competition timetable may minimise or even eliminate any effect on performance in sport, but there may be negative effects on performance in some events.

  2. Effects of exercise on tumor physiology and metabolism.

    Science.gov (United States)

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism. Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous different transplantable, chemically induced or genetic tumor models. We propose 4 emerging mechanistic effects of exercise, including (1) vascularization and blood perfusion, (2) immune function, (3) tumor metabolism, and (4) muscle-to-cancer cross-talk, and discuss these in details. In conclusion, exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental intervention studies are still needed to verify the cause-effect relationship between these mechanisms and the control of tumor growth.

  3. The metabolic effects of growth hormone in adipose tissue.

    Science.gov (United States)

    Chaves, Valéria Ernestânia; Júnior, Fernando Mesquita; Bertolini, Gisele Lopes

    2013-10-01

    There is a general consensus that a reduction in growth hormone (GH) secretion results in obesity. However, the pathophysiologic role of GH in the metabolism of lipids is yet to be fully understood. The major somatic targets of GH are bones and muscles, but GH stimulates lipolysis and seems to regulate lipid deposition in adipose tissue. Patients with isolated GH deficiency (GHD) have enlarged fat depots due to higher fat cell volume, but their fat cell numbers are lower than those of matched controls. The treatment of patients with GH results in a relative loss of body fat and shifts both fat cell number and fat cell volume toward normal, indicating an adipogenic effect of GH. Adults with GHD are characterized by perturbations in body composition, lipid metabolism, cardiovascular risk profile, and bone mineral density. It is well established that GHD is usually accompanied by an increase in fat accumulation; GH replacement in GHD results in the reduction of fat mass, particularly abdominal fat mass. In addition, abdominal obesity results in a secondary reduction in GH secretion that is reversible with weight loss. However, whereas GH replacement in patients with GHD leads to specific depletion of intra-abdominal fat, administering GH to obese individuals does not seem to result in a consistent reduction or redistribution of body fat. Although administering GH to obese non-GHD subjects has only led to equivocal results, more recent studies indicate that GH still remains a plausible metabolic candidate.

  4. Effects of Pregnancy and Lactation on Iron Metabolism in Rats

    Directory of Open Access Journals (Sweden)

    Guofen Gao

    2015-01-01

    Full Text Available In female, inadequate iron supply is a highly prevalent problem that often leads to iron-deficiency anemia. This study aimed to understand the effects of pregnancy and lactation on iron metabolism. Rats with different days of gestation and lactation were used to determine the variations in iron stores and serum iron level and the changes in expression of iron metabolism-related proteins, including ferritin, ferroportin 1 (FPN1, ceruloplasmin (Cp, divalent metal transporter 1 (DMT1, transferrin receptor 1 (TfR1, and the major iron-regulatory molecule—hepcidin. We found that iron stores decline dramatically at late-pregnancy period, and the low iron store status persists throughout the lactation period. The significantly increased FPN1 level in small intestine facilitates digestive iron absorption, which maintains the serum iron concentration at a near-normal level to meet the increase of iron requirements. Moreover, a significant decrease of hepcidin expression is observed during late-pregnancy and early-lactation stages, suggesting the important regulatory role that hepcidin plays in iron metabolism during pregnancy and lactation. These results are fundamental to the understanding of iron homeostasis during pregnancy and lactation and may provide experimental bases for future studies to identify key molecules expressed during these special periods that regulate the expression of hepcidin, to eventually improve the iron-deficiency status.

  5. Effects of Cyclamen trochopteranthum on hepatic drug-metabolizing enzymes

    Directory of Open Access Journals (Sweden)

    Arslan Sevki

    2011-01-01

    Full Text Available The modulatory effects of the Cyclamen trochopterantum tuber extract on hepatic drug-metabolizing enzymes, including aniline 4-hydroxylase (A4H; CYP2E1, ethoxyresorufin O-deethylase (EROD; CYP1A, methoxyresorufin O-demethylase (MROD; CYP1A, caffeine N-demethylase (C3ND; CYP1A2 aminopyrene N-demethylase (APND; CYP2C6, and erythromycin N-demethylase (ERND; CYP3A1, were examined in vivo in rats. The activities of all of these enzymes were induced by the cyclamen extract. In addition, Western-blot and RT-PCR results clearly showed that CYP2E1, CYP1A1/CYP1A2 and CYP2C6 protein and mRNA levels were substantially increased by four different doses of cyclamen. Although, the CYP3A1 protein level was increased significantly, the mRNA level was not changed. These results indicate that cyclamen tuber extract might have a potential not only to inhibit and/or induce the metabolism of certain co-administered drugs but also influence the development of toxicity and carcinogenesis due to the induction of the cytochrome P450-dependent drug-metabolizing enzymes.

  6. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    4.1 Nutrition imbalance 2006024 Effect of multiple micronutrients supplementation on anti - oxidative activity and oxidized DNA damage of lymphocytes in children ZHANG Ming ( 张明), Nutrit Dept, Weifang People Hosp, Weifang 261041. Chin J Epidemiol 2005 ;26(4) :268 -272. Objective:To examine the effect of multiple micronutrients supplementation on anti - oxidative activity and decreasing oxidized DNA damage of lymphocytes in Chinese children. Methods:82 healthy children in rural areas, aged 9-11 years, were selected and randomized into group receiving supplements and control group with 41 in

  7. METABOLISM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    4.1 Nutritional disorder2003271 Iron status and effect of early iron supplementation of sub-clinical iron deficiency in rural school-age children from mountainous areas of Beijing.LIN Xiaoming(林晓明),et al.Dept Nutr & Food Hyg, Public Health Sch Peking Univ, Beijing 100083. Chin J Prev Med 2003;37(2): 115-118.

  8. Effect of swimming on bone metabolism in adolescents.

    Science.gov (United States)

    Derman, Orhan; Cinemre, Alphan; Kanbur, Nuray; Doğan, Muhsin; Kiliç, Mustafa; Karaduman, Erdem

    2008-01-01

    Physical activity has been shown to have a positive effect on bone metabolism among adolescents. The objective of this study was to determine the effect of swimming on bone metabolism during adolescence. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. We studied whether swimming is associated with a higher peak bone mass. Forty swimmers (males aged 10-17 years and females aged 9-16 years) were studied. The control group consisted of the same number of adolescents aged between 10-16 years who did not swim; distribution of male and female gender was similar in the non-swimming control group compared to the swimming group. Adolescents were matched for age, gender and pubertal stages based on Tanner staging. All subjects underwent combined measurement of bone mineral metabolism by dual-energy X-ray absorptiometry of total body calcium content, and specific biochemical markers of turnover including osteocalcin, calcium, phosphorus and alkaline phosphatase. Bone age (determined by Greulich and Pyle's Radiographic Atlas of Skeletal Development of the Hand and Wrist), weight, height, ideal body weight, ideal body weight ratio, body mass index, Tanner classification (rated by examiner), diet, history of tobacco and alcohol exposure, exercise, socioeconomic status and history of chronic illness and medications were recorded to evaluate potential mediators that would affect bone metabolism. Tanner staging was used to assess puberty, and diet was evaluated based on reported consumption of milk, yogurt and cheese and cola/caffeine beverage consumption daily. There was significant difference in bone mineral content between adolescent male swimmers and the control group males. Consumption of cola beverages were significantly higher among the control group compared with the swimmer group. Ideal body weight ratio was significantly high among the female control group compared with female swimmers. Milk consumption was

  9. Metabolic effects of intra-abdominal fat in GHRKO mice

    Science.gov (United States)

    Masternak, Michal M.; Bartke, Andrzej; Wang, Feiya; Spong, Adam; Gesing, Adam; Fang, Yimin; Salmon, Adam B.; Hughes, Larry F.; Liberati, Teresa; Boparai, Ravneet; Kopchick, John J.; Westbrook, Reyhan

    2011-01-01

    SUMMARY Mice with targeted deletion of the growth hormone receptor (GHRKO mice) are GH resistant, small, obese, hypoinsulinemic, highly insulin sensitive and remarkably long-lived. To elucidate the unexpected coexistence of adiposity with improved insulin sensitivity and extended longevity, we examined effects of surgical removal of visceral (epididymal and perinephric) fat on metabolic traits related to insulin signaling and longevity. Comparison of results obtained in GHRKO mice and in normal animals from the same strain revealed disparate effects of visceral fat removal (VFR) on insulin and glucose tolerance, adiponectin levels, accumulation of ectopic fat, phosphorylation of insulin signaling intermediates, body temperature and respiratory quotient (RQ). Overall, VFR produced the expected improvements in insulin sensitivity and reduced body temperature and RQ in normal mice and had opposite effects in GHRKO mice. Some of the examined parameters were altered by VFR in opposite directions in GHRKO and normal mice, others were affected in only one genotype or exhibited significant genotype × treatment interactions. Functional differences between visceral fat of GHRKO and normal mice were confirmed by measurements of adipokine secretion, lipolysis and expression of genes related to fat metabolism. We conclude that in the absence of GH signaling the secretory activity of visceral fat is profoundly altered and unexpectedly promotes enhanced insulin sensitivity. The apparent beneficial effects of visceral fat in GHRKO mice may also explain why reducing adiposity by calorie restriction fails to improve insulin signaling or further extend longevity in these animals. PMID:22040032

  10. Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: Metabolic analysis

    NARCIS (Netherlands)

    Dalm, M.C.F.; Lamers, P.P.; Cuijten, S.M.R.; Tjeerdsma, A.M.; Grunsven, van W.M.J.; Tramper, J.; Martens, D.E.

    2007-01-01

    For the development of optimal perfusion processes, insight into the effect of feed and bleed rate on cell growth, productivity, and metabolism is essential. In the here presented study the effect of the feed and bleed rate on cell metabolism was investigated using metabolic flux analysis. Under all

  11. Effect of yoga training on lipid metabolism in industrial workers with reference to body constitution (Prakriti

    Directory of Open Access Journals (Sweden)

    Suchitra Doddoli

    2017-07-01

    Conclusion: The study concludes that yoga practices can effectively regulate lipid metabolism and total body energy expenditure with reference to specific constitutional type (Prakriti that may act as a tool to assess magnitude of metabolic functions.

  12. Effect of Diet on Metabolism of Laboratory Rats

    Science.gov (United States)

    Harrison, P. C.; Riskowski, G. L.; McKee, J. S.

    1996-01-01

    In previous studies when rats were fed a processed, semipurified, extruded rodent food bar (RFB) developed for space science research, we noted a difference in the appearance of gastrointestinal tissue (GI); therefore the following study evaluated GI characteristics and growth and metabolic rates of rats fed chow (C) or RFB. Two hundred and twenty-four rats (78 g mean body weight) were randomly assigned to 28 cages and provided C or RFB. Each cage was considered the experimental unit and a 95 percent level of significance, indicated by ANOVA, was used for inference. After each 30-, 60-, and 90-day period, eight cages were shifted from the C to RFB diet and housing density was reduced by two rats per cage. The two rats removed from each cage were sacrificed and used for GI evaluation. Metabolic rates of the rats in each cage were determined by indirect calorimetry. No differences in body weight were detected at 0, 30, 60 or 90 days between C and RFB. Heat production (kcal/hr/kg), CO2 production (L/hr/kg) and O2 consumption (L/hr/kg) were different by light:dark and age with no effect of diet. Respiratory quotient was different by age with no effect of light:dark or diet. Rats on the C diet ate less food and drank more water than those on RFB. C rats produced more fecal and waste materials than the RFB. GI lengths increased with age but were less in RFB than C. GI full and empty weights increased with age but weighed less in RFB than C. Gut-associated lymphoid tissue (GALT) numbers increased with age with no effect of diet. No differences in ileum-associated GALT area were detected between C and RFB. Switching C to RFB decreased GI length, GI full and empty weights, with no changes in GALT number or area. We concluded RFB decreased GI mass without affecting metabolic rate or general body growth.

  13. Effect of aging on glutathione metabolism. Protection by antioxidants.

    Science.gov (United States)

    Viña, J; Sastre, J; Anton, V; Bruseghini, L; Esteras, A; Asensi, M

    1992-01-01

    The free radical theory of aging suggests that oxygen free radicals may be involved in the aging process. Thus, changes in antioxidant mechanisms may occur with aging. Since glutathione is one of the most effective antioxidant systems in the cell, its metabolism may change with aging. In this chapter we describe experiments which show the involvement of glutathione in the aging process and which provide a rationale for the administration of antioxidants to old organisms to protect them against some of the changes that occur with aging.

  14. Effect of Diisopropyl Phosphorofluoridate in Some Aspects of Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    A. K. Chatterjee

    1991-04-01

    Full Text Available An acute dose of DFP equivalent to 50 per cent of the LD50 cause glycogenolysis and hyperglycemia in male albino rats. The hyperglycemic effect can atleast be partially suppressed by the administration of insulin. Under sub-acute dose equivalent to 5 per cent of the LD50, there is glycogenolysis but no change is blood glucose. The action of DFP on carbohydrate metabolism seems to be mediated through adrenal gland. DFP also increases the glycolytic rate, suppresses the LDH activity and is hepatotoxic.

  15. Effect of Canola oil enrichment with microconsituants against metabolic disorders

    OpenAIRE

    Capel, Frédéric; Pineau, Gaëlle; Pitois, Elodie; De Saint Vincent, Sarah; Chardigny, Jean-Michel; Demaison, Luc; Vaysse, Carole; Geleon, A; Lagarde, Michel; Malpuech-Brugère, Corinne; Michalski, Marie-Caroline

    2016-01-01

    Aim/hypothesis: Insulin resistance (IR) favors the progression of metabolicsyndrome (MetS) and increases the risk of type2 diabetes. IR results from metabolic dysfunctions,oxidative stress and inflammation caused by ectopic fat depots. We studied the effect of canola oil enriched with micronutrients naturally present in canola seed on IR and MetS during a high fat (HF)-challenge]. [br/] Research design and Methods: Rats were fed with a HF diet containing 30% of lipids, mainly derived from...

  16. Metabolism and transport of tamoxifen in relation to its effectiveness

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Damkier, Per; Lash, Timothy L

    2014-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6). Tamoxifen is a substrate for ATP-binding cassette transporter proteins. We review ta...... effectiveness, such as the transport enzymes, and focus on subgroups of patients, such as premenopausal breast cancer patients, for whom tamoxifen is the only guideline endocrine therapy.......Tamoxifen reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6). Tamoxifen is a substrate for ATP-binding cassette transporter proteins. We review...... tamoxifen's clinical pharmacology and use meta-analyses to evaluate the clinical epidemiology studies conducted to date on the association between CYP2D6 inhibition and tamoxifen effectiveness. Our findings indicate that the effect of both drug-induced and/or gene-induced inhibition of CYP2D6 activity...

  17. Metabolic and Blood Pressure Effects of Walnut Supplementation in a Mouse Model of the Metabolic Syndrome

    National Research Council Canada - National Science Library

    Nicola J. A. Scott; Leigh J. Ellmers; Anna P. Pilbrow; Lotte Thomsen; Arthur Mark Richards; Chris M. Frampton; Vicky A. Cameron

    2017-01-01

    ... with the metabolic syndrome (MetS) remain uncertain. We compared a range of cardio-metabolic traits and related tissue gene expression associated with 21 weeks of dietary walnut supplementation in a mouse model of MetS (MetS-Tg) and wild-type (WT) mice (n...

  18. Effects of introducing heterologous pathways on microbial metabolism with respect to metabolic optimality

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Kim, Byoungjin; Seung, Do Young

    2014-01-01

    heterologous metabolic reactions have metabolic characteristics significantly different from those of the wild-type strain and single gene knockout mutants. Finally, comparison of the theoretically predicted and 13C-based flux values pinpoints pathways with non-optimal flux values, which can be considered...

  19. Effects of exercise on tumor physiology and metabolism

    DEFF Research Database (Denmark)

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    , exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental......Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism....... Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous...

  20. The pleiotropic effects of paricalcitol: Beyond bone-mineral metabolism.

    Science.gov (United States)

    Egido, Jesús; Martínez-Castelao, Alberto; Bover, Jordi; Praga, Manuel; Torregrosa, José Vicente; Fernández-Giráldez, Elvira; Solozábal, Carlos

    2016-01-01

    Secondary hyperparathyroidism (SHPT) is a common complication in patients with chronic kidney disease (CKD) that is characterised by elevated parathyroid hormone (PTH) levels and a series of bone-mineral metabolism anomalies. In patients with SHPT, treatment with paricalcitol, a selective vitamin D receptor activator, has been shown to reduce PTH levels with minimal serum calcium and phosphorus variations. The classic effect of paricalcitol is that of a mediator in mineral and bone homeostasis. However, recent studies have suggested that the benefits of treatment with paricalcitol go beyond PTH reduction and, for instance, it has a positive effect on cardiovascular disease and survival. The objective of this study is to review the most significant studies on the so-called pleiotropic effects of paricalcitol treatment in patients with CKD. Copyright © 2015 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Effects of Dietary Fiber and Its Components on Metabolic Health

    Directory of Open Access Journals (Sweden)

    Mark D. Haub

    2010-12-01

    Full Text Available Dietary fiber and whole grains contain a unique blend of bioactive components including resistant starches, vitamins, minerals, phytochemicals and antioxidants. As a result, research regarding their potential health benefits has received considerable attention in the last several decades. Epidemiological and clinical studies demonstrate that intake of dietary fiber and whole grain is inversely related to obesity, type two diabetes, cancer and cardiovascular disease (CVD. Defining dietary fiber is a divergent process and is dependent on both nutrition and analytical concepts. The most common and accepted definition is based on nutritional physiology. Generally speaking, dietary fiber is the edible parts of plants, or similar carbohydrates, that are resistant to digestion and absorption in the small intestine. Dietary fiber can be separated into many different fractions. Recent research has begun to isolate these components and determine if increasing their levels in a diet is beneficial to human health. These fractions include arabinoxylan, inulin, pectin, bran, cellulose, β-glucan and resistant starch. The study of these components may give us a better understanding of how and why dietary fiber may decrease the risk for certain diseases. The mechanisms behind the reported effects of dietary fiber on metabolic health are not well established. It is speculated to be a result of changes in intestinal viscosity, nutrient absorption, rate of passage, production of short chain fatty acids and production of gut hormones. Given the inconsistencies reported between studies this review will examine the most up to date data concerning dietary fiber and its effects on metabolic health.

  2. Effects of dietary fiber and its components on metabolic health.

    Science.gov (United States)

    Lattimer, James M; Haub, Mark D

    2010-12-01

    Dietary fiber and whole grains contain a unique blend of bioactive components including resistant starches, vitamins, minerals, phytochemicals and antioxidants. As a result, research regarding their potential health benefits has received considerable attention in the last several decades. Epidemiological and clinical studies demonstrate that intake of dietary fiber and whole grain is inversely related to obesity, type two diabetes, cancer and cardiovascular disease (CVD). Defining dietary fiber is a divergent process and is dependent on both nutrition and analytical concepts. The most common and accepted definition is based on nutritional physiology. Generally speaking, dietary fiber is the edible parts of plants, or similar carbohydrates, that are resistant to digestion and absorption in the small intestine. Dietary fiber can be separated into many different fractions. Recent research has begun to isolate these components and determine if increasing their levels in a diet is beneficial to human health. These fractions include arabinoxylan, inulin, pectin, bran, cellulose, β-glucan and resistant starch. The study of these components may give us a better understanding of how and why dietary fiber may decrease the risk for certain diseases. The mechanisms behind the reported effects of dietary fiber on metabolic health are not well established. It is speculated to be a result of changes in intestinal viscosity, nutrient absorption, rate of passage, production of short chain fatty acids and production of gut hormones. Given the inconsistencies reported between studies this review will examine the most up to date data concerning dietary fiber and its effects on metabolic health.

  3. The inhibitory effect of calcium on Cylindrospermopsis raciborskii (cyanobacteria metabolism

    Directory of Open Access Journals (Sweden)

    Ronaldo Leal Carneiro

    2011-12-01

    Full Text Available Cylindrospermopsis raciborskii (Woloszynska Seenaya & Subba Raju is a freshwater cyanobacterium of worldwide distribution. In the North-eastern region of Brazil many eutrophic water reservoirs are characterized by the dominance of C. raciborskii, with recurrent occurrence of blooms. These water bodies have high conductivity due to a high ionic concentration, and are defined as hard (with high values of CaCO3. In this study, we investigated the long-term effect (12 days of high calcium concentration (8 mM Ca2+ on C. raciborskii (T3 strain growth, morphology, toxin content, and metabolism. Changes in protein expression profiles were investigated by proteomic analysis using 2D gel electrophoresis and mass spectrometry. A continued exposure to calcium had a pronounced effect on C. raciborskii (T3: it limited growth, decreased thricome length, increased chlorophyll-a content, altered toxin profile (although did not affect PST content, saxitoxin + neosaxitoxin, and inhibited the expression of proteins related to primary metabolism.

  4. Peripheral metabolic effects of endocannabinoids and cannabinoid receptor blockade.

    Science.gov (United States)

    Engeli, Stefan

    2008-01-01

    The endocannabinoid system consists of endogenous arachidonic acid derivates that activate cannabinoid receptors. The two most prominent endocannabinoids are anandamide and 2-arachidonoyl glycerol. In obesity, increased concentrations of circulating and tissue endocannabinoid levels have been described, suggesting increased activity of the endocannabinoid system. Increased availability of endocannabinoids in obesity may over-stimulate cannabinoid receptors. Blockade of cannabinoid type 1 (CB1) receptors was the only successful clinical development of an anti-obesity drug during the last decade. Whereas blockade of CB1 receptors acutely reduces food intake, the long-term effects on metabolic regulation are more likely mediated by peripheral actions in liver, skeletal muscle, adipose tissue, and the pancreas. Lipogenic effects of CB1 receptor signalling in liver and adipose tissue may contribute to regional adipose tissue expansion and insulin resistance in the fatty liver. The association of circulating 2-arachidonoyl glycerol levels with decreased insulin sensitivity strongly suggests further exploration of the role of endocannabinoid signalling for insulin sensitivity in skeletal muscle, liver, and adipose tissue. A few studies have suggested a specific role for the regulation of adiponectin secretion from adipocytes by endocannabinoids, but that has to be confirmed by more experiments. Also, the potential role of CB1 receptor blockade for the stimulation of energy expenditure needs to be studied in the future. Despite the current discussion of safety issues of cannabinoid receptor blockade, these findings open a new and exciting perspective on endocannabinoids as regulators of body weight and metabolism.

  5. Effects of Dietary Fiber and Its Components on Metabolic Health

    Science.gov (United States)

    Lattimer, James M.; Haub, Mark D.

    2010-01-01

    Dietary fiber and whole grains contain a unique blend of bioactive components including resistant starches, vitamins, minerals, phytochemicals and antioxidants. As a result, research regarding their potential health benefits has received considerable attention in the last several decades. Epidemiological and clinical studies demonstrate that intake of dietary fiber and whole grain is inversely related to obesity, type two diabetes, cancer and cardiovascular disease (CVD). Defining dietary fiber is a divergent process and is dependent on both nutrition and analytical concepts. The most common and accepted definition is based on nutritional physiology. Generally speaking, dietary fiber is the edible parts of plants, or similar carbohydrates, that are resistant to digestion and absorption in the small intestine. Dietary fiber can be separated into many different fractions. Recent research has begun to isolate these components and determine if increasing their levels in a diet is beneficial to human health. These fractions include arabinoxylan, inulin, pectin, bran, cellulose, β-glucan and resistant starch. The study of these components may give us a better understanding of how and why dietary fiber may decrease the risk for certain diseases. The mechanisms behind the reported effects of dietary fiber on metabolic health are not well established. It is speculated to be a result of changes in intestinal viscosity, nutrient absorption, rate of passage, production of short chain fatty acids and production of gut hormones. Given the inconsistencies reported between studies this review will examine the most up to date data concerning dietary fiber and its effects on metabolic health. PMID:22254008

  6. Multistress effects on goldfish (Carassius auratus) behavior and metabolism.

    Science.gov (United States)

    Gandar, Allison; Jean, Séverine; Canal, Julie; Marty-Gasset, Nathalie; Gilbert, Franck; Laffaille, Pascal

    2016-02-01

    Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L(-1) and MIX2 = 42 μg L(-1)). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton's condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.

  7. Effects of cigarette smoking on metabolic events in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, S.

    1987-06-01

    Nicotine and cigarette smoke extract show acute physiological effects: increasing tracheal pressure (P/sub TR/), pulmonary artery pressure (P/sub PA/), systemic blood pressure (P/sub SYST/), and left atrium pressure (P/sub LA/); and decreasing cardiac output (Q/sub AORTA/) and blood flow to the left lower lobe (Q/sub LLL/). In addition, cigarette smoking induces bronchoconstriction, thus decreasing peak flow, FVC, and FEV/sub 1.0/ in healthy subjects. It has also been demonstrated that cigarette smoking caused temporary slowing of mucociliary clearance in the lung and that cigarette smoke increases the activity of aryl hydrocarbon hydroxylase which metabolizes benzo(..cap alpha..)pyrene. The authors demonstrated that serum angiotensin I converting enzyme (ACE) activity showed a significant increase immediately after smoking and returned to the control level 20 min after smoking. They also demonstrated that plasma histamine levels showed a marked decrease after smoking. Furthermore, the effects of cigarette smoke and related substances on prostaglandin, thromboxane, testosterone, cyclic nucleotides metabolism, and protein synthesis were also investigated.

  8. Effects of 6-month aerobic interval training on skeletal muscle metabolism in middle-aged metabolic syndrome patients

    DEFF Research Database (Denmark)

    Guadalupe-Grau, A; Fernández-Elías, V E; Ortega, J F

    2017-01-01

    , and citrate synthase activity (26.0%) increased with training (Pfat oxidation during exercise and increases VO2peak in combination with skeletal muscle improvements in mitochondrial enzyme activity. Muscle proteins involved in glucose, fat metabolism...... the vastus lateralis prior and at the end of the program. Body fat mass (-3.8%), waist circumference (-1.8%), systolic (-10.1%), and diastolic (-9.3%) blood pressure were reduced, whereas maximal fat oxidation rate and VO2peak were significantly increased (38.9% and 8.0%, respectively; all P... assessed the effects of 6 months of AIT on cardio-metabolic health and muscle metabolism in middle-aged MetS. Eleven MetS (54.5±0.7 years old) underwent 6 months of 3 days a week supervised AIT program on a cycle ergometer. Cardio-metabolic health was assessed, and muscle biopsies were collected from...

  9. Conjugated linoleic acid isomers: differences in metabolism and biological effects.

    Science.gov (United States)

    Churruca, Itziar; Fernández-Quintela, Alfredo; Portillo, Maria Puy

    2009-01-01

    The term conjugated linoleic acid (CLA) refers to a mixture of linoleic acid positional and geometric isomers, characterized by having conjugated double bonds, not separated by a methylene group as in linoleic acid. CLA isomers appear as a minor component of the lipid fraction, found mainly in meat and dairy products from cows and sheep. The most abundant isomer is cis-9,trans-11, which represents up to 80% of total CLA in food. These isomers are metabolized in the body through different metabolic pathways, but important differences, that can have physiological consequences, are observed between the two main isomers. The trans-10,cis-12 isomer is more efficiently oxidized than the cis-9,trans-11 isomer, due to the position of its double bounds. Interest in CLA arose in its anticarcinogenic action but there is an increasing amount of specific scientific literature concerning the biological effects and properties of CLA. Numerous biological effects of CLA are due to the separate action of the most studied isomers, cis-9,trans-11 and trans-10,cis-12. It is also likely that some effects are induced and/or enhanced by these isomers acting synergistically. Although the cis-9,trans-11 isomer is mainly responsible for the anticarcinogenic effect, the trans-10,cis-12 isomer reduces body fat and it is referred as the most effective isomer affecting blood lipids. As far as insulin function is concerned, both isomers seem to be responsible for insulin resistance in humans. Finally, with regard to the immune system it is not clear whether individual isomers of CLA could act similarly or differently.

  10. The effects of age and metabolic status on cognitive performance

    OpenAIRE

    2012-01-01

    Metabolic syndrome is a constellation of vascular and metabolic risk factors that frequently occur in combination, including obesity, raised triglycerides, reduced HDL cholesterol, raised blood pressure, and raised fasting plasma glucose, with the presence of 3 out of 5 risk factors constituting a diagnosis of metabolic syndrome. Metabolic syndrome is associated with increased rates of mortality and increased risk for developing dementia. Changes in brain structure and cognitive functioning h...

  11. Effect of copper on liver and bone metabolism in malnutrition.

    Science.gov (United States)

    Güler, A H; Sapan, N; Ediz, B; Genç, Z; Ozkan, K

    1994-01-01

    This study was planned to investigate the effects of copper (Cu) deficiency on liver and bone metabolism in malnourished children. Serum total calcium (Ca), inorganic phosphorus (P), Ca/P, Cu/Ca, Cu/P ratios and alkaline phosphatase (ALP) activity values were analyzed. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyltransferase (GGT) enzyme activities and the ALT/AST (De Ritis) ratio as well as their correlations with Cu were tested to determine liver function. The results of the study showed that Cu deficiency directly affects the organic matrix formation, and by the suppression of ALP activity, indirectly causes decalcification. In the liver, however, no direct effect of Cu deficiency was seen. Deterioration in liver function and Cu deficiency increased parallel with the severity of malnutrition. Thus we concluded that a correlation exists between Cu and the parameters that indicate liver function.

  12. Effect of radiographic contrast agents on leukocyte metabolic response

    Energy Technology Data Exchange (ETDEWEB)

    Hernanz-Schulman, M. [Dept. of Pediatric Radiology, Vanderbilt Children' s Hospital, Nashville, TN (United States); Vanholder, R.; Waterloos, M.A. [Dept. of Internal Medicine, Nephrology Section, University Hospital, Gent (Belgium); Hakim, R.; Schulman, G. [Department of Nephrology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2000-06-01

    Barium, at clinical dilutions, causes a significant increase of baseline ''resting state'' phagocytic activity, which in turn leads to significant blunting of subsequent response to phagocytic challenge and adversely affects the response to all bacteria tested. There is no baseline activation of leukocytes by the water-soluble media, although there was some inhibition (rather than activation) of leukocyte metabolic activity. The effect of the water-soluble media in bacteria was more complex (although inhibition is minor compared to barium). Our data demonstrate that barium is a significat activator of phagocytic cells, which results in deactivation of phagocytic response when challenged; these dsata serve to explain the enhanced adverse effect of barium in cased of fecal peritonitis. (orig.)

  13. [Lipoprotein metabolism in menopause. Effect of hormonal substitution therapy].

    Science.gov (United States)

    Heckers, H; Platt, D

    1991-06-20

    Oral administration of conjugated estrogens, estradiol valerate and micronized estradiol--but not the percutaneous application--in the postmenopause modifies the plasmic lipoprotein profile by lowering, dose-dependently, LDL and elevating HDL (HDL2). In parallel, the cardiovascular mortality is decreased by 50-66%, with smokers also benefiting to the same extent. On account of the increased risk for endometrial carcinoma associated with postmenopausal estrogen monotherapy, combination with a lowest-dose gestagen is imperative. However, the very numerous synthetic gestagens can antagonize the favorable effects of the estrogen on lipoprotein metabolism. This applies in particular to the gestagens of the 19-nortestosterone type, such as norethisterone acetate and, in particular, levonorgestrel, but less so the 17-hydroxyprogesterone derivatives medroxyprogesterone acetate and medrogestone with their very low androgenic effect.

  14. Effect of sedentary activities on resting metabolic rate.

    Science.gov (United States)

    Dietz, W H; Bandini, L G; Morelli, J A; Peers, K F; Ching, P L

    1994-03-01

    We examined the effect of television viewing on resting metabolic rate (RMR) in a cohort of 9 obese and 18 nonobese girls aged 10.4 +/- 1.1 y. RMR was measured while girls watched television, read, or sat quietly for 15 min. Movement was assessed by using activity monitors and a manual count of movements observed on a videotape. Absolute RMR was greater for the obese girls, but no significant treatment effect existed for absolute RMR within either group. Although measured activity did not differ, observed movements were greater when the girls were sitting quietly. Total observed and measured movements were significantly correlated with the CV of the minute-by-minute RMR. These results suggest that television viewing does not alter RMR. Although children appear to fidget more when sitting quietly than when they read or watch television, fidgeting appears to affect the minute-to-minute variation of RMR rather than the level of resting energy expenditure.

  15. Adverse effects of fluoride towards thyroid hormone metabolism

    Directory of Open Access Journals (Sweden)

    Enggar Abdullah Idris MZ

    2008-03-01

    Full Text Available An easily ionized fluoride compound like Sodium Fluoride (NaF has been used thus far as a dental caries prevention substance. However, fluoride ions also have a negative effect because it is very toxic. Several types of research on the effect of fluoride on guinea pigs and human beings indicate the presence synthesis obstruction of T3 and T4 that causes declined production, known as hypothyroidism. Hypothyroidism condition may obstruct tissue growth process and metabolism so as to impact various body organ systems. Preventive efforts against hypothyroidism caused by fluoride include avoiding diffusible fluoride compound intake, like NaF, in a long run systemic use, whereas efforts to overcome fluoride intoxication include consuming food that is rich in calcium, vitamin D, and antioxidant.

  16. Metabolic effects of oral contraceptives: fact vs. fiction.

    Science.gov (United States)

    1996-01-01

    Many studies show that low-dose OCs have little adverse effect on carbohydrate metabolism and are safe for healthy women, women with a history of gestational diabetes, and women with insulin-dependent diabetes to use. In fact, large epidemiologic studies indicate that OCs, even the high-dose OCs (=or 50 mcg) for long periods, do not increase the risk of diabetes. There is some evidence indicating that OC use does not heighten the progression of diabetic retinopathy, nephropathy, or cardiovascular complications among women with insulin-dependent diabetes. There is no significant difference in carbohydrate metabolism among the different OC formulations. One must carefully consider the risk:benefit ratio of OC use in diabetic women since pregnancy has serious consequences for both mother and fetus. Cardiovascular complications in OC users do not originate from atherogenesis. The androgenic properties of the progestin in low-dose OCs and their effect on lipids are inconsequential for later development of coronary atherogenesis. The estrogen in OCs may protect against atherosclerosis, particularly among women at high risk of atherosclerosis. Former OC users are not at an increased risk of coronary heart disease, stroke, or other heart disease. Lipid changes in OC users tend to remain within the normal range and return to pretreatment values during the pill-free week. All OCs suppress gonadotropins and subsequent ovarian androgen production. They partially suppress androgen production by the adrenals as well. This suppression from two fronts outweighs any androgenic action of the progestin alone. Further, androgenic action probably cannot overpower the estrogen effect. The dose of levonorgestrel used in OCs is too low to express androgenic effects. Since OCs suppress androgen production, all OCs tend to improve acne. OCs reduce free testosterone and increase sex hormone binding globulin levels.

  17. Cardiopulmonary and metabolic effects of yoga in healthy volunteers

    Directory of Open Access Journals (Sweden)

    T Satheesh Divya

    2017-01-01

    Full Text Available Background: Yoga the spiritual union of mind with the divine intelligence of the universe aims to liberate a human being from conflicts of body–mind duality. Beneficial cardiovascular and pulmonary effects of yoga are in par with aerobic exercise, even amounting to replace the exercise model. We conducted an interventional study in healthy volunteers, to analyze the impact of short-term yoga training on cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests. Materials and Methods: A sample of fifty new recruits attending the district yoga center was subject to 75 min yoga practice a day for 41 days. Basal values of cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests were recorded before yoga training and were reassessed for postyoga changes after 41 days. Results: After yoga practice there was a significant reduction in the resting heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure of the participants. Effects on autonomic function tests were variable and inconclusive. There was a significant increase in forced vital capacity, forced expiratory volume in 1 s, and peak expiratory flow rate after yoga. A significant reduction in body mass index was observed. Effects on metabolic parameters were promising with a significant reduction in fasting blood sugar level, serum total cholesterol, serum triglycerides serum low-density lipoprotein levels, and significant increase in high-density lipoprotein. There was no significant change in thyroid function tests after yoga. Conclusion: Short-term yoga practice has no effect on thyroid functions. Yoga practice was found beneficial in maintaining physiological milieu pertaining to cardiovascular and other metabolic parameters.

  18. The effect of combined inositol supplementation on maternal metabolic profile in pregnancies complicated by metabolic syndrome and obesity.

    Science.gov (United States)

    Ferrari, Francesca; Facchinetti, Fabio; Ontiveros, Alejandra E; Roberts, Robyn P; Saade, Mia M; Blackwell, Sean C; Sibai, Baha M; Refuerzo, Jerrie S; Longo, Monica

    2016-10-01

    Myoinositol and D-chiroinositol improve insulin resistance in women with obesity and gestational diabetes and in postmenopausal women with metabolic syndrome. We previously reported that offspring born to hypertensive dams lacking endothelial nitric oxide synthase and fed a high-fat diet develop metabolic-like syndrome phenotype. The objective of the study was to investigate the effect of a mixture of myoinositol/D-chiroinositol supplementation during pregnancy on the maternal metabolic profile in pregnancies complicated by the metabolic-like syndrome and obesity using a pregnant mouse model. Female heterozygous endothelial nitric oxide synthase(-/+) mice with moderate hypertension were placed on a high-fat diet for 4 weeks to induce a metabolic-like syndrome phenotype. Similarly, wild-type C57BL/6 mice were placed on a high-fat diet for 4 weeks to induce a murine obesity model. Mice were then bred with wild-type males. On gestational day 1, dams were randomly allocated to receive either a mixture of myoinositol/D-chiroinositol in water (7.2/0.18 mg/mL, respectively) or water as control (placebo). At term (gestational day 18), maternal weights, systolic blood pressure, and a glucose tolerance test were obtained. Dams were then killed; pups and placentas were weighed and maternal blood collected. Serum levels of metabolic biomarkers relevant to diabetes and obesity (ghrelin, gastric inhibitory peptide, glucagon-like peptide 1, glucagon, insulin, leptin, resistin) were measured by a multiplex enzyme-linked immunosorbent assay. Analysis was done comparing metabolic-like syndrome-myoinositol/D-chiroinositol-treated vs metabolic-like syndrome-nontreated mice and obese-myoinositol/D-chiroinositol-treated vs obese nontreated mice. Mean systolic blood pressure was lower in metabolic-like syndrome pregnant mice treated with myoinositol/D-chiroinositol compared with placebo (P = .04), whereas there was no difference in systolic blood pressure between treated and placebo

  19. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes.

    Science.gov (United States)

    El Sayed Aly, Mohamed Ramadan; Abd El Razek Fodah, Hamadah Hamadah; Saleh, Sherif Yousef

    2014-04-09

    Four sets of rationally designed chalcones were prepared for evaluation of their antiobesity, antioxidant and cytotoxicity activities. These sets include nine oleoyl chalcones as mimics of oleoyl estrone, three monohydroxy chalcones (chalcone ligands), Schiff base-derived chalcones and four copper as well as zinc complexes. Oleoyl chalcones 4d, 4e and particularly 6a as an isosteric isomer of oleoyl estrone, were as active as Orlistat on weight loss and related metabolic parameters using male SD rats in vivo. Chalcone ligands 10a-c and Schiff base-derived chalcones 11 and 14a,b were weakly antioxidants, while, the copper and zinc complexes 15a-d were good antioxidants with zinc chelates 15b,d being more active than their copper analogues 15a,cin vitro. Compounds 10c and 14a showed good cytotoxicity activities as Doxorubicin against PC3 cancer cell line in vitro, while, the copper complex 15c showed promising activity with IC₅₀ value of 5.95 μM. The estimated IC₅₀ value for Doxorubicin was 8.7 μM. Chalcones 14a,b are bifunctional probes for potential investigations in cancer diagnosis and radiotherapy by complexation with Gd(3+) or metal radioisotopes followed by posttranslation of Shiga toxin B-subunits that target globotriosyl ceramide expressing cancer cells.

  20. Effect of diethylstilbestrol on polyamine metabolism in hamster epididymis

    Institute of Scientific and Technical Information of China (English)

    Chun-HongQiu; MasatoOhe; ShigeruMatsuzaki

    2003-01-01

    Aim: To investigate the effect of diethylstilbestrol (DES), one of the most potent endocrine disruptors, on the metabolism of polyamines in hamster epididymis. Methods: Male golden hamsters of 7-week-old were kept under a light and dark cycle of 14 h and 10 h for 1 week to stimulate maximally the gonadal function. DES was injected subcutaneously at doses of 0.01mg·kg-1·day-1,0.1mg·kg-1·day-1 and 1mg·kg-1·day-1 for one week. Results:DES treatment caused a significant decrease in the weight of epididymis. The activity of epididymal ornithine decarboxylase (ODC) increased 1 day after DES treatment, kept at a high level for 4 days and then decreased to nearly normal level at day 7. The activity of spermidine/spermine N1-acetyltransferase (SSAT) also increased transiently after DES treatment. The contents of putrescine, spermidine, spermine and N1-acetylspermidine were increased 1 day 4 days after DES treatment and restored to normal at day 7. All these changes showed a marked difference between the caput and the cauda. Conclusion: The polyamine biosynthesis in the hamster epididymis can be affected by DES,a xenoestrogen. DES may probably affect polyamine metabolism in the epididymis by regulating the rate-limiting enzymes involved in the polyamine biosynthesis.

  1. Clinical Pharmacology of Phenobarbital in Neonates: Effects, Metabolism and Pharmacokinetics.

    Science.gov (United States)

    Pacifici, Gian M

    2016-01-01

    Phenobarbital is an effective and safe anticonvulsant drug introduced in clinical use in 1904. Its mechanism of action is the synaptic inhibition through an action on GABAA. The loading dose of phenobarbital is 20 mg/kg intravenously and the maintenance dose is 3 to 4 mg/kg by mouth. The serum concentration of phenobarbital is up to 40 µg/ml. Nonresponders should receive additional doses of 5 to 10 mg/kg until seizures stop. Infants with refractory seizures may have a serum concentration of phenobarbital of 100 µg/ml. Phenobarbital is metabolized in the liver by CYP2C9 with minor metabolism by CYP2C19 and CYP2E1. A quarter of the dose of phenobarbital is excreted unchanged in the urine. In adults, the half-life of phenobarbital is 100 hours and in term and preterm infants is 103 and 141 hours, respectively. The half-life of phenobarbital decreases 4.6 hours per day and it is 67 hours in infants 4 week old.

  2. Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases.

    Science.gov (United States)

    Clark, Melissa; Hoenig, Margarethe

    2016-09-01

    Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed.

  3. Pharmacogenomic and clinical data link non-pharmacokinetic metabolic dysregulation to drug side effect pathogenesis

    DEFF Research Database (Denmark)

    Zielinski, Daniel C.; Filipp, F. V.; Bordbar, A.

    2015-01-01

    Drug side effects cause a significant clinical and economic burden. However, mechanisms of drug action underlying side effect pathogenesis remain largely unknown. Here, we integrate pharmacogenomic and clinical data with a human metabolic network and find that non-pharmacokinetic metabolic pathways...... dysregulated by drugs are linked to the development of side effects. We show such dysregulated metabolic pathways contain genes with sequence variants affecting side effect incidence, play established roles in pathophysiology, have significantly altered activity in corresponding diseases, are susceptible...... to metabolic inhibitors and are effective targets for therapeutic nutrient supplementation. Our results indicate that metabolic dysregulation represents a common mechanism underlying side effect pathogenesis that is distinct from the role of metabolism in drug clearance. We suggest that elucidating...

  4. The absorption and metabolism of a single L-menthol oral versus skin administration: Effects on thermogenesis and metabolic rate.

    Science.gov (United States)

    Valente, Angelica; Carrillo, Andres E; Tzatzarakis, Manolis N; Vakonaki, Elena; Tsatsakis, Aristidis M; Kenny, Glen P; Koutedakis, Yiannis; Jamurtas, Athanasios Z; Flouris, Andreas D

    2015-12-01

    We investigated the absorption and metabolism pharmacokinetics of a single L-menthol oral versus skin administration and the effects on human thermogenesis and metabolic rate. Twenty healthy adults were randomly distributed into oral (capsule) and skin (gel) groups and treated with 10 mg kg(-1) L-menthol (ORALMENT; SKINMENT) or control (lactose capsule: ORALCON; water application: SKINCON) in a random order on two different days. Levels of serum L-menthol increased similarly in ORALMENT and SKINMENT (p > 0.05). L-menthol glucuronidation was greater in ORALMENT than SKINMENT (p  0.05). Participants reported no cold, shivering, discomfort, stress or skin irritation. We conclude that a single L-menthol skin administration increased thermogenesis and metabolic rate in humans. These effects are minor following L-menthol oral administration probably due to faster glucuronidation and greater blood menthol glucuronide levels.

  5. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. (Tufs Univ., Boston, MA (USA))

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  6. The effects of corn silk on glycaemic metabolism

    Directory of Open Access Journals (Sweden)

    Han Linna

    2009-11-01

    Full Text Available Abstract Background Corn silk contains proteins, vitamins, carbohydrates, Ca, K, Mg and Na salts, fixed and volatile oils, steroids such as sitosterol and stigmasterol, alkaloids, saponins, tannins, and flavonoids. Base on folk remedies, corn silk has been used as an oral antidiabetic agent in China for decades. However, the hypoglycemic activity of it has not yet been understood in terms of modern pharmacological concepts. The purpose of this study is to investigate the effects of corn silk on glycaemic metabolism. Methods Alloxan and adrenalin induced hyperglycemic mice were used in the study. The effects of corn silk on blood glucose, glycohemoglobin (HbA1c, insulin secretion, damaged pancreatic β-cells, hepatic glycogen and gluconeogenesis in hyperglycemic mice were studied respectively. Results After the mice were orally administered with corn silk extract, the blood glucose and the HbA1c were significantly decreased in alloxan-induced hyperglycemic mice (p 0.05. Although corn silk extract increased the level of hepatic glycogen in the alloxan-induced hyperglycemic mice, there was no significant difference between them and that of the control group(p > 0.05. Conclusion Corn silk extract markedly reduced hyperglycemia in alloxan-induced diabetic mice. The action of corn silk extract on glycaemic metabolism is not via increasing glycogen and inhibiting gluconeogenesis but through increasing insulin level as well as recovering the injured β-cells. The results suggest that corn silk extract may be used as a hypoglycemic food or medicine for hyperglycemic people in terms of this modern pharmacological study.

  7. Effects of Different Exercise Modes on the Urinary Metabolic Fingerprint of Men with and without Metabolic Syndrome.

    Science.gov (United States)

    Siopi, Aikaterina; Deda, Olga; Manou, Vasiliki; Kellis, Spyros; Kosmidis, Ioannis; Komninou, Despina; Raikos, Nikolaos; Christoulas, Kosmas; Theodoridis, Georgios A; Mougios, Vassilis

    2017-01-26

    Exercise is important in the prevention and treatment of the metabolic syndrome (MetS), a cluster of risk factors that raises morbidity. Metabolomics can facilitate the optimization of exercise prescription. This study aimed to investigate whether the response of the human urinary metabolic fingerprint to exercise depends on the presence of MetS or exercise mode. Twenty-three sedentary men (MetS, n = 9, and Healthy, n = 14) completed four trials: resting, high-intensity interval exercise (HIIE), continuous moderate-intensity exercise (CME), and resistance exercise (RE). Urine samples were collected pre-exercise and at 2, 4, and 24 h for targeted analysis by liquid chromatography-mass spectrometry. Time exerted the strongest differentiating effect, followed by exercise mode and health status. The greatest changes were observed in the first post-exercise samples, with a gradual return to baseline at 24 h. RE caused the greatest responses overall, followed by HIIE, while CME had minimal effect. The metabolic fingerprints of the two groups were separated at 2 h, after HIIE and RE; and at 4 h, after HIIE, with evidence of blunted response to exercise in MetS. Our findings show diverse responses of the urinary metabolic fingerprint to different exercise modes in men with and without metabolic syndrome.

  8. Effects of Different Exercise Modes on the Urinary Metabolic Fingerprint of Men with and without Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Aikaterina Siopi

    2017-01-01

    Full Text Available Exercise is important in the prevention and treatment of the metabolic syndrome (MetS, a cluster of risk factors that raises morbidity. Metabolomics can facilitate the optimization of exercise prescription. This study aimed to investigate whether the response of the human urinary metabolic fingerprint to exercise depends on the presence of MetS or exercise mode. Twenty-three sedentary men (MetS, n = 9, and Healthy, n = 14 completed four trials: resting, high-intensity interval exercise (HIIE, continuous moderate-intensity exercise (CME, and resistance exercise (RE. Urine samples were collected pre-exercise and at 2, 4, and 24 h for targeted analysis by liquid chromatography-mass spectrometry. Time exerted the strongest differentiating effect, followed by exercise mode and health status. The greatest changes were observed in the first post-exercise samples, with a gradual return to baseline at 24 h. RE caused the greatest responses overall, followed by HIIE, while CME had minimal effect. The metabolic fingerprints of the two groups were separated at 2 h, after HIIE and RE; and at 4 h, after HIIE, with evidence of blunted response to exercise in MetS. Our findings show diverse responses of the urinary metabolic fingerprint to different exercise modes in men with and without metabolic syndrome.

  9. Effects of Different Exercise Modes on the Urinary Metabolic Fingerprint of Men with and without Metabolic Syndrome

    Science.gov (United States)

    Siopi, Aikaterina; Deda, Olga; Manou, Vasiliki; Kellis, Spyros; Kosmidis, Ioannis; Komninou, Despina; Raikos, Nikolaos; Christoulas, Kosmas; Theodoridis, Georgios A.; Mougios, Vassilis

    2017-01-01

    Exercise is important in the prevention and treatment of the metabolic syndrome (MetS), a cluster of risk factors that raises morbidity. Metabolomics can facilitate the optimization of exercise prescription. This study aimed to investigate whether the response of the human urinary metabolic fingerprint to exercise depends on the presence of MetS or exercise mode. Twenty-three sedentary men (MetS, n = 9, and Healthy, n = 14) completed four trials: resting, high-intensity interval exercise (HIIE), continuous moderate-intensity exercise (CME), and resistance exercise (RE). Urine samples were collected pre-exercise and at 2, 4, and 24 h for targeted analysis by liquid chromatography-mass spectrometry. Time exerted the strongest differentiating effect, followed by exercise mode and health status. The greatest changes were observed in the first post-exercise samples, with a gradual return to baseline at 24 h. RE caused the greatest responses overall, followed by HIIE, while CME had minimal effect. The metabolic fingerprints of the two groups were separated at 2 h, after HIIE and RE; and at 4 h, after HIIE, with evidence of blunted response to exercise in MetS. Our findings show diverse responses of the urinary metabolic fingerprint to different exercise modes in men with and without metabolic syndrome. PMID:28134772

  10. Effects of Soy on Metabolic Biomarkers of Cardiovascular Disease in Elderly Women with the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Afsaneh Bakhtiary

    2010-09-01

    Full Text Available Objective: To ascertain the effects of soy [in the forms of Textured Soy Protein (TSP and soy-nut] onlipid profiles, apolipoproteins, inflammatory and prothrombotic markers and blood pressure in elderlywomen with the metabolic syndrome.Materials and methods: The study is a 12-week parallel randomized controlled trial that was conductedin rural health centres of Babol, Iran. The participants were 75 women 60-70 years old with the metabolicsyndrome who were randomized to one of the three groups of soy-nut (35g/d, TSP (35g/d and control.Blood pressure and blood biochemical markers were measured at baseline and at the end of the studyincluding, triglyceride, cholesterol, HDL-C, LDL-C, VLDL-C, ApoB100, ApoAI, CRP and fibrinogen.Results: The soy-nut improved significantly LDL-C, VLDL-C and Apo B100 (P<0.05 while fewer improvementsbut significant were observed in these variables in the TSP group only when compared with themean changes from the baseline (P<0.001. Similar result was found for Apo AI in the treatment groups(P<0.01. Serum total cholesterol decreased significantly in the treatment groups compared with controlgroup (P<0.005. The differences from control for triglyceride, HDL-C, fibrinogen, CRP and bloodpressure were not significant.Conclusion: Both forms of soy while improved lipids profiles the soy-nut contribution was more to thisimprovement than the TSP. Therefore, moderate daily intake of soy may be a safe, cheap and practicalmethod to improve cardiovascular disease risk and also reduce the need for medical treatment.

  11. Cardioselectivity, kinetics, hemodynamics, and metabolic effects of xamoterol.

    Science.gov (United States)

    Jennings, G; Bobik, A; Oddie, C; Restall, R

    1984-05-01

    Xamoterol is a new orally active partial beta-adrenoceptor agonist. Its kinetics, hemodynamic and metabolic effects, and cardioselectivity were investigated in eight normal subjects. Plasma xamoterol concentrations after 100 micrograms/kg iv declined biexponentially over 8 hr and t 1/2 beta averaged 2.6 hr. Resting heart rate (HR) increased slightly in the supine position but was unchanged on sitting. Systolic blood pressure (SBP) rose by 5 to 10 mm Hg and cardiac index (CI) rose 15% to 20%. Both parameters were above control values 6 hr after dosing, when plasma xamoterol concentrations had fallen to about 10 ng/ml. There were no changes in diastolic or mean arterial pressure (MAP). During graded exercise the effects of xamoterol on HR and SBP were the reverse of those at rest, with lowering of exercise HR and SBP at higher work loads. CI during exercise was not altered by xamoterol. Doses of xamoterol were calculated from the kinetic data to give plasma concentrations of 100, 200, 400, and 800 ng/ml. HR and blood pressure effects at each xamoterol level were compared before and after inhibition of cardiovascular reflexes with prazosin, atropine, and clonidine. Hemodynamic effects of xamoterol and isoproterenol were compared. Before autonomic block xamoterol increased HR by 10 bpm and MAP by 7 mm Hg at the highest dose. After autonomic block there was a 200% to 300% rise in HR at each dose and MAP still rose. The rise in MAP after block could be entirely accounted for by a 23% increase in CI because total peripheral resistance did not change. The effects of isoproterenol after autonomic block were a rise in HR and a fall in MAP. Metabolic responses to xamoterol were measured at the four dose levels. There was a dose-related increase in nonesterified fatty acids and a fall in plasma lactate levels but no changes in plasma renin activity or blood glucose. Results suggest that xamoterol is a cardioselective partial beta-adrenoceptor agonist in man.

  12. Effects of intracerebroventricular administration of neuropeptide Y on metabolic gene expression and energy metabolism in male rats

    NARCIS (Netherlands)

    Su, Yan; Foppen, Ewout; Fliers, Eric; Kalsbeek, A.

    2016-01-01

    Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the central release of NPY has coordinated and integrated effects on energy metaboli

  13. (1)H NMR metabolomics analysis of renal cell carcinoma cells: Effect of VHL inactivation on metabolism.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava; Cormier, Kevin; Touaibia, Mohamed; Reyjal, Julie; Robichaud, Sarah; Belbraouet, Mehdi; Turcotte, Sandra

    2016-05-15

    Von Hippel-Lindau (VHL) is an onco-suppressor involved in oxygen and energy-dependent promotion of protein ubiquitination and proteosomal degradation. Loss of function mutations of VHL (VHL-cells) result in organ specific cancers with the best studied example in renal cell carcinomas. VHL has a well-established role in deactivation of hypoxia-inducible factor (HIF-1) and in regulation of PI3K/AKT/mTOR activity. Cell culture metabolomics analysis was utilized to determined effect of VHL and HIF-1α or HIF-2α on metabolism of renal cell carcinomas (RCC). RCC cells were stably transfected with VHL or shRNA designed to silence HIF-1α or HIF-2α genes. Obtained metabolic data was analysed qualitatively, searching for overall effects on metabolism as well as quantitatively, using methods developed in our group in order to determine specific metabolic changes. Analysis of the effect of VHL and HIF silencing on cellular metabolic footprints and fingerprints provided information about the metabolic pathways affected by VHL through HIF function as well as independently of HIF. Through correlation network analysis as well as statistical analysis of significant metabolic changes we have determined effects of VHL and HIF on energy production, amino acid metabolism, choline metabolism as well as cell regulation and signaling. VHL was shown to influence cellular metabolism through its effect on HIF proteins as well as by affecting activity of other factors.

  14. Are the effects of nicotinic acid on insulin resistance precipitated by abnormal phosphorous metabolism?

    Directory of Open Access Journals (Sweden)

    AbuSabha Hatem S

    2004-10-01

    Full Text Available Abstract Nicotinic acid is a unique cholesterol modifying agent that exerts favorable effects on all cholesterol parameters. It holds promise as one of the main pharmacological agents to treat mixed dyslipidemia in metabolic syndrome and diabetic patients. The use of nicotinic acid has always been haunted with concerns that it might worsen insulin resistance and complicate diabetes management. We will discuss the interaction between phosphorous metabolism and carbohydrate metabolism and the possibility that worsening of insulin resistance could be related to adrug induced alteration in phosphorous metabolism, and the implications of that in medical management of diabetes and metabolic syndrome patients with mixed dyslipidemia.

  15. Effect of energy deficiency on estrogen metabolism in premenopausal women.

    Science.gov (United States)

    Westerlind, Kim C; Williams, Nancy I

    2007-07-01

    Physical activity has been associated with decreased breast cancer risk, potentially through changes in estrogen metabolism. Two-hydroxyestrone (2-OHE1) and 16alpha-hydroxyestrone (16alpha-OHE1) have different biological properties, and the ratio of these metabolites (2/16) has been proposed to predict breast cancer risk. Diet and exercise have been found to influence estrogen metabolism, particularly when a state of negative energy balance is achieved. We sought to determine whether 4 months of moderate-intensity exercise coupled with calorie restriction would result in changes in urinary 2-OHE1, 16alpha-OHE1, or 2/16 in sedentary, premenopausal, eumenorrheic women. Average age was 31.5 yr, average body fat was 31.6%, and average BMI was 23.7. Urinary estrogen metabolites were measured in 24 women during the baseline and for four intervention months in the midfollicular and midluteal phases. The intervention produced a significant drop in body fat (4.5%) and body weight (3.7 kg). Aerobic fitness increased significantly (26%; P effects of the diet and exercise intervention on 2-OHE1, 16alpha-OHE1, or 2/16. However, when divided into tertiles according to baseline 2/16, the intervention resulted in significant increases in 2/16 in women in the lowest tertile. Women in the lowest tertile (average 2/16 = 0.91) did not differ from the other tertiles in baseline estradiol concentrations, body fat, weight, fitness, or changes in these variables with the intervention. The data suggest that women at higher risk for developing breast cancer because of low 2/16 may reduce their risk by participating in lifestyle interventions such as exercise/calorie restriction.

  16. Effect of fatty Amazon fish consumption on lipid metabolism

    Directory of Open Access Journals (Sweden)

    Francisca das Chagas do Amaral Souza

    2014-01-01

    Full Text Available OBJECTIVE: The present study aimed to evaluate the effect of feeding diets enriched with fatty fish from the Amazon basin on lipid metabolism. METHODS: Male Wistar rats were divided into four groups: control group treated with commercial chow; Mapará group was fed diet enriched with Hypophthalmus edentatus; Matrinxã group was fed diet enriched with Brycon spp.; and, Tambaqui group was fed diet enriched with Colossoma macropomum. Rats with approximately 240g±0.60 of body weight were fed ad libitum for 30 days, and then were sacrificed for collection of whole blood and tissues. RESULTS: The groups treated with enriched diets showed a significant reduction in body mass and lipogenesis in the epididymal and retroperitoneal adipose tissues and carcass when compared with the control group. However, lipogenesis in the liver showed an increase in Matrinxã group compared with the others groups. The levels of serum triglycerides in the treated groups with Amazonian fish were significantly lower than those of the control group. Moreover, total cholesterol concentration only decreased in the group Matrinxã. High Density Lipoprotein cholesterol levels increased significantly in the Mapará and Tambaqui compared with control group and Matrinxã group. The insulin and leptin levels increased significantly in all treatment groups. CONCLUSION: This study demonstrated that diets enriched with fatty fish from the Amazon basin changed the lipid metabolism by reducing serum triglycerides and increasing high density lipoprotein-cholesterol in rats fed with diets enriched with Mapará, Matrinxã, and Tambaqui.

  17. Effects of uranium on the metabolism of zebrafish, Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Starrlight, E-mail: starr-light.augustine@irsn.fr [Laboratory of Radionuclide Ecotoxicology, PRP-ENV/SERIS/LECO, Institute of Radioprotection and Nuclear Safety (IRSN), Caradache, Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France); Gagnaire, Beatrice, E-mail: beatrice.gagnaire@irsn.fr [Laboratory of Radionuclide Ecotoxicology, PRP-ENV/SERIS/LECO, Institute of Radioprotection and Nuclear Safety (IRSN), Caradache, Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.fr [Laboratory of Radionuclide Ecotoxicology, PRP-ENV/SERIS/LECO, Institute of Radioprotection and Nuclear Safety (IRSN), Caradache, Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France); Kooijman, Sebastiaan A.L.M., E-mail: bas.kooijman@vu.nl [Department of Theoretical Biology, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam (Netherlands)

    2012-08-15

    The increasing demand for nuclear energy results in heightened levels of uranium (U) in aquatic systems which present a potential health hazard to resident organisms. The aim of this study was to mechanistically assess how chronic exposure to environmentally relevant concentrations of U perturbs the complex interplay between feeding, growth, maintenance, maturation and reproduction throughout the life-cycle of an individual. To this end we analysed literature-based and original zebrafish toxicity data within a same mass and energy balancing conceptual framework. U was found to increase somatic maintenance leading to inhibition of spawning as well as increase hazard rate and costs for growth during the early life stages. The fish's initial conditions and elimination through reproduction greatly affected toxico-kinetics and effects. We demonstrate that growth and reproduction should be measured on specific individuals since mean values were hardly interpretable. The mean food level differed between experiments, conditions and individuals. This last 'detail' contributed substantially to the observed variability by its combined effect on metabolism, toxic effects and toxico-kinetics. The significance of this work is that we address exactly how these issues are related and derive conclusions which are independent of experimental protocol and coherent with a very large body of literature on zebrafish eco-physiology.

  18. Effect of sulfonamides as carbonic anhydrase VA and VB inhibitors on mitochondrial metabolic energy conversion.

    Science.gov (United States)

    Arechederra, Robert L; Waheed, Abdul; Sly, William S; Supuran, Claudiu T; Minteer, Shelley D

    2013-03-15

    Obesity is quickly becoming an increasing problem in the developed world. One of the major fundamental causes of obesity and diabetes is mitochondria dysfunction due to faulty metabolic pathways which alter the metabolic substrate flux resulting in the development of these diseases. This paper examines the role of mitochondrial carbonic anhydrase (CA) isozymes in the metabolism of pyruvate, acetate, and succinate when specific isozyme inhibitors are present. Using a sensitive electrochemical approach of wired mitochondria to analytically measure metabolic energy conversion, we determine the resulting metabolic difference after addition of an inhibitory compound. We found that certain sulfonamide analogues displayed broad spectrum inhibition of metabolism, where others only had significant effect on some metabolic pathways. Pyruvate metabolism always displayed the most dramatically affected metabolism by the sulfonamides followed by fatty acid metabolism, and then finally succinate metabolism. This allows for the possibility of using designed sulfonamide analogues to target specific mitochondrial CA isozymes in order to subtly shift metabolism and glucogenesis flux to treat obesity and diabetes.

  19. Metabolism and Aging : Effects of Cold Exposure on Metabolic Rate, Body Composition, and Longevity in Mice

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Daan, Serge; Schubert, Kristin A.; Visser, G. Henk

    2009-01-01

    The proposition that increased energy expenditure shortens life has a long history. The rate-of-living theory ( Pearl 1928) states that life span and average mass-specific metabolic rate are inversely proportional. Originally based on interspecific allometric comparisons between species of mammals,

  20. Effect of dietary protein on lipid and glucose metabolism: implications for metabolic health

    NARCIS (Netherlands)

    Rietman, A.

    2015-01-01

    Abstract Background: Diet is an important factor in the development of the Metabolic Syndrome (Mets) and type 2 Diabetes Mellitus. Accumulation of intra hepatic lipid (IHL) can result in non-alcoholic fatty liver disease (NAFLD), which is sometimes considered the

  1. Metabolism and Aging : Effects of Cold Exposure on Metabolic Rate, Body Composition, and Longevity in Mice

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Daan, Serge; Schubert, Kristin A.; Visser, G. Henk

    2009-01-01

    The proposition that increased energy expenditure shortens life has a long history. The rate-of-living theory ( Pearl 1928) states that life span and average mass-specific metabolic rate are inversely proportional. Originally based on interspecific allometric comparisons between species of mammals,

  2. The effect of dialysate on peritoneal phagocyte oxidative metabolism.

    Science.gov (United States)

    Topley, N; Alobaidi, H M; Davies, M; Coles, G A; Williams, J D; Lloyd, D

    1988-09-01

    The respiratory and oxidative responses of human peritoneal polymorphonuclear leukocytes (PMN) and peritoneal macrophages (PM phi) following exposure to unused continuous ambulatory peritoneal dialysis fluid (CAPD) and early dwell effluent were studied using an open oxygen (O2) electrode system and by measurement of oxygen radical-derived luminol-dependent chemiluminescence. Both cell types responded to stimulation by increasing O2 consumption and by generating chemiluminescence even at external O2 concentrations below 50 microM O2. Oxygen concentrations in the dialysate, as measured by blood gas analysis, were never lower than 118 +/- 8.3 microM O2 even during active peritonitis. Thus oxygen availability does not appear to be rate limiting for phagocyte oxidative metabolism in the peritoneal cavity. Preexposure of both inflammatory cell types to unused fluid or early dwell CAPD effluent significantly reduced both stimulated oxygen uptake and the subsequent ability of these cells to generate chemiluminescence without significantly affecting their viability. Further investigation of this down regulatory phenomenon using unused fluid and laboratory prepared dialysis fluid revealed that low pH (5.3) and high sodium lactate concentration in combination are directly responsible for the suppressive effect of unused fluid and early dwell effluent on cell function. These observations demonstrate that cellular host defense may be impaired early in the dialysis cycle as a result of lactate mediated "stunning" of resident phagocytes. The precise nature of the molecular species responsible for this suppressive effect remains to be identified.

  3. Metabolic effects of melatonin on oxidative stress and diabetes mellitus.

    Science.gov (United States)

    Nishida, Shigeru

    2005-07-01

    Melatonin, which is synthesized in the pineal gland and other tissues, has a variety of physiological, immunological, and biochemical functions. It is a direct scavenger of free radicals and has indirect antioxidant effects due to its stimulation of the expression and activity of antioxidative enzymes such as glutathione peroxidase, superoxide dismutase and catalase, and NO synthase, in mammalian cells. Melatonin also reduces serum lipid levels in mammalian species, and helps to prevent oxidative stress in diabetic subjects. Long-term melatonin administration to diabetic rats reduced their hyperlipidemia and hyperinsulinemia, and restored their altered ratios of polyunsaturated fatty acid in serum and tissues. It was recently reported that melatonin enhanced insulin-receptor kinase and IRS-1 phosphorylation, suggesting the potential existence of signaling pathway cross-talk between melatonin and insulin. Because TNF-alpha has been shown to impair insulin action by suppressing insulin receptor-tyrosine kinase activity and its IRS-1 tyrosine phosphorylation in peripheral tissues such as skeletal muscle cells, it was speculated that melatonin might counteract TNF-alpha-associated insulin resistance in type 2 diabetes. This review will focus on the physiological and metabolic effects of melatonin and highlight its potential use for the treatment of cholesterol/lipid and carbohydrate disorders.

  4. The effect of aromatase inhibitors on bone metabolism

    DEFF Research Database (Denmark)

    Folkestad, Lars; Bjarnason, Nina H; Bjerregaard, Jon Kroll;

    2009-01-01

    Aromatase inhibitors increase the disease-free survival in patients with receptor-positive breast cancer. Aromatase is a cytochrome P450 enzyme complex catalysing the conversion of androgens to oestrogens. These properties cause a significant increase in bone loss. In this MiniReview, we present ...... in comparison with tamoxifen. We conclude that treatment with aromatase inhibitors leads to an increased bone loss and thus an increase in the risk of fractures in women with breast cancer.......Aromatase inhibitors increase the disease-free survival in patients with receptor-positive breast cancer. Aromatase is a cytochrome P450 enzyme complex catalysing the conversion of androgens to oestrogens. These properties cause a significant increase in bone loss. In this MiniReview, we present...... data from the aromatase inhibitor studies and the studies designed to investigate aromatase inhibitor effect on bone metabolism. At the cellular level, oestrogen has profound effects on both osteoblasts and osteoclasts. Oestrogen decreases the osteoblastic production of resorptive cytokines...

  5. Effect of hyperammonemia on leucine and protein metabolism in rats.

    Science.gov (United States)

    Holecek, M; Sprongl, L; Tichý, M

    2000-10-01

    The cause of muscle wasting and decreased plasma levels of branched chain amino acids (BCAA), valine, leucine, and isoleucine in liver cirrhosis is obscure. Here we have evaluated the effect of hyperammonemia. Rats were infused with either an ammonium acetate/bicarbonate mixture, a sodium acetate/bicarbonate mixture, or saline for 320 minutes. The parameters of leucine and protein metabolism were evaluated in the whole body and in several tissues using a primed constant intravenous infusion of L-[1-14C]leucine. Ammonium infusion caused an increase in ammonia and glutamine levels in plasma, a decrease in BCAA and alanine in plasma and skeletal muscle, a significant decrease in whole-body proteolysis and protein synthesis, and an increase in leucine oxidized fraction. A significant decrease in protein synthesis after ammonium infusion was observed in skeletal muscle while a nonsignificant effect was observed in liver, gut, heart, spleen, and kidneys. We conclude that the decrease in plasma BCAA after ammonia infusion is associated with decreased proteolysis and increased leucine oxidized fraction.

  6. Effects of taurine on gut microbiota and metabolism in mice.

    Science.gov (United States)

    Yu, Haining; Guo, Zhengzhao; Shen, Shengrong; Shan, Weiguang

    2016-07-01

    As being a necessary amino acid, taurine plays an important role in the regulation of neuroendocrine functions and nutrition. In this study, effects of taurine on mice gut microbes and metabolism were investigated. BALB/C mice were randomly divided into three experimental groups: The first group was administered saline (CK), the second was administered 165 mg/kg natural taurine (NE) and the third one administered 165 mg/kg synthetic taurine (CS). Gut microbiota composition in mice feces was analyzed by metagenomics technology, and the content of short-chain fatty acids (SCFA) in mice feces was detected by gas chromatography (GC), while the concentrations of lipopolysaccharide (LPS) and superoxide dismutase (SOD) were detected by a LPS ELISA kit and a SOD assay kit, respectively. The results showed that the effect of taurine on gut microbiota could reduce the abundance of Proteobacteria, especially Helicobacter. Moreover, we found that the SCFA content was increased in feces of the NE group while LPS content was decreased in serum of the NE group; the SOD activity in serum and livers of the NE and CS groups were not changed significantly compare to that of the CK group. In conclusion, taurine could regulate the gut micro-ecology, which might be of benefit to health by inhibiting the growth of harmful bacteria, accelerating the production of SCFA and reducing LPS concentration.

  7. Effects of sodium pyruvate on ameliorating metabolic acidosis.

    Science.gov (United States)

    Yang, Jing; Zhao, Jing-Xiang; Wang, Ying; Chen, Gan; Cheng, Wei-Na; Luo, Xin; Pei, Xue-Tao; Zhao, Lian; Su, Qin; Zhou, Hong

    2016-01-01

    To examine the effects of sodium pyruvate (SP) on metabolic acidosis. For the in vivo experiments, we evaluated effects of SP on an ammonium chloride (NH4Cl)-induced hyperchloremic acidosis rat model. SP was infused at overall doses of 2, 4, and 6 mmol·kg(- 1) for the SP1, SP2, and SP3 groups, respectively. Treatment with sodium bicarbonate (SB) was used as a positive control (2 mmol·kg(- 1)), and treatment with normal saline (NS) was used as a volume control (2 mL·kg(- 1)). Blood was sampled from the ophthalmic venous plexus for pH, blood gases, electrolytes, glucose, creatinine (Cr), and urea analysis after injection. For the in vitro experiment, propionate was applied to induce intracellular acidosis in human endothelial cells. Intracellular pH (pHi) was fluorimetrically measured after the addition of SP. In the in vivo study, the pH of SP1 group showed no significant difference compared with that of the NS group. The SP2 and SP3 groups had a higher pH than the NS group (P acidosis.

  8. OP449 inhibits breast cancer growth without adverse metabolic effects.

    Science.gov (United States)

    Shlomai, Gadi; Zelenko, Zara; Antoniou, Irini Markella; Stasinopoulos, Marilyn; Tobin-Hess, Aviva; Vitek, Michael P; LeRoith, Derek; Gallagher, Emily Jane

    2017-10-01

    Hyperinsulinemia is associated with a decrease in breast cancer recurrence-free survival and overall survival. Inhibition of insulin receptor signaling is associated with glycemic dysregulation. SET is a direct modulator of PP2A, which negatively regulates the PI3K/AKT/mTOR pathway. OP449, a SET inhibitor, decreases AKT/mTOR activation. The effects of OP449 treatment on breast cancer growth in the setting of pre-diabetes, and its metabolic implications are currently unknown. We found that the volumes and weights of human MDA-MB-231 breast cancer xenografts were greater in hyperinsulinemic mice compared with controls (P < 0.05), and IR phosphorylation was 4.5-fold higher in these mice (P < 0.05). Human and murine breast cancer tumors treated with OP449 were 47% and 39% smaller than controls (P < 0.05, for both, respectively). AKT and S6RP phosphorylation were 82% and 34% lower in OP449-treated tumors compared with controls (P < 0.05, P = 0.06, respectively). AKT and S6RP phosphorylation in response to insulin was 30% and 12% lower in cells, pre-treated with OP449, compared with control cells (P < 0.01, P < 0.05, respectively). However, even with decreased AKT/mTOR activation, body weights and composition, blood glucose and plasma insulin, glucose tolerance, serum triglyceride and cholesterol levels were similar between OP449-treated mice and controls. Xenografts and liver tissue from OP449-treated mice showed a 64% and 70% reduction in STAT5 activation, compared with controls (P < 0.01 and P = 0.06, respectively). Our data support an anti-neoplastic effect of OP449 on human breast cancer cells in vitro and in xenografts in the setting of hyperinsulinemia. OP449 led to the inhibition of AKT/mTOR signaling, albeit, not leading to metabolic derangements. © 2017 Society for Endocrinology.

  9. Conventional and homeopathic treatments in late pregnant goats: effects on metabolic status and immune response

    Directory of Open Access Journals (Sweden)

    Bruno Ronchi

    2010-01-01

    Full Text Available The study was aimed at assessing the effects of conventional and homeopathic treatments on metabolic status and immune response in late pregnant goats. Administration of an antichetogenic preparation and of Echinacea purpurea in homeopathic dilution did not exert unequivocal effects on metabolic status, but improved some immunological parameters of periparturient goats.

  10. Metabolic effects of overnight continuous infusion of unacylated ghrelin in humans

    NARCIS (Netherlands)

    A. Benso; Y. St-Pierre (Yves); F. Prodam (Flavia); E. Gramaglia (Elena); R. Granata (Riccarda); A-J. van der Lely (Aart-Jan); E. Ghigo (Ezio); F. Broglio (Fabio)

    2012-01-01

    textabstractObjective: To clarify the metabolic effects of an overnight i.v. infusion of unacylated ghrelin (UAG) in humans. UAG exerts relevant metabolic actions, likely mediated by a still unknown ghrelin receptor subtype, including effects on β-cell viability and function, insulin secretion and s

  11. Effect of substrate competition in kinetic models of metabolic networks.

    Science.gov (United States)

    Schäuble, Sascha; Stavrum, Anne Kristin; Puntervoll, Pål; Schuster, Stefan; Heiland, Ines

    2013-09-02

    Substrate competition can be found in many types of biological processes, ranging from gene expression to signal transduction and metabolic pathways. Although several experimental and in silico studies have shown the impact of substrate competition on these processes, it is still often neglected, especially in modelling approaches. Using toy models that exemplify different metabolic pathway scenarios, we show that substrate competition can influence the dynamics and the steady state concentrations of a metabolic pathway. We have additionally derived rate laws for substrate competition in reversible reactions and summarise existing rate laws for substrate competition in irreversible reactions.

  12. CARBOHYDRATE INGESTION AND EXERCISE: EFFECTS ON METABOLISM AND PERFORMANCE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@KEY POINTS ■ Carbohydrate is the preferred fuel for most competitive sports;an inadequate supply of carbohydrate in the body often leads to poor performance. ■ Carbohydrate ingestion during exercise increases blood glucose availability and maintains the ability of the body to use carbohydrate as fuel during exercise.When carbohydrate is consumed during exercise,glucose uptake by muscles is increased,and the breakdown of glycogen in the liver into blood glucose is reduced,thus saving liver glycogen until late in exercise.The use of muscle glycogen for energy is generally unaffected by carbohydrate feeding.However,during prolonged running,the breakdown of muscle glycogen may be slowed because the supply of blood glucose is improved when carbohydrate is consumed.These metabolic responses underlie the performance benefit that accompanies carbohydrate ingestion during exercise. ■ There are some minor differences among glucose,sucrose,and maltodextrins in their effects on metabolism,but each of them can enhance performance when ingested in the appropriate quantity during exercise.Fructose alone is not an effective carbohydrate supplement because of its slow absorption and slow conversion by the body to glucose,but when small amounts of fructose are combined with other carbohydrates,fructose can be beneficial. ■ Ingesting carbohydrate at a rate of 30-60 grams per hour can improve exercise erformance.A good way to achieve this carbohydrate intake is to consume 600-to-1200 ml(20-to-40 oz)of a sports drink during each hour of exercise.Consuming carbohydrate in a beverage provides an added benefit of preventing potentially harmful effects of dehydration on performance.

  13. Effect of diabetes on glycogen metabolism in rat retina.

    Science.gov (United States)

    Sánchez-Chávez, Gustavo; Hernández-Berrones, Jethro; Luna-Ulloa, Luis Bernardo; Coffe, Víctor; Salceda, Rocío

    2008-07-01

    Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.

  14. Effect of the anticarcinogenic drug 6-mercaptopurine on mineral metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, K.

    1987-01-01

    The effect of 6-mercaptopurine (6-MP) on mineral metabolism was investigated using rats and mice. A single 6-mercaptopurine injection in pregnant rats on day 11 of gestation proved to be highly teratogenic. At term, fetuses from 6-MP injected dams had lower livers zinc concentrations than non-injected or vehicle injected controls while dams showed no differences in liver zinc. Fetuses from dams injected with 6-MP and fed supplemental levels of zinc had a lower frequency of malformations and had higher hepatic zinc concentrations than fetuses from dams fed less zinc with drug injection. Non-pregnant mice injected with 6-MP had higher zinc concentrations compared to controls. In addition, iron, copper and calcium concentrations were higher in the livers of 6-MP injected mice than in controls, indicating that the drug affected several elements. Hepatic concentrations of metallothionein (MT) were also elevated in 6-MP injected mice, suggesting that the change in zinc concentrations associated with drug administration was the result of a drug induction of MT. Dams injected with 6-MP on day 13 of pregnancy had livers which retained more of an absorbed dose of /sup 65/zinc than non-injected dams. Plasma from these drug injected dams also retained less of the absorbed dose than control dams. In contrast, day 14 from dams injected with 6-MP, retained less of an absorbed dose than control embryos.

  15. Effects of anabolic androgenic steroids on chylomicron metabolism.

    Science.gov (United States)

    Morikawa, Aleksandra T; Maranhão, Raul C; Alves, Maria-Janieire N N; Negrão, Carlos E; da Silva, Jeferson L; Vinagre, Carmen G C

    2012-11-01

    To evaluate the effects of anabolic androgenic steroids (AAS) on chylomicron metabolism. An artificial lipid emulsion labeled with radioactive cholesteryl ester (CE) and triglycerides (TG) mimicking chylomicrons was intravenously injected into individuals who regularly weight trained and made regular use of AAS (WT+AAS group), normolipidemic sedentary individuals (SDT group) and individuals who also regularly weight trained but did not use AAS (WT group). Fractional clearance rates (FCR) were determined by compartmental analysis for emulsion plasma decay curves. FCR-CE for the WT+AAS group was reduced (0.0073 ± 0.0079 min(-1), 0.0155 ± 0.0100 min(-1), 0.0149 ± 0.0160 min(-1), respectively; p<0.05), FCR-TG was similar for both the WT and SDT groups. HDL-C plasma concentrations were lower in the WT+AAS group when compared to the WT and SDT groups (22 ± 13; 41 ± 7; 38 ± 13 mg/dL, respectively; p<0.001). Hepatic triglyceride lipase activity was greater in the WT+AAS group when compared to the WT and SDT groups (7243 ± 1822; 3898 ± 1232; 2058 ± 749, respectively; p<0.001). However, no difference was observed for lipoprotein lipase activity. Data strongly suggest that AAS may reduce the removal from the plasma of chylomicron remnants, which are known atherogenic factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Effect of Natural Polyphenols on CYP Metabolism: Implications for Diseases.

    Science.gov (United States)

    Korobkova, Ekaterina A

    2015-07-20

    Cytochromes P450 (CYPs) are a large group of hemeproteins located on mitochondrial membranes or the endoplasmic reticulum. They play a crucial role in the metabolism of endogenous and exogenous molecules. The activity of CYP is associated with a number of factors including redox potential, protein conformation, the accessibility of the active site by substrates, and others. This activity may be potentially modulated by a variety of small molecules. Extensive experimental data collected over the past decade point at the active role of natural polyphenols in modulating the catalytic activity of CYP. Polyphenols are widespread micronutrients present in human diets of plant origin and in medicinal herbs. These compounds may alter the activity of CYP either via direct interactions with the enzymes or by affecting CYP gene expression. The polyphenol-CYP interactions may significantly alter the pharmacokinetics of drugs and thus influence the effectiveness of chemical therapies used in the treatment of different types of cancers, diabetes, obesity, and cardiovascular diseases (CVD). CYPs are involved in the oxidation and activation of external carcinogenic agents, in which case the inhibition of the CYP activity is beneficial for health. CYPs also support detoxification processes. In this case, it is the upregulation of CYP genes that would be favorable for the organism. A CYP enzyme aromatase catalyzes the formation of estrone and estradiol from their precursors. CYPs also catalyze multiple reactions leading to the oxidation of estrogen. Estrogen signaling and oxidative metabolism of estrogen are associated with the development of cancer. Thus, polyphenol-mediated modulation of the CYP's activity also plays a vital role in estrogen carcinogenesis. The aim of the present review is to summarize the data collected over the last five to six years on the following topics: (1) the mechanisms of the interactions of CYP with food constituents that occur via the direct binding of

  17. Effect of Intestinal Cytochrome P450 3A on Phytochemical Presystemic Metabolism

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Phytochemicals, orally administered substances, are found to undergo presystemic metabolism mainly in the intestine. Although early researches confirmed the role of intestinal bacteria in phytochemical presystemic metabolism, along with the development of molecular biology in investigating intestinal metabolism, a breakthrough has been won in research into metabolizing enzymes and transporters in intestine,which demands more attention and further studies. Recently, Cytochrome P450 3A has been found to be the most effective enzyme in mediating both oxidative (Phase Ⅰ) and conjugative (Phase Ⅱ ) metabolism in the intestine. The present review summarizes the current findings correlated with the effect of intestinal cytochrome P450 3A on phytochemical presystemic metabolism, which provides a good basis for further research on phytochemical pharmacokinetics.

  18. Effect of Spirulina platensis powder on metabolic syndrome in ...

    African Journals Online (AJOL)

    The syndrome was induced by high fructose and fat diet in Sprague Dawley rat. ... the first group (high-fructose diet control) received distilled water, the second ... Keywords: Spirulina platensis, metabolic syndrome, fructose, diabetes, fat diet.

  19. Metabolic effects of intensive insulin therapy in critically ill patients.

    Science.gov (United States)

    Whyte, M B; Jackson, N C; Shojaee-Moradie, F; Treacher, D F; Beale, R J; Jones, R H; Umpleby, A M

    2010-03-01

    Our aim was to investigate the effects of glycemic control and insulin concentration on lipolysis, glucose, and protein metabolism in critically ill medical patients. For our methods, the patients were studied twice. In study 1, blood glucose (BG) concentrations were maintained between 7 and 9 mmol/l with intravenous insulin. After study 1, patients entered one of four protocols for 48 h until study 2: low-insulin high-glucose (LIHG; variable insulin, BG of 7-9 mmol/l), low-insulin low-glucose (LILG; variable insulin of BG 4-6 mmol/l), high-insulin high-glucose [HIHG; insulin (2.0 mU . kg(-1).min(-1) plus insulin requirement from study 1), BG of 7-9 mmol/l], or high-insulin low-glucose [HILG; insulin (2.0 mU.kg(-1).min(-1) plus insulin requirement from study 1), BG of 4-6 mmol/l]. Age-matched healthy control subjects received two-step euglycemic hyperinsulinemic clamps achieving insulin levels similar to the LI and HI groups. In our results, whole body proteolysis was higher in patients in study 1 (P patients. Endogenous glucose production rate (R(a)), glucose disposal, and lipolysis were not different in all patients in study 1 compared with control subjects at comparable insulin concentrations. Glucose R(a) and lipolysis did not change in any of the study 2 patient groups. HI increased glucose disposal in the patients (HIHG, P = 0.001; HILG, P = 0.07 vs. study 1), but this was less than in controls receiving HI (P protein-sparing effect.

  20. Effect of gestational diabetes on the fetal fat metabolism

    Institute of Scientific and Technical Information of China (English)

    Xia Li; Wan-Xia He; Xiu-Fang Fan; Ya Li

    2015-01-01

    Objective: To explore the differences of insulin, leptin, umbilical blood sugar, and adiponectin levels among the pregnant women receiving gestational diabetes treatment, not receiving gestational diabetes treatment, and the pregnant women with mild gestational diabetes. Methods: A total of 120 pregnant women with gestational diabetes who were admitted in our hospital from May, 2011 to July, 2012 were included in the study and randomized into three groups, i.e. gestational diabetes group, gestational diabetes control group, and gestational diabetes treatment group, with 40 cases in each group. The pregnant women in the three groups were given routine care. On the basis of routine care, the pregnant women in the treatment group were given blood sugar monitoring and diet control, and insulin treatment was provided if necessary. Then the insulin, leptin, umbilical blood sugar, and adiponectin levels in the three groups were detected. Results: The leptin level in the diabetes group was significantly higher than that in the control group and the treatment group (P0.05). The blood sugar levels after breakfast, lunch, and dinner in the treatment group and control group were significantly lower than those in the diabetes group (P<0.05). The blood sugar levels after breakfast, lunch, and dinner in the control group were significantly lower than those in the treatment group (P<0.05). Conclusions: Gestational diabetes can give rise to a certain effect on the fetal fat metabolism by altering the leptin, blood sugar, and adiponectin levels. The related treatment on the patients can effectively control this alteration, enhance the clinical efficacy, and deserve a wide recommendation.

  1. Molecular Effects of Doxorubicin on Choline Metabolism in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Menglin Cheng

    2017-08-01

    Full Text Available Abnormal choline phospholipid metabolism is a hallmark of cancer. The magnetic resonance spectroscopy (MRS detected total choline (tCho signal can serve as an early noninvasive imaging biomarker of chemotherapy response in breast cancer. We have quantified the individual components of the tCho signal, glycerophosphocholine (GPC, phosphocholine (PC and free choline (Cho, before and after treatment with the commonly used chemotherapeutic drug doxorubicin in weakly metastatic human MCF7 and triple-negative human MDA-MB-231 breast cancer cells. While the tCho concentration did not change following doxorubicin treatment, GPC significantly increased and PC decreased. Of the two phosphatidylcholine-specific PLD enzymes, only PLD1, but not PLD2, mRNA was down-regulated by doxorubicin treatment. For the two reported genes encoding GPC phosphodiesterase, the mRNA of GDPD6, but not GDPD5, decreased following doxorubicin treatment. mRNA levels of choline kinase α (ChKα, which converts Cho to PC, were reduced following doxorubicin treatment. PLD1 and ChKα protein levels decreased following doxorubicin treatment in a concentration dependent manner. Treatment with the PLD1 specific inhibitor VU0155069 sensitized MCF7 and MDA-MB-231 breast cancer cells to doxorubicin-induced cytotoxicity. Low concentrations of 100 nM of doxorubicin increased MDA-MB-231 cell migration. GDPD6, but not PLD1 or ChKα, silencing by siRNA abolished doxorubicin-induced breast cancer cell migration. Doxorubicin induced GPC increase and PC decrease are caused by reductions in PLD1, GDPD6, and ChKα mRNA and protein expression. We have shown that silencing or inhibiting these genes/proteins can promote drug effectiveness and reduce adverse drug effects. Our findings emphasize the importance of detecting PC and GPC individually.

  2. Effect of metabolic syndrome on mitsugumin 53 expression and function.

    Directory of Open Access Journals (Sweden)

    Hanley Ma

    Full Text Available Metabolic syndrome is a cluster of risk factors, such as obesity, insulin resistance, and hyperlipidemia that increases the individual's likelihood of developing cardiovascular diseases. Patients inflicted with metabolic disorders also suffer from tissue repair defect. Mitsugumin 53 (MG53 is a protein essential to cellular membrane repair. It facilitates the nucleation of intracellular vesicles to sites of membrane disruption to create repair patches, contributing to the regenerative capacity of skeletal and cardiac muscle tissues upon injury. Since individuals suffering from metabolic syndrome possess tissue regeneration deficiency and MG53 plays a crucial role in restoring membrane integrity, we studied MG53 activity in mice models exhibiting metabolic disorders induced by a 6 month high-fat diet (HFD feeding. Western blotting showed that MG53 expression is not altered within the skeletal and cardiac muscles of mice with metabolic syndrome. Rather, we found that MG53 levels in blood circulation were actually reduced. This data directly contradicts findings presented by Song et. al that indict MG53 as a causative factor for metabolic syndrome (Nature 494, 375-379. The diminished MG53 serum level observed may contribute to the inadequate tissue repair aptitude exhibited by diabetic patients. Furthermore, immunohistochemical analyses reveal that skeletal muscle fibers of mice with metabolic disorders experience localization of subcellular MG53 around mitochondria. This clustering may represent an adaptive response to oxidative stress resulting from HFD feeding and may implicate MG53 as a guardian to protect damaged mitochondria. Therapeutic approaches that elevate MG53 expression in serum circulation may be a novel method to treat the degenerative tissue repair function of diabetic patients.

  3. Effects of Intracerebroventricular Administration of Neuropeptide Y on Metabolic Gene Expression and Energy Metabolism in Male Rats.

    Science.gov (United States)

    Su, Yan; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2016-08-01

    Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the central release of NPY has coordinated and integrated effects on energy metabolism in different tissues, resulting in increased energy storage and decreased energy expenditure (EE). We first investigated the acute effects of an intracerebroventricular (ICV) infusion of NPY on gene expression in liver, brown adipose tissue, soleus muscle, and sc and epididymal white adipose tissue (WAT). We found increased expression of genes involved in gluconeogenesis and triglyceride secretion in the liver already 2-hour after the start of the NPY administration. In brown adipose tissue, the expression of thermogenic genes was decreased. In sc WAT, the expression of genes involved in lipogenesis was increased, whereas in soleus muscle, the expression of lipolytic genes was decreased after ICV NPY. These findings indicate that the ICV infusion of NPY acutely and simultaneously increases lipogenesis and decreases lipolysis in different tissues. Subsequently, we investigated the acute effects of ICV NPY on locomotor activity, respiratory exchange ratio, EE, and body temperature. The ICV infusion of NPY increased locomotor activity, body temperature, and EE as well as respiratory exchange ratio. Together, these results show that an acutely increased central availability of NPY results in a shift of metabolism towards lipid storage and an increased use of carbohydrates, while at the same time increasing activity, EE, and body temperature.

  4. Effect of metabolic syndrome on sexual function in pre- and postmenopausal women.

    Science.gov (United States)

    Otunctemur, Alper; Dursun, Murat; Ozbek, Emin; Sahin, Suleyman; Besiroglu, Huseyin; Koklu, Ismail; Polat, Emre Can; Erkoc, Mustafa; Danis, Eyyup; Bozkurt, Muammer

    2015-01-01

    Female sexual dysfunction is a prevalent and multidimensional disorder related to many biological, psychological, and social determinants. The authors assessed the effect of one of the many factors affect sexual function-metabolic syndrome-on female sexual function. They equally divided 400 women participants among 4 groups: (a) premenopausal with metabolic syndrome, (b) premenopausal without metabolic syndrome, (c) postmenopausal with metabolic syndrome, and (d) postmenopausal without metabolic syndrome. The authors used the Female Sexual Function Index to assess women's sexual function. Female sexual dysfunction was found more often in both pre- and postmenopausal women with metabolic syndrome (p =.001). Overall Female Sexual Function Index score and satisfaction, pain, and desire domain scores independently of the menopause status showed statistically significant differences across women with metabolic syndrome in comparison with participants with no metabolic syndrome (p metabolic syndrome and Female Sexual Function Index scores. Higher fasting glucose levels were significantly associated with the Female Sexual Function Index score (p women with the metabolic syndrome.

  5. Different adipose tissue depots: Metabolic implications and effects of surgical removal.

    Science.gov (United States)

    Marcadenti, Aline; de Abreu-Silva, Erlon Oliveira

    2015-11-01

    Increased adiposity has been associated to worse metabolic profile, cardiovascular disease, and mortality. There are two main adipose tissue depots in the body, subcutaneous and visceral adipose tissue, which differ in anatomical location. A large body of evidence has shown the metabolic activity of adipose tissue; lipectomy and/or liposuction therefore appear to be alternatives for improving metabolic profile through rapid loss of adipose tissue. However, surgical removal of adipose tissue may be detrimental for metabolism, because subcutaneous adipose tissue has not been associated to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. In addition, animal studies have shown a compensatory growth of adipose tissue in response to lipectomy. This review summarizes the implications of obesity-induced metabolic dysfunction, its relationship with the different adipose tissue depots, and the effects of lipectomy on cardiometabolic risk factors. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  6. Assessing the Metabolic Effects of Aromatherapy in Human Volunteers

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2013-01-01

    Full Text Available Aromatherapy, a form of complementary and alternative medicine (CAM that uses essential oils through inhalation, is believed to enhance physical and spiritual conditions. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of aromatherapy in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive metabolomics study that reveals metabolic changes in people after exposed to aroma inhalation for 10 continuous days. In this study, the metabolic alterations in urine of 31 females with mild anxiety symptoms exposed to aerial diffusion of aromas were measured by GC-TOF-MS and UPLC-Q-TOF-MS analyses. A significant alteration of metabolic profile in subjects responsive to essential oil was found, which is characterized by the increased levels of arginine, homocysteine, and betaine, as well as decreased levels of alcohols, carbohydrates, and organic acids in urine. Notably, the metabolites from tricarboxylic acid (TCA cycle and gut microbial metabolism were significantly altered. This study demonstrates that the metabolomics approach can capture the subtle metabolic changes resulting from exposure to essential oils, which may lead to an improved mechanistic understanding of aromatherapy.

  7. Effect of metformin on metabolic improvement and gut microbiota.

    Science.gov (United States)

    Lee, Heetae; Ko, GwangPyo

    2014-10-01

    Metformin is commonly used as the first line of medication for the treatment of metabolic syndromes, such as obesity and type 2 diabetes (T2D). Recently, metformin-induced changes in the gut microbiota have been reported; however, the relationship between metformin treatment and the gut microbiota remains unclear. In this study, the composition of the gut microbiota was investigated using a mouse model of high-fat-diet (HFD)-induced obesity with and without metformin treatment. As expected, metformin treatment improved markers of metabolic disorders, including serum glucose levels, body weight, and total cholesterol levels. Moreover, Akkermansia muciniphila (12.44%±5.26%) and Clostridium cocleatum (0.10%±0.09%) abundances increased significantly after metformin treatment of mice on the HFD. The relative abundance of A. muciniphila in the fecal microbiota was also found to increase in brain heart infusion (BHI) medium supplemented with metformin in vitro. In addition to the changes in the microbiota associated with metformin treatment, when other influences were controlled for, a total of 18 KEGG metabolic pathways (including those for sphingolipid and fatty acid metabolism) were significantly upregulated in the gut microbiota during metformin treatment of mice on an HFD. Our results demonstrate that the gut microbiota and their metabolic pathways are influenced by metformin treatment.

  8. Effect of Dietary Bioactive Compounds on Mitochondrial and Metabolic Flexibility

    Directory of Open Access Journals (Sweden)

    Jose C. E. Serrano

    2016-03-01

    Full Text Available Metabolic flexibility is the capacity of an organism to adequately respond to changes in the environment, such as nutritional input, energetic demand, etc. An important player in the capacity of adaptation through different stages of metabolic demands is the mitochondrion. In this context, mitochondrial dysfunction has been attributed to be the onset and center of many chronic diseases, which are denoted by an inability to adapt fuel preferences and induce mitochondrial morphological changes to respond to metabolic demands, such as mitochondrial number, structure and function. Several nutritional interventions have shown the capacity to induce changes in mitochondrial biogenesis/degradation, oxidative phosphorylation efficiency, mitochondrial membrane composition, electron transfer chain capacity, etc., in metabolic inflexibility states that may open new target options and mechanisms of action of bioactive compounds for the treatment of metabolic diseases. This review is focused in three well-recognized food bioactive compounds that modulate insulin sensitivity, polyphenols, ω-3 fatty acids and dietary fiber, by several mechanism of action, like caloric restriction properties and inflammatory environment modulation, both closely related to mitochondrial function and dynamics.

  9. A PROSPECTIVE STUDY OF EFFECT OF TELMISARTAN (ANGIOTENSIN II RECEPTOR BLOCKER ON METABOLIC PARAMETERS IN HYPERTENSIVE PATIENTS WITH METABOLIC SYNDROME

    Directory of Open Access Journals (Sweden)

    Somesekhar

    2016-04-01

    Full Text Available BACKGROUND The metabolic syndrome is currently a major worldwide epidemic. It strongly associates with obesity, insulin resistance, type 2 diabetes, and cardiovascular diseases, which are major pathologies contributing to mortality and morbidity worldwide. The effect of PPAR-y on metabolic syndrome is significant it is critical regulator of adipogenesis the gain in PPAR-y is resulted in obesity but loss of PPAR–y by mutation is associated with loss of weight and insulin resistance. Telmisartan is an orally active, long-acting, non-peptide angiotensin type 1 (ATI receptor blocker. In addition to this, it has been identified as partial agonist/selective modulator of the nuclear hormone receptor PPAR-y. MATERIAL AND METHOD This is a prospective, randomised and open labelled 16 weeks study conducted in the Dept. of General Medicine, Konaseema Institute of Medical Science, Amalapuram. Present study is designed to study the effect of telmisartan on various metabolic parameters in hypertensive patients who fulfilled the criteria of metabolic syndrome. RESULT There was statistically significant change in all parameters most important was lipid profile; LDL concentration was decreased from 139.2 mg/dL to 120.2 mg/dL. Baseline triglyceride concentration was 161.0 mg/dL which was changed 152.8 mg/dL Total cholesterol was decreased from 203.2 to 193.8 mg/dL. CONCLUSION In our study, we have also found that use of telmisartan is associated with decrease in lipid concentration in addition to its effect on blood pressure regulation. But a long term study with high dose required of this drug is required because safety profile of this drug is better than thiazolidinedione. Financial part of this study is our limitation.

  10. Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity.

    Science.gov (United States)

    Drager, Luciano F; Li, Jianguo; Reinke, Christian; Bevans-Fonti, Shannon; Jun, Jonathan C; Polotsky, Vsevolod Y

    2011-11-01

    Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6-8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity.

  11. Metabolic fingerprinting to understand therapeutic effects and mechanisms of silybin on acute liver damage in rat

    Directory of Open Access Journals (Sweden)

    Qun Liang

    2015-01-01

    Full Text Available Background: Metabolic fingerprinting is a rapid and noninvasive analysis, representing a powerful approach for the characterization of phenotypes and the distinction of specific metabolic states due to environmental alterations. It has become a valuable analytical approach for the characterization of phenotypes and is the rapidly evolving field of the comprehensive measurement of ideally all endogenous metabolites in bio-samples. Silybin has displayed bright prospects in the prevention and therapy of liver injury, and we had conducted a preliminary exploration on the molecular mechanism of the hepatoprotective effects of silybin. Because the knowledge on the metabolic responses of an acute liver damage rat to the silybin is still scarce, metabolic fi ngerprinting can provide relevant information on the intrinsic metabolic adjustments. Materials and Methods: Here, the physiological and metabolic changes in the acute liver damage rat were investigated by performing a metabolic analysis. The phenotypic response was assessed by liquid chromatography/mass spectrometry (LC/MS combined with pattern recognition approaches such as principal components analysis and partial least squares projection to supervised latent structures and discriminant analysis. Multivariate analysis of the data showed trends in scores plots that were related to the concentration of the silybin. Results: Results indicate 10 ions (7 upregulated and 3 downregulated as differentiating metabolites. Key observations include perturbations of metabolic pathways linked to glutathione metabolism, tryptophan metabolism, cysteine and methionine metabolism, etc., Overall, this investigation illustrates the power of the LC/MS combined with the pattern recognition methods that can engender new insights into silybin affecting on metabolism pathways of an acute liver damage rat. Conclusion: The present study demonstrates that the combination of metabolic fi ngerprinting with appropriate

  12. Effects of Microbial Metabolic Lag in Contaminant Transport and Biodegradation Modeling

    Science.gov (United States)

    Wood, Brian D.; Ginn, Timothy R.; Dawson, Clint N.

    1995-03-01

    A model is introduced for microbial kinetics in porous media that includes effects of transients in the metabolic activity of subsurface microorganisms. The model represents the microbial metabolic activity as a functional of the history of aqueous phase substrates; this dependence is represented as a temporally nonlocal convolution integral. Conceptually, this convolution represents the activity of a microbial component as a fraction of its maximum activity, and it is conventionally known as the metabolic potential. The metabolic potential is used to scale the kinetic expressions to account for the metabolic state of the organisms and allows the representation of delayed response in the microbial kinetic equations. Calculation of the convolution requires the definition of a memory (or kernel) function that upon integration over the substrate history represents the microbial metabolic response. A simple piecewise-linear metabolic potential functional is developed here; however, the approach can be generalized to fit the observed behavior of specific systems of interest. The convolution that results from the general form of this model is nonlinear; these nonlinearities are handled by using two separate memory functions and by scaling the domains of the convolution integrals. The model is applied to describe the aerobic degradation of benzene in saturated porous media. Comparative simulations show that metabolic lag can be used to consistently describe observations and that a convolution form can effectively represent microbial lag for this system. Simulations also show that disregarding metabolic lag when it exists can lead to overestimation of the amount of substrate degraded.

  13. Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities?

    Science.gov (United States)

    Nduhirabandi, F; du Toit, E F; Lochner, A

    2012-06-01

    The metabolic syndrome (MetS) is a cluster of metabolic abnormalities associated with increased risk for cardiovascular diseases. Apart from its powerful antioxidant properties, the pineal gland hormone melatonin has recently attracted the interest of various investigators as a multifunctional molecule. Melatonin has been shown to have beneficial effects in cardiovascular disorders including ischaemic heart disease and hypertension. However, its role in cardiovascular risk factors including obesity and other related metabolic abnormalities is not yet established, particularly in humans. New emerging data show that melatonin may play an important role in body weight regulation and energy metabolism. This review will address the role of melatonin in the MetS focusing on its effects in obesity, insulin resistance and leptin resistance. The overall findings suggest that melatonin should be exploited as a therapeutic tool to prevent or reverse the harmful effects of obesity and its related metabolic disorders.

  14. Metabolic and Endocrine Side Effects of Atypical Antipsychotic Drugs in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Aysegul Tahiroglu

    2011-03-01

    Full Text Available omorbid psychiatric disorders, frequent hospitalization, multiple outpatient treatment, prior history of hypertension, obesity and lipid dysregulation are associated with higher risk of metabolic syndrome in children. Side effects of antipsychotic drugs and their management have recently become a major subject of research due to enhanced antipsychotic drug usage in child and adolescents. Prevention strategies are usually preferred to secondary or tertiary strategies in the management of metabolic syndrome associated with antipsychotic drugs. Clinicians should present multidisciplinary approach to endocrine and metabolic side effects due to antipsychotic use in pediatric patient groups and avoid multiple drug use in such patients. In this paper, we briefly reviewed metabolic side effects of second generation antipsychotic drugs in child and adolescent population, possible mechanisms of susceptibility to metabolic syndrome and pharmacological and non pharmacological treatment approach to prevention of weight gain.

  15. Modulatory effect of raloxifene and estrogen on the metabolic action of growth hormone in hypopituitary women.

    LENUS (Irish Health Repository)

    Birzniece, Vita

    2010-05-01

    The metabolic action of GH is attenuated by estrogens administered via the oral route. Selective estrogen receptor modulators lower IGF-I to a lesser degree than 17beta-estradiol in GH-deficient women, and their effect on fat and protein metabolism is unknown.

  16. The effect of continuous positive airway pressure on metabolic variables in patients with obstructive sleep apnoea.

    Science.gov (United States)

    Schlatzer, Christian; Schwarz, Esther I; Kohler, Malcolm

    2014-02-01

    Obstructive sleep apnoea (OSA) is increasingly considered as a risk factor for metabolic disturbances, such as diabetes mellitus or dyslipidaemia. Continuous positive airway pressure (CPAP) therapy, the standard treatment for patients with OSA, may improve various metabolic variables, such as insulin sensitivity, glucose metabolism, lipids, fat distribution and adipokines. Several observational and uncontrolled clinical studies claim an improvement of these metabolic variables through the use of CPAP. However, there is only a limited number of clinical randomised controlled trials (RCTs) evaluating the effect of CPAP on metabolic variables. In this review, we summarise and discuss non-randomised studies and RCTs evaluating the effect of CPAP on metabolic variables in patients with OSA. In summary, the currently available body of evidence does not support a clinically important effect of CPAP treatment on any of the investigated metabolic variables. However, some investigators found small, but statistically significant changes in some metabolic variables, thus beneficial effects of CPAP treatment in selected patient cohorts cannot be excluded. To answer this question, more data from RCTs with well-defined study populations are warranted.

  17. Effect of oxandrolone on glucose metabolism in growth hormone-treated girls with Turner syndrome

    NARCIS (Netherlands)

    Menke, L.A.; Sas, T.C.J.; Stijnen, T.; Zandwijken, G.R.; Muinck Keizer-Schrama, S.M.P.F. de; Otten, B.J.; Wit, J.M.

    2011-01-01

    BACKGROUND: The weak androgen oxandrolone (Ox) may increase height but may also affect glucose metabolism in girls with Turner syndrome (TS). METHODS: In a randomized, placebo-controlled, double-blind study, we assessed the effect of Ox at a dosage of either 0.06 or 0.03 mg/kg/day on glucose metabol

  18. Effects of Quercetin Supplementation on Lipid and Protein Metabolism after Classic Boxing Training

    Science.gov (United States)

    Demirci, Nevzat

    2017-01-01

    The metabolic fitness (MF) is a component of athletes' physical conditioning. This study aims to investigate the effects of quercetin supplementation on Turkish Junior athletes' lipid and protein metabolism relating to MF after one month classic boxing training. Totally 20 voluntary junior male athletes were separated into two equal groups as the…

  19. Effects of muscular and aqua aerobic combined exercise on metabolic indices in elderly women with metabolic syndrome

    Science.gov (United States)

    Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun

    2013-01-01

    The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity. PMID:25566424

  20. Environmental and epigenetic effects upon preimplantation embryo metabolism and development

    Science.gov (United States)

    Chason, Rebecca J; Csokmay, John; Segars, James H.; DeCherney, Alan H.; Armant, D. Randall

    2011-01-01

    In vitro fertilization has provided a unique window into the metabolic processes that drive embryonic growth and development from a fertilized ovum to a competent blastocyst. Post-fertilization development is dependent upon a dramatic reshuffling of the parental genomes during meiosis, as well as epigenetic changes that provide a new and autonomous set of instructions to guide cellular differentiation both in the embryo and beyond. While early literature focused simply on the substrates and culture conditions required for progress through embryonic development, more recent insights lead us to suggest that the surrounding environment can alter the epigenome, which can, in turn, impact embryonic metabolism and developmental competence. PMID:21741268

  1. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates.

    Science.gov (United States)

    Elia, M; Cummings, J H

    2007-12-01

    The energy values of carbohydrates continue to be debated. This is because of the use of different energy systems, for example, combustible, digestible, metabolizable, and so on. Furthermore, ingested macronutrients may not be fully available to tissues, and the tissues themselves may not be able fully to oxidize substrates made available to them. Therefore, for certain carbohydrates, the discrepancies between combustible energy (cEI), digestible energy (DE), metabolizable energy (ME) and net metabolizable energy (NME) may be considerable. Three food energy systems are in use in food tables and for food labelling in different world regions based on selective interpretation of the digestive physiology and metabolism of food carbohydrates. This is clearly unsatisfactory and confusing to the consumer. While it has been suggested that an enormous amount of work would have to be undertaken to change the current ME system into an NME system, the additional changes may not be as great as anticipated. In experimental work, carbohydrate is high in the macronutrient hierarchy of satiation. However, studies of eating behaviour indicate that it does not unconditionally depend on the oxidation of one nutrient, and argue against the operation of a simple carbohydrate oxidation or storage model of feeding behaviour to the exclusion of other macronutrients. The site, rate and extent of carbohydrate digestion in, and absorption from the gut are key to understanding the many roles of carbohydrate, although the concept of digestibility has different meanings. Within the nutrition community, the characteristic patterns of digestion that occur in the small (upper) vs large (lower) bowel are known to impact in contrasting ways on metabolism, while in the discussion of the energy value of foods, digestibility is defined as the proportion of combustible energy that is absorbed over the entire length of the gastrointestinal tract. Carbohydrates that reach the large bowel are fermented to

  2. Abnormal erythrocyte metabolism in hepatic disease: effect of NADP repletion.

    Science.gov (United States)

    Smith, J R; Kay, N E; Gottlieb, A J; Oski, F A

    1979-01-01

    Erythrocytes from ten patients with severe liver disease displayed low methylene blue-stimulated hexose monophosphate (HMP) shunt activity and glucose recycling despite elevated total glucose consumption when compared to controls. Heinz body formation was increased and reduced glutathione concentration significantly decreased. After hemolysis, no differences in methylene-blue estimulated HMP shunt activity or glucose recycling could be demonstrated between patients and controls. The addition of 2- and 4-mM NADP to the hemolysates produced significantly greater HMP shunt activity and glucose recycling in the patients' hemolysates. The addition of NADPH to the incubation mixture produced no significant stimulation of either HMP shunt activity or glucose recycling, unless methylene blue was also added. Omission of NAD or phosphate from the incubation mixture produced no change in shunt metabolism. The absence of supplemental ATP resulted in extremely low shunt metabolism and refractoriness to NADP stimulation in both patients and controls. In the absence of additional magnesium, a reduction of shunt metabolism was noted. These data suggest that the defect in stimulated shunt metabolism in the intact erythrocytes of patients with hepatic disease does not result from an absolute enzyme deficiency, but rather from an unavailability of NADP or other cofactor.

  3. Sulfur containing air pollutants and their effects on plant metabolism

    NARCIS (Netherlands)

    De Kok, L.J.; Maas, F.M.; Stulen, I.; Kuiper, P.J.C.; Mathy, P.

    1988-01-01

    H2S and SO2 affected plant yield at relative low levels without causing visible injury. In general H2S was more toxic than SO2. Short-term exposure (24 to 48 h) of plants to the pollutants affected sulfur, nitrogen and energy metabolism. Both exposure of plants to H2S and SO2 resulted in an accumula

  4. Sulfur containing air pollutants and their effects on plant metabolism

    NARCIS (Netherlands)

    De Kok, L.J.; Maas, F.M.; Stulen, I.; Kuiper, P.J.C.; Mathy, P.

    1988-01-01

    H2S and SO2 affected plant yield at relative low levels without causing visible injury. In general H2S was more toxic than SO2. Short-term exposure (24 to 48 h) of plants to the pollutants affected sulfur, nitrogen and energy metabolism. Both exposure of plants to H2S and SO2 resulted in an

  5. Effects of Butter and Phytanic acid intake on metabolic parameters and T-cell polarization

    DEFF Research Database (Denmark)

    Drachmann, Tue

    The still growing obesity epidemic is a major risk for our society, as it is associated with the development of the so called metabolic syndrome, which is a clinical diagnosis correlated to development of metabolic disorders. Lack of physical activity, excess energy intake, and nutritional factors...... dairy fat in general and phytanic acid on metabolic parameters, we performed several studies. First, we investigated effects on hepatic lipid metabolism, glucose homeostasis, and circulating metabolic markers, of high fat diets based on butter from high- or low-yield production, a diet based on high...... addition of phytanic acid. Third, we investigated butter and phytanic acid effects on human T-cell polarization, both by in vitro incubation with phytanic acid, and by a 12 weeks intervention with intake of butter. Finally, we performed two human interventions, first one with intake of butter and cheese...

  6. First-pass metabolism of ethanol in human beings: effect of intravenous infusion of fructose

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Billinger, MH; Schäfer, C.

    2004-01-01

    Intravenous infusion of fructose has been shown to enhance reduced form of nicotinamide adenine dinucleotide reoxidation and, thereby, to enhance the metabolism of ethanol. In the current study, the effect of fructose infusion on first-pass metabolism of ethanol was studied in human volunteers....... A significantly higher first-pass metabolism of ethanol was obtained after administration of fructose in comparison with findings for control experiments with an equimolar dose of glucose. Because fructose is metabolized predominantly in the liver and can be presumed to have virtually no effects in the stomach......, results of the current study support the assumption that only a negligible part of first-pass metabolism of ethanol occurs in the stomach....

  7. Effect of novel dietary supplement on metabolism in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Roger A. Vaughan

    2017-01-01

    Full Text Available Obesity is an increasingly prevalent and preventable morbidity with multiple behavioral, surgical and pharmacological interventions currently available. Commercial dietary supplements are often advertised to stimulate metabolism and cause rapid weight and/or fat loss, although few well-controlled studies have demonstrated such effects. We describe a commercially available dietary supplement (purportedly containing caffeine, catechins, and other metabolic stimulators on resting metabolic rate in humans, and on metabolism, mitochondrial content, and related gene expression in vitro. Human males ingested either a placebo or commercially available supplement (RF in a randomized double-blind placebo-controlled cross-over fashion. Metabolic rate, respiratory exchange ratio, and blood pressure were measured hourly for 3 h post-ingestion. To investigate molecular effects, human rhabdomyosarcoma cells (RD and mouse myocytes (C2C12 were treated with various doses of RF for various durations. RF enhanced energy expenditure and systolic blood pressure in human males without altering substrate utilization. In myocytes, RF enhanced metabolism, metabolic gene expression, and mitochondrial content suggesting RF may target common energetic pathways which control mitochondrial biogenesis. RF appears to increase metabolism immediately following ingestion, although it is unclear if RF provides benefits beyond those provided by caffeine alone. Additional research is needed to examine safety and efficacy for human weight loss.

  8. Effect of. cap alpha. -ketobutyrate on the metabolism of pyruvate and palmitate in isolated rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Brass, E.P.

    1986-05-01

    Alpha-ketobutyrate (..cap alpha..KB), an intermediate in the catabolism of threonine and methionine, is decarboxylated to propionyl-CoA. The authors have reported that propionate (PROP) inhibits oxidative metabolism in rate hepatocytes. Based on these observations, the present study examined the effects of ..cap alpha..KB on pyruvate and palmitate metabolism in hepatocytes isolated from fed rats. Similar to PROP, ..cap alpha..KB (10mM) inhibited palmitate oxidation and this inhibition was diminished when 10mM carnitine (CN) was added (35 +/- 6% inhibition without CN, 22 +/- 8% with CN). ..cap alpha..KB inhibited the conversion of 3-/sup 14/C-pyruvate to glucose and CO/sub 2/. Inhibition of pyruvate metabolism by ..cap alpha..KB was concentration-dependent. At equal concentrations, ..cap alpha..KB inhibited pyruvate metabolism to a greater extent than PROP. Addition of CN partially reversed the effects of PROP on pyruvate metabolism, but not those of ..cap alpha..KB despite the generation of propionylcarnitine when ..cap alpha..KB and CN were included in the incubation. These results demonstrate that accumulation of ..cap alpha..KB can impair normal hepatocyte metabolism. While some of the effects of ..cap alpha..KB can be explained on the basis of propionyl-CoA formation, ..cap alpha..KB has effects on pyruvate metabolism not explainable by this mechanism.

  9. Effects of a nonnutritive sweetener on body adiposity and energy metabolism in mice with diet-induced obesity

    OpenAIRE

    光冨, 公彦

    2015-01-01

    Objective. Nonnutritive sweeteners (NNSs) have been studied in terms of their potential roles in type 2 diabetes, obesity, and related metabolic disorders. Several studies have suggested that NNSs have several specific effects on metabolism such as reduced postprandial hyperglycemia and insulin resistance. However, the detailed effects of NNSs on body adiposity and energy metabolism have not been fully elucidated. We investigated the effects of an NNS on energy metabolism in mice with diet-in...

  10. Acute toxicity and effect of some petroleum hydrocarbon on the metabolic index in Etroplus suratensis

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Farshchi, P.

    Acute toxicity (LC sub(50)) and effect of some petroleum hydrocarbons (Toluene, Quinoline, Pyridine and Naphthalene) on the metabolic index (oxygen consumption rate) of an estuarine fish. Etroplus suratensis is reported. The LC sub(50) values were...

  11. Effects of gemfibrozil on lipid metabolism, steroidogenesis and reproduction in the fathead minnow (Pimephales promelas)

    Science.gov (United States)

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPARs), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fi...

  12. The effects of estrus cycle on drug metabolism in the rat.

    Science.gov (United States)

    Brandstetter, Y; Kaplanski, J; Leibson, V; Ben-Zvi, Z

    1986-01-01

    The effect of the female rat estral cycle on microsomal drug metabolism in-vivo and in-vitro has been studied. Two microsomal enzymes, aminopyrine-N-demethylase and aniline hydroxylase showed a greater specific activity (p less than 0.01) in the diestrus phase of the estral cycle while the oxidative enzyme aryl hydrocarbon hydroxylase and the conjugative enzyme, glucuronyl transferase, were not affected. In vivo studies which included theophylline and antipyrine metabolism, and hexobarbital sleeping times showed no difference between the different phases of the estral cycle. Conflicting evidence about the effect of steroid sex hormones on hepatic drug metabolism is discussed.

  13. Metabolic effects of FGF-21: thermoregulation and beyond

    Directory of Open Access Journals (Sweden)

    Bin eNi

    2015-09-01

    Full Text Available FGF-21, a member of the fibroblast growth factor (FGF family, is a novel hormone involved in the control of metabolism by modulating glucose homeostasis, insulin sensitivity, ketogenesis, and promoting adipose tissue browning. Recent studies demonstrated that brown adipose tissue is not only a target for, but is also a potentially important source of systemic FGF-21. These findings support the hypothesis that FGF-21 plays a physiologic role in thermogenesis and thermogenic recruitment of white adipose tissue by an autocrine-paracrine axis. This review examines the role of FGF-21 in thermogenesis from the perspective of cell-based, animal model, and human studies. We also present recent advances in the characterization of FGF-21’s regulation of metabolism.

  14. Metabolic Effects of FGF-21: Thermoregulation and Beyond.

    Science.gov (United States)

    Ni, Bin; Farrar, Jared S; Vaitkus, Janina A; Celi, Francesco S

    2015-01-01

    Fibroblast growth factor (FGF)-21, a member of the FGF family, is a novel hormone involved in the control of metabolism by modulating glucose homeostasis, insulin sensitivity, ketogenesis, and promoting adipose tissue "browning." Recent studies demonstrated that brown adipose tissue is not only a target for FGF-21, but is also a potentially important source of systemic FGF-21. These findings support the hypothesis that FGF-21 plays a physiologic role in thermogenesis and thermogenic recruitment of white adipose tissue by an autocrine-paracrine axis. This review examines the role of FGF-21 in thermogenesis from the perspective of cell-based, animal model, and human studies. We also present recent advances in the characterization of FGF-21's regulation of metabolism.

  15. Creatine, energetic function, metabolism and supplementation effects on sports

    Directory of Open Access Journals (Sweden)

    Emerson Gimenes Bernardo da Silva

    2008-06-01

    Full Text Available The purpose of this work is to review the literature regarding creatine ingestion by athletes and physical activity enthusiasts, discussing its necessity and, if possible, predicting some consequences. In order to achieve this purpose it was necessary to study the relationship between the muscles energetic system and their regulation. It was also proved necessary to investigate the creatine cycle, its endogenous origin, its metabolizing and conversion into creatine-phosphate. A bibliography was used to collect information about the subject. The research lead to the following conclusions: diet supplementation with creatine leads to increased phosphocreatine levels in human muscles. However, new in vivo experiments are most desirable, because it is already known that creatine interferes with the regulation of some metabolic pathways.

  16. Effect of Oxygen on Lactose Metabolism in Lactic Streptococci

    OpenAIRE

    Smart, John B.; Thomas, Terence D.

    1987-01-01

    Three strains of Streptococcus lactis, two of Streptococcus cremoris, and one of Streptococcus thermophilus metabolized oxygen in the presence of added carbohydrate primarily via a closely coupled NADH oxidase/NADH peroxidase system. No buildup of the toxic intermediate H2O2 was detected with the three S. lactis strains. All six strains contained significant superoxide dismutase activity and are clearly aerotolerant. Lactose- or glucose-driven oxygen consumption was biphasic, with a rapid ini...

  17. Dehydroepiandrosterone biosynthesis, metabolism, biological effects, and clinical use (analytical review)

    OpenAIRE

    Goncharov, N. P.; G. V. Katsiya

    2015-01-01

    The review presents the fundamental information on the metabolism of dehydroepiandrosterone (DHEA), its biological role and possibilities of its use for replacement therapy. There were studied species differences in the synthesis of DHEA in the adrenal cortex. It was found that DHEA and DHEA-sulfate are produced only by the adrenal glands of humans and monkeys, including lower monkeys. Their biosynthesis involves the following steps: cholesterol → pregnenolone → 17-hydroxypregnenolone → DHEA....

  18. Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation

    OpenAIRE

    Majtan, Tomas; Frerman, Frank E.; Kraus, Jan P.

    2010-01-01

    Toxicity in Escherichia coli resulting from high concentrations of cobalt has been explained by competition of cobalt with iron in various metabolic processes including Fe–S cluster assembly, sulfur assimilation, production of free radicals and reduction of free thiol pool. Here we present another aspect of increased cobalt concentrations in the culture medium resulting in the production of cobalt protoporphyrin IX (CoPPIX), which was incorporated into heme proteins including membrane-bound c...

  19. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements

    OpenAIRE

    Swithers, Susan E.

    2013-01-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. ...

  20. Effects of Beverages on Alcohol Metabolism: Potential Health Benefits and Harmful Impacts

    OpenAIRE

    Fang Wang; Yu-Jie Zhang; Yue Zhou; Ya Li; Tong Zhou; Jie Zheng; Jiao-Jiao Zhang; Sha Li; Dong-Ping Xu; Hua-Bin Li

    2016-01-01

    Nonalcoholic beverages are usually consumed accompanying alcoholic drinks, and their effects on alcohol metabolism are unclear in vivo. In this study, the effects of 20 nonalcoholic beverages on alcohol metabolism and liver injury caused by alcohol were evaluated in mice. Kunming mice were orally fed with alcohol (52%, v/v) and beverages. The concentrations of ethanol and acetaldehyde in blood as well as the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in liver ...

  1. The effects of exercise program on burnout and metabolic syndrome components in banking and insurance workers.

    Science.gov (United States)

    Tsai, Han Hui; Yeh, Ching Ying; Su, Chien Tien; Chen, Chiou Jong; Peng, Shu Mei; Chen, Ruey Yu

    2013-01-01

    To explore the effectiveness of exercise program for banking and insurance workers and clarify the association between exercise, burnout, and metabolic syndrome components. In the process of the study, a practicable worksite exercise program was developed for bank and insurance enterprises. A three-month (12-wk) exercise course was conducted, and its benefits evaluated. Levels of burnout and metabolic syndrome components were analyzed after exercise intervention. After intervention, the indicators of burnout and metabolic syndrome components were significantly improved in both low and high intensity groups, and the improvement were expressed in reduction of waist circumference, systolic blood pressure, person burnout and work-related burnout. A dose-response of burnouts and metabolic syndrome components with exercise intensity are shown (psyndrome components were independently associated with burnout and exercise intensity in the crude model. After adjustment for potential confounders, waist circumference and systolic blood pressure differences showed significant associations with exercise intensity (pburnouts and metabolic syndrome components.

  2. Kupffer cells facilitate the acute effects of leptin on hepatic lipid metabolism.

    Science.gov (United States)

    Metlakunta, Anantha; Huang, Wan; Stefanovic-Racic, Maja; Dedousis, Nikolaos; Sipula, Ian; O'Doherty, Robert M

    2017-01-01

    Leptin has potent effects on lipid metabolism in a number of peripheral tissues. In liver, an acute leptin infusion (~120 min) stimulates hepatic fatty acid oxidation (~30%) and reduces triglycerides (TG, ~40%), effects that are dependent on phosphoinositol-3-kinase (PI3K) activity. In the current study we addressed the hypothesis that leptin actions on liver-resident immune cells are required for these metabolic effects. Myeloid cell-specific deletion of the leptin receptor (ObR) in mice or depletion of liver Kupffer cells (KC) in rats in vivo prevented the acute effects of leptin on liver lipid metabolism, while the metabolic effects of leptin were maintained in mice lacking ObR in hepatocytes. Notably, liver TG were elevated in both lean and obese myeloid cell ObR, but the degree of obesity and insulin resistance induced by a high-fat diet was similar to control mice. In isolated primary hepatocytes (HEP), leptin had no effects on HEP lipid metabolism and only weakly stimulated PI3K. However, the coculture of KC with HEP restored leptin action on HEP fatty acid metabolism and stimulation of HEP PI3K. Notably, leptin stimulated the release from KC of a number of cytokines. However, the exposure of HEP to these cytokines individually [granulocyte macrophage colony-stimulating factor, IL-1α, IL-1β, IL-6, IL-10, and IL-18] or in combination had no effects on HEP lipid metabolism. Together, these data demonstrate a role for liver mononuclear cells in the regulation of liver lipid metabolism by leptin. Copyright © 2017 the American Physiological Society.

  3. The effect of immunosuppressive molecules on T-cell metabolic reprogramming.

    Science.gov (United States)

    Fernández-Ramos, Ana A; Poindessous, Virginie; Marchetti-Laurent, Catherine; Pallet, Nicolas; Loriot, Marie-Anne

    2016-08-01

    T lymphocytes undergo metabolic reprogramming to adapt to extracellular and intracellular cues. Specifically, T-cell metabolism results into ATP production, anabolism and catabolism pathways that not only support rapid cell growth and proliferation, but also differentiation and effector functions, recently referred as "immunometabolism". Quiescent naïve T cells rely on oxidative phosphorylation whereas aerobic glycolysis (Warburg effect) occurs in activated T cells (effector CD4(+) and CD8(+)). The molecular mechanisms that sense metabolic status and influence T-cell function require metabolic checkpoints including sensors of metabolic signals and transducers (Myc, HIF-1α, AMPK and mTOR). These metabolic checkpoints represent a novel therapeutic strategy for immune modulation. Interestingly, many immunosuppressive drugs including mTOR inhibitors (rapamycin), calcineurin inhibitors (tacrolimus, cyclosporine A) and inhibitors of de novo purine synthesis (6-mercaptopurine, mycophenolic acid and methotrexate) provide examples into how modulating these metabolic checkpoints can regulate T-cell activation, differentiation and function. In this Review we highlight emerging concepts about metabolic reprogramming in T-cell responses and we discuss the potential therapeutic interventions to influence T-cell fate and effector function. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Metabolic effects of chronic T3 administration in the hypothalamic paraventricular and ventromedial nucleus in male rats

    NARCIS (Netherlands)

    Zhang, Z; Foppen, E; Su, Y; Bisschop, P H; Kalsbeek, A; Fliers, E; Boelen, A

    2016-01-01

    Thyroid hormone is a key regulator of energy metabolism. Apart from its direct effects on peripheral metabolism, thyroid hormone exerts acute metabolic effects via distinct nuclei within the hypothalamus. Recently, we developed a method for chronic and local intra-hypothalamic triiodothyronine (T3)

  5. Effects of some tobacco smoke constituents on foreign compound metabolism in the cat and the rat

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D.M.

    1977-03-01

    The effects of chronic nicotine administration on its own metabolism have been studied in the cat and the rat. Nicotine administration caused an increase in the in vitro metabolism in the liver of both species and in cat kidney. Cotinine production from nicotine was enhanced in both species by pretreatment with nicotine. The magnitude of the increase in enzyme activity was relatively small but of the same order as that produced, in the rat, by phenobarbital treatment. 3-methylcholanthrene pretreatment stimulated rat liver nicotine metabolism but was without effect on cotinine production. Chronic exposure of rats to relatively low levels of carbon monoxide inhibited the in vitro aryl hydrocarbon hydroxylase activity but did not affect nicotine metabolism. The data are discussed in relation to the observed enzyme inductive effects of tobacco smoke.

  6. Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions.

    Science.gov (United States)

    Papathanasopoulos, Athanasios; Camilleri, Michael

    2010-01-01

    Dietary fiber is a term that reflects a heterogeneous group of natural food sources, processed grains, and commercial supplements. Several forms of dietary fiber have been used as complementary or alternative agents in the management of manifestations of the metabolic syndrome, including obesity. Not surprisingly, there is a great variation in the biological efficacy of dietary fiber in the metabolic syndrome and body weight control. Diverse factors and mechanisms have been reported as mediators of the effects of dietary fiber on the metabolic syndrome and obesity. Among this array of mechanisms, the modulation of gastric sensorimotor influences appears to be crucial for the effects of dietary fiber but also quite variable. This report focuses on the role, mechanism of action, and benefits of different forms of fiber and supplements on obesity and the metabolic syndrome, glycemia, dyslipidemia, and cardiovascular risk and explores the effects of dietary fiber on gastric sensorimotor function and satiety in mediating these actions of dietary fiber.

  7. Metabolic effects of sapropterin treatment in autism spectrum disorder: a preliminary study.

    Science.gov (United States)

    Frye, R E; DeLatorre, R; Taylor, H B; Slattery, J; Melnyk, S; Chowdhury, N; James, S J

    2013-03-05

    Sapropterin, a synthetic form of tetrahydrobiopterin (BH4), has been reported to improve symptoms in children with autism spectrum disorder (ASD). However, as BH4 is involved in multiple metabolic pathway that have been found to be dysregulated in ASD, including redox, pterin, monoamine neurotransmitter, nitric oxide (NO) and immune metabolism, the metabolic pathway by which sapropterin exerts its therapeutic effect in ASD effect remains unclear. This study investigated which metabolic pathways were associated with symptomatic improvement during sapropterin treatment. Ten participants (ages 2-6 years old) with current social and/or language delays, ASD and a central BH4 concentration 30 nM l(-1) were treated with a daily morning 20 mg kg(-1) dose of sapropterin for 16 weeks in an open-label fashion. At baseline, 8 weeks and 16 weeks after starting the treatment, measures of language, social function and behavior and biomarkers of redox, pterin, monoamine neurotransmitter, NO and immune metabolism were obtained. Two participants discontinued the study, one from mild adverse effects and another due to noncompliance. Overall, improvements in subscales of the Preschool Language Scale (PLS), Vineland Adaptive Behavior Scale (VABS), Aberrant Behavior Checklist (ABC) and autism symptoms questionnaire (ASQ) were seen. Significant changes in biomarkers of pterin, redox and NO were found. Improvement on several subscales of the PLS, VABS, ABC and ASQ were moderated by baseline and changes in biomarkers of NO and pterin metabolism, particularly baseline NO metabolism. These data suggest that behavioral improvement associated with daily 20 mg kg(-1) sapropterin treatment may involve NO metabolism, particularly the status of pretreatment NO metabolism.

  8. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Science.gov (United States)

    Alvarez-Silva, María Camila; Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  9. Coupled Effects of Hyporheic Flow Structure and Metabolic Pattern on Reach-scale Nutrient Uptake

    Science.gov (United States)

    Li, A.; Aubeneau, A. F.; Bolster, D.; Tank, J. L.; Packman, A. I.

    2015-12-01

    Co-injections of conservative tracers and nutrients are commonly used to assess net reach-scale nutrient transformation rates and benthic/hyporheic uptake parameters. However, little information is available on spatial metabolic patterns in the benthic and hyporheic regions. Based on observations from real systems, we used particle tracking simulations to explore the effects of localized metabolism on estimates of reach-scale nutrient uptake rates. Metabolism locally depletes nutrient concentrations relative to conservative tracers, causing their concentration profiles of injected nutrients and conservative tracers to diverge. At slow rates of hyporheic exchange relative to rates of metabolism, overall hyporheic nutrient uptake is limited by delivery from the stream, and effective reach-scale nutrient uptake parameters will be controlled by the hyporheic exchange rate. At high rates of hyporheic exchange relative to rates of metabolism, the injected tracer can propagate beyond regions of high microbial activity, which commonly occur near the streambed surface. In this case, the injected tracer may not adequately capture timescales of nutrient replenishment in the most bioactive regions. Reach-scale nutrients uptake rate increases with increasing heterogeneity in local metabolic patterns, altering the shape of breakthrough curves downstream. More observations of hyporheic rates and metabolic patterns are needed to understand how flow heterogeneity and reaction heterogeneity interact to control nutrient dynamics at reach-scale.

  10. Metabolic Dysfunction in Pulmonary Hypertension: The Expanding Relevance of the Warburg Effect

    Science.gov (United States)

    Cottrill, Katherine A.; Chan, Stephen Y.

    2013-01-01

    Background Pulmonary hypertension (PH) is an enigmatic vascular syndrome characterized by increased pulmonary arterial pressure and adverse remodeling of the pulmonary arterioles and often of the right ventricle. Drawing parallels with tumorigenesis, recent endeavors have explored the relationship between metabolic dysregulation and PH pathogenesis. Design We will discuss the general mechanisms by which cellular stressors such as hypoxia and inflammation alter cellular metabolism. Based on those principles, we will explore the development of a corresponding metabolic pathophenotype in PH, with a focus on WHO groups I and III, and the implications that these alterations may have for future treatment of this disease. Results Investigation of metabolic dysregulation in both the pulmonary vasculature and right ventricle during PH pathogenesis has provided a more unifying understanding of how disparate disease triggers coordinate end-stage disease manifestations. Namely, as defined originally in various cancers, the Warburg effect describes a chronic shift in energy production from mitochondrial oxidative phosphorylation to glycolysis. In many cases, this Warburg phenotype may serve as a central causative mechanism for PH progression, largely driving cellular hyperproliferation and resistance to apoptosis. Consequently, new therapeutic strategies have been increasingly pursued that target the Warburg phenotype. Finally, new technologies are increasingly becoming available to probe more completely the complexities of metabolic cellular reprogramming and may reveal distinct metabolic pathways beyond the Warburg effect that drive PH. Conclusion Studies of metabolic dysregulation in PH are just emerging but may offer powerful therapeutic means to prevent or even reverse disease progression at the molecular level. PMID:23617881

  11. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria.

    Science.gov (United States)

    Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio

    2016-08-25

    Brain bioenergetic abnormalities in mood disorders were detected by neuroimaging in vivo studies in humans. Because of the increasing importance of mitochondrial pathogenetic hypothesis of Depression, in this study the effects of sub-chronic treatment (21days) with desipramine (15mg/kg) and fluoxetine (10mg/kg) were evaluated on brain energy metabolism. On mitochondria in vivo located in neuronal soma (somatic) and on mitochondria of synapses (synaptic), the catalytic activities of regulatory enzymes of mitochondrial energy-yielding metabolic pathways were assayed. Antidepressants in vivo treatment modified the activities of selected enzymes of different mitochondria, leading to metabolic modifications in the energy metabolism of brain cortex: (a) the enhancement of cytochrome oxidase activity on somatic mitochondria; (b) the decrease of malate, succinate dehydrogenase and glutamate-pyruvate transaminase activities of synaptic mitochondria; (c) the selective effect of fluoxetine on enzymes related to glutamate metabolism. These results overcome the conflicting data so far obtained with antidepressants on brain energy metabolism, because the enzymatic analyses were made on mitochondria with diversified neuronal in vivo localization, i.e. on somatic and synaptic. This research is the first investigation on the pharmacodynamics of antidepressants studied at subcellular level, in the perspective of (i) assessing the role of energy metabolism of cerebral mitochondria in animal models of mood disorders, and (ii) highlighting new therapeutical strategies for antidepressants targeting brain bioenergetics. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Review: Early metabolism evaluation making traditional Chinese medicine effective and safe therapeutics

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; YANG Ling

    2006-01-01

    Increasing attention is being paid to the scientific evaluation of traditional Chinese medicine (TCM). As many TCMs are capable of biotransformation in the gastrointestinal tract, attention to biotransformation of TCM in the gastrointestinal tract may lead to discovery of the active components and active mechanisms. In this article, we review reports that host metabolic enzymes and intestinal bacteria may be responsible for the metabolism of TCM. Good understanding of the in vivo course of TCM will help us to know how to conduct metabolism evaluation of TCM by using in vitro human-derived system. This evaluation system will create new views on TCM as effective and safe therapeutic agents.

  13. Effect of creatine on aerobic and anaerobic metabolism in skeletal muscle in swimmers.

    OpenAIRE

    Thompson, C. H.; Kemp, G. J.; Sanderson, A L; Dixon, R.M.; Styles, P; Taylor, D J; Radda, G K

    1996-01-01

    OBJECTIVE: To examine the effect of a relatively low dose of creatine on skeletal muscle metabolism and oxygen supply in a group of training athletes. METHODS: 31P magnetic resonance and near-infrared spectroscopy were used to study calf muscle metabolism in a group of 10 female members of a university swimming team. Studies were performed before and after a six week period of training during which they took either 2 g creatine daily or placebo. Calf muscle metabolism and creatine/choline rat...

  14. Effects of starvation and molting on the metabolic rate of the bed bug (Cimex lectularius L.).

    Science.gov (United States)

    DeVries, Zachary C; Kells, Stephen A; Appel, Arthur G

    2015-01-01

    The bed bug (Cimex lectularius L.) is a common hematophagous pest in the urban environment and is capable of surviving extended periods of starvation. However, the relationship between starvation and metabolism in bed bugs is not well understood. To better understand this relationship, we measured the metabolism of all life stages for >900 h after feeding (starvation) using closed-system respirometry. Measurements were made around molting for the immature life stages, which occurs only after a blood meal. In addition, both mated and unmated adults were measured. Starvation and molting had significant effects on the metabolism of the bed bug. Mass-specific metabolic rate (V(O2); mL g(-1) h(-1)) declined in a curvilinear fashion with the period of starvation for adults and with the postmolting period for immature bed bugs (used to standardize all immature life stages). A standard curve was developed to depict the generalized pattern of metabolic decline observed in all life stages that molted. Individual metabolic comparisons among life stages that molted revealed some differences in metabolic rate between unmated males and females. In addition, the mass scaling coefficient was found to decline with starvation time (postmolting time) for all life stages that molted. In most life stages, the ratio of V(CO2) to V(O2) (respiratory exchange ratio) declined over time, indicating a change in metabolic substrate with starvation. Finally, daily percent loss in body mass declined in a pattern similar to that of V(O2). The observed patterns in metabolic decline are evaluated in relation to the life history of bed bugs. In addition, the evolutionary development of these patterns is discussed. The metabolic pattern after feeding was also found to share several similarities with that of other ectothermic species.

  15. The effects of changes in the metabolic syndrome detection status on arterial stiffening: a prospective study.

    Science.gov (United States)

    Tomiyama, Hirofumi; Hirayama, Yoji; Hashimoto, Hideki; Yambe, Minoru; Yamada, Jiko; Koji, Yutaka; Motobe, Kohki; Shiina, Kazuki; Yamamoto, Yoshio; Yamashinai, Akira

    2006-09-01

    We conducted a prospective study to examine the effects of alterations of the metabolic syndrome detection status on the rate of progression of arterial stiffness, which is recognized as a marker of arterial damage and an indicator of cardiovascular risk. Brachial-ankle pulse wave velocity as an index of arterial stiffening was recorded twice over a 3-year period in 2080 Japanese men (age, 42 +/- 9 years). At the start of the prospective study, pulse wave velocity was higher in the subjects with metabolic syndrome (n=125) than in those without metabolic syndrome (n=1,955) even after adjusting for mean blood pressure. The annual rate of increase of the pulse wave velocity was higher in the group with persistent metabolic syndrome (27 +/- 51 cm/s/year, n=71) than in the group with regression of metabolic syndrome (6 +/- 39 cm/s/year, n=54) or the group in which metabolic syndrome was absent (13 +/- 37 cm/s/year, n=1843; p changes in blood pressure. In conclusion, the changes in the metabolic syndrome detection status of the subjects during the study period affected the annual rate of progression of arterial stiffening, and persistent metabolic syndrome during the study period was associated with acceleration of arterial stiffening in middle-aged Japanese men. On the other hand, resolution of metabolic syndrome may be associated with attenuation of the progression of arterial damage. Therefore, the increased cardiovascular risk associated with the presence of metabolic syndrome may be at least partly mediated by acceleration of the progression of arterial stiffening.

  16. Effect of Metaboreflex on Cardiovascular System in Subjects of Metabolic Syndrome.

    Science.gov (United States)

    Dubey, Pramita; Tiwari, Sunita; Bajpai, Manish; Singh, Kalpana; Jha, Praveen

    2017-07-01

    Metaboreflex is a reflex in which muscle receptors send signals regarding metabolic (metabolites accumulation like lactic acid, potassium, adenosine) conditions of the muscles to nucleus tractus solitarius via afferent III and IV fibres to cause haemodynamic adjustments in order to regulate blood flow on the basis of the status of contracting muscle. Dysregulation in its mechanism in metabolic syndrome is demonstrated. To study the effect of metaboreflex by both isometric and rhythmic handgrip exercise on CVS parameters {Blood Pressure (BP), Cardiac Output (CO) and Systemic Vascular Resistance (SVR)} in subjects of metabolic syndrome. In this study, 27 subjects aged 25 to 45 years were enrolled after ethical clearance and proper consent. They were divided into: a) subjects without metabolic syndrome; and b) subjects with metabolic syndrome. Impedance cardiovasography was done to assess cardiac parameters (systolic and diastolic blood pressure, cardiac output, systemic vascular resistance). Pre-exercise parameters were assessed followed by isometric exercise and post-isometric exercise parameter measurement. Again after rest, rhythmic exercise was followed. Finally post exercise parameters were assessed. Student paired t-test for comparison between pre and post exercise parameters were done. Changes in diastolic BP following exercise were statistically significant in subjects without metabolic syndrome (p-value 0.01 and 0.001 following isometric and rhythmic exercise respectively). In subjects with metabolic syndrome also these changes were significant, but to a lesser extent (p-value 0.1 and 0.01 respectively for isometric and rhythmic exercise). Changes in systolic BP following exercise were statistically significant in subjects without metabolic syndrome (p-value 0.001 and 0.001 following isometric and rhythmic exercise respectively). In subjects with metabolic syndrome also these changes were significant (p-value 0.01 and 0.001 respectively for isometric and

  17. The combined effects of reactant kinetics and enzyme stability explain the temperature dependence of metabolic rates.

    Science.gov (United States)

    DeLong, J P; Gibert, J P; Luhring, T M; Bachman, G; Reed, B; Neyer, A; Montooth, K L

    2017-06-01

    A mechanistic understanding of the response of metabolic rate to temperature is essential for understanding thermal ecology and metabolic adaptation. Although the Arrhenius equation has been used to describe the effects of temperature on reaction rates and metabolic traits, it does not adequately describe two aspects of the thermal performance curve (TPC) for metabolic rate-that metabolic rate is a unimodal function of temperature often with maximal values in the biologically relevant temperature range and that activation energies are temperature dependent. We show that the temperature dependence of metabolic rate in ectotherms is well described by an enzyme-assisted Arrhenius (EAAR) model that accounts for the temperature-dependent contribution of enzymes to decreasing the activation energy required for reactions to occur. The model is mechanistically derived using the thermodynamic rules that govern protein stability. We contrast our model with other unimodal functions that also can be used to describe the temperature dependence of metabolic rate to show how the EAAR model provides an important advance over previous work. We fit the EAAR model to metabolic rate data for a variety of taxa to demonstrate the model's utility in describing metabolic rate TPCs while revealing significant differences in thermodynamic properties across species and acclimation temperatures. Our model advances our ability to understand the metabolic and ecological consequences of increases in the mean and variance of temperature associated with global climate change. In addition, the model suggests avenues by which organisms can acclimate and adapt to changing thermal environments. Furthermore, the parameters in the EAAR model generate links between organismal level performance and underlying molecular processes that can be tested for in future work.

  18. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health.

    Science.gov (United States)

    O'Brien, Peter J; Siraki, Arno G; Shangari, Nandita

    2005-08-01

    Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.

  19. Effect of nanosilver on metabolism in rainbow trout (Oncorhynchus mykiss): An investigation using different respirometric approaches.

    Science.gov (United States)

    Murray, Laura; Rennie, Michael D; Svendsen, Jon C; Enders, Eva C

    2017-10-01

    Nanosilver (nAg) has been incorporated into many consumer products, including clothing and washing machines, because of its antimicrobial properties. Consequently, the potential for its release into aquatic environments is of significant concern. Documented toxic effects on fish include altered gene expression, gill damage, and impaired gas exchange, as well as mortality at high nAg concentrations. The present study reports the effects of nAg on the metabolism of rainbow trout (Oncorhynchus mykiss). Fish were exposed to environmentally relevant concentrations (0.28 ± 0.02 μg/L) and higher (47.60 ± 5.13 μg/L) for 28 d, after which their standard metabolic rate (SMR), forced maximum metabolic rate (MMRf ), and spontaneous maximum metabolic rate (MMRs ) were measured. There was no effect observed in SMR, MMRf , or MMRs , suggesting that nAg is unlikely to directly affect fish metabolism. On average, MMRs tended to be greater than MMRf , and most MMRs occurred when room lighting increased. The timing of MMRf chase protocols was found to affect both MMRf and SMR estimates, in that chasing fish before respirometric experiments caused higher MMRf estimates and lower SMR estimates. Although compounded effects involving nAg and other environmental stressors remain unknown, the present study indicates that the tested range of nAg is unlikely to constrain fish metabolism. Environ Toxicol Chem 2017;36:2722-2729. © 2017 SETAC. © 2017 SETAC.

  20. Nut consumption has favorable effects on lipid profiles of Korean women with metabolic syndrome.

    Science.gov (United States)

    Lee, Young Joo; Nam, Ga Eun; Seo, Ji A; Yoon, Taehyung; Seo, Ilwon; Lee, Jin Hee; Im, Donggil; Bahn, Kyeong-Nyeo; Jeong, Si An; Kang, Tae Seok; Ahn, Jae Hee; Kim, Do Hoon; Kim, Nan Hee

    2014-09-01

    Nut consumption has been studied for its cardioprotective effects. However, the findings of clinical intervention studies are inconsistent; and no intervention studies have been conducted in the Korean population. We hypothesized that nut supplementation may have favorable influence on metabolic markers. Therefore, this study aimed to investigate the effects of nut consumption on metabolic parameters and biomarkers related to inflammation, oxidative stress, and endothelial function in Korean adults with metabolic syndrome. To this end, we designed a randomized, parallel, controlled dietary intervention study (ClinicalTrials.gov NCT02023749). Subjects with metabolic syndrome and a body mass index of at least 23 kg/m(2) were randomized to the Control group and the Nut group, which received supplementation with 30 g/d of mixed nuts (walnuts, peanuts, and pine nuts) for 6 weeks. Sixty volunteers were included in the final analysis. Metabolic markers were evaluated at baseline and at the end of the study. Total cholesterol and non-high-density lipoprotein cholesterol levels significantly improved in the Nut group compared to those in the Control group (P = .023 and P = .016, respectively) in women. Biomarkers related to inflammation, oxidative stress, and endothelial function did not significantly change from baseline in either group. Thus, supplementing a usual diet with mixed nuts for 6 weeks had favorable effects on several lipid parameters in Korean women with metabolic syndrome. These findings present a possible mechanism for the cardioprotective effects of nut consumption.

  1. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. (NIDA Addiction Research Center, Baltimore, MD (USA))

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  2. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics

    Science.gov (United States)

    Duarte, Julio D; Cooper-DeHoff, Rhonda M

    2010-01-01

    Thiazide and thiazide-like diuretics are among the most commonly used antihypertensives and have been available for over 50 years. However, the mechanism by which these drugs chronically lower blood pressure is poorly understood. Possible mechanisms include direct endothelial- or vascular smooth muscle-mediated vasodilation and indirect compensation to acute decreases in cardiac output. In addition, thiazides are associated with adverse metabolic effects, particularly hyperglycemia, and the mechanistic underpinnings of these effects are also poorly understood. Thiazide-induced hypokalemia, as well as other theories to explain these metabolic disturbances, including increased visceral adiposity, hyperuricemia, decreased glucose metabolism and pancreatic β-cell hyperpolarization, may play a role. Understanding genetic variants with differential responses to thiazides could reveal new mechanistic candidates for future research to provide a more complete understanding of the blood pressure and metabolic response to thiazide diuretics. PMID:20528637

  3. Stimulatory effects of chlordiazepoxide, diazepam and oxazepam on the drug-metabolizing enzymes in microsomes.

    Science.gov (United States)

    Jablońska, J K; Knobloch, K; Majka, J; Wiśniewska-Knypl, J M

    1975-09-01

    5 days' exposure of rats to daily doses of 400 mg/kg body wt. of chlordiazepoxide, diazepam and oxazepam stimulated the microsomal metabolism in the liver, as evidenced by acceleration of both p-hydroxylation of aniline and hydroxylation of benzene. The effect was accompanied by an increased concentration of liver microsomal protein and by the development of tolerance to the drugs. Similar effects were found after exposure of rats to lower doses of the drugs. The metabolism of aniline in vivo in rats treated with chlordiazepoxide was accelerated; this was correlated with development of tolerance to these drugs. It is suggested that both the stimulation of microsomal metabolism and the development of tolerance are associated with the induction of microsomal drug-metabolizing enzymes.

  4. Metabolic Effects of a Succinic Acid

    Directory of Open Access Journals (Sweden)

    B. N. Shakh

    2014-01-01

    Full Text Available The paper discusses promises for clinical use of substrate antihypoxants.Objective: to investigate the efficacy of succinate containing  substrate  antihypoxants  on  systemic  oxygen  consumption,  blood  buffer  capacity,  and  changes  in  the  mixed venous blood level of lactate when they are used in gravely sick patients and victims with marked metabolic posthypoxic disorders.Subjects and methods. The trial enrolled 30 patients and victims who had sustained an episode of severe hypoxia of mixed genesis, the severity of which was evaluated by the APACHE II scale and amounted to 23 to 30 scores with a 46 to 70.3% risk of death. The standard infusion program in this group involved the succinate-containing drug 1.5% reamberin solution  in  a  total  dose  of  800  ml.  A  comparison  group  included  15  patients  who  had  undergone  emergency  extensive surgery for abdominal diseases. 400 ml of 10% glucose solution was used as an infusion medium. Oxygen consumption (VO2ml/min and carbon dioxide production (VCO2ml/min were measured before infusion and monitored for 2 hours. Arterial blood gases and acid-base balance (ABB parameters and mixed venous blood lactate levels were examined. Measurements were made before and 30 minutes after the infusion of reamberin or glucose solution.Results. Infusion of 1.5% reamberin solution was followed by a significant increase in minute oxygen consumption from 281.5±21.2 to 310.4±24.4 ml/min. CO2 production declined (on average, from 223.3±6.5 to 206.5±7.59 ml/min. During infusion of 10% glucose solution, all the patients of the comparison group showed a rise in oxygen consumption from 303.6±33.86 to 443.13±32.1 ml/min, i.e. about 1.5-fold. VCO2 changed similarly. The intravenous infusion of 800 ml of 1.5% reamberin solution raised arterial blood buffer capacity, which was reflected by changes in pH, BE, and HCO3. There was a clear trend for lactate values to drop in the

  5. Effects of Dietary Components on Testosterone Metabolism via UDP-Glucuronosyltransferase

    OpenAIRE

    Carl eJenkinson; Andrea ePetroczi; Declan P. Naughton

    2013-01-01

    The potential interference in testosterone metabolism through ingested substances has ramifications for: (i) a range of pathologies such as prostate cancer, (ii) medication contra-indications, (iii) disruption to the endocrine system, and (iv) potential confounding effects on doping tests. Conjugation of anabolic steroids during phase II metabolism, mainly driven by UDP-glucuronosyltransferase (UGT) 2B7, 2B15, and 2B17, has been shown to be impaired in vitro by a range of compounds including ...

  6. Effect of aging on brain respiration and carbohydrate metabolism of Syrian hamsters.

    Science.gov (United States)

    Fox, J H; Parmacek, M S; Patel-Mandlik, K

    1975-01-01

    Syrian hamsters were used to study the effect of aging on brain slice respiration and metabolism. Young animals (average age 8 months) and old animals (average age 18 months) were incubated under standard conditions with the following parameters being measured: oxygen uptake, 14CO2 production, glucose utilization, lactate and pyruvate formation. No differences were found in the two groups. It is still very likely that subtle differences exist but can only be documented under conditions of metabolic stress.

  7. Effects of GIP, GLP-1 and GLP-1RAs on Bone Cell Metabolism

    DEFF Research Database (Denmark)

    Hansen, Morten S S; Tencerova, Michaela; Frølich, Jacob

    2017-01-01

    mediate effects beyond control of glucose homeostasis, and reports on associations between incretin hormones and bone metabolism have emerged. The aim of this MiniReview was to provide an overview of current knowledge regarding the in vivo and in vitro effects of GIP and GLP-1 on bone metabolism. We...... identified a total of 30 pre-clinical and clinical investigations of the effects of GIP, GLP-1 and GLP-1RAs on bone turnover markers, bone mineral density (BMD), bone microarchitecture and fracture risk. Studies conducted in cell cultures and rodents demonstrated that GIP and GLP-1 play a role in regulating...... skeletal homeostasis, with pre-clinical data suggesting that GIP inhibits bone resorption whereas GLP-1 may promote bone formation and enhance bone material properties. These effects are not corroborated by clinical studies. While there is evidence of effects of GIP and GLP-1 on bone metabolism in pre...

  8. Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways.

    Science.gov (United States)

    Zhang, Aihua; Yan, Guangli; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun

    2016-02-16

    Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at 'Zusanli' acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation.

  9. SF-1 expression in the hypothalamus is required for beneficial metabolic effects of exercise

    Science.gov (United States)

    Fujikawa, Teppei; Castorena, Carlos M; Pearson, Mackenzie; Kusminski, Christine M; Ahmed, Newaz; Battiprolu, Pavan K; Kim, Ki Woo; Lee, Syann; Hill, Joseph A; Scherer, Philipp E; Holland, William L; Elmquist, Joel K

    2016-01-01

    Exercise has numerous beneficial metabolic effects. The central nervous system (CNS) is critical for regulating energy balance and coordinating whole body metabolism. However, a role for the CNS in the regulation of metabolism in the context of the exercise remains less clear. Here, using genetically engineered mice we assessed the requirement of steroidogenic factor-1 (SF-1) expression in neurons of the ventromedial hypothalamic nucleus (VMH) in mediating the beneficial effects of exercise on metabolism. We found that VMH-specific deletion of SF-1 blunts (a) the reductions in fat mass, (b) improvements in glycemia, and (c) increases in energy expenditure that are associated with exercise training. Unexpectedly, we found that SF-1 deletion in the VMH attenuates metabolic responses of skeletal muscle to exercise, including induction of PGC-1α expression. Collectively, this evidence suggests that SF-1 expression in VMH neurons is required for the beneficial effects of exercise on metabolism. DOI: http://dx.doi.org/10.7554/eLife.18206.001 PMID:27874828

  10. ApoM: gene regulation and effects on HDL metabolism

    DEFF Research Database (Denmark)

    Nielsen, Lars B; Christoffersen, Christina; Ahnström, Josefin;

    2009-01-01

    The recently discovered apolipoprotein M (apoM) is a plasma protein of the lipocalin family associated with the lipoproteins (mainly high-density lipoproteins, or HDLs). Expression of the apoM gene in the liver is regulated by transcription factors that control key steps in hepatic lipid and gluc......The recently discovered apolipoprotein M (apoM) is a plasma protein of the lipocalin family associated with the lipoproteins (mainly high-density lipoproteins, or HDLs). Expression of the apoM gene in the liver is regulated by transcription factors that control key steps in hepatic lipid...... changes in HDLs, and overexpression of the apoM gene reduced atherosclerosis. In conclusion, it seems that apoM plays a part in lipoprotein metabolism; however, the biological impact of apoM in humans remains to be determined....

  11. Methylcyclopentadienyl manganese tricarbonyl (MMT), plant uptake and effects on metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.R.; Lytle, C.M.; Stone, R.L.; Smith, B.N [Department of Botany and Range Science, Brigham Young University, Provo (United States); Hansen, L.D. [Department of Chemistry and Biochemistry, Brigham Young University, Provo (United States)

    2000-04-01

    In the USA and Canada, methylcyclopentadienyl manganese (MMT) is currently added to gasoline to replace tetraethyl lead as an antiknock fuel additive. Manganese concentrations in roadside soil and plants are increasing and correlated with distance from the roadway, traffic volume, plant type, and microhabitat. Radish (Raphanus sativus L.) seedlings were treated for either five or thirty-five days with different levels of manganous chloride (0-1000ppm). Metabolic heat rates (q) and respiration rates (R{sub CO{sub 2}}), measured calorimetrically, indicated severe stress at Mn concentrations between 10 and 100ppm and at temperatures above 20C. Predicted growth rates (R{sub SG}) also decreased in these circumstances.

  12. Effects of brain evolution on human nutrition and metabolism.

    Science.gov (United States)

    Leonard, William R; Snodgrass, J Josh; Robertson, Marcia L

    2007-01-01

    The evolution of large human brain size has had important implications for the nutritional biology of our species. Large brains are energetically expensive, and humans expend a larger proportion of their energy budget on brain metabolism than other primates. The high costs of large human brains are supported, in part, by our energy- and nutrient-rich diets. Among primates, relative brain size is positively correlated with dietary quality, and humans fall at the positive end of this relationship. Consistent with an adaptation to a high-quality diet, humans have relatively small gastrointestinal tracts. In addition, humans are relatively "undermuscled" and "over fat" compared with other primates, features that help to offset the high energy demands of our brains. Paleontological evidence indicates that rapid brain evolution occurred with the emergence of Homo erectus 1.8 million years ago and was associated with important changes in diet, body size, and foraging behavior.

  13. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Janela [Department of Laboratory Medicine, University of Washington, Seattle, WA (United States); Margineantu, Daciana H. [Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Sweet, Ian R. [Department of Medicine (Division of Metabolism, Endocrinology, and Nutrition), University of Washington, Seattle, WA (United States); Polyak, Stephen J., E-mail: polyak@uw.edu [Department of Laboratory Medicine, University of Washington, Seattle, WA (United States); Department of Global Health, University of Washington, Seattle, WA (United States)

    2014-01-20

    In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry. - Highlights: • Silibinin (SbN) and Legalon-SIL (SIL) are cytoprotective mixtures of natural products. • SbN and SIL reduce T cell oxidative phosphorylation and glycolysis in vitro. • SIL but not SbN blocks entry of multiple HIV isolates into T cells in vitro. • SIL's suppression of HIV appears independent of its effects on T cell metabolism. • Metabolic effects of SIL and SbN may be relevant in inflammatory diseases.

  14. Can melatonin prevent or improve metabolic side effects during antipsychotic treatments?

    Directory of Open Access Journals (Sweden)

    Porfirio MC

    2017-08-01

    Full Text Available Maria-Cristina Porfirio,1 Juliana Paula Gomes de Almeida,2 Maddalena Stornelli,1 Silvia Giovinazzo,1 Diane Purper-Ouakil,3 Gabriele Masi4 1Unit of Child Neurology and Psychiatry, “Tor Vergata” University of Rome, Italy; 2Unit of Child Neurology, Irmandade Santa Casa de Misericordia Hospital São Paulo, Brazil; 3Unit of Child and Adolescent Psychiatry, Saint Eloi Hospital, Montpellier, France; 4IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy Abstract: In the last two decades, second-generation antipsychotics (SGAs were more frequently used than typical antipsychotics for treating both psychotic and nonpsychotic psychiatric disorders in both children and adolescents, because of their lower risk of adverse neurological effects, that is, extrapyramidal symptoms. Recent studies have pointed out their effect on weight gain and increased visceral adiposity as they induce metabolic syndrome. Patients receiving SGAs often need to be treated with other substances to counteract metabolic side effects. In this paper, we point out the possible protective effect of add-on melatonin treatment in preventing, mitigating, or even reversing SGAs metabolic effects, improving quality of life and providing safer long-term treatments in pediatric patients. Melatonin is an endogenous indolamine secreted during darkness by the pineal gland; it plays a key role in regulating the circadian rhythm, generated by the suprachiasmatic nuclei (SCN of the hypothalamus, and has many other biological functions, including chronobiotic, antioxidant and neuroprotective properties, anti-inflammatory and free radical scavenging effects, and diminishing oxidative injury and fat distribution. It has been hypothesized that SGAs cause adverse metabolic effects that may be restored by nightly administration of melatonin because of its influence on autonomic and hormonal outputs. Interestingly, atypical anti-psychotics (AAPs can cause

  15. Modeling core metabolism in cancer cells: surveying the topology underlying the Warburg effect.

    Directory of Open Access Journals (Sweden)

    Osbaldo Resendis-Antonio

    Full Text Available BACKGROUND: Alterations on glucose consumption and biosynthetic activity of amino acids, lipids and nucleotides are metabolic changes for sustaining cell proliferation in cancer cells. Irrevocable evidence of this fact is the Warburg effect which establishes that cancer cells prefers glycolysis over oxidative phosphorylation to generate ATP. Regulatory action over metabolic enzymes has opened a new window for designing more effective anti-cancer treatments. This enterprise is not trivial and the development of computational models that contribute to identifying potential enzymes for breaking the robustness of cancer cells is a priority. METHODOLOGY/PRINCIPAL FINDINGS: This work presents a constraint-base modeling of the most experimentally studied metabolic pathways supporting cancer cells: glycolysis, TCA cycle, pentose phosphate, glutaminolysis and oxidative phosphorylation. To evaluate its predictive capacities, a growth kinetics study for Hela cell lines was accomplished and qualitatively compared with in silico predictions. Furthermore, based on pure computational criteria, we concluded that a set of enzymes (such as lactate dehydrogenase and pyruvate dehydrogenase perform a pivotal role in cancer cell growth, findings supported by an experimental counterpart. CONCLUSIONS/SIGNIFICANCE: Alterations on metabolic activity are crucial to initiate and sustain cancer phenotype. In this work, we analyzed the phenotype capacities emerged from a constructed metabolic network conformed by the most experimentally studied pathways sustaining cancer cell growth. Remarkably, in silico model was able to resemble the physiological conditions in cancer cells and successfully identified some enzymes currently studied by its therapeutic effect. Overall, we supplied evidence that constraint-based modeling constitutes a promising computational platform to: 1 integrate high throughput technology and establish a crosstalk between experimental validation and in

  16. Direct suppressive effect of acute metabolic and respiratory alkalosis on parathyroid hormone secretion in the dog.

    Science.gov (United States)

    Lopez, Ignacio; Rodriguez, Mariano; Felsenfeld, Arnold J; Estepa, Jose Carlos; Aguilera-Tejero, Escolastico

    2003-08-01

    Acute alkalosis may directly affect PTH secretion. The effect of acute metabolic and respiratory alkalosis was studied in 20 dogs. PTH values were lower in the metabolic (5.6 +/- 0.8 pg/ml) and respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml). Acute alkalosis is an independent factor that decreases PTH values during normocalcemia and delays the PTH response to hypocalcemia. We recently showed that acute metabolic and respiratory acidosis stimulated PTH secretion. This study was designed to evaluate whether acute metabolic and respiratory alkalosis suppressed parathyroid hormone (PTH) secretion. Three groups of 10 dogs were studied: control, acute metabolic alkalosis, and acute respiratory alkalosis. Metabolic alkalosis was induced with an infusion of sodium bicarbonate and respiratory alkalosis by hyperventilation. Calcium chloride was infused to prevent alkalosis-induced hypocalcemia during the first 60 minutes. During the next 30 minutes, disodium EDTA was infused to induce hypocalcemia and to evaluate the PTH response to hypocalcemia. Because the infusion of sodium bicarbonate resulted in hypernatremia, the effect of hypernatremia was studied in an additional group that received hypertonic saline. After 60 minutes of a normocalcemic clamp, PTH values were less (p respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml); the respective blood pH values were 7.61 +/- 0.01, 7.59 +/- 0.02, and 7.39 +/- 0.02. The maximal PTH response to hypocalcemia was similar among the three groups. However, the maximal PTH response was observed after a decrease in ionized calcium of 0.20 mM in the control group but not until a decrease of 0.40 mM in the metabolic and respiratory alkalosis groups. In contrast to the metabolic alkalosis group, hypernatremia (157 +/- 2 mEq/liter) in the hypertonic saline group was associated with an increased PTH value (46 +/- 4 pg/ml). Finally, the half-life of intact PTH

  17. Bisphenol A effects on gene expression in adipocytes from children: association with metabolic disorders.

    Science.gov (United States)

    Menale, Ciro; Piccolo, Maria Teresa; Cirillo, Grazia; Calogero, Raffaele A; Papparella, Alfonso; Mita, Luigi; Del Giudice, Emanuele Miraglia; Diano, Nadia; Crispi, Stefania; Mita, Damiano Gustavo

    2015-06-01

    Bisphenol A (BPA) is a xenobiotic endocrine-disrupting chemical. In vitro and in vivo studies have indicated that BPA alters endocrine-metabolic pathways in adipose tissue, which increases the risk of metabolic disorders and obesity. BPA can affect adipose tissue and increase fat cell numbers or sizes by regulating the expression of the genes that are directly involved in metabolic homeostasis and obesity. Several studies performed in animal models have accounted for an obesogen role of BPA, but its effects on human adipocytes - especially in children - have been poorly investigated. The aim of this study is to understand the molecular mechanisms by which environmentally relevant doses of BPA can interfere with the canonical endocrine function that regulates metabolism in mature human adipocytes from prepubertal, non-obese children. BPA can act as an estrogen agonist or antagonist depending on the physiological context. To identify the molecular signatures associated with metabolism, transcriptional modifications of mature adipocytes from prepubertal children exposed to estrogen were evaluated by means of microarray analysis. The analysis of deregulated genes associated with metabolic disorders allowed us to identify a small group of genes that are expressed in an opposite manner from that of adipocytes treated with BPA. In particular, we found that BPA increases the expression of pro-inflammatory cytokines and the expression of FABP4 and CD36, two genes involved in lipid metabolism. In addition, BPA decreases the expression of PCSK1, a gene involved in insulin production. These results indicate that exposure to BPA may be an important risk factor for developing metabolic disorders that are involved in childhood metabolism dysregulation. © 2015 Society for Endocrinology.

  18. Long-term effect of yogic practices on diurnal metabolic rates of healthy subjects

    Directory of Open Access Journals (Sweden)

    Chaya M

    2008-01-01

    Full Text Available Background: The metabolic rate is an indicator of autonomic activity. Reduced sympathetic arousal probably resulting in hypometabolic states has been reported in several yogic studies. Aim: The main objective of this study was to assess the effect of yoga training on diurnal metabolic rates in yoga practitioners at two different times of the day (at 6 a.m. and 9 p.m.. Methods and Material: Eighty eight healthy volunteers were selected and their metabolic rates assessed at 6 a.m. and 9 p.m. using an indirect calorimeter at a yoga school in Bangalore, India. Results and conclusions: The results show that the average metabolic rate of the yoga group was 12% lower than that of the non-yoga group ( P < 0.001 measured at 9 p.m. and 16% lower at 6 a.m. ( P < 0.001. The 9 p.m. metabolic rates of the yoga group were almost equal to their predicted basal metabolic rates (BMRs whereas the metabolic rate was significantly higher than the predicted BMR for the non-yoga group. The 6 a.m. metabolic rate was comparable to their predicted BMR in the non-yoga group whereas it was much lower in the yoga group ( P < 0.001. The lower metabolic rates in the yoga group at 6 a.m. and 9 p.m. may be due to coping strategies for day-to-day stress, decreased sympathetic nervous system activity and probably, a stable autonomic nervous system response (to different stressors achieved due to training in yoga.

  19. A review on the effects of Allium sativum (Garlic) in metabolic syndrome.

    Science.gov (United States)

    Hosseini, A; Hosseinzadeh, H

    2015-11-01

    The metabolic syndrome is a common problem world-wide and includes abdominal obesity, hypertension, dyslipidemia, and hyperglycemia disorders. It leads to insulin resistance and the development of diabetes mellitus or cardiovascular disease. Allium sativum (garlic) has been documented to exhibit anti-diabetic, hypotensive, and hypolipidemic properties. This suggests a potential role of A. sativum in the management of metabolic syndrome; however, more studies should be conducted to evaluate its effectiveness. In this review, we discussed the most relevant articles to find out the role of A. sativum in different components of metabolic syndrome and cardiovascular disease risk factors. Because human reports are rare, further studies are required to establish the clinical value of A. sativum in metabolic syndrome.

  20. Effect of long-distance transportation on serum metabolic profiles of steer calves.

    Science.gov (United States)

    Takemoto, Satoshi; Tomonaga, Shozo; Funaba, Masayuki; Matsui, Tohru

    2017-07-19

    Long-distance transportation is sometimes inevitable in the beef industry because of the geographic separation of major breeding and fattening areas. Long-distance transportation negatively impacts production and health of cattle, which may, at least partly, result from the disturbance of metabolism during and after transportation. However, alteration of metabolism remains elusive in transported cattle. We investigated the effects of transportation on the metabolomic profiles of Holstein steer calves. Non-targeted analysis of serum concentrations of low molecular weight metabolites was performed by gas chromatography mass spectrometry. Transportation affected 38 metabolites in the serum. A pathway analysis suggested that 26, 10, and 10 pathways were affected immediately after transportation, and 3 and 7 days after transportation, respectively. Some pathways were disturbed only immediately after transportation, likely because of feed and water withdrawal during transit. Nicotinate and nicotinamide metabolism, and citric acid cycle were affected for 3 days after transportation, whereas propionate metabolism, phenylalanine and tyrosine metabolism were affected throughout the experiment. Four pathways were not affected immediately after transportation, but were altered thereafter. These results suggested that many metabolic pathways had marked perturbations during transportation. Metabolites such as citric acid, propionate, tyrosine and niacin can be candidate supplements for mitigating transportation-induced adverse effects. © 2017 Japanese Society of Animal Science.

  1. Effect of Myoinositol and Antioxidants on Sperm Quality in Men with Metabolic Syndrome

    Science.gov (United States)

    Minutolo, Elisa; Lippa, Assunta; Iaconianni, Paola

    2016-01-01

    This prospective longitudinal study investigated the effects of a dietary supplement in patients affected by reduced sperm motility (asthenospermic males) with metabolic syndrome. The product tested was Andrositol®, which contains myoinositol (MI) as principal compound, in association with other molecules, and the parameters evaluated were semen characteristics as well as hormone and metabolic profiles. The inclusion criteria were subjects aged over 18 years, with asthenospermia and metabolic syndrome. The exclusion criteria were presence of cryptorchidism, varicocele, and prostatitis. For this study, 45 males who had such features were enrolled. Their selection was made according to the 2010 World Health Organization (WHO) criteria (5th Edition) for the Evaluation of Human Semen. Hormone and metabolic profiles and semen parameters were assessed at the beginning of the study and after three months of treatment with Andrositol. The differences between the values before and after the supplementation were found statistically significant. Andrositol normalized the metabolic profile of these patients, improving their insulin sensitivity. Moreover, testosterone levels were increased and the semen characteristics, such as sperm concentration, motility, and morphology, highly improved. In conclusion, the association of MI with other molecules (micronutrients and vitamins) could be an effective therapy for metabolic disorders, as well as hormonal and spermatic changes responsible for male infertility.

  2. Evaluation of regional metabolic abnormality and treatment effect in patients with narcolepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Yoon, In Young; Shin, Youn Kyung; Eo, Jae Sean; Won, Oh So; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    The aim of the present study was to evaluated regional metabolic abnormalities in untreated narcoleptic patients and the changes in regional cerebral metabolism after treatment with modafinil. Eight drug free narcoleptic patients (mean age of 17{+-}1 yr) participated in this study. Two [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) scans before and after a 2-week titrated modafinil treatment (target dose = 100{approx}400 mg/day). The PET data were analyzed by using statistical parametric mapping methods to identify the regional cerebral abnormalities compared with those of healthy young controls. In addition, treatment effect was evaluated by comparison between before and after treatment scan. In narcolepsy patients, a significant reduction of regional metabolism was demonstrated in the brain stem, bilateral hypothalamus, posterior thalamus, hippocampus, parahippocampal gyrus, and adjacent perihinal area on pretreatment scans compared with those of healthy subjects. The decrease glucose metabolism was also found in the occipital cortex and cerebellum. The patients could control daytime sleepiness after treatment. Posttreatment scan showed a significant increase in regional metabolism in the left hippocampus. This study demonstrated the metabolic abnormalities and the effect of modafinil treatment in narcoleptic patients in the sleep associated regions. This results could be helpful to understand the pathophysiology of the narcolepsy and treatment mechanism.

  3. POTENTIAL OF INDUCED METABOLIC BIOLUMINESCENCE IMAGING TO UNCOVER METABOLIC EFFECTS OF ANTI-ANGIOGENIC THERAPY IN TUMORS

    Directory of Open Access Journals (Sweden)

    Stefano eIndraccolo

    2016-02-01

    Full Text Available Tumor heterogeneity at the genetic level has been illustrated by a multitude of studies on the genomics of cancer, but whether tumors can be heterogeneous at the metabolic level is an issue which has been less systematically investigated so far. A burning related question is whether the metabolic features of tumors can change either following natural tumor progression (i.e. in primary tumors versus metastasis or therapeutic interventions. In this regard, recent findings by independent teams indicate that anti-angiogenic drugs cause metabolic perturbations in tumors as well as metabolic adaptations associated with increased malignancy. Induced metabolic bioluminescence imaging (imBI is an imaging technique which enables detection of key metabolites associated with glycolysis, including lactate, glucose, pyruvate and ATP in tumor sections. Signals captured by imBI can be used to visualize the topographic distribution of these metabolites and quantify their absolute amount. ImBI can be very useful for metabolic classification of tumors as well as to track metabolic changes in the glycolytic pathway associated with certain therapies. Imaging of the metabolic changes induced by anti-angiogenic drugs in tumors by imBI or other emerging technologies is a valuable tool to uncover molecular sensors engaged by metabolic stress and offers an opportunity to understand how metabolism-based approaches could improve cancer therapy.

  4. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-03-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no

  5. Effects of inhaled 1-bromopropane vapor on rat metabolism.

    Science.gov (United States)

    Ishidao, Toru; Kunugita, Naoki; Fueta, Yukiko; Arashidani, Keiichi; Hori, Hajime

    2002-08-05

    Wistar male rats were exposed to 1-bromopromane (1-BP) vapor for 6 h a day, 5 days a week, for 3 and 4 weeks (1500 ppm) and 1 day, and 4 and 12 weeks (700 ppm). After the exposures, 1-BP and its metabolites were measured temporally. In the samples obtained from the 700 ppm exposures, hematological and biochemical examinations in blood and measurements of hepatic cytochromes P450 were carried out. 1-BP in blood decreased rapidly to the detection limit within 0.7 h. On the other hand, bromine ion persisted longer in both blood and urine; the biological half-life of bromine ion was 4.7-15.0 days in blood and 5.0-7.5 days in urine. Glycidol was detected in the urine samples. Based on the experimental results, the metabolic pathway of 1-BP was discussed. Hepatic cytochromes P450, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in blood decreased significantly with 1-BP exposure, but other enzyme activities did not differ significantly.

  6. Effects of Soil Salinity on Sucrose Metabolism in Cotton Leaves.

    Directory of Open Access Journals (Sweden)

    Jun Peng

    Full Text Available This study investigated sucrose metabolism of the youngest fully expanded main-stem leaf (MSL and the subtending leaf of cotton (Gossypium hirsutum L. boll (LSCB of salt-tolerant (CCRI-79 and salt-sensitive (Simian 3 cultivars and its relationship to boll weight under low, medium and high soil salinity stress in Dafeng, China, in 2013 and 2014. The results showed that with increased soil salinity, 1 both the chlorophyll content and net photosynthetic rate (Pn decreased, while the internal CO2 concentration firstly declined, and then increased in the MSL and LSCB; 2 carbohydrate contents in the MSL reduced significantly, while sucrose and starch contents in the LSCB increased, as did the activities of sucrose phosphate synthase (SPS and sucrose synthase (SuSy in both the MSL and LSCB; 3 but invertase activity in both the MSL and LSCB did not change significantly. Our study also showed that the LSCB was more sensitive to soil salinity than was the MSL. Of the measured physiological indices, higher SPS activity, mainly controlled by sps3, may contribute to adaption of the LSCB to soil salinity stress because SPS is beneficial for efficiently sucrose synthesis, reduction of cellular osmotic potential and combined actions of Pn, and sucrose transformation rate and SPS may contribute to the reduction in boll weight under soil salinity stress.

  7. Effect of oxygen on lactose metabolism in lactic streptococci.

    Science.gov (United States)

    Smart, J B; Thomas, T D

    1987-03-01

    Three strains of Streptococcus lactis, two of Streptococcus cremoris, and one of Streptococcus thermophilus metabolized oxygen in the presence of added carbohydrate primarily via a closely coupled NADH oxidase/NADH peroxidase system. No buildup of the toxic intermediate H(2)O(2) was detected with the three S. lactis strains. All six strains contained significant superoxide dismutase activity and are clearly aerotolerant. Lactose- or glucose-driven oxygen consumption was biphasic, with a rapid initial rate followed by a slower secondary rate which correlated with factors affecting the in vivo activation of lactate dehydrogenase. The rate of oxygen consumption was rapid under conditions that led to a reduction in lactate dehydrogenase activity (low intracellular fructose 1,6-bisphosphate concentration). These conditions could be achieved with nongrowing cells by adding lactose at a constant but limiting rate. When the rate of lactose fermentation was limited to 5% of its maximum, nongrowing cells of S. lactis strains ML3 and ML8 carried out an essentially homoacetic fermentation under aerobic conditions. These same cells carried out the expected homolactic fermentation when presented with excess lactose under anaerobic conditions. Homoacetic fermentation leads to the generation of more energy, by substrate-level phosphorylation via acetate kinase, than the homolactic fermentation. However, it was not observed in growing cells and was restricted to slow fermentation rates with nongrowing cells.

  8. The Effect of Metabolic Syndrome upon the Success of Varicocelectomy

    Directory of Open Access Journals (Sweden)

    Ufuk Ozturk

    2012-01-01

    Full Text Available We aimed to investigate the impact of metabolic syndrome (MetS on the varicocele treatment. 101 patients underwent spermatic vein ligation between 2007 and 2010 were retrospectively analyzed. Those patients were divided into two groups as without (n: 56, Group 1 or with MetS (n: 48, Group 2. All the patients underwent left microsurgical subinguinal spermatic vein ligation. Groups were compared by the improvement on sperm parameters and spontaneous pregnancy rates at a mean of 19 (±4 months followup. When sperm parameters were compared postoperatively, the significant improvement in total sperm count, motile sperm count percentage, and normal sperm percentage was reported. The groups were compared to each other and the improvement seemed significantly better in Group 1. There was no statistically significant improvement difference in the normal sperm percentage between groups. Spontaneous pregnancy rate after two years was 45% in Group 1 and 34% in Group 2 (. Patients with MetS and varicocele improved after surgery, but not as well as the similar group without MetS. This may help to show that MetS can be a factor for male infertility.

  9. Viticultural practice and winemaking effects on metabolic profile of Negroamaro.

    Science.gov (United States)

    De Pascali, Sandra Angelica; Coletta, Antonio; Del Coco, Laura; Basile, Teodora; Gambacorta, Giuseppe; Fanizzi, Francesco Paolo

    2014-10-15

    Metabolic profiles of 32 Negroamaro red wines were analysed using (1)H NMR spectroscopy and multivariate statistical analyses (Principal Component Analysis, PCA, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Among winemaking technologies three were compared: ultrasounds (U; 12 samples), cryomaceration using dry ice (C; 12 samples) and traditional (T; 8 samples). Moreover, each vinification technology was used for grapes grown by two different soil management practices, soil tillage (ST; 16 samples) and cover crop (CC; 16 samples), and by two different training systems, monolateral (M; 16 samples) and bilateral Guyot (B; 16 samples). All statistical models applied on NMR data revealed a good separation between ST (soil tillage) and CC (cover crop), showing a higher influence of the soil management practices compared to the winemaking technologies (ultrasound, cryomaceration and traditional). The differentiation among samples, due to soil management practices, was mainly caused by metabolites such as glycerol, 2,3-butanediol, malic acid, α/β-glucose and phenolic compounds, such as tyrosine and caffeic acid.

  10. Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation

    Science.gov (United States)

    Majtan, Tomas; Frerman, Frank E.

    2011-01-01

    Toxicity in Escherichia coli resulting from high concentrations of cobalt has been explained by competition of cobalt with iron in various metabolic processes including Fe–S cluster assembly, sulfur assimilation, production of free radicals and reduction of free thiol pool. Here we present another aspect of increased cobalt concentrations in the culture medium resulting in the production of cobalt protoporphyrin IX (CoPPIX), which was incorporated into heme proteins including membrane-bound cytochromes and an expressed human cystathionine beta-synthase (CBS). The presence of CoPPIX in cytochromes inhibited their electron transport capacity and resulted in a substantially decreased respiration. Bacterial cells adapted to the increased cobalt concentration by inducing a modified mixed acid fermentative pathway under aerobiosis. We capitalized on the ability of E. coli to insert cobalt into PPIX to carry out an expression of CoPPIX-substituted heme proteins. The level of CoPPIX-substitution increased with the number of passages of cells in a cobalt-containing medium. This approach is an inexpensive method to prepare cobalt-substituted heme proteins compared to in vitro enzyme reconstitution or in vivo replacement using metalloporphyrin heme analogs and seems to be especially suitable for complex heme proteins with an additional coenzyme, such as human CBS. PMID:21184140

  11. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism.

    Science.gov (United States)

    McClure, Janela; Margineantu, Daciana H; Sweet, Ian R; Polyak, Stephen J

    2014-01-20

    In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry.

  12. Long-term and late treatment consequences: endocrine and metabolic effects.

    Science.gov (United States)

    Han, Thang S; Gleeson, Helena K

    2017-09-01

    Cancer therapies often result in the 'late effect of cancer treatment' whereby secondary health complications emerge years after radiotherapy and chemotherapy. This review focuses on endocrine and metabolic consequences in adult cancer survivors as late treatment effects. Endocrine and metabolic disorders are among the most common late effects. Endocrine disorders include hypopituitarism, which leads to growth hormone deficiency, hypogonadism, adrenal insufficiency and hypothyroidism and related clinical manifestations. Hypogonadism in particular is associated with a wide range of health complications requiring input from the like of endocrine and fertility specialists. Immune checkpoint inhibitors are novel anticancer agents, some of which are uniquely associated with hypophysitis which requires early recognition and management, including steroid replacement. Metabolic syndrome, a significant risk for cardiovascular disease, is highly prevalent. Although the effects of cranial irradiation on the hypothalamic-pituitary system are more apparent, the relationship between chemotherapy and endocrine/metabolic disorders remains to be elucidated. There exist published guidelines for monitoring endocrine and cardiometabolic risk in cancer survivors, but the extent of monitoring appears insufficient. Regular monitoring and early management of endocrine/metabolic disorders is required to prevent the elevated rates of health complications after cancer treatment, and thereby improve cancer survivorship.

  13. Combined effects of urinary phytoestrogens metabolites and polymorphisms in metabolic enzyme gene on idiopathic male infertility.

    Science.gov (United States)

    Qin, Yufeng; Du, Guizhen; Chen, Minjian; Hu, Weiyue; Lu, Chuncheng; Wu, Wei; Hang, Bo; Zhou, Zuomin; Wang, Xinru; Xia, Yankai

    2014-08-01

    Phytoestrogens are plant-derived compounds that may interact with estrogen receptors and mimic estrogenic effects. It remains unclear whether the individual variability in metabolizing phytoestrogens contributes to phytoestrogens-induced beneficial or detrimental effects. Our aim was to determine whether there is any interaction between metabolic rates (MR) of phytoestrogens and genetic polymorphisms in related xenobiotic metabolizing enzyme genes. MR was used to assess phytoestrogen exposure and individual metabolic ability. The amount of phytoestrogens in urine was measured by ultra-high performance liquid chromatography-tandem mass spectrometry in 600 idiopathic infertile male patients and 401 controls. Polymorphisms were genotyped using the SNPstream platform combined with the Taqman method. Prototypes and metabolites of secoisolariciresinol (SEC) have inverse effects on male reproduction. It was found that low MR of SEC increased the risk of male infertility (OR 2.49, 95 % CI 1.78, 3.48, P trend = 8.00 × 10(-8)). Novel interactions were also observed between the MR of SEC and rs1042389 in CYP2B6, rs1048943 in CYP1A1, and rs1799931 in NAT2 on male infertility (P inter = 1.06 × 10(-4), 1.14 × 10(-3), 3.55 × 10(-3), respectively). By analyzing the relationships between urinary phytoestrogen concentrations, their metabolites and male infertility, we found that individual variability in metabolizing SEC contributed to the interpersonal differences in SEC's effects on male reproduction.

  14. Effects of anabolic hormones on structural, metabolic and functional aspects of skeletal muscle

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Pires

    2009-06-01

    Full Text Available This study reviewed information regarding the effects of anabolic hormones on strength gain and muscle hypertrophy, emphasizing the physiological mechanisms that may increase muscle strength. Structural, metabolic and functional aspects were analyzed and special attention was paid to the dose-response relationship. The Pubmed database was searched and studies were selected according to relevance and date of publication (last 15 years. The administration of high testosterone doses (~600 mg/week potentiates the effects of strength training, increasing lean body mass, muscle fiber type IIA and IIB cross-sectional area, and the number of myonuclei. There is no evidence of conversion between MHC isoforms. The interaction between testosterone administration and strength training seems to modify some metabolic pathways, increasing protein synthesis, glycogen and ATP-CP muscle stores and improving fat mobilization. Changes in 17-estradiol concentration or in the ACTH-cortisol and insulin-glucagon ratios seem to be associated with these metabolic alterations. Regarding performance, testosterone administration may improve muscle strength by 5-20% depending on the dose used. On the other hand, the effects of growth hormone on the structural and functional aspects of skeletal muscle are not evident, with this hormone more affecting metabolic aspects. However, strictly controlled human studies are necessary to establish the extent of the effects of anabolic hormones on structural, metabolic and functional aspects.

  15. The metabolic effects of olanzapine and topiramate in rats and humans

    NARCIS (Netherlands)

    Evers, S.S.; van Dijk, G.; van Vliet, A.; Scheurink, A.J.W.

    2011-01-01

    In humans the anti-psychotic Olanzapine (OLZ) has negative side effects on metabolism: it causes weight gain and increases the risk of developing type 2 Diabetes. The anti-convulsant Topiramate (TPM) has the opposite effects: it reduces body weight and improves insulin sensitivity. Because of this,

  16. The Effects of Metabolic Surgery on Fatty Liver Disease and Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Clanton, Jesse; Subichin, Michael

    2016-08-01

    Nonalcoholic fatty liver disease (NAFLD) is an under-recognized but increasingly important manifestation of the metabolic syndrome. Bariatric surgery, both through direct weight loss and more indirect effects on insulin resistance and improvements in inflammatory proteins, can have a profound effect on NAFLD, resulting in improvement or resolution of even high-grade liver disease.

  17. Effect of O2:CO2 Ratio on the Primary Metabolism of Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Kliphuis, A.M.J.; Martens, D.E.; Janssen, M.G.J.; Wijffels, R.H.

    2011-01-01

    High oxygen:carbon dioxide ratios may have a negative effect on growth and productivity of microalgae. To investigate the effect of O2 and CO2 concentrations and the ratio between these on the metabolism of Chlamydomonas reinhardtii we performed turbidostat experiments at different O2:CO2 ratios. Th

  18. In vivo effects of corticotropin-releasing hormone on femoral adipose tissue metabolism in women.

    Science.gov (United States)

    Wellhöner, P; Welzel, M; Rolle, D; Dodt, C

    2007-04-01

    To investigate whether i.v. injected corticotropin-releasing hormone (CRH) (1 microg/kg) has a direct effect on adipose tissue metabolism in humans. Double-blinded, placebo-controlled, crossover study. Twelve healthy normal weight female volunteers (age 20-37 years, body mass index: 22.75+/-1.33 kg/m(2)) Assessment of local generation of glycerol, and glucose in adipose tissue by microdialysis. Measurement of adipose tissue and skin blood flow by laser Doppler flowmetry. Injection of CRH acutely increases interstitial concentrations of glycerol (19.0+/-5.4%, Ptissue blood flow do not explain interstitial metabolite alterations. Initial CRH effects on adipose tissue metabolism are short lasting and disappear after 15 min. The importance of CRH on human energy metabolism is underlined by the present in vivo study demonstrating peptidergic effects on lipolysis and glucose homeostasis in human subcutaneous adipose tissue.

  19. A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role.

    Science.gov (United States)

    Hage, Mirella P; Al-Badri, Marwa R; Azar, Sami T

    2014-08-01

    Hydroxychloroquine (HCQ), a commonly used antimalarial drug in rheumatic diseases, has shown favorable metabolic effects on both glucose control and lipid profiles. We describe a case of a young woman with type 1 diabetes whose glycemic control was optimized with the introduction of HCQ as a treatment for her Sjogren syndrome in addition to a subtle yet measurable improvement in her lipid profile. An increasing body of evidence supports the beneficial impacts of HCQ in various ancillary conditions, including diabetes mellitus and dyslipidemia. However, mechanisms of action responsible for these effects remain ill-defined and may include alterations in insulin metabolism and signaling through cellular receptors. These favorable metabolic effects of HCQ and further understanding of underlying mechanisms may provide an additional rational for its use in rheumatic diseases, conditions associated with an elevated cardiovascular risk.

  20. Effect of NO synthase inhibition on myocardial metabolism during moderate ischemia.

    Science.gov (United States)

    Martin, Claus; Schulz, Rainer; Post, Heiner; Gres, Petra; Heusch, Gerd

    2003-06-01

    Nitric oxide (NO) is involved in the control of myocardial metabolism. In normoperfused myocardium, NO synthase inhibition shifts myocardial metabolism from free fatty acid (FFA) toward carbohydrate utilization. Ischemic myocardium is characterized by a similar shift toward preferential carbohydrate utilization, although NO synthesis is increased. The importance of NO for myocardial metabolism during ischemia has not been analyzed in detail. We therefore assessed the influence of NO synthase inhibition with N(G)-nitro-l-arginine (l-NNA) on myocardial metabolism during moderate ischemia in anesthetized pigs. In control animals, the increase in left ventricular pressure with l-NNA was mimicked by aortic constriction. Before ischemia, l-NNA decreased myocardial FFA consumption (MV(FFA); P < 0.05), while consumption of carbohydrate and O(2) (MVo(2)) remained constant. ATP equivalents [calculated with the assumption of complete oxidative substrate decomposition (ATP(eq))] decreased with l-NNA (P < 0.05), associated with a decrease of regional myocardial function (P < 0.05). In contrast, aortic constriction had no effect on MV(FFA), while MVo(2) increased (P < 0.05) and ATP(eq) and regional myocardial function remained constant. During ischemia, alterations in myocardial metabolism were similar in control and l-NNA-treated animals: MV(FFA) decreased (P < 0.05) and net lactate consumption was reversed to net lactate production (P < 0.05). Regional myocardial function was decreased (P < 0.05), although more markedly in animals receiving l-NNA (P < 0.05). We conclude that the efficiency of oxidative metabolism was impaired by l-NNA per se, paralleled by impaired regional myocardial function. During ischemia, l-NNA had no effect on myocardial substrate consumption, indicating that NO synthases were no longer effectively involved in the control of myocardial metabolism.

  1. Comprehensive insights into microcystin-LR effects on hepatic lipid metabolism using cross-omics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zongyao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Zhang, Xu-Xiang, E-mail: zhangxx@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Wu, Bing; Yin, Jinbao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Yu, Yunjiang [Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Yang, Liuyan, E-mail: yangly@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-09-05

    Highlights: • Use of cross-omics technologies to evaluate toxic effects of microcystin-LR. • Disturbance of hepatic lipid metabolism by oral exposure to microcystin-LR. • Crucial roles of gut microbial community shift in the metabolic disturbance induced by microcystin-LR. - Abstract: Microcystin-LR (MC-LR) can induce hepatic tissue damages and molecular toxicities, but its effects on lipid metabolism remain unknown. This study investigated the effects of MC-LR exposure on mice lipid metabolism and uncovered the underlying mechanism through metabonomic, transcriptomic and metagenomic analyses after administration of mice with MC-LR by gavage for 28 d. Increased liver weight and abdominal fat weight, and evident hepatic lipid vacuoles accumulation were observed in the mice fed with 0.2 mg/kg/d MC-LR. Serum nuclear magnetic resonance analysis showed that MC-LR treatment altered the levels of serum metabolites including triglyceride, unsaturated fatty acid (UFA) and very low density lipoprotein. Digital Gene Expression technology was used to reveal differential expression of hepatic transcriptomes, demonstrating that MC-LR treatment disturbed hepatic UFA biosynthesis and activated peroxisome proliferator-activated receptor (PPAR) signaling pathways via Pparγ, Fabp1 and Fabp2 over-expression. Metagenomic analyses of gut microbiota revealed that MC-LR exposure also increased abundant ratio of Firmicutes vs. Bacteroidetes in gut and altered biosynthetic pathways of various microbial metabolic and pro-inflammatory molecules. In conclusion, oral MC-LR exposure can induce hepatic lipid metabolism disorder mediated by UFA biosynthesis and PPAR activation, and gut microbial community shift may play an important role in the metabolic disturbance.

  2. Effects of Metformin on the Cerebral Metabolic Changes in Type 2 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Huang

    2014-01-01

    Full Text Available Metformin, a widely used antidiabetic drug, has numerous effects on human metabolism. Based on emerging cellular, animal, and epidemiological studies, we hypothesized that metformin leads to cerebral metabolic changes in diabetic patients. To explore metabolism-influenced foci of brain, we used 2-deoxy-2-[18F]fluoro-D-glucose (FDG positron emission tomography for type 2 diabetic patients taking metformin (MET, n=18, withdrawing from metformin (wdMET, n=13, and not taking metformin (noMET, n=9. Compared with the noMET group, statistical parametric mapping showed that the MET group had clusters with significantly higher metabolism in right temporal, right frontal, and left occipital lobe white matter and lower metabolism in the left parahippocampal gyrus, left fusiform gyrus, and ventromedial prefrontal cortex. In volume of interest (VOI- based group comparisons, the normalized FDG uptake values of both hypermetabolic and hypometabolic clusters were significantly different between groups. The VOI-based correlation analysis across the MET and wdMET groups showed a significant negative correlation between normalized FDG uptake values of hypermetabolic clusters and metformin withdrawal durations and a positive but nonsignificant correlation in the turn of hypometabolic clusters. Conclusively, metformin affects cerebral metabolism in some white matter and semantic memory related sites in patients with type 2 diabetes.

  3. The association between employment status and metabolic syndrome in women: modifying effect of education.

    Science.gov (United States)

    Demiral, Yucel; Arik, Hale; Toğrul, Belgin Unal

    2012-01-01

    The aim of the researchers in this study was to examine the relations of paid work versus housework and educational level to metabolic syndrome in women. The study sample consisted of women who participated in a baseline survey of the Heart of Balcova Project, which is an ongoing cohort study in Izmir, Turkey. A randomly selected subsample of women who were aged 30-64 years and who were not retired or unemployed was derived from the individuals who participated in the Heart of Balcova Project. All data were collected through face-to-face interviews with 191 workers and 342 housewives. The association between employment status and metabolic syndrome was explored using multiple logistic regression models. The prevalence of metabolic syndrome was significantly higher among housewives than among workers. Among the women with a high educational level, odds of metabolic syndrome were significantly higher for housewives than for those who were employed. An association between employment status and metabolic syndrome was not observed in the group with a low level of education. The findings revealed that educational level had a modifying effect on the relationship between employment status and metabolic syndrome among women and thus has implications for improving the understanding of the importance of health and educational opportunities for housewives.

  4. Effects of pituitary hormone deficiency on growth and glucose metabolism of the sheep fetus.

    Science.gov (United States)

    Fowden, A L; Forhead, A J

    2007-10-01

    Pituitary hormones are essential for normal growth and metabolic responsiveness after birth, but their role before birth remains unclear. This study examined the effects of hypophysectomizing fetal sheep on their growth and glucose metabolism during the late normal and extended periods of gestation, and on their metabolic response to maternal fasting for 48 h near term. Fetal hypophysectomy reduced crown rump length (CRL), limb lengths, and body weight but increased ponderal index relative to controls near normal term. It also lowered the daily rate of crown rump length increment uniformly from 35 d before, to 20 d after normal term. Hypophysectomized (HX) fetuses had normal weight-specific rates of umbilical uptake, utilization, and oxidation of glucose but lower rates of umbilical oxygen uptake than controls near term. All these metabolic rates were significantly less in HX fetuses during the extended period of gestation than in HX and intact fetuses near normal term. In contrast to controls, glucogenesis was negligible in HX fetuses during maternal fasting. Consequently, the rate of glucose utilization decreased significantly in fasted HX but not intact fetuses. Conversely, the rate of CO(2) production from glucose carbon decreased in fasted intact but not HX fetuses. Fetal hypophysectomy also prevented the fasting-induced increases in plasma cortisol and norepinephrine concentrations seen in controls. These findings demonstrate that the pituitary hormones are important in regulating the growth rate and adaptive responses of glucose metabolism to undernutrition in fetal sheep. They also suggest that fetal metabolism is altered when gestational length is extended.

  5. Dehydroepiandrosterone biosynthesis, metabolism, biological effects, and clinical use (analytical review

    Directory of Open Access Journals (Sweden)

    N. P. Goncharov

    2015-04-01

    Full Text Available The review presents the fundamental information on the metabolism of dehydroepiandrosterone (DHEA, its biological role and possibilities of its use for replacement therapy. There were studied species differences in the synthesis of DHEA in the adrenal cortex. It was found that DHEA and DHEA-sulfate are produced only by the adrenal glands of humans and monkeys, including lower monkeys. Their biosynthesis involves the following steps: cholesterol → pregnenolone → 17-hydroxypregnenolone → DHEA. The adrenal glands of other species, including rats and mice do not synthesize DHEA. At the same time, in certain brain structures not only in man and monkey, but also in other animals DHEA and its precursors are synthesized de novo which are denoted as neurosteroids. It was demonstrated that Purkinje cells which play an important role in memory formation and learning are mainly place neurosteroid formation in mammals and other vertebrates. To establish the relationship of age and the level of DHEA and other steroids we studied the dynamics of their levels at different periods of postnatal development of people. Peak concentration DHEA observed in aged 25–30 years. In the interval from 20 to 90 years in humans the level falls approximately for 90 %. Cortisol levels in blood does not vary with age, leading to an imbalance in the ratio of cortisol/DHEA. Proved a major role of DHEA as a source (precursor for the synthesis of biologically active sex steroids – testosterone, estradiol and estrone in peripheral tissues. This review presents the bioavailability of DHEA in various physiological and pathological processes in humans and animals. In animal experiments has shown a higher bioavailability of DHEA in transdermal administration as compared with oral administration as in this case there is no steroid rapid inactivation in the liver during its first passage. According to recent studies there is a pronounced dependence of bioavailability of DHEA

  6. Dehydroepiandrosterone biosynthesis, metabolism, biological effects, and clinical use (analytical review

    Directory of Open Access Journals (Sweden)

    N. P. Goncharov

    2015-01-01

    Full Text Available The review presents the fundamental information on the metabolism of dehydroepiandrosterone (DHEA, its biological role and possibilities of its use for replacement therapy. There were studied species differences in the synthesis of DHEA in the adrenal cortex. It was found that DHEA and DHEA-sulfate are produced only by the adrenal glands of humans and monkeys, including lower monkeys. Their biosynthesis involves the following steps: cholesterol → pregnenolone → 17-hydroxypregnenolone → DHEA. The adrenal glands of other species, including rats and mice do not synthesize DHEA. At the same time, in certain brain structures not only in man and monkey, but also in other animals DHEA and its precursors are synthesized de novo which are denoted as neurosteroids. It was demonstrated that Purkinje cells which play an important role in memory formation and learning are mainly place neurosteroid formation in mammals and other vertebrates. To establish the relationship of age and the level of DHEA and other steroids we studied the dynamics of their levels at different periods of postnatal development of people. Peak concentration DHEA observed in aged 25–30 years. In the interval from 20 to 90 years in humans the level falls approximately for 90 %. Cortisol levels in blood does not vary with age, leading to an imbalance in the ratio of cortisol/DHEA. Proved a major role of DHEA as a source (precursor for the synthesis of biologically active sex steroids – testosterone, estradiol and estrone in peripheral tissues. This review presents the bioavailability of DHEA in various physiological and pathological processes in humans and animals. In animal experiments has shown a higher bioavailability of DHEA in transdermal administration as compared with oral administration as in this case there is no steroid rapid inactivation in the liver during its first passage. According to recent studies there is a pronounced dependence of bioavailability of DHEA

  7. Photoreceptor effects on plant biomass, resource allocation, and metabolic state.

    Science.gov (United States)

    Yang, Deyue; Seaton, Daniel D; Krahmer, Johanna; Halliday, Karen J

    2016-07-05

    Plants sense the light environment through an ensemble of photoreceptors. Members of the phytochrome class of light receptors are known to play a critical role in seedling establishment, and are among the best-characterized plant signaling components. Phytochromes also regulate adult plant growth; however, our knowledge of this process is rather fragmented. This study demonstrates that phytochrome controls carbon allocation and biomass production in the developing plant. Phytochrome mutants have a reduced CO2 uptake, yet overaccumulate daytime sucrose and starch. This finding suggests that even though carbon fixation is impeded, the available carbon resources are not fully used for growth during the day. Supporting this notion, phytochrome depletion alters the proportion of day:night growth. In addition, phytochrome loss leads to sizeable reductions in overall growth, dry weight, total protein levels, and the expression of CELLULOSE SYNTHASE-LIKE genes. Because cellulose and protein are major constituents of plant biomass, our data point to an important role for phytochrome in regulating these fundamental components of plant productivity. We show that phytochrome loss impacts core metabolism, leading to elevated levels of tricarboxylic acid cycle intermediates, amino acids, sugar derivatives, and notably the stress metabolites proline and raffinose. Furthermore, the already growth-retarded phytochrome mutants are less responsive to growth-inhibiting abiotic stresses and have elevated expression of stress marker genes. This coordinated response appears to divert resources from energetically costly biomass production to improve resilience. In nature, this strategy may be activated in phytochrome-disabling, vegetation-dense habitats to enhance survival in potentially resource-limiting conditions.

  8. The effect of 12 weeks Anethum graveolens (dill on metabolic markers in patients with metabolic syndrome; a randomized double blind controlled trial

    Directory of Open Access Journals (Sweden)

    Mansouri Masoume

    2012-10-01

    Full Text Available Abstract Background The clustering of metabolic abnormalities defined as metabolic syndrome is now both a public health and a clinical problem .While interest in herbal medicine has greatly increased, lack of human evidence to support efficacies shown in animals does exist. This clinical trial study designed to investigate whether herbal medicine, Anethum graveolens (dill extract, could improve metabolic components in patients with metabolic syndrome. Methods A double-blind, randomized, placebo-controlled trial using a parallel design was conducted. 24 subjects who had metabolic syndrome diagnostic criteria (update of ATP III were randomly assigned to either dill extract (n = 12 or placebo (n = 12 for 3 months. Results Across lipid component of metabolic syndrome, no significant differences in triglyceride (TG concentration and high density lipoprotein cholesterol were seen between the two groups. However TG improved significantly from baseline (257.0 vs. 201.5p = 0.01 with dill treatment but such a significant effect was not observed in placebo group. Moreover, no significant differences in waist circumference, blood pressure and fasting blood sugar were seen between two groups after 3 months follow up period. Conclusion In this small clinical trial in patients with metabolic syndrome, 12 weeks of dill extract treatment had a beneficial effect in terms of reducing TG from baseline. However dill treatment was not associated with a significant improvement in metabolic syndrome related markers compared to control group. Larger studies might be required to prove the efficacy and safety of long-term administration of dill to resolve metabolic syndrome components.

  9. The effect of 12 weeks Anethum graveolens (dill on metabolic markers in patients with metabolic syndrome; a randomized double blind controlled trial

    Directory of Open Access Journals (Sweden)

    Bagher Larijani

    2012-10-01

    Full Text Available The clustering of metabolic abnormalities defined as metabolic syndrome is now both a public health and a clinical problem .While interest in herbal medicine has greatly increased, lack of human evidence to support efficacies shown in animals does exist. This clinical trial study designed to investigate whether herbal medicine, Anethum graveolens (dill extract, could improve metabolic components in patients with metabolic syndrome.MethodsA double-blind, randomized, placebo-controlled trial using a parallel design was conducted. 24 subjects who had metabolic syndrome diagnostic criteria (update of ATP III were randomly assigned to either dill extract (n = 12 or placebo (n = 12 for 3 months.ResultsAcross lipid component of metabolic syndrome, no significant differences in triglyceride (TG concentration and high density lipoprotein cholesterol were seen between the two groups. However TG improved significantly from baseline (257.0 vs. 201.5p = 0.01 with dill treatment but such a significant effect was not observed in placebo group. Moreover, no significant differences in waist circumference, blood pressure and fasting blood sugar were seen between two groups after 3 months follow up period.ConclusionIn this small clinical trial in patients with metabolic syndrome, 12 weeks of dill extract treatment had a beneficial effect in terms of reducing TG from baseline. However dill treatment was not associated with a significant improvement in metabolic syndrome related markers compared to control group. Larger studies might be required to prove the efficacy and safety of long-term administration of dill to resolve metabolic syndrome components.

  10. Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention.

    Science.gov (United States)

    Guthrie, Ariane R; Chow, H-H Sherry; Martinez, Jessica A

    2017-02-01

    Resveratrol is a polyphenol found in grape skins and peanuts that has demonstrated many health benefits including protection against aging, cardiovascular and metabolic disease, neurological decline, and cancer. The anticancer properties of resveratrol have been attributed to a variety of mechanisms, including its general inhibition of phase I metabolism and induction of phase II metabolism. The effects of resveratrol on these enzymes, however, are still unclear, as in vitro evidence often contrasts with animal studies and clinical trials. Reasons for these variances could include the low bioavailability of resveratrol and the effects of resveratrol metabolites. Due to resveratrol's interactions with drug-metabolizing enzymes and drug transporters, individuals concurrently taking pharmacological doses of resveratrol with other supplements or medications could potentially experience nutrient-drug interactions. This review summarizes the known effects of resveratrol and its main metabolites on drug metabolism in order to help characterize which populations might benefit from resveratrol for the prevention of cancer, as well as those that may need to avoid supplementation due to potential drug interactions.

  11. Effect of regular organic solvents on cytochrome P450-mediated metabolic activities in rat liver microsomes.

    Science.gov (United States)

    Li, Dan; Han, Yonglong; Meng, Xiangle; Sun, Xipeng; Yu, Qi; Li, Yan; Wan, Lili; Huo, Yan; Guo, Cheng

    2010-11-01

    The effects of regular organic solvents on the metabolic activities of various human cytochromes P450 (P450s) have been reported. However, very little is known about their influence on metabolic activities mediated by P450s in the rat liver microsomes (RLM). The purpose of this study was to investigate the effects of organic solvents such as methanol, acetonitrile, dimethyl sulfoxide (DMSO), acetone, and ethanol on CYP1A, CYP2C, CYP2D, CYP2E, and CYP3A-mediated metabolism using RLM. The results showed that the activities of most rat P450 enzymes appeared to be organic solvent-dependent, and the metabolism of the tested probes were remarkably reduced when the concentration of organic solvents was up to 5% v/v, whereas most organic solvents demonstrated no significant interference when the concentration was below 1%, with the exception of DMSO. In addition, organic solvents exhibited different inhibitory effects, for example, CYP2D and CYP2E showed a significant reduction of activities at lower concentrations of organic solvents. Hence, this phenomenon should be taken into consideration when designing in vitro metabolism studies of new chemical entities. Therefore, we recommend acetonitrile as the most suitable solvent for RLM incubations, and the content of organic solvent should be kept lower than 1% v/v.

  12. Effects of Metabolic Cage Housing on Rat Behavior and Performance in the Social Interaction Test.

    Science.gov (United States)

    Whittaker, Alexandra L; Lymn, Kerry A; Howarth, Gordon S

    2016-01-01

    Although the metabolic cage is commonly used for housing nonhuman animals in the laboratory, it has been recognized as constituting a unique stressor. Such an environment would be expected to affect behavioral change in animals housed therein. However, few studies have specifically addressed the nature or magnitude of this change. The current study sought to characterize the behavioral time budget of rats in metabolic cage housing in comparison to that of individually housed animals in standard open-top cages. Rats in metabolic cages spent less time moving, manipulating enrichment, and carrying out rearing behaviors, and there was a corresponding shift toward inactivity. In an applied Social Interaction Test, behavioral scoring implied that metabolic cage housing had an anxiogenic effect. In conclusion, metabolic cage housing produces measurable effects on spontaneous and evoked behavior in rats in the laboratory. These behavioral changes may lead to a negative emotional state in these animals, which could have negative welfare consequences. Further research is needed to quantify the existence and magnitude of such an effect on rat well being.

  13. Effects of GH on protein metabolism during dietary restriction in man.

    Science.gov (United States)

    Nørrelund, Helene; Riis, Anne Lene; Møller, Niels

    2002-08-01

    The metabolic response to dietary restriction involves a series of hormonal and metabolic adaptations leading to protein conservation. An increase in the serum level of growth hormone (GH) during fasting has been well substantiated. GH has potent protein anabolic actions, as evidenced by a significant decrease in lean body mass and muscle mass in chronic GH deficiency, and vice versa in patients with acromegaly. The present review outlines current knowledge about the role of GH in the metabolic response to fasting, with particular reference to the effects on protein metabolism. Physiological bursts of GH secretion seem to be of seminal importance for the regulation of protein conservation during fasting. Apart from the possible direct effects of GH on protein dynamics, a number of additional anabolic agents, such as insulin, insulin-like growth factor-I, and free fatty acids (FFAs), are activated. Taken together the effects of GH on protein metabolism seem to include both stimulation of protein synthesis and inhibition of breakdown, depending on the nature of GH administration, which tissues are being studied, and on the physiological conditions of the subjects.

  14. Effects of Three Drugs on Membrane Metabolism Against Cysticerci cellulosae in vitro

    Institute of Scientific and Technical Information of China (English)

    HAO Yanhong; LI Qingzhang; GAO Xuejun; LIU Yongjie; GAO Wenxue

    2009-01-01

    To investigate the effects and mechanisms of the benzimidazole carbamate and benmidine drugs on Cysticerci cellulosae and choose effective drugs on Cysticerci cellulosae, the membrane metabolism of Cysticerci cellulosae in vitro was tested after three kinds of drugs which were used respectively. The indexes included the contents of lipids, the contents of SA and the changes of the membrane fluidity. The results showed that oxfendazole could inhibit the membrane metabolism of immature and mature Cysticerci cellulosae in vitro, and albendazole only inhibited the mature one, while thibendimidine neither acted on the immature nor mature one.

  15. Effect of obesity and metabolic syndrome on plasma oxysterols and fatty acids in human.

    Science.gov (United States)

    Tremblay-Franco, Marie; Zerbinati, Chiara; Pacelli, Antonio; Palmaccio, Giuseppina; Lubrano, Carla; Ducheix, Simon; Guillou, Hervé; Iuliano, Luigi

    2015-07-01

    Obesity and the related entity metabolic syndrome are characterized by altered lipid metabolism and associated with increased morbidity risk for cardiovascular disease and cancer. Oxysterols belong to a large family of cholesterol-derived molecules known to play crucial role in many signaling pathways underlying several diseases. Little is known on the potential effect of obesity and metabolic syndrome on oxysterols in human. In this work, we questioned whether circulating oxysterols might be significantly altered in obese patients and in patients with metabolic syndrome. We also tested the potential correlation between circulating oxysterols and fatty acids. 60 obese patients and 75 patients with metabolic syndrome were enrolled in the study along with 210 age- and sex-matched healthy subjects, used as control group. Plasma oxysterols were analyzed by isotope dilution GC/MS, and plasma fatty acids profiling was assessed by gas chromatography coupled with flame ionization detection. We found considerable differences in oxysterols profiling in the two disease groups that were gender-related. Compared to controls, males showed significant differences only in 4α- and 4β-hydroxycholesterol levels in obese and metabolic syndrome patients. In contrast, females showed consistent differences in 7-oxocholesterol, 4α-hydroxycholesterol, 25-hydroxycholesterol and triol. Concerning fatty acids, we found minor differences in the levels of these variables in males of the three groups. Significant changes were observed in plasma fatty acid profile of female patients with obesity or metabolic syndrome. We found significant correlations between various oxysterols and fatty acids. In particular, 4β-hydroxycholesterol, which is reduced in obesity and metabolic syndrome, correlated with a number of saturated and mono-unsaturated fatty acids that are end-products of de novo lipogenesis. Our data provide the first evidence that obesity and metabolic syndrome are associated with

  16. Recent advances in understanding and mitigating adipogenic and metabolic effects of antipsychotic drugs

    Directory of Open Access Journals (Sweden)

    Julia M Gohlke

    2012-06-01

    Full Text Available Although offering many benefits for several psychiatric disorders, antipsychotic drugs (APDs as a class have a major liability in their tendency to promote adiposity, obesity, and metabolic dysregulation in an already metabolically vulnerable population. The past decade has witnessed substantial research aimed at investigating the mechanisms of these adverse effects and mitigating them. On July 11 and 12, 2011, with support from 2 NIH institutes, leading experts convened to discuss current research findings and to consider future research strategies. Five areas where significant advances are being made emerged from the conference: (1 methodological issues in the study of APD effects; (2 unique characteristics and needs of pediatric patients; (3 genetic components underlying susceptibility to APD-induced metabolic effects; (4 APD effects on weight gain and adiposity in relation to their acute effects on glucose regulation and diabetes risk; and (5 the utility of behavioral, dietary, and pharmacological interventions in mitigating APD-induced metabolic side effects. This paper summarizes the major conclusions and important supporting data from the meeting.

  17. Ethanol metabolism and its effects on the intestinal epithelial barrier

    NARCIS (Netherlands)

    Elamin, E.E.; Masclee, A.A.; Dekker, J.; Jonkers, D.M.

    2013-01-01

    Ethanol is widely consumed and is associated with an increasing global health burden. Several reviews have addressed the effects of ethanol and its oxidative metabolite, acetaldehyde, on the gastrointestinal (GI) tract, focusing on carcinogenic effects or alcoholic liver disease. However, both the

  18. Metabolic effect of combined telmisartan and nifedipine CR therapy in patients with essential hypertension

    Directory of Open Access Journals (Sweden)

    Shimizu Y

    2012-09-01

    Full Text Available Yuji Shimizu,1,4 Fumiyasu Yamasaki,4 Takashi Furuno,1,4 Toru Kubo,1 Takayuki Sato,3,4 Yoshinori Doi,1 Tetsuro Sugiura21Medicine and Geriatrics, 2Clinical Laboratory, 3Cardiovascular Control, Kochi Medical, School, Nankoku, Japan; 4Section of Cardiology, Inoue Hospital, Takaoka, JapanBackground: In addition to exerting a blood pressure (BP-lowering effect, telmisartan produces favorable metabolic effects via peroxisome proliferator-activated receptor γ activation. While a combination of telmisartan and a calcium channel blocker is often used to achieve a target BP level, the metabolic effects of this drug combination remain unclear. Therefore, this study evaluated the metabolic effects of telmisartan plus nifedipine controlled release (CR therapy, in hypertensive patients without metabolic disease.Methods: Sixteen patients with essential hypertension, who had not undergone antihypertensive therapy in the previous 6 months, were studied. Patients were initiated on telmisartan (40 mg/day. If their office BP was not reduced to 140/90 mmHg after 6 weeks, nifedipine CR (20–40 mg per day was added for 18 weeks. The other patients whose BP had achieved the target of 140/90 mmHg, continued only telmisartan.Results: Telmisartan reduced BP (174 ± 13/92 ± 10 to 143 ± 22/78 ± 11 mmHg; P < 0.01 at 6 weeks in 16 patients, but eight patients did not achieve target BP levels and required addition of nifedipine. Telmisartan also resulted in a reduction in the homeostatic model assessment of insulin resistance (HOMA-IR (1.30 ± 0.65 to 1.10 ± 0.42; P < 0.05 at 6 weeks, but did not affect adiponectin or leptin levels. Addition of nifedipine (n = 8 resulted in a reduction in BP (158 ± 18/80 ± 13 to 131 ± 8/73 ± 13 mmHg; P < 0.01 at 18 weeks, but did not affect the HOMA-IR (1.10 ± 0.40 to 1.02 ± 0.56; ns. In patients who did not require addition of nifedipine (n = 8, BP levels remained nearly identical at 18 weeks (127 ± 13/73 ± 9 to 128 ± 13/68 ± 8

  19. Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris.

    Science.gov (United States)

    Nezammahalleh, Hassan; Ghanati, Faezeh; Adams, Thomas A; Nosrati, Mohsen; Shojaosadati, Seyed Abbas

    2016-10-01

    An electric field (EF) generator device was fabricated and applied to the treatment of Chlorella vulgaris ISC33 at three distinct concentrations before cultivation. The EF of moderate intensity (2.7kVcm(-1)) has a hormetic effect on algal growth. The highest growth stimulation of 51% was observed after 50min treatment of 0.4gL(-1) algal suspension. The influence of EF on the system was then studied from both theoretical and experimental perspectives. The growth rate increased with treatment time up to a maximum because of improved membrane permeability, and then declined afterwards due to peroxide accumulation in the medium. The contents of chlorophylls, carotenoids, soluble carbohydrates, lipids, and proteins were also measured to understand possible changes on algal metabolism. The EF treatment of algal suspension has no observable effect on the cell metabolism while both algal growth and metabolism was significantly affected by the inoculum size.

  20. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using 13 C metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Usui Yuki

    2012-06-01

    Full Text Available Abstract Background It has long been recognized that analyzing the behaviour of the complex intracellular biological networks is important for breeding industrially useful microorganisms. However, because of the complexity of these biological networks, it is currently not possible to obtain all the desired microorganisms. In this study, we constructed a system for analyzing the effect of gene expression perturbations on the behavior of biological networks in Escherichia coli. Specifically, we utilized 13 C metabolic flux analysis (13 C-MFA to analyze the effect of perturbations to the expression levels of pgi and eno genes encoding phosphoglucose isomerase and enolase, respectively on metabolic fluxes. Results We constructed gene expression-controllable E. coli strains using a single-copy mini F plasmid. Using the pgi expression-controllable strain, we found that the specific growth rate correlated with the pgi expression level. 13 C-MFA of this strain revealed that the fluxes for the pentose phosphate pathway and Entner-Doudoroff pathway decreased, as the pgi expression lelvel increased. In addition, the glyoxylate shunt became active when the pgi expression level was almost zero. Moreover, the flux for the glyoxylate shunt increased when the pgi expression level decreased, but was significantly reduced in the pgi-knockout cells. Comparatively, eno expression could not be decreased compared to the parent strain, but we found that increased eno expression resulted in a decreased specific growth rate. 13 C-MFA revealed that the metabolic flux distribution was not altered by an increased eno expression level, but the overall metabolic activity of the central metabolism decreased. Furthermore, to evaluate the impact of perturbed expression of pgi and eno genes on changes in metabolic fluxes in E. coli quantitatively, metabolic sensitivity analysis was performed. As a result, the perturbed expression of pgi gene had a great impact to the

  1. EFFECT OF DANCE EXERCISE ON COGNITIVE FUNCTION IN ELDERLY PATIENTS WITH METABOLIC SYNDROME: A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Sang-Wook Song

    2011-12-01

    Full Text Available Metabolic syndrome is associated with an increased risk of cognitive impairment. The purpose of this prospective pilot study was to examine the effects of dance exercise on cognitive function in elderly patients with metabolic syndrome. The participants included 38 elderly metabolic syndrome patients with normal cognitive function (26 exercise group and 12 control group. The exercise group performed dance exercise twice a week for 6 months. Cognitive function was assessed in all participants using the Korean version of the Consortium to Establish a Registry for Alzheimer's disease (CERAD-K. Repeated-measures ANCOVA was used to assess the effect of dance exercise on cognitive function and cardiometabolic risk factors. Compared with the control group, the exercise group significantly improved in verbal fluency (p = 0.048, word list delayed recall (p = 0.038, word list recognition (p = 0.007, and total CERAD-K score (p = 0.037. However, no significance difference was found in body mass index, blood pressure, waist circumference, fasting plasma glucose, triglyceride, and HDL cholesterol between groups over the 6-month period. In the present study, six months of dance exercise improved cognitive function in older adults with metabolic syndrome. Thus, dance exercise may reduce the risk for cognitive disorders in elderly people with metabolic syndrome.

  2. Metabolic factors-triggered inflammatory response drives antidepressant effects of exercise in CUMS rats.

    Science.gov (United States)

    Liu, Weina; Wang, Hongmei; Wang, Yangkai; Li, Haipeng; Ji, Liu

    2015-08-30

    Chronic stress is a potential contributing factor for depression, accompanying with metabolic and inflammatory response. Exercise is considered as a treatment for depression, but mechanisms underlying its beneficial effects still remain unknown. The objectives of present study were to confirm that metabolic factors-triggered inflammatory response mediates the antidepressant actions of exercise in chronic unpredictable mild stress (CUMS) rats. It has been found that CUMS stimulated expression of ghrelin and its receptor Ghsr, but inhibited expression of leptin and its receptor LepRb. Ghrelin, via binding to Ghsr, induced phosphorylation of GSK-3β on Tyr216 and decreased phosphorylation on Ser9, thus increasing GSK-3β activity. Conversely, ghrelin binding to Ghsr decreased STAT3 activity, through decreasing phosphorylation of STAT3 on Tyr705 and increasing Ser727 phosphorylation. Negatively correlated with ghrelin, leptin binding to LepRb had opposite effects on the activity of GSK-3β and STAT3 via phosphorylation. In addition, decreased leptin level initiated NLRP3 activity via LepRb. Furthermore, GSK-3β inhibited STAT3 activation, thus promoting the expression of NLRP3. Meanwhile, swim improved metabolic and inflammatory response both in CUMS and control rats. Our findings suggest that exercise not only ameliorates metabolic disturbance and inflammatory response in depression, but also contributes to metabolic and inflammatory function in normal conditions.

  3. The effectiveness of metformin in patients with metabolic syndrome and nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    S A Butrova

    2008-06-01

    Full Text Available The mechanism of action of metformin is realized through activation of cAMP-dependent protein kinase, leading to a decrease hepatic glucose production as well as to decrease the synthesis of triglycerides and an increase in fat oxidation. Several studies have demonstrated the positive effect of the drug in non-alcoholic fatty liver disease, manifested in reducing the activity of enzymes, reducing the size of the liver and insulin resistance. The aim of our study was to evaluate the effectiveness of metformin in patients with metabolic syndrome and nonalcoholic fatty liver disease. The study found that the use Siofor 850 mg 2 times a day in conjunction with a reduced-calorie nutrition in patients with metabolic syndrome and nonalcoholic fatty liver disease leads to a significant reduction in insulin resistance associated with decreased activity of transaminases, improvement of metabolic parameters. The therapy Siofor majority of patients (60% with metabolic syndrome and nonalcoholic fatty liver disease achieved a clinically significant weight loss and improved body composition. Application Siofor improves lifestyle changes in obese patients with non-alcoholic liver disease dirovoy and metabolic disorders.

  4. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use.

    Science.gov (United States)

    Henry, Porche' Kirkland; Murnane, Kevin S; Votaw, John R; Howell, Leonard L

    2010-12-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N = 6) were given increasing access to cocaine under a fixed-ratio schedule of intravenous (i.v.) drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute intramuscular (i.m.) cocaine-induced changes in brain metabolism in the cocaine-naïve state, following 60 sessions under limited-access conditions (1 h/day), following 60 sessions under extended-access conditions (4 h/day), and following 4 weeks of drug withdrawal. In the cocaine-naïve state, cocaine-induced increases in brain metabolism were restricted to the prefrontal cortex. As cocaine exposure increased from limited to extended access, metabolic effects expanded throughout the frontal cortex and were induced within the striatum. Conversely, cocaine-induced activation was far less robust following withdrawal. The results highlight a progressive expansion of the metabolic effects of cocaine to include previously unaffected dopamine innervated brain regions as a consequence of cocaine self-administration history. The identification of brain regions progressively influenced by drug exposure may be highly relevant toward efforts to develop treatments for cocaine addiction.

  5. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival.

    Science.gov (United States)

    Fillmore, Natasha; Huqi, Alda; Jaswal, Jagdip S; Mori, Jun; Paulin, Roxane; Haromy, Alois; Onay-Besikci, Arzu; Ionescu, Lavinia; Thébaud, Bernard; Michelakis, Evangelos; Lopaschuk, Gary D

    2015-01-01

    Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.

  6. Comprehensive insights into microcystin-LR effects on hepatic lipid metabolism using cross-omics technologies.

    Science.gov (United States)

    Zhang, Zongyao; Zhang, Xu-Xiang; Wu, Bing; Yin, Jinbao; Yu, Yunjiang; Yang, Liuyan

    2016-09-05

    Microcystin-LR (MC-LR) can induce hepatic tissue damages and molecular toxicities, but its effects on lipid metabolism remain unknown. This study investigated the effects of MC-LR exposure on mice lipid metabolism and uncovered the underlying mechanism through metabonomic, transcriptomic and metagenomic analyses after administration of mice with MC-LR by gavage for 28 d. Increased liver weight and abdominal fat weight, and evident hepatic lipid vacuoles accumulation were observed in the mice fed with 0.2mg/kg/d MC-LR. Serum nuclear magnetic resonance analysis showed that MC-LR treatment altered the levels of serum metabolites including triglyceride, unsaturated fatty acid (UFA) and very low density lipoprotein. Digital Gene Expression technology was used to reveal differential expression of hepatic transcriptomes, demonstrating that MC-LR treatment disturbed hepatic UFA biosynthesis and activated peroxisome proliferator-activated receptor (PPAR) signaling pathways via Pparγ, Fabp1 and Fabp2 over-expression. Metagenomic analyses of gut microbiota revealed that MC-LR exposure also increased abundant ratio of Firmicutes vs. Bacteroidetes in gut and altered biosynthetic pathways of various microbial metabolic and pro-inflammatory molecules. In conclusion, oral MC-LR exposure can induce hepatic lipid metabolism disorder mediated by UFA biosynthesis and PPAR activation, and gut microbial community shift may play an important role in the metabolic disturbance.

  7. Extracellular Nucleotides in Exercise: Possible Effect on Brain Metabolism.

    Science.gov (United States)

    Forrester, Tom

    1979-01-01

    A review of experiments which demonstrate the release of ATP from skeletal muscle, cardiac muscle, and active brain tissue. Effects of exogenously applied ATP to brain tissue are discussed in relation to whole body exercise. (Author/SA)

  8. Undiagnosed metabolic syndrome and other adverse effects among ...

    African Journals Online (AJOL)

    Because clozapine is prescribed as chronic medication for schizophrenia patients ... and severity of the adverse effects of clozapine in patients of Xhosa descent ..... QT-interval prolongation has been shown to increase cardiac arrhythmia risk ...

  9. Metformin and male reproduction: effects on Sertoli cell metabolism

    Directory of Open Access Journals (Sweden)

    Teona Albertovna Shvangiradze

    2014-08-01

    Full Text Available Metformin, widely used for the treatment of type 2 diabetes, is increasingly becoming the subject of research in other areas of medicine. Apart form antihyperglycemic effect of metformin has an inhibitory effect on the proliferation of various tumor cells both in vivo and in vitro. Metformin is well established in the treatment of anovulatory infertility in polycystic ovary syndrome, while its influence male reproductive function are poorly understood.

  10. Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats.

    Science.gov (United States)

    Felice, Juan Ignacio; Gangoiti, María Virginia; Molinuevo, María Silvina; McCarthy, Antonio Desmond; Cortizo, Ana María

    2014-02-01

    The aims of this study were: first, to evaluate the possible effects of a fructose rich diet (FRD)-induced metabolic syndrome (MS) on different aspects of long bone histomorphometry in young male rats; second, to investigate the effects of this diet on bone tissue regeneration; and third, to correlate these morphometric alterations with changes in the osteogenic/adipogenic potential and expression of specific transcription factors, of marrow stromal cells (MSC) isolated from rats with fructose-induced MS. MS was induced in rats by treatment with a FRD for 28 days. Halfway through treatment, a parietal wound was made and bone healing was evaluated 14 days later. After treatments, histomorphometric analysis was performed in dissected femoral and parietal bones. MSC were isolated from the femora of control or fructose-treated rats and differentiated either to osteoblasts (evaluated by type 1 collagen, Alkaline phosphatase and extracellular nodule mineralization) or to adipocytes (evaluated by intracellular triglyceride accumulation). Expression of Runx2 and PPARγ was assessed by Western blot. Fructose-induced MS induced deleterious effects on femoral metaphysis microarchitecture and impaired bone regeneration. Fructose treatment decreased the osteogenic potential of MSC and Runx2 expression. In addition, it increased the adipogenic commitment of MSC and PPARγ expression. Fructose-induced MS is associated with deleterious effects on bone microarchitecture and with a decrease in bone repair. These alterations could be due to a deviation in the adipogenic/osteogenic commitment of MSC, probably by modulation of the Runx2/PPARγ ratio. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effects of Polychlorinated Biphenyls on Thyroid Hormone Physiology and Metabolism of European sea bass (Dicentrarchus labrax)

    OpenAIRE

    Schnitzler, Joseph; Klaren, Peter; Celis, Niko; Blust, Ronny; Covaci, Adrian; Thomé, Jean-Pierre; Das, Krishna

    2010-01-01

    Studies in the laboratory have shown that a number of synthetic and natural chemicals can interfere with the endocrine system in fish. Among them, organic compounds such as pesticides and polychlorobiphenyls (PCBs) are well described endocrine disrupters. Of particular interest are effects on thyroid function, but data on effects of PCB exposure on these hormones and related metabolism has been lacking. We propose here a thorough approach to assess effects of these compounds on the thyroid fu...

  12. Metabolic emergent auditory effects by means of physical particle modeling : the example of musical sand

    OpenAIRE

    Luciani, Annie; Castagné, Nicolas; Tixier, Nicolas

    2003-01-01

    International audience; In the context of Computer Music, physical modeling is usually dedicated to the modeling of sound sources or physical instruments. This paper presents an innovative use of physical modeling in order to model and synthesize complex auditory effects such as collective acoustic phenomena producing metabolic emergent auditory organizations. As a case study, we chose the "dune effect", which in open nature leads both to visual and auditory effects. The article introduces tw...

  13. Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae in Glucose-Limited Chemostats

    OpenAIRE

    Sarvari Horvath, I; Franzén, C J; Taherzadeh, M J; Niklasson, C; Lidén, Gunnar

    2003-01-01

    Effects of furfural on the aerobic metabolism of the yeast Saccharomyces cerevisiae were studied by performing chemostat experiments, and the kinetics of furfural conversion was analyzed by performing dynamic experiments. Furfural, an important inhibitor present in lignocellulosic hydrolysates, was shown to have an inhibitory effect on yeast cells growing respiratively which was much greater than the inhibitory effect previously observed for anaerobically growing yeast cells. The residual fur...

  14. Effects of cryotherapy methods on circulatory, metabolic, inflammatory and neural properties: a systematic review

    OpenAIRE

    Freire,Bruno; Geremia,Jeam; Baroni, Bruno Manfredini; Vaz, Marco Aurélio

    2016-01-01

    Abstract Introduction: The cooling therapy (cryotherapy) is commonly used in clinical environmental for the injuries treatment according to its beneficial effects on pain, local inflammation and the recovery time of patients. However, there is no consensus in the literature about the effects of cryotherapy in the physiological reactions of affected tissues after an injury. Objective: To realize a systematic review to analyze the cryotherapy effects on circulatory, metabolic, inflammatory an...

  15. Effects of acid-base abnormalities on blood capacity of transporting CO(2): adverse effect of metabolic acidosis.

    Science.gov (United States)

    Cavaliere, F; Antonelli, M; Arcangeli, A; Conti, G; Pennisi, M A; Proietti, R

    2002-05-01

    To investigate the effects of some acid-base abnormalities on blood capacity of transporting CO(2). Prospective study. General and Cardiosurgical ICUs of a University hospital. Six groups of ten patients characterized by: metabolic alkalosis; respiratory alkalosis; absence of acid-base abnormalities; metabolic acidosis; uncompensated respiratory acidosis; and compensated respiratory acidosis. The CO(2) dissociation curve, Haldane effect, and the ratio Ra-v between Ca-vCO(2) and Pa-vCO(2) were calculated from arterial and mixed-venous blood gas analyses. The CO(2) dissociation curve was shifted upwards by metabolic alkalosis and compensated respiratory acidosis and downwards by metabolic acidosis. The slope of the curve was unaffected, but CO(2) transport not due to Haldane effect was significantly lower in respiratory acidosis since the slope was less steep at higher PCO(2) values. In comparison with controls, patients affected by metabolic acidosis showed lower Haldane effect values (0.18+/-0.15 vs 0.59+/-0.26 ml of CO(2) per ml of arterial-mixed venous O(2) content difference; P acidosis, markedly affect blood capacity of transporting CO(2) and may worsen tissue hypercarbia associated with hypoperfusion. However, because of possible errors due to small measurements and the assumptions of the method, in the future definitive clarification will require the construction of original CO(2) dissociation curves for each acid-base abnormality.

  16. [Effects of calcium antagonist drugs on glucide metabolism].

    Science.gov (United States)

    Gusmini, G; Lombardi, C; Rangoni, G; Spedini, C

    1988-10-01

    The extension of the clinical use of Calcium entry Blockers (CEBs) indicates the need for a careful evaluation of possible adverse effects. Recently, contrasting data have been reported in some studies on the effect of CEBs on oral and i.v. glucose tolerance tests. The aim of the present study was to evaluate the potential diabetogenic properties of CEBs in normal subjects and their activities in diabetic patients. The data present in literature and also personal observations outline the safety of CEBs. In fact, there is a low possibility to derange the balance between insulin and glucagon secretion after acute and chronic administration of CEBs at conventional dosages.

  17. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network

    Directory of Open Access Journals (Sweden)

    Mustafa Sertbaş

    2014-01-01

    Full Text Available Network-oriented analysis is essential to identify those parts of a cell affected by a given perturbation. The effect of neurodegenerative perturbations in the form of diseases of brain metabolism was investigated by using a newly reconstructed brain-specific metabolic network. The developed stoichiometric model correctly represents healthy brain metabolism, and includes 630 metabolic reactions in and between astrocytes and neurons, which are controlled by 570 genes. The integration of transcriptome data of six neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, schizophrenia with the model was performed to identify reporter features specific and common for these diseases, which revealed metabolites and pathways around which the most significant changes occur. The identified metabolites are potential biomarkers for the pathology of the related diseases. Our model indicated perturbations in oxidative stress, energy metabolism including TCA cycle and lipid metabolism as well as several amino acid related pathways, in agreement with the role of these pathways in the studied diseases. The computational prediction of transcription factors that commonly regulate the reporter metabolites was achieved through binding-site analysis. Literature support for the identified transcription factors such as USF1, SP1 and those from FOX families are known from the literature to have regulatory roles in the identified reporter metabolic pathways as well as in the neurodegenerative diseases. In essence, the reconstructed brain model enables the elucidation of effects of a perturbation on brain metabolism and the illumination of possible machineries in which a specific metabolite or pathway acts as a regulatory spot for cellular reorganization.

  18. Effect of breakfast glycemic index on metabolic responses during rest and exercise in overweight and non-overweight adolescent girls

    OpenAIRE

    Tolfrey, Keith; Zakrzewski, Julia Kirstey; Stevenson, Emma

    2011-01-01

    Abstract Background/Objectives: The metabolic responses to mixed breakfast meals with different glycemic indexes (GI) and their effects on substrate metabolism during exercise in adolescent girls have not been examined. The interaction with weight status also warrants investigation. The present study investigated the effect of mixed breakfast meals containing high GI (HGI) or low GI (LGI) carbohydrates on metabolic responses and fat oxidation during rest and exercise in overweight ...

  19. Land use effects and stream metabolic rates: a review of ecosystem response

    Directory of Open Access Journals (Sweden)

    Eduardo Francisco da Silva-Junior

    Full Text Available Abstract Aim To conduct a review of the literature in order to identify the general stream metabolic responses to land use change. Methods I conducted a scientometric review analyzing the distribution of the studies among different environments, the land use scale used, and the general trends in stream metabolism response under each kind of land-use impact. Major Results Most of the analyzed studies were conducted in temperate environments, studying land-use impacts at catchment scale. Ecosystem metabolism responded to land use impacts most of the cases, especially under agricultural pressure. The general responses to land-use alterations were increases in rates of Gross Primary Production (GPP and ecosystem Respiration (R. Primary production increases were mostly related to light and nutrient concentration increases, while R was usually related to water nutrient concentration, temperature and amount of particulate organic matter, but this general behavior can change under high impact levels where sometimes GPP decreases in response to turbidity increases. Riparian vegetation restoration have a positive effect in driving stream metabolic conditions in the direction of pristine condition, but the effectiveness of this approach is reduced in highly impacted systems. Conclusions To elucidate the mechanistic relations between stream metabolic changes and land use impacts is still one fundamental aspect to study in order to best predict effects of land use changes and establish management and protection programs. Thus, studies should focus on the causative relations between stream processes and land use changes considering different scales and multiple stress scenarios in order to improve our understanding about factors that drive the observed metabolic changes.

  20. Metabolomics Analysis of Metabolic Effects of Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibition on Human Cancer Cells

    Science.gov (United States)

    Tolstikov, Vladimir; Nikolayev, Alexander; Dong, Sucai; Zhao, Genshi; Kuo, Ming-Shang

    2014-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide–consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry–based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer) and HCT-116 (colorectal cancer) cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA), and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC)-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level. PMID:25486521

  1. The effects of hydraulics, geomorphology, and storm events on metabolism rates in an agricultural river

    Science.gov (United States)

    O'Connor, B. L.; Harvey, J. W.; McPhillips, L. E.

    2009-12-01

    Physical factors such as discharge, geomorphology, and sediment transport strongly influence metabolism rates in agricultural rivers with sparse tree canopies where sunlight is not limiting. These physical processes establish a mosaic of sediment habitats of varying particle sizes, permeabilities, and biological communities that control primary production and respiration rates. In this study, we examined the combined factors of hydraulic conditions, sediment texture, and hyporheic exchange on the spatial and temporal variability of metabolism rates in an agricultural river located in central Iowa. Hydraulic conditions were quantified using field velocity measurements and two-dimensional hydraulic modeling. Sediment texture was assessed using a grid-based survey identifying dominant particle size classes, as well as aerial coverage of green algae and fine benthic organic material. Hyporheic exchange potential was quantified using an effective diffusion scaling relationship based on sediment and flow conditions. Patch-scale metabolism rates varied spatially according to patterns in hydraulic and sediment characteristics, but were of the same order of magnitude as reach-scale gross primary productivity and community respiration measurements. Two discharge-related storm perturbation regimes to the reach-scale metabolism rates were identified using diurnal dissolved oxygen data measured at the study reach over three years. Rainfall events of days as a result of increased turbidity, whereas rainfall events of > 3 cm disrupted metabolism rates for several days to weeks due to bed mobilization and the restructuring of the sediment habitats. A combination of hydraulic modeling, habitat mapping, and reach-scale metabolism measurements were used to produce a two-dimensional analysis of a turbidity-related disturbance event that occurred in late fall 2007. Results from this study suggest that physical processes establish, destroy, and restructure hydraulic and sediment

  2. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT) inhibition on human cancer cells.

    Science.gov (United States)

    Tolstikov, Vladimir; Nikolayev, Alexander; Dong, Sucai; Zhao, Genshi; Kuo, Ming-Shang

    2014-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide-consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry-based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer) and HCT-116 (colorectal cancer) cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA), and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC)-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.

  3. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT inhibition on human cancer cells.

    Directory of Open Access Journals (Sweden)

    Vladimir Tolstikov

    Full Text Available Nicotinamide phosphoribosyltransferase (NAMPT plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide-consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry-based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer and HCT-116 (colorectal cancer cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA, and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.

  4. No effect of oral contraceptives on the metabolism of levetiracetam

    DEFF Research Database (Denmark)

    Sabers, Anne; Christensen, Jacob

    2011-01-01

    The effect on clearance of levetiracetam (LEV) was estimated in women with epilepsy of childbearing potential using oral contraceptives (OCs). The estimated clearance (plasma concentration/daily dose) was 39 nmol/L/mg (range 14-88 nmol/L/mg) among women who did not use OC (n=30) and 38 nmol/L/mg ...

  5. Metabolically healthy and unhealthy obesity: differential effects on myocardial function according to metabolic syndrome, rather than obesity.

    Science.gov (United States)

    Dobson, R; Burgess, M I; Sprung, V S; Irwin, A; Hamer, M; Jones, J; Daousi, C; Adams, V; Kemp, G J; Shojaee-Moradie, F; Umpleby, M; Cuthbertson, D J

    2016-01-01

    The term 'metabolically healthy obese (MHO)' is distinguished using body mass index (BMI), yet BMI is a poor index of adiposity. Some epidemiological data suggest that MHO carries a lower risk of cardiovascular disease (CVD) or mortality than being normal weight yet metabolically unhealthy. We aimed to undertake a detailed phenotyping of individuals with MHO by using imaging techniques to examine ectopic fat (visceral and liver fat deposition) and myocardial function. We hypothesised that metabolically unhealthy individuals (irrespective of BMI) would have adverse levels of ectopic fat and myocardial dysfunction compared with MHO individuals. Individuals were categorised as non-obese or obese (BMI ⩾30 kg m(-2)) and as metabolically healthy or unhealthy according to the presence or absence of metabolic syndrome. Sixty-seven individuals (mean±s.d.: age 49±11 years) underwent measurement of (i) visceral, subcutaneous and liver fat using magnetic resonance imaging and proton magnetic resonance spectroscopy, (ii) components of metabolic syndrome, (iii) cardiorespiratory fitness and (iv) indices of systolic and diastolic function using tissue Doppler echocardiography. Cardiorespiratory fitness was similar between all groups; abdominal and visceral fat was highest in the obese groups. Compared with age- and BMI-matched metabolically healthy counterparts, the unhealthy (lean or obese) individuals had higher liver fat and decreased early diastolic strain rate, early diastolic tissue velocity and systolic strain indicative of subclinical systolic and diastolic dysfunction. The magnitude of dysfunction correlated with the number of components of metabolic syndrome but not with BMI or with the degree of ectopic (visceral or liver) fat deposition. Myocardial dysfunction appears to be related to poor metabolic health rather than simply BMI or fat mass. These data may partly explain the epidemiological evidence on CVD risk relating to the different obesity phenotypes.

  6. Metabolic Effects of Avocado/Soy Unsaponifiables on Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Louis Lippiello

    2008-01-01

    Full Text Available Avocado/soy unsaponifiable (ASU components are reported to have a chondroprotective effect by virtue of anti-inflammatory and proanabolic effects on articular chondrocytes. The identity of the active component(s remains unknown. In general, sterols, the major component of unsaponifiable plant material have been demonstrated to be anti-inflammatory in vitro and in animal models. These studies were designed to clarify whether the sterol content of ASU preparations were the primary contributors to biological activity in articular chondrocytes. ASU samples were analyzed by high pressure liquid chromatography (HPLC and GC mass spectrometry. The sterol content was normalized between diverse samples prior to in vitro testing on bovine chondrocytes. Anabolic activity was monitored by uptake of 35-sulfate into proteoglycans and quantitation of labeled hydroxyproline and proline content after incubation with labeled proline. Anti-inflammatory activity was assayed by measuring reduction of interleukin-1 (IL-1-induced synthesis of PGE2 and metalloproteases and release of label from tissue prelabeled with S-35.All ASU samples exerted a similar time-dependent up-regulation of 35-sulfate uptake in bovine cells reaching a maximum of greater than 100% after 72 h at sterol doses of 1–10 μg/ml. Non-collagenous protein (NCP and collagen synthesis were similarly up-regulated. All ASU were equally effective in dose dependently inhibiting IL-1-induced MMP-3 activity (23–37%, labeled sulfate release (15–23% and PGE2 synthesis (45–58%. Up-regulation of glycosaminoglycan and collagen synthesis and reduction of IL-1 effects in cartilage are consistent with chondroprotective activity. The similarity of activity of ASU from diverse sources when tested at equal sterol levels suggests sterols are important for biologic effects in articular chondrocytes.

  7. The Effect of Crataegi Fructus Pharmacopuncture on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Seung Hwan, Won

    2008-06-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of Crataegi Fructus Pharmacopuncture(CFP on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3days in the absence or presence of CFP ranging from 0.01 to 1mg/mL. The effect of CFP on adipogenesis was examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with CFP ranging from 0.01 to 1mg/mL for 3 hrs. The effect of CFP on lipolysis was examined by measuring free glycerol released. Fat tissue from pig skin was injected with CFP ranging from 0.1 to 10mg/mL to examine the effect of CFP on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Crataegi Fructus Pharmacopuncture inhibited adipogenic differentiation at the concentration of 1.0mg/mL 2. Crataegi Fructus Pharmacopuncture decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1mg/mL. 3. Crataegi Fructus Pharmacopuncture ok. lipolysis at the concentration of 0.1mg/ml. 4. Crataegi Fructus Pharmacopuncture ranging 0.1 to 10mg/mL failed to exert lysis of cell membrane in porcine fat tissue. Conclusions : These results suggest that Crataegi Fructus Pharmacopuncture at relatively high concentration inhibited adipogenesis and increased lipolysis of adipocytes. However, Crataegi Fructus Pharmacopuncture didn’t exert any effect on lysis of cell membrane in fat tissue.

  8. Metabolic Effects of Avocado/Soy Unsaponifiables on Articular Chondrocytes

    Science.gov (United States)

    Nardo, Joseph V.; Harlan, Robert; Chiou, Tiffany

    2008-01-01

    Avocado/soy unsaponifiable (ASU) components are reported to have a chondroprotective effect by virtue of anti-inflammatory and proanabolic effects on articular chondrocytes. The identity of the active component(s) remains unknown. In general, sterols, the major component of unsaponifiable plant material have been demonstrated to be anti-inflammatory in vitro and in animal models. These studies were designed to clarify whether the sterol content of ASU preparations were the primary contributors to biological activity in articular chondrocytes. ASU samples were analyzed by high pressure liquid chromatography (HPLC) and GC mass spectrometry. The sterol content was normalized between diverse samples prior to in vitro testing on bovine chondrocytes. Anabolic activity was monitored by uptake of 35-sulfate into proteoglycans and quantitation of labeled hydroxyproline and proline content after incubation with labeled proline. Anti-inflammatory activity was assayed by measuring reduction of interleukin-1 (IL-1)-induced synthesis of PGE2 and metalloproteases and release of label from tissue prelabeled with S-35.All ASU samples exerted a similar time-dependent up-regulation of 35-sulfate uptake in bovine cells reaching a maximum of greater than 100% after 72 h at sterol doses of 1–10 μg/ml. Non-collagenous protein (NCP) and collagen synthesis were similarly up-regulated. All ASU were equally effective in dose dependently inhibiting IL-1-induced MMP-3 activity (23–37%), labeled sulfate release (15–23%) and PGE2 synthesis (45–58%). Up-regulation of glycosaminoglycan and collagen synthesis and reduction of IL-1 effects in cartilage are consistent with chondroprotective activity. The similarity of activity of ASU from diverse sources when tested at equal sterol levels suggests sterols are important for biologic effects in articular chondrocytes. PMID:18604259

  9. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rahbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    Background: This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. Material and methods: To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated

  10. The effect of quercetin phase II metabolism on its MRP1 and MRP2 inhibiting potential

    NARCIS (Netherlands)

    Zanden, van J.J.; Woude, van der H.; Vaessen, J.; Usta, M.; Wortelboer, H.M.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2007-01-01

    The present study characterises the effect of phase II metabolism, especially methylation and glucuronidation, of the model flavonoid quercetin on its capacity to inhibit human MRP1 and MRP2 activity in Sf9 inside-out vesicles. The results obtained reveal that 3¿-O-methylation does not affect the MR

  11. The prevalence of metabolic syndrome in Danish patients with HIV infection: the effect of antiretroviral therapy

    DEFF Research Database (Denmark)

    Hansen, Birgitte Rønde; Petersen, J; Haugaard, S B;

    2009-01-01

    OBJECTIVES: The prevalence of metabolic syndrome (MS) in HIV-infected patients on highly active antiretroviral therapy (HAART) is a subject of debate. We investigated the prevalence of MS in a cohort of Danish HIV-infected patients and estimated the effect of the various classes of antiretroviral...

  12. Effects of Beverages on Alcohol Metabolism: Potential Health Benefits and Harmful Impacts

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2016-03-01

    Full Text Available Nonalcoholic beverages are usually consumed accompanying alcoholic drinks, and their effects on alcohol metabolism are unclear in vivo. In this study, the effects of 20 nonalcoholic beverages on alcohol metabolism and liver injury caused by alcohol were evaluated in mice. Kunming mice were orally fed with alcohol (52%, v/v and beverages. The concentrations of ethanol and acetaldehyde in blood as well as the activities of alcohol dehydrogenase (ADH and aldehyde dehydrogenase (ALDH in liver were assessed to indicate alcohol metabolism. The levels of aspartate aminotransferase (AST and alanine transaminase (ALT in serum as well as the levels of malonaldehyde (MDA and superoxide dismutase (SOD in liver were measured to reflect the alcohol-induced liver injury. The results showed that the treatment of soda water, green tea and honey chrysanthemum tea could accelerate ethanol metabolism and prevent liver injuries caused by alcohol when companied with excessive alcohol drinking. They might be potential dietary supplements for the alleviation of harmful effects from excessive alcohol consumption. On the contrary, some beverages such as fresh orange juice and red bull are not advised to drink when companied with alcohol consumption due to their adverse effects on ethanol induced liver injury.

  13. Coconut, Fish, and Olive Oil-Rich Diets Modify Ozone-Induced Metabolic Effects

    Science.gov (United States)

    Pulmonary health effects of ozone (O3) exposure are well known; however, the cardiovascular and metabolic consequences are still under investigation. Fish oil (FO) and olive oil (OO) dietary supplementation have several cardioprotective benefits, but it is not established if thes...

  14. Preconditioning in globally ischemic isolated rat hearts: effect on function and metabolic indices of myocardial damage

    NARCIS (Netherlands)

    M. Arad; J.W. de Jong (Jan Willem); R. de Jonge (Robert); T. Huizer (Tom); B. Rabinowitz

    1996-01-01

    textabstractWe assessed the effects of ischemic preconditioning on heart recovery and metabolic indices of damage following global ischemia and reperfusion, in relationship to post-ischemic lactate release. Three groups of Langendorff rat hearts were studied: (1) A control group of

  15. Replacing lactose from calf milk replacers : effects on digestion and post-absorptive metabolism

    NARCIS (Netherlands)

    Gilbert, M.S.

    2015-01-01

    Summary PhD thesis Myrthe S. Gilbert Replacing lactose from calf milk replacers – Effects on digestion and post-absorptive metabolism Veal calves are fed milk replacer (MR) and solid feed. The largest part of the energy provided to veal calves originates from

  16. Combined effects of smoking and alcohol on metabolic syndrome : the LifeLines cohort study

    NARCIS (Netherlands)

    Slagter, Sandra N; van Vliet-Ostaptchouk, Jana V; Vonk, Judith M; Boezen, Hendrika; Dullaart, Robin P F; Muller Kobold, Anna; Feskens, Edith J M; van Beek, André P; van der Klauw, Melanie M; Wolffenbuttel, Bruce H R

    2014-01-01

    INTRODUCTION: The development of metabolic syndrome (MetS) is influenced by environmental factors such as smoking and alcohol consumption. We determined the combined effects of smoking and alcohol on MetS and its individual components. METHODS: 64,046 participants aged 18-80 years from the LifeLines

  17. Effects of dehydroepiandrosterone (DHEA) on glucose metabolism in isolated hepatocytes from Zucker rats

    Energy Technology Data Exchange (ETDEWEB)

    Finan, A.; Cleary, M.P.

    1986-03-05

    DHEA has been shown to competitively inhibit the pentose phosphate shunt (PPS) enzyme glucose-6-phosphate dehydrogenase (G6PD) when added in vitro to supernatants or homogenates prepared from mammalian tissues. However, no consistent effect on G6PD activity has been determined in tissue removed from DHEA-treated rats. To explore the effects of DHEA on PPS, glucose utilization was measured in hepatocytes from lean and obese male Zucker rats (8 wks of age) following 1 wk of DHEA treatment (0.6% in diet). Incubation of isolated hepatocytes from treated lean Zucker rats with either (1-/sup 14/C) glucose or (6-/sup 14/C) glucose resulted in significant decreases in CO/sub 2/ production and total glucose utilization. DHEA-lean rats also had lowered fat pad weights. In obese rats, there was no effect of 1 wk of treatment on either glucose metabolism or fat pad weight. The calculated percent contribution of the PPS to glucose metabolism in hepatocytes was not changed for either DHEA-lean or obese rats when compared to control rats. In conclusion, 1 wk of DHEA treatment lowered overall glucose metabolism in hepatocytes of lean Zucker rats, but did not selectively affect the PPS. The lack of an effect of short-term treatment in obese rats may be due to differences in their metabolism or storage/release of DHEA in tissues in comparison to lean rats.

  18. Coconut, Fish, and Olive Oil-Rich Diets Modify Ozone-Induced Metabolic Effects

    Science.gov (United States)

    Pulmonary health effects of ozone (O3) exposure are well known; however, the cardiovascular and metabolic consequences are still under investigation. Fish oil (FO) and olive oil (OO) dietary supplementation have several cardioprotective benefits, but it is not established if thes...

  19. Metabolic effects of interleukin-6 in human splanchnic and adipose tissue

    DEFF Research Database (Denmark)

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    Interleukin-6 (IL-6) was infused intravenously for 2.5 h in seven healthy human volunteers at a dose giving rise to a circulating IL-6 concentration of approximately 35 ng l(-1). The metabolic effects of this infusion were studied in subcutaneous adipose tissue on the anterior abdominal wall and ...

  20. Long-term effects of foetal undernutrition on intermediary metabolism in growing lambs

    DEFF Research Database (Denmark)

    Kiani, Ali; Nielsen, Mette Benedicte Olaf; Tauson, Anne-Helene

    2011-01-01

    The objective of this study was to investigate the effects of foetal undernutrition on the metabolism in growing lambs. Seven-month-old lambs whose nothers had been fed either restrictively (RN; n = 14) or adequately (AN; n = 6) in late gestation were fasted for three days. One hour before fasting...

  1. Effects of arsenic on nitrogen metabolism in arsenic hyperaccumulator and non-hyperaccumulator ferns

    Science.gov (United States)

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of two four-month old fern plants, Pteris vittata, an arsenic-hyperaccumulator, and Pteris ensiformis, ...

  2. Effects of heat stress on carbohydrate and lipid metabolism in growing pigs

    Science.gov (United States)

    Heat stress (HS) jeopardizes human and animal health and reduces animal agriculture productivity; however, its pathophysiology is not well understood. Study objectives were to evaluate the effects of HS on basal and stimulated energetic metabolism. Crossbred female pigs (57±5 kg body weight) were ...

  3. Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects

    NARCIS (Netherlands)

    Kempen, K.P.G.; Saris, W.H.M.; Senden, J.M.G.; Menheere, P.P.C.A.; Blaak, E.E.; van Baak, M.A.

    1994-01-01

    Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects. Kempen KP, Saris WH, Senden JM, Menheere PP, Blaak EE, van Baak MA. Department of Human Biology, University of Limburg, Maastricht, The Netherlands. This study was intended to investigate the e

  4. Preconditioning in globally ischemic isolated rat hearts: effect on function and metabolic indices of myocardial damage

    NARCIS (Netherlands)

    M. Arad; J.W. de Jong (Jan Willem); R. de Jonge (Robert); T. Huizer (Tom); B. Rabinowitz

    1996-01-01

    textabstractWe assessed the effects of ischemic preconditioning on heart recovery and metabolic indices of damage following global ischemia and reperfusion, in relationship to post-ischemic lactate release. Three groups of Langendorff rat hearts were studied: (1) A control group of

  5. Acute effects of nasal salmon calcitonin on calcium and bone metabolism

    DEFF Research Database (Denmark)

    Thamsborg, G; Skousgaard, S G; Daugaard, H;

    1993-01-01

    Effects of a single dose of 200 IU of nasal salmon calcitonin (SCT) on calcium metabolism and biochemical markers of bone turnover were investigated in 12 healthy male volunteers in a randomized, placebo-controlled, cross-over design. The nasal spray was given in the morning, and subsequently blood...

  6. Metabolic Effects of High Altitude Trekking in Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; Fokkert, Marion J.; de Vries, Suzanna T.; de Koning, Eelco J. P.; Dikkeschei, Bert D.; Gans, Rijnold O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2012-01-01

    OBJECTIVE-Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-Thirteen individuals with type 2 diabetes took part, in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  7. Metabolic effects of high altitude trekking in patients with type 2 diabetes

    NARCIS (Netherlands)

    Mol, P. de; Fokkert, M.J.; Vries, S.T. de; Koning, E.J. de; Dikkeschei, B.D.; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2012-01-01

    OBJECTIVE Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Thirteen individuals with type 2 diabetes took part in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco, a

  8. Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects

    NARCIS (Netherlands)

    Kempen, K.P.G.; Saris, W.H.M.; Senden, J.M.G.; Menheere, P.P.C.A.; Blaak, E.E.; van Baak, M.A.

    1994-01-01

    Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects. Kempen KP, Saris WH, Senden JM, Menheere PP, Blaak EE, van Baak MA. Department of Human Biology, University of Limburg, Maastricht, The Netherlands. This study was intended to investigate the e

  9. The effect of environmental temperature on immune response and metabolism of the young chicken

    NARCIS (Netherlands)

    Henken, A.M.

    1982-01-01

    The effect of environmental temperature on immune response and metabolism was studied in young chickens. Immunization was performed by injecting intramuscularly 0.5 ml packed SRBC (sheep red blood cells) in both thighs of 32 days old pullets ( WarrenSSL ). The

  10. Modulation of Ethanol-Metabolizing Enzymes by Developmental Lead Exposure: Effects in Voluntary Ethanol Consumption

    Directory of Open Access Journals (Sweden)

    Miriam B. Virgolini

    2017-05-01

    Full Text Available This review article provides evidence of the impact of the environmental contaminant lead (Pb on the pattern of the motivational effects of ethanol (EtOH. To find a mechanism that explains this interaction, the focus of this review article is on central EtOH metabolism and the participating enzymes, as key factors in the modulation of brain acetaldehyde (ACD accumulation and resulting effect on EtOH intake. Catalase (CAT seems a good candidate for the shared mechanism between Pb and EtOH due to both its antioxidant and its brain EtOH-metabolizing properties. CAT overactivation was reported to increase EtOH consumption, while CAT blockade reduced it, and both scenarios were modified by Pb exposure, probably as the result of elevated brain and blood CAT activity. Likewise, the motivational effects of EtOH were enhanced when brain ACD metabolism was prevented by ALDH2 inhibition, even in the Pb animals that evidenced reduced brain ALDH2 activity after chronic EtOH intake. Overall, these results suggest that brain EtOH metabolizing enzymes are modulated by Pb exposure with resultant central ACD accumulation and a prevalence of the reinforcing effects of the metabolite in brain against the aversive peripheral ACD accumulation. They also support the idea that early exposure to an environmental contaminant, even at low doses, predisposes at a later age to differential reactivity to challenging events, increasing, in this case, vulnerability to acquiring addictive behaviors, including excessive EtOH intake.

  11. Metabolic effects of growth hormone administered subcutaneously once or twice daily to growth hormone deficient adults

    DEFF Research Database (Denmark)

    Laursen, Torben; Jørgensen, Jens Otto Lunde; Christiansen, Jens Sandahl

    1994-01-01

    -term metabolic effects in GH deficient patients. An improved growth response is obtained in GH deficient children when a fixed weekly GH dose is administered by daily subcutaneous injections instead of twice or thrice-weekly intramuscular injections. A more pulsatile pattern and serum GH levels above zero might...

  12. The effect of quercetin phase II metabolism on its MRP1 and MRP2 inhibiting potential

    NARCIS (Netherlands)

    Zanden, J.J. van; Woude, H. van der; Vaessen, J.; Usta, M.; Wortelboer, H.M.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2007-01-01

    The present study characterises the effect of phase II metabolism, especially methylation and glucuronidation, of the model flavonoid quercetin on its capacity to inhibit human MRP1 and MRP2 activity in Sf9 inside-out vesicles. The results obtained reveal that 3′-O-methylation does not affect the MR

  13. Clinical effects of statins on benign prostatic hyperplasia complicating metabolic syndrome in elderly patients

    Institute of Scientific and Technical Information of China (English)

    曾小芳

    2014-01-01

    Objective To evaluate the effect of simvastatin and atorvastatin on clinical progression of benign prostatic hyperplasia(BPH)in elderly patients with metabolic syndrome(MS).Methods A total of 135 patients with BPH and MS aged 60 years and over were divided into three groups:simvastatin group(n=45,40 mg/d),atorvasta-

  14. Effect of acute metabolic acid/base shifts on the human airway calibre.

    NARCIS (Netherlands)

    Brijker, F.; Elshout, F.J.J. van den; Heijdra, Y.F.; Bosch, F.H.; Folgering, H.T.M.

    2001-01-01

    Acute metabolic alkalosis (NaHCO(3)), acidosis (NH(4)Cl), and placebo (NaCl) were induced in 15 healthy volunteers (12 females, median age 34 (range 24-56) years) in a double blind, placebo controlled study to evaluate the presence of the effects on airway calibre. Acid-base shifts were determined b

  15. Comined effects of smoking and alcohol on metabolic syndrome: the lifelines cohort study

    NARCIS (Netherlands)

    Slagter, S.N.; Vliet-Ostaptchouk, J.V.; Vonk, J.M.; Boezen, H.M.; Dullaart, R.P.F.; Muller Kobold, A.C.; Feskens, E.J.M.; Beek, van A.P.; Klauw, van der M.M.; Wolffenbuttel, B.H.R.

    2014-01-01

    Introduction - The development of metabolic syndrome (MetS) is influenced by environmental factors such as smoking and alcohol consumption. We determined the combined effects of smoking and alcohol on MetS and its individual components. Methods - 64,046 participants aged 18–80 years from the LifeLin

  16. The effect of environmental temperature on immune response and metabolism of the young chicken

    NARCIS (Netherlands)

    Henken, A.M.

    1982-01-01

    The effect of environmental temperature on immune response and metabolism was studied in young chickens. Immunization was performed by injecting intramuscularly 0.5 ml packed SRBC (sheep red blood cells) in both thighs of 32 days old pullets ( WarrenSSL ). The ensueing immune response

  17. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rahbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    Background: This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. Material and methods: To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated

  18. THE EFFECT OF PIROXICAM ON THE METABOLISM OF ISOLATED HUMAN CHONDROCYTES

    NARCIS (Netherlands)

    BULSTRA, SK; KUIJER, R; BUURMAN, WA; TERWINDTROUWENHORST, E; GUELEN, PJM; VANDERLINDEN, AJ

    1992-01-01

    The effect of piroxicam on the metabolism of healthy and osteoarthrotic (OA) chondrocytes was studied in vitro. The chondrocytes were obtained from five healthy, five moderately OA, and four severely OA hips or knees. The chondrocytes were cultured in a high-density, short-term in vitro model. In th

  19. Determinants of DHA status and functional effects on metabolic markers and immune modulation in early life

    DEFF Research Database (Denmark)

    Harsløf, Laurine Bente Schram

    by identifying the involved pathways and genes. The second part of the PhD thesis explores whether functional effects of n-3 LCPUFA on metabolic markers and immune maturation in young children can be supported by polymorphisms in genes involved in the mechanisms (PPARG2, COX2 and NFKB1). Results can be found...

  20. Effects of cyclodextrin glycosiltransferase modified starch and cyclodextrins on plasma glucose and lipids metabolism in mice

    Science.gov (United States)

    The potential functional and nutritional benefits of granular starch treated with cyclodextrin glycosyltransferase (CGTase) and the released cyclodextrins (CDs) were explored in in vivo studies. The metabolic effects of diets in the C57BL/6J mouse containing native and enzymatically modified corn st...

  1. Metabolic, gastrointestinal, and CNS neuropeptide effects of brain leptin administration in the rat

    NARCIS (Netherlands)

    Van Dijk, G; Seeley, RJ; Thiele, TE; Friedman, MI; Ji, H; Wilkinson, CW; Burn, P; Campfield, LA; Tenenbaum, R; Baskin, DG; Woods, SC; Schwartz, MW; Seeley, Randy J.; Thiele, Todd E.; Friedman, Mark I.; Wilkinson, Charles W.; Baskin, Denis G.; Woods, Stephen C.; Schwartz, Michael W.

    To investigate whether brain leptin involves neuropeptidergic pathways influencing ingestion, metabolism, and gastrointestinal functioning, leptin (3.5 mu g) was infused daily into the third cerebral ventricular of rats for 3 days. To distinguish between direct leptin effects and those secondary to

  2. Effects of Beverages on Alcohol Metabolism: Potential Health Benefits and Harmful Impacts.

    Science.gov (United States)

    Wang, Fang; Zhang, Yu-Jie; Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Zhang, Jiao-Jiao; Li, Sha; Xu, Dong-Ping; Li, Hua-Bin

    2016-03-09

    Nonalcoholic beverages are usually consumed accompanying alcoholic drinks, and their effects on alcohol metabolism are unclear in vivo. In this study, the effects of 20 nonalcoholic beverages on alcohol metabolism and liver injury caused by alcohol were evaluated in mice. Kunming mice were orally fed with alcohol (52%, v/v) and beverages. The concentrations of ethanol and acetaldehyde in blood as well as the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in liver were assessed to indicate alcohol metabolism. The levels of aspartate aminotransferase (AST) and alanine transaminase (ALT) in serum as well as the levels of malonaldehyde (MDA) and superoxide dismutase (SOD) in liver were measured to reflect the alcohol-induced liver injury. The results showed that the treatment of soda water, green tea and honey chrysanthemum tea could accelerate ethanol metabolism and prevent liver injuries caused by alcohol when companied with excessive alcohol drinking. They might be potential dietary supplements for the alleviation of harmful effects from excessive alcohol consumption. On the contrary, some beverages such as fresh orange juice and red bull are not advised to drink when companied with alcohol consumption due to their adverse effects on ethanol induced liver injury.

  3. Effect of melatonin and lighting schedule on energy metabolism in broiler chickens

    NARCIS (Netherlands)

    Apeldoorn, E.J.; Schrama, J.W.; Mashaly, M.M.; Parmentier, H.K.

    1999-01-01

    The effect of melatonin and lighting schedule on energy metabolism in broiler chickens was studied. Eight groups of six female broiler chickens each were assigned to a continuous lighting schedule [23 h light (L):1 h darkness (D)] or an intermittent lighting schedule (1L:3D), and were fed a diet wit

  4. Metabolism and effects of radio-iodine (I{sup 1331})

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.R.

    1948-05-24

    This report discusses the metabolism and effects of iodine-131 in the human body after administration of Iodine-131 in 4 different dosages once a month for three months. Analysis of the thyroid gland, removed surgically in six patients for medical reasons, is presented in the paper. Also reported are results of studies of physically handling the counting techniques.

  5. The role of hypothalamic pathways in the metabolic side effects of Olanzapine

    NARCIS (Netherlands)

    Girault, E.M.

    2013-01-01

    Atypical antipsychotic drugs such as Olanzapine (Ola) induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying these undesired side effects are currently unknown. In this thesis, we showed that both acute and chronic administration of Ola

  6. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ülgen Kutlu Ö

    2007-03-01

    Full Text Available Abstract Background Control effective flux (CEF of a reaction is the weighted sum of all fluxes through that reaction, derived from elementary flux modes (EFM of a metabolic network. Change in CEFs under different environmental conditions has earlier been proven to be correlated with the corresponding changes in the transcriptome. Here we use this to investigate the degree of transcriptional regulation of fluxes in the metabolism of Saccharomyces cerevisiae. We do this by quantifying correlations between changes in CEFs and changes in transcript levels for shifts in carbon source, i.e. between the fermentative carbon source glucose and nonfermentative carbon sources like ethanol, acetate, and lactate. The CEF analysis is based on a simple stoichiometric model that includes reactions of the central carbon metabolism and the amino acid metabolism. Results The effect of the carbon shift on the metabolic fluxes was investigated for both batch and chemostat cultures. For growth on glucose in batch (respiro-fermentative cultures, EFMs with no by-product formation were removed from the analysis of the CEFs, whereas those including any by-products (ethanol, glycerol, acetate, succinate were omitted in the analysis of growth on glucose in chemostat (respiratory cultures. This resulted in improved correlations between CEF changes and transcript levels. A regression correlation coefficient of 0.60 was obtained between CEF changes and gene expression changes in the central carbon metabolism for the analysis of 5 different perturbations. Out of 45 data points there were no more than 6 data points deviating from the correlation. Additionally, up- or down-regulation of at least 75% of the genes were in qualitative agreement with the CEF changes for all perturbations studied. Conclusion The analysis indicates that changes in carbon source are associated with a high degree of hierarchical regulation of metabolic fluxes in the central carbon metabolism as the

  7. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2...... for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N....

  8. Effect of antibiotics on gut microbiota, glucose metabolism and bodyweight regulation - a review of the literature

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbaek; Allin, Kristine Højgaard; Knop, Filip Krag

    2016-01-01

    Gut bacteria are involved in a number of host metabolic processes and have been implicated in the development of obesity and type 2 diabetes in humans. Use of antibiotics changes the composition of the gut microbiota and there is accumulating evidence from observational studies for an association...... between exposure to antibiotics and development of obesity and type 2 diabetes. Here we review human studies examining effects of antibiotics on bodyweight regulation and glucose metabolism and discuss whether the observed findings may relate to alterations in the composition and function of the gut...

  9. The direct effect of incretin hormones on glucose and glycerol metabolism and hemodynamics

    DEFF Research Database (Denmark)

    Karstoft, Kristian; Mortensen, Stefan; Knudsen, Sine H;

    2015-01-01

    The objective of this study was to assess the insulin-independent effects of incretin hormones on glucose and glycerol metabolism and hemodynamics under eu- and hyperglycemic conditions. Young, healthy males (n=10) underwent three trials in a randomized, controlled, cross-over study. Each trial...... consisted of a 2-stage (eu- and hyperglycemia) pancreatic clamp (using somatostatin to prevent endogenous insulin secretion). Glucose and lipid metabolism were measured via infusion of stable glucose and glycerol isotopic tracers. Hemodynamic variables (femoral, brachial and common carotid artery blood flow...... a higher femoral blood flow during hyperglycemia in GIP (vs. CON and GLP-1, Pmetabolism or hemodynamics during euglycemia. On contrary, during...

  10. Effects of food enriched with egg yolk hydrolysate (bone peptide) on bone metabolism in orchidectomized dogs.

    Science.gov (United States)

    Kobayashi, Toyokazu; Koie, Hiroshi; Watanabe, Arisa; Ino, Arisa; Watabe, Kazuya; Kim, Mujo; Kanayama, Kiichi; Otsuji, Kazuya

    2015-04-01

    We examined the effects of chicken egg hydrolysate (also known as "bone peptide" or BP) on bone metabolism in 5- to 8-month-old orchidectomized dogs. The bone formation marker serum bone alkaline phosphatase (BAP) and the bone resorption marker urine deoxypyridinoline (DPD) were used as indicators to measure changes in bone metabolism. The following results were observed that Serum BAP was higher in dogs fed BP-enriched food throughout the clinical investigation. Serum BAP was statistically significantly higher in dogs fed BP-enriched food than in dogs fed non-BP-enriched food at 2 months after orchidectomy. This suggests that BP promoted bone formation immediately after orchidectomy.

  11. The effect of gluten on the host-microbial metabolism assessed by urinary metabolomics

    OpenAIRE

    Roager, Henrik Munch; Frandsen, Henrik Lauritz; Gøbel, Rikke Juul; Pedersen, Oluf; Granato Villas-Boas, Silas; Licht, Tine Rask

    2015-01-01

    A gluten-free diet clearly improves the life of patients with celiac disease, but the scientific evidence supporting possible health benefits of a gluten-free diet for non-celiac adults is limited. Therefore, as urine reflects the host and gut microbial metabolism, the study aimed to assess the long-term metabolic effect of gluten on the urine metabolome of non-celiac individuals by a cross-over intervention study (gluten-poor and gluten rich, respectively) using a non-targeted metabolomics a...

  12. Functional Effects of Prebiotic Fructans in Colon Cancer and Calcium Metabolism in Animal Models

    OpenAIRE

    Marisol Rivera-Huerta; Vania Lorena Lizárraga-Grimes; Ibrahim Guillermo Castro-Torres; Mabel Tinoco-Méndez; Lucía Macías-Rosales; Francisco Sánchez-Bartéz; Graciela Guadalupe Tapia-Pérez; Laura Romero-Romero; María Isabel Gracia-Mora

    2017-01-01

    Inulin-type fructans are polymers of fructose molecules and are known for their capacity to enhance absorption of calcium and magnesium, to modulate gut microbiota and energy metabolism, and to improve glycemia. We evaluated and compared the effects of Chicory inulin “Synergy 1®” and inulin from Mexican agave “Metlin®” in two experimental models of colon cancer and bone calcium metabolism in mice and rats. Inulins inhibited the development of dextran sulfate sodium-induced colitis and colon c...

  13. Reversible Effects on Cellular Metabolism and Proliferation by Trisodium Phosphonoformate

    Science.gov (United States)

    Stenberg, Kjell; Larsson, Alf

    1978-01-01

    The antiviral compound trisodium phosphonoformate (PFA), which inhibits herpesvirus multiplication by 50% at a concentration of 10 μM, did not show any effects on macromolecular synthesis and cell proliferation in HeLa and human lung cells at this concentration. At the high concentration of 2 mM, PFA reduced DNA synthesis to 50% after 1 h of treatment, whereas no effects could be seen on RNA and protein synthesis. Treatment for 24 h with 1 mM PFA inhibited both DNA synthesis and cell proliferation to 50%. The inhibition of DNA synthesis and cell proliferation at 10 mM PFA was rapidly reversed by removing the drug from the cells. PMID:727763

  14. Aprohrne and Scopolamine: Metabolic and Clinical Chemical Effects during Exercise

    Science.gov (United States)

    1989-05-17

    as well as thermoregulation (1,2,12). In fact, in a recent report we have compared the increments in core temperature of sedentary heat- stressed ...EXERCISECONTROL I AMIDOE IOEN AT 20-C ON Cit.ULATING LEVELS OF SODIUM. POTASSIUM. AND LACTATESCOPOLAMINE APROPHEN ________ ___ ___ LOW DOSE LOW DOSE...the effects of this anticholinergic on heating rate in a sedentary, heat- stressed rat model. Freireich et al. (5) had earlier hypothesized that an

  15. Effects of Extremity Armor on Metabolic Cost and Gait Biomechanics

    Science.gov (United States)

    2010-05-26

    marksmanship, jumping, crawling , grenade throwing, or vaulting a wall. To the contrary, effects on these tasks should also be investigated in order to...and energy expenditure in infants . JPEN: J Parenter Enteral Nutr. Vol. 12(3):256-9. Department of the Army. (1990) Foot Marches (Field Manual 21...plastic M4 carbine to assist you 15 in getting up and down. You will do this task on a padded gym mat. 16 ○ Executing a high crawl . You will move

  16. Biochemical characterization and metabolic effects of the tumor necrosis factor

    OpenAIRE

    Martins e Silva, J.

    1991-01-01

    The tumor necrosis factor, preliminary identified because of its antitumor properties, refers to two kinds of similar polypeptides (TNF or cachectin, and TNF-fl or lymphotoxin), which share some biolo gical effects. Both substances, as members of the class of cytokines, play a role as mediators of inflam mation and the celiular immune response. Human cachectin is produced as a prohormone and activated by cleavage of a 76 residue peptide. Mature cachectin (with comprises 157 aminoa...

  17. Modifications in the metabolism and myeloclastogenic effect of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Gad-El Karim, M.M.; Harper, B.L.; Ramanujam, S.V.M.; Legator, M.S.

    1982-02-01

    Benzene was studied in its target organ of effect, the bone marrow, with the micronucleus test and metaphase analysis. In a series of experiments, male and female CD-1 mice were subjected to various pretreatments: phenobarbital (PB) (0.1% in drinking water x 7 days or 80 mg/kg/day (I.P.) x 3 days before treatment), 3-methylcholanthrene (3-MCA) (30 mg/kg/day (I.P.) x 2 days), SKF-525A (80 mg/kg (I.P.) 2 hours before each treatment dose), or Aroclor-1254 (100 mg/kg) (I.P.) once, 5 days before treatment. The animals were then treated with benzene (440 or 880 mg/kg) or toluene (860 or 1720 mg/kg) or their mixture in 2 doses 24 hours apart and sacrificed 6 hours or 24 hours after the second dose. Toluene showed no clastogenic activity and reduced the clastogenic effect of benzene when the mixture was given. None of the pretreatments protected against the clastogenic effect of benzene. 3-MCA pretreatment caused a tremendous enhancement of benzene myeloclastogenicity. The sex difference, with females constantly more resistant than males to benzene, was retained among the 3-MCA pretreated group. Toluene, in mixture with benzene, lowered the clastogenic effect in 3-MCA pretreated mice. Dose-response curves with benzene treatment alone and with 3-MCA induced groups were generated in which the former curve was lower for each dose than the latter. Urine fractions were collected at 12-hour intervals from 3-groups of 10 males gavaged with benzene, either non-induced, PB- or 3MCA induced. Catechol was the major metabolite, phenol the minor one, and hydroquinone and semiquinones were present in trace amounts.

  18. Cardiopulmonary and metabolic effects of yoga in healthy volunteers

    OpenAIRE

    T Satheesh Divya; M T Vijayalakshmi; K Mini; Asish, K.; M. PUSHPALATHA; Varun Suresh

    2017-01-01

    Background: Yoga the spiritual union of mind with the divine intelligence of the universe aims to liberate a human being from conflicts of body–mind duality. Beneficial cardiovascular and pulmonary effects of yoga are in par with aerobic exercise, even amounting to replace the exercise model. We conducted an interventional study in healthy volunteers, to analyze the impact of short-term yoga training on cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function t...

  19. Intra-abdominal hypertension--an experimental study of early effects on intra-abdominal metabolism.

    Science.gov (United States)

    Skoog, Per; Hörer, Tal; Nilsson, Kristofer F; Agren, Göran; Norgren, Lars; Jansson, Kjell

    2015-01-01

    The main aim of this experimental study was to investigate the early effects of intra-abdominal hypertension (IAH) on intra-abdominal metabolism and intestinal mucosal blood flow to evaluate whether metabolites can serve as markers for organ dysfunction during IAH. A swine model was used, and the animals were anesthetized and ventilated. Fifteen animals were subjected to IAH of 30 mm Hg for 4 hr by carbon dioxide insufflation. Seven animals served as controls. Hemodynamic data, arterial blood samples, and urine output were analyzed. Intraluminal laser Doppler flowmetry measured intestinal mucosal blood flow. Glucose, glycerol, lactate, and pyruvate concentrations and lactate-to-pyruvate (l/p) ratio were measured intraperitoneally and intramurally in the small intestine and rectum using microdialysis. IAH lowered the abdominal perfusion pressure by 12-18 mm Hg, reduced the intestinal mucosal blood flow by 45-63%, and decreased urine output by 50-80%. In the intervention group, glycerol concentrations increased at all locations, pyruvate concentrations decreased, and the l/p ratio increased intraperitoneally and intramurally in the small intestine. Control animals remained metabolically stable. Glucose and lactate concentrations were only slightly affected or unchanged in both the groups. IAH reduces intestinal blood flow and urinary output and causes early metabolic changes, indicating a discrete shift toward anaerobic metabolism. Intraperitoneal microdialysis may be useful in the early detection of impaired organ dysfunction with metabolic consequences in IAH and abdominal compartment syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effects of ADMA on gene expression and metabolism in serum-starved LoVo cells.

    Science.gov (United States)

    Zheng, Ningning; Wang, Ke; He, Jiaojiao; Qiu, Yunping; Xie, Guoxiang; Su, Mingming; Jia, Wei; Li, Houkai

    2016-05-16

    Serum starvation is a typical way for inducing tumor cell apoptosis and stress. Asymmetric dimethylarginine (ADMA) is an endogenous metabolite. Our previous study reveals the plasma ADMA level is elevated in colon cancer patients, which can attenuate serum starvation-induced apoptosis in LoVo cells. In current study, we evaluated the effects of ADMA on gene expression and metabolism in serum-starved LoVo cells with gene microarray and metabolomic approaches. Our results indicated that 96 h serum starvation induced comprehensive alterations at transcriptional level, and most of them were restored by ADMA. The main signaling pathways induced by serum starvation included cancers-related pathways, pathways in cell death, apoptosis, and cell cycle etc. Meanwhile, the metabolomic data showed serum-starved cells were clearly separated with control cells, but not with ADMA-treated cells in PCA model. The identified differential metabolites indicated serum starvation significantly suppressed TCA cycle, altered glucose and fatty acids metabolism, as well as nucleic acids metabolism. However, very few differential metabolites were identified between ADMA and serum-starved cells. In summary, our current results indicated serum starvation profoundly altered the gene expression and metabolism of LoVo cells, whereas ADMA could restore most of the changes at transcriptional level, but not at metabolic level.

  1. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effects of Lysine deficiency and Lys-Lys dipeptide on cellular apoptosis and amino acids metabolism.

    Science.gov (United States)

    Yin, Jie; Li, Yuying; Han, Hui; Zheng, Jie; Wang, Lijian; Ren, Wenkai; Chen, Shuai; Wu, Fei; Fang, Rejun; Huang, Xingguo; Li, Chunyong; Tan, Bie; Xiong, Xia; Zhang, Yuzhe; Liu, Gang; Yao, Jiming; Li, Tiejun; Yin, Yulong

    2017-09-01

    Lysine (Lys) is a common limiting amino acids (AA) for humans and animals and plays an important role in cell proliferation and metabolism, while metabolism of Lys deficiency and its dipeptide is still obscure. Thus, this study mainly investigated the effects of Lys deficiency and Lys-Lys dipeptide on apoptosis and AA metabolism in vitro and in vivo models. Lys deficiency induced cell-cycle arrest and apoptosis and upregulated Lys transporters in vitro and in vivo. SLC7A11, a cystine-glutamate antiporter, was markedly upregulated by Lys deficiency and then further mediated cystine uptake and glutamate release, which was negatively regulated by cystine and glutamate transporters. Meanwhile, Lys deprivation upregulated pept1 expression, which might improve Lys-Lys dipeptide absorption to compensate for the reduced Lys availability. Lys-Lys dipeptide alleviated Lys deficiency induced cell-cycle arrest and apoptosis and influenced AA metabolism. Furthermore, the mammalian target of rapamycin signal might be involved in sensing cellular Lys starvation and Lys-Lys dipeptide. Altogether, these studies suggest that Lys deficiency impairs AA metabolism and causes apoptosis. Lys-Lys dipeptide serves as a Lys source and alleviates Lys deficiency induced cellular imbalance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modeling rice metabolism: from elucidating environmental effects on cellular phenotype to guiding crop improvement

    Directory of Open Access Journals (Sweden)

    Meiyappan Lakshmanan

    2016-11-01

    Full Text Available Crop productivity is severely limited by various biotic and abiotic stresses. Thus, it is highly needed to understand the underlying mechanisms of environmental stress response and tolerance in plants, which could be addressed by systems biology approach. To this end, high-throughput omics profiling and in silico modeling can be considered to explore the environmental effects on phenotypic states and metabolic behaviors of rice crops at the systems level. Especially, the advent of constraint-based metabolic reconstruction and analysis paves a way to characterize the plant cellular physiology under various stresses by combining the mathematical network models with multi-omics data. Rice metabolic networks have been reconstructed since 2013 and currently 6 such networks are available, where 5 are at genome-scale. Since their publication, these models have been utilized to systematically elucidate the rice abiotic stress responses and identify agronomic traits for crop improvement. In this review, we summarize the current status of the existing rice metabolic networks and models with their applications. Furthermore, we also highlight future directions of rice modeling studies, particularly stressing how these models can be used to contextualize the affluent multi-omics data that are readily available in the public domain. Overall, we envisage a number of studies in the future, exploiting the available metabolic models to enhance the yield and quality of rice and other food crops.

  4. Effects of metabolic neuropeptides from insect corpora cardiaca on proline metabolism of the African fruit beetle, Pachnoda sinuata.

    Science.gov (United States)

    Auerswald, L; Gäde, G

    1999-06-01

    The effect of neuropeptides from the corpora cardiaca of the fruit beetle Pachnoda sinuata on proline metabolism has been investigated in vivo. Conspecific injections of a crude extract from corpora cardiaca cause an increase of the concentration of proline in the haemolymph by nearly 20% and a decrease of the concentration of alanine, the precursor in proline synthesis, by about 64% when compared with a water-injected group. Purification of an extract of corpora cardiaca on reversed-phase liquid chromatography revealed two distinct UV absorbance and fluorescence peaks that cause hyperprolinaemia in the fruit beetle. The major peak is the previously identified octapeptide Mem-CC; the second peak is also a peptide, but its primary sequence remains, as yet, unidentified. Synthetic Mem-CC elicited time- and dose-dependent increases/decreases of the concentrations of proline and alanine in the haemolymph respectively. Furthermore, the receptor for this peptide seems to be specific in P. sinuata: only peptides of the large family of adipokinetic hormones with an Asp, Asn or Gly residue at position 7 could elicit biological activity, whereas those with a Trp, Ser or Val residue at this position did not have any activity.

  5. Effect of preexercise meals with different glycemic indices and loads on metabolic responses and endurance running.

    Science.gov (United States)

    Chen, Ya Jun; Wong, Stephen H; Wong, Chun Kwok; Lam, Ching Wan; Huang, Ya Jun; Siu, Parco M

    2008-06-01

    This study examined the effect of ingesting 3 isocaloric meals with different glycemic indices (GI) and glycemic loads (GL) 2 hr before exercise on metabolic responses and endurance running performance. Eight male runners completed 3 trials in a randomized order, separated by at least 7 days. Carbohydrate (CHO) content (%), GI, and GL were, respectively, 65%, 79, and 82 for the high-GI/high-GL meal (H-H); 65%, 40, and 42 for the low-GI/low-GL meal (L-L); and 36%, 78, and 44 for the high-GI/low-GL meal (H-L). Each trial consisted of a 1-hr run at 70% VO2max, followed by a 10-km performance run. Low-GL diets (H-L and L-L) were found to induce smaller metabolic changes during the postprandial period and during exercise, which were characterized by a lower CHO oxidation in the 2 trials (p metabolic responses.

  6. Metabolic responses and "omics" technologies for elucidating the effects of heat stress in dairy cows

    Science.gov (United States)

    Min, Li; Zhao, Shengguo; Tian, He; Zhou, Xu; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi

    2016-11-01

    Heat stress (HS) negatively affects various industries that rely on animal husbandry, particularly the dairy industry. A better understanding of metabolic responses in HS dairy cows is necessary to elucidate the physiological mechanisms of HS and offer a new perspective for future research. In this paper, we review the current knowledge of responses of body metabolism (lipid, carbohydrate, and protein), endocrine profiles, and bovine mammary epithelial cells during HS. Furthermore, we summarize the metabolomics and proteomics data that have revealed the metabolite profiles and differentially expressed proteins that are a feature of HS in dairy cows. Analysis of metabolic changes and "omics" data demonstrated that HS is characterized by reduced lipolysis, increased glycolysis, and catabolism of amino acids in dairy cows. Here, analysis of the impairment of immune function during HS and of the inflammation that arises after long-term HS might suggest new strategies to ameliorate the effects of HS in dairy production.

  7. Predicting effects of structural stress in a genome-reduced model bacterial metabolism

    Science.gov (United States)

    Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles

    2012-08-01

    Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.

  8. [Shifts in metabolism and its regulation under the effect of spaceflight factors].

    Science.gov (United States)

    Larina, I M; Nichiporuk, I A; Veselova, O M; Vasilieva, G Yu; Popova, I A

    2013-01-01

    The review deals with the results of studying the adaptive changes in metabolism and its neuroendocrine regulation in humans and animals under the effect of spaceflight factors and ground-based simulation of the gravitational unloading. The majority of the investigations were concerned with the water-electrolyte and mineral turnover, as well as protein, lipid and carbohydrates metabolism. Biochemical measurements of the body liquids (blood, urine and saliva) before, in and after space flight or in ground simulation experiments were used as indictors of the status of sympathoadrenal, hypothalamo-pituitary-adrenal and other systems involved in systemic regulation of metabolism, and also strength of stress-reaction to adversities. The authors generalized data on the interrelation and interaction of the neuroendocrine and psychophysiological status both in the real and simulated conditions of space flight.

  9. [Effect of processing on metabolism of amygdalin from bitter almond in rat].

    Science.gov (United States)

    Fang, Minfeng; Fu, Zhiling; Wang, Qilin; Wang, Shixiang; Xiao, Chaoni; Zheng, Xiaohui

    2010-10-01

    To study the influence of processing on metabolism of the main component of bitter almond-amygdalin in rat. The blood was collected at different times after amygdalin given by injection and oral, bitter almond and its processed production given by oral respectively, and then detected by both HPLC and HPLC-MS(n) methods after extraction pretreatment. After injection, amygdalin was absorbed in prototype to blood rapidly, while the other three kinds of medicine given by oral were all not detected the prototype of amygdalin, but two metabolites were detected which were isomers of prunasin confirmed by mass spectrometry. The metabolic pathway of prunasin in processed bitter almond group was markedly different from the bitter almond group. Processing has a significant effect on bitter almond metabolic processes in rats.

  10. Effect of Metabolic Syndrome and Obesity on Complications After Shoulder Arthroplasty.

    Science.gov (United States)

    Garcia, Grant H; Fu, Michael C; Webb, Matthew L; Dines, David M; Craig, Edward V; Gulotta, Lawrence V

    2016-09-01

    Metabolic syndrome can adversely affect surgical outcomes. This study evaluated the postoperative outcomes of patients with metabolic syndrome after total shoulder arthroplasty (TSA). A retrospective cohort study of 4751 patients undergoing TSA was conducted with use of the American College of Surgeons National Surgical Quality Improvement Program database from 2005 to 2013. Metabolic syndrome was defined as hypertension, diabetes, and body mass index of 30.0 kg/m(2) or greater. Multivariable logistic regression analysis was performed for the outcomes of any postoperative complications and extended length of stay. Patients classified as obese III had a significantly increased risk of extended length of stay (P=.011) compared with control subjects who were of normal weight. In the multivariable adjusted models, compared with nonobese patients, those classified as obese I and obese II had a significantly decreased risk of postoperative complications (odds ratio, 0.84, P=.020, and odds ratio, 0.82, P=.045, respectively), whereas those classified as obese I were less likely to have extended length of stay (odds ratio, 0.79, P=.004). Metabolic syndrome was not a significant predictor of postoperative complications or extended length of stay. Morbidly obese patients undergoing TSA have an increased risk of postoperative complications and extended length of stay. Those classified as obese I and obese II may have a decreased risk of postoperative complications and shorter length of stay. Despite the hypothesized negative effect of metabolic syndrome on outcomes, the overall effect of metabolic syndrome was insignificant. These results are consistent with previous studies on obesity in patients undergoing TSA and may explain why recent studies have not shown differences in the rate of complications after TSA in obese patients with a body mass index of 30 to 40 mg/kg(2). [Orthopedics.2016; 39(5):309-316.]. Copyright 2016, SLACK Incorporated.

  11. Metabolic side effects of antipsychotic agents: a prospective study in a teaching hospital.

    Directory of Open Access Journals (Sweden)

    Ankesh Barnwal

    2012-07-01

    Full Text Available Background: Antipsychotic drugs have propensity to produce side effects like extrapyramidal syndrome, hyperglycemia, lipid abnormalities and weight gain. As data from India related to this aspect are scarce, this study was carried out.Aims and Objectives: To study metabolic effects of antipsychotic drugs using biochemical parameters and to compare metabolic effects of different antipsychotic agents.Materials and methods: This was a prospective study of patients attending the psychiatry outpatient department from September 2007 to May 2008. Each patient enrolled was followed up for 12weeks or less till the antipsychotics were prescribed. Body weight,fasting blood glucose, fasting lipid profile were recorded at baseline and at subsequent visits.Results: Out of 45 patients, 33 completed the study. Bipolar disorder (31% was the most frequent diagnosis followed by brief psychotic disorder (22%, schizophrenia (20% and others.Olanzapine was the most frequently prescribed antipsychotic drug (56% followed by risperidone (24% and haloperidol (20%. 84% received single antipsychotic drug. After 12weeks of therapy all antipsychotics caused significant weight gain (p<0.001, olanzapine caused significant rise in fasting blood glucose (p<0.001 and serum cholesterol (p<0.001. All antipsychotics caused significant rise in serum triglyceride level (p<0.01 Conclusion: All antipsychotics can cause significant abnormalities in carbohydrate and lipid metabolism. Selection of antipsychotics, particularly the newer ones requires consideration of co morbidities like obesity, diabetes mellitus and dyslipidemias. During antipsychotic drug therapy periodic monitoring for metabolic abnormalities is advisable.

  12. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.

    Science.gov (United States)

    Kajihata, Shuichi; Matsuda, Fumio; Yoshimi, Mika; Hayakawa, Kenshi; Furusawa, Chikara; Kanda, Akihisa; Shimizu, Hiroshi

    2015-08-01

    Saccharomyces cerevisiae shows a Crabtree effect that produces ethanol in a high glucose concentration even under fully aerobic condition. For efficient production of cake yeast or compressed yeast for baking, ethanol by-production is not desired since glucose limited chemostat or fed-batch cultivations are performed to suppress the Crabtree effect. In this study, the (13)C-based metabolic flux analysis ((13)C-MFA) was performed for the S288C derived S. cerevisiae strain to characterize a metabolic state under the reduced Crabtree effect. S. cerevisiae cells were cultured at a low dilution rate (0.1 h(-1)) under the glucose-limited chemostat condition. The estimated metabolic flux distribution showed that the acetyl-CoA in mitochondria was mainly produced from pyruvate by pyruvate dehydrogenase (PDH) reaction and that the level of the metabolic flux through the pentose phosphate pathway was much higher than that of the Embden-Meyerhof-Parnas pathway, which contributes to high biomass yield at low dilution rate by supplying NADPH required for cell growth.

  13. The Effects of Pharmaceutical Excipients on Gastrointestinal Tract Metabolic Enzymes and Transporters-an Update.

    Science.gov (United States)

    Zhang, Wenpeng; Li, Yanyan; Zou, Peng; Wu, Man; Zhang, Zhenqing; Zhang, Tao

    2016-07-01

    Accumulating evidence from the last decade has shown that many pharmaceutical excipients are not pharmacologically inert but instead have effects on metabolic enzymes and/or drug transporters. Hence, the absorption, distribution, metabolism, and elimination (ADME) of active pharmaceutical ingredients (APIs) may be altered due to the modulation of their metabolism and transport by excipients. The impact of excipients is a potential concern for Biopharmaceutics Classification System (BCS)-based biowaivers, particularly as the BCS-based biowaivers have been extended to class 3 drugs in certain dosage forms. The presence of different excipients or varying amounts of excipients between formulations may result in bio-inequivalence. The excipient impact may lead to significant variations in clinical outcomes as well. The aim of this paper is to review the recent findings of excipient effects on gastrointestinal (GI) absorption, focusing on their interactions with the metabolic enzymes and transporters in the GI tract. A wide range of commonly used excipients such as binders, diluents, fillers, solvents, and surfactants are discussed here. We summarized the reported effects of those excipients on GI tract phase I and phase II enzymes, uptake and efflux transporters, and relevant clinical significance. This information can enhance our understanding of excipient influence on drug absorption and is useful in designing pharmacokinetic studies and evaluating the resultant data.

  14. Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria.

    Science.gov (United States)

    Cruz, Andreia; Oliveira, Vanessa; Baptista, Inês; Almeida, Adelaide; Cunha, Angela; Suzuki, Satoru; Mendo, Sónia

    2012-01-01

    The effect of tributyltin (TBT) on growth and metabolic activity of three estuarine bacteria with different TBT resistance profiles was investigated in an organic-rich culture medium (TSB) and in phosphate buffered saline (PBS) buffer. Exposure to TBT was assessed by determining its effect on growth (OD(600 nm) measurement), bacterial productivity (leucine incorporation), viability (CFU counts), aggregation and cell size (from Live/Dead analysis), ATP and NADH concentrations. TBT exposure resulted in decrease of bacterial density, cell size, and metabolic activity. In addition, cell aggregates were observed in the TBT-treated cultures. TBT strongly affected bacterial cell metabolism and seemed to exert an effect on its equilibrium, interfering with cell activity. Also, TBT toxicity was lower when cells were grown in TSB than in PBS, suggesting that a nutrient-rich growth medium can protect cells from TBT toxicity. This study contributes to our understanding of the TBT-resistant cell behavior reflected in its physiology and metabolic activity. This information is of utmost importance for further studies of TBT bioremediation.

  15. Effect of fipronil on energy metabolism in the perfused rat liver.

    Science.gov (United States)

    de Medeiros, Hyllana Catarine Dias; Constantin, Jorgete; Ishii-Iwamoto, Emy Luiza; Mingatto, Fábio Erminio

    2015-07-02

    Fipronil is an insecticide used to control pests in animals and plants that can causes hepatotoxicity in animals and humans, and it is hepatically metabolized to fipronil sulfone by cytochrome P-450. The present study aimed to characterize the effects of fipronil (10-50μM) on energy metabolism in isolated perfused rat livers. In fed animals, there was increased glucose and lactate release from glycogen catabolism, indicating the stimulation of glycogenolysis and glycolysis. In the livers of fasted animals, fipronil inhibited glucose and urea production from exogenous l-alanine, whereas ammonia and lactate production were increased. In addition, fipronil at 50μM concentration inhibited the oxygen uptake and increased the cytosolic NADH/NAD⁺ ratio under glycolytic conditions. The metabolic alterations were found both in livers from normal or proadifen-pretreated rats revealing that fipronil and its reactive metabolites contributed for the observed activity. The effects on oxygen uptake indicated that the possible mechanism of toxicity of fipronil involves impairment on mitochondrial respiratory activity, and therefore, interference with energy metabolism. The inhibitory effects on oxygen uptake observed at the highest concentration of 50μM was abolished by pretreatment of the rats with proadifen indicating that the metabolites of fipronil, including fipronil sulfone, acted predominantly as inhibitors of respiratory chain. The hepatoxicity of both the parent compound and its reactive metabolites was corroborated by the increase in the activity of lactate dehydrogenase in the effluent perfusate in livers from normal or proadifen-pretreated rats.

  16. Effects of rapidly and slowly permeating osmotica on metabolism.

    Science.gov (United States)

    Greenway, H; Leahy, M

    1970-08-01

    Zea mays was exposed to solutions of low water potentials by addition of ethylene glycol or mannitol. Intact seedlings were treated for 1 hr at potentials between -10 and -20 atmospheres and then returned to high water potentials. Subsequent root extension was slow after mannitol treatment, but rapid when ethylene glycol had been used as the osmoticum. Cellular activity of excised roots was also affected much less by ethylene glycol than by mannitol. Processes studied included respiration, glucose uptake, and synthesis of methanol-insoluble compounds. These differences in response to various osmotica applied both during and after treatment at low water potentials.Ethylene glycol penetrated the tissues much more rapidly than mannitol. Rapid penetration of the osmoticum would minimize turgor loss and plasmolysis. Thus, the data suggest that adverse effects were induced by water loss or structural changes, or both, during plasmolysis, rather than by low water potentials, demonstrating the crucial importance of osmotic adjustment.

  17. The effect of hypokinesia on lipid metabolism in adipose tissue

    Science.gov (United States)

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  18. Heat Stress on Poultry: Metabolism, Effects and Efforts to Overcome

    Directory of Open Access Journals (Sweden)

    Mohammad Hasil Tamzil

    2014-06-01

    Full Text Available Poultry industries in the tropics are challenged by high ambient temperatures and humidities which cause poultry suffer from heat stress. Heat stress contributes to the instability of certain compounds, such as enzymes. Consequently the enzymes function reduces. Affecting the physiological and hormonal conditions of the poultry. In such condition, the body will attempt to restore homeostasis to the state before it happened. When physiological failed to meet the condition, the body will use the genetic pathway by activating Heat Shock Protein (HSP genes to protect proteins which are sensitive to high temperatures. Heat stress in poultry triggers the emergence of various diseases and affects the growth of poultry and egg production. These negative effects on poultry can be minimized by selecting the type of chickens which are tolerant to high ambient temperature, modifying microclimates of cages and adding anti-stress compounds through feed and or drink.

  19. Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides.

    Science.gov (United States)

    Graham, Mark J; Lee, Richard G; Brandt, Teresa A; Tai, Li-Jung; Fu, Wuxia; Peralta, Raechel; Yu, Rosie; Hurh, Eunju; Paz, Erika; McEvoy, Bradley W; Baker, Brenda F; Pham, Nguyen C; Digenio, Andres; Hughes, Steven G; Geary, Richard S; Witztum, Joseph L; Crooke, Rosanne M; Tsimikas, Sotirios

    2017-07-20

    Epidemiologic and genomewide association studies have linked loss-of-function variants in ANGPTL3, encoding angiopoietin-like 3, with low levels of plasma lipoproteins. We evaluated antisense oligonucleotides (ASOs) targeting Angptl3 messenger RNA (mRNA) for effects on plasma lipid levels, triglyceride clearance, liver triglyceride content, insulin sensitivity, and atherosclerosis in mice. Subsequently, 44 human participants (with triglyceride levels of either 90 to 150 mg per deciliter [1.0 to 1.7 mmol per liter] or >150 mg per deciliter, depending on the dose group) were randomly assigned to receive subcutaneous injections of placebo or an antisense oligonucleotide targeting ANGPTL3 mRNA in a single dose (20, 40, or 80 mg) or multiple doses (10, 20, 40, or 60 mg per week for 6 weeks). The main end points were safety, side-effect profile, pharmacokinetic and pharmacodynamic measures, and changes in levels of lipids and lipoproteins. The treated mice had dose-dependent reductions in levels of hepatic Angptl3 mRNA, Angptl3 protein, triglycerides, and low-density lipoprotein (LDL) cholesterol, as well as reductions in liver triglyceride content and atherosclerosis progression and increases in insulin sensitivity. After 6 weeks of treatment, persons in the multiple-dose groups had reductions in levels of ANGPTL3 protein (reductions of 46.6 to 84.5% from baseline, Pantisense oligonucleotide and three who received placebo reported dizziness or headache. There were no serious adverse events. Oligonucleotides targeting mouse Angptl3 retarded the progression of atherosclerosis and reduced levels of atherogenic lipoproteins in mice. Use of the same strategy to target human ANGPTL3 reduced levels of atherogenic lipoproteins in humans. (Funded by Ionis Pharmaceuticals; ClinicalTrials.gov number, NCT02709850 .).

  20. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication

    Institute of Scientific and Technical Information of China (English)

    Minjong; Lee; Jung-Hwan; Yoon

    2015-01-01

    Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the "reverse Warburg effect". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.

  1. Effect of short-term thyroxine administration on energy metabolism and mitochondrial efficiency in humans.

    Directory of Open Access Journals (Sweden)

    Darcy L Johannsen

    Full Text Available The physiologic effects of triiodothyronine (T3 on metabolic rate are well-documented; however, the effects of thyroxine (T4 are less clear despite its wide-spread use to treat thyroid-related disorders and other non-thyroidal conditions. Here, we investigated the effects of acute (3-day T4 supplementation on energy expenditure at rest and during incremental exercise. Furthermore, we used a combination of in situ and in vitro approaches to measure skeletal muscle metabolism before and after T4 treatment. Ten healthy, euthyroid males were given 200 µg T4 (levothyroxine per day for 3 days. Energy expenditure was measured at rest and during exercise by indirect calorimetry, and skeletal muscle mitochondrial function was assessed by in situ ATP flux ((31P MRS and in vitro respiratory control ratio (RCR, state 3/state 4 rate of oxygen uptake using a Clark-type electrode before and after acute T4 treatment. Thyroxine had a subtle effect on resting metabolic rate, increasing it by 4% (p = 0.059 without a change in resting ATP demand (i.e., ATP flux of the vastus lateralis. Exercise efficiency did not change with T4 treatment. The maximal capacity to produce ATP (state 3 respiration and the coupled state of the mitochondria (RCR were reduced by approximately 30% with T4 (p = 0.057 and p = 0.04, respectively. Together, the results suggest that T4, although less metabolically active than T3, reduces skeletal muscle efficiency and modestly increases resting metabolism even after short-term supplementation. Our findings may be clinically relevant given the expanding application of T4 to treat non-thyroidal conditions such as obesity and weight loss.

  2. An integrated multi-omics study revealed metabolic alterations underlying the effects of coffee consumption.

    Directory of Open Access Journals (Sweden)

    Shoko Takahashi

    Full Text Available Many epidemiological studies have indicated that coffee consumption may reduce the risks of developing obesity and diabetes, but the underlying mechanisms of these effects are poorly understood. Our previous study revealed the changes on gene expression profiles in the livers of C57BL/6J mice fed a high-fat diet containing three types of coffee (caffeinated, decaffeinated and green unroasted coffee, using DNA microarrays. The results revealed remarkable alterations in lipid metabolism-related molecules which may be involved in the anti-obesity effects of coffee. We conducted the present study to further elucidate the metabolic alterations underlying the effects of coffee consumption through comprehensive proteomic and metabolomic analyses. Proteomics revealed an up-regulation of isocitrate dehydrogenase (a key enzyme in the TCA cycle and its related proteins, suggesting increased energy generation. The metabolomics showed an up-regulation of metabolites involved in the urea cycle, with which the transcriptome data were highly consistent, indicating accelerated energy expenditure. The TCA cycle and the urea cycle are likely be accelerated in a concerted manner, since they are directly connected by mutually providing each other's intermediates. The up-regulation of these pathways might result in a metabolic shift causing increased ATP turnover, which is related to the alterations of lipid metabolism. This mechanism may play an important part in the suppressive effects of coffee consumption on obesity, inflammation, and hepatosteatosis. This study newly revealed global metabolic alterations induced by coffee intake, providing significant insights into the association between coffee intake and the prevention of type 2 diabetes, utilizing the benefits of multi-omics analyses.

  3. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows.

    Science.gov (United States)

    Stoldt, Ann-Kathrin; Derno, Michael; Das, Gürbüz; Weitzel, Joachim M; Wolffram, Siegfried; Metges, Cornelia C

    2016-03-01

    Flavonoids are secondary plant metabolites with several health promoting effects. As dairy cows often suffer from metabolic imbalance and health problems, interest is growing in health improvements by plant substances such as flavonoids. Our group has recently shown that the flavonoids quercetin and rutin (a glucorhamnoside of quercetin) are bioavailable in cows when given via a duodenal fistula or orally, respectively, affect glucose metabolism, and have beneficial effects on liver health. Furthermore, flavonoids may reduce rumen methane production in vitro through their antibacterial properties. To test the hypothesis that rutin has effects on energy metabolism, methane production, and production performance in dairy cows, we fed rutin trihydrate at a dose of 100mg/kg of body weight to a group of 7 lactating dairy cows for 2 wk in a crossover design. In a second experiment, 2 cows were fed the same ration but were supplemented with buckwheat seeds (Fagopyrum tartaricum), providing rutin at a dose comparable to the first experiment. Two other cows receiving barley supplements were used as controls in a change-over mode. Blood samples were taken weekly and respiration measurements were performed at the end of each treatment. Supplementation of pure rutin, but not of rutin contained in buckwheat seeds, increased the plasma quercetin content. Methane production and milk yield and composition were not affected by rutin treatment in either form. Plasma glucose, β-hydroxybutyrate, and albumin were increased by pure rutin treatment, indicating a possible metabolic effect of rutin on energy metabolism of dairy cows. In addition, we did not show that in vivo ruminal methane production was reduced by rutin. In conclusion, we could not confirm earlier reports on in vitro methane reduction by rutin supplementation in dairy cows in established lactation.

  4. An integrated multi-omics study revealed metabolic alterations underlying the effects of coffee consumption.

    Science.gov (United States)

    Takahashi, Shoko; Saito, Kenji; Jia, Huijuan; Kato, Hisanori

    2014-01-01

    Many epidemiological studies have indicated that coffee consumption may reduce the risks of developing obesity and diabetes, but the underlying mechanisms of these effects are poorly understood. Our previous study revealed the changes on gene expression profiles in the livers of C57BL/6J mice fed a high-fat diet containing three types of coffee (caffeinated, decaffeinated and green unroasted coffee), using DNA microarrays. The results revealed remarkable alterations in lipid metabolism-related molecules which may be involved in the anti-obesity effects of coffee. We conducted the present study to further elucidate the metabolic alterations underlying the effects of coffee consumption through comprehensive proteomic and metabolomic analyses. Proteomics revealed an up-regulation of isocitrate dehydrogenase (a key enzyme in the TCA cycle) and its related proteins, suggesting increased energy generation. The metabolomics showed an up-regulation of metabolites involved in the urea cycle, with which the transcriptome data were highly consistent, indicating accelerated energy expenditure. The TCA cycle and the urea cycle are likely be accelerated in a concerted manner, since they are directly connected by mutually providing each other's intermediates. The up-regulation of these pathways might result in a metabolic shift causing increased ATP turnover, which is related to the alterations of lipid metabolism. This mechanism may play an important part in the suppressive effects of coffee consumption on obesity, inflammation, and hepatosteatosis. This study newly revealed global metabolic alterations induced by coffee intake, providing significant insights into the association between coffee intake and the prevention of type 2 diabetes, utilizing the benefits of multi-omics analyses.

  5. Bofu-tsu-shosan, an oriental herbal medicine, exerts a combinatorial favorable metabolic modulation including antihypertensive effect on a mouse model of human metabolic disorders with visceral obesity.

    Directory of Open Access Journals (Sweden)

    Kengo Azushima

    Full Text Available Accumulating evidence indicates that metabolic dysfunction with visceral obesity is a major medical problem associated with the development of hypertension, type 2 diabetes (T2DM and dyslipidemia, and ultimately severe cardiovascular and renal disease. Therefore, an effective anti-obesity treatment with a concomitant improvement in metabolic profile is important for the treatment of metabolic dysfunction with visceral obesity. Bofu-tsu-shosan (BOF is one of oriental herbal medicine and is clinically available to treat obesity in Japan. Although BOF is a candidate as a novel therapeutic strategy to improve metabolic dysfunction with obesity, the mechanism of its beneficial effect is not fully elucidated. Here, we investigated mechanism of therapeutic effects of BOF on KKAy mice, a model of human metabolic disorders with obesity. Chronic treatment of KKAy mice with BOF persistently decreased food intake, body weight gain, low-density lipoprotein cholesterol and systolic blood pressure. In addition, both tissue weight and cell size of white adipose tissue (WAT were decreased, with concomitant increases in the expression of adiponectin and peroxisome proliferator-activated receptors genes in WAT as well as the circulating adiponectin level by BOF treatment. Furthermore, gene expression of uncoupling protein-1, a thermogenesis factor, in brown adipose tissue and rectal temperature were both elevated by BOF. Intriguingly, plasma acylated-ghrelin, an active form of orexigenic hormone, and short-term food intake were significantly decreased by single bolus administration of BOF. These results indicate that BOF exerts a combinatorial favorable metabolic modulation including antihypertensive effect, at least partially, via its beneficial effect on adipose tissue function and its appetite-inhibitory property through suppression on the ghrelin system.

  6. Metabolic and behavioral effects of chronic olanzapine treatment and cafeteria diet in rats.

    Science.gov (United States)

    Muller, Alexandre P; Tort, Ana H; Gnoatto, Jussânia; Moreira, Julia D; Vinadé, Elsa R; Perry, Marcos L; Souza, Diogo O; Lara, Diogo R; Portela, Luis V

    2010-10-01

    Olanzapine and highly palatable diets can alter metabolism and brain function. We investigated the interaction of chronic treatment (4 months) with olanzapine and a cafeteria diet on metabolic parameters, memory tasks (spatial and aversive), the elevated plus maze and locomotor activity induced by d-amphetamine. Male Wistar rats were separated into the following groups: standard diet vehicle, standard diet and olanzapine, cafeteria diet vehicle and cafeteria diet and olanzapine. Olanzapine was administered in the drinking water (approximately 1.5 mg/kg/day), and after 3 days of treatment, the rats exhibited an expected anxiolytic effect and reduced amphetamine-induced hyperlocomotion. After 4 months of treatment, cafeteria diet vehicle and cafeteria diet olanzapine rats exhibited an increased body weight and heavier fat pads compared with the standard diet groups. Olanzapine increased only the epididymal and mesenteric fat pads. The cafeteria diet and olanzapine group showed greater glucose intolerance compared with all other groups. The cafeteria diet altered the effects of chronic olanzapine on the performance in the water maze and inhibitory avoidance tasks. Chronic olanzapine treatment failed to affect amphetamine-induced locomotion and to produce anxiolytic effects in the elevated plus maze task, regardless of the diet. Our results suggest that chronic olanzapine caused an increase in fat pads, which is putatively involved in the etiology of many metabolic diseases. Rats on the cafeteria diet were overweight and exhibited glucose intolerance. We did not observe these effects with olanzapine treatment with the standard diet. Moreover, the chronic treatment regimen caused tolerance to the antipsychotic and anxiolytic effects of olanzapine and seemed to potentiate some of the metabolic effects of the cafeteria diet. The cafeteria diet also modified the effects of chronic treatment with olanzapine on cognitive tasks, which may represent an undesirable effect of

  7. Growth hormone enhances effects of endurance training on oxidative muscle metabolism in elderly women

    DEFF Research Database (Denmark)

    Lange, K H; Isaksson, F; Juul, A;

    2000-01-01

    The present study investigated whether recombinant human (rh) growth hormone (GH) combined with endurance training would have a larger effect on oxidative capacity, metabolism, and body fat than endurance training alone. Sixteen healthy, elderly women, aged 75 yr, performed closely monitored...... in the two subjects receiving rhGH. In conclusion, rhGH adds to the effects of endurance training on muscle oxidative enzymes and causes a reduction in body fat in elderly women....

  8. NATURAL PLANT TOXICANT – CYANOGENIC GLYCOSIDE AMYGDALIN: CHARACTERISTIC, METABOLISM AND THE EFFECT ON ANIMAL REPRODUCTION

    OpenAIRE

    Eduard Kolesár; Marek Halenár; Adriana Kolesárová; Peter Massányi

    2015-01-01

    The amount of cyanogenic glycosides, as natural plant toxicants, in plants varies with plant species and environmental effects. Cyanogenic glycoside as an amygdalin was detected in apricot kernels, bitter almonds and peach, plum, pear and apple seeds. Amygdalin itself is non-toxic, but its HCN production decomposed by some enzymes is toxic substance. Target of this review was to describe the characteristic, metabolism and possible effects of amygdalin on reproductive processes. Previous studi...

  9. Metabolic effects of perinatal asphyxia in the rat cerebral cortex.

    Science.gov (United States)

    Souza, Samir Khal; Martins, Tiago Leal; Ferreira, Gustavo Dias; Vinagre, Anapaula Sommer; Silva, Roselis Silveira Martins da; Frizzo, Marcos Emilio

    2013-03-01

    We reported previously that intrauterine asphyxia acutely affects the rat hippocampus. For this reason, the early effects of this injury were studied in the cerebral cortex, immediately after hysterectomy (acute condition) or following a recovery period at normoxia (recovery condition). Lactacidemia and glycemia were determined, as well as glycogen levels in the muscle, liver and cortex. Cortical tissue was also used to assay the ATP levels and glutamate uptake. Asphyxiated pups exhibited bluish coloring, loss of movement, sporadic gasping and hypertonia. However, the appearance of the controls and asphyxiated pups was similar at the end of the recovery period. Lactacidemia and glycemia were significantly increased by asphyxia in both the acute and recovery conditions. Concerning muscle and hepatic glycogen, the control group showed significantly higher levels than the asphyxic group in the acute condition and when compared with groups of the recovery period. In the recovery condition, the control and asphyxic groups showed similar glycogen levels. However, in the cortex, the control groups showed significantly higher glycogen levels than the asphyxic group, in both the acute and recovery conditions. In the cortical tissue, asphyxia reduced ATP levels by 70 % in the acute condition, but these levels increased significantly in asphyxic pups after the recovery period. Asphyxia did not affect glutamate transport in the cortex of both groups. Our results suggest that the cortex uses different energy resources to restore ATP after an asphyxia episode followed by a reperfusion period. This strategy could sustain the activity of essential energy-dependent mechanisms.

  10. [Effect of hepcidin on iron metabolism in athletes].

    Science.gov (United States)

    Domínguez, Raúl; Garnacho-Castaño, Manuel Vicente; Maté-Muñoz, José Luis

    2014-12-01

    The role of iron in the human body is essential, and athletes must always try to keep an adequate iron status. Hepcidin is proposed as the main hormone responsible for the control of iron reserves in the body, given its ability to induce degradation of ferroportin. The action of hepcidin on ferroportin leads to a decreased dietary iron absorption, as well as to a decrease in macrophages. Several factors such as the iron status, the amount of dietary iron, the inflammation, the hypoxia, the testosterone and the physical exercise have been pointed out as affecting the synthesis of hepcidin. This study has aimed at analysing the researches on hepcidin response to exercise, as well as designing a specific strategy to prevent a potential ferropenic status in athletes. The main findings are an association between exercise at an intensity over 65% VO2max and transient increases in the synthesis of hepcidin, and a possible regulatory effect of intermittent hypoxic stimuli in the early post-exercise recovery. Other factors such as the training volume, sex, kind of exercise or the type of surface where the training takes place do not seem to affect the response of hepcidin to exercise.

  11. Hexose metabolism in pancreatic islets: the Pasteur effect.

    Science.gov (United States)

    Malaisse, W J; Rasschaert, J; Zähner, D; Sener, A

    1988-02-01

    In rat pancreatic islets, hypoxia severely decreased both the oxidation of D-[U-14C]glucose and the release of insulin evoked by D-glucose. The production of [14C]lactate was increased in the hypoxic islets, the relative magnitude of such an increment being greater at low (2.8 mM) than high (8.3 and 16.7 mM) D-glucose concentrations. Hypoxia increased the detritiation of D-[5-3H]glucose at low glucose concentration (2.8 mM), failed to affect 3H2O production at an intermediate glucose level (8.3 mM), and inhibited the utilization of D-[5-3H]glucose at a higher hexose concentration (16.7 mM). In tumoral islet cells (RINm5F line) exposed to 16.7 mM D-glucose, hypoxia decreased D-[U-14C]glucose oxidation to the same extent as in normal islet cells, but increased the production of [14C]lactate and 3H2O to a greater extent than in normal islets. These findings indicate that the Pasteur effect is operative in islet cells. The experimental data also suggest that, under normal conditions of oxygenation, high concentrations of D-glucose lead to both activation of phosphofructokinase and stimulation of mitochondrial oxidative events in normal, but not tumoral, islet cells.

  12. Metabolism in compensatory growth: VI. Effect of energy yielding substrates

    Directory of Open Access Journals (Sweden)

    Prapti Mahyudi

    2002-03-01

    Full Text Available An experiment was designed to investigate the effect of different rates of glucose infusion into animals fed a maintenance diet supplemented with undegraded protein (HCHO-casein. Twelve Merino wether Iambs were divided into 3 treatment groups receiving different rates of glucose infusion, 10 mmolelh, 20 mmolelh and 30 mmolelh. The intake and digestibility of dry matter were not affected by glucose infusion. The infusion of glucose increased N retention by reducing both faecal and urinary N. It was estimated that per unit of glucose infused, animal retained 0.15 g N/mmole glucoselh. The efficiency of N retention were 28%, 35% and 44% for glucose infusion rate of 10 mmolelh, 20 mmolelh and 30 mmolelh respectively. Urea entry rate decreased as glucose infusion rate increased. The estimation of protein spared by glucose infusion calculated from N retention and urinary excretion rate gave a value of 20 g and 25 g per 100 g glucose infused respectively. The proportion of glucose entry rate (GER that could potentially derived from amino acids reduced as the rate of glucose infusion increased, being 21%, 17% and 14% for 10 mmolelh, 20 mmolelh and 30 mmolelh of glucose infused respectively. The GER, percentage of glucose oxidized and its contribution to CO2 production increased as the rate of glucose infusion increased. However, CO2 entry rate was not significantly affected by rates of glucose infusion. Glucose uptake by the hind-limb muscles increased with increasing rates of glucose infusion and strongly related with both GER and plasma insulin concentration. There was a tendency for circulating essential amino acids to reduce as the rate of glucose infusion increased, and was more prominent for branched chain amino acids (BCAA at 30 mmolelh of glucose infusion. The reduction of amino acids in the blood circulation occurred concurrently with the reduction in plasma urea concentration and urea entry rate indicated increased net incorporation of amino

  13. Protective effects of berberine against doxorubicin-induced cardiotoxicity in rats by inhibiting metabolism of doxorubicin.

    Science.gov (United States)

    Hao, Gang; Yu, Yunli; Gu, Bingren; Xing, Yiwen; Xue, Man

    2015-01-01

    1. The clinical use of doxorubicin, an effective anticancer drug, is severely hampered by its cardiotoxicity. Berberine, a botanical alkaloid, has been reported to possess cardioprotective and antitumor effects. In this study, we investigated the cardioprotective effect of berberine on doxorubicin-induced cardiotoxicity and the effect of berberine on the metabolism of doxorubicin. 2. Adult male Sprague-Dawley rats were administered doxorubicin in the presence or absence of berberine for 2 weeks. Administration of berberine effectively prevented doxorubicin-induced body weight reduction and mortality in rats. 3. Berberine reduced the activity of myocardial enzymes, including aspartate aminotransferase (AST), creatine kinase (CK), CK isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Echocardiographic examination further demonstrated that berberine effectively ameliorated cardiac dysfunction induced by doxorubicin. 4. Berberine inhibited the metabolism of doxorubicin in the cytoplasm of rat heart and reduced the accumulation of doxorubicinol (a secondary alcohol metabolite of doxorubicin) in heart. 5. These data showed that berberine alleviated the doxorubicin-induced cardiotoxicity in rats via inhibition of the metabolism of doxorubicin and reduced accumulation of doxorubicinol selectively in hearts.

  14. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    Directory of Open Access Journals (Sweden)

    Marijana Todorčević

    2015-12-01

    Full Text Available Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3 and docosahexaenoic acid (DHA; 22:6n-3. Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity.

  15. Inter-regional comparison of land-use effects on stream metabolism

    Science.gov (United States)

    Bernot, M.J.; Sobota, D.J.; Hall, R.O.; Mulholland, P.J.; Dodds, W.K.; Webster, J.R.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Grimm, N. B.; Hamilton, S.K.; Johnson, S.L.; McDowell, W.H.; Meyer, J.L.; Peterson, B.; Poole, G.C.; Maurice, Valett H.M.; Arango, C.; Beaulieu, J.J.; Burgin, A.J.; Crenshaw, C.; Helton, A.M.; Johnson, L.; Merriam, J.; Niederlehner, B.R.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Thomas, S.M.; Wilson, K.

    2010-01-01

    control pathways including a direct effect of land-use on GPP as well as SRP, DIN, and PAR effects on GPP; GPP effects on autotrophic biomass, organic matter, and ER; and organic matter effects on ER.6. Overall, consideration of the data separated by land-use categories showed reduced inter-regional variability in rates of metabolism, indicating that the influence of agricultural and urban land use can obscure regional differences in stream metabolism. ?? 2010 Blackwell Publishing Ltd.

  16. Effects of Aeration on Root Physiology and Nitrogen Metabolism in Rice

    Institute of Scientific and Technical Information of China (English)

    XU Chun-mei; WANG Dan-ying; CHEN Song; CHEN Li-ping; ZHANG Xiu-fu

    2013-01-01

    In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific.

  17. Analysis of metabolic effects of menthol on WFS1-deficient mice.

    Science.gov (United States)

    Ehrlich, Marite; Ivask, Marilin; Raasmaja, Atso; Kõks, Sulev

    2016-01-01

    In this study, we investigated the physiological regulation of energy metabolism in wild-type (WT) and WFS1-deficient (Wfs1KO) mice by measuring the effects of menthol treatment on the O2 consumption, CO2 production, rectal body temperature, and heat production. The basal metabolism and behavior was different between these genotypes as well as TRP family gene expressions. Wfs1KO mice had a shorter life span and weighed less than WT mice. The food and water intake of Wfs1KO mice was lower as well as the body temperature when compared to their WT littermates. Furthermore, Wfs1KO mice had higher basal O2 consumption, and CO2 and heat production than WT mice. In addition, Wfs1KO mice showed a higher response to menthol administration in comparison to WT mice. The strongest menthol effect was seen on different physiological measures 12 h after oral administration. The highest metabolic response of Wfs1KO mice was seen at the menthol dose of 10 mg/kg. Menthol increased O2 consumption, and CO2 and heat production in Wfs1KO mice when compared to their WT littermates. In addition, the expression of Trpm8 gene was increased. In conclusion, our results show that the Wfs1KO mice develop a metabolic phenotype characterized with several physiological dysfunctions.

  18. Neuroprotective effects of leptin in the context of obesity and metabolic disorders.

    Science.gov (United States)

    Davis, Cecilia; Mudd, Jeremy; Hawkins, Meredith

    2014-12-01

    As the population of the world ages, the prevalence of neurodegenerative disease continues to rise, accompanied by increases in disease burden related to obesity and metabolic disorders. Thus, it will be essential to develop tools for preventing and slowing the progression of these major disease entities. Epidemiologic studies have shown strong associations between obesity, metabolic dysfunction, and neurodegeneration, while animal models have provided insights into the complex relationships between these conditions. Experimentally, the fat-derived hormone leptin has been shown to act as a neuroprotective agent in various animal models of dementia, toxic insults, ischemia/reperfusion, and other neurodegenerative processes. Specifically, leptin minimizes neuronal damage induced by neurotoxins and pro-apoptotic conditions. Leptin has also demonstrated considerable promise in animal models of obesity and metabolic disorders via modulation of glucose homeostasis and energy intake. However, since obesity is known to induce leptin resistance, we hypothesize that resistance to the neuroprotective effects of leptin contributes to the pathogenesis of obesity-associated neurodegenerative diseases. This review aims to explore the literature pertinent to the role of leptin in the protection of neurons from the toxic effects of aging, obesity and metabolic disorders, to investigate the physiological state of leptin resistance and its causes, and to consider how leptin might be employed therapeutically in the prevention and treatment of neurodegenerative disease.

  19. Effects of Monoclonal Antibody Against Adipocyte-Specific Membrane Protein on Lipid Metabolism in Pigs

    Institute of Scientific and Technical Information of China (English)

    GAO Shi-zheng; LIU Ling-yun; ZHAO Su-mei; HU Hong-mei; GE Chang-rong; LIU Yong-gang; ZHANG Xi

    2008-01-01

    This study was to investigate the regulation of monoclonal antibodies against adipocyte membrane proteins(McAb)on lipid metabolism in pigs.Forty Landrace x Saba pigs were randomly divided into eight groups;the control group was given 10 mL saline and the treat groups were given monoclonal antibody against adipocyte-specific membrane protein with 0.10 0.5,and 1.0 mg kg-1 body weight at 15 and 60 kg body weight,respectively,by intraperitoneal injection.The results showed that McAb could increase,significantly,serum lipoprotein lipase activity and reduce serum nonesterified fatty acid(NEFA)content.Meanwhile,McAb increased content of serum lipid,triglyceride(TG),cholesterol(CHO),high density lipoprotein(HDL),and low density lipoprotein(LDL) both at 15 and 60 kg body weight.However,McAb affected more significantly the lipid metabolism at 15 kg body weight than at 60 kg body weight.Moreover,this effect of McAb on lipid metabolism exhibited dose-dependent effect.These results suggested that this monoclonal antibody increased lipase activity,promoted lipolysis,and utilization of lipid so that McAb could be applied to restrain excessive fat deposition in porcine production through the regulation of fat metabolism.

  20. Effects of resistance training on testosterone metabolism in younger and older men.

    Science.gov (United States)

    Ahtiainen, Juha P; Nyman, Kai; Huhtaniemi, Ilpo; Parviainen, Tapani; Helste, Mika; Rannikko, Antti; Kraemer, William J; Häkkinen, Keijo

    2015-09-01

    This study investigated the effects of resistance training (RT) on the metabolism of testosterone (T) in younger (n=5, 28±3yrs.) and older (n=8, 70±2yrs.) men. Experimental heavy resistance exercises (5×10RM leg presses) were performed before and after a 12-month of RT. No age differences were found in the production or metabolic clearance rate of T (determined by stable isotope dilution method), skeletal muscle androgen receptor content or serum LH concentrations due to acute or chronic RT. The T production capacity response to gonadotropin stimulation and the concentrations of the urinary T metabolites (androsterone and etiocholanolone) were lower in the older compared to younger men (p<0.05-0.01). This study further showed that RT may have acute effect on T production and clearance rates, while the exercise-induced increases in serum T appeared to be induced by decreased metabolic clearance rate of T. Attenuated T production capacity and urinary excretion of T metabolites in older men may reflect the known reduction in testicular steroidogenesis upon aging. No changes were observed in T metabolism due to RT indicating a homeostatic stability for this hormone in men of different ages.

  1. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel.

    Science.gov (United States)

    Wang, Yun; Javed, Iqbal; Liu, Yahui; Lu, Song; Peng, Guang; Zhang, Yongqian; Qing, Hong; Deng, Yulin

    2016-01-04

    Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins.

  2. Effects of hyperlipidaemia on glucocorticoid metabolism: results of a randomized controlled trial in healthy young women.

    Science.gov (United States)

    Mai, K; Reinecke, F; Andres, J; Bobbert, T; Kraatz, J; Wudy, S A; Hartmann, M F; Maser-Gluth, C; Pfeiffer, A F H; Spranger, J

    2011-05-01

    It is well established that the hypothalamic-pituitary-adrenal (HPA) axis is altered in obese individuals. Hyperlipidaemia with elevated levels of free fatty acids (FFAs) is also frequently seen in obesity and in the metabolic syndrome. We hypothesized, therefore, that hyperlipidaemia may alter the activity of the HPA axis. The effects of hyperlipidaemia, including increased circulating FFAs, on ACTH secretion and cortisol metabolism were analysed in 13 healthy young women during the early follicular phase of two subsequent cycles. We administered a 20% lipid/heparin (LHI) or a saline/heparin infusion (SHI) using a crossover design in random order for 330 min. A detailed characterization of glucocorticoid metabolism was performed by measurement of plasma ACTH, cortisol and urinary excretion rates of adrenal glucocorticoids and the glucocorticoid metabolites. We observed that LHI-induced hyperlipidaemia elevated serum cortisol levels compared to SHI. No changes in plasma ACTH levels, daily urinary excretion rates of adrenal glucocorticoids, glucocorticoid precursors/metabolites and the calculated activities of the 5α-reductase, 3β-hydroxysteroid dehydrogenase (HSD), 11-, 17-, 21-hydroxylase and 11β-HSD 1 or 2 were found. Our randomized controlled trial suggests that the adrenal sensitivity to ACTH may be enhanced by LHI-induced hyperlipidaemia in normal-weight healthy young women. This effect might contribute to the disturbances of the HPA axis described in women with abdominal obesity and impaired lipid metabolism. © 2011 Blackwell Publishing Ltd.

  3. Effects of TiO2 nanoparticles on nutrition metabolism in silkworm fat body

    Directory of Open Access Journals (Sweden)

    J. H. Tian

    2016-06-01

    Full Text Available Silkworm (Bombyx mori is an important economic insect with a fat body that plays a crucial role in the storage and transfer of nutrients. It is also known that TiO2 nanoparticles (NPs can improve feed efficiency and promote silk protein synthesis in the silkworm. In this study, we profiled gene expression in the silkworm fat body after TiO2 NP treatment, validated the major RNA-seq findings, and determined the contents of trehalose and triglyceride, the activity of lipase, and the amount of total proteins. RNA-seq analysis revealed that TiO2 NP treatment caused significant expression changes in 341 genes (P≤0.01, 138 of which were upregulated while the other 203 were downregulated. The expression levels of two target genes in the insulin signaling pathway and two protein metabolism-related target genes, three lipid metabolism-associated target genes, two carbohydrate metabolism related target genes and expression levels of seven heat shock protein genes were increased, and that of threonine dehydratase gene and fatty acid transport protein gene were decreased. The RNA-seq results of 16 genes were validated by quantitative real-time PCR. The lipase activity, content of trehalose, and amount of total proteins were elevated by 3.86-fold, 1.34-fold, and 1.21-fold, respectively, and the content of triglyceride was decreased by 0.94-fold after TiO2 NP treatment. These results indicated that TiO2 NPs activated the insulin signaling pathway, promoted the metabolism of protein, fat, and carbohydrate, and improved nutrition metabolism. Our study provides new support for the understanding of the beneficial effect of TiO2 NPs on silkworm nutrient metabolism.

  4. High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age.

    Science.gov (United States)

    Bedarida, Tatiana; Baron, Stephanie; Vessieres, Emilie; Vibert, Francoise; Ayer, Audrey; Marchiol-Fournigault, Carmen; Henrion, Daniel; Paul, Jean-Louis; Noble, Florence; Golmard, Jean-Louis; Beaudeux, Jean-Louis; Cottart, Charles-Henry; Nivet-Antoine, Valerie

    2014-09-01

    High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet.

  5. The effect of enhanced acetate influx on Synechocystis sp. PCC 6803 metabolism.

    Science.gov (United States)

    Thiel, Kati; Vuorio, Eerika; Aro, Eva-Mari; Kallio, Pauli Tapio

    2017-02-02

    Acetate is a common microbial fermentative end-product, which can potentially be used as a supplementary carbon source to enhance the output of biotechnological production systems. This study focuses on the acetate metabolism of the photosynthetic cyanobacterium Synechocystis sp. PCC 6803 which is unable to grow on acetate as a sole carbon source but still can assimilate it via acetyl-CoA-derived metabolic intermediates. In order to gain insight into the acetate uptake, associated limitations and metabolic effects, a heterologous acetate transporter ActP from Escherichia coli was introduced into Synechocystis to facilitate the transport of supplemented acetate from the medium into the cell. The results show that enhanced acetate intake can efficiently promote the growth of the cyanobacterial host. The effect is apparent specifically under low-light conditions when the photosynthetic activity is low, and expected to result from increased availability of acetyl-CoA precursors, accompanied by changes induced in cellular glycogen metabolism which may include allocation of resources towards enhanced growth instead of glycogen accumulation. Despite the stimulated growth of the mutant, acetate is shown to suppress the activity of the photosynthetic apparatus, further emphasizing the contribution of glycolytic metabolism in the acetate-induced effect. The use of acetate by the cyanobacterium Synechocystis sp. PCC 6803 is at least partially restricted by the import into the cell. This can be improved by the introduction of a heterologous acetate transporter into the system, thereby providing a potential advantage by expanding the scope of acetate utilization for various biosynthetic processes.

  6. Retina maturation following administration of thyroxine in developing rats: effects on polyamine metabolism and glutamate decarboxylase.

    Science.gov (United States)

    Macaione, S; Di Giorgio, R M; Nicotina, P A; Ientile, R

    1984-08-01

    The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and gamma-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9-12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S-Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis.

  7. The effect of metformin on blood pressure and metabolism in nondiabetic hypertensive patients

    DEFF Research Database (Denmark)

    Snorgaard, O; Køber, L; Carlsen, J

    1997-01-01

    OBJECTIVES: To study the effect of metformin on blood pressure and metabolism in nondiabetic hypertensives. DESIGN: A six-week single-blind placebo wash-out, followed by a double-blind placebo-controlled parallel group design with skew randomization (2:2:1) to metformin 850 mg b.i.d. (n = 10...... on the decline in diastolic oBP within this group. Changes in fasting C-peptide and fasting insulin during treatment were unrelated to blood pressure changes. High fasting insulin (> 60 pmol L[-1]) or high fasting C-peptide (> 1000 pmol L[-1]) at baseline did not favour an effect of metformin on diastolic o......BP. Glucose metabolism and lipoproteins were unchanged in all groups. CONCLUSIONS: Although metformin treatment induced a decline in diastolic office blood pressure in nondiabetic hypertensives, the decline was not different from that during placebo treatment. Metformin had no significant effect on ambulatory...

  8. Determinants of DHA status and functional effects on metabolic markers and immune modulation in early life

    DEFF Research Database (Denmark)

    Harsløf, Laurine Bente Schram

    intake and other potential determinants in infancy and childhood. The first part of the PhD thesis describes several potential determinants of infant and young child DHA status including genetic variation in FADS, breastfeeding and fish intake. Results can be found in Paper 1. Evidence for effects of n-3...... LCPUFA on metabolic markers such as glucose homeostasis, lipid profile and blood pressure in young children is limited. No studies have explored whether polymorphisms of genes encoding proteins involved in the mechanisms behind the effect (such as PPARG2 and COX2) can support the findings of diet studies...... by identifying the involved pathways and genes. The second part of the PhD thesis explores whether functional effects of n-3 LCPUFA on metabolic markers and immune maturation in young children can be supported by polymorphisms in genes involved in the mechanisms (PPARG2, COX2 and NFKB1). Results can be found...

  9. Study on the Effect of Asparagus Extracts on Promoting Metabolism of the Body

    Directory of Open Access Journals (Sweden)

    Li Xiaohong

    2016-12-01

    Full Text Available This study aims to analyze the effective ingredients of asparagus extracts and the changes of vitamins content in mice body after the intake of asparagus extracts, thus to conclude the effect of asparagus extracts on body metabolism during exercises. Extracts were made into different concentrations of solution and given to the mice by intragastric administration. The content of micro-elements and vitamin groups in the mice body before and after the drug administration were detected respectively and biochemical index parameter values before and after swimming were measured respectively. Results showed that, 20 min after the drug administration, the content of blood lactic acid of the mice in the swimming experiment group decreased significantly. Besides, the content of muscle glycogen decreased and correspondingly the content of hepatic glycogen increased significantly (experiment group one and two: p < 0.01; experiment group 3: p < 0.05. Thus the ethanol extract solution of asparagus can effectively improve body metabolism.

  10. [Effects of antiosteoporotic agents on glucose and lipid metabolism and cardiovascular system].

    Science.gov (United States)

    Fukai, Shiho

    2008-05-01

    Cardiovascular disease is the main contributor of mortality among postmenopausal women. Hormone Replacement Therapy (HRT) has been reported to have a beneficial effect on metabolic and vascular factors. Although, randomized clinical trials have questioned the efficacy of HRT in primary and secondary coronary artery disease (CAD) prevention despite confirming the lipid-lowering effect of HRT. As for selective estrogen receptor modulators (SERMs) , the available information suggests a neutral balance on CAD and stroke, and an increase in risk similar to estrogens for venous thromboembolic diseases. Evidence from both basic science and clinical studies supports the protective role of vitamin D beyond its effect on mineral metabolism. Recent studies suggest that Vitamin D improves vascular compliance, and reduces pro-inflammatory cytokines which may contribute to the improved survival observed in retrospective studies examining the outcome of patients treated with activated Vitamin D compared to those who were not.

  11. Metabolic Effects of Dietary Proteins, Amino Acids and The Other Amine Consisting Compounds on Cardiovascular System.

    Directory of Open Access Journals (Sweden)

    Elif Uğur

    2017-01-01

    Full Text Available During the prevention and treatment of cardiovascular diseases, first cause of deaths in the world, diet has a vital role. While nutrition programs for the cardiovascular health generally focus on lipids and carbohydrates, effects of proteins are not well concerned. Thus this review is written in order to examine effect of proteins, amino acids, and the other amine consisting compounds on cardiovascular system. Because of that animal or plant derived proteins have different protein composition in different foods such as dairy products, egg, meat, chicken, fish, pulse and grains, their effects on blood pressure and regulation of lipid profile are unlike. In parallel amino acids made up proteins have different effect on cardiovascular system. From this point, sulfur containing amino acids, branched chain amino acids, aromatic amino acids, arginine, ornithine, citrulline, glycine, and glutamine may affect cardiovascular system in different metabolic pathways. In this context, one carbon metabolism, synthesis of hormone, stimulation of signaling pathways and effects of intermediate and final products that formed as a result of amino acids metabolism is determined. Despite the protein and amino acids, some other amine consisting compounds in diet include trimethylamine N-oxide, heterocyclic aromatic amines, polycyclic aromatic hydrocarbons and products of Maillard reaction. These amine consisting compounds generally increase the risk for cardiovascular diseases by stimulating oxidative stress, inflammation, and formation of atherosclerotic plaque.

  12. Effects of formulation design on niacin therapeutics: mechanism of action, metabolism, and drug delivery.

    Science.gov (United States)

    Cooper, Dustin L; Murrell, Derek E; Roane, David S; Harirforoosh, Sam

    2015-07-25

    Niacin is a highly effective, lipid regulating drug associated with a number of metabolically induced side effects such as prostaglandin (PG) mediated flushing and hepatic toxicity. In an attempt to reduce the development of these adverse effects, scientists have investigated differing methods of niacin delivery designed to control drug release and alter metabolism. However, despite successful formulation of various orally based capsule and tablet delivery systems, patient adherence to niacin therapy is still compromised by adverse events such as PG-induced flushing. While the primary advantage of orally dosed formulations is ease of use, alternative delivery options such as transdermal delivery or polymeric micro/nanoparticle encapsulation for oral administration have shown promise in niacin reformulation. However, the effectiveness of these alternative delivery options in reducing inimical effects of niacin and maintaining drug efficacy is still largely unknown and requires more in-depth investigation. In this paper, we present an overview of niacin applications, its metabolic pathways, and current drug delivery formulations. Focus is placed on oral immediate, sustained, and extended release niacin delivery as well as combined statin and/or prostaglandin antagonist niacin formulation. We also examine and discuss current findings involving transdermal niacin formulations and polymeric micro/nanoparticle encapsulated niacin delivery.

  13. Testosterone effects on avian basal metabolic rate and aerobic performance: facts and artefacts.

    Science.gov (United States)

    Buttemer, W A; Warne, S; Bech, C; Astheimer, L B

    2008-06-01

    We examined the effects of cage size and testosterone (T) levels on basal and peak metabolic rates (BMR and PMR, respectively) and on pectoral and leg muscle masses of male house sparrows (Passer domesticus). Birds were housed either in small birdcages or in flight aviaries for at least 2 weeks prior to the initial metabolic evaluations. They were then implanted with either empty or T-filled silastic capsules and remeasured 5-6 weeks later. Birds treated with single T implants achieved breeding levels (4-6 ng/mL) and one group given double implants reached 10 ng/mL. There was no effect of T on BMR or PMR in any group studied, but there was an effect of caging. Caged birds showed significant reductions in PMR over the course of captivity, whereas PMR in aviary-housed birds were indistinguishable from their free-living counterparts. Testosterone treatment significantly increased leg muscle mass in caged birds, but had no effect on muscle mass in aviary-housed sparrows. We conclude that testosterone has no direct effect on sparrow metabolic rate or muscle mass, but may interact with cage conditions to produce indirect changes to these variables.

  14. Effects of 20 Selected Fruits on Ethanol Metabolism: Potential Health Benefits and Harmful Impacts.

    Science.gov (United States)

    Zhang, Yu-Jie; Wang, Fang; Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Zhang, Jiao-Jiao; Li, Sha; Xu, Dong-Ping; Li, Hua-Bin

    2016-04-01

    The consumption of alcohol is often accompanied by other foods, such as fruits and vegetables. This study is aimed to investigate the effects of 20 selected fruits on ethanol metabolism to find out their potential health benefits and harmful impacts. The effects of the fruits on ethanol metabolism were characterized by the concentrations of ethanol and acetaldehyde in blood, as well as activities of alcohol dehydrogenase and acetaldehyde dehydrogenase in liver of mice. Furthermore, potential health benefits and harmful impacts of the fruits were evaluated by biochemical parameters including aspartate transaminase (AST), alanine transferase (ALT), malondialdehyde, and superoxide dismutase. Generally, effects of these fruits on ethanol metabolism were very different. Some fruits (such as Citrus limon (yellow), Averrhoa carambola, Pyrus spp., and Syzygium samarangense) could decrease the concentration of ethanol in blood. In addition, several fruits (such as Cucumis melo) showed hepatoprotective effects by significantly decreasing AST or ALT level in blood, while some fruits (such as Averrhoa carambola) showed adverse effects. The results suggested that the consumption of alcohol should not be accompanied by some fruits, and several fruits could be developed as functional foods for the prevention and treatment of hangover and alcohol use disorder.

  15. Evaluation of metabolism of azo dyes and their effects on Staphylococcus aureus metabolome.

    Science.gov (United States)

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D; Cerniglia, Carl E; Chen, Huizhong

    2017-08-07

    Dyes containing one or more azo linkages are widely applied in cosmetics, tattooing, food and drinks, pharmaceuticals, printing inks, plastics, leather, as well as paper industries. Previously we reported that bacteria living on human skin have the ability to reduce some azo dyes to aromatic amines, which raises potential safety concerns regarding human dermal exposure to azo dyes such as those in tattoo ink and cosmetic colorant formulations. To comprehensively investigate azo dye-induced toxicity by skin bacteria activation, it is very critical to understand the mechanism of metabolism of the azo dyes at the systems biology level. In this study, an LC/MS-based metabolomics approach was employed to globally investigate metabolism of azo dyes by Staphylococcus aureus as well as their effects on the metabolome of the bacterium. Growth of S. aureus in the presence of Sudan III or Orange II was not affected during the incubation period. Metabolomics results showed that Sudan III was metabolized to 4-(phenyldiazenyl) aniline (48%), 1-[(4-aminophenyl) diazenyl]-2-naphthol (4%) and eicosenoic acid Sudan III (0.9%). These findings indicated that the azo bond close to naphthalene group of Sudan III was preferentially cleaved compared with the other azo bond. The metabolite from Orange II was identified as 4-aminobenzene sulfonic acid (35%). A much higher amount of Orange II (~90×) was detected in the cell pellets from the active viable cells compared with those from boiled cells incubated with the same concentration of Orange II. This finding suggests that Orange II was primarily transported into the S. aureus cells for metabolism, instead of the theory that the azo dye metabolism occurs extracellularly. In addition, the metabolomics results showed that Sudan III affected energy pathways of the S. aureus cells, while Orange II had less noticeable effects on the cells. In summary, this study provided novel information regarding azo dye metabolism by the skin bacterium, the

  16. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  17. Effect of health foods on cytochrome P450-mediated drug metabolism.

    Science.gov (United States)

    Sasaki, Takamitsu; Sato, Yu; Kumagai, Takeshi; Yoshinari, Kouichi; Nagata, Kiyoshi

    2017-01-01

    Health foods have been widely sold and consumed in Japan. There has been an increase in reports of adverse effects in association with the expanding health food market. While health food-drug interactions are a particular concern from the viewpoint of safe and effective use of health foods, information regarding such interactions is limited owing to the lack of established methods to assess the effects of health food products on drug metabolism. We therefore developed cells that mimicked the activities of cytochrome P450 1A2 (CYP1A2), CYP2C9, CYP2C19, CYP2D6, and CYP3A4, which strongly contribute to drug metabolism in human hepatocytes, and established a system to assess the inhibitory activity of health foods toward P450-mediated metabolism. We simultaneously infected HepG2 cells with five P450-expressing adenoviruses (Ad-CYP1A2, Ad-CYP2C9, Ad-CYP2C19, Ad-CYP2D6, and Ad-CYP3A4) to mimic the activity levels of these P450s in human hepatocytes, and named them Ad-P450 cells. The activity levels of P450s in Ad-P450 cells and human hepatocytes were calculated via simultaneous liquid chromatography/tandem mass spectrometry analysis utilizing a P450 substrate cocktail. We established Ad-P450 cells mimicking the activity levels of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in human hepatocytes. We determined the Km values of P450 substrates and IC50 values of P450 inhibitors in Ad-P450 cells. These values were approximately equivalent to those obtained in previous studies. We investigated the inhibitory effects of 172 health foods that were recently in circulation in Japan on P450-mediated metabolism using Ad-P450 cells. Of the 172 health foods, five products (two products having dietary effects, one turmeric-based product, one collagen-based product, and one propolis-containing product) simultaneously inhibited the five P450s by more than 50%. Another 29 products were also confirmed to inhibit one or more P450s. We established a comprehensive assessment system to

  18. Effects of salmeterol on skeletal muscle cells: metabolic and proapoptotic features.

    Science.gov (United States)

    Duranti, Guglielmo; La Rosa, Piergiorgio; Dimauro, Ivan; Wannenes, Francesca; Bonini, Sergio; Sabatini, Stefania; Parisi, Paolo; Caporossi, Daniela

    2011-12-01

    Salmeterol is a β2-adrenergic receptor agonist widely used for the treatment of asthma and chronic obstructive pulmonary disease. It has been shown that salmeterol is also used at supratherapeutic doses as performance-enhancing substance in sport practice. Although the abuse of β-agonists might determine some adverse effects, the molecular effects of salmeterol on skeletal muscle cells remain unclear. We evaluated the effects of salmeterol (0.1-10 μM) on both proliferative and differentiated rat L6C5 and mouse C2C12 skeletal muscle cell lines. The metabolic effects were evaluated by glyceraldehyde phosphate dehydrogenase, lactate dehydrogenase, citrate synthase, 3-OH acyl-CoA dehydrogenase, and alanine transglutaminase activities. Cytotoxic and apoptotic effects were analyzed by 3-(4,5-dimethylthiazol-1)-5-(3-carboxymeth-oxyphenyl)-2H-tetrazolium, trypan blue exclusion assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, Western blot analysis, and immunofluorescence staining. We showed that salmeterol reduced the growth rate of proliferating cells in a dose- and time-dependent manner (6-48 h). An increase in oxidative metabolism was found after 6 h in C2C12 and L6C5 myoblasts and in C2C12 myotubes with respect to control cells, while in L6C5 myotubes, anaerobic metabolism prevailed. Exposure of myoblasts and myotubes for 48 and 72 h at high salmeterol concentrations induced apoptosis by the activation of the intrinsic apoptotic pathway, as confirmed by the modulation of the apoptotic proteins Bcl-xL, caspase-9, and poly (ADP-ribose) polymerase and by the cytoplasmic release of Smac/DIABLO. Altogether, our results demonstrate that short-term supratherapeutic salmeterol exposure increased oxidative metabolic pathways on skeletal muscle cells, whereas prolonged treatment inhibits cell growth and exerts either a cytostatic or a proapoptotic effect in a time- and dose-dependent way.

  19. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration.

    Science.gov (United States)

    Yizhak, Keren; Le Dévédec, Sylvia E; Rogkoti, Vasiliki Maria; Baenke, Franziska; de Boer, Vincent C; Frezza, Christian; Schulze, Almut; van de Water, Bob; Ruppin, Eytan

    2014-08-01

    Over the last decade, the field of cancer metabolism has mainly focused on studying the role of tumorigenic metabolic rewiring in supporting cancer proliferation. Here, we perform the first genome-scale computational study of the metabolic underpinnings of cancer migration. We build genome-scale metabolic models of the NCI-60 cell lines that capture the Warburg effect (aerobic glycolysis) typically occurring in cancer cells. The extent of the Warburg effect in each of these cell line models is quantified by the ratio of glycolytic to oxidative ATP flux (AFR), which is found to be highly positively associated with cancer cell migration. We hence predicted that targeting genes that mitigate the Warburg effect by reducing the AFR may specifically inhibit cancer migration. By testing the anti-migratory effects of silencing such 17 top predicted genes in four breast and lung cancer cell lines, we find that up to 13 of these novel predictions significantly attenuate cell migration either in all or one cell line only, while having almost no effect on cell proliferation. Furthermore, in accordance with the predictions, a significant reduction is observed in the ratio between experimentally measured ECAR and OCR levels following these perturbations. Inhibiting anti-migratory targets is a promising future avenue in treating cancer since it may decrease cytotoxic-related side effects that plague current anti-proliferative treatments. Furthermore, it may reduce cytotoxic-related clonal selection of more aggressive cancer cells and the likelihood of emerging resistance. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Beneficial effects of herbs, spices and medicinal plants on the metabolic syndrome, brain and cognitive function.

    Science.gov (United States)

    Panickar, Kiran S

    2013-03-01

    Herbs and spices have been used since ancient times to not only improve the flavor of edible food but also to prevent and treat chronic health maladies. While the scientific evidence for the use of such common herbs and medicinal plants then had been scarce or lacking, the beneficial effects observed from such use were generally encouraging. It is, therefore, not surprising that the tradition of using such herbs, perhaps even after the advent of modern medicine, has continued. More recently, due to an increased interest in understanding the nutritional effects of herbs/spices more comprehensively, several studies have examined the cellular and molecular modes of action of the active chemical components in herbs and their biological properties. Beneficial actions of herbs/spices include anti-inflammatory, antioxidant, anti-hypertensive, gluco-regulatory, and anti-thrombotic effects. One major component of herbs and spices is the polyphenols. Some of the aforementioned properties are attributed to the polyphenols and they are associated with attenuating the metabolic syndrome. Detrimental changes associated with the metabolic syndrome over time affect brain and cognitive function. Metabolic syndrome and type-2 diabetes are also risk factors for Alzheimer's disease and stroke. In addition, the neuroprotective effects of herbs and spices have been demonstrated and, whether directly or indirectly, such beneficial effects may also contribute to an improvement in cognitive function. This review evaluates the current evidence available for herbs/spices in potentially improving the metabolic syndrome, as well as their neuroprotective effects on the brain, and cognitive function in animal and human studies.

  1. A high-throughput metabolomic approach to explore the regulatory effect of mangiferin on metabolic network disturbances of hyperlipidemia rats.

    Science.gov (United States)

    Zhou, Chengyan; Li, Gang; Li, Yanchuan; Gong, Liya; Huang, Yifan; Shi, Zhiping; Du, Shanshan; Li, Ying; Wang, Maoqing; Yin, Jun; Sun, Changhao

    2015-02-01

    This paper was designed to study metabolomic characters of the high-fat diet (HFD)-induced hyperlipidemia and the intervention effects of Mangiferin (MG). In this study, we aimed to investigate the intervention of MG on rats with hyperlipidemia induced by HFD and explore the possible mechanisms of hyperlipidemia. Urine metabolic profiles were analyzed using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) coupled with the principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) models, Heatmap and metabolism pathway analysis. PCA was applied to study the trajectory of the urinary metabolic phenotype of hyperlipidemia rat after administration of MG. The VIP-plot of orthogonal PLS-DA was used for discovering potential biomarkers to clarify the mechanism of MG. Biochemical analyses indicate that MG can alleviate the hyperlipidemia damage. Twenty significantly changed metabolites (potential biomarkers) were found to be reasonable in explaining the action mechanism of MG. The effectiveness of MG on hyperlipidemia is proved using the established metabolomic method and the regulated metabolic pathways involve the TCA cycle, taurine and hypotaurine metabolism, glyoxylate and dicarboxylate metabolism, glycine and serine and threonine metabolism, glycerophospholipid metabolism, primary bile acid biosynthesis etc. The results indicated that MG has a favourable protective effect on HFD-induced hyperlipidemia by adjusting the metabolic disorders. It also suggests that the metabolomic technology is a powerful approach for elucidation of the action mechanisms of MG.

  2. Effects of switching from olanzapine to aripiprazole on the metabolic profiles of patients with schizophrenia and metabolic syndrome: a double-blind, randomized, open-label study

    Directory of Open Access Journals (Sweden)

    Wani RA

    2015-03-01

    Full Text Available Rayees Ahmad Wani, Mansoor Ahmad Dar, Rajesh Kumar Chandel, Yasir Hassan Rather, Inaamul Haq, Arshad Hussain, Altaf Ahmad MallaDepartment of Psychiatry, Government Medical College, Srinagar, Jammu and Kashmir, IndiaBackground: Patients with schizophrenia suffer high rates of metabolic derangements on some antipsychotic medications that predispose them to cardiovascular diseases. Keeping this fact in mind, we planned this open-label study to see the effect on various metabolic parameters after switching stable schizophrenia subjects, who had developed metabolic syndrome on olanzapine, to aripiprazole.Methods: Sixty-two patients with schizophrenia who were stable on olanzapine and were fulfilling modified National Cholesterol Education Program (NCEP Adult Treatment Panel III (ATP-III criteria for the presence of metabolic syndrome were enrolled on the study. Patients were randomly assigned either to switch to aripiprazole or to stay on olanzapine, on a 1:1 basis. Cross-tapering over a period of 1 month was done while switching patients to aripiprazole. Laboratory assessment for metabolic parameters was done at baseline, 8 weeks, and 24 weeks after enrollment; efficacy assessment was done using the Positive and Negative Syndrome Scale (PANSS at baseline and 24 weeks, the Clinical Global Impressions severity subscale (CGI-S at baseline, and the Clinical Global Impressions improvement subscale (CGI-I at 24 weeks.Results: All parameters of metabolic syndrome (waist circumference, blood pressure, triglyceride level, fasting blood glucose, and high-density lipoprotein cholesterol kept deteriorating in the stay group, compared with a continuous improvement in the switch group over time. At the end of the study, 26 patients (100% from the stay group and 15 patients (42.8% from switch group met the modified NCEP ATP-III criteria for presence of metabolic syndrome (P<0.001. There were no statistically significant differences between groups in

  3. Metabolic effect of obesity on polycystic ovary syndrome in adolescents: a meta-analysis.

    Science.gov (United States)

    Li, Li; Feng, Qiong; Ye, Ming; He, Yaojuan; Yao, Aling; Shi, Kun

    2017-11-01

    This meta-analysis provides an updated and comprehensive estimate of the effects of obesity on metabolic disorders in adolescent polycystic ovary syndrome (PCOS). Relevant articles consistent with the search terms published up to 31 January 2014 were retrieved from PubMed, EMBASE, PsycINFO and CENTRAL. Thirteen articles (16 independent studies) conformed to the inclusion criteria. The evaluated outcomes were the metabolic parameters of obese adolescents with PCOS (case group) relative to normal-weight adolescents with PCOS, or obese adolescents without PCOS. Compared with normal-weight adolescents with PCOS, the case group had significantly lower sex hormone-binding globulin and high-density lipoprotein cholesterol, and significantly higher triglycerides, leptin, fasting insulin, low-density lipoprotein cholesterol and free testosterone levels. Relative to obese adolescents without PCOS, the case group had significantly higher fasting insulin, low-density lipoprotein cholesterol, free testosterone levels and 2-h glucose during the oral glucose tolerance test. These results indicate that metabolic disorders in adolescent PCOS are worsened by concomitant obesity. This study highlights the importance of preventing obesity during the management of adolescent PCOS. Impact statement What is already known about this subject: Obesity and PCOS share many of the same metabolic disorders, for example, hyperandrogenism and hyperinsulinemia with subsequent insulin resistance. Knowledge regarding metabolic features in obese adolescents with PCOS is limited, and there is concern whether obesity and PCOS are related. What do the results of this study add: Relative to PCOS adolescents of normal weight, obese adolescents with PCOS (the case group) had significantly lower SHBG and HDL-C, and significantly higher triglycerides, leptin, fasting insulin, LDL-C and free testosterone levels. The results indicate that metabolic disorders in adolescent PCOS are worsened by concomitant

  4. Effects of Growth Hormone and Insulin-Like Growth Factor-1 on Postoperative Muscle and Substrate Metabolism

    Directory of Open Access Journals (Sweden)

    Folke Hammarqvist

    2010-01-01

    To conclude, growth factors influences urea metabolism, protein degradation and protein synthesis. There was no clearcut additional effect when combining GH and IGF-1 but the study was probably underpowered to outrule this and effects on nitrogen balance.

  5. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions.

    Science.gov (United States)

    Gao, Bei; Bian, Xiaoming; Mahbub, Ridwan; Lu, Kun

    2017-02-01

    There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome-gut-brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry-based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198-206; http://dx.doi.org/10.1289/EHP202.

  6. L-carnitine effectively improves the metabolism and quality of platelet concentrates during storage.

    Science.gov (United States)

    Deyhim, Mohammad Reza; Mesbah-Namin, Seyed Alireza; Yari, Fatemeh; Taghikhani, Mohammad; Amirizadeh, Naser

    2015-04-01

    Human platelets undergo structural and biochemical alternations during storage which are collectively called platelet storage lesion (PSL). PSL is characterized as metabolic and functionally changes. It causes decrease in platelet recovery and survival. Here, we evaluated the effect of L-carnitine (LC) on the metabolism, function, and mitochondrial metabolic activity of platelet during storage. Platelet-rich plasma was used to prepare platelet concentrate (PC) in Iranian Blood Transfusion Organization. For this purpose, ten PC bags from healthy donors were stored at 22 °C with gentle agitation in the presence or absence of LC. The effects of LC (15 mM) on the platelet quality were assessed by analyzing the levels of glucose, lactate, ATP, and lactate dehydrogenase (LDH) activity. Platelet aggregations induced by arachidonate and ristocetin were analyzed by aggregometer. Platelet mitochondrial melablolic activity was measured by tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) assay; platelet count and mean platelet volume were also determined by a hematology analyzer during 5 days of PC storage. The results indicated that LC could significantly decrease lactate concentration and glucose consumption accompanied with the increased oxygen consumption in stored PC. LDH activity also less significantly increased in LC-treated PC on days 2 and 5 of storage. Platelet aggregation in response to the ristocetin and arachidonate was significantly higher in LC-treated PC than that in untreated PC on day 5 of storage. Finally, platelet mitochondrial metabolic activity less significantly decreased in LC-treated PC compared to the control group on days 2 and 5 of storage. It seems that LC would be a good additive to reduce PSL and improve the platelet metabolism and quality of the stored PC for platelet transfusion therapy.

  7. Effects of HMG-CoA Reductase Inhibitors (Statins On Bone Mineral Density and Metabolism

    Directory of Open Access Journals (Sweden)

    Nehir Samancı

    2004-06-01

    Full Text Available Hydroxy methylglutaryl coenzyme A reductase inhibitors (statins have been shown to have effects on bone metabolism in laboratory studies. While early clinic studies have showed lower risk for osteoporotic fractures among statin users than nonusers, subsequent studies have found mixed results. The purpose of this study was to investigate the effects of statins on bone mineral density (BMD and bone metabolism. Thirty-five consecutive postmenopausal hypercholesterolemic women who were treated for at least last 6 months with statins were included in the study. Seventy-five normocholesterolemic age-matched postmenopausal women were in the control group. Subjects with a history of any diseases and used drugs that may affect calcium or bone metabolism were excluded from the study. Age, associated illness, years since menopause, and body mass index (BMI were obtained from all the patients including the control group. Besides, serum calcium, phosphate, alkaline phosphates, parathyroid hormone, 25 hydroxy D3, osteocalcin, and urinary calcium excretion were measured. BMD was measured by using dual-energy x-ray absorptiometry (DEXA at femoral neck and 3rd lomber spine. Mean duration of statin use was 28.17±21.17 months. BMI was found to be statistically higher in statin users than nonusers (27.47±3.67kg/m2 and 25.46±3.91 kg/m2, respectively. The markers of bone metabolism used in the study were found to be similar between the groups. BMD was not different in statin users and nonusers at femoral neck and lomber spine. As conclusion, statin use did not affect BMD and bone metabolism in this study. In our opinion large randomised, controlled, prospective clinical trials are needed to accurately determine the role of statins in the treatment of osteoporosis.

  8. Endocrine and Metabolic Adverse Effects of Psychotropic Drugs in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Evrim Aktepe

    2011-12-01

    Full Text Available ABSTRACT Much as an increase in the use of psychotropic drugs is observed in children and adolescents over the last decade, the endocrine and metabolic side effects of these drugs can limit their use. Atypical antipsychotics can cause many side effects, which are not suitable for the developmental periods of children and adolescents, such as those related with thyroid, blood sugar, level of sex hormones, growth rate and bone metabolism. Children are under a more serious risk regarding the weight increasing effects of atypical antipsychotics and weight gain that is not proportionate with age is especially important due to the association between glucose or lipid abnormalities and cardiovascular mortality. Aripiprazole and ziprasidone are the least risky antipsychotic drugs when it comes to metabolic side affects. The antipsychotic drug that is associated with weight increase and diabetes in children and adolescents most is olanzapine. Even though there are no comparative long-term data concerning children, it is suggested by the currently available information that metabolic side effects including dyslipidemia and impaired glucose tolerance are at an alarming level when it comes to long-term treatment with antipsychotics. The most risky agents in terms of hyperglycemia and glucosuria development are olanzapine and clozapine. Use of risperidone and haloperidol should be undertaken with caution since it may bring about the risk of hyperprolactinemia. Among the antidepressants associated with weight loss and suppression of appetite are selective serotonin reuptake inhibitors, bupropion and venlafaxine. Thyroid functions can be affected by lithium, carbamazepine and valproate treatments. It is reported that the side effect most frequently associated with valproate is weight increase. The relationship between valproate treatment and the development of hyperandrogenism and polycystic ovary syndrome in young women should also be kept in mind. [TAF Prev

  9. Individual effects of different selenocompounds on the hepatic proteome and energy metabolism of mice.

    Science.gov (United States)

    Lennicke, Claudia; Rahn, Jette; Kipp, Anna P; Dojčinović, Biljana P; Müller, Andreas S; Wessjohann, Ludger A; Lichtenfels, Rudolf; Seliger, Barbara

    2017-01-01

    Selenium (Se) exerts its biological activity largely via selenoproteins, which are key enzymes for maintaining the cellular redox homeostasis. However, besides these beneficial effects there is also evidence that an oversupply of Se might increase the risk towards developing metabolic disorders. To address this in more detail, we directly compared effects of feeding distinct Se compounds and concentrations on hepatic metabolism and expression profiles of mice. Male C57BL6/J mice received either a selenium-deficient diet or diets enriched with adequate or high doses of selenite, selenate or selenomethionine for 20weeks. Subsequently, metabolic parameters, enzymatic activities and expression levels of hepatic selenoproteins, Nrf2 targets, and additional redox-sensitive proteins were analyzed. Furthermore, 2D-DIGE-based proteomic profiling revealed Se compound-specific differentially expressed proteins. Whereas heterogeneous effects between high concentrations of the Se compounds were observed with regard to body weight and metabolic activities, selenoproteins were only marginally increased by high Se concentrations in comparison to the respective adequate feeding. In particular the high-SeMet group showed a unique response compromising higher hepatic Se levels in comparison to all other groups. Accordingly, hepatic glutathione (GSH) levels, glutathione S-transferase (GST) activity, and GSTpi1 expression were comparably high in the high-SeMet and Se-deficient group, indicating that compound-specific effects of high doses appear to be independent of selenoproteins. Not only the nature, but also the concentration of Se compounds differentially affect biological processes. Thus, it is important to consider Se compound-specific effects when supplementing with selenium. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Lipid metabolism in trained rats: effect of guarana (Paullinia cupana Mart.) supplementation.

    Science.gov (United States)

    Lima, Waldecir P; Carnevali, Luiz C; Eder, Robson; Costa Rosa, Luis Fernando B P; Bacchi, Elfriede M; Seelaender, Marília C L

    2005-12-01

    Guarana is widely consumed by athletes, either in supplements or in soft drinks, under the belief that it presents ergogenic and "fat burning" effects. We examined the effect of guarana supplementation (14 days) upon aspects of lipid metabolism in sedentary (C) and trained rats (T). To isolate the effect of caffeine from that of other components of guarana, we adopted two different doses of whole extract (G1-0.130 g/kg; G2-0.325 g/kg) or decaffeinated extract (DG1, DG2). Body weight, food and water intake; muscle fat content, oleate incorporation, glycogen content, and carnitine palmitoyltransferase I (CPT I) activity and mRNA expression; along with plasma lactate concentration, were assessed. Muscle oleate incorporation was decreased in rats receiving decaffeinated guarana in relation to G1 and G2; as was CPT I mRNA expression in the gastrocnemius. Whole extract supplementation, but not DG induced reduced plasma lactate concentration in trained rats. G1 showed higher muscle glycogen content compared with all other groups. The results show an effect of guarana on aspects of lipid metabolism, which is abolished by decaffeination. The changes in lipid metabolism of supplemented rats herein reported are associated with the methylxanthine content of guarana.

  11. Effect of odanacatib on root resorption and alveolar bone metabolism during orthodontic tooth movement.

    Science.gov (United States)

    Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X

    2015-12-22

    The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism.

  12. Effects of extracellular modulation through hypoxia on the glucose metabolism of human breast cancer stem cells

    Science.gov (United States)

    Yustisia, I.; Jusman, S. W. A.; Wanandi, S. I.

    2017-08-01

    Cancer stem cells have been reported to maintain stemness under certain extracellular changes. This study aimed to analyze the effect of extracellular O2 level modulation on the glucose metabolism of human CD24-/CD44+ breast cancer stem cells (BCSCs). The primary BCSCs (CD24-/CD44+ cells) were cultured under hypoxia (1% O2) for 0.5, 4, 6, 24 and 48 hours. After each incubation period, HIF1α, GLUT1 and CA9 expressions, as well as glucose metabolism status, including glucose consumption, lactate production, O2 consumption and extracellular pH (pHe) were analyzed using qRT-PCR, colorimetry, fluorometry, and enzymatic reactions, respectively. Hypoxia caused an increase in HIF1α mRNA expressions and protein levels and shifted the metabolic states to anaerobic glycolysis, as demonstrated by increased glucose consumption and lactate production, as well as decreased O2 consumption and pHe. Furthermore, we demonstrated that GLUT1 and CA9 mRNA expressions simultaneously increased, in line with HIF1α expression. In conclusion, modulation of the extracellular environment of human BCSCs through hypoxia shifedt the metabolic state of BCSCs to anaerobic glycolysis, which might be associated with GLUT1 and CA9 expressions regulated by HIFlα transcription factor.

  13. The effect of psoriasis treatment on body composition, components of metabolic syndrome and psoriatic arthritis

    Directory of Open Access Journals (Sweden)

    Funda Tamer

    2015-03-01

    Full Text Available Background and Design: Psoriasis is a chronic inflammatory immun mediated skin disorder with unknown etiology. The chronic inflammation in psoriasis have role in the development of metabolic and vascular disorders related with associating comorbidities. Recent studies have suggested a strong association exists between metabolic syndrome, obesity and complexity of the association between psoriasis, body mass index (BMI and psoriasis tratment. In this study, our aim was to investigate the effect of psoriasis treatment with methotrexate, cyclosporine and biological agents on body composition, comorbidities and associated laboratory findings. Materials and Methods: Seventy-nine patients treated with methotrexate, cyclosporin and biological agents were included in our study. Demographic characteristics, body composition analysis, psoriasis related comorbidities and laboratory examinations were evaluated before and after 12 weeks of systemic treatment. Results: Comorbidities and metabolic syndrome tended to be more frequent in the anti tumor necrosis factor alpha (anti-TNF-α treated group. Increase in body fat and weight detected in patiens receiving biologic drug therapy. Conclusion: The results of our study showed that severe psoriasis patients with longer disease duration were more likely to have metabolic syndrome because of severe and long term inflammation in pathogenesis of comorbidities.

  14. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    Science.gov (United States)

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  15. Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity.

    Science.gov (United States)

    Zvintzou, Evangelia; Lhomme, Marie; Chasapi, Stella; Filou, Serafoula; Theodoropoulos, Vassilis; Xapapadaki, Eva; Kontush, Anatol; Spyroulias, George; Tellis, Constantinos C; Tselepis, Alexandros D; Constantinou, Caterina; Kypreos, Kyriakos E

    2017-09-01

    APOC3 is produced mainly by the liver and intestine and approximately half of plasma APOC3 associates with HDL. Though it was believed that APOC3 associates with HDL by simple binding to preexisting particles, recent data support that biogenesis of APOC3-containing HDL (APOC3-HDL) requires Abca1. Moreover, APOC3-HDL contributes to plasma triglyceride homeostasis by preventing APOC3 association with triglyceride-rich lipoproteins. Interestingly, APOC3-HDL also shows positive correlation with the morbidly obese phenotype. However, the roles of APOC3 in HDL functionality and adipose tissue metabolic activity remain unknown. Therefore, here we investigated the direct effects of APOC3 expression on HDL structure and function, as well as white adipose tissue (WAT) and brown adipose tissue (BAT) metabolic activity. C57BL/6 mice were infected with an adenovirus expressing human APOC3 or a recombinant attenuated control adenovirus expressing green fluorescent protein and blood and tissue samples were collected at 5 days postinfection. HDL was then analyzed for its apolipoprotein and lipid composition and particle functionality. Additionally, purified mitochondria from BAT and WAT were analyzed for uncoupling protein 1, cytochrome c (Cytc), and Cytc oxidase subunit 4 protein levels as an indirect measure of their metabolic activity. Serum metabolomic analysis was performed by NMR. Combined, our data show that APOC3 modulates HDL structure and function, while it selectively promotes BAT metabolic activation. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. Effect of oral arginine supplementation on GH secretion and lipid metabolism in Wistar trained rats

    Directory of Open Access Journals (Sweden)

    E. Luciano

    2009-01-01

    Full Text Available The Oral Arginine Supplementation (OAS and exercise are able to modify the secretion of the Growth Hormone (GH that stimulates the lipid metabolism. The aim of the study was to verify the effect of the OAS, the aerobic exercise and the combination of the OAS with the aerobic exercise on the GH secretion and lipid metabolism in rats. The sample was composted for 40 male wistar rats, divided in four groups: Sedentary control (SC, sedentary arginine (SA, trained control (TC and trained arginine (TA. The AS and AT received the oral supplementation in alternated days and the groups CT and AT realized swimming exercise for 1hour/day with overload equivalent to 5% of body mass five days per week during 4 weeks. The concentrations of GH were significantly difference between the sedentary groups (SC and AS and (TC and AT and the lipid metabolism did not change throughout all groups. In conclusions, aerobic physical training did not modify the lipid metabolism and diminishes the values of GH concentration and the OAS did not modify the concentration of GH in Wistar rats.

  17. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action.

    Science.gov (United States)

    Poudyal, Hemant; Panchal, Sunil K; Diwan, Vishal; Brown, Lindsay

    2011-10-01

    Epidemiological, human, animal, and cell culture studies show that n-3 fatty acids, especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), reduce the risk factors of cardiovascular diseases. EPA and DHA, rather than ALA, have been the focus of research on the n-3 fatty acids, probably due to the relatively inefficient conversion of ALA to EPA and DHA in rodents and humans. This review will assess our current understanding of the effects and potential mechanisms of actions of individual n-3 fatty acids on multiple risk factors of metabolic syndrome. Evidence for pharmacological responses and the mechanism of action of each of the n-3 fatty acid trio will be discussed for the major risk factors of metabolic syndrome, especially adiposity, dyslipidemia, insulin resistance and diabetes, hypertension, oxidative stress, and inflammation. Metabolism of n-3 and n-6 fatty acids as well as the interactions of n-3 fatty acids with nutrients, gene expression, and disease states will be addressed to provide a rationale for the use of n-3 fatty acids to reduce the risk factors of metabolic syndrome.

  18. The Effects of Temperature, Hypoxia and Hypercapnia on the Metabolism of Atlantic Cod Gadus morhua

    DEFF Research Database (Denmark)

    Tirsgård, Bjørn

    ). This thesis is a series of studies investigating how two of the most important abiotic environmental parameters, temperature and low oxygen levels (hypoxia) affect different aspects of larvae and juvenile Atlantic cod metabolism. The temperature studies were developed especially with the aim to be implemented...... (Hansson et al., 1996; Essington et al., 2001). By intermittent respirometry I determined the effect of temperature (2, 5, 10, 15 and 20°C) and body mass (~30-460g) on the standard metabolic rate (SMR, mg O2 h-1), maximum metabolic rate (MMR, mg O2 h-1) and the metabolic scope (MS, mg O2 h-1). The study...... the specific dynamic action (SDA) in juvenile Atlantic cod. Intermittent flow respirometry was used to measure the pre and post-feeding oxygen consumption rate of Atlantic cod fed a single meal of herring corresponding to 5% wet body mass at controlled temperatures of 2, 5, 10, 15 and 20°C. The study showed...

  19. Proteomics Analysis of the Effects of Cyanate on Chromobacterium violaceum Metabolism

    Directory of Open Access Journals (Sweden)

    Artur Silva

    2011-10-01

    Full Text Available Chromobacterium violaceum is a gram-negative betaproteobacterium that has been isolated from various Brazilian ecosystems. Its genome contains the cyn operon, which gives it the ability to metabolize highly toxic cyanate into ammonium and carbon dioxide. We used a proteomics approach to investigate the effects of cyanate on the metabolism of this bacterium. The proteome of cells grown with and without cyanate was compared on 2-D gels. Differential spots were digested and identified by mass spectrometry. The bacterium was able to grow at concentrations of up to 1 mM cyanate. Eighteen spots were differentially expressed in the presence of cyanate, of which 16 were downregulated and only two were upregulated. An additional 12 spots were detected only in extracts of cells unexposed to cyanate, and one was expressed only by the exposed cells. Fourteen spots were identified, corresponding to 13 different proteins. We conclude that cyanate promotes expression of enzymes that combat oxidative stress and represses enzymes of the citric acid cycle, strongly affecting the energetic metabolism of the cell. Other proteins that were under-expressed in bacteria exposed to cyanate are involved in amino-acid metabolism or are hypothetical proteins, demonstrating that cyanate also affects expression of genes that are not part of the cyn operon.

  20. Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect.

    Science.gov (United States)

    Lemasters, John J; Holmuhamedov, Ekhson L; Czerny, Christoph; Zhong, Zhi; Maldonado, Eduardo N

    2012-06-01

    Voltage dependent anion channels (VDAC) are highly conserved proteins that are responsible for permeability of the mitochondrial outer membrane to hydrophilic metabolites like ATP, ADP and respiratory substrates. Although previously assumed to remain open, VDAC closure is emerging as an important mechanism for regulation of global mitochondrial metabolism in apoptotic cells and also in cells that are not dying. During hepatic ethanol oxidation to acetaldehyde, VDAC closure suppresses exchange of mitochondrial metabolites, resulting in inhibition of ureagenesis. In vivo, VDAC closure after ethanol occurs coordinately with mitochondrial uncoupling. Since acetaldehyde passes through membranes independently of channels and transporters, VDAC closure and uncoupling together foster selective and more rapid oxidative metabolism of toxic acetaldehyde to nontoxic acetate by mitochondrial aldehyde dehydrogenase. In single reconstituted VDAC, tubulin decreases VDAC conductance, and in HepG2 hepatoma cells, free tubulin negatively modulates mitochondrial membrane potential, an effect enhanced by protein kinase A. Tubulin-dependent closure of VDAC in cancer cells contributes to suppression of mitochondrial metabolism and may underlie the Warburg phenomenon of aerobic glycolysis. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.

  1. Studies on the effect of dietary protein and fat content upon DDT metabolism in rat liver.

    Science.gov (United States)

    Ando, M

    1982-07-01

    Rats were supplied with 25 kinds of food, which were divided into 5 classes of protein and 5 classes of fat content, to examine the effect of dietary protein and fat on the metabolism and retention of DDT in the liver. The results suggested that dietary protein and fat changed DDT and its metabolites concentration in liver. The concentration of DDT decreases according to the increase of dietary protein content. The concentration of DDT and its metabolites in liver increases when the dietary fat content increases. Polynomial and multiple regression analyses were carried out to confirm the effect of dietary protein and fat on DDT metabolism. The results suggest that the residual concentration of DDT and its metabolites (DDD and DDE) is a function of dietary protein and fat content, and can be represented in equation form. The estimation of the concentration of DDT and its metabolites from the equation agrees well with the measured concentration in liver.

  2. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens

    DEFF Research Database (Denmark)

    Pineda, Lane; Chwalibog, André; Sawosz, Ewa

    2012-01-01

    (IgG) in the blood plasma of broilers supplemented with AgNano decreased at day 36 (p = 0.012). The results demonstrated that AgNano affects N utilisation and plasma IgG concentration; however, it does not influence the microbial populations in the digestive tract, the energy metabolism and growth......This study evaluated the potential of silver nanoparticles (AgNano) as an antimicrobial growth-promoting supplement for broiler chickens. One hundred forty-four seven-day-old broiler chicks were distributed randomly to AgNano treatments at 0, 10 and 20 mg/kg (Control, Group AgNano10, and Group Ag...... and intestinal content were collected to evaluate the effects of AgNano on plasma concentration of immunoglobulins and the intestinal microflora, repectively. The provision of water solutions containing different concentrations of AgNano had no effect on postnatal growth performance and the energy metabolism...

  3. Markedly blunted metabolic effects of fructose in healthy young female subjects compared with male subjects.

    Science.gov (United States)

    Couchepin, Caroline; Lê, Kim-Anne; Bortolotti, Murielle; da Encarnaçao, Joana Amarante; Oboni, Jean-Baptiste; Tran, Christel; Schneiter, Philippe; Tappy, Luc

    2008-06-01

    To compare the metabolic effects of fructose in healthy male and female subjects. Fasting metabolic profile and hepatic insulin sensitivity were assessed by means of a hyperglycemic clamp in 16 healthy young male and female subjects after a 6-day fructose overfeeding. Fructose overfeeding increased fasting triglyceride concentrations by 71 vs. 16% in male vs. female subjects, respectively (P glucose production was increased by 12%, alanine aminotransferase concentration was increased by 38%, and fasting insulin concentrations were increased by 14% after fructose overfeeding in male subjects (all P fructose in male but not in female subjects. Short-term fructose overfeeding produces hypertriglyceridemia and hepatic insulin resistance in men, but these effects are markedly blunted in healthy young women.

  4. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics.

  5. Amiodarone: Effects on thyroid function and the peripheral metabolism of the thyroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Braverman, L.E.; Safran, M.; Bambini, G.; Pinchera, A.; Martino, E.

    1985-11-01

    In addition to the effects of Amiodarone on the peripheral metabolism of the thyroid hormones and on pituitary TSH secretion, a major complication of therapy is the relatively high frequency of iodide-induced thyroid dysfunction. The mean T/sub 4/ and T/sub 3/ concentration following Amiodarone application was measured in euthyroid, hypothyroid and hyperthyroid patients and in control patients with and without cardiac disorders. Furthermore, the serum TSH was determined in euthyroid Amiodarone-treated euthyroid patients. /sup 131/I uptake was studied in patients with Amiodarone-associated thyrotoxicosis. The difficulties of the therapy of Amiodarone-induced hyperthyroidism are outlined. Preliminary studied of the effect of Amiodarone and its analogues on the metabolism of thyroid hormones in the rat indicate that Amiodarone may act as a thyroid hormone agonist in the pituitary. (MG).

  6. The effects of two Lactobacillus plantarum strains on rat lipid metabolism receiving a high fat diet.

    Science.gov (United States)

    Salaj, Rastislav; Stofilová, Jana; Soltesová, Alena; Hertelyová, Zdenka; Hijová, Emília; Bertková, Izabela; Strojný, Ladislav; Kružliak, Peter; Bomba, Alojz

    2013-01-01

    The aim of our study was to evaluate the effects of the different probiotic strains, Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96, on lipid metabolism and body weight in rats fed a high fat diet. Compared with the high fat diet group, the results showed that Lactobacillus plantarum LS/07 reduced serum cholesterol and LDL cholesterol, but Lactobacillus plantarum Biocenol LP96 decreased triglycerides and VLDL, while there was no change in the serum HDL level and liver lipids. Both probiotic strains lowered total bile acids in serum. Our strains have no significant change in body weight, gain weight, and body fat. These findings indicate that the effect of lactobacilli on lipid metabolism may differ among strains and that the Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96 can be used to improve lipid profile and can contribute to a healthier bowel microbial balance.

  7. Effect of repeated benzene inhalation exposures on benzene metabolism, binding to hemoglobin, and induction of micronuclei.

    Science.gov (United States)

    Sabourin, P J; Sun, J D; MacGregor, J T; Wehr, C M; Birnbaum, L S; Lucier, G; Henderson, R F

    1990-05-01

    Metabolism of benzene is thought to be necessary to produce the toxic effects, including carcinogenicity, associated with benzene exposure. To extrapolate from the results of rodent studies to potential health risks in man, one must know how benzene metabolism is affected by species, dose, dose rate, and repeated versus single exposures. The purpose of our studies was to determine the effect of repeated inhalation exposures on the metabolism of [14C]benzene by rodents. Benzene metabolism was assessed by characterizing and quantitating urinary metabolites, and by quantitating 14C bound to hemoglobin and micronuclei induction. F344/N rats and B6C3F1 mice were exposed, nose-only, to 600 ppm benzene or to air (control) for 6 hr/day, 5 days/week for 3 weeks. On the last day, both benzene-pretreated and control animals were exposed to 600 ppm, 14C-labeled benzene for 6 hr. Individual benzene metabolites in urine collected for 24 hr after the exposure were analyzed. There was a significant decrease in the respiratory rate of mice (but not rats) pretreated with benzene which resulted in lower levels of urinary [14C]benzene metabolites. The analyses indicated that the only effects of benzene pretreatment on the metabolite profile in rat or mouse urine were a slight shift from glucuronidation to sulfation in mice and a shift from sulfation to glucuronidation in rats. Benzene pretreatment also had no effect, in either species, on formation of [14C]benzene-derived hemoglobin adducts. Mice and rats had similar levels of hemoglobin adduct binding, despite the higher metabolism of benzene by mice. This indicates that hemoglobin adduct formation occurs with higher efficiency in rats. After 1 week of exposure to 600 ppm benzene, the frequency of micronucleated, polychromatic erythrocytes (PCEs) in mice was significantly increased. Exposure to the same level of benzene for an additional 2 weeks did not further increase the frequency of micronuclei in PCEs. These results indicate

  8. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans

    NARCIS (Netherlands)

    Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; Weijer, van de T.; Goossens, G.H.; Hoeks, J.; Krieken, van der S.; Ryu, D.; Kersten, A.H.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.E.; Auwerx, J.; Schrauwen, P.

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind

  9. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans

    NARCIS (Netherlands)

    Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; Weijer, van de T.; Goossens, G.H.; Hoeks, J.; Krieken, van der S.; Ryu, D.; Kersten, A.H.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.E.; Auwerx, J.; Schrauwen, P.

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind crossov

  10. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans

    NARCIS (Netherlands)

    Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; Weijer, van de T.; Goossens, G.H.; Hoeks, J.; Krieken, van der S.; Ryu, D.; Kersten, A.H.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.E.; Auwerx, J.; Schrauwen, P.

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind crossov

  11. Use of scanning calorimetry and microrespiration to determine effects of Bt toxin doses on Pandemis leafroller (Lepidoptera: Tortricidae) metabolism

    Science.gov (United States)

    Differential scanning calorimetry and microrespiration were used to determine the effects of the biopesticide, Bt toxin, on the metabolism of infected Pandemis leafroller, Pandemis purusana (Kearfott). The metabolic heat rate, CO2 evolution, O2 consumption of 2nd and 3rd instars following a 2 h expo...

  12. Effects of carbohydrate quantity and glycemic index on resting metabolic rate and body composition during weight loss

    Science.gov (United States)

    Objective: To examine the effects of diets varying in carbohydrate and glycemic index (GI) on changes in body composition, resting metabolic rate (RMR), and metabolic adaptation during and after weight loss. Methods: Adults with obesity (n = 91) were randomized to one of four provided-food diets f...

  13. Effect of hyperbaric oxygenation on carbohydrate metabolism protein synthesis in the myocardium during sustained hypodynamia

    Science.gov (United States)

    Makarov, G. A.

    1980-01-01

    Glycolysis and the intensity of protein synthesis were studied in 140 white male rats in subcellular fractions of the myocardium during 45 day hypodynamia and hyperbaric oxygenation. Hypodynamia increased: (1) the amount of lactic acids; (2) the amount of pyruvic acid; (3) the lactate/pyruvate coefficient; and (4) the activities of aldolase and lactate dehydrogenase. Hyperbaric oxygenation was found to have a favorable metabolic effect on the animals with hypodynamia.

  14. The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: a systematic review.

    Directory of Open Access Journals (Sweden)

    Inge Oudman

    Full Text Available BACKGROUND: Creatine kinase plays a key role in cellular energy transport. The enzyme transfers high-energy phosphoryl groups from mitochondria to subcellular sites of ATP hydrolysis, where it buffers ADP concentration by catalyzing the reversible transfer of the high-energy phosphate moiety (P between creatine and ADP. Cellular creatine uptake is competitively inhibited by beta-guanidinopropionic acid. This substance is marked as safe for human use, but the effects are unclear. Therefore, we systematically reviewed the effect of beta-guanidinopropionic acid on energy metabolism and function of tissues with high energy demands. METHODS: We performed a systematic review and searched the electronic databases Pubmed, EMBASE, the Cochrane Library, and LILACS from their inception through March 2011. Furthermore, we searched the internet and explored references from textbooks and reviews. RESULTS: After applying the inclusion criteria, we retrieved 131 publications, mainly considering the effect of chronic oral administration of beta-guanidinopropionic acid (0.5 to 3.5% on skeletal muscle, the cardiovascular system, and brain tissue in animals. Beta-guanidinopropionic acid decreased intracellular creatine and phosphocreatine in all tissues studied. In skeletal muscle, this effect induced a shift from glycolytic to oxidative metabolism, increased cellular glucose uptake and increased fatigue tolerance. In heart tissue this shift to mitochondrial metabolism was less pronounced. Myocardial contractility was modestly reduced, including a decreased ventricular developed pressure, albeit with unchanged cardiac output. In brain tissue adaptations in energy metabolism resulted in enhanced ATP stability and survival during hypoxia. CONCLUSION: Chronic beta-guanidinopropionic acid increases fatigue tolerance of skeletal muscle and survival during ischaemia in animal studies, with modestly reduced myocardial contractility. Because it is marked as safe for human

  15. Gender differences in ozone-induced pulmonary and metabolic health effects

    Science.gov (United States)

    SOT 2015 abstractGender differences in ozone-induced pulmonary and metabolic health effectsU.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema3, P. Phillips3, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triangle ...

  16. The metabolic effects of drugs used for the treatment of polycystic ovary syndrome

    OpenAIRE

    Karaköse, Melia; Çakal, Erman; Ertan, Kubilay; Delibaşı, Tuncay

    2013-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. It is characterized by menstrual disorders, hyperandrogenism (clinical and/or biochemical) and ultrasonographic features. It is well known that PCOS has unfavourable effects on carbohydrate metabolism, the parameters of cardiovascular disease and lipid profile. Mode of treatment is mainly guided by the main complaint of the patient. A lot of medicines have been used for many years to treat ...

  17. [Effect of solcoseryl on oxygen metabolism and growth of experimental tumors].

    Science.gov (United States)

    Mosienko, V S; Zagoruĭko, L I; Todor, I N; Khasanova, L T

    1987-01-01

    Antihypoxant and antitumour properties of solcoseryl were studied on intact and tumour-bearing rats and mice. By the polarographic method it is found that solcoseryl increases the oxygen metabolism only in animal hypoxic tissues and improves, probably, energy production of their mitochondria. On many tumour strains it is shown that the injections of solcoseryl decelerate the growth of some tumours, inhibit the metastatic process and produce no toxic effect on the animals.

  18. Combined effect of sesamin and soybean phospholipid on hepatic fatty acid metabolism in rats

    OpenAIRE

    Ide, Takashi

    2014-01-01

    We studied the combined effect of sesamin (1:1 mixture of sesamin and episesamine) and soybean phospholipid on lipid metabolism in rats. Male rats were fed diets supplemented with 0 or 2 g/kg sesamin, and containing 0 or 50 g/kg soybean phospholipid, for 19 days. Sesamin and soybean phospholipid decreased serum triacylglycerol concentrations and the combination of these compounds further decreased the parameter in an additive fashion. Soybean phospholipid but not sesamin reduced the hepatic c...

  19. Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy

    OpenAIRE

    Cronin-Fenton, Deirdre P.; Damkier, Per; Lash, Timothy L

    2014-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6). Tamoxifen is a substrate for ATP-binding cassette transporter proteins. We review tamoxifen's clinical pharmacology and use meta-analyses to evaluate the clinical epidemiology studies conducted to date on the association between CYP2D6 inhibition and tamoxifen effectiveness. Our find...

  20. A Review of Effects of Heat Stress on Substance and Energy Metabolism in Muscle

    Institute of Scientific and Technical Information of China (English)

    Shiyong WU; Zhi FANG; Bo XUE; Longzhou LIU; Ye YANG

    2015-01-01

    Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress wil become more and more seri-ous. This paper reviewed the effects of heat stress on metabolism of proteins, glu-cose, fat and energy in skeletal muscle and related mechanisms so as to provide theoretical guidance for al eviating heat stress and improving production performance of animal suffering from heat stress.

  1. The Effect of Genetic and Environmental Variation on Metabolic Gene Expression

    OpenAIRE

    Cinda P Scott; Williams, Dean A; Crawford, Douglas L.

    2009-01-01

    What is the relationship between genetic or environmental variation and the variation in mRNA expression? To address this, microarrays were used to examine the effect of genetic and environmental variation on cardiac mRNA expression for metabolic genes in three groups of Fundulus heteroclitus: (1) individuals sampled in the field (field), (2) field individuals acclimated for six months to laboratory conditions (acclimated) or (3) individuals bred for ten successive generations in a laboratory...

  2. A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role

    OpenAIRE

    Hage, Mirella P.; Al-Badri, Marwa R.; Azar, Sami T.

    2014-01-01

    Hydroxychloroquine (HCQ), a commonly used antimalarial drug in rheumatic diseases, has shown favorable metabolic effects on both glucose control and lipid profiles. We describe a case of a young woman with type 1 diabetes whose glycemic control was optimized with the introduction of HCQ as a treatment for her Sjogren syndrome in addition to a subtle yet measurable improvement in her lipid profile. An increasing body of evidence supports the beneficial impacts of HCQ in various ancillary condi...

  3. Modeling the autonomic and metabolic effects of obstructive sleep apnea: A simulation study.

    Directory of Open Access Journals (Sweden)

    Limei eCheng

    2012-01-01

    Full Text Available Long term exposure to intermittent hypoxia and sleep fragmentation introduced by recurring obstructive sleep apnea has been linked to subsequent cardiovascular disease and Type 2 diabetes. The underlying mechanisms remain unclear, but impairment of the normal interactions among the systems that regulate autonomic and metabolic function is likely involved. We have extended an existing integrative model of respiratory, cardiovascular and sleep-wake state control, to incorporate a sub-model of glucose-insulin-fatty acid regulation. This computational model is capable of simulating the complex dynamics of cardiorespiratory control, chemoreflex and state-related control of breath-to-breath ventilation, state-related and chemoreflex control of upper airway potency, respiratory and circulatory mechanics, as well as the metabolic control of glucose insulin dynamics and its interactions with the autonomic control. The interactions between autonomic and metabolic control include the circadian regulation of epinephrine secretion, epinephrine regulation on dynamic fluctuations in glucose and free-fatty acid in plasma, metabolic coupling among tissues and organs provided by insulin and epinephrine, as well as the effect of insulin on peripheral vascular sympathetic activity. These model simulations provide insight into the relative importance of the various mechanisms that determine the acute and chronic physiological effects of sleep-disordered breathing. The model can also be used to investigate the effects of a variety of interventions, such as different glucose clamps, the intravenous glucose tolerance test and the application of continuous positive airway pressure on obstructive sleep apnea subjects. As such, this model provides the foundation on which future efforts to simulate disease progression and the long-term effects of pharmacological intervention can be based.

  4. Effects of three types of physical activity on reduction of metabolic parameters involved in cardiovascular risk

    OpenAIRE

    Petrović-Oggiano Gordana; Damjanov Vlasta; Vučić Vesna; Debeljak-Martačić Jasmina; Pavlović Mirjana; Glibetić Marija

    2009-01-01

    The aim of present study was to investigate the effects of three different types of physical activity on reduction of the metabolic parameters mainly responsible for cardiovascular diseases. This prospective-intervention study was performed at the 'ČIGOTA' Thyroid Institute on Mt. Zlatibor (Serbia) between August 2004 and June 2006. Sixty-eight overweight/obese patients aged 40-70 years with hyperlipidemia were divided into three groups according to their weight and overall health. The progra...

  5. Effect Of Boswellia Carterii Birdw On Carbohydrate Metabolism In Diabetic Male Albino Rats

    OpenAIRE

    Eman G. E. Helal*, Ashraf M. Mostafa**, Fawzy A. Ashour

    2005-01-01

    In the current study, thirty male adult albino rats were used to investigate the effect of Boswellia Carterii Birdw (BCB) on carbohydrate metabolism in alloxan-induced diabetes. Rats were divided into three equal groups, control, diabetic non treated and diabetic BCB treated groups. After thirty days of treatment five rats of each group were sacrificed and the others were left without any additional treatment for another 15 days (recovery period) then were sacrificed. The body weight of each ...

  6. Age-dependent effect of ozone on pulmonary eicosanoid metabolism in rabbits and rats

    Energy Technology Data Exchange (ETDEWEB)

    Gunnison, A.F.; Finkelstein, I.; Weideman, P.; Su, W.Y.; Sobo, M.; Schlesinger, R.B. (New York Univ. Medical Center, New York (USA))

    1990-11-01

    Acute exposures to ozone have previously been shown to cause quantitative changes in the spectrum of arachidonic acid (AA) metabolites in lung lavage fluid. Since age appears to be an important variable in the toxicity of inhaled ozone, we investigated its effect on ozone-induced changes in pulmonary eicosanoid metabolism. Rats and rabbits ranging in age from neonates to young adults were exposed either to air or to 1 ppm ozone for 2 hr. Lung lavage fluid was collected within 1 hr following exposure and analyzed for its content of selected eicosanoids. In both species, there was a pronounced effect of age on ozone-induced pulmonary eicosanoid metabolism. Ozone-exposed animals at the youngest ages examined had severalfold greater amounts of two products of the cyclooxygenase pathway, prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2 alpha), than did age-matched controls. This effect lessened and eventually disappeared as the animals grew toward adulthood. In rabbits, ozone also induced increases in 6-keto-prostaglandin F1 alpha and thromboxane B2, but these changes were of lesser magnitude and evident only in the youngest rabbits exposed. There was no observed effect of ozone on lung lavage content of leukothriene B4. Indices of nonspecific pulmonary damage, i.e., protein concentration in lung lavage fluid and total number and viability of lavaged lung cells, were affected by ozone exposure, but not in an age-dependent manner that correlated with changes in pulmonary eicosanoid metabolism. In vitro ozone exposure of lung macrophages from naive rabbits of the same age range as those exposed in vivo demonstrated that ozone is capable of stimulating the elaboration of PGF2 alpha and especially PGE2. However, the increase in lavage fluid PGE2 and PGF2 alpha caused by ozone inhalation could not be attributed to macrophage metabolism conclusively.

  7. Direct comparison of metabolic health effects of the flavonoids quercetin, hesperetin, epicatechin, apigenin and anthocyanins in high-fat-diet-fed mice

    NARCIS (Netherlands)

    Hoek-van den Hil, E.F.; Schothorst, van E.M.; Stelt, van der I.; Swarts, J.J.M.; Vliet, van M.A.; Amolo, T.; Vervoort, J.J.M.; Venema, D.P.; Hollman, P.C.H.; Rietjens, I.M.C.M.; Keijer, J.

    2015-01-01

    Dietary flavonoid intake is associated with reduced risk of cardiovascular diseases, possibly by affecting metabolic health. The relative potency of different flavonoids in causing beneficial effects on energy and lipid metabolism has not been investigated. Effects of quercetin, hesperetin, epicatec

  8. Effects of pancreas transplantation on late complications of diabetes and metabolic effects of pancreas and islet transplantation.

    Science.gov (United States)

    Caldara, R; La Rocca, E; Maffi, P; Secchi, A

    1999-01-01

    Pancreas transplantation has become an accepted therapeutic approach to treat insulin-dependent diabetes mellitus, successfully restoring normoglycemia. In contrast, islet transplantation is still in the experimental phase, only a few operations having being performed world-wide. The aim of this review is to analyze the effects of pancreas transplantation on the late complications of diabetes and to report the endocrino-metabolic effects of pancreas and islet transplantation.

  9. Lipid Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008393 Effects of angiotensin Ⅱ type 1 receptor blocker on triglyceride metabolism in the liver: experiment with Zucker fatty rats. RAN Jianmin(冉建民), et al. Dept Endocrinol, Guangzhou Red Cross Hosp, 4th Hosp Med Coll, Jinan Univ, Guangzhou 510220. Natl Med J China 2008;88(22):1557-1561. Objective To investigate the effects of angiotensin receptor blocker (ARB) on triglyceride (TG) metabolism and mechanism thereof.

  10. Effect of salmon calcitonin on osteoporosis and level of bone metabolism markers

    Institute of Scientific and Technical Information of China (English)

    Xian-Feng Fan; Xing-Hua Huang; Yun-Yong Huang; Ming-Jian Hu

    2015-01-01

    Objective:To study the effect of osteoporosis calcitonin salmon on the level of bone metabolism markers in patients with osteoporosis.Methods: A total of 140 cases with osteoporosis were randomly divided into control group and observation group, with 70 cases in each. Patients in control group were treated with calcitriol soft capsules and chewable calcium vitamin D. Patients in observation group were treated with salmon calcitonin.Results:The total efficiency of the observation group patients was 85.71%, significantly higher than 70.00% that of control group (P<0.05). After treatment, BMD of Torch, Neck, L1-L4 and Ward's area in observation group patients were significantly higher than that of control group (P<0.01). After treatment, bone metabolism related indicatorsβ-CTX, N-MID, ALP level in observation group patients were significantly lower than that of control group, and hCT level in observation group patients was significantly higher than that of control group (P<0.01). Conclusions:Salmon calcitonin is effective in treatment of osteoporosis. It can effectively relieve the symptoms, increase bone density and improve bone metabolism.

  11. Effect of fruit and vegetable concentrates on endothelial function in metabolic syndrome: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ma Yingying

    2011-06-01

    Full Text Available Abstract Background and Objective Dehydrated fruit and vegetable concentrates provide an accessible form of phytonutrient supplementation that may offer cardioprotective effects. This study assessed the effects of two blends of encapsulated juice powder concentrates (with and without added berry powders on endothelial function in persons with metabolic syndrome, a risk factor for type 2 diabetes and cardiovascular disease. Methods Randomized, double blind, placebo controlled crossover clinical trial with three treatment arms. 64 adults with metabolic syndrome were enrolled and received 8-week sequences of each blend of the concentrates and placebo. The primary outcome measure was change in endothelial function (assessed as flow-mediated dilatation of the brachial artery 2 hr after consuming a 75 g glucose load, after 8-weeks of daily consumption (sustained or 2 hr after consumption of a single dose (acute. Secondary outcome measures included plasma glucose, serum insulin, serum lipids, and body weight. Results No significant between-group differences in endothelial function with daily treatment for 8 weeks were seen. No other significant treatment effects were discerned in glucose, insulin, lipids, and weight. Conclusion Encapsulated fruit and vegetable juice powder concentrates did not alter insulin or glucose measures in this sample of adults with metabolic syndrome. Trial Registration clinicaltrials.gov NCT01224743

  12. Effects of bariatric surgery on hepatic and intestinal lipoprotein particle metabolism in obese, nondiabetic humans.

    Science.gov (United States)

    Padilla, Nadège; Maraninchi, Marie; Béliard, Sophie; Berthet, Bruno; Nogueira, Juan-Patricio; Wolff, Estelle; Nicolay, Alain; Bégu, Audrey; Dubois, Noémie; Grangeot, Rachel; Mattei, Catherine; Vialettes, Bernard; Xiao, Changting; Lewis, Gary F; Valéro, René

    2014-10-01

    The dyslipidemia of obesity and other insulin-resistant states is characterized by the elevation of plasma triglyceride-rich lipoproteins (TRL) of both hepatic (apoB-100-containing very low-density lipoprotein) and intestinal (apoB-48-containing chylomicrons) origin. Bariatric surgery is a well-established and effective modality for the treatment of obesity and is associated with improvements in several metabolic abnormalities associated with obesity, including a reduction in plasma triglycerides. Here, we have investigated the effect of bariatric surgery on TRL metabolism. Twenty-two nondiabetic, obese subjects undergoing bariatric surgery: sleeve gastrectomy (n=12) or gastric bypass (n=10) were studied. Each subject underwent 1 lipoprotein turnover study 1 month before surgery followed by a second study, 6 months after surgery, using established stable isotope enrichment methodology, in constant fed state. TRL-apoB-100 concentration was significantly reduced after sleeve gastrectomy, explained by a decrease (Psurgery (Pbariatric surgery. This is the first human lipoprotein kinetic study to explore the mechanism of improvement of TRL metabolism after bariatric surgery. These effects may contribute to the decrease of cardiovascular mortality after surgery. http://www.ClinicalTrials.gov. Unique identifier: NCT01277068. © 2014 American Heart Association, Inc.

  13. Combined intervention of dietary soybean proteins and swim training: effects on bone metabolism in ovariectomized rats.

    Science.gov (United States)

    Figard, Hélène; Mougin, Fabienne; Gaume, Vincent; Berthelot, Alain

    2006-01-01

    Soybean proteins, a rich source of isoflavones, taken immediately after an ovariectomy prevent bone loss in rats. Exercise-induced stimuli are essential for bone growth. Few studies exist about the combined effects of swim training and soybean protein supplementation on bone metabolism. So, the purpose of this study was to investigate, in 48 female Sprague-Dawley rats (12 weeks old) the effects of an 8-week swim-training regimen (1 h/day, 5 days/week) and dietary soybean proteins (200 g/kg diet) on bone metabolism. Rats were randomly assigned to four groups: (1) ovariectomized fed with a semisynthetic control diet; (2) ovariectomized fed with a soybean protein-enriched semisynthetic diet; (3) ovariectomized trained to exercise and fed with control diet; (4) ovariectomized trained to exercise and fed with a soybean protein diet. Following the treatment period, body weight gain was identical in the four groups. Soybean protein supplementation increased bone calcium content, and reduced plasma osteocalcin values, without significant modification of calcium balance and net calcium absorption. Swim training enhanced plasma and bone calcium content and calcium balance and net calcium absorption. It did not modify either plasma osteocalcin values or urinary deoxypyridinoline excretion. Both exercise and soybean protein intake increased plasma on bone calcium without modifying net calcium absorption or bone markers. In conclusion, we demonstrated, in ovariectomized rats, that swimming exercise and dietary supplementation with soy proteins do not have synergistic effects on calcium metabolism and bone markers.

  14. A novel administration route for edaravone: I. Effects of metabolic inhibitors on skin permeability of edaravone.

    Science.gov (United States)

    Sato, Toshiaki; Mizuno, Keizo; Ishii, Fumiyoshi

    2009-05-08

    We examined the effects of metabolic inhibitors on skin permeation of edaravone. SKF-525A, diclofenac sodium (DIC) and indomethacin (IND) were added to supernatant fluid (SF) of hairless rat (HR) skin homogenate. L-Cysteine (L-Cys) and benzotriazole (BTA), as pharmaceutical additives, were added to HR skin homogenate SF, and incubated at 37 degrees C for 30 min. K(m) and V(max) values were calculated. For determination of edaravone skin permeation from edaravone/hydroxypropyl-beta-cyclodextrin (HPbetaCD) complex solution, HR skin was placed in a Franz diffusion cell, and kept at 37 degrees C. Edaravone/HPbetaCD solution that contained L-Cys was put into the donor side. The relative activity in skin homogenate SF after co-treatment with IND and SKF-525A decreased to 40.8% of the control. However, DIC and IND had a weak inhibitory effect. For inhibition of edaravone metabolism, L-Cys and BTA had no effect on K(m) value, but V(max) was significantly decreased compared with controls (*P<0.05, Tukey-Kramer test). The edaravone skin permeation rate and permeability coefficient from edaravone/HPbetaCD complex solution with inhibitor were significantly increased compared with those without inhibitor. We suggest that the metabolism inhibitor was useful for the transdermal delivery of edaravone.

  15. Argan oil reduces, in rats, the high fat diet-induced metabolic effects of obesity.

    Science.gov (United States)

    Sour, S; Belarbi, M; Sari, N; Benammar, C H; Baghdad, C H; Visioli, F

    2015-04-01

    Obesity is a multi-factorial disorder which is of worldwide concern. In addition to calorie control, some specific dietary components might help resolving some of the complication of obesity, by providing antioxidant and anti-inflammatory activities. We investigated the effect of argan oil supplementation on plasma lipid profile and oxidant-antioxidant status of rats with high-fat diet (HFD)-induced obesity compared with rats fed a normal diet (ND). We used an animal model of high fat diet-induced obesity to study the metabolic effects of argan oil and we measured several markers lipid and redox statuses. Consumption of a high-fat diet led to an increase in serum total cholesterol (TC), LDL-cholesterol (LDL-C), and triacylglycerols (TAG) concentrations; however, argan oil blunted the increases of TC, LDL-C and TG, glucose, and insulin. Plasma total antioxidant capacity, erythrocyte catalase and superoxide dismutase activities were lower, whereas plasma hydroperoxide, thiobarbituric acid-reacting substances, and susceptibility of LDL to copper-induced oxidation were higher in obese rats compared with normal rats. Administration of argan oil ameliorated all these indices of redox status. Proper diet and lifestyle should be foremost implemented to reduce the lipoprotein metabolism and oxidant/antioxidant status alterations brought about by obesity. In addition, argan oil reduces the metabolic effects of obesity and its use might be promoted within the context of a balanced diet. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Comparative effect of telmisartan vs lisinopril on blood pressure in patients of metabolic syndrome.

    Science.gov (United States)

    Gore, Pradip N; Badar, Vandana A; Hardas, Mrunalini M; Bansode, Varsha J

    2015-01-01

    The present study was planned to focus on comparative effects of telmisartan vs lisinopril on blood pressure in patients of metabolic syndrome The study was carried out on 62 patients of metabolic syndrome from Dec 2010 to Oct 2012 in OPD of Institute. There were two groups, A and B. Group A- Telmisartan (31 patients) and Group B- Lisinopril (31 patients) receiving Telmisartan 40 mg and lisinopril 5 mg orally once a day respectively for 12 weeks. The diagnosis of essential hypertension was made by the physician based on two measurements of blood pressure on two different occasions using auscultatory method and was done at initial stage and repeated after 6 weeks and 12 weeks of treatment in Group A and Group B patients. Our study found that telmisartan or lisinopril treatment for 12 weeks leads to statistically significant (ptelmisartan and lisinopril treatment failed to show any statistically significant effect. Treatment of metabolic patients with telmisartan or lisinopril for the management of hypertension reduced both Systolic blood pressure (SBP) as well as Diastolic blood pressure (DBP) statistically significantly during 12 weeks treatment. However, telmisartan and lisinopril treatment were found effective.

  17. Effects of glutamine supplementation, GH, and IGF-I on glutamine metabolism in critically ill patients.

    Science.gov (United States)

    Jackson, N C; Carroll, P V; Russell-Jones, D L; Sönksen, P H; Treacher, D F; Umpleby, A M

    2000-02-01

    During critical illness glutamine deficiency may develop. Glutamine supplementation can restore plasma concentration to normal, but the effect on glutamine metabolism is unknown. The use of growth hormone (GH) and insulin-like growth factor I (IGF-I) to prevent protein catabolism in these patients may exacerbate the glutamine deficiency. We have investigated, in critically ill patients, the effects of 72 h of treatment with standard parenteral nutrition (TPN; n = 6), TPN supplemented with glutamine (TPNGLN; 0.4 g x kg(-1) x day(-1), n = 6), or TPNGLN with combined GH (0.2 IU. kg(-1). day(-1)) and IGF-I (160 microg x kg (-1) x day(-1)) (TPNGLN+GH/IGF-I; n = 5) on glutamine metabolism using [2-(15)N]glutamine. In patients receiving TPNGLN and TPNGLN+GH/IGF-I, plasma glutamine concentration was increased (338 +/- 22 vs. 461 +/- 24 micromol/l, P requirement for glutamine in critically ill patients. Combined GH/IGF-I treatment with TPNGLN did not have adverse effects on glutamine metabolism.

  18. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review.

    Science.gov (United States)

    Amiot, M J; Riva, C; Vinet, A

    2016-07-01

    Dietary polyphenols constitute a large family of bioactive substances potential beneficial effect on metabolic syndrome (MetS). This review summarizes the results of clinical studies on patients with MetS involving the chronic supplementation of a polyphenol-rich diet, foods, extracts or with single phenolics on the features of MetS (obesity, dyslipidemia, blood pressure and glycaemia) and associated complications (oxidative stress and inflammation). Polyphenols were shown to be efficient, especially at higher doses, and there were no specific foods or extracts able to alleviate all the features of MetS. Green tea, however, significantly reduced body mass index and waist circumference and improved lipid metabolism. Cocoa supplementation reduced blood pressure and blood glucose. Soy isoflavones, citrus products, hesperidin and quercetin improved lipid metabolism, whereas cinnamon reduced blood glucose. In numerous clinical studies, antioxidative and anti-inflammatory effects were not significant after polyphenol supplementation in patients with MetS. However, some trials pointed towards an improvement of endothelial function in patients supplemented with cocoa, anthocyanin-rich berries, hesperidin or resveratrol. Therefore, diets rich in polyphenols, such as the Mediterranean diet, which promote the consumption of diverse polyphenol-rich products could be an effective nutritional strategy to improve the health of patients with MetS. © 2016 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity.

  19.  Effects of Losartan vs. Enalapril on the Markers of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Isam H. Mahmood

    2012-01-01

    Full Text Available  Objective: To compare the effects of losartan and enalapril on themarkers of metabolic syndrome.Methods: One hundred and twenty six newly diagnosedhypertensive patients having other markers of metabolicsyndrome participated in this study. The study was performed inthe department of pharmacology, college of medicine at Ibn-SinaTeaching Hospital in Mosul city, Iraq, during the period betweenDecember 2007 and June 2009. The patients were divided into 2main groups: 1 Losartan group: consisted of 60 patients, and 2enalapril group: Consisted of 66 patients. Waist circumference,weight, Body mass index, blood pressure, serum glucoseconcentration, triglyceride and HDL-cholestrol were measuredbefore and after administration of therapy. The effects of therapywere assessed by statistically comparing the results before andafter the drug administration.Results: Comparison of waist circumference, blood pressure,FSG, triglycerides of the patients before drug administration(baseline data, with those of the controls showed a significantelevation, while HDL-cholesterol showed a significant reduction.A significant reduction of waist circumference, BP, FSG and asignificant elevation of HDL-cholesterol were also noted aftertherapy with both losartan and enalapril.Conclusion: Both losartan and enalapril produced a significantreduction of markers of metabolic syndrome and may be regardedas effective drugs for treatment of hypertension in patients withmarkers of metabolic syndrome.

  20. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 and 35 C

    Energy Technology Data Exchange (ETDEWEB)

    Welch, S.A.; Ullman, W.J.

    1999-10-01

    The rate of Si release from dissolving bytownite feldspar in abiotic batch reactors increased as temperatures increased from 5 to 35 C. Metabolically inert subsurface bacteria (bacteria in solution with no organic substrate) had no apparent effect on dissolution rates over this temperature range. When glucose was added to the microbial cultures, the bacteria responded by producing gluconic acid, which catalyzed the dissolution reaction by both proton- and ligand-promoted mechanisms. The metabolic production, excretion, and consumption of gluconic acid in the course of glucose oxidation, and therefore, the degree of microbial enhancement of mineral dissolution, depend on temperature. There was little accumulation of gluconic acid and therefore, no significant enhancement of mineral dissolution rates at 35 C compared to the abiotic controls. At 20 C, gluconate accumulated in the experimental solutions only at the beginning of the experiment and led to a twofold increase in dissolved Si release compared to the controls, primarily by the ligand-promoted dissolution mechanism. There was significant accumulation of gluconic acid in the 5 C experiment, which is reflected in a significant reduction in pH, leading to 20-fold increase in Si release, primarily attributable to the proton-promoted dissolution mechanism. These results indicate that bacteria and microbial metabolism can affect mineral dissolution rates in organic-rich, nutrient-poor environments; the impact of microbial metabolism on aluminum silicate dissolution rates may be greater at lower rather than at higher temperatures due to the metabolic accumulation of dissolution-enhancing protons and ligands in solution.

  1. Effects of Nicotine Exposure on In Vitro Metabolism of Chlorpyrifos in Male Sprague-Dawley Rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sookwang; Busby, Andrea L.; Timchalk, Charles; Poet, Torka S.

    2009-01-30

    Chlorpyrifos (CPF) is a common organophosphate (OP) insecticide which is metabolized by CYP450s to the neurotoxic metabolite, chlorpyrifos-oxon (CPF-oxon) and a non-toxic metabolite, 3,5,6-trichloro-2-pyridinol (TCP). The objective of this study was to quantify the effect of repeated in vivo nicotine exposures on CPF in vitro metabolism and marker substrate activities in rats. Male Sprague-Dawley rats were dosed subcutaneously with 1 mg nicotine/kg/, for up to 10 days. Animals showed signs of cholinergic crisis after the initial nicotine doses, but exhibited adaptation after a couple days of treatment. Rats were sacrificed on selected days 4 or 24 hr after the last nicotine-treatment. While CYP450 reduced CO spectra were not different across the treatments, the single nicotine dose group showed a 2-fold increase in CYP2E1 marker substrate (p-nitrophenol) activity 24 hr after a single nicotine treatment compared to saline controls. Conversely, repeated nicotine treatments resulted in decreased EROD marker substrate activity 4 hr after the 7th day of treatment. CPF-oxon Vmax and Km did not show significant changes across the different nicotine treatment groups. The Vmax describing the metabolism of CPF to TCP was increased on all groups (days 1, 7, and 10) 24 hr after nicotine treatment but were unchanged 4 hr after nicotine treatment. Results of this in vitro study suggest that repeated nicotine exposure (i.e., from smoking) may result in altered metabolism of CPF. Future in vivo experiments based on these results will be conducted to ascertain the impact of in vivo nicotine exposures on CPF metabolism in rats.

  2. Effect of oxygen deficiency on nitrogen assimilation and amino acid metabolism of soybean root segments.

    Science.gov (United States)

    Oliveira, Halley Caixeta; Sodek, Ladaslav

    2013-02-01

    Plants submitted to O(2) deficiency present a series of biochemical modifications, affecting overall root metabolism. Here, the effect of hypoxia on the metabolic fate of (15)N derived from (15)NO(3)(-), (15)NO(2)(-) and (15)NH(4)(+) in isolated soybean root segments was followed by gas chromatography-mass spectrometry, to provide a detailed analysis of nitrogen assimilation and amino acid biosynthesis under hypoxia. O(2) deficiency decreased the uptake of the nitrogen sources from the solution, as ratified by the lower (15)NO(3)(-) and (15)NH(4)(+) enrichment in the root segments. Moreover, analysis of endogenous NO(2)(-) and (15)NH(4)(+) levels suggested a slower metabolism of these ions under hypoxia. Accordingly, regardless of the nitrogen source, hypoxia reduced total (15)N incorporation into amino acids. Analysis of (15)N enrichment patterns and amino acid levels suggest a redirecting of amino acid metabolism to alanine and γ-aminobutyric acid synthesis under hypoxia and a differential sensitivity of individual amino acid pathways to this stress. Moreover, the role of glutamine synthetase in nitrogen assimilation both under normoxia and hypoxia was ratified. In comparison with (15)NH(4)(+), (15)NO(2)(-) assimilation into amino acids was more strongly affected by hypoxia and NO(2)(-) accumulated in root segments during this stress, indicating that nitrite reductase may be an additional limiting step. NO(2)(-) accumulation was associated with a higher nitric oxide emission. (15)NO(3)(-) led to much lower (15)N incorporation in both O(2) conditions, probably due to the limited nitrate reductase activity of the root segments. Overall, the present work shows that profound alterations of root nitrogen metabolism occur during hypoxic stress.

  3. Effect of chronic intermittent hypoxia on theophylline metabolism in mouse liver

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yang; ZENG Yi-ming; ZHANG Yi-xiang; WANG Wan-yu; WU Run-hua

    2013-01-01

    Background Chronic intermittent hypoxia (CIH) has been associated with abnormalities in the liver,which is the most important organ for drug metabolism.This study aimed to investigate the effect of CIH on theophylline metabolism in mouse liver.Methods Eight C57BL/6J mice were exposed to CIH for 12 weeks.Eight C57BL/6J mice were exposed to room air as a control group.Serum levels of alanine aminotransferase and aspartate aminotransferase were measured.Liver histology was observed by light and electron microscopy.Total hepatic cytochrome P450 concentration was measured.Hepatocytes were isolated and incubated with 15 mg/ml theophylline for four hours.After incubation,the theophylline concentration in the supernatant was measured and the theophylline metabolism rate was calculated.Results CIH did not affect the serum transaminase levels.Livers from mice exposed to CIH showed hepatocellular edema,and liver cells had fuzzy rough endoplasmic reticulum under the electron microscope.The theophylline metabolism rate was significantly inhibited by CIH compared with controls; (16.60±2.43)% vs.(21.58±4.52)% (P=0.02).The total liver cytochrome P450 concentration in the CIH group was significantly lower than in the control group;(0.83±0.08) vs.(1.13±0.21) mol/mg microsomal protein (P=0.004).Conclusion CIH decreases theophylline metabolism by mouse hepatocytes,which may correlate with the downregulation of cytochrome P450 expression by CIH.

  4. Effect of different exercise intensities on the pancreas of animals with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Amaral F

    2015-02-01

    Full Text Available Fernanda Amaral,1 Nathalia EA Lima,1 Elisabete Ornelas,1 Lucila Simardi,2 Fernando Luiz Affonso Fonseca,2,3 Laura Beatriz Mesiano Maifrino1,4 1Laboratório de Estudos Morfoquantitativo e Imunohistoquímico, Universidade São Judas Tadeu, São Paulo, Brazil; 2Faculdade de Medicina do ABC, Santo André, São Paulo, Brazil; 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, São Paulo, Brazil; 4Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil Introduction: Metabolic syndrome (MS comprises several metabolic disorders that are risk factors for cardiovascular disease and has its source connected to the accumulation of visceral adipose tissue (VAT and development of insulin resistance. Despite studies showing beneficial results of exercise on several risk factors for cardiovascular disease, studies evaluating the effects of different intensities of exercise training on the pancreas with experimental models are scarce. Methods: In total, 20 Wistar rats were used, divided into four groups: control (C, metabolic syndrome (MS and without exercise, metabolic syndrome and practice of walking (MSWalk, and metabolic syndrome and practice of running (MSRun. The applied procedures were induction of MS by fructose in drinking water; experimental protocol of walking and running; weighing of body mass and VAT; sacrifice of animals with blood collection and removal of organs and processing of samples for light microscopy using the analysis of volume densities (Vv of the studied structures. Results: Running showed a reduction of VAT weight (–54%, triglyceride levels (–40%, Vv[islet] (–62%, Vv[islet.cells] (–22%, Vv[islet.insterstitial] (–44%, and Vv[acinar.insterstitial] (–24% and an increase of Vv[acini] (+21% and Vv[acinar.cells] (+22%. Regarding walking, we observed a decrease of VAT weight (–34% and triglyceride levels (–27%, an increase of Vv[islet.cells] (+72% and Vv[acinar.cells] (+7%, and a decrease of Vv

  5. Effects of Polyphenolic Derivatives on Heme Oxygenase-System in Metabolic Dysfunctions.

    Science.gov (United States)

    Pittala, Valeria; Vanella, Luca; Salerno, Loredana; Romeo, Giuseppe; Marrazzo, Agostino; Di Giacomo, Claudia; Sorrenti, Valeria

    2017-06-16

    The aim of this review is to summarize the effects of various naturally occurring polyphenols in the management of metabolic dysfunctions. This cluster of metabolic abnormalities comprises insulin resistance, increased levels of free fatty acids, hypercholesterolemia, obesity, hyperglycemia and hypertension, diabetes mellitus (DM) type 1 (T1DM) and type 2 (T2DM) along with DM-induced complications. Most of them are included in the well-known metabolic syndrome (MS). These metabolic dysfunctions in turn are tightly associated to a high risk of development of cardiovascular diseases. Although molecular mechanisms underlying the onset of metabolic dysfunctions and related complications are not yet clear, it is widely recognized that they are associated to oxidative stress and chronic low-grade of inflammatory levels. We undertook a structured search of bibliographic references through the use of SciFinder. The database is provided by a division of ACS (American Chemical Society) and guarantees access to the world's most extensive and authoritative source of references. The search has been performed by using "heme oxygenase-1" as research topic and a subsequent refinement has been done by using inclusion/exclusion criteria. The quality of retrieved papers was evaluated on the basis of standard tools. From a careful review of the selected literature, of interest, the use of natural antioxidant polyphenols seems to be the ideal pharmacological treatment since they are endowed with strong antioxidant and anti-inflammatory properties. In particular, some polyphenols such as curcumin, quercetin, genistein, caffeic acid phenethyl ester are able to potently activate nuclear factor erythroid 2-related factor 2 (Nrf2) and related downstream expression of enzymes such as heme oxygenase-1 (HO-1). Indeed, an overexpression of HO-1 has demonstrated to play a beneficial role in metabolic diseases. The following review is intended to stimulate interest in the role of natural

  6. Metabolic acidosis.

    Science.gov (United States)

    Lim, Salim

    2007-01-01

    Acute metabolic acidosis is frequently encountered in critically ill patients. Metabolic acidosis can occur as a result of either the accumulation of endogenous acids that consumes bicarbonate (high anion gap metabolic acidosis) or loss of bicarbonate from the gastrointestinal tract or the kidney (hyperchloremic or normal anion gap metabolic acidosis). The cause of high anion gap metabolic acidosis includes lactic acidosis, ketoacidosis, renal failure and intoxication with ethylene glycol, methanol, salicylate and less commonly with pyroglutamic acid (5-oxoproline), propylene glycole or djenkol bean (gjenkolism). The most common causes of hyperchloremic metabolic acidosis are gastrointestinal bicarbonate loss, renal tubular acidosis, drugs-induced hyperkalemia, early renal failure and administration of acids. The appropriate treatment of acute metabolic acidosis, in particular organic form of acidosis such as lactic acidosis, has been very controversial. The only effective treatment for organic acidosis is cessation of acid production via improvement of tissue oxygenation. Treatment of acute organic acidosis with sodium bicarbonate failed to reduce the morbidity and mortality despite improvement in acid-base parameters. Further studies are required to determine the optimal treatment strategies for acute metabolic acidosis.

  7. Effects of Short-Term Free-Weight and Semiblock Periodization Resistance Training on Metabolic Syndrome.

    Science.gov (United States)

    South, Mark A; Layne, Andrew S; Stuart, Charles A; Triplett, N Travis; Ramsey, Michael; Howell, Mary E; Sands, William A; Mizuguchi, Satoshi; Hornsby, W Guy; Kavanaugh, Ashley A; Stone, Michael H

    2016-10-01

    South, MA, Layne, AS, Stuart, CA, Triplett, NT, Ramsey, MW, Howell, ME, Sands, WA, Mizuguchi, S, Hornsby, WG, Kavanaugh, AA, and Stone, MH. Effects of short-term free-weight and semiblock periodization resistance training on metabolic syndrome. J Strength Cond Res 30(10): 2682-2696, 2016-The effects of short-term resistance training on performance and health variables associated with prolonged sedentary lifestyle and metabolic syndrome (MS) were investigated. Resistance training may alter a number of health-related, physiological, and performance variables. As a result, resistance training can be used as a valuable tool in ameliorating the effects of a sedentary lifestyle including those associated with MS. Nineteen previously sedentary subjects (10 with MS and 9 with nonmetabolic syndrome [NMS]) underwent 8 weeks of supervised resistance training. Maximum strength was measured using an isometric midthigh pull and resulting force-time curve. Vertical jump height (JH) and power were measured using a force plate. The muscle cross-sectional area (CSA) and type were examined using muscle biopsy and standard analysis techniques. Aerobic power was measured on a cycle ergometer using a ParvoMedics 2400 Metabolic system. Endurance was measured as time to exhaustion on a cycle ergometer. After training, maximum isometric strength, JH, jump power, and V[Combining Dot Above]O2peak increased by approximately 10% (or more) in both the metabolic and NMS groups (both male and female subjects). Over 8 weeks of training, body mass did not change statistically, but percent body fat decreased in subjects with the MS and in women, and lean body mass increased in all groups (p ≤ 0.05). Few alterations were noted in the fiber type. Men had larger CSAs compared those of with women, and there was a fiber-specific trend toward hypertrophy over time. In summary, 8 weeks of semiblock free-weight resistance training improved several performance variables and some cardiovascular factors

  8. Head-to-head comparisons of hydrochlorothiazide with indapamide and chlorthalidone: antihypertensive and metabolic effects.

    Science.gov (United States)

    Roush, George C; Ernst, Michael E; Kostis, John B; Tandon, Suraj; Sica, Domenic A

    2015-05-01

    Hydrochlorothiazide (HCTZ) has often been contrasted with chlorthalidone, but relatively little is known about HCTZ versus indapamide (INDAP). This systematic review retrieved 9765 publications, and from these, it identified 14 randomized trials with 883 patients comparing HCTZ with INDAP and chlorthalidone on antihypertensive potency or metabolic effects. To make fair comparisons, the dose of the diuretic in each arm was assigned 1 of 3 dose levels. In random effects meta-analysis, INDAP and chlorthalidone lowered systolic blood pressure more than HCTZ: -5.1 mm Hg (95% confidence interval, -8.7 to -1.6); P=0.004 and -3.6 mm Hg (95% confidence interval, -7.3 to 0.0); P=0.052, respectively. For both comparisons, there was minimal heterogeneity in effect across trials and no evidence for publication bias. The HCTZ-INDAP contrast was biased in favor of greater HCTZ potency because of a much greater contribution to the overall effect from trials in which the HCTZ arm had a higher dose level than the INDAP arm. For the HCTZ-INDAP comparison, no single trial was responsible for the overall result nor was it possible to detect significant modifications of this comparison by duration of follow-up, high- versus low-bias trials, or the presence or absence of background medications. There were no detectable differences between HCTZ and INDAP in metabolic adverse effects, including effects on serum potassium. In conclusion, these head-to-head comparisons demonstrate that, like chlorthalidone, INDAP is more potent than HCTZ at commonly prescribed doses without evidence for greater adverse metabolic effects. © 2015 American Heart Association, Inc.

  9. Telmisartan provides protection against development of impaired vasodilation independently of metabolic effects in SHRSP.Z-Lepr(fa)/IzmDmcr rats with metabolic syndrome.

    Science.gov (United States)

    Kagota, Satomi; Tada, Yukari; Nejime, Namie; Nakamura, Kazuki; Kunitomo, Masaru; Shinozuka, Kazumasa

    2011-05-01

    Metabolic syndrome is known to facilitate the development of cardiovascular disease. We have demonstrated that mesenteric arteries of SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP-fatty) rats with metabolic syndrome display an impaired vasorelaxation response mediated by nitric oxide. We examined whether the condition could be alleviated by treatment with telmisartan, an angiotensin II type 1 (AT1) receptor antagonist with PPAR-γ-activating properties and compared the results with those from pioglitazone, a PPAR-γ agonist. Telmisartan (5 mg·kg(-1)·day(-1)) or pioglitazone (2.5 mg·kg(-1)·day(-1)) was orally administered to male SHRSP-fatty rats for 8 weeks. Serum triglyceride and cholesterol levels were determined, and the oral glucose tolerance test was performed to evaluate insulin resistance. Vasodilations in response to acetylcholine and nitroprusside were determined by wire myographs under isometric tension conditions, protein expressions of soluble guanylyl cyclase in mesenteric arteries by Western blotting, and the contents of 3-nitrotyrosine in aortas by high-performance liquid chromatography with electrochemical detection. Telmisartan exerted antihypertensive effects, while pioglitazone ameliorated metabolic abnormalities in SHRSP-fatty rats. Telmisartan increased acetylcholine- and nitroprusside-induced relaxation and soluble guanylyl cyclase protein expression in mesenteric arteries and reduced 3-nitrotyrosine content in aortas. Pioglitazone displayed no such alleviating effects on vascular functions. These findings indicate that telmisartan protects against vasodilation disturbance through anti-oxidative and -nitrative stress independently of metabolic effects in SHRSP-fatty rats with metabolic syndrome.

  10. Effects of magnesium supplements on blood pressure, endothelial function and metabolic parameters in healthy young men with a family history of metabolic syndrome.

    Science.gov (United States)

    Cosaro, E; Bonafini, S; Montagnana, M; Danese, E; Trettene, M S; Minuz, P; Delva, P; Fava, C

    2014-11-01

    Magnesium plays an important role in the modulation of vascular tone and endothelial function and can regulate glucose and lipid metabolism. Patients with hypertension, metabolic syndrome (MetS) and diabetes mellitus (T2DM) have low body magnesium content; indeed, magnesium supplementation has been shown to have a positive effect on blood pressure (BP) and gluco-metabolic parameters. The aim of our study was to evaluate the effect of magnesium supplements on hemodynamic and metabolic parameters in healthy men with a positive family history of MetS or T2DM. In a randomized, double-blind, placebo-controlled 8-week crossover trial with a 4 week wash-out period, oral supplements of 8.1 mmol of magnesium-pidolate or placebo were administered twice a day to 14 healthy normomagnesemic participants, aged 23-33 years. The primary endpoint was office BP, measured with a semiautomatic oscillometric device. Secondary endpoints included characteristics of the MetS, namely endothelial function, arterial stiffness and inflammation. Plasma and urinary magnesium were measured in all participants while free intracellular magnesium was measured only in a subsample. There was no significant difference in either systolic and diastolic BP in participants post-magnesium supplementation and post-placebo treatment when compared to baseline BP measurements. Further, the metabolic, inflammatory and hemodynamic parameters did not vary significantly during the study. Our study showed no beneficial effect of magnesium supplements on BP, vascular function and glycolipid profile in young men with a family history of MetS/T2DM (trial registration at clinicaltrial.gov ID: NCT01181830; 12th of Aug 2010). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. EFFECTS OF HYDRAZINES ON THE METABOLISM OF CERTAIN AMINES AND AMINO ACIDS.

    Science.gov (United States)

    AMINES, * AMINO ACIDS , *DIAMINE OXIDASE, TOXICITY, METABOLISM, METABOLISM, DIMETHYLHYDRAZINES, GLUTAMIC ACID, ENZYMES, PHARMACOLOGY, TRACER STUDIES, LABELED SUBSTANCES, RESPIRATION, GASTROINTESTINAL SYSTEM, RATS.

  12. Effect of produced water on feeding and metabolism of Atlantic cod (Gadus morhua)

    Energy Technology Data Exchange (ETDEWEB)

    Volkoff, H.; Parrish, C. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada); Hamoutene, D.; Mabrouk, G.; Samuelson, S.; Mansour, A.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division

    2007-07-01

    This paper addressed concerns regarding potentially detrimental cumulative effects of waste products from oil industry activities on marine organisms around production sites. The metabolic capacities, feeding and digestive physiology of fish have been shown to change with environmental parameters, which could impact the growth and health status of fish populations. In this study, the effects of produced water (PW) on feeding and metabolism of Atlantic cod was investigated by exposing fish to 0.100 ppm (x 10,000 PW dilution) or 200 ppm (x 500 dilution) of PW for 76 days. Throughout the experiment, food intake and mean weight were monitored. In addition, serum lipids, metabolites and gene expression of a brain appetite regulating factor were measured at the end of the experiment. No significant differences were observed in weight gain or food intake between the 3 groups of fish. Serum metabolites and neuropeptide Y expression remained unchanged between groups. The study is ongoing to complete comparative measurements of whole blood fatty acid profiles in plasma. The preliminary results indicate that feeding and metabolism in cod is not affected by produced water.

  13. Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS.

    Science.gov (United States)

    Vieira-Marques, Claudia; Arbo, Bruno Dutra; Cozer, Aline Gonçalves; Hoefel, Ana Lúcia; Cecconello, Ana Lúcia; Zanini, Priscila; Niches, Gabriela; Kucharski, Luiz Carlos; Ribeiro, Maria Flávia M

    2017-07-01

    DHEA is a neuroactive steroid, due to its modulatory actions on the central nervous system (CNS). DHEA is able to regulate neurogenesis, neurotransmitter receptors and neuronal excitability, function, survival and metabolism. The levels of DHEA decrease gradually with advancing age, and this decline has been associated with age related neuronal dysfunction and degeneration, suggesting a neuroprotective effect of endogenous DHEA. There are significant sex differences in the pathophysiology, epidemiology and clinical manifestations of many neurological diseases. The aim of this study was to determine whether DHEA can alter glucose metabolism in different structures of the CNS from male and female rats, and if this effect is sex-specific. The results showed that DHEA decreased glucose uptake in some structures (cerebral cortex and olfactory bulb) in males, but did not affect glucose uptake in females. When compared, glucose uptake in males was higher than females. DHEA enhanced the glucose oxidation in both males (cerebral cortex, olfactory bulb, hippocampus and hypothalamus) and females (cerebral cortex and olfactory bulb), in a sex-dependent manner. In males, DHEA did not affect synthesis of glycogen, however, glycogen content was increased in the cerebral cortex and olfactory bulb. DHEA modulates glucose metabolism in a tissue-, dose- and sex-dependent manner to increase glucose oxidation, which could explain the previously described neuroprotective role of this hormone in some neurodegenerative diseases. Copyright © 2016. Published by Elsevier Ltd.

  14. Effect of alcohol consumption on hormones involved in carbohydrate and lipid metabolism in premenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Law, J.S.; Bhathena, S.J.; Kim, Y.C.; Berlin, E.; Judd, J.T.; Reichman, M.E.; Taylor, P.R.; Schatzkin, A. (Dept. of Agriculture, Beltsville, MD (United States) NCI, Bethesda, MD (United States))

    1991-03-15

    Alcohol consumption alters carbohydrate and lipid metabolism which are in part regulated by pancreatic and adrenal hormones. The menstrual cycle per se produces changes in several peptide and steroid hormones besides the sex hormones. The authors investigated the effect of moderate alcohol consumption on plasma hormone levels in 40 premenopausal women. The subjects were fed controlled diets containing 35% of calories from fat. In a random crossover design women were given either alcohol or a soft-drink of equal caloric value for 3 menstrual cycles. Fasting blood samples were collected in the third cycle during follicular, ovulatory and luteal phases. Plasma dehydroepiandrosterone-sulphate (DHEA-S), insulin, glucagon and cortisol levels were measured by radioimmunoassay. Moderate alcohol consumption had no effect on plasma insulin and DHEA-S levels but significantly increased glucagon and cortisol levels. Menstrual cycle per se affected plasma glucagon level in that the levels were higher during follicular phase than luteal phase. Thus, changes in carbohydrate and lipid metabolism following alcohol consumption are mediated in part by alterations in hormones involved in their metabolism.

  15. Effects of 1 MAC desflurane on cerebral metabolism, blood flow and carbon dioxide reactivity in humans.

    Science.gov (United States)

    Mielck, F; Stephan, H; Buhre, W; Weyland, A; Sonntag, H

    1998-08-01

    We investigated the cerebral haemodynamic effects of 1 MAC desflurane anaesthesia in nine male patients scheduled for elective coronary bypass grafting. For the measurement of cerebral blood flow (CBF) a modified Kety-Schmidt saturation technique with argon as inert tracer gas was used. Measurements of CBF were made before induction of anaesthesia and 30 min after induction under normocapnic, hypocapnic and hypercapnic conditions in sequence. Changes in mean arterial pressure after induction of anaesthesia and during the course of the study were minimized using norepinephrine infusion. In comparison with the awake state under normocapnic conditions, desflurane reduced mean cerebral metabolic rate of oxygen (CMRO2) by 51% and mean cerebral metabolic rate of glucose (CMRglc) by 35%. Concomitantly, CBF was significantly reduced by 22%; jugular venous oxygen saturation (SjvO2) increased from 58 to 74%. Hypo- and hypercapnia caused a 22% decrease and a 178% increase in CBF, respectively. These findings may be interpreted as the result of two opposing mechanisms: cerebral vasoconstriction induced by a reduction of cerebral metabolism and a direct vasodilator effect of desflurane. CBF alterations under variation of PaCO2 indicate that cerebrovascular carbon dioxide reactivity is not impaired by application of 1 MAC desflurane.

  16. Effect of cashew nut shell liquid on metabolic hydrogen flow on bovine rumen fermentation.

    Science.gov (United States)

    Mitsumori, Makoto; Enishi, Osamu; Shinkai, Takumi; Higuchi, Koji; Kobayashi, Yosuke; Takenaka, Akio; Nagashima, Kyo; Mochizuki, Masami; Kobayashi, Yasuo

    2014-03-01

    Effect of cashew nut shell liquid (CNSL), a methane inhibitor, on bovine rumen fermentation was investigated through analysis of the metabolic hydrogen flow estimated from concentrations of short-chain fatty acids (SCFA) and methane. Three cows were fed a concentrate and hay diet without or with a CNSL-containing pellet. Two trials were conducted using CNSL pellets blended with only silica (trial 1) or with several other ingredients (trial 2). Methane production was measured in a respiration chamber system, and energy balance and nutrient digestibility were monitored. The estimated flow of metabolic hydrogen demonstrated that a part of metabolic hydrogen was used for hydrogen gas production, and a large amount of it flowed into production of methane and SCFA in both trial 1 and 2, when CNSL was administered to the bovine rumen. The results obtained by regression analyses showed that the effect of CNSL supply on methane reduction was coupled with a significant (P < 0.01) decrease of acetate and a significant (P < 0.01) increase of propionate and hydrogen gas. These findings reveal that CNSL is able to reduce methane and acetate production, and to increase hydrogen gas and propionate production in vivo.

  17. Standard metabolic rate of the bed bug, Cimex lectularius: effects of temperature, mass, and life stage.

    Science.gov (United States)

    Devries, Zachary C; Kells, Stephen A; Appel, Arthur G

    2013-11-01

    Metabolic rates provide important information about the biology of organisms. For ectothermic species such as insects, factors such as temperature and mass heavily influence metabolism, but these effects differ considerably between species. In this study we examined the standard metabolic rate of the bed bug, Cimex lectularius L. We used closed system respirometry and measured both O2 consumption and CO2 production across a range of temperatures (10, 20, 25, 30, 35°C) and life stages, while also accounting for activity. Temperature had a stronger effect on the mass specific .VO2 (mlg(-1)h(-1)) of mated males (Q10=3.29), mated females (Q10=3.19), unmated males (Q10=3.09), and nymphs that hatched (first instars, Q10=3.05) than on unmated females (Q10=2.77) and nymphs that molted (second through fifth instars, Q10=2.78). First instars had significantly lower respiratory quotients (RQ) than all other life stages. RQ of all stages was not affected by temperature. .VO2 (mlh(-1)) scaled more with mass than values previously reported for other arthropods or that would be predicted by the 3/4-power law. The results are used to understand the biology and ecology of the bed bug.

  18. Feed restriction enhances the depressive effects of erythromycin on equine hindgut microbial metabolism in vitro.

    Science.gov (United States)

    Kuhn, Manuela; Guschlbauer, Maria; Feige, Karsten; Schluesener, Michael; Bester, Kai; Beyerbach, Martin; Breves, Gerhard

    2012-01-01

    Equine typholocolitis is a sporadic diarrheal disease causing high mortality rates. One of the risk factors responsible for this is the oral application of the macrolide antibiotic erythromycin. The aim of the present in vitro study was to investigate whether erythromycin in combination with feed restriction provokes changes in microbial hindgut metabolism and could therefore be involved in the pathogenesis of equine typhlocolitis. As application of erythromycin and feed restriction are risk factors for equine typhlocolitis, both factors were chosen to investigate their individual and combined effects on hindgut microbial metabolism. The colon simulation technique (Cositec) was used to evaluate biochemical parameters of microbial metabolism. Production rates of the acetate, proprionate and butyrate were measured as quantitative parameters of microbial fermentation. Application of erythromycin (10 mg/d) predominantly decreased the production rates of propionate. Reducing the fermentable substrate to 30% induced an even more pronounced impairment. The detrimental effects of feed restriction on the production rates of short-chain fatty acids (SCFA) were enhanced when feed restricti