WorldWideScience

Sample records for old-growth redwood forest

  1. Upland log volumes and conifer establishment patterns in two northern, upland old-growth redwood forests, a brief synopsis

    Science.gov (United States)

    Daniel J. Porter; John O. Sawyer

    2007-01-01

    We characterized the volume, weight and top surface area of naturally fallen logs in an old-growth redwood forest, and quantified conifer recruit densities on these logs and on the surrounding forest floor. We report significantly greater conifer recruit densities on log substrates as compared to the forest floor. Log substrate availability was calculated on a per...

  2. Structure and Composition of Old-Growth and Unmanaged Second-Growth Riparian Forests at Redwood National Park, USA

    Directory of Open Access Journals (Sweden)

    Christopher R. Keyes

    2014-02-01

    Full Text Available Restoration of second-growth riparian stands has become an important issue for managers of redwood (Sequoia sempervirens [D. Don] Endl. forest reserves. Identifying differences between old-growth and second-growth forest vegetation is a necessary step in evaluating restoration needs and targets. The objective of this study was to characterize and contrast vegetation structure and composition in old-growth and unmanaged second-growth riparian forests in adjacent, geomorphologically similar watersheds at Redwood National Park. In the old-growth, redwood was the dominant overstory species in terms of stem density, basal area, and importance values. Second-growth was dominated by red alder (Alnus rubra Bong., Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco, and redwood. Understory species were similar in both forests, with several key differences: Oxalis oregana Nutt. and Trillium ovatum Pursh had greater importance values in the old-growth, and Vaccinium parvifolium Sm., Dryopteris spp. and sedges Carex spp. had greater importance values in the second-growth. Notable differences in structure and composition suggest that restoration practices such as thinning could expedite the acquisition of old-growth characteristics in second-growth riparian forests.

  3. Tractor-logging costs and production in old-growth redwood forests

    Science.gov (United States)

    Kenneth N. Boe

    1963-01-01

    A cost accounting analysis of full-scale logging operations in old-growth redwood during 2 years revealed that it cost $12.24 per M bd. ft. (gross Scribner log scale) to get logs on trucks. Road development costs averaged another $5.19 per M bd. ft. Felling-bucking production was calculated by average tree d.b.h. Both skidding and loading outputs per hour were...

  4. Bat use of remnant old-growth redwood stands

    Science.gov (United States)

    William J. Zielinski; Steven T. Gellman

    1999-01-01

    Most of the old-growth redwood (Sequoia sempervirens) in Calfornia has been cut; regenerating forests will probably never resemble those that were harvested, and what old growth remains on private land occurs in small, isolated remnant patches. The landscapes in which these stands occur differ so markedly from their original condition that their...

  5. Natural seedlings and sprouts after regeneration cuttings in old-growth redwood

    Science.gov (United States)

    Kenneth N. Boe

    1975-01-01

    Natural regeneration of harvested old-growth stands of redwood (Sequoia sempervirens) is one way to start a new forest that is needed quickly for continuous timber production. Natural seedlings and sprouts developing after stands were cut were studied on the Redwood Experimental Forest, northern California. Three types of regeneration cuttings were...

  6. Exploring Old Growth Forests: A Teacher's Manual.

    Science.gov (United States)

    Lemieux, Chris; Powers, Jennene; Quinby, Peter; Schultz, Caroline; Stabb, Mark

    "Exploring Old Growth Forests" is an Ontario (Canada) program that provides secondary students with hands-on experiences in old growth forests. Activity-based and student-centered, the program aims to develop student awareness of the importance of old growth forests and the need to conserve them. This manual provides teachers with…

  7. 'Pygmy' old-growth redwood characteristics on an edaphic ecotone in Mendocino County, California

    Science.gov (United States)

    Will Russell; Suzie. Woolhouse

    2012-01-01

    The 'pygmy forest' is a specialized community that is adapted to highly acidic, hydrophobic, nutrient deprived soils, and exists in pockets within the coast redwood forest in Mendocino County. While coast redwood is known as an exceptionally tall tree, stunted trees exhibit unusual growth-forms on pygmy soils. We used a stratified random sampling procedure to...

  8. Reference conditions for old-growth redwood restoration on alluvial flats

    Science.gov (United States)

    Christa M. Dagley; John-Pascal. Berrill

    2012-01-01

    We quantified structural attributes in three alluvial flat old-growth coast redwood stands. Tree size parameters and occurrences of distinctive features (e.g., burls, goose pens) were similar between stands. Occurrence of distinctive features was greater among larger trees. Tree sizefrequency distributions conformed to a reverse-J diameter distribution. The range of...

  9. Edge effects and the effective size of old-growth coast redwood preserves

    Science.gov (United States)

    William H. Russell; Joe R. McBride; Ky Carnell

    2000-01-01

    Data were collected to determine the depth of influence of conditions created by clear-cut timber harvest on adjacent old-growth stands of coast redwood. Fourteen variables related to stand structure and composition, wildlife habitat, and physical environment exhibited significant correlation to distance from the timber harvest boundary. Results were applied to the...

  10. Old-growth forests as global carbon sinks

    NARCIS (Netherlands)

    Luyssaert, S; Schulze, E.D.; Börner, A.

    2008-01-01

    Old- growth forests remove carbon dioxide from the atmosphere(1,2) at rates that vary with climate and nitrogen deposition(3). The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil(4). Old- growth forests therefore serve as a global

  11. An Old-Growth Definition for Southern Mixed Hardwood Forests

    Science.gov (United States)

    William B. Batista; William J. Platt

    1997-01-01

    This report provides an old-growth definition for the southern mixed hardwood forests based on five exemplary stands that show no evidence of having undergone any natural catastrophe or clearcutting for at least 200 years. This forest type occurs in the U.S. southeastern Coastal Plain from the Carolinas to eastern Texas. The exemplary old-growth stands were restricted...

  12. Rare Plants of the Redwood Forest and Forest Management Effects

    Science.gov (United States)

    Teresa Sholars; Clare Golec

    2007-01-01

    Coast redwood forests are predominantly a timber managed habitat type, subjected to repeated disturbances and short rotation periods. What does this repeated disturbance mean for rare plants associated with the redwood forests? Rare plant persistence through forest management activities is influenced by many factors. Persistence of rare plants in a managed landscape is...

  13. Old-growth forests can accumulate carbon in soils

    Science.gov (United States)

    Zhou, G.; Liu, S.; Li, Z.; Zhang, Dongxiao; Tang, X.; Zhou, C.; Yan, J.; Mo, J.

    2006-01-01

    Old-growth forests have traditionally been considered negligible as carbon sinks because carbon uptake has been thought to be balanced by respiration. We show that the top 20-centimeter soil layer in preserved old-growth forests in southern China accumulated atmospheric carbon at an unexpectedly high average rate of 0.61 megagrams of carbon hectare-1 year-1 from 1979 to 2003. This study suggests that the carbon cycle processes in the belowground system of these forests are changing in response to the changing environment. The result directly challenges the prevailing belief in ecosystem ecology regarding carbon budget in old-growth forests and supports the establishment of a new, nonequilibrium conceptual framework to study soil carbon dynamics.

  14. Ecological setting of the Wind River old-growth forest.

    Science.gov (United States)

    David C. Shaw; Jerry F. Franklin; Ken Bible; Jeffrey Klopatek; Elizabeth Freeman; Sarah Greene; Geoffrey G. Parker

    2004-01-01

    The Wind River old-growth forest, in the southern Cascade Range of Washington State, is a cool (average annual temperature, 8.7°C), moist (average annual precipitation, 2223 mm), 500-year-old Douglas-fir-western hemlock forest of moderate to low productivity at 371-m elevation on a less than 10% slope. There is a seasonal snowpack (November-March), and rain-on-snow and...

  15. Forest restoration at Redwood National Park: exploring prescribed fire alternatives to second-growth management: a case study

    Science.gov (United States)

    Engber, Eamon; Teraoka, Jason; van Mantgem, Phillip J.

    2017-01-01

    Almost half of Redwood National Park is comprised of second-growth forests characterized by high stand density, deficient redwood composition, and low understory biodiversity. Typical structure of young redwood stands impedes the recovery of old-growth conditions, such as dominance of redwood (Sequoia sempervirens (D. Don) Endl.), distinct canopy layers and diverse understory vegetation. Young forests are commonly comprised of dense, even-aged Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and redwood stump sprouts, with simple canopy structure and little understory development. Moreover, many of these young stands are believed to be vulnerable to disturbance in the form of drought, disease and fire. Silvicultural practices are increasingly being employed by conservation agencies to restore degraded forests throughout the coast redwood range; however, prescribed fire treatments are less common and potentially under-utilized as a restoration tool. We present an early synthesis from three separate management-scale prescribed fire projects at Redwood National Park spanning 1to 7 years post-treatment. Low intensity prescribed fire had minimal effect on overstory structure, with some mortality observed in trees smaller than 30 cm diameter. Moderate to high intensity fire may be required to reduce densities of larger Douglas-fir, the primary competitor of redwood in the Park’s second growth forests. Fine woody surface fuels fully recovered by 7 years post-burn, while recruitment of larger surface fuels was quite variable. Managers of coastal redwood ecosystems will benefit by having a variety of tools at their disposal for forest restoration and management.

  16. An Old-Growth Definition for Dry and Dry-Mesic Oak-Pine Forests.

    Science.gov (United States)

    David L. White; F. Thomas. Lloyd

    1998-01-01

    Dry and dry-mesic oak-pine forests are widely distributed from New Jersey to Texas, but representative old-growth stands are rare. Historical accounts of composition, along with information from existing old-growth stands, were used to characterize this type. Shortleaf pine and white oak were the most widely distributed trees across all old-growth stands. Shortleaf was...

  17. Soil carbon storage following road removal and timber harvesting in redwood forests

    Science.gov (United States)

    Seney, Joseph; Madej, Mary Ann

    2015-01-01

    Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second-growth forests and old-growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site-scale and landscape-scale variables in predicting SOC accumulation in treated road prisms and second-growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second-growth and old-growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second-growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%

  18. Spatially random mortality in old-growth red pine forests of northern Minnesota

    Science.gov (United States)

    Tuomas ​Aakala; Shawn Fraver; Brian J. Palik; Anthony W. D' Amato

    2012-01-01

    Characterizing the spatial distribution of tree mortality is critical to understanding forest dynamics, but empirical studies on these patterns under old-growth conditions are rare. This rarity is due in part to low mortality rates in old-growth forests, the study of which necessitates long observation periods, and the confounding influence of tree in-growth during...

  19. Climate indices strongly influence old-growth forest carbon exchange

    Science.gov (United States)

    Sonia Wharton; Matthias Falk

    2016-01-01

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running...

  20. Spatial elements of mortality risk in old-growth forests

    Science.gov (United States)

    Das, Adrian; Battles, John; van Mantgem, Phillip J.; Stephenson, Nathan L.

    2008-01-01

    For many species of long-lived organisms, such as trees, survival appears to be the most critical vital rate affecting population persistence. However, methods commonly used to quantify tree death, such as relating tree mortality risk solely to diameter growth, almost certainly do not account for important spatial processes. Our goal in this study was to detect and, if present, to quantify the relevance of such processes. For this purpose, we examined purely spatial aspects of mortality for four species, Abies concolor, Abies magnifica, Calocedrus decurrens, and Pinus lambertiana, in an old-growth conifer forest in the Sierra Nevada of California, USA. The analysis was performed using data from nine fully mapped long-term monitoring plots.In three cases, the results unequivocally supported the inclusion of spatial information in models used to predict mortality. For Abies concolor, our results suggested that growth rate may not always adequately capture increased mortality risk due to competition. We also found evidence of a facilitative effect for this species, with mortality risk decreasing with proximity to conspecific neighbors. For Pinus lambertiana, mortality risk increased with density of conspecific neighbors, in keeping with a mechanism of increased pathogen or insect pressure (i.e., a Janzen-Connell type effect). Finally, we found that models estimating risk of being crushed were strongly improved by the inclusion of a simple index of spatial proximity.Not only did spatial indices improve models, those improvements were relevant for mortality prediction. For P. lambertiana, spatial factors were important for estimation of mortality risk regardless of growth rate. For A. concolor, although most of the population fell within spatial conditions in which mortality risk was well described by growth, trees that died occurred outside those conditions in a disproportionate fashion. Furthermore, as stands of A. concolor become increasingly dense, such spatial

  1. Two decades of stability and change in old-growth forest at Mount Rainier National Park.

    Science.gov (United States)

    Steven A. Acker; Jerry F. Franklin; Sarah E. Greene; Ted B. Thomas; Robert Van Pelt; Kenneth J. Bible

    2006-01-01

    We examined how composition and structure of old-growth and mature forests at Mount Rainier National Park changed between the mid-1970s and mid-1990s. We assessed whether the patterns of forest dynamics observed in lower elevation old-growth forests in the Pacific Northwest held true for the higher-elevation forests of the Park. We used measurements of tree recruitment...

  2. Decomposition and N cycling changes in redwood forests caused by sudden oak death

    Science.gov (United States)

    Richard C. Cobb; David M. Rizzo

    2012-01-01

    Phytophthora ramorum is an emergent pathogen in redwood forests which causes the disease sudden oak death. Although the disease does not kill coast redwood (Sequoia sempervirens), extensive and rapid mortality of tanoak (Notholithocarpus densiflorus) has removed this...

  3. Roles of Fog and Topography in Redwood Forest Hydrology

    Science.gov (United States)

    Francis, E. J.; Asner, G. P.

    2017-12-01

    Spatial variability of water in forests is a function of both climatic gradients that control water inputs and topo-edaphic variation that determines the flows of water belowground, as well as interactions of climate with topography. Coastal redwood forests are hydrologically unique because they are influenced by coastal low clouds, or fog, that is advected onto land by a strong coastal-to-inland temperature difference. Where fog intersects the land surface, annual water inputs from summer fog drip can be greater than that of winter rainfall. In this study, we take advantage of mapped spatial gradients in forest canopy water storage, topography, and fog cover in California to better understand the roles and interactions of fog and topography in the hydrology of redwood forests. We test a conceptual model of redwood forest hydrology with measurements of canopy water content derived from high-resolution airborne imaging spectroscopy, topographic variables derived from high-resolution LiDAR data, and fog cover maps derived from NASA MODIS data. Landscape-level results provide insight into hydrological processes within redwood forests, and cross-site analyses shed light on their generality.

  4. Spatial and Temporal Relationships of Old-Growth and Secondary Forests in Indiana, USA

    Science.gov (United States)

    Martin A. Spetich; George R. Parker; Eric J. Gustafson

    1997-01-01

    We examined the spatial pattern of forests in Indiana to: (1) determine the extent, connectivity and percent edge of all forests, (2) examine the change in connectivity among these forests if all riparian zones were replanted to forest or other native vegetation, (3) determine the location, spatial dispersion and percent edge of current old-growth forest remnants, (4)...

  5. Communicating old-growth forest management on the Allegheny National Forest

    Science.gov (United States)

    Brad Nelson; Chris Nowak; Dave deCalesta; Steve Wingate

    1997-01-01

    Successful communication of old-growth management, including the role of silviculture, is achieved by integrating as a working whole the topics addressed in this workshop. We have used research, technology transfer and adaptive management to achieve this integration on the Allegheny National Forest. Program success depends on scientists and practitioners working...

  6. Benchmark carbon stocks from old-growth forests in northern New England, USA

    Science.gov (United States)

    Coeli M. Hoover; William B. Leak; Brian G. Keel

    2012-01-01

    Forests world-wide are recognized as important components of the global carbon cycle. Carbon sequestration has become a recognized forest management objective, but the full carbon storage potential of forests is not well understood. The premise of this study is that old-growth forests can be expected to provide a reasonable estimate of the upper limits of carbon...

  7. Plant Uptake of Atmospheric Carbonyl Sulfide in Coast Redwood Forests

    Science.gov (United States)

    Campbell, J. E.; Whelan, M. E.; Berry, J. A.; Hilton, T. W.; Zumkehr, A.; Stinecipher, J.; Lu, Y.; Kornfeld, A.; Seibt, U.; Dawson, T. E.; Montzka, S. A.; Baker, I. T.; Kulkarni, S.; Wang, Y.; Herndon, S. C.; Zahniser, M. S.; Commane, R.; Loik, M. E.

    2017-12-01

    The future resilience of coast redwoods (Sequoia sempervirens) is now of critical concern due to the detection of a 33% decline in California coastal fog over the 20th century. However, ecosystem-scale measurements of photosynthesis and stomatal conductance are challenging in coast redwood forests, making it difficult to anticipate the impacts of future changes in fog. To address this methodological problem, we explore coastal variations in atmospheric carbonyl sulfide (COS or OCS), which could potentially be used as a tracer of these ecosystem processes. We conducted atmospheric flask campaigns in coast redwood sites, sampling at surface heights and in the canopy ( 70 m), at the University of California Landels-Hill Big Creek Reserve and Big Basin State Park. We simulated COS atmosphere-biosphere exchange with a high-resolution 3-D model to interpret these data. Flask measurements indicated a persistent daytime drawdown between the coast and the downwind forest (45 ± 6 ppt COS) that is consistent with the expected relationship between COS plant uptake, stomatal conductance, and gross primary production. Other sources and sinks of COS that could introduce noise to the COS tracer technique (soils, anthropogenic activity, nocturnal plant uptake, and surface hydrolysis on leaves) are likely to be small relative to daytime COS plant uptake. These results suggest that COS measurements may be useful for making ecosystem-scale estimates of carbon, water, and energy exchange in coast redwood forests.

  8. Capturing Old-Growth Values for Use in Forest Decision-Making

    Science.gov (United States)

    Owen, Rochelle J.; Duinker, Peter N.; Beckley, Thomas M.

    2009-02-01

    Old-growth forests have declined significantly across the world. Decisions related to old growth are often mired in challenges of value diversity, conflict, data gaps, and resource pressures. This article describes old-growth values of citizens and groups in Nova Scotia, Canada, for integration in sustainable forest management (SFM) decision-making. The study is based on data from 76 research subjects who participated in nine field trips to forest stands. Research subjects were drawn from Aboriginal groups, environmental organizations, forestry professionals, and rural and urban publics. Diaries, group discussions, and rating sheets were used to elicit information during the field trips. Findings show that different elicitation techniques can influence the articulation of intensity with which some values are held. In addition, certain values are more often associated with old-growth than with other forest-age classes. Some values associated with old-growth are considered more important than others, and some silvicultural treatments are perceived to compromise old-growth values more than others. Demographic characteristics, such as constituency group, gender, and age, are shown to influence value priorities. Ideas on how to incorporate old-growth values into SFM decision-making are highlighted.

  9. Defining old growth for fire-adapted forests of the Western United States

    Science.gov (United States)

    Merrill R. Kaufmann; Daniel Binkley; Peter Z. Fule; Johnson Marlin; Scott L. Stephens; Thomas W. Swetnam

    2007-01-01

    There are varying definitions of old-growth forests because of differences in environment and differing fire influence across the Intermountain West. Two general types of forests reflect the role of fire: 1) forests shaped by natural changes in structure and species makeup-plant succession-that are driven by competitive differences among species and individual trees...

  10. Longleaf pine forests and woodlands: old growth under fire!

    Science.gov (United States)

    Joan L. Walker

    1999-01-01

    The author discusses a once widespread forest type of the Southeast – longleaf pine dominated forests and woodlands. This system depends on fire – more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...

  11. Arthropod Diversity and Functional Importance in Old-Growth Forests of North America

    Directory of Open Access Journals (Sweden)

    Timothy Schowalter

    2017-03-01

    Full Text Available Old-growth forests have become rare in North America but provide habitat for unique assemblages of species that often are rare in younger forests. Insects and related arthropods reach their highest diversity in old-growth forests because of their stable moderate temperature and relative humidity and the rich variety of resources represented by high plant species richness and structural complexity. Old-growth arthropod assemblages typically are distinct from those in younger, managed forests. Major subcommunities include the arboreal community that is composed of a rich assemblage of herbivores, fungivores, and their associated predators and parasitoids that function to regulate primary production and nutrient fluxes, the stem zone community that includes bark- and wood-boring species and their associated predators and parasitoids that initiate the decomposition of coarse woody debris, and the forest floor community composed of a variety of detritivores, fungivores, burrowers, and their associated predators and parasitoids that are instrumental in litter decomposition. Insect outbreaks are relatively rare in old-growth forests, where the diversity of resources and predators limit population growth. In turn, insects contribute to plant diversity and limit primary production of host plant species, thereby promoting development of old-growth forest characteristics. Arthropods also provide important functions in decomposition and nutrient cycling that may be lost in younger, managed forests with limited provision of coarse woody debris and accumulated litter. Protection of remnant old-growth forests within the forest matrix may be particularly valuable for maintaining the diversity of plant and arthropod predators that can minimize outbreaks, thereby contributing to resilience to changing environmental conditions.

  12. Spatial aspects of tree mortality strongly differ between young and old-growth forests.

    Science.gov (United States)

    Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F

    2015-11-01

    Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.

  13. The Role of Old-growth Forests in Frequent-fire Landscapes

    Directory of Open Access Journals (Sweden)

    Daniel Binkley

    2007-12-01

    Full Text Available Classic ecological concepts and forestry language regarding old growth are not well suited to frequent-fire landscapes. In frequent-fire, old-growth landscapes, there is a symbiotic relationship between the trees, the understory graminoids, and fire that results in a healthy ecosystem. Patches of old growth interspersed with younger growth and open, grassy areas provide a wide variety of habitats for animals, and have a higher level of biodiversity. Fire suppression is detrimental to these forests, and eventually destroys all old growth. The reintroduction of fire into degraded frequent-fire, old-growth forests, accompanied by appropriate thinning, can restore a balance to these ecosystems. Several areas require further research and study: 1 the ability of the understory to respond to restoration treatments, 2 the rate of ecosystem recovery following wildfires whose level of severity is beyond the historic or natural range of variation, 3 the effects of climate change, and 4 the role of the microbial community. In addition, it is important to recognize that much of our knowledge about these old-growth systems comes from a few frequent-fire forest types.

  14. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  15. Differences in Townsend's chipmunk populations between second- and old-growth forests in western Oregon

    Science.gov (United States)

    D.K. Rosenberg; R.G. Anthony

    1993-01-01

    Because Townsend's chipmunks (Tomias townsendii) may be important in maintaining natural ecosystem processes in forests in the central Oregon Cascade Range, we compared their population characteristics in young second-growth and old-growth forests. We live-trapped Townsend's chipmunks in 5 young (30-60 yr old) second-growth and 5 old-...

  16. Fog and soil weathering as sources of nutrients in a California redwood forest

    Science.gov (United States)

    Holly A. Ewing; Kathleen C. Weathers; Amanda M. Lindsey; Pamela H. Templer; Todd E. Dawson; Damon C. Bradbury; Mary K. Firestone; Vanessa K.S. Boukili

    2012-01-01

    Fog water deposition is thought to influence the ecological function of many coastal ecosystems, including coast redwood forests. We examined cation and anion inputs from fog and rain, as well as the fate of these inputs, within a Sonoma County, California, coast redwood forest to elucidate the availability of these ions and some of the biotic and abiotic processes...

  17. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica

    NARCIS (Netherlands)

    Koehler, L.; Tobon, C.; Frumau, K.F.A.; Bruijnzeel, L.A.

    2007-01-01

    Epiphytic biomass, canopy humus and associated canopy water storage capacity are known to vary greatly between old-growth tropical montane cloud forests but for regenerating forests such data are virtually absent. The present study was conducted in an old-growth cloud forest and in a 30-year-old

  18. Historical harvests reduce neighboring old-growth basal area across a forest landscape.

    Science.gov (United States)

    Bell, David M; Spies, Thomas A; Pabst, Robert

    2017-07-01

    While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences

  19. Conserving and Restoring Old Growth in Frequent-fire Forests: Cycles of Disruption and Recovery

    Directory of Open Access Journals (Sweden)

    Dave Egan

    2007-12-01

    Full Text Available I provide a synthesis of the papers in the Special Issue, The Conservation and Restoration of Old Growth in Frequent-fire Forests of the American West. These papers - the product of an Old Growth Writing Workshop, held at Northern Arizona University in Flagstaff, Arizona on 18-19 April 2006 - represent the ideas of 25 workshop participants who argue for a new attitude toward managing old growth in the frequent-fire forests of the American West. Unlike the lush, old-growth rainforests of the Pacific Northwest, the dry, frequent-fire forests of the western United States evolved with surface fires that disturbed the system with such regularity that young trees were almost always killed. When saplings did survive, they grew beyond the harm of frequent surface fires and, ultimately, attained the characteristics that define old growth in these systems. This system worked well, producing old-growth trees in abundance, until the onset of Euro-American settlement in the mid- to late-19th century. The arrival of these settlers put in motion an interplay of unprecedented social, political, economic, and ecological forces (e.g., removal of Native Americans and their fire-based land management systems, overgrazing of the understory, aggressive logging, establishment of federal land management agencies, implementation of a federal fire suppression policy. These activities have culminated in 1 overly dense forested ecosystems that are now on the verge of collapse because of catastrophic fires (i.e., crown fire at the landscape level; the Rodeo-Chediski Fire and insect outbreaks, 2 the emergence of conservation-minded environmental legislation and policy, and 3 greater levels of interaction between citizens, federal agencies, and fire-prone landscapes. Recognizing the tenuous ecological situation of these forests, restoration ecologists, foresters, and others have developed ways to return historic ecological processes and lower tree densities to these forests

  20. Crown dynamics and wood production of Douglas-fir trees in an old-growth forest

    Science.gov (United States)

    H. Roaki Ishii; Stephen C. Sillett; Allyson L. Carroll

    2017-01-01

    Large trees are the most prominent structural features of old-growth forests, which are considered to be globally important carbon sinks. Because of their large size, estimates of biomass and growth of large trees are often based on ground-level measurements (e.g., diameter at breast height, DBH) and little is known about growth dynamics within the crown. As trees...

  1. Tree dynamics in canopy gaps in old-growth forests of Nothofagus pumilio in Southern Chile

    NARCIS (Netherlands)

    Fajardo, Alex; Graaf, de N.R.

    2004-01-01

    The gap dynamics of two Nothofagus pumilio (lenga) stands have been investigated. We evaluated and compared tree diameter distributions, spatial patterns, tree fall and gap characteristics and regeneration responses in gaps in two old-growth forests of Nothofagus pumilio in Southern Chile

  2. Notes on Some Old-Growth Forests in Ohio, Indiana, and Illinois

    Science.gov (United States)

    John T. Auten

    1941-01-01

    The disturbing increase in acreage of abandoned land in the Central States has heightened interest in the region's few remnants of old-growth hardwood forest. Studies are being made to determine what kinds of trees originally grew on different kinds of soil, what was the original character of the soil, how many trees grew on an acre, and how large the trees were...

  3. Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink.

    Science.gov (United States)

    McGarvey, Jennifer C; Thompson, Jonathan R; Epstein, Howard E; Shugart, Herman H

    2015-02-01

    Few old-growth stands remain in the matrix of secondary forests that dominates the eastern North American landscape. These remnant stands offer insight on the potential carbon (C) storage capacity of now-recovering secondary forests. We surveyed the remaining old-growth forests on sites characteristic of the general Mid-Atlantic United States and estimated the size of multiple components of forest C storage. Within and between old-growth stands, variability in C density is high and related to overstory tree species composition. The sites contain 219 ± 46 Mg C/ha (mean ± SD), including live and dead aboveground biomass, leaf litter, and the soil O horizon, with over 20% stored in downed wood and snags. Stands dominated by tulip poplar (Liriodendron tulipifera) store the most live biomass, while the mixed oak (Quercus spp.) stands overall store more dead wood. Total C density is 30% higher (154 Mg C/ha), and dead wood C density is 1800% higher (46 Mg C/ha) in the old-growth forests than in the surrounding younger forests (120 and 5 Mg C/ha, respectively). The high density of dead wood in old growth relative to secondary forests reflects a stark difference in historical land use and, possibly, the legacy of the local disturbance (e.g., disease) history. Our results demonstrate the potential for dead wood to maintain the sink capacity of secondary forests for many decades to come.

  4. Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape.

    Science.gov (United States)

    Rocha, Ricardo; Ovaskainen, Otso; López-Baucells, Adrià; Farneda, Fábio Z; Sampaio, Erica M; Bobrowiec, Paulo E D; Cabeza, Mar; Palmeirim, Jorge M; Meyer, Christoph F J

    2018-02-28

    Tropical forest loss and fragmentation are due to increase in coming decades. Understanding how matrix dynamics, especially secondary forest regrowth, can lessen fragmentation impacts is key to understanding species persistence in modified landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate how bat assemblages are influenced by the regeneration of the secondary forest matrix. We surveyed bats in continuous forest, forest fragments and secondary forest matrix habitats, ~15 and ~30 years after forest clearance, to investigate temporal changes in the occupancy and abundance of old-growth specialist and habitat generalist species. The regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on generalist species were negligible for forest fragments and negative for secondary forest. Our results show that the conservation potential of secondary forests for reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to fragmented terrestrial settings can be hampered by the dynamic nature of human-dominated landscapes.

  5. Plot size recommendations for biomass estimation in a midwestern old-growth forest

    Science.gov (United States)

    Martin A. Spetich; George R Parker

    1998-01-01

    The authors examine the relationship between disturbance regime and plot size for woody biomass estimation in a midwestern old-growth deciduous forest from 1926 to 1992. Analysis was done on the core 19.6 ac of a 50.1 ac forest in which every tree 4 in. d.b.h. and greater has been tagged and mapped since 1926. Five windows of time are compared—1926, 1976, 1981, 1986...

  6. Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range

    Science.gov (United States)

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.

  7. Ground beetles as indicators of past management of old-growth forests

    Directory of Open Access Journals (Sweden)

    Mazzei A

    2017-06-01

    Full Text Available Old-growth forests are terrestrial ecosystems with the highest level of biodiversity and the main environments for the study of conservation and dynamics of the forest system. In Mediterranean Europe, two millennia of human exploitation deeply altered the structural complexity of the native forests. Some animal groups, including insects, may be used as a proxy of such changes. In this paper we explored the possible effects of forest management on the functional diversity (species traits of carabid beetle communities. Three old-growth forests of the Sila National Park were sampled by pitfall traps set up in pure beech, beech-silver fir and Calabrian black pine forests. In each forest, five managed vs. five unmanaged stands were considered. Managed sites were exploited until the sixties of the past century and then left unmanaged. More than 6000 carabid specimens belonging to 23 species were collected. The functional diversity in carabid groups is influenced by forest management especially in beech and beech-silver fir stands. Body size, specialized predators, endemic species and forest species were negatively affected by stand management. On the contrary, omnivorous ground beetles populations (or species with a high dispersal power (macropterous and large geographic distribution were positively influenced by stand management. In pine forests the old-growth community seems less sensitive to past management and more affected by soil evolution. Soil erosion and disturbance may reduce species diversity of ground beetles. Anyway, the composition of the carabid community shows that 50-60 years of forest restoration are enough for the reconstruction of a fairly diverse assemblage reflecting a “subclimax” situation.

  8. Cradle-to-gate life cycle impacts of redwood forest resource harvesting in northern California

    Science.gov (United States)

    Han-Sup Han; Elaine Oneil; Richard D. Bergman; Ivan L. Eastin; Leonard R. Johnson

    2015-01-01

    The first life cycle impact assessment for redwood (Sequoia sempervirens) forest management activities (i.e. a cradle-to-sawmill gate input) including the growing, harvesting, and hauling of redwood sawlogs to a sawmill was completed. In the stump-to-truck timber harvesting analysis, primary transport activities such as skidding and yarding consumed...

  9. Northern California redwood forests provide important seasonal habitat for migrant bats

    Science.gov (United States)

    Theodore J. Weller; Craig A. Stricker

    2012-01-01

    Bats are known to roost in redwood forests year-round, but their activities outside the summer season are poorly understood. To improve understanding of the use of redwoods by resident and migrant bats, we conducted 74 mist net surveys between February 2008 and October 2010. Captures were dominated by Yuma myotis (M. yumanensis) in the summer and...

  10. Sudden Oak Death-Induced Tanoak Mortality in Coast Redwood Forests: Current and Predicted Impacts to Stand Structure

    Directory of Open Access Journals (Sweden)

    Kevin L. O’Hara

    2010-08-01

    Full Text Available Tanoak (Notholithocarpus densiflorus syn. Lithocarpus densiflorus is one of the most widespread and abundant associates of coast redwood (Sequoia sempervirens, but little is known about the structural relationships between these two species. Knowledge of such relationships is essential for a thorough understanding of the impacts of sudden oak death (caused by the exotic pathogen Phytophthora ramorum, which is currently decimating tanoak populations throughout the redwood range. In this study, we utilized a stratified plot design and a stand reconstruction technique to assess structural impacts, at present and in the future, of this emerging disease. We found that residual trees in diseased plots were more aggregated than trees in unaffected plots, and we predicted that the loss of tanoak will lead to the following short-term changes: greater average diameter, height, height-to-live-crown, and crown length, as well as an increase in average nearest neighbor differences for diameter, height, and crown length. In addition, plots lacking tanoak (living or dead—as compared to plots with tanoak—exhibited greater average diameter and increased nearest neighbor differences with regard to diameter, height, and crown length. We also conducted a preliminary exploration of how sudden oak death-induced structural changes compare with typical old-growth characteristics, and how this disease may affect the structure of old-growth forests.

  11. Marbled Murrelets Select Distinctive Nest Trees within Old-Growth Forest Patches

    Directory of Open Access Journals (Sweden)

    Michael P. Silvergieter

    2011-12-01

    Full Text Available The coastal old-growth forests of North America's Pacific Coast are renowned both for their commercial and ecological value. This study adds to growing evidence that selective harvesting of the largest trees may have a disproportionate ecological impact. Marbled Murrelets (Brachyramphus marmoratus, a threatened species, nest almost exclusively in these old-growth forests. Detailed knowledge of nesting habitat selection provides guidance for habitat management and conservation. Habitat selection for this species has been studied at a variety of scales using ground and remote methods. However, because Marbled Murrelet nesting activity is limited to a single mossy platform on a single tree, we investigated nest tree selection within old-growth forest patches, using a set of 59 forest patches containing active nests. Nest trees were usually distinctive compared with neighboring trees in the surrounding 25 m radius patch. They averaged 15 to 20% taller than neighboring trees depending on region, had significantly larger stem diameters, more potential nesting platforms, and more moss. They had the most extreme values of height and width about three times as often as expected by chance. An analysis of moss platform use as a function of number of platforms per platform tree suggests that murrelets select individual platforms, rather than platform trees per se. Nonetheless, highly selective logging practices that remove high-value trees from stands may also remove trees most likely to be selected by nesting murrelets.

  12. Ground cover in old-growth forests of the central hardwood region

    Science.gov (United States)

    Martin A. Spetich; Stephen R. Shifley; George R. Parker; Felix, Jr. Ponder

    1997-01-01

    Differences in ground cover (percent cover of litter, percent cover of vegetation and litter weight) in old-growth forests across this region are not well understood. We initiated a long-term study in a three-state region to enhance knowledge in this area. We present baseline results for ground cover and compare these data across productivity regions. Thirty 0.25-ac (0...

  13. Spatial models reveal the microclimatic buffering capacity of old-growth forests.

    Science.gov (United States)

    Frey, Sarah J K; Hadley, Adam S; Johnson, Sherri L; Schulze, Mark; Jones, Julia A; Betts, Matthew G

    2016-04-01

    Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming.

  14. Forest Typification to Characterize the Structure and Composition of Old-growth Evergreen Forests on Chiloe Island, North Patagonia (Chile

    Directory of Open Access Journals (Sweden)

    Jan R. Bannister

    2013-11-01

    Full Text Available The Evergreen forest type develops along the Valdivian and North-Patagonian phytogeographical regions of the south-central part of Chile (38° S–46° S. These evergreen forests have been scarcely studied south of 43° S, where there is still a large area made up of old-growth forests. Silvicultural proposals for the Evergreen forest type have been based on northern Evergreen forests, so that the characterization of the structure and composition of southern Evergreen forests, e.g., their typification, would aid in the development of appropriate silvicultural proposals for these forests. Based on the tree composition of 46 sampled plots in old-growth forests in an area of >1000 ha in southern Chiloé Island (43° S, we used multivariate analyses to define forest groups and to compare these forests with other evergreen forests throughout the Archipelago of North-Patagonia. We determined that evergreen forests of southern Chiloé correspond to the North-Patagonian temperate rainforests that are characterized by few tree species of different shade tolerance growing on fragile soils. We discuss the convenience of developing continuous cover forest management for these forests, rather than selective cuts or even-aged management that is proposed in the current legislation. This study is a contribution to forest classification for both ecologically- and forestry-oriented purposes.

  15. Gap Dynamics and Structure of Two Old-Growth Beech Forest Remnants in Slovenia

    Science.gov (United States)

    Rugani, Tihomir; Diaci, Jurij; Hladnik, David

    2013-01-01

    Context Due to a long history of intensive forest exploitation, few European beech (Fagus sylvatica L.) old-growth forests have been preserved in Europe. Material and Methods We studied two beech forest reserves in southern Slovenia. We examined the structural characteristics of the two forest reserves based on data from sample plots and complete inventory obtained from four previous forest management plans. To gain a better understanding of disturbance dynamics, we used aerial imagery to study the characteristics of canopy gaps over an 11-year period in the Kopa forest reserve and a 20-year period in the Gorjanci forest reserve. Results The results suggest that these forests are structurally heterogeneous over small spatial scales. Gap size analysis showed that gaps smaller than 500 m2 are the dominant driving force of stand development. The percentage of forest area in canopy gaps ranged from 3.2 to 4.5% in the Kopa forest reserve and from 9.1 to 10.6% in the Gorjanci forest reserve. These forests exhibit relatively high annual rates of coverage by newly established (0.15 and 0.25%) and closed (0.08 and 0.16%) canopy gaps. New gap formation is dependant on senescent trees located throughout the reserve. Conclusion We conclude that these stands are not even-sized, but rather unevenly structured. This is due to the fact that the disturbance regime is characterized by low intensity, small-scale disturbances. PMID:23308115

  16. The Tribal Perspective of Old Growth in Frequent-fire Forests - Its History

    Directory of Open Access Journals (Sweden)

    Victoria Yazzie

    2007-12-01

    Full Text Available Anyone who has not lived in "Indian country" cannot understand just how extensively the United States government and its laws affect Native Americans and their natural resource management. These effects are sobering, and touch upon sensitive issues that all Native Americans hold within us. In this article, I outline the historic cycle of tribal entities, and characterize today's tribal self-determination in forest management. I provide an historical account from the "colonial" period and its use of the Doctrine of Discovery to the relations between the United States government and Native Americans from the 18th through the 20th centuries, during which time Native Americans struggled to establish their legal status as tribes, and solidify their land base to sustain and conserve culturally important lands, including areas of old-growth forests, to the current self-determination and self-governance potential of Indian tribes. More importantly, I discuss the cultural connectivity that Native Americans have to the land, and address the unique inherent right of tribes to integrate this cultural view into current forest management, including the protection of old-growth forests, on their reservations.

  17. An individual-based growth and competition model for coastal redwood forest restoration

    Science.gov (United States)

    van Mantgem, Phillip J.; Das, Adrian J.

    2014-01-01

    Thinning treatments to accelerate coastal redwood forest stand development are in wide application, but managers have yet to identify prescriptions that might best promote Sequoia sempervirens (Lamb. ex D. Don) Endl. (redwood) growth. The creation of successful thinning prescriptions would be aided by identifying the underlying mechanisms governing how individual tree growth responds to competitive environments in coastal redwood forests. We created a spatially explicit individual-based model of tree competition and growth parameterized using surveys of upland redwood forests at Redwood National Park, California. We modeled competition for overstory trees (stems ≥ 20 cm stem diameter at breast height, 1.37 m (dbh)) as growth reductions arising from sizes, distances, and species identity of competitor trees. Our model explained up to half of the variation in individual tree growth, suggesting that neighborhood crowding is an important determinant of growth in this forest type. We used our model to simulate the effects of novel thinning prescriptions (e.g., 40% stand basal area removal) for redwood forest restoration, concluding that these treatments could lead to substantial growth releases, particularly for S. sempervirens. The results of this study, along with continued improvements to our model, will help to determine spacing and species composition that best encourage growth.

  18. Complementary models of tree species-soil relationships in old-growth temperate forests

    Science.gov (United States)

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and

  19. Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA

    Science.gov (United States)

    Silver, Emily J.; D'Amato, Anthony W.; Fraver, Shawn; Palik, Brian J.; Bradford, John B.

    2013-01-01

    The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types. Moreover, the effectiveness of approaches recommended for restoring old-growth structural conditions to managed forests, such as the application of extended rotation forestry, has been little studied. This study uses several long-term datasets from old growth, extended rotation, and unmanaged second growth Pinus resinosa (red pine) forests in northern Minnesota, USA, to quantify the range of variation in structural conditions for this forest type and to evaluate the effectiveness of extended rotation forestry at promoting the development of late-successional structural conditions. Long-term tree population data from permanent plots for one of the old-growth stands and the extended rotation stands (87 and 61 years, respectively) also allowed for an examination of the long-term structural dynamics of these systems. Old-growth forests were more structurally complex than unmanaged second-growth and extended rotation red pine stands, due in large part to the significantly higher volumes of coarse woody debris (70.7 vs. 11.5 and 4.7 m3/ha, respectively) and higher snag basal area (6.9 vs. 2.9 and 0.5 m2/ha, respectively). In addition, old-growth forests, although red pine-dominated, contained a greater abundance of other species, including Pinus strobus, Abies balsamea, and Picea glauca relative to the other stand types examined. These differences between stand types largely reflect historic gap-scale disturbances within the old-growth systems and their corresponding structural and compositional legacies. Nonetheless, extended rotation thinning treatments, by accelerating advancement to larger tree diameter

  20. Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA

    Science.gov (United States)

    Emily J. Silver; Anthony W. D' Amato; Shawn Fraver; Brian J. Palik; John B. Bradford

    2013-01-01

    The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types....

  1. Family forest owners in the redwood region: management priorities and opportunities in a carbon market

    Science.gov (United States)

    Erin Clover Kelly; Joanna Di Tommaso; Arielle Weisgrau

    2017-01-01

    California’s cap-and-trade carbon market has included forest offset projects, available to all private landowners across the United States. The redwood region has been at the forefront of the market, creating the earliest forest carbon projects. From carbon registries, we compiled a database of all forest carbon projects in the market, in order to determine...

  2. Increase of an introduced bird competitor in old-growth forest associated with restoration

    Directory of Open Access Journals (Sweden)

    Leonard Freed

    2012-05-01

    Full Text Available Many successful invasions involve long initial periods in which the invader exists at low densities followed by sudden population increases. The reasons for such time-lags remain poorly understood. Here we document a sudden increase in density of the introduced Japanese white-eye (Zosterops japonicus in a restoration area contiguous with old-growth forest at Hakalau Forest National Wildlife Refuge on the Island of Hawaii. The refuge, with very high density of native birds, existed in a pocket of low white-eye density that persisted for at least 20 years since the late 1970s. The refuge began an extensive native trees restoration project in 1989 within a 1314 ha abandoned pasture above old-growth forest. This area was soon colonized by white-eyes and their population grew exponentially once the trees had grown tall enough to develop a canopy. This increase was in turn followed by significantly more white-eyes in the open and closed forests adjacent to the restoration area. Competition between white-eyes and native species was documented on study sites within these forests. Density data indicate that competition was more widespread, with loss of tens of thousands of native birds in the 5371 ha area surveyed. Our results are consistent with the view that ecological barriers may delay the population increase of invaders and that human-derived activities may help invaders cross these barriers by creating new ecological opportunities. Control of white-eye numbers may be essential for recovery of native species.

  3. Thirty-two years of change in an old-growth Ohio beech-maple forest.

    Science.gov (United States)

    Runkle, James R

    2013-05-01

    Old-growth forests dominated by understory-tolerant tree species are among forest types most likely to be in equilibrium. However, documentation of the degree to which they are in equilibrium over decades-long time periods is lacking. Changes in climate, pathogens, and land use all are likely to impact stand characteristics and species composition, even in these forests. Here, 32 years of vegetation changes in an old-growth beech (Fagus grandifolia)-sugar maple (Acer saccharum) forest in Hueston Woods, southwest Ohio, USA, are summarized. These changes involve canopy composition and structure, turnover in snags, and development of vegetation in treefall gaps. Stand basal area and canopy density have changed little in 32 years. However, beech has decreased in canopy importance (49% to 32%) while sugar maple has increased (32% to 47%). Annual mortality was about 1.3% throughout the study period. Mortality rates increased with stem size, but the fraction of larger stems increased due to ingrowth from smaller size classes. Beech was represented by more very large stems than small canopy stems: over time, death of those larger stems with inadequate replacement has caused the decrease in beech importance. Sugar maple was represented by more small canopy stems whose growth has increased its importance. The changes in beech and sugar maple relative importance are hypothesized to be due to forest fragmentation mostly from the early 1800s with some possible additional effects associated with the formation of the state park. Snag densities (12-16 snags/ha) and formation rates (1-3 snags.ha(-1).yr(-1)) remained consistent. The treefall gaps previously studied are closing, with a few, large stems remaining. Death of gap border trees occurs consistently enough to favor species able to combine growth in gaps and survival in the understory.

  4. Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolina Seas-Carvajal

    2013-06-01

    Full Text Available Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m². We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia=0.21, p=0.071. We found a significant relationship between the presence of fungi and the distribution of soil types (X²=18.89, df=9, p=0.026. We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.. Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.

  5. Response of old-growth conifers to reduction in stand density in western Oregon forests

    Science.gov (United States)

    Latham, P.; Tappeiner, J. C.

    2002-01-01

    The positive growth response of healthy young trees to density reduction is well known. In contrast, large old trees are usually thought to be intrinsically limited in their ability to respond to increased growing space; therefore, density reduction is seldom used in stands of old-growth trees. We tested the null hypothesis that old-growth trees are incapable of responding with increased growth following density reduction. The diameter growth response of 271 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), ponderosa pine (Pinus ponderosa Dougl. ex Laws) and sugar pine (Pinus lambertiana Dougl.) trees ranging in age from 158 to 650 years was examined 20 to 50 years after density reduction. Density reduction involved either light thinning with removal of less vigorous trees, or shelterwood treatments in which overstory trees were not removed. Ratios of basal area growth after treatment to basal area growth before treatment, and several other measures of growth, all indicated that the old trees sometimes benefited and were not harmed by density reduction. Growth increased by 10% or more for 68% of the trees in treated stands, and nearly 30% of trees increased growth by over 50%. This growth response persisted for at least 20 years. During this 20-year period, only three trees in treated stands (1.5%) exhibited a rapid decrease in growth, whereas growth decreased in 64% of trees in untreated stands. The length of time before a growth response to density reduction occurred varied from 5 to 25 years, with the greatest growth response often occurring 20 to 25 years after treatment. These results have important implications both for the basic biology of aging in woody plants as well as for silvicultural practices in forests with old-growth trees.

  6. Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest

    Science.gov (United States)

    Lang, K.D.; Schulte, L.A.; Guntenspergen, G.R.

    2009-01-01

    Although the initial response to salvage (also known as, post-disturbance or sanitary) logging is known to vary among system components, little is known about longer term forest recovery. We examine forest overstory, understory, soil, and microtopographic response 25 years after a 1977 severe wind disturbance on the Flambeau River State Forest in Wisconsin, USA, a portion of which was salvage logged. Within this former old-growth hemlock-northern hardwoods forest, tree dominance has shifted from Eastern hemlock (Tsuga canadensis) to broad-leaf deciduous species (Ulmus americana, Acer saccharum, Tilia americana, Populus tremuloides, and Betula alleghaniensis) in both the salvaged and unsalvaged areas. While the biological legacies of pre-disturbance seedlings, saplings, and mature trees were initially more abundant in the unsalvaged area, regeneration through root suckers and stump sprouts was common in both areas. After 25 years, tree basal area, sapling density, shrub layer density, and seedling cover had converged between unsalvaged and salvaged areas. In contrast, understory herb communities differed between salvaged and unsalvaged forest, with salvaged forest containing significantly higher understory herb richness and cover, and greater dominance of species benefiting from disturbance, especially Solidago species. Soil bulk density, pH, organic carbon content, and organic nitrogen content were also significantly higher in the salvaged area. The structural legacy of tip-up microtopography remains more pronounced in the unsalvaged area, with significantly taller tip-up mounds and deeper pits. Mosses and some forest herbs, including Athyrium filix-femina and Hydrophyllum virginianum, showed strong positive responses to this tip-up microrelief, highlighting the importance of these structural legacies for understory biodiversity. In sum, although the pathways of recovery differed, this forest appeared to be as resilient to the compound disturbances of windthrow

  7. Crown plasticity and neighborhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest

    NARCIS (Netherlands)

    Schröter, M.; Härdtle, W.; Oheimb, von G.

    2012-01-01

    Competition for canopy space is a process of major importance in forest dynamics. Although virgin and old-growth European beech (Fagus sylvatica L.) forests in Europe have been studied for many years, there are to date no studies of individual-tree crown plasticity and the way this is influenced by

  8. Management practices eelated to the Restoration of old dorest characteristics in coast redwood forests

    Science.gov (United States)

    Gregory A. Guisti

    2012-01-01

    A standardized, interactive, interview process was used with practicing Registered Professional Foresters asking a suite of questions to ascertain their management approaches to coast redwood (Sequoia sempervirens [D. Don] Endl.) stands that could best be transferred to other projects and lands interested in recruiting older forest...

  9. Restoring hydrology and old-growth structures in a former production forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Heilmann-Clausen, Jacob; Bruun, Hans Henrik

    2016-01-01

    to restore hydrology and old-growth structure. We collected presence/absence data for four organism groups (vascular plants, epiphytic bryophytes and lichens, wood-inhabiting fungi) and measured environmental variables associated with species occurrence and influenced by restoration (dead or living tree...... characteristics, stand age, water level). We investigated biodiversity consequences of restoration towards pristine environmental characteristics by using a space-for-time substitution model. We evaluated how and through what mechanisms species richness is likely to react when pre-forestry hydrological conditions......-restoration conditions. Furthermore, the increase in soil moisture shifted the forest plots towards an alder carr, while the stand ageing process sustained the shade-tolerant beech despite its low tolerance for high soil humidity. Our prediction shows an increase in species richness for plants directly driven...

  10. The contribution of competition to tree mortality in old-growth coniferous forests

    Science.gov (United States)

    Das, A.; Battles, J.; Stephenson, N.L.; van Mantgem, P.J.

    2011-01-01

    Competition is a well-documented contributor to tree mortality in temperate forests, with numerous studies documenting a relationship between tree death and the competitive environment. Models frequently rely on competition as the only non-random mechanism affecting tree mortality. However, for mature forests, competition may cease to be the primary driver of mortality.We use a large, long-term dataset to study the importance of competition in determining tree mortality in old-growth forests on the western slope of the Sierra Nevada of California, U.S.A. We make use of the comparative spatial configuration of dead and live trees, changes in tree spatial pattern through time, and field assessments of contributors to an individual tree's death to quantify competitive effects.Competition was apparently a significant contributor to tree mortality in these forests. Trees that died tended to be in more competitive environments than trees that survived, and suppression frequently appeared as a factor contributing to mortality. On the other hand, based on spatial pattern analyses, only three of 14 plots demonstrated compelling evidence that competition was dominating mortality. Most of the rest of the plots fell within the expectation for random mortality, and three fit neither the random nor the competition model. These results suggest that while competition is often playing a significant role in tree mortality processes in these forests it only infrequently governs those processes. In addition, the field assessments indicated a substantial presence of biotic mortality agents in trees that died.While competition is almost certainly important, demographics in these forests cannot accurately be characterized without a better grasp of other mortality processes. In particular, we likely need a better understanding of biotic agents and their interactions with one another and with competition. ?? 2011.

  11. Breakage or uprooting: How tree death type affects hillslope processes in old-growth temperate forests

    Science.gov (United States)

    Šamonil, Pavel; Daněk, Pavel; Adam, Dušan; Phillips, Jonathan D.

    2017-12-01

    Tree breakage and uprooting are two possible scenarios of tree death that have differing effects on hillslope processes. In this study we aimed to (i) reveal the long-term structure of the biomechanical effects of trees (BETs) in relation to their radial growth and tree death types in four old-growth temperate forests in four different elevation settings with an altitudinal gradient of 152-1105 m a.s.l., (ii) quantify affected areas and soil volumes associated with the studied BETs in reserves, and (iii) derive a general model of the role of BETs in hillslope processes in central European temperate forests. We analyzed the individual dynamics of circa 55,000 trees in an area of 161 ha within four old-growth forests over 3-4 decades. Basal tree censuses established in all sites in the 1970s and repeated tree censuses in the 1990s and 2000s provided detailed information about the radial growth of each tree of DBH ≥ 10 cm as well as about types of tree death. We focused on the quantification of: (i) surviving still-living trees, (ii) new recruits, (iii) standing dead trees, (iv) uprooted trees, and (v) broken trees. Frequencies of phenomena were related to affected areas and volumes of soil using individual statistical models. The elevation contrasts were a significant factor in the structure of BETs. Differences between sites increased from frequencies of events through affected areas to volumes of soil associated with BETs. An average 2.7 m3 ha-1 year-1 was associated with all BETs of the living and dying trees in lowlands, while there was an average of 7.8 m3 ha-1 year-1 in the highest mountain site. Differences were caused mainly by the effects of dying trees. BETs associated with dead trees were 7-8 times larger in the mountains. Effects of dying trees and particularly treethrows represented about 70% of all BETs at both mountain sites, while it was 58% at the highland site and only 32% at the lowland site. Our results show a more significant role of BETs in

  12. Regeneration Responses to Management for Old-Growth Characteristics in Northern Hardwood-Conifer Forests

    Directory of Open Access Journals (Sweden)

    Aviva J. Gottesman

    2017-02-01

    Full Text Available Successful tree regeneration is essential for sustainable forest management, yet it can be limited by the interaction of harvesting effects and multiple ecological drivers. In northern hardwood forests, for example, there is uncertainty whether low-intensity selection harvesting techniques will result in adequate and desirable regeneration. Our research is part of a long-term study that tests the hypothesis that a silvicultural approach called “structural complexity enhancement” (SCE can accelerate the development of late-successional forest structure and functions. Our objective is to understand the regeneration dynamics following three uneven-aged forestry treatments with high levels of retention: single-tree selection, group selection, and SCE. Regeneration density and diversity can be limited by differing treatment effects on or interactions among light availability, competitive environment, substrate, and herbivory. To explore these relationships, manipulations and controls were replicated across 2 ha treatment units at two Vermont sites. Forest inventory data were collected pre-harvest and periodically over 13 years post-harvest. We used mixed effects models with repeated measures to evaluate the effect of treatment on seedling and sapling density and diversity (Shannon–Weiner H’. The treatments were all successful in recruiting a sapling class with significantly greater sapling densities compared to the controls. However, undesirable and prolific beech (Fagus americana sprouting dominates some patches in the understory of all the treatments, creating a high degree of spatial variability in the competitive environment for regeneration. Multivariate analyses suggest that while treatment had a dominant effect, other factors were influential in driving regeneration responses. These results indicate variants of uneven-aged systems that retain or enhance elements of stand structural complexity—including old-growth characteristics

  13. The effect of size and competition on tree growth rate in old-growth coniferous forests

    Science.gov (United States)

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  14. Abiotic and Biotic Soil Characteristics in Old Growth Forests and Thinned or Unthinned Mature Stands in Three Regions of Oregon

    Directory of Open Access Journals (Sweden)

    David A. Perry

    2012-09-01

    Full Text Available We compared forest floor depth, soil organic matter, soil moisture, anaerobic mineralizable nitrogen (a measure of microbial biomass, denitrification potential, and soil/litter arthropod communities among old growth, unthinned mature stands, and thinned mature stands at nine sites (each with all three stand types distributed among three regions of Oregon. Mineral soil measurements were restricted to the top 10 cm. Data were analyzed with both multivariate and univariate analyses of variance. Multivariate analyses were conducted with and without soil mesofauna or forest floor mesofauna, as data for those taxa were not collected on some sites. In multivariate analysis with soil mesofauna, the model giving the strongest separation among stand types (P = 0.019 included abundance and richness of soil mesofauna and anaerobic mineralizable nitrogen. The best model with forest floor mesofauna (P = 0.010 included anaerobic mineralizable nitrogen, soil moisture content, and richness of forest floor mesofauna. Old growth had the highest mean values for all variables, and in both models differed significantly from mature stands, while the latter did not differ. Old growth also averaged higher percent soil organic matter, and analysis including that variable was significant but not as strong as without it. Results of the multivariate analyses were mostly supported by univariate analyses, but there were some differences. In univariate analysis, the difference in percent soil organic matter between old growth and thinned mature was due to a single site in which the old growth had exceptionally high soil organic matter; without that site, percent soil organic matter did not differ between old growth and thinned mature, and a multivariate model containing soil organic matter was not statistically significant. In univariate analyses soil mesofauna had to be compared nonparametrically (because of heavy left-tails and differed only in the Siskiyou Mountains, where

  15. Canopy structure and tree condition of young, mature, and old-growth Douglas-fir/hardwood forests

    Science.gov (United States)

    B.B. Bingham; J.O. Sawyer

    1992-01-01

    Sixty-two Douglas-fir/hardwood stands ranging from 40 to 560 years old were used to characterize the density; diameter, and height class distributions of canopy hardwoods and conifers in young (40 -100 yr), mature (101 - 200 yr) and old-growth (>200 yr) forests. The crown, bole, disease, disturbance, and cavity conditions of canopy conifers and hardwoods were...

  16. Influence of competition and age on tree growth in structurally complex old-growth forests in northern Minnesota, USA

    Science.gov (United States)

    Tuomas Aakala; Shawn Fraver; Anthony W. D' Amato; Brian J. Palik

    2013-01-01

    Factors influencing tree growth in structurally complex forests remain poorly understood. Here we assessed the influence of competition on Pinus resinosa (n = 224) and Pinus strobus (n = 90) growth in four old-growth stands in Minnesota, using mixed effects models. A subset of trees, with...

  17. Biophysical controls on soil respiration in the dominant patch types of an old-growth, mixed-conifer forest

    Science.gov (United States)

    Siyan Ma; Jiquan Chen; John R. Butnor; Malcolm North; Eugénie S. Euskirchen; Brian Oakley

    2005-01-01

    Little is known about biophysical controls on soil respiration in California's Sierra Nevada old-growth, mixed-conifer forests. Using portable and automated soil respiration sampling units, we measured soil respiration rate (SRR) in three dominant patch types: closed canopy (CC), ceanothus-dominated patches (CECO), and open canopy (OC). SRR varied significantly...

  18. Subdivide or silviculture: choices facing family forest owners in the redwood region

    Science.gov (United States)

    William Stewart; Shasta Ferranto; Gary Nakamura; Christy Getz; Lynn Huntsinger; Maggi. Kelly

    2012-01-01

    Families or family businesses own nearly all of the private redwood forestland in California. Family forest owners have practiced both subdivision and silviculture for decades but the dominant theme for most family owners is environmental stewardship. Parcel size is more important than expressed values as a predictor of resource management activities. All landowners...

  19. Sudden Oak Death in redwood forests: vegetation dynamics in the wake of tanoak decline

    Science.gov (United States)

    Benjamin Ramage; Kevin O’Hara

    2010-01-01

    Numerous lines of inquiry have concluded that tanoak (Lithocarpus densiflorus) will continue to experience drastic population declines and may even disappear entirely from redwood (Sequoia sempervirens) forests as a result of the exotic disease sudden oak death (SOD) (Maloney and others 2005, McPherson and others 2005,...

  20. Five years of monitoring infection and mortality in redwood tanoak forests

    Science.gov (United States)

    Richard C. Cobb; Shannon C. Lynch; Ross K. Meentemeyer; David M. Rizzo

    2008-01-01

    Rates of disease incidence and tree mortality in redwood-tanoak forests were determined by repeated sampling across a system of 120 plots at five long-term research sites from 2001 through 2006. Plots were located within the known geographic area of Phytophthora ramorum in California, ranging from Monterey to Sonoma counties. All overstory species...

  1. Space sequestration below ground in old-growth spruce-beech forests-signs for facilitation?

    Science.gov (United States)

    Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz

    2013-01-01

    Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.

  2. Space sequestration below ground in old-growth spruce-beech forests – signs for facilitation?

    Directory of Open Access Journals (Sweden)

    Andreas eBolte

    2013-08-01

    Full Text Available Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤ 2 mm by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1 spruce as a central tree, (2 spruce as competitor, (3 beech as a central tree, and (4 beech as competitor. Mean values of life fine root attributes like biomass (FRB, length (FRL, and root area index (RAI were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA, asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.

  3. Local population extinction and vitality of an epiphytic lichen in fragmented old-growth forest.

    Science.gov (United States)

    Ockinger, Erik; Nilsson, Sven G

    2010-07-01

    The population dynamics of organisms living in short-lived habitats will largely depend on the turnover of habitat patches. It has been suggested that epiphytes, whose host plants can be regarded as habitat patches, often form such patch-tracking populations. However, very little is known about the long-term fate of epiphyte individuals and populations. We estimated life span and assessed environmental factors influencing changes in vitality, fertility, abundance, and distribution of the epiphytic lichen species Lobaria pulmonaria on two spatial scales, individual trees and forest patches, over a period of approximately 10 years in 66 old-growth forest fragments. The lichen had gone extinct from 7 of the 66 sites (13.0%) where it was found 10 years earlier, even though the sites remained unchanged. The risk of local population extinction increased with decreasing population size. In contrast to the decrease in the number of occupied trees and sites, the mean area of the lichen per tree increased by 43.0%. The number of trees with fertile ramets of L. pulmonaria increased from 7 (approximately 1%) to 61 (approximately 10%) trees, and the number of forest fragments with fertile ramets increased from 4 to 23 fragments. The mean annual rate of L. pulmonaria extinction at the tree level was estimated to be 2.52%, translating into an expected lifetime of 39.7 years. This disappearance rate is higher than estimated mortality rates for potential host trees. The risk of extinction at the tree level was significantly positively related to tree circumference and differed between tree species. The probability of presence of fertile ramets increased significantly with local population size. Our results show a long expected lifetime of Lobaria pulmonaria ramets on individual trees and a recent increase in vitality, probably due to decreasing air pollution. The population is, however, declining slowly even though remaining stands are left uncut, which we interpret as an

  4. Foliar uptake of fog in the coast redwood ecosystem: a novel drought-alleviation strategy shared by most redwood forest plants

    Science.gov (United States)

    Emily Limm; Kevin Simonin; Tod. Dawson

    2012-01-01

    Fog inundates the coast redwood forests of northern California frequently during the summer months (May to September) when rainfall is largely absent (Azevedo and Morgan 1974, Byers 1953, Oberlander 1956). This maritime fog modifies otherwise warm and dry summer climate by increasing humidity, decreasing the air temperature, reducing solar radiation, and...

  5. Past, Present, and Future Old Growth in Frequent-fire Conifer Forests of the Western United States

    Directory of Open Access Journals (Sweden)

    Scott R. Abella

    2007-12-01

    Full Text Available Old growth in the frequent-fire conifer forests of the western United States, such as those containing ponderosa pine (Pinus ponderosa, Jeffrey pine (P. jeffreyi, giant sequoia (Sequioa giganteum and other species, has undergone major changes since Euro-American settlement. Understanding past changes and anticipating future changes under different potential management scenarios are fundamental to developing ecologically based fuel reduction or ecological restoration treatments. Some of the many changes that have occurred in these forests include shifts from historically frequent surface fire to no fire or to stand-replacing fire regimes, increases in tree density, increased abundance of fire-intolerant trees, decreases in understory productivity, hydrological alterations, and accelerated mortality of old trees. Although these changes are widespread, the magnitude and causes of changes may vary within and among landscapes. Agents of change, such as fire exclusion or livestock grazing, likely interacted and had multiple effects. For example, historical ranching operations may have altered both fire regimes and understory vegetation, and facilitated institutional fire exclusion through fragmentation and settlement. Evidence exists for large variation in presettlement characteristics and current condition of old growth across this broad forest region, although there are many examples of striking similarities on widely distant landscapes. Exotic species, climate change, unnatural stand-replacing wildfires, and other factors will likely continue to degrade or eradicate old growth in many areas. As a policy of fire exclusion is proving to be unsustainable, mechanical tree thinning, prescribed fire, or wildland fire use will likely be key options for forestalling continued eradication of old growth by severe crown fires. For many practical and societal reasons, the wildland-urban interface may afford some of the most immediate opportunities for re

  6. Understanding old-growth red and white pine dominated forests in Ontario. Forest fragmentation and biodiversity project technical report No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Carleton, T.J.; Gordon, A.M.

    1992-01-01

    In summer 1991, a variety of forest stands dominated by old specimens of white pine and red pine were sampled across a representative portion of the species' range in northcentral Ontario. Plots were established in 40 stands of those surveyed to identify the salient structural components of old-growth, to survey the floristic composition (vascular plants and autotrophic non- vascular plants), to survey site characteristics, and to estimate the links in understorey alpha diversity with site conditions and stand structure. Long-term objectives include a definition of old- growth pine forest, recognition criteria, and prospective management options. Forest stand structure was enumerated through mapping, mensurational, and age estimation techniques. Forest vegetation, including over and understorey species, was non- destructively sampled and a range of data on stand and soil-site variables was also collected in conjunction with information on stand variables peculiar to old growth forests.

  7. Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolina Seas-Carvajal

    2013-06-01

    Full Text Available Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m². We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia=0.21, p=0.071. We found a significant relationship between the presence of fungi and the distribution of soil types (X²=18.89, df=9, p=0.026. We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.. Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.La mayoría de las investigaciones sobre los hongos bioluminiscentes se ha centrado en relaciones taxonómicas. Los aspectos básicos de la historia natural y relaciones ecológicas de este grupo son poco conocidos. En este estudio, comparamos la distribución de hongos bioluminiscentes entre el bosque primario y el secundario en la Estación Biológica La Selva, Costa Rica en relación con cuatro tipos de suelo. El estudio se realizó durante la estación lluviosa

  8. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests.

    Science.gov (United States)

    Ruete, Alejandro; Snäll, Tord; Jönsson, Mari

    2016-07-01

    Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for

  9. Long-term changes in tree composition in a mesic old-growth upland forest in southern Illinois

    Science.gov (United States)

    James J. Zaczek; John W. Groninger; J.W. Van Sambeek

    1999-01-01

    The Kaskaskia Woods (Lat. 37.5 N, Long. 88.3 W), an old-growth hardwood forest in southern Illinois, has one of the oldest and best documented set of permanent plots with individual tree measurements in the Central Hardwood Region. In 1935, eight 0.101-ha plots were installed in a 7.4 ha upland area consisting of xeric oak-hickory and mesic mixed hardwoods communities...

  10. Abundance and Size Distribution of Cavity Trees in Second-Growth and Old-Growth Central Hardwood Forests

    Science.gov (United States)

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson III; David R. Larsen

    2005-01-01

    In central hardwood forests, mean cavity-tree abundance increases with increasing standsize class (seedling/sapling, pole, sawtimber, old-growth). However, within a size class, the number of cavity trees is highly variable among 0.1-ha inventory plots. Plots in young stands are most likely to have no cavity trees, but some plots may have more than 50 cavity trees/ha....

  11. Abundance and size distribution of cavity trees in second-growth and old-growth central hardwood forests

    Science.gov (United States)

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson; David R. Larsen

    2005-01-01

    In central hardwood forests, mean cavity-tree abundance increases with increasing standsize class (seedling/sapling, pole, sawtimber, old-growth). However, within a size class, the number of cavity trees is highly variable among 0.1-ha inventory plots. Plots in young stands are most likely to have no cavity trees, but some plots may have more than 50 cavity trees/ha....

  12. Protecting rare, old-growth, forest-associated species under the Survey and Manage program guidelines of the northwest forest plan.

    Science.gov (United States)

    Randy Molina; Bruce G. Marcot; Robin. Lesher

    2006-01-01

    The Survey and Manage Program of the Northwest Forest Plan (MFP) represents an unparalleled attempt to protect rare, little-known species associated with late-successional and old-growth forests on more than 7.7 million ha of federal lands. Approximately 400 species of amphibians, bryophytes, fungi, lichens, mollusks, vascular plants, arthropod functional groups, and...

  13. Longevity of Wood-Forced Pools in an Old-Growth Forest

    Science.gov (United States)

    Buffington, J. M.; Woodsmith, R. D.; Johnson, A. C.

    2009-12-01

    Wood debris plays an important role in scouring pools in forest channels and providing resultant habitat for aquatic organisms. We investigated the longevity of such pools in a gravel-bed river flowing through old-growth forest in southeastern Alaska by aging trees and “bear’s bread” fungi (Ganoderma applanatum, Fomitopsis pinicola) growing on pool-forming wood debris. Ages were determined by counting annual growth rings from cores and cross sections of trees and fungi growing on the wood debris. These ages are minimum values because they do not account for lag time between debris recruitment and seedling/spore establishment on the debris, nor do they account for flood scour that may periodically reset tree and fungi growth on the debris. The study stream has a gradient of about 1%, bankfull width and depth of 13.3 and 0.78 m, respectively, median grain size of 18 mm, a high wood loading (0.8 pieces/m), and a correspondingly low pool spacing (0.3 bankfull widths/pool), with 81% of the pools forced by wood debris. The size of wood debris in the study stream is large relative to the channel (average log length of 7.6 m and diameter of 0.35 m), rendering most debris immobile. Eighty-one pool-forming pieces of wood were dated over 1.2 km of stream length, with 28% of these pieces causing scour of more than one pool. In all, 122 wood-forced pools were dated, accounting for 38% of all pools at the site and 47% of the wood-forced pools. Fifty-three percent of the wood-forced pools lacked datable wood because these pieces either: were newly recruited; had been scoured by floods; or were contained below the active channel elevation, prohibiting vegetation establishment on the wood debris (the most common cause). The debris age distribution declined exponentially from 2 to 113 yrs., with a median value of 18 yrs. Similar exponential residence time distributions have been reported in other studies, but our analysis focused specifically on the ages of pool-forming wood

  14. Spider (Arachnida, Araneae) diversity in secondary and old-growth southern Atlantic forests of Paraná state, Brazil.

    Science.gov (United States)

    Raub, Florian; Höfer, Hubert; Scheuermann, Ludger

    2017-07-01

    The data presented here have been collected in the southern part of the Atlantic Forest (Mata Atlântica) in the state of Paraná, Brazil within a bilateral scientific project (SOLOBIOMA). The project aimed to assess the quality of secondary forests of different regeneration stages in comparison with old-growth forests with regard to diversity of soil animals and related functions. The Atlantic Forest is a hotspot of biological diversity with an exceptionally high degree of endemic species, extending over a range of 3,500 km along the coast of Brazil. The anthropogenic pressure in the region is very high with three of the biggest cities of Brazil (São Paulo, Rio de Janeiro, and Curitiba) lying in its extension. An evaluation of the value of secondary forests for biodiversity conservation is becoming more and more important due to the complete disappearance of primary forests. In 2005, we sampled spiders in 12 sites of three successional stages (5-8, 10-15, 35-50 yr old, three replicates of each forest stage) and old-growth forests (> 100 yr untouched, also three replicates). All sites were inside a private nature reserve (Rio Cachoeira Nature Reserve). We repeated the sampling design and procedure in 2007 in a second private reserve (Itaqui Nature Reserve). The two nature reserves are within about 25 km of each other within a well preserved region of the Mata Atlântica, where the matrix of the landscape mosaic is still forest. A widely accepted standard protocol was used in a replicated sampling design to apply statistical analyses to the resulting data set and allow for comparison with other studies in Brazil. Spiders were sorted to family level and counted; the adult spiders further identified to species if possible or classified as morphospecies with the help of several spider specialists. © 2017 by the Ecological Society of America.

  15. Characteristics and dynamics of an upland Missouri old-growth forest

    Science.gov (United States)

    R. Hoyt Richards; Stephen R. Shifley; Alan J. Rebertus; Stephen J. Chaplin

    1995-01-01

    We describe the structure, composition, and dynamics of Schnabel Woods, an 80-acre mixed mesophytic old-growth stand located in the loess-covered River Hills adjoining the Missouri River floodplain in central Missouri. In 1982 all trees on a 1.5-ac northwest-facing plot and a 1.5-ac southeast-facing plot were mapped and measured. In 1992 we remeasured those plots to...

  16. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning

    Science.gov (United States)

    Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders

    2013-01-01

    Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree

  17. Forty-two years of change in an old-growth and second-growth beech-maple forest of north central Ohio

    Science.gov (United States)

    Natalie R. Pinheiro; P. Charles Goebel; David M. Hix

    2008-01-01

    Using data collected in 1964 and 2006, we examined changes in the composition and structure of a second-growth and old-growth beech-maple forest of Crall Woods, located in Ashland County of north central Ohio. Over the 42 years, the old-growth forest (estimated to be at least 250 years old) experienced a significant shift in species composition as American beech,...

  18. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape.

    Science.gov (United States)

    Chambers, Jeffrey Q; Negron-Juarez, Robinson I; Marra, Daniel Magnabosco; Di Vittorio, Alan; Tews, Joerg; Roberts, Dar; Ribeiro, Gabriel H P M; Trumbore, Susan E; Higuchi, Niro

    2013-03-05

    Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass⋅ha(-1)⋅y(-1) were often punctuated by episodic disturbance events, resulting in a sawtooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.

  19. Spatially nonrandom tree mortality and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga-Tsuga forest.

    Science.gov (United States)

    Lutz, James A; Larson, Andrew J; Furniss, Tucker J; Donato, Daniel C; Freund, James A; Swanson, Mark E; Bible, Kenneth J; Chen, Jiquan; Franklin, Jerry F

    2014-08-01

    Mortality processes in old-growth forests are generally assumed to be driven by gap-scale disturbance, with only a limited role ascribed to density-dependent mortality, but these assumptions are rarely tested with data sets incorporating repeated measurements. Using a 12-ha spatially explicit plot censused 13 years apart in an approximately 500-year-old Pseudotsuga-Tsuga forest, we demonstrate significant density-dependent mortality and spatially aggregated tree recruitment. However, the combined effect of these strongly nonrandom demographic processes was to maintain tree patterns in a state of dynamic equilibrium. Density-dependent mortality was most pronounced for the dominant late-successional species, Tsuga heterophylla. The long-lived, early-seral Pseudotsuga menziesii experienced an annual stem mortality rate of 0.84% and no new recruitment. Late-seral species Tsuga and Abies amabilis had nearly balanced demographic rates of ingrowth and mortality. The 2.34% mortality rate for Taxus brevifolia was higher than expected, notably less than ingrowth, and strongly affected by proximity to Tsuga. Large-diameter Tsuga structured both the regenerating conspecific and heterospecific cohorts with recruitment of Tsuga and Abies unlikely in neighborhoods crowded with large-diameter competitors (P old-growth forests.

  20. The Effect of Herbivory by White-Tailed Deer and Additionally Swamp Rabbits in an Old-Growth Bottomland Hardwood Forest

    Science.gov (United States)

    Margaret S. Devall; Bernard R. Parresol; Winston P. Smith

    2001-01-01

    Forest openings create internal patchiness and offer different habitat qualities that attract wildlife, especially herbivores, that flourish along forest edges. But intense herbivory in these openings can reduce or eliminate herbaceous and woody species and thus influence local species composition and structure of the forest. This study in an old-growth bottomland...

  1. Living and Dead Aboveground Biomass in Mediterranean Forests: Evidence of Old-Growth Traits in a Quercus pubescens Willd. s.l. Stand

    Directory of Open Access Journals (Sweden)

    Emilio Badalamenti

    2017-05-01

    Full Text Available For a long time, human impact has deeply simplified most of the forest ecosystems of the Mediterranean Basin. Here, forests have seldom had the chance to naturally develop a complex and multilayered structure, to host large and old trees and rich biological communities, approaching old-growth conditions. Also for this reason, limited information is currently available about Mediterranean old-growth forests, particularly with regard to deadwood. The main aim of this work is to help fill this critical knowledge gap. In Sicily (Italy, we identified a Quercus pubescens forest that seemed to show some typical old-growth features. Total living volume (360 m3 ha−1 and basal area (34 m2 ha−1 were, respectively, about 6 and 3 times higher than the averages recorded in the regional forest inventory for this forest type. Deadwood was particularly abundant, exceeding the threshold of 30 m3 ha−1, mainly represented by lying dead elements. Dead to live wood ratio reached 9%, a value close to the threshold of 10% considered for Mediterranean old-growth forests. As the investigated forest showed some typical old-growth traits, it deserves to be fully protected and could be a permanent monitoring area for studying deadwood and stand dynamics in mature Mediterranean stands.

  2. Rapid structural and compositional change in an old-growth subtropical forest: using plant traits to identify probable drivers.

    Science.gov (United States)

    Malizia, Agustina; Easdale, Tomás A; Grau, H Ricardo

    2013-01-01

    Recent studies have shown directional changes in old-growth tropical forests, but changes are complex and diverse, and their drivers unclear. Here, we report rapid net structural and compositional changes in an old-growth subtropical forest and we assess the functional nature of these changes to test hypothetical drivers including recovery from past disturbances, reduction in ungulate browsing, CO2 fertilization, and increases in rainfall and temperature. The study relies on 15 years of demographic monitoring within 8 ha of subtropical montane forest in Argentina. Between 1992 and 2007, stem density markedly increased by 50% (12 stems ha(-1) y(-1)) and basal area by 6% (0.13 m(2) ha(-1) y(-1)). Increased stem density resulted from enhanced recruitment of understory treelets (Piper tucumanum, Eugenia uniflora, Allophylus edulis) into small size classes. Among 27 common tree species, net population growth was negatively correlated with maximum tree size and longevity, and positively correlated with leaf size and leaf nutrient content, especially so when initial population size was controlled for. Changes were inconsistent with predictions derived from past disturbances (no increase in shade-tolerant or long-lived late-succesional species), rainfall or temperature increase (no increase in evergreen or deciduous species, respectively). However, the increase in nutrient-rich soft-leaved species was consistent with exclusion of large herbivores two decades before monitoring started; and CO2 fertilization could help explain the disproportionate increase in small stems. Reductions in populations of large vertebrates have been observed in many otherwise undisturbed tropical forests, and our results suggest they can have important structural and functional repercussions in these forests.

  3. Redwoods: a population model.

    Science.gov (United States)

    Bosch, C A

    1971-04-23

    The chief conclusion to be drawn from the results of this study is that redwoods are amazingly vigorous. The results support both the lumber companies and the conservationists. There is no question that old growth giant redwoods must be preserved. Only commercial greed could be a basis for refuting that stand. On the other hand, the lumber companies seem to be supported in their contention that redwoods can be farmed without driving them to extinction. The central issue revolves around the old trees. And here profit is the big factor. Lumbering is an important industry in California, and redwood lumbering represents about 20 percent of the industry (l). Most of the big names in timber, such as Weyerhaeuser and Georgia-Pacific, are involved in logging the California redwood. At the current rate of logging, particularly of old growth stands, the Bank of America estimates that employment in Humboldt County will be down significantly by 1975 (4). It has been argued that tourism would more than compensate for the lower employment in logging. But not if the trees that the tourists come to see are gone. Why can't young and mature trees be harvested at a reasonable rate, the old trees saved, and both tourism and logging flourish? The question posed earlier has been answered. Redwood growth and survival can be modeled, using matrix methods in a new context. Meaningful conclusions may be drawn. And the results are sufficiently tantalizing to inspire further research.

  4. The political ecology of forest health in the redwood region

    Science.gov (United States)

    Chris Lee; Yana Valachovic; Dan Stark

    2017-01-01

    Imported forest pests have changed North American forests and caused staggering monetary losses in the centuries since the country was founded. Since most problem-causing non-native pests are innocuous in their home ranges, where they have coevolved with their host trees, experts cannot predict which pathogens or insects will have lethal effect on other continents....

  5. Simulation of Landscape Pattern of Old Growth Forests of Korean Pine by Block Kringing

    Science.gov (United States)

    Wang Zhengquan; Wang Qingcheng; Zhang Yandong

    1997-01-01

    The study area was located in Liangshui Natural Reserve. Xaozing'an Mountains, Northeastern China. Korean pine forests are the typical forest ecosystems and landscapes in this region. It is a high degress of spatial and temporal heterogeneity at different scales, which effected on landscape pattern and processes. In this paper we used the data of 144 plots and...

  6. Old-growth Policy

    Directory of Open Access Journals (Sweden)

    Diane Vosick

    2007-12-01

    Full Text Available Most federal legislation and policies (e.g., the Wilderness Act, Endangered Species Act, National Forest Management Act fail to speak directly to the need for old-growth protection, recruitment, and restoration on federal lands. Various policy and attitudinal barriers must be changed to move beyond the current situation. For example, in order to achieve the goal of healthy old growth in frequent-fire forests, the public must be educated regarding the evolutionary nature of these ecosystems and persuaded that collaborative action rather than preservation and litigation is the best course for the future of these forests. Land managers and policy makers must be encouraged to look beyond the single-species management paradigm toward managing natural processes, such as fire, so that ecosystems fall within the natural range of variability. They must also see that, given their recent evidence of catastrophic fires, management must take place outside the wildland-urban interface in order to protect old-growth forest attributes and human infrastructure. This means that, in some wilderness areas, management may be required. Land managers, researchers, and policy makers will also have to agree on a definition of old growth in frequent-fire landscapes; simply adopting a definition from the mesic Pacific Northwest will not work. Moreover, the culture within the federal agencies needs revamping to allow for more innovation, especially in terms of tree thinning and wildland fire use. Funding for comprehensive restoration treatments needs to be increased, and monitoring of the Healthy Forest Initiative and Healthy Forest Restoration Act must be undertaken.

  7. The limited contribution of large trees to annual biomass production in an old-growth tropical forest.

    Science.gov (United States)

    Ligot, Gauthier; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis-Yaoba; Morin, Xavier; Bauwens, Sébastien; Baya, Fidele; Brostaux, Yves; Doucet, Jean-Louis; Fayolle, Adeline

    2018-04-16

    Although the importance of large trees regarding biodiversity and carbon stock in old-growth forests is undeniable, their annual contribution to biomass production and carbon uptake remains poorly studied at the stand level. To clarify the role of large trees in biomass production, we used data of tree growth, mortality, and recruitment monitored during 20 yr in 10 4-ha plots in a species-rich tropical forest (Central African Republic). Using a random block design, three different silvicultural treatments, control, logged, and logged + thinned, were applied in the 10 plots. Annual biomass gains and losses were analyzed in relation to the relative biomass abundance of large trees and by tree size classes using a spatial bootstrap procedure. Although large trees had high individual growth rates and constituted a substantial amount of biomass, stand-level biomass production decreased with the abundance of large trees in all treatments and plots. The contribution of large trees to annual stand-level biomass production appeared limited in comparison to that of small trees. This pattern did not only originate from differences in abundance of small vs. large trees or differences in initial biomass stocks among tree size classes, but also from a reduced relative growth rate of large trees and a relatively constant mortality rate among tree size classes. In a context in which large trees are increasingly gaining attention as being a valuable and a key structural characteristic of natural forests, the present study brought key insights to better gauge the relatively limited role of large trees in annual stand-level biomass production. In terms of carbon uptake, these results suggest, as already demonstrated, a low net carbon uptake of old-growth forests in comparison to that of logged forests. Tropical forests that reach a successional stage with relatively high density of large trees progressively cease to be carbon sinks as large trees contribute sparsely or even

  8. Carbon stocks and greenhouse gas balance of an old-growth forest and an anthropogenic peatland in southern Chile

    Science.gov (United States)

    Perez-Quezada, J. F.; Brito, C. E.; Valdés, A.; Urrutia, P.

    2016-12-01

    Few studies have reported the effects of deforestation on carbon stocks and greenhouse gas balance in the temperate forests of the southern hemisphere. In some areas of southern Chile, after clear-cut or forest fires occurs a proliferation of Sphagnum moss, generating an anthropogenic type of peatland. We measured the effects of this change on the carbon stocks and the greenhouse gas balance, starting in 2013. Carbon stocks were measured in >30 plots on each site; ecosystem CO2 fluxes were measured continuously using eddy covariance stations; CH4 and N2O fluxes were measured monthly using closed chambers and cavity ring-down spectroscopy technology. Total ecosystem carbon stock was 1,523 Mg ha-1 in the forest and 130 Mg ha-1 in the peatland, representing a 91% difference. Both land use types were found to act as sinks of CO2 (NEE=-1094.2 and -31.9 g CO2 m-2 year-¹ for the forest and peatland, respectively); CH4 was mainly captured in the forest and peatland soils, generating balances of -0.70 and -0.12 g CH₄ m-2 year-¹. N2O fluxes were extremely low, so were considered as null. These results indicate that the greenhouse gas balance moved from -1134.6 to -38.8 g CO2-eq m-2 year-1 when land use changed from forest to anthropogenic peatland. These results provide evidence of the importance of preserving old-growth forests in southern Chile.

  9. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    Science.gov (United States)

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  10. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    Directory of Open Access Journals (Sweden)

    Danny L Fry

    Full Text Available In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1, and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56% in large patches (≥ 10 trees, and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  11. Watershed restoration, jobs-in-the woods, and community assistance: Redwood National Park and the Northwest Forest Plan.

    Science.gov (United States)

    Christopher E. DeForest

    1999-01-01

    There are many parallels between the 1978 legislation to expand Redwood National Park and the Northwest Forest Plan, which together with the Northwest Economic Adjustment Initiative formed the 1993 Pacific Northwest Initiative. In both situations, the Federal Government sought to promote retraining for displaced workers, to undertake watershed assessment and...

  12. Impacts on soils and residual trees from cut-to-length thinning operations in California's redwood forests

    Science.gov (United States)

    Kyungrok Hwang; Han-sup Han; Susan E. Marshall; Deborah S. Page-Dumroese

    2017-01-01

    Cut-to-length (CTL) harvest systems have recently been introduced for thinning third-growth, young (<25 years old) redwood forests (Sequoia sempervirens (Lamb. ex D. Don) Endl.) in northern California. This type of harvesting can effective for thinning overstocked stands consisting of small-diameter trees. However, forestland managers and government agencies...

  13. Identifying conservation and restoration priorities for saproxylic and old-growth forest species: a case study in Switzerland.

    Science.gov (United States)

    Lachat, Thibault; Bütler, Rita

    2009-07-01

    Saproxylic (dead-wood-associated) and old-growth species are among the most threatened species in European forest ecosystems, as they are susceptible to intensive forest management. Identifying areas with particular relevant features of biodiversity is of prime concern when developing species conservation and habitat restoration strategies and in optimizing resource investments. We present an approach to identify regional conservation and restoration priorities even if knowledge on species distribution is weak, such as for saproxylic and old-growth species in Switzerland. Habitat suitability maps were modeled for an expert-based selection of 55 focal species, using an ecological niche factor analyses (ENFA). All the maps were then overlaid, in order to identify potential species' hotspots for different species groups of the 55 focal species (e.g., birds, fungi, red-listed species). We found that hotspots for various species groups did not correspond. Our results indicate that an approach based on "richness hotspots" may fail to conserve specific species groups. We hence recommend defining a biodiversity conservation strategy prior to implementing conservation/restoration efforts in specific regions. The conservation priority setting of the five biogeographical regions in Switzerland, however, did not differ when different hotspot definitions were applied. This observation emphasizes that the chosen method is robust. Since the ENFA needs only presence data, this species prediction method seems to be useful for any situation where the species distribution is poorly known and/or absence data are lacking. In order to identify priorities for either conservation or restoration efforts, we recommend a method based on presence data only, because absence data may reflect factors unrelated to species presence.

  14. Site quality influence over understory plant diversity in old-growth and harvested Nothofagus pumilio forests

    Directory of Open Access Journals (Sweden)

    E. A. Gallo

    2013-04-01

    Full Text Available Aim of study: The effects and interactions of shelterwood forest harvesting and site qualities over understory plant species diversity and composition were compared among primary and harvested Nothofagus pumilio forests.Area of study: Tierra del Fuego (Argentina, on three pure conditions (one and six year-old harvested, and primary without previous harvesting forests and three site qualities (high, medium and low.Material and Methods: Understory richness and cover (% were registered in five replicates of 1 hectare each per treatment. Taxonomic species were classified in categories (groups, origin and life forms. Two-way ANOVAs and multivariate analyses were conducted.Main results: Shelterwood harvesting and site quality significantly influenced understory cover and richness, which allow the introduction of native and exotic species and increasing of dicot and monocot covers. In dicots, monocots, exotics and total groups, higher richness and covers were related to time. Meanwhile, cover reached similar high values in all site qualities on dicot, native and total groups. On the other hand, monocot and exotic richness and cover remain similar in primary and recently harvested forests, and greatly increased in old harvested forests. Mosses and ferns were among the most sensitive groups.Research highlights: Impacts of shelterwood cut depend on site quality of the stands and time since harvesting occurs. For this, different site quality stands should received differential attention in the development of conservation strategies, as well as variations in the shelterwood implementation (as irregularity and patchiness should be considered to better promote understory plant species conservation inside managed areas.Key words: plant species conservation; years after harvesting; forest management; Tierra del Fuego.

  15. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China.

    Directory of Open Access Journals (Sweden)

    Enqing Hou

    Full Text Available Nitrogen (N is considered the dominant limiting nutrient in temperate regions, while phosphorus (P limitation frequently occurs in tropical regions, but in subtropical regions nutrient limitation is poorly understood. In this study, we investigated N and P contents and N:P ratios of foliage, forest floors, fine roots and mineral soils, and their relationships with community biomass, litterfall C, N and P productions, forest floor turnover rate, and microbial processes in eight mature and old-growth subtropical forests (stand age >80 yr at Dinghushan Biosphere Reserve, China. Average N:P ratios (mass based in foliage, litter (L layer and mixture of fermentation and humus (F/H layer, and fine roots were 28.3, 42.3, 32.0 and 32.7, respectively. These values are higher than the critical N:P ratios for P limitation proposed (16-20 for foliage, ca. 25 for forest floors. The markedly high N:P ratios were mainly attributed to the high N concentrations of these plant materials. Community biomass, litterfall C, N and P productions, forest floor turnover rate and microbial properties were more strongly related to measures of P than N and frequently negatively related to the N:P ratios, suggesting a significant role of P availability in determining ecosystem production and productivity and nutrient cycling at all the study sites except for one prescribed disturbed site where N availability may also be important. We propose that N enrichment is probably a significant driver of the potential P limitation in the study area. Low P parent material may also contribute to the potential P limitation. In general, our results provided strong evidence supporting a significant role for P availability, rather than N availability, in determining ecosystem primary productivity and ecosystem processes in subtropical forests of China.

  16. Long-term mortality rates and spatial patterns in an old-growth forest

    Science.gov (United States)

    Emily J. Silver; Shawn Fraver; Anthony W. D' Amato; Tuomas Aakala; Brian J. Palik

    2013-01-01

    Understanding natural mortality patterns and processes of forest tree species is increasingly important given projected changes in mortality owing to global change. With this need in mind, the rate and spatial pattern of mortality was assessed over an 89-year period in a natural-origin Pinus resinosa (Aiton)-dominated system to assess these processes...

  17. Storm intensity and old-growth forest disturbances in the Amazon region

    Science.gov (United States)

    F.D.B. Espírito-Santo; M. Keller; B. Braswell; B.W. Nelson; S. Frolking; G. Vicente

    2010-01-01

    We analyzed the pattern of large forest disturbances or blow‐downs apparently caused by severe storms in a mostly unmanaged portion of the Brazilian Amazon using 27 Landsat images and daily precipitation estimates from NOAA satellite data. For each Landsat a spectral mixture analysis (SMA) was applied. Based on SMA, we detected and mapped 279 patches (from 5 ha to 2,...

  18. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA

    Directory of Open Access Journals (Sweden)

    Kerry D. Woods

    2014-09-01

    Full Text Available Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009, combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360–450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study. Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis.CWD pools measured in 2007 averaged 151 m3/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated; snags constituted 10–50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9–3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer

  19. Spatial characteristics of tree diameter distributions in a temperate old-growth forest.

    Science.gov (United States)

    Zhang, Chunyu; Wei, Yanbo; Zhao, Xiuhai; von Gadow, Klaus

    2013-01-01

    This contribution identifies spatial characteristics of tree diameter in a temperate forest in north-eastern China, based on a fully censused observational study area covering 500×600 m. Mark correlation analysis with three null hypothesis models was used to determine departure from expectations at different neighborhood distances. Tree positions are clumped at all investigated scales in all 37 studied species, while the diameters of most species are spatially negatively correlated, especially at short distances. Interestingly, all three cases showing short-distance attraction of dbh marks are associated with light-demanding shrub species. The short-distance attraction of dbh marks indicates spatially aggregated cohorts of stems of similar size. The percentage of species showing significant dbh suppression peaked at a 4 m distance under the heterogeneous Poisson model. At scales exceeding the peak distance, the percentage of species showing significant dbh suppression decreases sharply with increasing distances. The evidence from this large observational study shows that some of the variation of the spatial characteristics of tree diameters is related variations of topography and soil chemistry. However, an obvious interpretation of this result is still lacking. Thus, removing competitors surrounding the target trees is an effective way to avoid neighboring competition effects reducing the growth of valuable target trees in forest management practice.

  20. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    Science.gov (United States)

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Strong links between teleconnections and ecosystem exchange found at a Pacific Northwest old-growth forest from flux tower and MODIS EVI data

    Science.gov (United States)

    Sonia Wharton; Laura Chasmer; Matthias Falk; Kyaw Tha Paw U

    2009-01-01

    Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and EI Nino-Southern Oscillation (ENSO). We use 9 years of eddy covariance...

  2. The importance of amino sugar turnover to C and N cycling in organic horizons of old-growth Douglas-fir forest soils colonized by ectomycorrhizal mats

    Science.gov (United States)

    L. Zeglin; L.A. Kluber; D.D. Myrold

    2012-01-01

    Amino sugar dynamics represent an important but under-investigated component of the carbon (C) and nitrogen (N) cycles in old-growth Douglas-fir forest soils. Because fungal biomass is high in these soils, particularly in areas colonized by rhizomorphic ectomycorrhizal fungal mats, organic matter derived from chitinous cell wall material (or the monomeric building...

  3. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, LA Selva, Costa Rica

    Science.gov (United States)

    Luitgard Schwendenmann; Edzo Veldkamp; Tania Brenes; Joseph J. O' Brien; Jens Mackensen

    2003-01-01

    Our objectives were to quantify and compare soil CO2, efflux of two doininant soil types in an old-growth neotropical rain forest in the Atlantic zone of Costa Rica, and to evaluate the control of environmental Factors on CO2, release. We measured soil CO2 efflux from eight permanent soil chamhers on...

  4. Tree communities of lowland warm-temperate old-growth and neighboring shelterbelt forests in the Shikoku region of southwestern Japan

    Science.gov (United States)

    Shigeo Kuramoto; Shigenori Oshioka; Takahisa Hirayama; Kaori Sato; Yasumasa Hirata

    2007-01-01

    We characterized the tree species composition of a 30 ha old-growth and neighboring shelterbelt (reserved buffer strips among conifer plantations) in warm-temperate forests in the Shikoku region of southwestern Japan. Using a two-way indicator species analysis of data from 28 plots, we identified four structural groups in terms of relative basal area. These structural...

  5. Treefall gap disturbance in an old-growth beech forest in southwestern Japan by a catastrophic typhoon

    International Nuclear Information System (INIS)

    Ida, Hideyuki

    2000-01-01

    In 1991, the catastrophic Typhoon 9119 created many treefall gaps in an old-growth beech (Fagus crenata) forest on Mt. Garyu, southwestern Japan. In a 3.3-ha plot, the density and basal area of fatally damaged trunks (DBH ≥ 20 cm) were 29.1 trunks/ha (16.9% of all pre-typhoon trunks) and 9.1 m 2 /ha. (24.4% of total pre-typhoon basal area), respectively. Many of the dominant beech were lost and larger trunks were damaged. The pre- and post-typhoon DBH distribution both had an inverse J-shape. Spatial distribution of living trunks was not random but clustered irrespective of typhoon damage or DBH size, suggesting that the stand structure of the study plot would be an unusual one as compared with the previous study stands in Japanese beech forests. The death of pre-typhoon trunks, seemed to die standing or to be killed by snap-off, occurred singly; however, the typhoon fatally damaged many clustered trunks at the same time. Uprooting was the most frequent cause of gaps created by the typhoon. The intermediate DBH size class (40 - 70 cm) would be more likely to be uprooted than snapped-off. The DBH distribution of snap-off may reflect the total pre-typhoon trunk distribution. Branch-fall had a flat DBH distribution. Uprooting might have a clustered distribution, while snap-off and branch-fall both had random distributions. The smaller trunks of snap-off and branch-fall seemed to result from injuries caused by the fall of larger trunks

  6. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo

    OpenAIRE

    Luke, Sarah H.; Fayle, Tom M.; Eggleton, Paul; Turner, Edgar C.; Davies, Richard G.

    2014-01-01

    Forested tropical landscapes around the world are being extensively logged and converted to agriculture, with serious consequences for biodiversity and potentially ecosystem functioning. Here we investigate associations between habitat disturbance and functional diversity of ants and termites – two numerically dominant and functionally important taxa in tropical rain forests that perform key roles in predation, decomposition, nutrient cycling and seed dispersal. We compared ant and termite oc...

  7. Comparative Structural Dynamics of the Janj Mixed Old-Growth Mountain Forest in Bosnia and Herzegovina: Are Conifers in a Long-Term Decline?

    Directory of Open Access Journals (Sweden)

    Srdjan Keren

    2014-06-01

    Full Text Available Regression of conifers in European mixed old-growth mountain forests has been observed for a long period and studied from different aspects. Old-growth (OG forests in Bosnia and Herzegovina (BiH have not experienced heavy air pollution and chronic overbrowsing that have affected many other European OG forests, while climatic and anthropogenic disturbances have been well documented. We analysed stand structure in the Janj OG forest, compared it with inventories of Lom and Perucica OG forests (BiH and with earlier inventories of the same reserves. At present, OG forest Janj is characterized by a high growing stock (1215 m3∙ha−1. This is due to good site quality, prevalence of conifers (84% and dominant endogenous processes in recent decades. In all three OG forests, indicators of structural change exhibited progression of European beech over time. Historical evidence revealed the occurrence of warm summers and droughts followed by bark beetle outbreaks in the 1920s, 1940s and early 1950s, which in turn influenced a marked conifer decline. It seems likely that repeated canopy opening released waves of European beech regeneration. These stand structural changes have delayed the rejuvenation of conifers and can help explain the early observations of conifer decline.

  8. Spatial and population characteristics of dwarf mistletoe infected trees in an old-growth Douglas-fir - western hemlock forest.

    Science.gov (United States)

    David C. Shaw; Jiquan Chen; Elizabeth A. Freeman; David M. Braun

    2005-01-01

    We investigated the distribution and severity of trees infected with western hemlock dwarf mistletoe (Arceuthobium tsugense (Rosendahl) G.N. Jones subsp. tsugense) in an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) - western hemlock (Tsuga heterophylla (Raf.) Sarg.)...

  9. Status and conservation of old-growth forests and endemic birds in the pine-oak zone of the Sierra Madre occidental Mexico

    OpenAIRE

    Lammertink, J.M.; Rojas-Tome, J.A.; Casillas-Orona, F.M.; Otto, R.L.

    1996-01-01

    The pine-oak forests of the Sierra Madre Occidental, a mountain range in NW Mexico, have recently been recognized as an area of high endemism and biodiversity. Selective logging threatens three bird species endemic to this habitat, who depend on standing dead trees (snags). This report is based on an 11 month field survey that aimed to locate oldgrowth remnants and to assess the status of the endemic birds. Old-growth is defined here as a forest that has never been logged mechanically. Old-gr...

  10. Disturbance history and stand dynamics in secondary and old-growth forests of the Southern Appalachian Mountains, USA

    Science.gov (United States)

    Sarah M. Butler; Alan S. White; Katherine J. Elliott; Robert S Seymour

    2014-01-01

    BUTLER, S. M. (Family Forest Research Center, University of Massachusetts, Amherst, MA 01003), A. S. WHITE (School of Forest Resources, University of Maine, Orono, ME 04469-5755), K. J. ELLIOTT (Coweeta Hydrologic Laboratory, Center for Forest Watershed Science, Southern Research Station, USDA Forest Service, Otto, NC 28763) AND R. S. SEYMOUR (School of Forest...

  11. The New Economies of the Redwood Region in the 21st Century

    Science.gov (United States)

    William Stewart

    2007-01-01

    The redwood region of California has experienced a number of major land use changes over the past one hundred and fifty years. A review of recent economic trends in the redwood region suggests the emergence of three new themes. First, it appears that the transition from an old growth to a young growth redwood industry is essentially complete. Lower revenues and...

  12. Facilitative-competitive interactions in an old-growth forest: the importance of large-diameter trees as benefactors and stimulators for forest community assembly.

    Science.gov (United States)

    Fichtner, Andreas; Forrester, David I; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert

    2015-01-01

    The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services.

  13. Facilitative-competitive interactions in an old-growth forest: the importance of large-diameter trees as benefactors and stimulators for forest community assembly.

    Directory of Open Access Journals (Sweden)

    Andreas Fichtner

    Full Text Available The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica forest by quantifying variation in the intensity of above- (shading and belowground competition (crowding among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services.

  14. Facilitative-Competitive Interactions in an Old-Growth Forest: The Importance of Large-Diameter Trees as Benefactors and Stimulators for Forest Community Assembly

    Science.gov (United States)

    Fichtner, Andreas; Forrester, David I.; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert

    2015-01-01

    The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services. PMID:25803035

  15. Measured and modeled evidence for a two-fold increase in water use efficiency at an old-growth forest site in the Pacific Northwest

    Science.gov (United States)

    Jiang, Y.; Rastogi, B.; Kim, J. B.; Voelker, S.; Meinzer, F. C.; Still, C. J.

    2017-12-01

    Water use efficiency (WUE), the ratio of carbon uptake to transpiration, has been widely recognized as an important measure of carbon and water cycling in plants, and is used to track forest ecosystem responses to climate change and rising atmospheric CO2concentrations. In this study we used eddy covariance measurement data and Ecosystem Demography model (ED2) simulations to explore the patterns and physiological and biophysical controls of WUE at Wind River Experimental Forest, an old-growth coniferous forest in the Pacific Northwest. We characterized how observed and simulated WUE vary between wet and dry years, and explored the drivers of the differences in WUE between the wet and dry years. Through this explorative process, we evaluated the utility of various ways that WUE have been computed in literature. Measurement-based and simulated WUE at the old-growth forest increased over twofold from 1998 to 2015. The primary driver of this trend is a decreasing trend in evapotranspiration (ET). There were significant inter-annual variations. For example, during drought years, higher air temperature drove increases in early season ET, thereby depleting soil water and decreasing GPP. Lower GPP in turn resulted in lower WUE. This mechanism might drive changes in future carbon and water budgets under warming climate. Our evaluation of multiple WUE metrics demonstrates that each metric has a distinct sensitivity to climate anomalies, but also indicates a robust increasing trend of WUE. Statistical (multiple linear regression) and machine learning (Random Forest) analyses of flux measurements indicated that atmospheric CO2 concentration, air temperature and radiation were the most important predictors of WUE at monthly, daily and half-hourly time scale, respectively. In contrast, WUE mechanism was stable across all time scales in ED2 simulations: vapor pressure deficit was consistently the most important predictor of WUE at the monthly, daily and half-hourly time scales.

  16. An approach to study the effect of harvest and wildfire on watershed hydrology and sediment yield in a coast redwood forest

    Science.gov (United States)

    Christopher G. Surfleet; Arne Skaugset; Brian Dietterick

    2012-01-01

    The Little Creek watershed, within California State Polytechnic University’s Swanton Pacific Ranch, is the location of a paired and nested watershed study to investigate the watershed effects of coast redwood forest management. Streamflow, suspended sediment, and stream turbidity have been collected during storms at two locations on the North Fork Little Creek and at...

  17. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    OpenAIRE

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbanc...

  18. Temporal change in soil carbon stability at a paired old-growth douglas-fir forest/clear-cut site

    Science.gov (United States)

    Forest ecosystems are estimated to contain one-half of the total terrestrial carbon (C) pool (1146 Pg), with two-thirds of this C (787 Pg) residing in forest soils. Given the magnitude of this C pool, it is critical to understand the effects of forest management practices on soil...

  19. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests

    Science.gov (United States)

    Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...

  20. Searching for indicator species of old-growth spruce forests: studies in the genus Jahnoporus (Polyporales, Basidiomycota)

    Czech Academy of Sciences Publication Activity Database

    Spirin, V.; Vlasák, Josef; Milakovsky, B.; Miettinen, O.

    2015-01-01

    Roč. 36, č. 4 (2015), s. 409-417 ISSN 0181-1584 Institutional support: RVO:60077344 Keywords : Forest conservation * polypores * wood-rotting fungi Subject RIV: EF - Botanics Impact factor: 1.509, year: 2015

  1. Epiphytic lichens of Stužica (E Slovakia) in the context of Central European old-growth forests

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jan; Malíček, J.; Šoun, J.; Pouska, V.

    2015-01-01

    Roč. 28, č. 1 (2015), s. 104-126 ISSN 0018-0971 Institutional support: RVO:67985939 Keywords : beech forest * diversity inventory * Sorensen's similarity index Subject RIV: EF - Botanics Impact factor: 0.821, year: 2015

  2. SPECIES-SPECIFIC PARTITIONING OF SOIL WATER RESOURCES IN AN OLD-GROWTH DOUGLAS-FIR/WESTERN HEMLOCK FOREST

    Science.gov (United States)

    Although tree- and stand-level estimates of forest water use are increasingly common, relatively little is known about partitioning of soil water resources among co-occurring tree species. We studied seasonal courses of soil water utilization in a 450-year-old Pseudotsuga menzies...

  3. New and interesting lichen records from old-growth forest stands in the German National Park Bayerischer Wald

    Czech Academy of Sciences Publication Activity Database

    Printzen, C.; Halda, J.; Palice, Zdeněk; Toensberg, T.

    2002-01-01

    Roč. 74, 1-2 (2002), s. 25-49 ISSN 0029-5035 R&D Projects: GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : lichens * forest stands * Bayerischer Wald National Park Subject RIV: EF - Botanics Impact factor: 0.588, year: 2002

  4. High retention of 15N-labeled nitrogen deposition in a nitrogen saturated old-growth tropical forest

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa; Lu, Xiankai; Gundersen, Per

    2016-01-01

    ecosystem compartments were quantified 4 months after the last addition. Tracer recoveries in soil solution were monitored monthly to quantify leaching losses. Total tracer recovery in plant and soil (N retention) in the control plots was 72% and similar to those observed in temperate forests. The retention...

  5. Chromosera cyanophylla (Basidiomycota, Agaricales) a rare fungus of Central European old-growth forests and its habitat preferences in Europe

    Czech Academy of Sciences Publication Activity Database

    Holec, J.; Kříž, M.; Beran, M.; Kolařík, Miroslav

    2015-01-01

    Roč. 100, 1-2 (2015), s. 189-204 ISSN 0029-5035 Institutional support: RVO:61388971 Keywords : Omphalina cyanophylla * Boubinskyr prales virgin forest * Czech Republic Subject RIV: EE - Microbiology, Virology Impact factor: 0.876, year: 2015

  6. Alternatives to clearcutting in the old-growth forests of southeast Alaska: study plan and establishment report.

    Science.gov (United States)

    Michael H. McClellan; Douglas N. Swanston; Paul E. Hennon; Robert L. Deal; Toni L. de Santo; Mark S. Wipfli

    2000-01-01

    Much is known about the ecological effects, economics, and social impacts of clearcutting, but little documented experience with other silvicultural systems exists in southeast Alaska. The Pacific Northwest Research Station and the Alaska Region of the USDA Forest Service have cooperatively established an interdisciplinary study of ecosystem and social responses to...

  7. Coast redwood live crown and sapwood

    Science.gov (United States)

    John-Pascal Berrill; Jesse L. Deffress; Jessica M. Engle

    2012-01-01

    Understanding crown rise and sapwood taper will help meet management objectives such as producing long branch-free boles for clear wood and old-growth restoration, or producing sawlogs with a high proportion of heartwood. Coast redwood (Sequoia sempervirens) tree crown ratio data were collected 20 years after partial harvesting in a 65-year-old second growth stand....

  8. Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest.

    Science.gov (United States)

    Bai, Xuejiao; Queenborough, Simon A; Wang, Xugao; Zhang, Jian; Li, Buhang; Yuan, Zuoqiang; Xing, Dingliang; Lin, Fei; Ye, Ji; Hao, Zhanqing

    2012-11-01

    Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2 years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ≥ 4 years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.

  9. Strong Links Between Teleconnections and Ecosystem Exchange Found at a Pacific Northwest Old-Growth Forest from Flux Tower and MODIS EVI Data

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Chasmer, L; Falk, M; Paw U, K T

    2009-03-12

    Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and El Nino-Southern Oscillation (ENSO). We use nine years of eddy covariance CO{sub 2}, H{sub 2}O and energy fluxes measured at the Wind River AmeriFlux site, Washington, USA and eight years of tower-pixel remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to address this question. We compute a new Composite Climate Index (CCI) based on the three Pacific Oscillations to divide the measurement period into positive- (2003 and 2005), negative- (1999 and 2000) and neutral-phase climate years (2001, 2002, 2004, 2006 and 2007). The forest transitioned from an annual net carbon sink (NEP = + 217 g C m{sup -2} year{sup -1}, 1999) to a source (NEP = - 100 g C m{sup -2} year{sup -1}, 2003) during two dominant teleconnection patterns. Net ecosystem productivity (NEP), water use efficiency (WUE) and light use efficiency (LUE) were significantly different (P < 0.01) during positive (NEP = -0.27 g C m{sup -2} day{sup -1}, WUE = 4.1 mg C/g H{sub 2}O, LUE = 0.94 g C MJ{sup -1}) and negative (NEP = +0.37 g C m{sup -2} day{sup -1}, WUE = 3.4 mg C/g H{sub 2}O, LUE = 0.83 g C MJ{sup -1}) climate phases. The CCI was linked to variability in the MODIS Enhanced Vegetation Index (EVI) but not to MODIS Fraction of absorbed Photosynthetically Active Radiation (FPAR). EVI was highest during negative climate phases (1999 and 2000) and was positively correlated with NEP and showed potential for using MODIS to estimate teleconnection-driven anomalies in ecosystem CO{sub 2} exchange in old-growth forests. This work suggests that any increase in the strength or frequency of ENSO coinciding with in-phase, low frequency Pacific oscillations (PDO and PNA) will likely increase

  10. Seed Dispersal, Microsites or Competition—What Drives Gap Regeneration in an Old-Growth Forest? An Application of Spatial Point Process Modelling

    Directory of Open Access Journals (Sweden)

    Georg Gratzer

    2018-04-01

    Full Text Available The spatial structure of trees is a template for forest dynamics and the outcome of a variety of processes in ecosystems. Identifying the contribution and magnitude of the different drivers is an age-old task in plant ecology. Recently, the modelling of a spatial point process was used to identify factors driving the spatial distribution of trees at stand scales. Processes driving the coexistence of trees, however, frequently unfold within gaps and questions on the role of resource heterogeneity within-gaps have become central issues in community ecology. We tested the applicability of a spatial point process modelling approach for quantifying the effects of seed dispersal, within gap light environment, microsite heterogeneity, and competition on the generation of within gap spatial structure of small tree seedlings in a temperate, old growth, mixed-species forest. By fitting a non-homogeneous Neyman–Scott point process model, we could disentangle the role of seed dispersal from niche partitioning for within gap tree establishment and did not detect seed densities as a factor explaining the clustering of small trees. We found only a very weak indication for partitioning of within gap light among the three species and detected a clear niche segregation of Picea abies (L. Karst. on nurse logs. The other two dominating species, Abies alba Mill. and Fagus sylvatica L., did not show signs of within gap segregation.

  11. Export of fine particulate organic carbon from redwood-dominated catchments

    Science.gov (United States)

    Madej, Mary Ann

    2015-01-01

    Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old-growth redwood forests has not been evaluated to date. Old-growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km-2 and soil organic carbon can reach 46 800 Mg km-2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old-growth redwood forests. Carbon content, determined through loss-on-ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km-2 yr-1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km-2 yr-1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km-2 yr-1. Because the current extent of old-growth redwood stands is less than 5% of its pre-European-settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public

  12. Codominance of Acer saccharum and Fagus grandifolia: the role of Fagus root sprouts along a slope gradient in an old-growth forest.

    Science.gov (United States)

    Takahashi, Koichi; Arii, Ken; Lechowicz, Martin J

    2010-09-01

    We studied how the unusual capacity of mature Fagus grandifolia to form clumps of clonal stems from root sprouts can contribute to its frequent codominance with Acer saccharum in southern Quebec, Canada. In an old-growth forest, the degree of dominance by the two species shifted along topographic gradients spanning a few hundreds of meters, with Fagus more frequent on lower slopes and Acer on upper slopes. The frequency distribution of Fagus stem diameter had an inverse J distribution at all slope positions, which is indicative of continuous recruitment. Acer stem diameter also had an inverse J pattern, except at lower slope positions where size structure was discontinuous. For stems Acer were positively correlated with conspecific canopy trees only on the mid-slope. There were many Fagus seedlings around Acer canopy trees at the lower slope, suggesting the potential replacement of Acer canopy trees by Fagus. This study suggests that the regeneration traits of the two species changed with slope position and that Fagus patches originating from root sprouts can contribute to the maintenance of Acer-Fagus codominance at the scale of local landscapes.

  13. Coast redwood science symposium—2016: Past successes and future direction

    Science.gov (United States)

    Richard B. Standiford; Yana Valachovic

    2017-01-01

    There is no more iconic tree or more closely watched forest ecosystem than coast redwood. With its limited range and high value, the coast redwood forest is a microcosm of many of the emerging science and management issues facing today’s forested landscapes. As new information is collected and new management approaches and treatments tried, it is critical that policies...

  14. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    Science.gov (United States)

    E. H. Helmer; M. A. Lefsky; D. A. Roberts

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975–2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age...

  15. Temperate and boreal old-growth forests: how do their growth dynamics and biodiversity differ from young stands and managed forests?

    NARCIS (Netherlands)

    Schulze, E.D.; Hessenmoeller, D; Knohl, A.; Luyssaert, S; Boerner, A; Grace, J.

    2009-01-01

    This chapter investigates biomass, net primary productivity (NPP), and net ecosystem productivity (NEP) of boreal and temperate forest ecosystems in relation to stand density and age. Forests may accumulate woody biomass at constant rate for centuries and there is little evidence of an age-related

  16. An old-growth forest at the Caspian Sea coast is similar in epiphytic lichens to lowland deciduous forests in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Ismailov, A.; Urbanavichus, G.; Vondrák, Jan; Pouska, V.

    2017-01-01

    Roč. 30, č. 1 (2017), s. 103-125 ISSN 0018-0971 Institutional support: RVO:67985939 Keywords : Dagestan * forest protection * lowland fores indicator Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 0.740, year: 2016

  17. Old growth revisited: integrating social, economic, and ecological perspectives

    Science.gov (United States)

    Marie Oliver; Thomas Spies; Sally.   Duncan

    2009-01-01

    How should old-growth forests be managed? Should they be managed? Stakeholders with differing values and agendas have debated these questions for years. Over time, the debate has evolved: now there is greater awareness about the complexity of old-growth ecosystems and different ways humans value them. A scientist at the Pacific Northwest Research Station has co-edited...

  18. Woodland salamanders as metrics of forest ecosystem recovery: a case study from California’s redwoods

    Science.gov (United States)

    Hart Welsh; Garth Hodgson

    2013-01-01

    Woodland (Plethodontid) salamanders occur in huge numbers in healthy forests in North America where the abundances of many species vary along successional gradients. Their high numbers and trophic role as predators on shredder and decomposer arthropods influence nutrient and carbon pathways at the leaf litter/soil interface. Their extreme niche conservatism and low...

  19. Rangewide Genetic Variation in Coast Redwood Populations at a Chloroplast Microsatellite Locus

    Science.gov (United States)

    Chris Brinegar

    2012-01-01

    Old growth and second growth populations of coast redwood (Sequoia sempervirens) were sampled at 10 locations throughout its range and analyzed at a highly variable chloroplast microsatellite locus. Very low FST values indicated that there was no significant genetic differentiation between adjacent old growth and second growth populations at each location. Genetic...

  20. Redwoods, restoration, and implications for carbon budgets

    Science.gov (United States)

    Madej, Mary Ann

    2010-01-01

    The coast redwoods (Sequoia sempervirens) of California have several unique characteristics that influence interactions between vegetation and geomorphic processes. Case studies, using a combination of in-channel wood surveys and an air photo inventory of landslides, illustrate current conditions in a redwood-dominated watershed undergoing restoration work, and the influence of wood loading and landslides on the carbon budget. Redwood trees have extremely large biomass (trunk wood volumes of 700 to 1000 m3) and are very decay-resistant; consequently, they have a large and persistent influence on in-channel wood loading. Large wood surveys indicate high wood loading in streams in uncut forests (0.3-0.5 m3/m2 of channel), but also show that high wood loading can persist in logged basin with unlogged riparian buffers because of the slow decay of fallen redwoods. Through a watershed restoration program, Redwood National Park increases in-channel wood loading in low-order streams, but the effectiveness of this technique has not yet been tested by a large flood. Another unique characteristic of redwood is its ability to resprout from basal burls after cutting, so that root strength may not decline as sharply following logging as in other types of forests. An air photo inventory of landslides following a large storm in 1997 indicated: 1) that in the Redwood Creek watershed the volume of material displaced by landslides in harvested areas was not related to the time elapsed since logging, suggesting that the loss of root strength was not a decisive factor in landslide initiation, 2) landslide production on decommissioned logging roads was half that of untreated roads, and 3) landslides removed an estimated 28 Mg of organic carbon/km2 from hillslopes. The carbon budget of a redwood-dominated catchment is dominated by the vegetative component, but is also influenced by the extent of mass movement, erosion control work, and in-channel storage of wood.

  1. Use of two population metrics clarifies biodiversity dynamics in large-scale monitoring: the case of trees in Japanese old-growth forests: the need for multiple population metrics in large-scale monitoring.

    Science.gov (United States)

    Ogawa, Mifuyu; Yamaura, Yuichi; Abe, Shin; Hoshino, Daisuke; Hoshizaki, Kazuhiko; Iida, Shigeo; Katsuki, Toshio; Masaki, Takashi; Niiyama, Kaoru; Saito, Satoshi; Sakai, Takeshi; Sugita, Hisashi; Tanouchi, Hiroyuki; Amano, Tatsuya; Taki, Hisatomo; Okabe, Kimiko

    2011-07-01

    Many indicators/indices provide information on whether the 2010 biodiversity target of reducing declines in biodiversity have been achieved. The strengths and limitations of the various measures used to assess the success of such measures are now being discussed. Biodiversity dynamics are often evaluated by a single biological population metric, such as the abundance of each species. Here we examined tree population dynamics of 52 families (192 species) at 11 research sites (three vegetation zones) of Japanese old-growth forests using two population metrics: number of stems and basal area. We calculated indices that track the rate of change in all species of tree by taking the geometric mean of changes in population metrics between the 1990s and the 2000s at the national level and at the levels of the vegetation zone and family. We specifically focused on whether indices based on these two metrics behaved similarly. The indices showed that (1) the number of stems declined, whereas basal area did not change at the national level and (2) the degree of change in the indices varied by vegetation zone and family. These results suggest that Japanese old-growth forests have not degraded and may even be developing in some vegetation zones, and indicate that the use of a single population metric (or indicator/index) may be insufficient to precisely understand the state of biodiversity. It is therefore important to incorporate more metrics into monitoring schemes to overcome the risk of misunderstanding or misrepresenting biodiversity dynamics.

  2. Summary of watershed conditions in the vicinity of Redwood National Park, California

    Science.gov (United States)

    Janda, Richard J.

    1977-01-01

    The Redwood Creek Unit of Redwood National Park is located in the downstream end of an exceptionally rapidly eroding drainage basin. Spatial distribution and types of erosional landforms, observed in the field and on time-sequential aerial photographs, measured sediment loads, and the lithologic heterogeneity of streambed materials indicated (1) that sediment discharges reflect a complex suite of natural and man-induced mass movement and fluvial erosion processes operating on a geologically heterogeneous, naturally unstable terrain, and (2) that although infrequent exceptionally intense storms control the timing and general magnitude of major erosion events, the loci, types, and amounts of erosion occurring during those events are substantially influence by land use. Erosional impacts of past timber harvest in the Redwood Creek basin reflect primarily the cumulative impact of many small erosion problems caused not so much by removal. Recently modified riparian and aquatic environments reflect stream channel adjustments to recently increased water and sediment discharges, and are classified by the National Park Service as damaged resources because the modifications reflect, in part, unnatural causes. Newly strengthened State regulations and cooperative review procedures result in proposed timber harvest plans being tailored to specific site conditions, as well as smaller, more dispersed harvest units and more sophisticated attempts at minimizing ground-surface disruption than those used in most previous timber harvesting in this basin. However, application of improved timber harvest technology alone will not assure protection of park resources. Much remaining intact residual commercial old-growth timber is on hillslopes that are steeper, wetter, more susceptible to landsliding, and more nearly adjacent to major stream channels than most of the previously harvested hillslopes in the lower Redwood Creek basin. Moreover, natural debris barriers along streams flowing

  3. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest

    Science.gov (United States)

    Andrew N. Gray; Thomas A. Spies; Robert J. Pabst

    2012-01-01

    Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Species’ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...

  4. LATERAL ROOT DISTRIBUTION OF TREES IN AN OLD-GROWTH DOUGLAS-FIR FOREST INFERRED FROM UPTAKE OF TRACER 15N

    Science.gov (United States)

    Belowground competition for nutrients and water is considered a key factor affecting spatial organization and productivity of individual stems within forest stands, yet there are almost no data describing the lateral extent and overlap of competing root systems. We quantified th...

  5. Status and conservation of old-growth forests and endemic birds in the pine-oak zone of the Sierra Madre Occidental, Mexico

    NARCIS (Netherlands)

    Lammertink, J.M.; Rojas-Tomé, J.A.; Casillas-Orona, F.M.; Otto, R.L.

    1996-01-01

    The pine-oak forests of the Sierra Madre Occidental, a mountain range in NW Mexico, have recently been recognized as an area of high endemism and biodiversity. Selective logging threatens three bird species endemic to this habitat, who depend on standing dead trees (snags). This report is based on

  6. Canopy arthropod responses to thinning and burning treatments in old-growth mixed-conifer forest in the Sierra Nevada, California

    Science.gov (United States)

    Thomas Rambo; Timothy Schowalter; Malcolm North

    2014-01-01

    We compared canopy arthropod responses to common fuels reduction treatments at Teakettle Experimental Forest in the south-central Sierra Nevada of California. We sampled arthropod communities among four dominant overstory conifer species and three dominant understory angiosperm species before and after overstory or understory thinning or no thinning treatments followed...

  7. Post-fire response of coast redwood one year after the Mendocino lightning complex fires

    Science.gov (United States)

    Robert B. Douglas; Tom. Bendurel

    2012-01-01

    Coast redwood (Sequoia sempervirens) forests have undergone significant changes over the past century and are now in state more conducive for wildfires. Because fires have been uncommon in redwood forests over the past 80 years, managers have limited data to make decisions about the post-fire environment. In June 2008, a series of lightning storms...

  8. Towards a better understanding of long-term wood-chemistry variations in old-growth forests: A case study on ancient Pinus uncinata trees from the Pyrenees.

    Science.gov (United States)

    Hevia, Andrea; Sánchez-Salguero, Raúl; Camarero, J Julio; Buras, Allan; Sangüesa-Barreda, Gabriel; Galván, J Diego; Gutiérrez, Emilia

    2018-06-01

    Dendrochemical studies in old forests are still underdeveloped. Old trees growing in remote high-elevation areas far from direct human influence constitute a promising biological proxy for the long-term reconstructions of environmental changes using tree-rings. Furthermore, centennial-long chronologies of multi-elemental chemistry at inter- and intra-annual resolution are scarce. Here, we use a novel non-destructive method by applying Micro X-ray fluorescence (μXRF) to wood samples of old Pinus uncinata trees from two Pyrenean high-elevation forests growing on acidic and basic soils. To disentangle ontogenetic (changes in tree age and diameter) from environmental influences (e.g., climate warming) we compared element patterns in sapwood (SW) and heartwood (HW) during the pre-industrial (1700-1849) and industrial (1850-2008) periods. We quantified tree-ring growth, wood density and relative element concentrations at annual (TRW, tree-ring) to seasonal resolution (EW, earlywood; LW, latewood) and related them to climate variables (temperature and precipitation) and volcanic eruptions in the 18th and 19th centuries. We detected differences for most studied elements between SW and HW along the stem and also between EW and LW within rings. Long-term positive and negative trends were observed for Ca and K, respectively. Cl, P and S showed positive trends during the industrial period. However, differences between sites were also notable. Higher values of Mg, Al, Si and the Ca/Mn ratio were observed at the site with acidic soil. Growing-season temperatures were positively related to growth, maximum wood density and to the concentration of most elements. Peaks in S, Fe, Cl, Zn and Ca were linked to major volcanic eruptions (e.g., Tambora in 1815). Our results reveal the potential of long-term wood-chemistry studies based on the μXRF non-destructive technique to reconstruct environmental changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.

    Science.gov (United States)

    Carroll, Allyson L; Sillett, Stephen C; Kramer, Russell D

    2014-01-01

    Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have

  10. Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.

    Directory of Open Access Journals (Sweden)

    Allyson L Carroll

    Full Text Available Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood

  11. Managing for Old Growth in Frequent-fire Landscapes

    Directory of Open Access Journals (Sweden)

    Carl E. Fiedler

    2007-12-01

    Full Text Available There is no one-size-fits-all approach to managing frequent-fire, old-growth forests. However, there are general guidelines to follow: 1 set objectives for both structure (tree density, diameter distribution, tree species composition, spatial arrangement, amount of coarse woody debris and function (nutrient cycling, desired tree species regeneration; 2 prioritize treatments according to ecological, economic, and social needs and risks; 3 identify the potential treatments (natural fire, prescribed fire, silvicultural cutting that best meet the objectives and scale of the project; and 4 implement the treatment(s. We discuss each of these guidelines in this article.

  12. Stand conditions immediately following a restoration harvest in an old-growth pine-hardwood remnant

    Science.gov (United States)

    D. C. Bragg

    2010-01-01

    Portions of the Levi Wilcoxon Demonstration Forest (LWDF), a privately owned parcel of old-growth pine and hardwoods in Ashley County, Arkansas, were recently treated to restore conditions similar to some historic accounts of the virgin forest. Following a hardwood-only cut, a post-harvest inventory showed that the number of tree species in the sample area declined...

  13. Restoring old-growth southern pine ecosystems: strategic lessons from long-term silvicultural research

    Science.gov (United States)

    Don C. Bragg; Michael G. Shelton; James M. Guldin

    2008-01-01

    The successful restoration of old-growth-like loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated forests requires the integration of ecological information with long-term silvicultural research from places such as the Crossett Experimental Forest (CEF). Conventional management practices such as timber harvesting or competition control have supplied...

  14. Managing redwood ecosystems using Sudden Oak Death as a silvicultural tool

    Science.gov (United States)

    Frederick D. Euphrat

    2015-01-01

    In response to the wave of sudden oak death (SOD), caused by Phytophthora ramorum, sweeping the redwood forest ecosystems of California's North Coast, the role of foresters and other ecosystem managers is being tested. On Bear Flat Tree Farm, near Healdsburg, California, Forest, Soil & Water, Inc. (FSW) has conducted a multi-year,...

  15. Nutrient uptake and community metabolism in streams draining harvested and old-growth watersheds: A preliminary assessment

    Science.gov (United States)

    Brian H. Hill; Frank H. McCormick

    2004-01-01

    The effect of timber harvesting on streams is assessed using two measures of ecosystem function: nutrient spiraling and community metabolism. This research is being conducted in streams of the southern Appalachian Mountains of North Carolina, the Ouachita Mountains of Arkansas, the Cascade Mountains of Oregon, and the redwood forests of northern California, in order to...

  16. Structural attributes of two old-growth Cross Timbers stands in western Arkansas

    Science.gov (United States)

    Don C. Bragg; David W. Stahle; K. Chris Cerny

    2012-01-01

    Comprised of largely non-commercial, xeric, oak-dominated forests, the Cross Timbers in Arkansas have been heavily altered over the last two centuries, and thus only scattered parcels of old-growth timber remain. We inventoried and mapped two such stands on Fort Chaffee Military Training Center in Sebastian County, Arkansas. The west-facing Christmas Knob site is...

  17. Characterizing large strain crush response of redwood

    International Nuclear Information System (INIS)

    Cramer, S.M.; Hermanson, J.C.

    1996-12-01

    Containers for the transportation of hazardous and radioactive materials incorporate redwood in impact limiters. Redwood is an excellent energy absorber, but only the most rudimentary information exists on its crush properties. The objectives of the study were to fill the information gap by collecting triaxial load-deformation data for redwood; to use these data to characterize redwood crush, assess current wood failure theories, provide developments toward a complete stress-strain theory for redwood; and to review the literature on strain-rate effects on redwood crush performance. The load-deformation responses of redwood at temperature conditions corresponding to ambient (70 degrees F), 150 degrees F, and -20 degrees F conditions were measured in approximately 100 confined compression tests for crush levels leading to material densification. Data analysis provided a more complete description of redwood crush performance and a basis for assessing proposed general orthotropic stress-strain relationships for redwood. A review of existing literature indicated that strain-rate effects cause at most a 20 percent increase in crush stress parallel to grain

  18. Fluxes of CO2, CH4, CO, BVOCs, NOx, and O3 in an Old Growth Amazonian Forest: Ecosystem Processes, Carbon Cycle, Atmospheric Chemistry, and Feedbacks on Climate

    Energy Technology Data Exchange (ETDEWEB)

    Wofsy, Steven C. [Harvard Univ., Cambridge, MA (United States)

    2016-12-20

    A comprehensive, merged data set of trace gases (NO, NO2, CO2, CH4 and O3) along with has been tabulated and subjected to meticulous quality assurance and quality control (QA/QC). The merged data set is being submitted to the ARM website dedicated to the Green Ocean Experiment: https://www.arm.gov/research/campaigns/amf2014goamazon Analysis using the final data set is in progress to determine the magnitudes of the fluxes for CH4, H2O, CO2, O3, NOx, sensible and latent heat, momentum, and their seasonal variations. Here are summary statements, from the discussion above: Total NO fluxes were calculated following Keller et al., 1986. A vertical gradient is established in the mixing ratio of NO because it is emitted at the soil surface and mixed upward in the atmosphere (see above). Once in the atmosphere, the NO reacts rapidly with O3 to produce NO2 (NO + O3 → NO2 + O2). Therefore, if the vertical profiles of the mixing ratios of NO and O3 are known, the surface flux of NO may be determined. If any other reaction removes NO (e.g., deposition on leaves), FNO should estimate the lower limit to the NO flux from the soil in this forest. Our preliminary results show fluxes of NO averaged 133 x 109 molecules cm-2 s-1, a factor of 4 higher than fluxes previously observed in white sand soils in the Amazon, and a factor of 3 to 14 higher than fluxes observed for yellow clay soils (Bakwin et al., 1990 and references therein). The soil in the km 67 site is predominately oxisol with pockets of sandy ultisols, both having low reduced nutrient contents, mostly due to efficient microorganism decomposition and acid leaching by rain water. Oxisols contain both oxidized and reduced forms of nitrogen, of which concentrations vary independently of leaching (Jordan et al., 1982), with most

  19. Sustainability analysis using FORSEE and continuous forest inventory information to compare volume estimation methods for the Valencia coast redwood tract in Santa Cruz County, California

    Science.gov (United States)

    Douglas D. Piirto; Mitchell Haydon; Steve Auten; Benjamin Han; Samantha Gill; Wally Mark; Dale Holderman

    2017-01-01

    The 1,295 ha (3,200 ac) Swanton Pacific Ranch (Swanton) and the associated Valencia Tract in Santa Cruz County have been managed by California Polytechnic State University, San Luis Obispo (Cal Poly) since 1987. Swanton’s Valencia Tract is a 239 ha (591 ac) property located north of Watsonville, California. Cal Poly forest managers have conducted two harvest...

  20. Regeneration Dynamics of Coast Redwood, a Sprouting Conifer Species: A Review with Implications for Management and Restoration

    Directory of Open Access Journals (Sweden)

    Kevin L. O’Hara

    2017-04-01

    Full Text Available Coast redwood (Sequoia sempervirens (Lamb. ex. D. Don Endl. is unique among conifer species because of its longevity, the great sizes of individual trees, and its propensity to reproduce through sprouts. Timber harvesting in the native redwood range along the coast of the western United States has necessitated restoration aimed to promote old forest structures to increase the total amount of old forest, the connectivity between old forests, and to enhance the resiliency of these ecosystems. After disturbance or harvest, healthy redwood stumps sprout vigorously, often producing dozens of sprouts within two years of disturbance. These sprouts form highly aggregated spatial patterns because they are clustered around stumps that may number less than 50 ha−1. Thinning of sprouts can accelerate individual tree growth, providing an effective restoration strategy to accelerate formation of large trees and old forest structures or increase stand growth for timber production. However, management, including restoration activities, is a contentious issue throughout the native range of redwood because of the history of overexploitation of this resource and perceptions that overexploitation is continuing. This paper reviews the science of early stand dynamics in coast redwood and their implications for restoration and other silvicultural strategies.

  1. Occurrence of shrubs and herbaceous vegetation after clear cutting old-growth Douglas-fir in the Oregon Cascades.

    Science.gov (United States)

    Vern P. Yerkes

    1960-01-01

    Land managers often express a need for more complete information about the vegetative cover that develops on cutover areas between harvest of old-growth Douglas-fir (Pseudotsuga menziesii) and establishment of a young-growth forest. The composition and density of this cover frequently determines the management techniques that must be used to...

  2. Development of silvicultural systems for maintaining old-growth conditions in the temperate rainforest of southeast Alaska.

    Science.gov (United States)

    Michael H. McClellan

    2004-01-01

    In the old-growth temperate rainforests of southeast Alaska, concerns over clearcutting effects on habitat, visual quality, slope stability, and biodiversity have created a demand for the use of other silvicultural systems. The forest vegetation and animal taxa of southeast Alaska appear to be well adapted to frequent, widespread, small-scale disturbance, suggesting...

  3. Litterfall, litter decomposition and nitrogen mineralization in old-growth evergreen and secondary deciduous Nothofagus forests in south-central Chile Aporte, descomposición de hojarasca y mineralización de nitrógeno en bosques siempreverdes de antiguo crecimiento y bosques secundarios deciduos, centro-sur de Chile

    Directory of Open Access Journals (Sweden)

    JEROEN STAELENS

    2011-03-01

    Full Text Available South Chilean forest ecosystems represent one of the largest areas of old-growth temperate rainforests remaining in the Southern hemisphere and have a high ecological value, but suffer from deforestation, invasion by exotic species, fragmentation, and increasing atmospheric nitrogen (N deposition. To support sustainable forest management, more knowledge is required on nutrient cycling of these ecosystems. Therefore, a descriptive study of nutrient dynamics was done in four Valdivian rainforests in the lower Andes range of south Chile: old-growth and altered evergreen stands and unmanaged and managed secondary deciduous stands. Time series were measured for (i mass (four year and nutrient content (N, K, Ca, and Mg; one year of litterfall, (ii decomposition and nutrient dynamics (N, C, K, Ca, Mg, and P; one year of leaf litter and Saxegothaea conspicua bark litter, and (iii in situ topsoil net N mineralization (one year. Litterfall in the four stands ranged from 3.5 to 5.8 ton ha-1 yr-1, was temporarily lower in the managed than in the unmanaged deciduous stand and had a different seasonality in the evergreen stands than in the deciduous stands. Leaf litter decomposed faster (on average 32 % mass loss after one year than bark litter (8 % but without significant differences between leaf litter types. Net N in evergreen leaf litter decreased during decomposition but increased in deciduous leaf litter. Net soil N mineralization was fastest in the pristine evergreen stand, intermediate in the deciduous stands and slowest in the altered evergreen forest. Given the absence of replicated stands, the definite impact of forest type or management regime on the internal nutrient cycling cannot be demonstrated. Nevertheless, the results suggest that management can affect nutrient turnover by altering species composition and forest structure, while recent (five years selective logging in secondary deciduous forest did not affect litter decomposition or N

  4. Physiology and growth of redwood and Douglas-fir planted after variable density retention outside redwood’s range

    Science.gov (United States)

    Lucy Kerhoulas; Nicholas Kerhoulas; Wade Polda; John-Pascal Berrill

    2017-01-01

    Reforestation following timber harvests is an important topic throughout the coast redwood (Sequoia sempervirens (D. Don) Endl.) range. Furthermore, as drought-induced mortality spreads across many of California’s forests, it is important to understand how physiology and stand structure influence reforestation success. Finally, as climate...

  5. The application of LANDSAT remote sensing technology to natural resources management. Section 1: Introduction to VICAR - Image classification module. Section 2: Forest resource assessment of Humboldt County.

    Science.gov (United States)

    Fox, L., III (Principal Investigator); Mayer, K. E.

    1980-01-01

    A teaching module on image classification procedures using the VICAR computer software package was developed to optimize the training benefits for users of the VICAR programs. The field test of the module is discussed. An intensive forest land inventory strategy was developed for Humboldt County. The results indicate that LANDSAT data can be computer classified to yield site specific forest resource information with high accuracy (82%). The "Douglas-fir 80%" category was found to cover approximately 21% of the county and "Mixed Conifer 80%" covering about 13%. The "Redwood 80%" resource category, which represented dense old growth trees as well as large second growth, comprised 4.0% of the total vegetation mosaic. Furthermore, the "Brush" and "Brush-Regeneration" categories were found to be a significant part of the vegetative community, with area estimates of 9.4 and 10.0%.

  6. Turbulence considerations for comparing ecosystem exchange over old-growth and clear-cut stands for limited fetch and complex canopy flow conditions

    Science.gov (United States)

    Sonia Wharton; Matt Schroeder; Kyaw Tha Paw U; Matthias Falk; Ken Bible

    2009-01-01

    Carbon dioxide (CO2), water vapor, and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent evergreen forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early...

  7. Inbreeding depression in selfs of redwood

    Science.gov (United States)

    W. J. Libby; B. G. McCutchan; C. I. Millar

    1981-01-01

    Given the polyploid chromosome constitution of Sequoia sempervirens, there was reason to question whether it would exhibit inbreeding depression. Preliminary results from studies of self and related outcross families are reported as a guide to the selection of trees for redwood seed orchards and breeding-orchards. The data indicate that, compared to...

  8. Using wood quality measures to evaluate second-growth redwood

    Science.gov (United States)

    Stephen L. Quarles; Yana. Vlachovic

    2012-01-01

    Redwood (Sequoia sempervirens) a valued species for use in appearance grade applications, such as decking, exterior siding and interior paneling, because of its dimensional stability. It is also valued for certain exterior-use applications because of its natural decay resistance. Studies have found that young-growth redwood is less resistant to...

  9. Late-successional forests and northern spotted owls: how effective is the Northwest Forest Plan?

    Science.gov (United States)

    Miles Hemstrom; Martin G. Raphael

    2000-01-01

    This paper describes the late-successional and old-growth forest and the northern spotted owl effectiveness monitoring plans for the Northwest Forest Plan. The effectiveness monitoring plan for late-successional and old-growth forests will track changes in forest spatial distribution, and within-stand structure and composition, and it will predict future trends.

  10. Regeneration after cutting of old-growth northern hardwoods in New Hampshire

    Science.gov (United States)

    William B. Leak; Robert W., Jr. Wilson

    1958-01-01

    Past experience with cuttings in old-growth northern hardwoods has demonstrated that the primary regeneration problem is to obtain a large proportion of desirable species of good quality. Regardless of method or intensity of cutting, the total amount of reproduction usually is adequate. Second-growth stands are a different story: this report pertains only to old-growth...

  11. Lidar-derived canopy architecture predicts Brown Creeper occupancy of two western coniferous forests

    Science.gov (United States)

    Jody C. Vogeler; Andrew T. Hudak; Lee A. Vierling; Kerri T. Vierling

    2013-01-01

    In western conifer-dominated forests where the abundance of old-growth stands is decreasing, species such as the Brown Creeper (Certhia americana) may be useful as indicator species for monitoring the health of old-growth systems because they are strongly associated with habitat characteristics associated with old growth and are especially sensitive to forest...

  12. Chapter 36: Status of Forest Habitat of the Marbled Murrelet

    Science.gov (United States)

    David A. Perry

    1995-01-01

    Marbled Murrelets (Brachyramphus marmoratus) have been shown to be dependant upon old-growth forests for nesting habitat. These forests have declined over the last century as they are cut for human use. This paper reviews the current status of old-growth forests along the west coast, in both the United States and Canada.

  13. Old Growth Conifer Watersheds in the Western Cascades, Oregon: Sentinels of Climate Change

    Science.gov (United States)

    Miles, K. M.

    2011-12-01

    In the Pacific Northwest, where the majority of precipitation falls during the winter, mountain snowpacks provide an important source of streamflow during the dry summer months when water demands are frequently highest. Increasing temperatures associated with climate change are expected to result in a decline in winter snowpacks in western North America, earlier snowmelt, and subsequently a shift in the timing of streamflows, with an increasing fraction of streamflows occurring earlier in the water year and drier conditions during the summer. Long-term records from headwater watersheds in old growth conifer forest at the H. J. Andrews Experimental Forest (HJ Andrews), Oregon, provide the opportunity to examine changes in climate, vegetation, and streamflow. Continuous streamflow records have been collected since 1953, 1964, and 1969 from three small (8.5-60 ha) watersheds (WS2, WS8, and WS9). Over the 40- to 50-year period of study, late winter to early summer monthly average minimum temperatures have increased by 1-2°C, and spring snow water equivalent at a nearby Snotel site has declined, but monthly precipitation has remained unchanged. Spring runoff ratios have declined in by amounts equivalent to 0.59-2.45 mm day-1 at WS2, WS8, and WS9, which are comparable to estimated rates of stand-level transpiration from trees in these watersheds. However, winter runoff ratios have not changed significantly at either WS2 or WS9, and have actually decreased at WS8 by 2.43 mm day-1 over the period of record. Furthermore, summer runoff ratios have not changed significantly at either WS8 or WS9, and have increased at WS2 by 0.34 mm day-1 over the period of record. These findings suggest that warming temperatures have resulted in a reduction in spring snowpacks and an earlier onset of evapotranspiration in the spring when soil moisture is abundant, but physiological responses of these conifer forests to water stress and water surplus may mitigate or exceed the expression of a

  14. Life-Cycle Inventory Analysis of Manufacturing Redwood Decking

    Science.gov (United States)

    Richard D. Bergman; Han-Sup Han; Elaine Oneil; Ivan L. Eastin

    2012-01-01

    Green building has become increasingly important. Therefore, consumers and builders often take into account the environmental attributes of a building material. This study determined the environmental attributes associated with manufacturing 38-mm × 138-mm (nominal 2 × 6) redwood decking in northern California using the life-cycle inventory method. Primary data...

  15. LBA-ECO CD-10 Forest Litter Data for km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a single text file which reports litter type and mass in the old-growth upland forest at the Para Western (Santarem) - km 67, Primary Forest...

  16. Distribution of cavity trees in midwestern old-growth and second-growth forests

    Science.gov (United States)

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson; David R. Larsen

    2003-01-01

    We used classification and regression tree analysis to determine the primary variables associated with the occurrence of cavity trees and the hierarchical structure among those variables. We applied that information to develop logistic models predicting cavity tree probability as a function of diameter, species group, and decay class. Inventories of cavity abundance in...

  17. Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA.

    Science.gov (United States)

    Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T

    2013-05-01

    A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860-2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20-30 years, at which point the visually healthy populations had consistently higher BAI values (22-34%) than the MPB-infected trees. These results suggest that growth rates two-three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955-59 for the visually healthy trees and 1960-64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies.

  18. Structural inspection and wind analysis of redwood cooling towers at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Chung, T.; Solack, T.; Hortel, J.

    1991-01-01

    As part of the plant upgrade program, structural analyses and field inspections were performed on four redwood cooling towers at the DOE Portsmouth gaseous diffusion plant located in Piketon, Ohio. The cooling towers are categorized as important hazard facilities. The loadings are derived from UCRL-15910 according to the pertinent hazard category. In addition to the seismic and wind loadings, the wood cooling towers are constantly subject to adverse environmental effects such as elevated temperature, chemical attack, icing and snow load, and motor vibrations. A thorough structural evaluation for all load combinations was performed for each of the cooling towers based on the structural code requirements of the Cooling Tower Institute and National Forest Products Association. Most stress criteria are unique for the redwood material. This evaluation was performed using finite element techniques on the global structural integrity and supplemented by hand calculations on the individual connection joints. Overloaded wood structural members and joints are identified by the analysis. The rectangular tower structure sits on a concrete basin that span across 60 ft by 200 ft. A major part of the cooling towers upgrading program involved field inspections of the individual cells of each tower. The primary purpose of these inspections was to identify any existing structural damage or deficiencies such as failed members, degraded wood, and deficiencies resulting from poor construction practice. Inspection of 40 cells identified some generic deficiencies that mostly are consistent with the analytical finding. Based on the analysis, some effective but inexpensive upgrading techniques were developed and recommended to bring the cooling towers into compliance with current DOE requirements

  19. Ecological restoration of an old-growth longleaf pine stand utilizing prescribed fire

    Science.gov (United States)

    J. Morgan Varner; John S. Kush; Ralph S. Meldahl

    2000-01-01

    Ecological restoration using prescribed fire has been underway for 3 years in an uncut, old-growth longleaf pine (Pinus palustris) stand located in south Alabama. The longleaf pine ecosystem requires frequent (once every 1-10 years) surface fire to prevent succesion to later several stages. Before this study began, this stand had not burned in >...

  20. Abundance of Armillaria within old-growth eastern hemlock stands in South-Central Pennsylvania

    Science.gov (United States)

    Matthew S. Fromm; Donald D. Davis

    2007-01-01

    Abstract—In early summer 2002, 329 soil-sampling pits were dug within an old-growth, eastern hemlock (Tsuga canadensis [L.] Carrière) stand in south-central Pennsylvania recently infested with the hemlock woolly adelgid (Adelges tsugae Annand). For comparison, 199 similar pits were dug in an adjacent hardwood stand. Rhizomorphs of...

  1. In vitro foliage susceptibility of canary islands laurel forests: a model for better understanding the ecology of Phytophthora ramorum

    Science.gov (United States)

    Eduardo Moralejo; Enrique Descals

    2008-01-01

    The tree species that dominate the cloud-zone forests of Macaronesia, the coastal redwoods of California, the Valdivian forests of Chile, the Atlantic forests of Brazil and the podocarp forests of New Zealand are all examples of paleoendemic species that once had a much wider distribution. They appear to owe their survival to the particular environmental conditions...

  2. Increment and mortality in a virgin Douglas-fir forest.

    Science.gov (United States)

    Robert W. Steele; Norman P. Worthington

    1955-01-01

    Is there any basis to the forester's rule of thumb that virgin forests eventually reach an equilibrium where increment and mortality approximately balance? Are we wasting potential timber volume by failing to salvage mortality in old-growth stands?

  3. Modeling Coast Redwood Variable Retention Management Regimes

    Science.gov (United States)

    John-Pascal Berrill; Kevin O' Hara

    2007-01-01

    Variable retention is a flexible silvicultural system that provides forest managers with an alternative to clearcutting. While much of the standing volume is removed in one harvesting operation, residual stems are retained to provide structural complexity and wildlife habitat functions, or to accrue volume before removal during subsequent stand entries. The residual...

  4. Bark water uptake promotes localized hydraulic recovery in coastal redwood crown

    Science.gov (United States)

    J. Mason Earles; Or Sperling; Lucas C. R. Silva; Andrew J. McElrone; Craig R. Brodersen; Malcolm P. North; Maciej A. Zwieniecki

    2015-01-01

    Coastal redwood (Sequoia sempervirens), the world’s tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, exploring potential flow mechanisms and biological significance. Using isotopic labelling and microCT imaging, we observed that water...

  5. Does water chemistry limit the distribution of New Zealand mud snails in Redwood National Park?

    Science.gov (United States)

    Vazquez, Ryan; Ward, Darren M.; Sepulveda, Adam

    2016-01-01

    New Zealand mud snails (NZMS) are exotic mollusks present in many waterways of the western United States. In 2009, NZMS were detected in Redwood Creek in Redwood National Park, CA. Although NZMS are noted for their ability to rapidly increase in abundance and colonize new areas, after more than 5 years in Redwood Creek, their distribution remains limited to a ca. 300 m reach. Recent literature suggests that low specific conductivity and environmental calcium can limit NZMS distribution. We conducted laboratory experiments, exposing NZMS collected from Redwood Creek to both natural waters and artificial treatment solutions, to determine if low conductivity and calcium concentration limit the distribution of NZMS in Redwood National Park. For natural water exposures, we held NZMS in water from their source location (conductivity 135 μS/cm, calcium 13 mg/L) or water from four other locations in the Redwood Creek watershed encompassing a range of conductivity (77–158 μS/cm) and calcium concentration (4 months) in the lowest conductivity waters from Redwood Creek and all but the lowest-conductivity treatment solutions, regardless of calcium concentration. However, reproductive output was very low in all natural waters and all low-calcium treatment solutions. Our results suggest that water chemistry may inhibit the spread of NZMS in Redwood National Park by reducing their reproductive output.

  6. Predicting redwood productivity using biophysical data, spatial statistics and site quality indices

    Science.gov (United States)

    John-Pascal Berrill; Kevin L. O’Hara; Shawn Headley

    2017-01-01

    Coast redwood (Sequoia sempervirens (D. Don) Endl.) height growth and basal area growth are sensitive to variations in site quality. Site factors known to be correlated with redwood stand growth and yield include topographic variables such as position on slope, exposure, and the composite variable: topographic relative moisture index. Species...

  7. Forests

    Science.gov (United States)

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  8. Turbulence Considerations for Comparing Ecosystem Exchange over Old-Growth and Clear-Cut Stands For Limited Fetch and Complex Canopy Flow Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Schroeder, M; Paw U, K T; Falk, M; Bible, K

    2009-01-08

    Carbon dioxide, water vapor and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early seral (ES). Here we present eddy flux and meteorological data from two early seral stands and the Wind River AmeriFlux old-growth forest during the growing season (March-October) in 2006 and 2007. We show an alternative approach to the usual friction velocity (u*) method for determining periods of adequate atmospheric boundary layer (ABL) mixing based on the ratio of mean horizontal ({bar u}) and vertical ({bar w}) wind flow to a modified turbulent kinetic energy scale (uTKE). This new parameter in addition to footprint modeling showed that daytime CO{sub 2} fluxes (F{sub NEE}) in small clear-cuts (< 10 hectares) can be measured accurately with EC if micrometeorological conditions are carefully evaluated. Peak midday CO{sub 2} fluxes (F{sub NEE} = -14.0 to -12.3 {micro}mol m{sup -2} s{sup -1}) at OG were measured in April in both 2006 and 2007 before bud break when air and soil temperatures and vapor pressure deficit were relatively low, and soil moisture and light levels were favorable for photosynthesis. At the early seral stands, peak midday CO{sub 2} fluxes (F{sub NEE} = -11.0 to -8.7 {micro}mol m{sup -2} s{sup -1}) were measured in June and July while spring-time CO{sub 2} fluxes were much smaller (F{sub NEE} = -3.8 to -3.6 {micro}mol m{sup -2} s{sup -1}). Overall, we measured lower evapotranspiration (OG = 230 mm; ES = 297 mm) higher midday F{sub NEE} (OG F{sub NEE} = -9.0 {micro}mol m{sup -2} s{sup -1}; ES F{sub NEE} = -7.3 {micro}mol m{sup -2} s{sup -1}) and higher Bowen ratios (OG {beta} = 2.0. ES {beta} = 1.2) at the old-growth forest than at the ES sites during the summer months (May-August). Eddy covariance studies such as ours

  9. Sapwood area - leaf area relationships for coast redwood

    OpenAIRE

    Stancioiu, P T; O'Hara, K L

    2005-01-01

    Coast redwood (Sequoia sempervirens (D. Don) Endl.) trees in different canopy strata and crown positions were sampled to develop relationships between sapwood cross-sectional area and projected leaf area. Sampling occurred during the summers of 2000 and 2001 and covered tree heights ranging from 7.7 to 45.2 m and diameters at breast height ranging from 9.4 to 92.7 cm. Foliage morphology varied greatly and was stratified into five types based on needle type (sun or shade) and twig color. A str...

  10. Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya.

    Science.gov (United States)

    Adnan, Muhammad; Hölscher, Dirk

    2012-12-01

    Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya Medicinal plants collected in Himalayan forests play a vital role in the livelihoods of regional rural societies and are also increasingly recognized at the international level. However, these forests are being heavily transformed by logging. Here we ask how forest transformation influences the diversity and composition of medicinal plants in northwestern Pakistan, where we studied old-growth forests, forests degraded by logging, and regrowth forests. First, an approximate map indicating these forest types was established and then 15 study plots per forest type were randomly selected. We found a total of 59 medicinal plant species consisting of herbs and ferns, most of which occurred in the old-growth forest. Species number was lowest in forest degraded by logging and intermediate in regrowth forest. The most valuable economic species, including six Himalayan endemics, occurred almost exclusively in old-growth forest. Species composition and abundance of forest degraded by logging differed markedly from that of old-growth forest, while regrowth forest was more similar to old-growth forest. The density of medicinal plants positively correlated with tree canopy cover in old-growth forest and negatively in degraded forest, which indicates that species adapted to open conditions dominate in logged forest. Thus, old-growth forests are important as refuge for vulnerable endemics. Forest degraded by logging has the lowest diversity of relatively common medicinal plants. Forest regrowth may foster the reappearance of certain medicinal species valuable to local livelihoods and as such promote acceptance of forest expansion and medicinal plants conservation in the region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12231-012-9213-4) contains supplementary material, which is available to authorized users.

  11. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo

    Czech Academy of Sciences Publication Activity Database

    Luke, S. H.; Fayle, Tom Maurice; Eggleton, P.; Turner, E. C.; Davies, R. G.

    2014-01-01

    Roč. 23, č. 11 (2014), s. 2817-2832 ISSN 0960-3115 R&D Projects: GA ČR GA14-32302S Grant - others:European Social Fund(CZ) CZ.1.07/2.3.00/20.0064; Australïan Research Council Discovery Grant(AU) DP140101541 Institutional support: RVO:60077344 Keywords : feeding groups * formicidae * functional groups Subject RIV: EH - Ecology, Behaviour Impact factor: 2.365, year: 2014 http://link.springer.com/article/10.1007%2Fs10531-014-0750-2

  12. Proceedings from the conference on the ecology and management of high-elevation forests in the central and southern Appalachian Mountains

    Science.gov (United States)

    James S. Rentch; Thomas M. Schuler

    2010-01-01

    The proceedings includes 18 peer-reviewed papers and 41 abstracts pertaining to acid deposition and nutrient cycling, ecological classification, forest dynamics, avifauna, wildlife and fisheries, forests pests, climate change, old-growth forest structure, regeneration, and restoration.

  13. LBA-ECO CD-10 Forest Litter Data for km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains a single text file which reports litter type and mass in the old-growth upland forest at the Para Western (Santarem) - km 67,...

  14. Road surface erosion on the Jackson Demonstration State Forest: results of a pilot study

    Science.gov (United States)

    Brian Barrett; Rosemary Kosaka; David. Tomberlin

    2012-01-01

    This paper presents results of a 3 year pilot study of surface erosion on forest roads in the Jackson Demonstration State Forest in California’s coastal redwood region. Ten road segments representing a range of surface, grade, and ditch conditions were selected for the study. At each segment, settling basins with tipping buckets were installed to measure...

  15. Accelerating the development of old-growth characteristics in second-growth northern hardwoods

    Science.gov (United States)

    Karin S. Fassnacht; Dustin R. Bronson; Brian J. Palik; Anthony W. D' Amato; Craig Lorimer; Karl J. Martin

    2015-01-01

    Active management techniques that emulate natural forest disturbance and stand development processes have the potential to enhance species diversity, structural complexity, and spatial heterogeneity in managed forests, helping to meet goals related to biodiversity, ecosystem health, and forest resilience in the face of uncertain future conditions. There are a number of...

  16. Fire-mediated pathways of stand development in Douglas-fir/western hemlock forests of the Pacific Northwest, USA

    Science.gov (United States)

    A.J. Tepley; F.J. Swanson; T.A. Spies

    2013-01-01

    Forests dominated by Douglas-fir and western hemlock in the Pacific Northwest of the United States have strongly influenced concepts and policy concerning old-growth forest conservation. Despite the attention to their old-growth characteristics, a tendency remains to view their disturbance ecology in relatively simple terms, emphasizing infrequent, stand-replacing (SR...

  17. Cutover tropical forest productivity potential merits assessment, Puerto Rico

    Science.gov (United States)

    Frank H. Wadsworth; Brynne Bryan; Julio Figueroa-Colón

    2010-01-01

    Timber extraction continues to add to vast cutover tropical forests. They are unattractive economically because of the loss of merchantable timber and the long delay foreseen for recovery. Despite this, wood in cutover tropical forests is in line to become more marketable as demand continues and old-growth forests become less accessible. In a cutover forest in Puerto...

  18. The care and handling of the forest gene pool

    Science.gov (United States)

    Roy R. Silen; Ivan Doig

    1976-01-01

    What must be the world's most magnificent pool of forest genes has timbered our Pacific slopes.Why else do the tallest firs, pines, spruces, hemlocks, redwoods, and larches all rise along the Pacific Coast of North America? Does their hugeness simply thrust up from our deep soils and mild, rainy climate? From a vantage point of three...

  19. NPP Boreal Forest: Kuusamo, Finland, 1967-1972, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three files (.txt format). One file provides stand characteristics, biomass, and production allocation data for an old-growth boreal forest...

  20. Forests

    International Nuclear Information System (INIS)

    Melin, J.

    1997-01-01

    Forests have the capacity to trap and retain radionuclides for a substantial period of time. The dynamic behaviour of nutrients, pollution and radionuclides in forests is complex. The rotation period of a forest stand in the Nordic countries is about 100 years, whilst the time for decomposition of organic material in a forest environment can be several hundred years. This means that any countermeasure applied in the forest environment must have an effect for several decades, or be reapplied continuously for long periods of time. To mitigate the detrimental effect of a contaminated forest environment on man, and to minimise the economic loss in trade of contaminated forest products, it is necessary to understand the mechanisms of transfer of radionuclides through the forest environment. It must also be stressed that any countermeasure applied in the forest environment must be evaluated with respect to long, as well as short term, negative effects, before any decision about remedial action is taken. Of the radionuclides studied in forests in the past, radiocaesium has been the main contributor to dose to man. In this document, only radiocaesium will be discussed since data on the impact of other radionuclides on man are too scarce for a proper evaluation. (EG)

  1. Mapping change of older forest with nearest-neighbor imputation and Landsat time-series

    Science.gov (United States)

    Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Warren B. Cohen; Robert E. Kennedy; Zhiqiang. Yang

    2012-01-01

    The Northwest Forest Plan (NWFP), which aims to conserve late-successional and old-growth forests (older forests) and associated species, established new policies on federal lands in the Pacific Northwest USA. As part of monitoring for the NWFP, we tested nearest-neighbor imputation for mapping change in older forest, defined by threshold values for forest attributes...

  2. Redefining Secondary Forests in the Mexican Forest Code: Implications for Management, Restoration, and Conservation

    Directory of Open Access Journals (Sweden)

    Francisco J. Román-Dañobeytia

    2014-05-01

    Full Text Available The Mexican Forest Code establishes structural reference values to differentiate between secondary and old-growth forests and requires a management plan when secondary forests become old-growth and potentially harvestable forests. The implications of this regulation for forest management, restoration, and conservation were assessed in the context of the Calakmul Biosphere Reserve, which is located in the Yucatan Peninsula. The basal area and stem density thresholds currently used by the legislation to differentiate old-growth from secondary forests are 4 m2/ha and 15 trees/ha (trees with a diameter at breast height of >25 cm; however, our research indicates that these values should be increased to 20 m2/ha and 100 trees/ha, respectively. Given that a management plan is required when secondary forests become old-growth forests, many landowners avoid forest-stand development by engaging slash-and-burn agriculture or cattle grazing. We present evidence that deforestation and land degradation may prevent the natural regeneration of late-successional tree species of high ecological and economic importance. Moreover, we discuss the results of this study in the light of an ongoing debate in the Yucatan Peninsula between policy makers, non-governmental organizations (NGOs, landowners and researchers, regarding the modification of this regulation to redefine the concept of acahual (secondary forest and to facilitate forest management and restoration with valuable timber tree species.

  3. Impact of fire in two old-growth montane longleaf pine stands

    Science.gov (United States)

    John S. Kush; John C. Gilbert; Crystal Lupo; Na Zhou; Becky Barlow

    2013-01-01

    The structure of longleaf pine (Pinus palustris Mill.) forests of the Southeastern United States Coastal Plains has been the focus of numerous studies. By comparison, the forests in the mountains of Alabama and Georgia are not well understood. Less than 1 percent of longleaf pine stands found in the montane portion of longleaf’s range are considered...

  4. Life-cycle assessment of redwood decking in the United States with a comparison to three other decking materials

    Science.gov (United States)

    R. Bergman; H. Sup-Han; E. Oneil; I. Eastin

    2013-01-01

    The goal of the study was to conduct a life-cycle inventory (LCI) of California redwood (Sequoia sempervirens) decking that would quantify the critical environmental impacts of decking from cradle to grave. Using that LCI data, a life-cycle assessment (LCA) was produced for redwood decking. The results were used to compare the environmental footprint...

  5. Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests.

    Science.gov (United States)

    J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec

    2005-01-01

    We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...

  6. Original Paper Floristic and structural changes in secondary forests ...

    African Journals Online (AJOL)

    Data from the first inventory in secondary and old-growth forests were ... Structural changes in secondary forests are less known in West Africa, and ... temporal succession from one time spatial ..... s = number of species sampled per hectare; S = species richness of the whole forest; NF = the number of taxonomic families,.

  7. Linking spatiotemporal disturbance history with tree regeneration and diversity in an old-growth forest in northern Japan

    Czech Academy of Sciences Publication Activity Database

    Altman, Jan; Fibich, Pavel; Lepš, J.; Uemura, S.; Hara, T.; Doležal, Jiří

    2016-01-01

    Roč. 21, č. 1 (2016), s. 1-13 ISSN 1433-8319 R&D Projects: GA ČR(CZ) GA14-12262S; GA ČR GAP504/12/1952; GA ČR GA13-13368S Institutional support: RVO:67985939 Keywords : Tree rings * Disturbance * Spatial pattern Subject RIV: EH - Ecology, Behaviour Impact factor: 3.123, year: 2016

  8. Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian Forest: Effects of stand age and elevation

    Czech Academy of Sciences Publication Activity Database

    Seedre, M.; Kopáček, Jiří; Janda, P.; Bače, R.; Svoboda, M.

    2015-01-01

    Roč. 346, June (2015), s. 106-113 ISSN 0378-1127 R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : carbon dynamics * soil carbon * spruce biomass C * dead root C * unmanaged ecosystem Subject RIV: GK - Forestry Impact factor: 2.826, year: 2015

  9. The economic significance of mortality in old-growth Douglas-fir management.

    Science.gov (United States)

    R.O. McMahon

    1961-01-01

    Current mortality in the Douglas-fir subregion, exclusive of catastrophic mortality, approximates a billion feet a year. The Forest Service report "Timber Resources for America's Future" recommended "...utilizing a substantial portion of the unsalvaged mortality loss..." as one means of permanently increasing the Nation's timber supply and...

  10. Relationships between growth, quality, and stocking within managed old-growth northern hardwoods

    Science.gov (United States)

    Chris Gronewold; Anthony W. D' Amato; Brian J. Palik

    2012-01-01

    An understanding of long-term growth dynamics is central to the development of sustainable uneven-aged silvicultural systems for northern hardwood forests in eastern North America. Of particular importance are quantitative assessments of the relationships between stocking control and long-term growth and quality development. This study examined these relationships in a...

  11. Forest fragmentation in Vietnam : Effects on tree diversity, populations and genetics

    NARCIS (Netherlands)

    Ha, V.T.

    2015-01-01

    Millions of square kilometers of the Earth’s surface is covered by forest fragments, and a quarter of remaining tropical forest has been fragmented. In Southeast Asia, about 650,000 ha of natural forests are fragmented per year. Fragmentation of old growth forests is considered to be the greatest

  12. Graduate theses produced from research conducted on Jackson Demonstration State Forest

    Science.gov (United States)

    Peter Cafferata

    1990-01-01

    A primary goal for JDSF is to carry out research on the various aspects of forestry in the redwood region. One avenue to do this has been to encourage university forestry departments to do experimental projects here. Since 1980, funding for many researchers has been provided through CDF's Forest Resource Improvement Fund (FRIF). Each year, money is made...

  13. The role of old forests and big trees in forest carbon sequestration in the Pacific Northwest

    Science.gov (United States)

    Andrew N. Gray

    2015-01-01

    Forest ecosystems are an important component of the global carbon (C) cycle. Recent research has indicated that large trees in general, and old-growth forests in particular, sequester substantial amounts of C annually. C sequestration rates are thought to peak and decline with stand age but the timing and controls are not well-understood. The objectives of this study...

  14. Clonal Spread in Second Growth Stands of Coast Redwood, Sequoia sempervirens

    Science.gov (United States)

    Vladimir Douhovnikoff; Richard S. Dodd

    2007-01-01

    Coast redwood (Sequoia sempervirens) is one of the rare conifers to reproduce successfully through clonal spread. The importance of this mode of reproduction in stand development is largely unknown. Understanding the importance of clonal spread and the spatial structure of clones is crucial for stand management strategies that would aim to maximize...

  15. Using Scientific Information to Develop Management Strategies for Commercial Redwood Timberlands

    Science.gov (United States)

    Jeffrey C. Barrett

    2007-01-01

    In 1999, PALCO (Pacific Lumber Company), a private landowner, and the state and federal governments agreed to implement a unique Habitat Conservation Plan (HCP) on 89,000 hectares of commercial redwood and Douglas-fir timberlands in Humboldt County, California. The aquatics portion of the PALCO HCP contains a set of "interim" conservation strategies developed...

  16. Participation of gibberellin in the control of apical dominance in soybean and redwood

    Energy Technology Data Exchange (ETDEWEB)

    Ruddat, M.; Pharis, R.P.

    1966-01-01

    Loss of apical dominance in soybeans and redwood was increased when the plants were treated with the growth retardant AMO-1618. Simultaneous application of gibberellin reduced the number of elongating buds and promoted growth of the first or second uppermost auxillary bud, thus restoring apical dominance. It is concluded that gibberellin participates in the expression of apical dominance. 30 references, 2 tables.

  17. The History of Redwood Records: Cultural and Economic Perspectives on a Feminist Subculture.

    Science.gov (United States)

    Lont, Cynthia M.

    Using interviews and subcultural artifacts, such as inner sleeves of albums, this paper reports on the career of Holly Near and the history of Redwood Records, a label providing music to the lesbian-feminist subculture. First, the paper discusses the political and artistic avenues that were available to Near, the reasons she chose political music,…

  18. NPP Tropical Forest: Consistent Worldwide Site Estimates, 1967-1999, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains documented field measurements of NPP components for 39 old-growth tropical forests distributed worldwide between latitudes 23.58 N and 23.58...

  19. Ectomycorrhizal Community Structure and Soil Characteristics of Mature Lodgepole Pine (Pinus Contorta) and Adjacent Stands of Old Growth Mixed Conifer in Yellowstone National Park, Wyoming USA

    Science.gov (United States)

    Douglas, Robert B.; Parker, V. Thomas; Cullings, Kenneth W.; Sun, Sidney (Technical Monitor)

    2003-01-01

    Forest development patterns following disturbance are known to influence the physical and chemical attributes of soils at different points in time. Changes in soil resources are thought to have a corresponding effect on ectomycorrhizal (ECM) community structure. We used molecular methods to compare below-ground ECM species richness, composition, and abundance between adjacent stands of homogenous lodgepole pine and old growth mixed conifer in Yellowstone National Park (YNP). In each stand-type we collected soil cores to both identify mycorrhizae and assess soil chemistry. Although no statistical difference was observed in the mean number of ECM root tips per core between stand types, the total number of species identified (85 versus 35) and the mean number of species per core (8.8 +/- 0.6 versus 2.5 +/- 0.3) were significantly higher in lodgepole pine. Differences between the actual and estimated species richness levels indicated that these forest types support a high number of ECM species and that undersampling was severe. Species compositions were widely disparate between stands where only four species were shared out of a total of 116. Soil analysis also revealed that mixed conifer was significantly lower in pH, but higher in organic matter, potassium, phosphorus, and ammonium when compared to lodgepole pine stands. Species richness per core was correlated with these chemical data, however, analysis of covariance indicated that stand type was the only statistically significant factor in the observed difference in species richness. Our data suggest that ECM fungal richness increases as homogenous lodgepole pine stands grow and mature, but declines after Engelmann spruce and subalpine fir colonize. Despite difficulties linking species composition with soil chemistry, there are a variety of physical and chemical factors that could be influencing ECM community structure. Future field experiments are necessary to test some of the mechanisms potentially operating

  20. Comparison of Red-Cockaded Woodpecker (Piciodes borealis) Nestling Diet in Old-Growth and Old-Field Longleaf Pine (Pinus palustris)

    Energy Technology Data Exchange (ETDEWEB)

    Hanula, J.L.; Engstrom, R.T.

    1999-10-01

    Automatic cameras were used to record adult woodpecker diets in old-growth and old-field longleaf pine in the South. Roaches were the number one prey for the woodpeckers based on either biomass or numbers. The latter ranged from 37% to 57% of the prey numbers and 55%-73% of the biomass. Morisita's index of similarity between old-field and old growth varied from 0.89 to 0.95. The authors conclude that the prey base is similar in both conditions and that old-growth provides similar foraging habitat.

  1. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    Science.gov (United States)

    Phillip J. Van Mantgem; Nathan L. Stephenson; Eric Knapp; John Barrles; Jon E. Keeley

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before...

  2. Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed

    Science.gov (United States)

    Randy A. Dahlgren

    1998-01-01

    The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

  3. Surveying marbled murrelets at inland forested sites: a guide

    Science.gov (United States)

    Peter W.C. Paton; C. John Ralph; Harry R. Carter; S. Kim Nelson

    1990-01-01

    The marbled murrelet (Brachyramphus marmoratus), a seabird, nests in forested stands from southeast Alaska south to Santa Cruz, California. Because of this species' close association with old-growth forests, researchers and land managers need a method to assess murrelet distribution and use patterns throughout its range. This guide describes a...

  4. Repeated insect outbreaks promote multi-cohort aspen mixedwood forests in Northern Minnesota, USA

    Science.gov (United States)

    Michael Reinikainen; Anthony W. D' Amato; Shawn. Fraver

    2012-01-01

    Characterizing the timing, severity, and agents of historic forest disturbances is critical to developing management and conservation strategies based on natural processes. Typically such information is derived from retrospective studies of remnant old-growth forests; however, this approach has limited application in regions dominated by secondary forests heavily...

  5. Overstory response to alternative thinning treatments in young Douglas-fir forests of Western Oregon.

    Science.gov (United States)

    Liane R. Davis; Klaus J. Puettmann; Gabriel F. Tucker

    2007-01-01

    An increase in land dominated by young second-growth Douglas-fir forests in the Pacific Northwest has coincided with heightened concerns over loss of old-growth habitat. In search of options for managing young forests to provide late-successional forest structures, the Young Stand Thinning and Diversity Study was designed to test the effectiveness of modified thinning...

  6. Relating past land-use, topography, and forest dynamics in the Illinois Ozark hills

    Science.gov (United States)

    Saskia van de Gevel; Trevor B. Ozier; Charles M. Ruffner; John W. Groninger

    2003-01-01

    Trail of Tears State Forest is a 5,200 acre tract in the Illinois Ozark Hills and represents one of the largest blocks of contiguous forest in the lower Midwest. A highly dissected terrain with long, narrow ridges that fall away sharply on either side characterizes the area. The forest cover is a mosaic of oak-hickory approaching "old growth" condition...

  7. Natural forest regeneration and ecological restoration in human-modified tropical landscapes

    NARCIS (Netherlands)

    Martínez-Ramos, Miguel; Pingarroni, Aline; Rodríguez-Velázquez, Jorge; Toledo-Chelala, Lilibeth; Zermeño-Hernández, Isela; Bongers, Frans

    2016-01-01

    In human-modified tropical landscapes (HMLs) the conservation of biodiversity, functions and services of forest ecosystems depends on persistence of old growth forest remnants, forest regeneration in abandoned agricultural fields, and restoration of degraded lands. Understanding the impacts of

  8. Edge effect on palm diversity in rain forest fragments in western Ecuador

    DEFF Research Database (Denmark)

    Baez, S.; Balslev, Henrik

    2007-01-01

    to be idiosyncratic and to depend on the level of disturbance at edges. This paper explores how variation in forest structure at the edges of two old-growth forest fragments in a tropical rain forest in western Ecuador affects palms of different species, life-forms, and size classes. We investigate (1) how edge...

  9. Carbon storage in young growth coast redwood stands

    Science.gov (United States)

    Dryw A. Jones; Kevin A. O' Hara

    2012-01-01

    Carbon sequestration is an emerging forest management objective within California and around the world. With the passage of the California's Global Warming Solutions Act (AB32) our need to understand the dynamics of carbon sequestration and to accurately measure carbon storage is essential to insure successful implementation of carbon credit projects throughout...

  10. Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon.

    Science.gov (United States)

    Cobb, Richard C; Meentemeyer, Ross K; Rizzo, David M

    2016-09-01

    Fire and forest disease have significant ecological impacts, but the interactions of these two disturbances are rarely studied. We measured soil C, N, Ca, P, and pH in forests of the Big Sur region of California impacted by the exotic pathogen Phytophthora ramorum, cause of sudden oak death, and the 2008 Basin wildfire complex. In Big Sur, overstory tree mortality following P. ramorum invasion has been extensive in redwood and mixed evergreen forests, where the pathogen kills true oaks and tanoak (Notholithocarpus densiflorus). Sampling was conducted across a full-factorial combination of disease/no disease and burned/unburned conditions in both forest types. Forest floor organic matter and associated nutrients were greater in unburned redwood compared to unburned mixed evergreen forests. Post-fire element pools were similar between forest types, but lower in burned-invaded compared to burned-uninvaded plots. We found evidence disease-generated fuels led to increased loss of forest floor C, N, Ca, and P. The same effects were associated with lower %C and higher PO4-P in the mineral soil. Fire-disease interactions were linear functions of pre-fire host mortality which was similar between the forest types. Our analysis suggests that these effects increased forest floor C loss by as much as 24.4 and 21.3 % in redwood and mixed evergreen forests, respectively, with similar maximum losses for the other forest floor elements. Accumulation of sudden oak death generated fuels has potential to increase fire-related loss of soil nutrients at the region-scale of this disease and similar patterns are likely in other forests, where fire and disease overlap.

  11. Response of understory vegetation over 10 years after thinning in an old-growth cedar and cypress plantation overgrazed by sika deer in eastern Japan

    Directory of Open Access Journals (Sweden)

    Atsushi Tamura

    2017-01-01

    Full Text Available Background Forest management strategies such as thinning have long been used to enhance ecosystem functions, especially in plantations. Thinning in plantations with high deer density, however, may not yield a desired increase in understory vegetation because deer graze on germinating plants after thinning. Here, we examine the changes in understory vegetation after thinning in plantations that have been overgrazed by sika deer to provide insight into the effects of thinning on ecosystem functions such as soil conservation and biological diversity. Methods We conducted our survey in the Tanzawa Mountains of eastern Japan. We surveyed the change in understory vegetation within and outside of three deer exclosures on a single slope with three levels of understory vegetation cover: sparse (1%, exclosure “US”, moderate (30%, exclosure “MM”, and dense (80%, exclosure “LD” over 10 years after a 30% thinning of an old-growth cedar and cypress plantation which was overgrazed by sika deer. Results Understory vegetation cover, biomass and species richness increased within and outside the “US” and “MM” exclosures after thinning, and biomass was greater within than outside the exclosures at 10 years after thinning. Unpalatable species dominated both “US” and “MM” exclosures before thinning, and trees and shrubs dominated within the exclosures over time after thinning. In contrast, unpalatable, grazing-tolerant, perennial, and annual species increased outside the “US” and “MM” exclosures. No noticeable changes were observed within and outside the “LD” exclosure when compared with the “US” and “MM” exclosures. Conclusions Our results suggest that thinning a stand by 30% based on volume resulted in an increase in understory vegetation cover mainly composed of both unpalatable and grazing-tolerant species in a plantation forest where understory vegetation is sparse or moderate and sika deer density is high. We

  12. Seasonal Variation in Soil Greenhouse Gas Emissions at Three Age-Stages of Dawn Redwood (Metasequoia glyptostroboides Stands in an Alluvial Island, Eastern China

    Directory of Open Access Journals (Sweden)

    Shan Yin

    2016-11-01

    Full Text Available Greenhouse gas (GHG emissions are an important part of the carbon (C and nitrogen (N cycle in forest soil. However, soil greenhouse gas emissions in dawn redwood (Metasequoia glyptostroboides stands of different ages are poorly understood. To elucidate the effect of plantation age and environmental factors on soil GHG emissions, we used static chamber/gas chromatography (GC system to measure soil GHG emissions in an alluvial island in eastern China for two consecutive years. The soil was a source of CO2 and N2O and a sink of CH4 with annual emissions of 5.5–7.1 Mg C ha−1 year−1, 0.15–0.36 kg N ha−1 year−1, and 1.7–4.5 kg C ha−1 year−1, respectively. A clear exponential correlation was found between soil temperature and CO2 emission, but a negative linear correlation was found between soil water content and CO2 emission. Soil temperature had a significantly positive effect on CH4 uptake and N2O emission, whereas no significant correlation was found between CH4 uptake and soil water content, and N2O emission and soil water content. These results implied that older forest stands might cause more GHG emissions from the soil into the atmosphere because of higher litter/root biomass and soil carbon/nitrogen content compared with younger stands.

  13. Development of the selection system in northern hardwood forests of the Lake States: an 80-year silviculture research legacy

    Science.gov (United States)

    Christel Kern; Gus Erdmann; Laura Kenefic; Brian Palik; Terry. Strong

    2014-01-01

    The northern hardwood research program at the Dukes Experimental Forest in Michigan and Argonne Experimental Forest in Wisconsin has been adapting to changing management and social objectives for more than 80 years. In 1926, the first northern hardwood silviculture study was established in old-growth stands at the Dukes Experimental Forest. In response to social...

  14. Effect of Preservative Treatment on Fungal Colonization of Teak, Redwood, and Western Red Cedar

    DEFF Research Database (Denmark)

    Cabrera Orozco, Yohanna; Freitag, F.; Morrell, Jeffrey J.

    Fungal flora present in preservative treated samples or non-treated samples from sapwood and heartwood of teak, western red cedar, redwood, and southern yellow pine was assessed after 6 to 18 months of exposure near Hilo, Hawaii. The objectives were to compare fungal composition and diversity...... between treated and non-treated samples, and to examine the use of molecular techniques for assessing fungal community structure in a ground-proximity-test located in Hilo, Hawaii. Fungi were recovered in culture after 6, 12, or 18 months, yielding 178 unique DNA sequences that represented 85 taxa...

  15. Climatic and physiological effects on leaf and tree-ring stable isotopes in California redwoods

    Science.gov (United States)

    Ambrose, A. R.; Baxter, W.; Wong, C.; Dawson, T. E.; Carroll, A.; Voelker, S.

    2016-12-01

    Variation in the stable isotope composition of organic matter can provide important information about environmental change and biological responses to it. We analyzed the stable carbon (d13C) and oxygen (d18O) isotope ratios of leaves and of the cellulose from individual tree-rings of California's two redwood species to examine how these trees have responded to environmental variation and change in both time and space. Analyses of leaf d13C for both coast redwood (Sequoia sempervirens) and giant sequoia (Sequoiadendron giganteum) from throughout their geographical ranges show a marked gradient with tree height for trees of all sizes and ages but no clear difference among species or populations. The gradient is best explained by tree response to changes in both microenvironment and physiology that are known to change with height. In contrast, leaf d18O for both species showed no clear relationship with height but very clear differences between species and populations with giant sequoia displaying a much stronger inferred leaf-level response to the higher evaporative conditions present in the Sierra Nevada mountains as compared to the coast. Both species showed population-level differences with the driest and warmest sites most distinct from all of the others. Intra-annual analyses of d13C and d18O in tree-rings over a 21-year period (1974-1994) were also used to explore how climate and tree response to climate was recorded for both species. These analyses revealed unique (local) climatic effects and response to the climate for each species and population of both redwood species. Most pronounced was a significant increase in intrinsic Water Use Efficiency (iWUE) derived from d13C data over the study period in both species, and a distinct d18O response in relation to drought (e.g. 1976/1977) and to warmer days and nights and above-average precipitation (e.g., 1982-1985). Patterns of co-variation in d13C and d18O in both species suggest that during dry and also warm

  16. A tool for assessing ecological status of forest ecosystem

    Science.gov (United States)

    Rahman Kassim, Abd; Afizzul Misman, Muhammad; Azahari Faidi, Mohd; Omar, Hamdan

    2016-06-01

    Managers and policy makers are beginning to appreciate the value of ecological monitoring of artificially regenerated forest especially in urban areas. With the advent of more advance technology in precision forestry, high resolution remotely sensed data e.g. hyperspectral and LiDAR are becoming available for rapid and precise assessment of the forest condition. An assessment of ecological status of forest ecosystem was developed and tested using FRIM campus forest stand. The forest consisted of three major blocks; the old growth artificially regenerated native species forests, naturally regenerated forest and recent planted forest for commercial timber and other forest products. Our aim is to assess the ecological status and its proximity to the mature old growth artificially regenerated stand. We used airborne LiDAR, orthophoto and thirty field sampling quadrats of 20x20m for ground verification. The parameter assessments were grouped into four broad categories: a. forest community level-composition, structures, function; landscape structures-road network and forest edges. A metric of parameters and rating criteria was introduced as indicators of the forest ecological status. We applied multi-criteria assessment to categorize the ecological status of the forest stand. The paper demonstrates the application of the assessment approach using FRIM campus forest as its first case study. Its potential application to both artificially and naturally regenerated forest in the variety of Malaysian landscape is discussed

  17. Protecting the forests while allowing removal of damaged trees may imperil saproxylic insect biodiversity in the Hyrcanian Beech Forests of Iran

    Science.gov (United States)

    Müller Jörg; Thorn Simon; Baier Roland; Sagheb-Talebi Khosro; Barimani Hassan V.; Seibold Sebastian; Michael D. Ulyshen; Gossner Martin M.

    2015-01-01

    The 1.8 million ha of forest south of the Caspian Sea represent a remarkably intact ecosystem with numerous old-growth features and unique species assemblages. To protect these forests, Iranian authorities recently passed a law which protects healthy trees but permits the removal of injured, dying and dead trees. To quantify the biodiversity effects of this strategy,...

  18. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  19. Comparison of red-cockaded woodpecker (Picoides borealis) nestling diet in old-growth and old-field longleaf pine (Pinus palustris) habitats

    Science.gov (United States)

    James L. Hanula; R. Todd Engstrom

    2000-01-01

    Automatic cameras were used to record adult red-cockaded woodpecker (Picoides borealis) nest visits with food for nestlings. Diet of nestlings on or near an old-growth longleaf pine (Pinus palustris) remnant in southern Georgia was compared to that in longleaf pine stands established on old farm fields in western South Carolina....

  20. Implementation of a thinning and burning study in tanoak-redwood stands in Santa Cruz and Mendocino counties

    Science.gov (United States)

    Kevin L. O?Hara; Kristen M. Waring

    2008-01-01

    Three silvicultural treatment study sites are being established to examine the effects of thinning and prescribed burning on infection and spread of Phytophthora ramorum. Study sites are located in Mendocino and Santa Cruz counties, California. Stands are even-aged redwood/tanoak mixtures.

  1. Sediment transport and storage in North Fork Caspar Creek, Mendocino County, California: water years 1980-1988

    Science.gov (United States)

    Michael Brent Napolitano

    1996-01-01

    Abstract - The old-growth redwood forest of North Fork Caspar Creek was clear-cut between 1864 and 1904. Previous research on logging-related changes in suspended sediment and streamflow would suggest that North Fork Caspar Creek has recovered from historical logging (Rice et al., 1979; Ziemer, 1981); research on the influence of large woody debris (LWD) on channel...

  2. Crush performance of redwood for developing design procedures for impact limiters

    International Nuclear Information System (INIS)

    Cramer, S.M.; Hermanson, J.C.; McMurtry, W.M.

    1995-01-01

    Containers for the transportation of hazardous and radioactive materials incorporate redwood in impact limiters. Redwood is an excellent energy absorber, but only the most simplistic information exists on its crush properties. Tbe stress-strain interrelationship for any wood species subject to three-dimensional stresses is largely unknown for any all stress condition and wood behavior at both high strains and high strain-rates is known only in general terms. Both stress-strain and crush failure theories have been developed based only on uniaxial load tests. The anisotropy of wood adds an additional complexity to measuring wood response and developing suitable theories to describe it. A long history of wood utilization in the building industry has led to design procedures and property information related to simple uniaxial loadings that do not inflict damage to the wood. This lack of knowledge may be surprising for a material that has a long history of engineered use, but the result is difficulty in utilizing wood in more sophisticated designs such as impact limiters. This study provides a step toward filling the information gap on wood material response for high performance applications such as impact limiters

  3. How much primary coastal temperate rain forest should society retain? Carbon uptake, recreation and other values

    NARCIS (Netherlands)

    Kooten, van G.C.; Bulte, E.H.

    2000-01-01

    In this study, average and marginal approaches for determining optimal preservation of primary forests on British Columbia's coast are compared. When the market values from timber, mushrooms, etc., and nonmarket benefits (e.g., carbon sink, preservation values) of preserving old-growth forests are

  4. Multi-decadal establishment for single-cohort Douglas-fir forests

    Science.gov (United States)

    James A. Freund; Jerry F. Franklin; Andrew J. Larson; James A. Lutz

    2014-01-01

    The rate at which trees regenerate following stand-replacing wildfire is an important but poorly understood process in the multi-century development of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) forests. Temporal patterns of Douglas-fir establishment reconstructed from old-growth forests (>450 year) have...

  5. Species diversity of polyporoid and corticioid fungi in northern hardwood forests with differing management histories

    Science.gov (United States)

    Daniel L. Lindner; Harold H., Jr. Burdsall; Glen R. Stanosz

    2006-01-01

    Effects of forest management on fungal diversity were investigated by sampling fruit bodies of polyporoid and corticioid fungi in forest stands that have different management histories. Fruit bodies were sampled in 15 northern hardwood stands in northern Wisconsin and the upper peninsula of Michigan. Sampling was conducted in five old-growth stands, five uneven-age...

  6. Disturbance and topography shape nitrogen availability and ä15N over long-term forest succession

    Science.gov (United States)

    Steven S. Perakis; Alan J. Tepley; Jana E. Compton

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil ä15N values. We examined soil and foliar patterns in N and ä15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane...

  7. Demographic disequilibrium caused by canopy gap expansion and recruitment failure triggers forest cover loss

    Science.gov (United States)

    Martin Barrette; Louis Bélanger; Louis De Grandpré; Alejandro A. Royo

    2017-01-01

    In the absence of large-scale stand replacing disturbances, boreal forests can remain in the old-growth stage over time because of a dynamic equilibrium between small-scale mortality and regeneration processes. Although this gap paradigm has been a cornerstone of forest dynamics theory and practice for decades, evidence suggests that it could be disrupted, threatening...

  8. Stand-level gas-exchange responses to seasonal drought in very young versus old Douglas-fir forests of the Pacific Northwest, USA

    Science.gov (United States)

    Sonia Wharton; Matt Schroeder; Ken Bible; Matthias Falk; Kyaw Tha Paw U

    2009-01-01

    This study examines how stand age affects ecosystem mass and energy exchange response to seasonal drought in three adjacent Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. The sites include two early seral (ES) stands (0 to 15 years old) and an old-growth (OG) (~450 to 500 years old) forest in the Wind River Experimental Forest,...

  9. A meta-analysis of functional group responses to forest recovery outside of the tropics.

    Science.gov (United States)

    Spake, Rebecca; Ezard, Thomas H G; Martin, Philip A; Newton, Adrian C; Doncaster, C Patrick

    2015-12-01

    Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old-growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta-analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old-growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional-group-specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old-growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old-growth values (between 140 years and never for recovery to old-growth values at 95% prediction limits). Non-saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old-growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives. © 2015 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  10. Carbon stock of oil palm plantations and tropical forests in Malaysia

    DEFF Research Database (Denmark)

    Kho, Lip Khoon; Jepsen, Martin Rudbeck

    2015-01-01

    cultivation (fallow forests) and 3) oil palm plantations. The forest ecosystems are classified by successional stage and edaphic conditions and represent samples along a forest succession continuum spanning pioneer species in shifting cultivation fallows to climax vegetation in old-growth forests. Total......In Malaysia, the main land change process is the establishment of oil palm plantations on logged-over forests and areas used for shifting cultivation, which is the traditional farming system. While standing carbon stocks of old-growth forest have been the focus of many studies, this is less...... the case for Malaysian fallow systems and oil palm plantations. Here, we collate and analyse Malaysian datasets on total carbon stocks for both above- and below-ground biomass. We review the current knowledge on standing carbon stocks of 1) different forest ecosystems, 2) areas subject to shifting...

  11. Influence of flooding and landform properties on riparian plant communities in an old-growth northern hardwood watershed

    Science.gov (United States)

    P. Charles Goebel; Kurt S. Pregitzer; Brian J. Palik

    2012-01-01

    In most forested landscapes, the organization of plant communities across stream valleys is thought to be regulated by a complex set of interactions including flooding, landform properties, and vegetation. However, few studies have directly examined the relative influence of frequent and infrequent flooding, as well as landform properties, on riparian plant community...

  12. Soil properties in old-growth Douglas-fir gaps in the western Cascade Mountains of Oregon

    Science.gov (United States)

    Robert P. Griffiths; Andrew N. Gray; Thomas A. Spies

    2010-01-01

    This study had three objectives: (1) to determine if there are correlations between aboveground vegetation and belowground soil properties within large 50-m-diameter gaps, (2) to determine how large gaps influence forest soils compared with nongap soils, and (3) to measure the effects of differently sized gaps on gap soils. Circular canopy gaps were created in old-...

  13. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests.

    Science.gov (United States)

    Riutta, Terhi; Malhi, Yadvinder; Kho, Lip Khoon; Marthews, Toby R; Huaraca Huasco, Walter; Khoo, MinSheng; Tan, Sylvester; Turner, Edgar; Reynolds, Glen; Both, Sabine; Burslem, David F R P; Teh, Yit Arn; Vairappan, Charles S; Majalap, Noreen; Ewers, Robert M

    2018-01-24

    Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha -1  year -1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests. © 2018 John Wiley & Sons Ltd.

  14. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  15. Silvicultural systems and cutting methods for ponderosa pine forests in the Front Range of the central Rocky Mountains

    Science.gov (United States)

    Robert R. Alexander

    1986-01-01

    Guidelines are provided to help forest managers and silviculturists develop even- and/or uneven-aged cutting practices needed to convert old-growth and mixed ponderosa pine forests in the Front Range into managed stands for a variety of resource needs. Guidelines consider stand conditions, and insect and disease susceptibility. Cutting practices are designed to...

  16. The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico

    NARCIS (Netherlands)

    Wolf, J.H.D.

    2005-01-01

    Epiphytes contribute up to over 30% of the vascular plant diversity of old-growth tropical rain forests, but little is known about their occurrence in exploited forests that are structurally altered. Here, I estimate epiphyte species richness and biomass on 35 oak host trees, equally divided over

  17. Managing heart rot in live trees for wildlife habitat in young-growth forests of coastal Alaska

    Science.gov (United States)

    Paul E. Hennon; Robin L. Mulvey

    2014-01-01

    Stem decays of living trees, known also as heart rots, are essential elements of wildlife habitat, especially for cavity-nesting birds and mammals. Stem decays are common features of old-growth forests of coastal Alaska, but are generally absent in young, managed forests. We offer several strategies for maintaining or restoring fungal stem decay in these managed...

  18. Teale Redwoods

    Data.gov (United States)

    California Natural Resource Agency — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state of...

  19. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests

    OpenAIRE

    Crouzeilles, Renato; Ferreira, Mariana S.; Chazdon, Robin L.; Lindenmayer, David B.; Sansevero, Jerônimo B. B.; Monteiro, Lara; Iribarrem, Alvaro; Latawiec, Agnieszka E.; Strassburg, Bernardo B. N.

    2017-01-01

    Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plants, birds, and invertebrates) and five measures of vegetation structure (cover, density, litter, biom...

  20. Fragmentation, topography, and forest age modulate impacts of drought on a tropical forested landscape in eastern Puerto Rico

    Science.gov (United States)

    Uriarte, M.; Schwartz, N.; Budsock, A.

    2017-12-01

    Naturally regenerating second-growth forests account for ca. 50% of tropical forest cover and provide key ecosystem services. Understanding climate impacts on these ecosystems is critical for developing effective mitigation programs. Differences in environmental conditions and landscape context from old-growth forests may exacerbate climate impacts on second-growth stands. Nearly 70% of forest regeneration is occurring in hilly, upland, or mountain regions; a large proportion of second-growth forests are also fragmented. The effects of drought at the landscape scale, however, and the factors that modulate landscape heterogeneity in drought impacts remain understudied. Heterogeneity in soil moisture, light, and temperature in fragmented, topographically complex landscapes is likely to influence climate impacts on these forests. We examine impacts of a severe drought in 2015 on a forested landscape in Puerto Rico using two anomalies in vegetation indices. The study landscape is fragmented and topographically complex and includes old- and second-growth forests. We consider how topography (slope, aspect), fragmentation (distance to forest edge, patch size), and forest age (old- vs second-growth) modulate landscape heterogeneity of drought impacts and recovery from drought. Drought impacts were more severe in second-growth forests than in old-growth stands. Both topography and forest fragmentation influences the magnitude of drought impacts. Forest growing in steep areas, south facing slopes, small patches, and closer to forest edges exhibited more marked responses to drought. Forest recovery from drought was greater in second-growth forests and south facing slopes but slower in small patches and closer to forest edges. These findings are congruent with studies of drought impacts on tree growth in the study region. Together these results demonstrate the need for a multi-scalar approach to the study of drought impacts on tropical forests.

  1. Whole-tree silvic identifications and the microsatellite genetic structure of a red oak species complex in an Indiana old-growth forest

    Science.gov (United States)

    Preston R. Aldrich; George R. Parker; Charles H. Michler; Jeanne Romero-Severson

    2003-01-01

    The red oaks (Quercus section Lobatae) include important timber species, but we know little about their gene pools. Red oak species can be difficult to identify, possibly because of extensive interspecific hybridization, although most evidence of this is morphological. We used 15 microsatellite loci to examine the genetic...

  2. Boreal Forests of Kamchatka: Structure and Composition

    OpenAIRE

    Eichhorn, Markus P.

    2010-01-01

    Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-domi...

  3. The future of tropical forests.

    Science.gov (United States)

    Wright, S Joseph

    2010-05-01

    Five anthropogenic drivers--land use change, wood extraction, hunting, atmospheric change, climate change--will largely determine the future of tropical forests. The geographic scope and intensity of these five drivers are in flux. Contemporary land use change includes deforestation (approximately 64,000 km(2) yr(-1) for the entire tropical forest biome) and natural forests regenerating on abandoned land (approximately 21,500 km(2) yr(-1) with just 29% of the biome evaluated). Commercial logging is shifting rapidly from Southeast Asia to Africa and South America, but local fuelwood consumption continues to constitute 71% of all wood production. Pantropical rates of net deforestation are declining even as secondary and logged forests increasingly replace old-growth forests. Hunters reduce frugivore, granivore and browser abundances in most forests. This alters seed dispersal, seed and seedling survival, and hence the species composition and spatial template of plant regeneration. Tropical governments have responded to these local threats by protecting 7% of all land for the strict conservation of nature--a commitment that is only matched poleward of 40 degrees S and 70 degrees N. Protected status often fails to stop hunters and is impotent against atmospheric and climate change. There are increasing reports of stark changes in the structure and dynamics of protected tropical forests. Four broad classes of mechanisms might contribute to these changes. Predictions are developed to distinguish among these mechanisms.

  4. First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity

    Science.gov (United States)

    David B. Clark; Paulo C. Olivas; Steven F. Oberbauer; Deborah A. Clark; Michael G. Ryan

    2008-01-01

    Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in...

  5. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes

    Science.gov (United States)

    Jamie Lydersen; Malcolm North; Brandon M. Collins

    2014-01-01

    The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing...

  6. Spatial variation in population dynamics of Sitka mice in floodplain forests.

    Science.gov (United States)

    T.A. Hanley; J.C. Barnard

    1999-01-01

    Population dynamics and demography of the Sitka mouse, Peromyscus keeni sitkensis, were studied by mark-recapture live-trapping over a 4-year period in four floodplain and upland forest habitats: old-growth Sitka spruce (Picea sitchensis) floodplain; red alder (Alnus rubra) floodplain; beaver-pond...

  7. Consumer and purchasing agent response to terms used to describe forest products from southeast Alaska

    Science.gov (United States)

    Allen M. Brackley; Valerie Barber

    2007-01-01

    This study surveys 204 consumers and purchasing agents and reports their reaction to terms used to describe forest products from southeast Alaska. Although 67 percent of the respondents would purchase products from old-growth trees, purchasing agents were more likely to refuse to purchase such products (negative response from 12 percent of consumers vs. 29 percent for...

  8. Transformation of iron forms during pedogenesis after tree uprooting in a natural beech-dominated forest

    Czech Academy of Sciences Publication Activity Database

    Tejnecký, V.; Šamonil, P.; Matys Grygar, Tomáš; Vašát, R.; Ash, C.; Drahota, P.; Šebek, O.; Němeček, K.; Drábek, O.

    2015-01-01

    Roč. 132, SEP (2015), s. 12-20 ISSN 0341-8162 Institutional support: RVO:61388980 Keywords : Soil formation * Iron forms * Tree uprooting * Pit–mound microtopography * Cambisols * Old -growth temperate forest Subject RIV: DF - Soil Science Impact factor: 2.612, year: 2015

  9. Habitat management for red tree voles in Douglas-fir forests.

    Science.gov (United States)

    M.H. Huff; R.S. Holthausen; K.B. Aubry

    1992-01-01

    The relations between arboreal rodents and trees causes the animals to be particularly sensitive to the effects of timber harvesting.Among arboreal rodents,we consider the redtree vole to be the most vulnerable to local extinctions resulting from the loss or fragmentation of old-growth Douglas-fir forests. Redtree voles are nocturnal,canopy dwelling, and difficult to...

  10. How far could a squirrel travel in the treetops? A prehistory of the southern forest

    Science.gov (United States)

    Paul B. Hamel; Edward R. Buckner

    1998-01-01

    Conservation activities aimed at protecting old-growth forests; at maintaining populations of desired species groups, such as oaks (Quercus sp.), wild turkeys (Meleagris gallopavo), other game species or Neotropical migratory birds; and at increasing populations of endangered species, such as red-cockaded woodpeckers (Picoides borealis), Bachman's warblers (...

  11. Soil weathering agents are limited where deep tree roots are removed, even after decades of forest regeneration

    Science.gov (United States)

    Billings, S. A.; Richter, D. D., Jr.; Hirmas, D.; Lehmeier, C.; Bagchi, S.; Brecheisen, Z.; Sullivan, P. L.; Min, K.; Hauser, E.; Stair, R.; Flournoy, R.

    2017-12-01

    Deep roots pump reduced C deep into Earth's critical zone (CZ) as they grow and function. This action generates acid-forming CO2 and organic acids (OA) and fosters microbes that also produce these weathering agents. This phenomenon results in a regolith-weathering reaction front that propagates down with vertical root extension and water infiltration. Across old-growth hardwood, younger pine, and annual crop plots at the Calhoun Critical Zone Observatory, we tested the hypothesis that persistent absence of deep roots, a widespread anthropogenic phenomenon, reduces root- and microbially-mediated biogeochemical pools and fluxes important for weathering, even well below maximum root density. We also hypothesized that land use effects on deep soil biogeochemistry is evident even after decades of forest regeneration. Root abundance to 2 m declined with depth, and was greater in old-growth and regenerating forests than in crop plots at most depths. Old-growth soils also contain more roots than younger pine soils: between 30-45 and 70-80 cm depth, old-growth root abundances were greater than in regenerating forests, and old-growth soils exhibited root distributions with less severe declines with depth and harbored more root-associated bacteria than younger forests. Changing root abundances influenced concentrations of weathering agents. At 3 m, in situ soil [CO2] reached 6%, 4%, and 2% in old-growth, regenerating, and crop soils, respectively. Soil organic C (SOC) and extractable OC (EOC, an OA proxy) did not differ across land use, but at 4-5 m EOC/SOC was higher in old-growth compared to regenerating forests and crop soils (20.0±2.6 vs. 2.0±1.0%). We suggest that biogeochemistry deep beneath old-growth forests reflects greater root prevalence and propensity for generation of weathering agents, and that disturbance regimes inducing deep root mortality impose top-down signals relevant to weathering processes deep in Earth's CZ even after decades of forest regeneration.

  12. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    Science.gov (United States)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our

  13. Mosaic boreal landscapes with open and forested wetlands

    International Nuclear Information System (INIS)

    Sjoeberg, K.; Ericson, L.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. The boreal landscape was earlier characterized by a mosaic of open and forested wetlands and forests. Drainage and felling operation have largely changed that pattern. Several organisms depend upon the landscape mosaic. Natural ecotones between mire and forest provide food resources predictable in space and time contrasting to unpredictable edges in the silvicultured landscape. The mosaic is also a prerequisite for organisms dependent on non-substitutable resources in the landscape. The importance of swamp forests has increased as they function as refugia for earlier more widespread old-growth species. Programmes for maintaining biodiversity in the boreal landscape should include the following points. First, the natural mosaic with open and forested wetlands must be maintained. Second, swamp forests must receive a general protection as they often constitute the only old-growth patches in the landscape. Third, we need to restore earlier disturbance regimes. Present strategy plans for conservation are insufficient, as they imply that a too large proportion of boreal organisms will not be able to survive outside protected areas. Instead, we need to focus more on how to preserve organisms in the man-influenced landscape. As a first step we need to understand how organisms are distributed in landscapes at various spatial scales. We need studies in landscapes where the original mosaic has faced various degrees of fragmentation. (au) 124 refs

  14. Landscape context mediates avian habitat choice in tropical forest restoration.

    Directory of Open Access Journals (Sweden)

    J Leighton Reid

    Full Text Available Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches, and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites.

  15. Lichens of the virgin forest reserve Žofínský prales (Czech Republic) and surrounding woodlands

    Czech Academy of Sciences Publication Activity Database

    Malíček, J.; Palice, Zdeněk

    2013-01-01

    Roč. 26, č. 2 (2013), s. 253-292 ISSN 0018-0971 R&D Projects: GA MK(CZ) DF12P01OVV025 Keywords : epiphytic and epixylic lichen s * biodiversity * old-growth forest Subject RIV: EF - Botanics Impact factor: 0.919, year: 2013

  16. Remnant trees affect species composition but not structure of tropical second-growth forest.

    Science.gov (United States)

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  17. Are temperate mature forests buffered from invasive lianas?

    Science.gov (United States)

    Pavlovic, Noel B.; Leicht-Young, Stacey A.

    2011-01-01

    Mature and old-growth forests are often thought to be buffered against invasive species due to low levels of light and infrequent disturbance. Lianas (woody vines) and other climbing plants are also known to exhibit lower densities in older forests. As part of a larger survey of the lianas of the southern Lake Michigan region in mature and old-growth forests, the level of infestation by invasive lianas was evaluated. The only invasive liana detected in these surveys was Celastrus orbiculatus Thunb. (Celastraceae). Although this species had only attached to trees and reached the canopy in a few instances, it was present in 30% of transects surveyed, mostly as a component of the ground layer. Transects with C. orbiculatus had higher levels of soil potassium and higher liana richness than transects without. In contrast, transects with the native C. scandens had higher pH, sand content, and soil magnesium and lower organic matter compared to transects where it was absent. Celastrus orbiculatus appears to be a generalist liana since it often occurs with native lianas. Celastrus orbiculatus poses a substantial threat to mature forests as it will persist in the understory until a canopy gap or other disturbance provides the light and supports necessary for it to ascend to the canopy and damage tree species. As a result, these forests should be monitored by land managers so that C. orbiculatus eradication can occur while invasions are at low densities and restricted to the ground layer.

  18. Instream wood loads in montane forest streams of the Colorado Front Range, USA

    Science.gov (United States)

    Jackson, Karen J.; Wohl, Ellen

    2015-04-01

    Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle

  19. Collateral damage: fire and Phytophthora ramorum interact to increase mortality in coast redwood

    Science.gov (United States)

    Margaret R. Metz; J. Morgan Varner; Kerri M. Frangioso; Ross K. Meentemeyer; David M. Rizzo

    2013-01-01

    Invading species can alter ecosystems by impacting the frequency, severity, and consequences of endemic disturbance regimes (Mack and D'Antonio 1998). Phytophthora ramorum, the causal agent of the emergent disease sudden oak death (SOD), is an invasive pathogen causing widespread tree mortality in coastal forests of California and Oregon. In...

  20. Dataset on species incidence, species richness and forest characteristics in a Danish protected area

    Directory of Open Access Journals (Sweden)

    Adriano Mazziotta

    2016-12-01

    Full Text Available The data presented in this article are related to the research article entitled “Restoring hydrology and old-growth structures in a former production forest: Modelling the long-term effects on biodiversity” (A. Mazziotta, J. Heilmann-Clausen, H. H.Bruun, Ö. Fritz, E. Aude, A.P. Tøttrup [1]. This article describes how the changes induced by restoration actions in forest hydrology and structure alter the biodiversity value of a Danish forest reserve. The field dataset is made publicly available to enable critical or extended analyses.

  1. Dataset on species incidence, species richness and forest characteristics in a Danish protected area

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Heilmann-Clausen, Jacob; Bruun, Hans Henrik

    2016-01-01

    The data presented in this article are related to the research article entitled "Restoring hydrology and old-growth structures in a former production forest: Modelling the long-term effects on biodiversity" (A. Mazziotta, J. Heilmann-Clausen, H. H.Bruun, Ö. Fritz, E. Aude, A.P. Tøttrup) [1......]. This article describes how the changes induced by restoration actions in forest hydrology and structure alter the biodiversity value of a Danish forest reserve. The field dataset is made publicly available to enable critical or extended analyses....

  2. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees.

    Science.gov (United States)

    Cermák, Jan; Kucera, Jiri; Bauerle, William L; Phillips, Nathan; Hinckley, Thomas M

    2007-02-01

    Diurnal and seasonal tree water storage was studied in three large Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) trees at the Wind River Canopy Crane Research site. Changes in water storage were based on measurements of sap flow and changes in stem volume and tissue water content at different heights in the stem and branches. We measured sap flow by two variants of the heat balance method (with internal heating in stems and external heating in branches), stem volume with electronic dendrometers, and tissue water content gravimetrically. Water storage was calculated from the differences in diurnal courses of sap flow at different heights and their integration. Old-growth Douglas-fir trees contained large amounts of free water: stem sapwood was the most important storage site, followed by stem phloem, branch sapwood, branch phloem and needles. There were significant time shifts (minutes to hours) between sap flow measured at different positions within the transport system (i.e., stem base to shoot tip), suggesting a highly elastic transport system. On selected fine days between late July and early October, when daily transpiration ranged from 150 to 300 liters, the quantity of stored water used daily ranged from 25 to 55 liters, i.e., about 20% of daily total sap flow. The greatest amount of this stored water came from the lower stem; however, proportionally more water was removed from the upper parts of the tree relative to their water storage capacity. In addition to lags in sap flow from one point in the hydrolic pathway to another, the withdrawal and replacement of stored water was reflected in changes in stem volume. When point-to-point lags in sap flow (minutes to hours near the top and stem base, respectively) were considered, there was a strong linear relationship between stem volume changes and transpiration. Volume changes of the whole tree were small (equivalent to 14% of the total daily use of stored water) indicating that most stored water came from

  3. Boreal Forests of Kamchatka: Structure and Composition

    Directory of Open Access Journals (Sweden)

    Markus P. Eichhorn

    2010-09-01

    Full Text Available Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-dominant B. ermanii forests. Basal area ranged from 7.8–38.1 m2/ha and average tree height from 8.3–24.7 m, both being greater in lowland forests. Size distributions varied considerably among plots, though they were consistently more even for L. cajanderi than B. platyphylla. Upland sites also contained a dense subcanopy of Pinus pumila averaging 38% of ground area. Soil characteristics differed among plots, with upland soils being of lower pH and containing more carbon. Comparisons are drawn with boreal forests elsewhere and the main current threats assessed. These forests provide a potential baseline to contrast with more disturbed regions elsewhere in the world and therefore may be used as a target for restoration efforts or to assess the effects of climate change independent of human impacts.

  4. Factors influencing density of the Northern Mealy Amazon in three forest types of a modified rainforest landscape in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Miguel Ángel. De Labra-Hernández

    2017-06-01

    Full Text Available The high rate of conversion of tropical moist forest to secondary forest makes it imperative to evaluate forest metric relationships of species dependent on primary, old-growth forest. The threatened Northern Mealy Amazon (Amazona guatemalae is the largest mainland parrot, and occurs in tropical moist forests of Mesoamerica that are increasingly being converted to secondary forest. However, the consequences of forest conversion for this recently taxonomically separated parrot species are poorly understood. We measured forest metrics of primary evergreen, riparian, and secondary tropical moist forest in Los Chimalapas, Mexico. We also used point counts to estimate density of Northern Mealy Amazons in each forest type during the nonbreeding (Sept 2013 and breeding (March 2014 seasons. We then examined how parrot density was influenced by forest structure and composition, and how parrots used forest types within tropical moist forest. Overall, parrot density was high in the breeding season, with few parrots present during the nonbreeding season. During the breeding season, primary forest had significantly greater density of 18.9 parrots/km² in evergreen forest and 35.9 parrots/km² in riparian forest, compared with only 3.4 parrots/km² in secondary forest. Secondary forest had significantly lower tree species richness, density, diameter, total height, and major branch ramification height, as well as distinct tree species composition compared with both types of primary forest. The number of parrots recorded at point counts was related to density of large, tall trees, characteristic of primary forest, and parrots used riparian forest more than expected by availability. Hence, the increased conversion of tropical moist forest to secondary forest is likely to lead to reduced densities of forest-dependent species such as the Northern Mealy Amazon. Furthermore, the species' requirement for primary tropical moist forest highlights the need to reevaluate

  5. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses.

    Science.gov (United States)

    S. R. Saleska; S. D. Miller; D. M. Matross; M. L. Goulden; S. C. Wofsy; H. R. da Rocha; P. B. de Camargo; P. Crill; B. C. Daube; H. C. de Freitas; L. Hutyra; M. Keller; V. Kirchhoff; M. Menton; J. W. Munger; H. E. Pyle; A. H. Rice; H. Silva

    2003-01-01

    The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarém, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence...

  6. Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil

    Directory of Open Access Journals (Sweden)

    Philipp Werner Hopp

    2011-06-01

    Full Text Available Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil. To evaluate the reliability of data obtained by Winkler extraction in Atlantic forest sites in southern Brazil, we studied litter beetle assemblages in secondary forests (5 to 55 years after abandonment and old-growth forests at two seasonally different points in time. For all regeneration stages, species density and abundance were lower in April compared to August; but, assemblage composition of the corresponding forest stages was similar in both months. We suggest that sampling of small litter inhabiting beetles at different points in time using the Winkler technique reveals identical ecological patterns, which are more likely to be influenced by sample incompleteness than by differences in their assemblage composition. A strong relationship between litter quantity and beetle occurrences indicates the importance of this variable for the temporal species density pattern. Additionally, the sampled beetle material was compared with beetle data obtained with pitfall traps in one old-growth forest. Over 60% of the focal species captured with pitfall traps were also sampled by Winkler extraction in different forest stages. Few beetles with a body size too large to be sampled by Winkler extraction were only sampled with pitfall traps. This indicates that the local litter beetle fauna is dominated by small species. Hence, being aware of the exclusion of large beetles and beetle species occurring during the wet season, the Winkler method reveals a reliable picture of the local leaf litter beetle community.

  7. Determining baseline element composition of lichens. II. Hypogymnia enteromorpha and Usnea spp. at Redwood National Park, California

    Science.gov (United States)

    Gough, L.P.; Jackson, L.L.; Sacklin, J.A.

    1988-01-01

    Hypogymnia enteromorpha and Usnea spp. were collected in the Little Bald Hills ultramafic region of Redwood National Park, California, to establish element-concentration norms. Baselines are presented for Ba, Ca, Cu, Mn, Ni, P, Sr, V, and Zn for both lichen species; for Li, Mg, and K for H. enteromorpha; and for Al, Ce, Cr, Co, Fe, Na, and Ti for Usnea. Element concentrations of future collections of this same material can be used to monitor possible air quality changes anticipated from mining activities planned nearby. The variability in the element concentrations was partitioned between geographical distance increments and sample preparation and analysis procedures. In general, most of this variability was found in samples less than a few hundreds of meters apart rather than those at about 1 km apart. Therefore, except for Ba and Co, no large geographical element-concentration trends were observed. Samples of both species contained elevated levels of Ni and Mg, which probably reflect the ultramafic terrain over which they occur.

  8. Forest litter stocks in Korean pine-broad-leaved forests of the southern Sikhote Alin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2015-10-01

    Full Text Available The article presents the data on the forest litter of the Korean pine-broad-leaved forests of the South of Primorsky krai. The focus of the research is plantations dominated by Korean pine; areas of the main tree species with ages of 50, 80, 130 and 200 years were selected. The dynamics of the forest litter stock in the pine and broadleaved forests of different ages according to the measurement results for the season in 2014 is stated. In the studied plantation, the forest litter stock varies between 9.7–20.3 t ha-1. The greatest value of the forest litter stock is recorded in old-growth cedar forest (200 years. Relatively high power and the stock of litter are typical for young Korean pine forest that can explain the lower speed of the litter properties change against the dynamics of taxation indicators of the forest stand. The difference between the amount of the litter in the 200-year-old and remaining pine trees are statistically significant at p = 0.05. The dependence of the litter power on the age is not revealed. The coefficient of the forest litter decomposition ranges from 2.55–10.60 that characterizes the high speed of its rotting. The highest coefficient of the litter decomposition has an old-growing pine forest. The schedule of seasonal humidity fluctuations of the forest litter on the chosen plot is made; with increasing cedar forest age, the volumetric moisture content of the forest litter increases; volumetric moisture content on the plots remain relatively unchanged during the season. The area of the Korean pine forests of Primorsky State Academy of Agriculture is 6835 ha. The amount of carbon stock in the forest litter is 38.7 thousand tons C. in this area, while the system of regional assessment of the forest carbon balance estimates this index as 24.3 tons С. The data obtained can be used to adjust the coefficients of regional assessment of the forest carbon balance for cedar forests of Primorsky krai.

  9. Urban Forests

    Science.gov (United States)

    David Nowak

    2016-01-01

    Urban forests (and trees) constitute the second forest resource considered in this report. We specifically emphasize the fact that agricultural and urban forests exist on a continuum defined by their relationship (and interrelationship) with a given landscape. These two forest types generally serve different purposes, however. Whereas agricultural forests are...

  10. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China.

    Science.gov (United States)

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and forests respectively, and thus play a minor role in total forest C storage in NE China.

  11. Century-scale Variations in Plant and Soil Nitrogen Pools and Isotopic Composition in Northern Hardwood Forests

    Science.gov (United States)

    Goodale, C. L.; Fuss, C. B.; Lang, A.; Ollinger, S. V.; Ouimette, A.; Vadeboncoeur, M. A.; Zhou, Z.; Lovett, G. M.

    2017-12-01

    The mineral soil may act as both a source and a sink of nitrogen to plants over decadal to centennial timescales. However, the enormous size and spatial heterogeneity of mineral soil N regularly impede study of its role over the course of forest succession. Here, we measured tree and soil stocks of C, N and 15N to 50 cm depth in and near Hubbard Brook, New Hampshire, across eight forest stands of varying time since harvest (two stands each of 20, 40, and 100 years post-harvest, and old-growth forest). Measurements show that tree biomass and N stocks increased with stand age to an average of 145 t C/ha and 556 kg N/ha in old-growth forests, as cumulative net growth and N increment rates decreased from young (20 and 40-year old) to mature (100-year) to old-growth stands. Plant %N varied more by site than species, while plant 15N varied more by tree species than by site. Of the most common species, Acer saccharum (sugar maple) had consistently lighter 15N in all tissues (bark, leaf, wood) than Betula alleghaniensis (yellow birch). Soil organic matter stocks are very large, averaging 154 t C/ha and 8.1 tN/ha to 50 cm depth. Neither C nor N stock varied regularly with stand age, but old-growth stands had lower C:N ratios and higher 15N values than the successional stands. Ongoing analysis will predict the effects of harvest, regrowth, and N inputs and losses on expected and observed 15N changes over succession. These observations support the great capacity of the mineral soil to store and potentially supply N to northern hardwood forests.

  12. Forest rights

    DEFF Research Database (Denmark)

    Balooni, Kulbhushan; Lund, Jens Friis

    2014-01-01

    One of the proposed strategies for implementation of reducing emissions from deforestation and forest degradation plus (REDD+) is to incentivize conservation of forests managed by communities under decentralized forest management. Yet, we argue that this is a challenging road to REDD+ because...... conservation of forests under existing decentralized management arrangements toward a push for extending the coverage of forests under decentralized management, making forest rights the hard currency of REDD+....

  13. The carbon debt from Amazon forest degradation: integrating airborne lidar, field measurements, and an ecosystem demography model.

    Science.gov (United States)

    Longo, M.; Keller, M. M.; dos-Santos, M. N.; Scaranello, M. A., Sr.; Pinagé, E. R.; Leitold, V.; Morton, D. C.

    2016-12-01

    Amazon deforestation has declined over the last decade, yet forest degradation from logging, fire, and fragmentation continue to impact forest carbon stocks and fluxes. The magnitude of this impact remains uncertain, and observation-based studies are often limited by short time intervals or small study areas. To better understand the long-term impact of forest degradation and recovery, we have been developing a framework that integrates field plot measurements and airborne lidar surveys into an individual- and process-based model (Ecosystem Demography model, ED). We modeled forest dynamics for three forest landscapes in the Amazon with diverse degradation histories: conventional and reduced-impact logging, logging and burning, and multiple burns. Based on the initialization with contemporary forest structure and composition, model results suggest that degraded forests rapidly recover (30 years) water and energy fluxes compared with old-growth, even at sites that were affected by multiple fires. However, degraded forests maintained different carbon stocks and fluxes even after 100 years without further disturbances, because of persistent differences in forest structure and composition. Recurrent disturbances may hinder the recovery of degraded forests. Simulations using a simple fire model entirely dependent on environmental controls indicate that the most degraded forests would take much longer to reach biomass typical of old-growth forests, because drier conditions near the ground make subsequent fires more intense and more recurrent. Fires in tropical forests are also closely related to nearby human activities; while results suggest an important feedback between fires and the microenvironment, additional work is needed to improve how the model represents the human impact on current and future fire regimes. Our study highlights that recovery of degraded forests may act as an important carbon sink, but efficient recovery depends on controlling future disturbances.

  14. Deadwood biomass: an underestimated carbon stock in degraded tropical forests?

    Science.gov (United States)

    Pfeifer, Marion; Lefebvre, Veronique; Turner, Edgar; Cusack, Jeremy; Khoo, MinSheng; Chey, Vun K.; Peni, Maria; Ewers, Robert M.

    2015-04-01

    Despite a large increase in the area of selectively logged tropical forest worldwide, the carbon stored in deadwood across a tropical forest degradation gradient at the landscape scale remains poorly documented. Many carbon stock studies have either focused exclusively on live standing biomass or have been carried out in primary forests that are unaffected by logging, despite the fact that coarse woody debris (deadwood with ≥10 cm diameter) can contain significant portions of a forest’s carbon stock. We used a field-based assessment to quantify how the relative contribution of deadwood to total above-ground carbon stock changes across a disturbance gradient, from unlogged old-growth forest to severely degraded twice-logged forest, to oil palm plantation. We measured in 193 vegetation plots (25 × 25 m), equating to a survey area of >12 ha of tropical humid forest located within the Stability of Altered Forest Ecosystems Project area, in Sabah, Malaysia. Our results indicate that significant amounts of carbon are stored in deadwood across forest stands. Live tree carbon storage decreased exponentially with increasing forest degradation 7-10 years after logging while deadwood accounted for >50% of above-ground carbon stocks in salvage-logged forest stands, more than twice the proportion commonly assumed in the literature. This carbon will be released as decomposition proceeds. Given the high rates of deforestation and degradation presently occurring in Southeast Asia, our findings have important implications for the calculation of current carbon stocks and sources as a result of human-modification of tropical forests. Assuming similar patterns are prevalent throughout the tropics, our data may indicate a significant global challenge to calculating global carbon fluxes, as selectively-logged forests now represent more than one third of all standing tropical humid forests worldwide.

  15. Co-benefits of biodiversity and carbon from regenerating secondary forests after shifting cultivation in the upland Philippines: implications for forest landscape restoration

    Science.gov (United States)

    Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.

    2017-12-01

    Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.

  16. Bioecological principles of maintaining stability in mountain forest ecosystems of the Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    T. V. Parpan

    2016-09-01

    Full Text Available The forest cover of the Carpathians has been deeply transformed by productive activities over the past centuries. The forest cover, age and species structure of its ecosystems have been changed. Beech and fir forests were replaced by spruce monocultures. Consequently, nitrogen and mineral elements cycles changed, the genetic and population structures altered and the eco-stabilizing function of forests decreased. These negative trends make it desirable to process the bioecological principles of maintenance the stability of mountain forest ecosystems. The proposed bioecological principles of support and recovery of stability of forest ecosystems are part of the paradigm of mountain dendrology and silviculture. The strategy is based on maintaining bio-ecological and population-genetical features of the main forest forming species, evolutionary typological classification of the forests, landscape and environmental specifics of the mountain part of the Ukrainian Carpathians, features of virgin, old growth and anthropogenically disturbed forest structures, as well as performing the functional role of forest ecosystems. Support for landscape ecosystem stability involves the conservation, selective, health and gradual cutting, formation of forest stands which are close to natural conditions and focusing on natural regeneration (a basis for stable mountain forest ecosystems.

  17. Comparison of butterfly diversity in forested area and oil palm plantation

    Directory of Open Access Journals (Sweden)

    YANTO SANTOSA

    2017-03-01

    Full Text Available Abstrak. Santosa Y, Purnamasari I, Wahyuni I. 2017. Comparison of butterfly diversity in forested area and oil palm plantation. Pros Sem Nas Masy Biodiv Indon 7: 104-109. Land use change from the forested area into oil palm monoculture plantations was suspected to have reduced the number of biodiversities, including butterfly. In addressing such issues, this research was conducted from March to April 2016 in PT. Mitra Unggul Pusaka oil palm plantation of Riau Province and the forest area around the plantation. Data were collected from secondary forest and High Conservation Value representing forest areas, and oil palm plantations representing non-forest areas (young-growth oil palm and old-growth oil palm simultaneously using 3 repetitions with time search method for 3 hours (8-10 pm. The results showed that there were 30 species (117 individuals found belonging to five families, i.e.: Papilionidae (3 species, Nymphalidae (17 species, Pieridae (5 species, Lycaenidae (4 species, and Hesperidae (1 species. Species richness was greater in a forested area (Dmg=7.35 than in non-forested areas (Dmg=3.16. Based on the Similarity Index, 50% of the species in forested area were also found in non-forested areas. Therefore, it could be concluded that butterfly diversity in forested areas was higher than non-forested areas (oil palms.

  18. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  19. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  20. Forest Management

    Science.gov (United States)

    S. Hummel; K. L. O' Hara

    2008-01-01

    Global variation in forests and in human cultures means that a single method for managing forests is not possible. However, forest management everywhere shares some common principles because it is rooted in physical and biological sciences like chemistry and genetics. Ecological forest management is an approach that combines an understanding of universal processes with...

  1. Impacts of forest age on water use in Mountain ash forests

    Science.gov (United States)

    Wood, Stephen A.; Beringer, Jason; Hutley, Lindsay B.; McGuire, A. David; Van Dijk, Albert; Kilinc, Musa

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire returning to pre-fire levels in the following centuries owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8mmday-1 with increasing forest age (an annual decrease of 657mm) the understorey ET contributed between 1.2 and 1.5mmday-1, 45% of the total ET (3mmday-1) at the old growth forest.

  2. Impacts of fire on forest age and runoff in mountain ash forests

    Science.gov (United States)

    Wood, S.A.; Beringer, J.; Hutley, L.B.; McGuire, A.D.; Van Dijk, A.; Kilinc, M.

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire - returning to pre-fire levels in the following centuries - owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8 mm day-1 with increasing forest age (an annual decrease of 657 mm) the understorey ET contributed between 1.2 and 1.5 mm day-1, 45% of the total ET (3 mm day-1) at the old growth forest. ?? CSIRO 2008.

  3. Rapid decay of tree-community composition in Amazonian forest fragments

    Science.gov (United States)

    Laurance, William F.; Nascimento, Henrique E. M.; Laurance, Susan G.; Andrade, Ana; Ribeiro, José E. L. S.; Giraldo, Juan Pablo; Lovejoy, Thomas E.; Condit, Richard; Chave, Jerome; Harms, Kyle E.; D'Angelo, Sammya

    2006-01-01

    Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage. PMID:17148598

  4. Diversity and carbon storage across the tropical forest biome.

    Science.gov (United States)

    Sullivan, Martin J P; Talbot, Joey; Lewis, Simon L; Phillips, Oliver L; Qie, Lan; Begne, Serge K; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Miles, Lera; Monteagudo-Mendoza, Abel; Sonké, Bonaventure; Sunderland, Terry; Ter Steege, Hans; White, Lee J T; Affum-Baffoe, Kofi; Aiba, Shin-Ichiro; de Almeida, Everton Cristo; de Oliveira, Edmar Almeida; Alvarez-Loayza, Patricia; Dávila, Esteban Álvarez; Andrade, Ana; Aragão, Luiz E O C; Ashton, Peter; Aymard C, Gerardo A; Baker, Timothy R; Balinga, Michael; Banin, Lindsay F; Baraloto, Christopher; Bastin, Jean-Francois; Berry, Nicholas; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Brienen, Roel; Camargo, José Luís C; Cerón, Carlos; Moscoso, Victor Chama; Chezeaux, Eric; Clark, Connie J; Pacheco, Álvaro Cogollo; Comiskey, James A; Valverde, Fernando Cornejo; Coronado, Eurídice N Honorio; Dargie, Greta; Davies, Stuart J; De Canniere, Charles; Djuikouo K, Marie Noel; Doucet, Jean-Louis; Erwin, Terry L; Espejo, Javier Silva; Ewango, Corneille E N; Fauset, Sophie; Feldpausch, Ted R; Herrera, Rafael; Gilpin, Martin; Gloor, Emanuel; Hall, Jefferson S; Harris, David J; Hart, Terese B; Kartawinata, Kuswata; Kho, Lip Khoon; Kitayama, Kanehiro; Laurance, Susan G W; Laurance, William F; Leal, Miguel E; Lovejoy, Thomas; Lovett, Jon C; Lukasu, Faustin Mpanya; Makana, Jean-Remy; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Junior, Ben Hur Marimon; Marshall, Andrew R; Morandi, Paulo S; Mukendi, John Tshibamba; Mukinzi, Jaques; Nilus, Reuben; Vargas, Percy Núñez; Camacho, Nadir C Pallqui; Pardo, Guido; Peña-Claros, Marielos; Pétronelli, Pascal; Pickavance, Georgia C; Poulsen, Axel Dalberg; Poulsen, John R; Primack, Richard B; Priyadi, Hari; Quesada, Carlos A; Reitsma, Jan; Réjou-Méchain, Maxime; Restrepo, Zorayda; Rutishauser, Ervan; Salim, Kamariah Abu; Salomão, Rafael P; Samsoedin, Ismayadi; Sheil, Douglas; Sierra, Rodrigo; Silveira, Marcos; Slik, J W Ferry; Steel, Lisa; Taedoumg, Hermann; Tan, Sylvester; Terborgh, John W; Thomas, Sean C; Toledo, Marisol; Umunay, Peter M; Gamarra, Luis Valenzuela; Vieira, Ima Célia Guimarães; Vos, Vincent A; Wang, Ophelia; Willcock, Simon; Zemagho, Lise

    2017-01-17

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.

  5. Diversity and carbon storage across the tropical forest biome

    Science.gov (United States)

    Sullivan, Martin J. P.; Talbot, Joey; Lewis, Simon L.; Phillips, Oliver L.; Qie, Lan; Begne, Serge K.; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Miles, Lera; Monteagudo-Mendoza, Abel; Sonké, Bonaventure; Sunderland, Terry; Ter Steege, Hans; White, Lee J. T.; Affum-Baffoe, Kofi; Aiba, Shin-Ichiro; de Almeida, Everton Cristo; de Oliveira, Edmar Almeida; Alvarez-Loayza, Patricia; Dávila, Esteban Álvarez; Andrade, Ana; Aragão, Luiz E. O. C.; Ashton, Peter; Aymard C., Gerardo A.; Baker, Timothy R.; Balinga, Michael; Banin, Lindsay F.; Baraloto, Christopher; Bastin, Jean-Francois; Berry, Nicholas; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Brienen, Roel; Camargo, José Luís C.; Cerón, Carlos; Moscoso, Victor Chama; Chezeaux, Eric; Clark, Connie J.; Pacheco, Álvaro Cogollo; Comiskey, James A.; Valverde, Fernando Cornejo; Coronado, Eurídice N. Honorio; Dargie, Greta; Davies, Stuart J.; de Canniere, Charles; Djuikouo K., Marie Noel; Doucet, Jean-Louis; Erwin, Terry L.; Espejo, Javier Silva; Ewango, Corneille E. N.; Fauset, Sophie; Feldpausch, Ted R.; Herrera, Rafael; Gilpin, Martin; Gloor, Emanuel; Hall, Jefferson S.; Harris, David J.; Hart, Terese B.; Kartawinata, Kuswata; Kho, Lip Khoon; Kitayama, Kanehiro; Laurance, Susan G. W.; Laurance, William F.; Leal, Miguel E.; Lovejoy, Thomas; Lovett, Jon C.; Lukasu, Faustin Mpanya; Makana, Jean-Remy; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Junior, Ben Hur Marimon; Marshall, Andrew R.; Morandi, Paulo S.; Mukendi, John Tshibamba; Mukinzi, Jaques; Nilus, Reuben; Vargas, Percy Núñez; Camacho, Nadir C. Pallqui; Pardo, Guido; Peña-Claros, Marielos; Pétronelli, Pascal; Pickavance, Georgia C.; Poulsen, Axel Dalberg; Poulsen, John R.; Primack, Richard B.; Priyadi, Hari; Quesada, Carlos A.; Reitsma, Jan; Réjou-Méchain, Maxime; Restrepo, Zorayda; Rutishauser, Ervan; Salim, Kamariah Abu; Salomão, Rafael P.; Samsoedin, Ismayadi; Sheil, Douglas; Sierra, Rodrigo; Silveira, Marcos; Slik, J. W. Ferry; Steel, Lisa; Taedoumg, Hermann; Tan, Sylvester; Terborgh, John W.; Thomas, Sean C.; Toledo, Marisol; Umunay, Peter M.; Gamarra, Luis Valenzuela; Vieira, Ima Célia Guimarães; Vos, Vincent A.; Wang, Ophelia; Willcock, Simon; Zemagho, Lise

    2017-01-01

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.

  6. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-02-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention.

  7. Portable and Airborne Small Footprint LiDAR: Forest Canopy Structure Estimation of Fire Managed Plots

    Directory of Open Access Journals (Sweden)

    Claudia M.C.S. Listopad

    2011-06-01

    Full Text Available This study used an affordable ground-based portable LiDAR system to provide an understanding of the structural differences between old-growth and secondary-growth Southeastern pine. It provided insight into the strengths and weaknesses in the structural determination of portable systems in contrast to airborne LiDAR systems. Portable LiDAR height profiles and derived metrics and indices (e.g., canopy cover, canopy height were compared among plots with different fire frequency and fire season treatments within secondary forest and old growth plots. The treatments consisted of transitional season fire with four different return intervals: 1-yr, 2-yr, 3-yr fire return intervals, and fire suppressed plots. The remaining secondary plots were treated using a 2-yr late dormant season fire cycle. The old growth plots were treated using a 2-yr growing season fire cycle. Airborne and portable LiDAR derived canopy cover were consistent throughout the plots, with significantly higher canopy cover values found in 3-yr and fire suppressed plots. Portable LiDAR height profile and metrics presented a higher sensitivity in capturing subcanopy elements than the airborne system, particularly in dense canopy plots. The 3-dimensional structures of the secondary plots with varying fire return intervals were dramatically different to old-growth plots, where a symmetrical distribution with clear recruitment was visible. Portable LiDAR, even though limited to finer spatial scales and specific biases, is a low-cost investment with clear value for the management of forest canopy structure.

  8. Conservation Benefits of Tropical Multifunctional Land-Uses in and Around a Forest Protected Area of Bangladesh

    Directory of Open Access Journals (Sweden)

    Sharif A. Mukul

    2017-01-01

    Full Text Available Competing interests in land for agriculture and commodity production in tropical human-dominated landscapes make forests and biodiversity conservation particularly challenging. Establishment of protected areas in this regard is not functioning as expected due to exclusive ecological focus and poor recognition of local people’s traditional forest use and dependence. In recent years, multifunctional land-use systems such as agroforestry have widely been promoted as an efficient land-use in such circumstances, although their conservation effectiveness remains poorly investigated. We undertake a rapid biodiversity survey to understand the conservation value of four contrasting forms of local land-use, namely: betel leaf (Piper betle agroforestry; lemon (Citrus limon agroforestry; pineapple (Ananas comosus agroforestry; and, shifting cultivation–fallow managed largely by the indigenous communities in and around a highly diverse forest protected area of Bangladesh. We measure the alpha and beta diversity of plants, birds, and mammals in these multifunctional land-uses, as well as in the old-growth secondary forest in the area. Our study finds local land-use critical in conserving biodiversity in the area, with comparable biodiversity benefits as those of the old-growth secondary forest. In Bangladesh, where population pressure and rural people’s dependence on forests are common, multifunctional land-uses in areas of high conservation priority could potentially be used to bridge the gap between conservation and commodity production, ensuring that the ecological integrity of such landscapes will be altered as little as possible.

  9. Forest Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Forest biomass is an abundant biomass feedstock that complements the conventional forest use of wood for paper and wood materials. It may be utilized for bioenergy production, such as heat and electricity, as well as for biofuels and a variety of bioproducts, such as industrial chemicals, textiles, and other renewable materials. The resources within the 2016 Billion-Ton Report include primary forest resources, which are taken directly from timberland-only forests, removed from the land, and taken to the roadside.

  10. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Science.gov (United States)

    Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  11. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Directory of Open Access Journals (Sweden)

    Rodrigo L L Orihuela

    Full Text Available We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  12. Supporting data for hydrologic studies in San Francisco Bay, California : meteorological measurements at the Port of Redwood City during 1998-2001

    Science.gov (United States)

    Schemel, Laurence E.

    2002-01-01

    Meteorological data were collected during 1998-2001 at the Port of Redwood City, California, to support hydrologic studies in South San Francisco Bay. The measured meteorological variables were air temperature, atmospheric pressure, quantum flux (insolation), and four parameters of wind speed and direction: scalar mean horizontal wind speed, (vector) resultant horizontal wind speed, resultant wind direction, and standard deviation of the wind direction. Hourly mean values based on measurements at five-minute intervals were logged at the site. Daily mean values were computed for temperature, infolation, pressure, and scalar wind speed. Daily mean values for 1998-2001 are described in this report, and a short record of hourly mean values is compared to data from another near-by station. Data (hourly and daily mean) from the entire period of record (starting in April 1992) and reports describing data prior to 1998 are provided.

  13. Observations of distributed snow depth and snow duration within diverse forest structures in a maritime mountain watershed

    Science.gov (United States)

    Dickerson-Lange, Susan E.; Lutz, James A.; Gersonde, Rolf; Martin, Kael A.; Forsyth, Jenna E.; Lundquist, Jessica D.

    2015-11-01

    Spatially distributed snow depth and snow duration data were collected over two to four snow seasons during water years 2011-2014 in experimental forest plots within the Cedar River Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 × 40 m forest plots, situated on the western slope of the Cascade Range, include unthinned second-growth coniferous forests, variable density thinned forests, forest gaps in which a 20 m diameter (approximately equivalent to one tree height) gap was cut in the middle of each plot, and old-growth forest. Together, this publicly available data set includes snow depth and density observations from manual snow surveys, distributed snow duration observations from ground temperature sensors and time-lapse cameras, meteorological data collected at two open locations and three forested locations, and forest canopy data from airborne light detection and ranging (LiDAR) data and hemispherical photographs. These colocated snow, meteorological, and forest data have the potential to improve understanding of forest influences on snow processes, and provide a unique model-testing data set for hydrological analyses in a forested, maritime watershed. We present empirical snow depletion curves within forests to illustrate an application of these data to improve subgrid representation of snow cover in distributed modeling.

  14. Wildfire, Fuels Reduction, and Herpetofaunas across Diverse Landscape Mosaics in Northwestern Forests

    Science.gov (United States)

    Bury, R. Bruce

    2004-01-01

    The herpetofauna (amphibians and reptiles) of northwestern forests (U.S.A.) is diverse, and many species are locally abundant. Most forest amphibians west of the Cascade Mountain crest are associated with cool, cascading streams or coarse woody material on the forest floor, which are characteristics of mature forests. Extensive loss and fragmentation of habitat resulted from logging across approximately 50% of old-growth forests in northern California and approximately 80% of stands in Oregon and Washington. There is a complex landscape mosaic and overlap of northern and southern biotic elements in the Klamath-Siskiyou Region along the Oregon and California border, creating a biodiversity hotspot. The region experiences many low-severity fires annually, punctuated by periodic major fires, including the Biscuit fire, the largest in North America in 2002. In the fire's northern portion, severe fire occurred on >50% of stands of young, managed trees but on only about 25a??33% of old-growth stands. This suggests that the legacy of timber harvest may produce fire-prone stands. Calls for prescribed fire and thinning to reduce fuel loads will remove large amounts of coarse woody material from forests, which reduces cover for amphibians and alters nutrient inputs to streams. Our preliminary evidence suggests no negative effects of wildfire on terrestrial amphibians, but stream amphibians decrease following wildfire. Most reptiles are adapted to open terrain, so fire usually improves their habitat. Today, the challenge is to maintain biodiversity in western forests in the face of intense political pressures designed to 'prevent' catastrophic fires. We need a dedicated research effort to understanding how fire affects biota and to proactively investigate outcomes of fuel-reduction management on wildlife in western forests.

  15. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes

    Science.gov (United States)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.

    2017-12-01

    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme

  16. Identifying the location of fire refuges in wet forest ecosystems.

    Science.gov (United States)

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential

  17. Long-Term Impacts of China’s New Commercial Harvest Exclusion Policy on Ecosystem Services and Biodiversity in the Temperate Forests of Northeast China

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2018-04-01

    Full Text Available Temperate forests in Northeast China have been severely exploited by timber harvesting in the last century. To reverse this trend, China implemented the Classified Forest Management policy in the Natural Forest Conservation Program in 1998 to protect forests from excessive harvesting. However, the policy was unable to meet the 2020 commitment of increasing growing stock (set in the Kyoto Protocol because of high-intensity harvesting. Accordingly, China banned all commercial harvesting in Northeast China in 2014. In this study, we investigated the long-term impacts of the no commercial harvest (NCH policy on ecosystem services and biodiversity using a forest landscape model, LANDIS PRO 7.0, in the temperate forests of the Small Khingan Mountains, Northeast China. We designed three management scenarios: The H scenario (the Classified Forest Management policy used in the past, the NCH scenario (the current Commercial Harvest Exclusion policy, and the LT scenario (mitigation management, i.e., light thinning. We compared total aboveground forest biomass, biomass by tree species, abundance of old-growth forests, and diversity of tree species and age class in three scenarios from 2010 to 2100. We found that compared with the H scenario, the NCH scenario increased aboveground forest biomass, abundance of old-growth forests, and biomass of most timber species over time; however, it decreased the biomass of rare and protected tree species and biodiversity. We found that the LT scenario increased the biomass of rare and protected tree species and biodiversity in comparison with the NCH scenario, while it maintained aboveground forest biomass and abundance of old-growth forests at a high level (slightly less than the NCH scenario. We concluded there was trade-off between carbon storage and biodiversity. We also concluded that light thinning treatment was able to regulate the trade-off and alleviate the negative effects associated with the NCH policy. Our

  18. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks.

    Science.gov (United States)

    Mukul, Sharif A; Herbohn, John; Firn, Jennifer

    2016-03-08

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives.

  19. Wildfire and Spatial Patterns in Forests in Northwestern Mexico: The United States Wishes It Had Similar Fire Problems

    Directory of Open Access Journals (Sweden)

    Scott L. Stephens

    2008-12-01

    Full Text Available Knowledge of the ecological effect of wildfire is important to resource managers, especially from forests in which past anthropogenic influences, e.g., fire suppression and timber harvesting, have been limited. Changes to forest structure and regeneration patterns were documented in a relatively unique old-growth Jeffrey pine-mixed conifer forest in northwestern Mexico after a July 2003 wildfire. This forested area has never been harvested and fire suppression did not begin until the 1970s. Fire effects were moderate especially considering that the wildfire occurred at the end of a severe, multi-year (1999-2003 drought. Shrub consumption was an important factor in tree mortality and the dominance of Jeffrey pine increased after fire. The Baja California wildfire enhanced or maintained a patchy forest structure; similar spatial heterogeneity should be included in US forest restoration plans. Most US forest restoration plans include thinning from below to separate tree crowns and attain a narrow range for residual basal area/ha. This essentially produces uniform forest conditions over broad areas that are in strong contrast to the resilient forests in northern Baja California. In addition to producing more spatial heterogeneity in restoration plans of forests that once experienced frequent, low-moderate intensity fire regimes, increased use of US wildfire management options such as wildland fire use as well as appropriate management responses to non-natural ignitions could also be implemented at broader spatial scales to increase the amount of burning in western US forests.

  20. The Watershed TMP: a proposal to manage the redwood ecosystem under convergent environmental, economic and social goals

    Science.gov (United States)

    Frederick D. Euphrat

    2012-01-01

    Under present California Forest Practice Rules, mandated by the Legislature and codified by the State Board of Forestry, Non-industrial Timber Management Plans (NTMPs) give small landowners the flexibility to operate under a specific set of rules 'forever,' allowing short notice (3 days or less) for pre-approved harvest operations. This permit is presently...

  1. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution

    Directory of Open Access Journals (Sweden)

    Y. T. Fang

    2008-03-01

    Full Text Available The nitrogen (N emissions to the atmosphere and N deposition to forest ecosystems are increasing rapidly in Southeast Asia, but little is known about the fates and effects of elevated N deposition in forest ecosystems in this warm and humid region. Here we report the concentrations and fluxes of dissolved inorganic (DIN and organic N (DON in precipitation, throughfall, surface runoff and soil solution for three subtropical forests in a region of South China under high air pollution over two years (2004 and 2005, to investigate how deposited N is processed, and to examine the importance of DON in the N budget. The precipitation DIN input was 32–34 kg N ha−1 yr−1. An additional input of 18 kg N ha−1 yr−1 as DON was measured in 2005, which to our knowledge is the highest DON flux ever measured in precipitation. A canopy uptake of DIN was indicated in two young conifer dominated forests (72–85% of DIN input reached the floor in throughfall, whereas no uptake occurred in an old-growth broadleaf forest. The DON fluxes in throughfall were similar to that in precipitation in all forests. In the younger forests, DIN was further retained in the soil, with 41–63% of precipitation DIN leached below the 20-cm soil depth. Additionally, about half of the DON input was retained in these forests. The N retention in two young aggrading forests (21–28 kg N ha−1 yr−1 was in accordance with the estimates of N accumulation in biomass and litter accretion. In the old-growth forest, no N retention occurred, but rather a net loss of 8–16 kg N ha−1 yr−1 from the soil was estimated. In total up to 60 kg N ha−1 yr−1 was leached from the old-growth forest, indicating that this forest was completely N saturated and could not retain additional anthropogenic N inputs. We found that the majority of DIN deposition as well as of DIN leaching

  2. Texas' forests, 2008

    Science.gov (United States)

    James W. Bentley; Consuelo Brandeis; Jason A. Cooper; Christopher M. Oswalt; Sonja N. Oswalt; KaDonna Randolph

    2014-01-01

    This bulletin describes forest resources of the State of Texas at the time of the 2008 forest inventory. This bulletin addresses forest area, volume, growth, removals, mortality, forest health, timber product output, and the economy of the forest sector.

  3. Forest resources of the Lincoln National Forest

    Science.gov (United States)

    John D. Shaw

    2006-01-01

    The Interior West Forest Inventory and Analysis (IWFIA) program of the USDA Forest Service, Rocky Mountain Research Station, as part of its national Forest Inventory and Analysis (FIA) duties, conducted forest resource inventories of the Southwestern Region (Region 3) National Forests. This report presents highlights of the Lincoln National Forest 1997 inventory...

  4. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession.

    Science.gov (United States)

    Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J

    2016-05-01

    We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective.

  5. Characterizing Forest Succession Stages for Wildlife Habitat Assessment Using Multispectral Airborne Imagery

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2017-06-01

    Full Text Available In this study, we demonstrate the potential of using high spatial resolution airborne imagery to characterize the structural development stages of forest canopies. Four forest succession stages were adopted: stand initiation, young multistory, understory reinitiation, and old growth. Remote sensing metrics describing the spatial patterns of forest structures were derived and a Random Forest learning algorithm was used to classify forest succession stages. These metrics included texture variables from Gray Level Co-occurrence Measures (GLCM, range and sill from the semi-variogram, and the fraction of shadow and its spatial distribution. Among all the derived variables, shadow fractions and the GLCM variables of contrast, mean, and dissimilarity were the most important for characterizing the forest succession stages (classification accuracy of 89%. In addition, a LiDAR (Light Detection and Ranging derived forest structural index (predicted Lorey’s height was employed to validate the classification result. The classification using imagery spatial variables was shown to be consistent with the LiDAR derived variable (R2 = 0.68 and Root Mean Square Error (RMSE = 2.39. This study demonstrates that high spatial resolution imagery was able to characterize forest succession stages with promising accuracy and may be considered an alternative to LiDAR data for this kind of application. Also, the results of stand development stages build a framework for future wildlife habitat mapping.

  6. Darcy’s law predicts widespread forest mortality under climate warming

    Science.gov (United States)

    McDowell, Nate G.; Allen, Craig D.

    2015-01-01

    Drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate, resulting in a threat to global forests unlike any in recorded history. Forests store the majority of terrestrial carbon, thus their loss may have significant and sustained impacts on the global carbon cycle. We use a hydraulic corollary to Darcy’s law, a core principle of vascular plant physiology, to predict characteristics of plants that will survive and die during drought under warmer future climates. Plants that are tall with isohydric stomatal regulation, low hydraulic conductance, and high leaf area are most likely to die from future drought stress. Thus, tall trees of old-growth forests are at the greatest risk of loss, which has ominous implications for terrestrial carbon storage. This application of Darcy’s law indicates today’s forests generally should be replaced by shorter and more xeric plants, owing to future warmer droughts and associated wildfires and pest attacks. The Darcy’s corollary also provides a simple, robust framework for informing forest management interventions needed to promote the survival of current forests. Given the robustness of Darcy’s law for predictions of vascular plant function, we conclude with high certainty that today’s forests are going to be subject to continued increases in mortality rates that will result in substantial reorganization of their structure and carbon storage.

  7. Changes of Soil Enzyme Activities in Different Restoration Ages of Spruce Forests on the Eastern Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-mei; BAO Wei-kai; PANG Xue-yong; WU Ning; ZHOU Guo-yi

    2005-01-01

    Six soil enzymes (invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase ) were chosen for investigation under different spruce forests with restoration ages of 4,10,16 years and an old-growth spruce forest over 400 years old in the eastern Qinghai-Tibet Plateau, China. Results showed that the activities of invertase, phosphatase, proteinase, catalase and peroxidase decreased in newly restored forests except for pholyphenoloxidase. With the development of forests after restoration, the activities of invertase, acid phosphadase, proteinase increased gradually. Our study also indicated that the soil enzyme activities were associated with surface soils and decreased with depths. This result suggested that in the earlier restoration stage the application of organic fertilizer may be more effective by surface addition to soils than deep addition.

  8. Public perceptions about climate change mitigation in British Columbia's forest sector

    Science.gov (United States)

    Hagerman, Shannon; Kozak, Robert; Hoberg, George

    2018-01-01

    The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia’s forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio

  9. A new look at the forest industry and global warming

    International Nuclear Information System (INIS)

    Atkinson, W.

    2000-01-01

    The relationship between cutting and replanting a climax forest and the control of carbon dioxide emission is examined. The result is a new interpretation which suggests that cutting and replanting of mature trees may actually benefit the environment, provided that the wood goes to long-lasting uses such as houses or furniture. The new interpretation rests on the concept of carbon sequestration technology, or sucking carbon away from the air where it cannot turn up the heat. It is suggested that when an old-growth forest is harvested, its 'carbon tank' is emptied. Second-growth stands that arise to replace the old-growth will bind carbon for several hundred years, until carbon equilibrium is re-established. If the wood produced from harvesting the old-growth forest goes to short-term uses such as for example toilet paper, the carbon locked up in the wood will return to the atmosphere within a matter of a few weeks, with the result that there is no net removal of carbon dioxide. However, if the harvested wood is used to produce houses or furniture (i.e. long-term uses, estimated at 65-70 years) the wood will continue to function as a carbon sink, the carbon will remain locked away from the air, while the replacement saplings trap and bind new carbon. Even after the 65-70 years life expectancy as a house or furniture the wood, at the expected decay rate of three per cent or less per year in an anaerobic landfill, the wood will not release all its stored carbon for a century or more, hence the result is a net removal of atmospheric carbon dioxide. Alternatively, wood from a demolished house could be used as feedstock for generating engine fuels such as methanol. The release of carbon dioxide to the atmosphere would be no greater than allowing the wood to decay naturally. Converted to methanol, it would displace its BTU equivalent in fossil fuels

  10. Using Florida Keys Reference Sites As a Standard for Restoration of Forest Structure in Everglades Tree Islands

    International Nuclear Information System (INIS)

    Ross, M.S.; Sah, J.P.; Ruiz, P.L.; Ross, M.S.; Ogurcak, D.E.

    2010-01-01

    In south Florida, tropical hardwood forests (hammocks) occur in Everglades tree islands and as more extensive forests in coastal settings in the nearby Florida Keys. Keys hammocks have been less disturbed by humans, and many qualify as old-growth, while Everglades hammocks have received much heavier use. With improvement of tree island condition an important element in Everglades restoration efforts, we examined stand structure in 23 Keys hammocks and 69 Everglades tree islands. Based on Stand Density Index and tree diameter distributions, many Everglades hammocks were characterized by low stocking and under-representation in the smaller size classes. In contrast, most Keys forests had the dense canopies and open under stories usually associated with old-growth hardwood hammocks. Subject to the same caveats that apply to off-site references elsewhere, structural information from mature Keys hammocks can be helpful in planning and implementing forest restoration in Everglades tree islands. In many of these islands, such restoration might involve supplementing tree stocking by planting native trees to produce more complete site utilization and a more open under story.

  11. Long-term structural and biomass dynamics of virgin Tsuga canadensis-Pinus strobus forests after hurricane disturbance.

    Science.gov (United States)

    D'Amato, Anthony W; Orwig, David A; Foster, David R; Barker Plotkin, Audrey; Schoonmaker, Peter K; Wagner, Maggie R

    2017-03-01

    The development of old-growth forests in northeastern North America has largely been within the context of gap-scale disturbances given the rarity of stand-replacing disturbances. Using the 10-ha old-growth Harvard Tract and its associated 90-year history of measurements, including detailed surveys in 1989 and 2009, we document the long-term structural and biomass development of an old-growth Tsuga canadensis-Pinus strobus forest in southern New Hampshire, USA following a stand-replacing hurricane in 1938. Measurements of aboveground biomass pools were integrated with data from second- and old-growth T. canadensis forests to evaluate long-term patterns in biomass development following this disturbance. Ecosystem structure across the Tract prior to the hurricane exhibited a high degree of spatial heterogeneity with the greatest levels of live tree basal area (70-129 m 2 /ha) on upper west-facing slopes where P. strobus was dominant and intermixed with T. canadensis. Live-tree biomass estimates for these stratified mixtures ranged from 159 to 503 Mg/ha at the localized, plot scale (100 m 2 ) and averaged 367 Mg/ha across these portions of the landscape approaching the upper bounds for eastern forests. Live-tree biomass 71 years after the hurricane is more uniform and lower in magnitude, with T. canadensis currently the dominant overstory tree species throughout much of the landscape. Despite only one living P. strobus stem in the 2009 plots (and fewer than five stems known across the entire 10-ha area), the detrital legacy of this species is pronounced with localized accumulations of coarse woody debris exceeding 237.7-404.2 m 3 /ha where this species once dominated the canopy. These patterns underscore the great sizes P. strobus attained in pre-European landscapes and its great decay resistance relative to its forest associates. Total aboveground biomass pools in this 71-year-old forest (255 Mg/ha) are comparable to those in modern old-growth ecosystems

  12. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Directory of Open Access Journals (Sweden)

    Guohua Liang

    Full Text Available The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF, a transitional mixed conifer and broadleaf forest (MF and an old-growth broadleaved forest (BF] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0. Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  13. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Science.gov (United States)

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  14. Fragmentation increases wind disturbance impacts on forest structure and carbon stocks in a western Amazonian landscape.

    Science.gov (United States)

    Schwartz, Naomi B; Uriarte, María; DeFries, Ruth; Bedka, Kristopher M; Fernandes, Katia; Gutiérrez-Vélez, Victor; Pinedo-Vasquez, Miguel A

    2017-09-01

    Tropical second-growth forests could help mitigate climate change, but the degree to which their carbon potential is achieved will depend on exposure to disturbance. Wind disturbance is common in tropical forests, shaping structure, composition, and function, and influencing successional trajectories. However, little is known about the impacts of extreme winds on second-growth forests in fragmented landscapes, though these ecosystems are often located in mosaics of forest, pasture, cropland, and other land cover types. Indirect evidence suggests that fragmentation increases risk of wind damage in tropical forests, but no studies have found such impacts following severe storms. In this study, we ask whether fragmentation and forest type (old vs. second growth) were associated with variation in wind damage after a severe convective storm in a fragmented production landscape in western Amazonia. We applied linear spectral unmixing to Landsat 8 imagery from before and after the storm, and combined it with field observations of damage to map wind effects on forest structure and biomass. We also used Landsat 8 imagery to map land cover with the goals of identifying old- and second-growth forest and characterizing fragmentation. We used these data to assess variation in wind disturbance across 95,596 ha of forest, distributed over 6,110 patches. We find that fragmentation is significantly associated with wind damage, with damage severity higher at forest edges and in edgier, more isolated patches. Damage was also more severe in old-growth than in second-growth forests, but this effect was weaker than that of fragmentation. These results illustrate the importance of considering landscape context in planning tropical forest restoration and natural regeneration projects. Assessments of long-term carbon sequestration potential need to consider spatial variation in disturbance exposure. Where risk of extreme winds is high, minimizing fragmentation and isolation could increase

  15. Boreal forests

    International Nuclear Information System (INIS)

    Essen, P.A.; Ericson, L.; Ehnstroem, B.; Sjoeberg, K.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. Natural disturbances, particularly forest fire and gap formation, create much of the structural and functional diversity in forest ecosystems. Several boreal plants and animals are adapted to fire regimes. In contrast, many organisms (epiphytic lichens, fungi, invertebrates) require stable conditions with long continuity in canopy cover. The highly mechanized and efficient Fennoscandian forest industry has developed during the last century. The result is that most natural forest has been lost and that several hundreds of species, mainly cryptograms and invertebrates, are threatened. The forestry is now in a transition from exploitation to sustainable production and has recently incorporated some measures to protect the environment. Programmes for maintaining biodiversity in the boreal forest should include at least three parts. First, the system of forest reserves must be significantly improved through protection of large representative ecosystems and key biotopes that host threatened species. Second, we must restore ecosystem properties that have been lost or altered. Natural disturbance regimes must be allowed to operate or be imitated, for example by artificial fire management. Stand-level management should particularly increase the amount of coarse woody debris, the number of old deciduous trees and large, old conifers, by using partial cutting. Third, natural variation should also be mimicked at the landscape level, for example, by reducing fragmentation and increasing links between landscape elements. Long-term experiments are required to evaluate the success of different management methods in maintaining biodiversity in the boreal forest. (au) 260 refs

  16. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    Science.gov (United States)

    Tremblay, Junior A; Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R; Price, David T; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change") were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  17. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    Directory of Open Access Journals (Sweden)

    Junior A Tremblay

    Full Text Available Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change" were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus, a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5, compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5. However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of

  18. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    Science.gov (United States)

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  19. Forest structure and light regimes following moderate wind storms: implications for multi-cohort management.

    Science.gov (United States)

    Hanson, Jacob J; Lorimer, Craig G

    2007-07-01

    Moderate-severity disturbances appear to be common throughout much of North America, but they have received relatively little detailed study compared to catastrophic disturbances and small gap dynamics. In this study, we examined the immediate impact of moderate-intensity wind storms on stand structure, opening sizes, and light regimes in three hemlock-hardwood forests of northeastern Wisconsin. These were compared to three stands managed by single-tree and group selection, the predominant forest management system for northern hardwoods in the region. Wind storms removed an average of 41% of the stand basal area, compared to 27% removed by uneven-aged harvests, but both disturbances removed trees from a wide range of size classes. The removal of nearly half of the large trees by wind in two old-growth stands caused partial retrogression to mature forest structure, which has been hypothesized to be a major disturbance pathway in the region. Wind storms resulted in residual stand conditions that were much more heterogeneous than in managed stands. Gap sizes ranged from less than 10 m2 up to 5000 m2 in wind-disturbed stands, whereas the largest opening observed in managed stands was only 200 m2. Wind-disturbed stands had, on average, double the available solar radiation at the forest floor compared to managed stands. Solar radiation levels were also more heterogeneous in wind-disturbed stands, with six times more variability at small scales (0.1225 ha) and 15 times more variability at the whole-stand level. Modification of uneven-aged management regimes to include occasional harvests of variable intensity and spatial pattern may help avoid the decline in species diversity that tends to occur after many decades of conventional uneven-aged management. At the same time, a multi-cohort system with these properties would retain a high degree of average crown cover, promote structural heterogeneity typical of old-growth forests, and maintain dominance by late

  20. Positive edge effects on forest-interior cryptogams in clear-cuts.

    Directory of Open Access Journals (Sweden)

    Alexandro Caruso

    Full Text Available Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting forest-interior cryptogams (lichens, bryophytes, and fungi associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase

  1. Illinois' Forests 2005

    Science.gov (United States)

    Susan J. Crocker; Gary J. Brand; Brett J. Butler; David E. Haugen; Dick C. Little; Dacia M. Meneguzzo; Charles H. Perry; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall

    2009-01-01

    The first full, annualized inventory of Illinois' forests reports more than 4.5 million acres of forest land with an average of 459 trees per acre. Forest land is dominated by oak/hickory forest types, which occupy 65 percent of total forest land area. Seventy-two percent of forest land consists of sawtimber, 20 percent contains poletimber, and 8 percent contains...

  2. Minnesota's Forests 2008

    Science.gov (United States)

    Patrick D. Miles; David Heinzen; Manfred E. Mielke; Christopher W. Woodall; Brett J. Butler; Ron J. Piva; Dacia M. Meneguzzo; Charles H. Perry; Dale D. Gormanson; Charles J. Barnett

    2011-01-01

    The second full annual inventory of Minnesota's forests reports 17 million acres of forest land with an average volume of more than 1,000 cubic feet per acre. Forest land is dominated by the aspen forest type, which occupies nearly 30 percent of the total forest land area. Twenty-eight percent of forest land consists of sawtimber, 35 percent poletimber, 35 percent...

  3. Erosion and sediment delivery following removal of forest roads

    Science.gov (United States)

    Madej, Mary Ann

    2001-01-01

    Erosion control treatments were applied to abandoned logging roads in California, with the goal of reducing road-related sediment input to streams and restoring natural hydrologic patterns on the landscape. Treatment of stream crossings involved excavating culverts and associated road fill and reshaping streambanks. A variety of techniques were applied to road benches, which included decompacting the road surface, placing unstable road fill in more stable locations, and re-establishing natural surface drainage patterns. Following treatment and a 12-year recurrence-interval storm, some road reaches and excavated stream crossings showed evidence of mass movement failures, gullying, bank erosion and channel incision. Post-treatment erosion from excavated stream crossings was related to two variables: a surrogate for stream power (drainage area × channel gradient) and the volume of fill excavated from the channel. Post-treatment erosion on road reaches was related to four explanatory variables: method of treatment, hillslope position (upper, mid-slope or lower), date of treatment, and an interaction term (hillslope position × method of treatment). Sediment delivery from treated roads in upper, middle and lower hillslope positions was 10, 135 and 550 m3 of sediment per kilometre of treated roads, respectively. In contrast, inventories of almost 500 km of forest roads in adjacent catchments indicate that untreated roads produced 1500 to 4700 m3 of sediment per kilometre of road length. Erosion from 300 km of treated roads contributed less than 2 per cent of the total sediment load of Redwood Creek during the period 1978 to 1998. Although road removal treatments do not completely eliminate erosion associated with forest roads, they do substantially reduce sediment yields from abandoned logging roads.

  4. Forest insurance

    Science.gov (United States)

    Ellis T. Williams

    1949-01-01

    Standing timber is one of the few important kinds of property that are not generally covered by insurance. Studies made by the Forest Service and other agencies have indicated that the risks involved in the insurance of timber are not unduly great, provided they can be properly distributed. Such studies, however, have thus far failed to induce any notable development...

  5. Forest Imaging

    Science.gov (United States)

    1992-01-01

    NASA's Technology Applications Center, with other government and academic agencies, provided technology for improved resources management to the Cibola National Forest. Landsat satellite images enabled vegetation over a large area to be classified for purposes of timber analysis, wildlife habitat, range measurement and development of general vegetation maps.

  6. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    Science.gov (United States)

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; Reed, Sasha; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan

    2017-10-01

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.

  7. A temporal comparison of forest cover using digital earth science data and visualization techniques

    Science.gov (United States)

    Jones, John W.

    1993-01-01

    Increased demands on forest resources and the recognition of old-growth forests as critical habitats and purifiers of the atmosphere have stimulated attention to forest harvest practices in the United States and worldwide. Visualization technology provides a means by which a history of forestry activities may be documented and presented to the public and decisionmakers. In this project, landsat multispectral scanner and thematic mapper images, acquired July 7, 1981, and July 8, 1991, respectively, were georeferenced, resampled, enhanced, and draped over U.S. Geological Survey 30-meter digital elevation models. These data then were used to create perspective views of portions of Mt. Hood Forest, Oregon. The "fly-by" animation (produced by rapidly displaying a sequence of these perspective views) conveys the forest cover change resulting from forest harvest activities over the 10-year period. This project shows the value of combining satellite data with base cartographic data and earth science information for use in public education and decision-making processes.

  8. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests.

    Science.gov (United States)

    Crouzeilles, Renato; Ferreira, Mariana S; Chazdon, Robin L; Lindenmayer, David B; Sansevero, Jerônimo B B; Monteiro, Lara; Iribarrem, Alvaro; Latawiec, Agnieszka E; Strassburg, Bernardo B N

    2017-11-01

    Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plants, birds, and invertebrates) and five measures of vegetation structure (cover, density, litter, biomass, and height) tested. Restoration success for biodiversity and vegetation structure was 34 to 56% and 19 to 56% higher in natural regeneration than in active restoration systems, respectively, after controlling for key biotic and abiotic factors (forest cover, precipitation, time elapsed since restoration started, and past disturbance). Biodiversity responses were based primarily on ecological metrics of abundance and species richness (74%), both of which take far less time to achieve restoration success than similarity and composition. This finding challenges the widely held notion that natural forest regeneration has limited conservation value and that active restoration should be the default ecological restoration strategy. The proposition that active restoration achieves greater restoration success than natural regeneration may have arisen because previous comparisons lacked controls for biotic and abiotic factors; we also did not find any difference between active restoration and natural regeneration outcomes for vegetation structure when we did not control for these factors. Future policy priorities should align the identified patterns of biophysical and ecological conditions where each or both restoration approaches are more successful, cost-effective, and compatible with socioeconomic incentives for tropical forest restoration.

  9. How does vegetation structure influence woodpeckers and secondary cavity nesting birds in African cork oak forest?

    Science.gov (United States)

    Segura, Amalia

    2017-08-01

    The Great Spotted Woodpecker provides important information about the status of a forest in terms of structure and age. As a primary cavity creator, it provides small-medium size cavities for passerines. However, despite its interest as an ecosystem engineer, studies of this species in Africa are scarce. Here, spatially explicit predictive models were used to investigate how forest structural variables are related to both the Great Spotted Woodpecker and secondary cavity nesting birds in Maamora cork oak forest (northwest Morocco). A positive association between Great Spotted Woodpecker and both dead-tree density and large mature trees (>60 cm dbh) was found. This study area, Maamora, has an old-growth forest structure incorporating a broad range of size and condition of live and dead trees, favouring Great Spotted Woodpecker by providing high availability of foraging and excavating sites. Secondary cavity nesting birds, represented by Great Tit, African Blue Tit, and Hoopoe, were predicted by Great Spotted Woodpecker detections. The findings suggest that the conservation of the Maamora cork oak forest could be key to maintaining these hole-nesting birds. However, this forest is threatened by forestry practises and livestock overgrazing and the challenge is therefore to find sustainable management strategies that ensure conservation while allowing its exploitation.

  10. Extra-zonal beech forests in Tuscany: structure, diversity and synecologic features

    Directory of Open Access Journals (Sweden)

    Viciani D

    2011-07-01

    Full Text Available The present paper focuses on the structural, synecological and floristic diversity features of beech-dominated forest communities in four major areas of the Antiapenninic Tyrrhenian system in Tuscany: Metalliferous hills, mountains to the south of Mt. Amiata, volcanic area of the upper Lente valley and Mt. Cetona. These are relict woodlands of Holo-Pleistocene origin with a special ecological and conservation value due to their extrazonal location in lowland submediterranean areas. Results show substantial among-area differences in structure, synecology and plant species composition, but in general a potential for coppices to reach the tall forest stage, as demonstrated by the old-growth stands of Pietraporciana and Sassoforte. Compared with montane Apenninic beechwoods, the relatively rich flora of the studied communities include thermophilous species with a southern Apennine-Balkan distribution, making their syntaxonomical position unclear. Closer affinities are found with the calcicolous Beech Forests of the association and with the silicicolous ones of the . Based on the Natura 2000 system, all the examined communities belong to the priority Habitat “Apennine beech forests with and ” (code: 9210*. Due their relict nature, these biotopes appear vulnerable to climate changes and to a production-oriented forest management. Criteria of naturalistic silviculture should instead promote the dynamic development of these communities towards tall forests and their natural regeneration.

  11. in Tasmanian State Forest: A Response to Comments”

    Directory of Open Access Journals (Sweden)

    Christopher Dean

    2012-01-01

    Full Text Available Moroni et al. (2012 made forty claims which misrepresent my earlier reply to their work (Dean, 2011 and if left unrefuted, might mislead all but the most expert reader—I cover seven of the most important ones here. Firstly, in my earlier paper I had calculated a conservative carbon deficit in State forests due to logging of the most-targeted forest types—mature wet-eucalypt—by clearfell, burn and sow to yield even-aged eucalypt regeneration. That deficit was conservative as a range of stand ages were used even though most carbon flux through logging has been from the old-growth subset. It was additionally conservative at the landscape-scale as inclusion of conversion to plantation and logging of other primary-forest types would have yielded a larger carbon deficit, not a smaller one, as implied in Moroni et al. (2012. Secondly, their claim that I applied “carbon saturation” at the landscape-scale is incorrect. Instead I applied carbon carrying capacity at that scale and included different stands ages in its calculation (by definition. Conversely, Moroni et al. (2012 produce the “confusion” which they claim to observe by advocating the use of “carbon saturation” at the landscape-scale, which can have no practical usage.

  12. Combating Forest Corruption: the Forest Integrity Network

    NARCIS (Netherlands)

    Gupta, A.; Siebert, U.

    2004-01-01

    This article describes the strategies and activities of the Forest Integrity Network. One of the most important underlying causes of forest degradation is corruption and related illegal logging. The Forest Integrity Network is a timely new initiative to combat forest corruption. Its approach is to

  13. Forest ownership dynamics of southern forests

    Science.gov (United States)

    Brett J. Butler; David N. Wear

    2013-01-01

    Key FindingsPrivate landowners hold 86 percent of the forest area in the South; two-thirds of this area is owned by families or individuals.Fifty-nine percent of family forest owners own between 1 and 9 acres of forest land, but 60 percent of family-owned forests are in holdings of 100 acres or more.Two-...

  14. Forest restoration: a global dataset for biodiversity and vegetation structure.

    Science.gov (United States)

    Crouzeilles, Renato; Ferreira, Mariana S; Curran, Michael

    2016-08-01

    Restoration initiatives are becoming increasingly applied around the world. Billions of dollars have been spent on ecological restoration research and initiatives, but restoration outcomes differ widely among these initiatives in part due to variable socioeconomic and ecological contexts. Here, we present the most comprehensive dataset gathered to date on forest restoration. It encompasses 269 primary studies across 221 study landscapes in 53 countries and contains 4,645 quantitative comparisons between reference ecosystems (e.g., old-growth forest) and degraded or restored ecosystems for five taxonomic groups (mammals, birds, invertebrates, herpetofauna, and plants) and five measures of vegetation structure reflecting different ecological processes (cover, density, height, biomass, and litter). We selected studies that (1) were conducted in forest ecosystems; (2) had multiple replicate sampling sites to measure indicators of biodiversity and/or vegetation structure in reference and restored and/or degraded ecosystems; and (3) used less-disturbed forests as a reference to the ecosystem under study. We recorded (1) latitude and longitude; (2) study year; (3) country; (4) biogeographic realm; (5) past disturbance type; (6) current disturbance type; (7) forest conversion class; (8) restoration activity; (9) time that a system has been disturbed; (10) time elapsed since restoration started; (11) ecological metric used to assess biodiversity; and (12) quantitative value of the ecological metric of biodiversity and/or vegetation structure for reference and restored and/or degraded ecosystems. These were the most common data available in the selected studies. We also estimated forest cover and configuration in each study landscape using a recently developed 1 km consensus land cover dataset. We measured forest configuration as the (1) mean size of all forest patches; (2) size of the largest forest patch; and (3) edge:area ratio of forest patches. Global analyses of the

  15. Forest fires

    International Nuclear Information System (INIS)

    Fuller, M.

    1991-01-01

    This book examines the many complex and sensitive issues relating to wildland fires. Beginning with an overview of the fires of 1980s, the book discusses the implications of continued drought and considers the behavior of wildland fires, from ignition and spread to spotting and firestorms. Topics include the effects of weather, forest fuels, fire ecology, and the effects of fire on plants and animals. In addition, the book examines firefighting methods and equipment, including new minimum impact techniques and compressed air foam; prescribed burning; and steps that can be taken to protect individuals and human structures. A history of forest fire policies in the U.S. and a discussion of solutions to fire problems around the world completes the coverage. With one percent of the earth's surface burning every year in the last decade, this is a penetrating book on a subject of undeniable importance

  16. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada’s boreal forest

    Science.gov (United States)

    Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R.; Price, David T.; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as “drivers of change”) were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  17. Dispersal of forest insects

    Science.gov (United States)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  18. South Dakota's forests 2005

    Science.gov (United States)

    Ronald J. Piva; W. Keith Moser; Douglas D. Haugan; Gregory J. Josten; Gary J. Brand; Brett J. Butler; Susan J. Crocker; Mark H. Hansen; Dacia M. Meneguzzo; Charles H. Perry; Christopher W. Woodall

    2009-01-01

    The first completed annual inventory of South Dakota's forests reports almost 1.7 million acres of forest land. Softwood forests make up 74 percent of the total forest land area; the ponderosa pine forest type by itself accounts for 69 percent of the total.

  19. Forest report 2016

    International Nuclear Information System (INIS)

    2016-01-01

    This forest condition report of Hesse (Germany) includes the following topics: forest condition survey for all tree species, forest in the in the Rhine-Main area, weather and climate, soil water balance and drought stress, insects and fungi, Forestry Environment Monitoring, infiltrated substances, main results of Forest soil survey in Hesse (BZE II), the substrate group red sandstone, heavy metal contamination of forests.

  20. Mapping Forest Inventory and Analysis forest land use: timberland, reserved forest land, and other forest land

    Science.gov (United States)

    Mark D. Nelson; John Vissage

    2007-01-01

    The Forest Inventory and Analysis (FIA) program produces area estimates of forest land use within three subcategories: timberland, reserved forest land, and other forest land. Mapping these subcategories of forest land requires the ability to spatially distinguish productive from unproductive land, and reserved from nonreserved land. FIA field data were spatially...

  1. Contributions of Ectomycorrhizal Fungal Mats to Forest Soil Carbon Cycles

    Science.gov (United States)

    Kluber, L. A.; Phillips, C. L.; Myrold, D. D.; Bond, B. J.

    2008-12-01

    Ectomycorrhizal (EM) fungi are a prominent and ubiquitous feature of forest soils, forming symbioses with most tree species, yet little is known about the magnitude of their impact on forest carbon cycles. A subset of EM fungi form dense, perennial aggregations of hyphae, which have elevated respiration rates compared with neighboring non-mat soils. These mats are a foci of EM activity and thereby a natural laboratory for examining how EM fungi impact forest soils. In order to constrain the contributions of EM fungi to forest soil respiration, we quantified the proportion of respiration derived from EM mat soils in an old-growth Douglas-fir stand in western Oregon. One dominant genus of mat-forming fungi, Piloderma, covered 56% of the soil surface area. Piloderma mats were monitored for respiration rates over 15 months and found to have on average 10% higher respiration than non-mat soil. At the stand level, this amounts to roughly 6% of soil respiration due to the presence of Piloderma mats. We calculate that these mats may constitute 27% of autotrophic respiration, based on respiration rates from trenched plots in a neighboring forest stand. Furthermore, enzyme activity and microbial community profiles in mat and non-mat soil provide evidence that specialized communities utilizing chitin contribute to this increased efflux. With 60% higher chitinase activity in mats, the breakdown of chitin is likely an important carbon flux while providing carbon and nitrogen to the microbial communities associated with mats. Quantitative PCR showed similar populations of fungi and bacteria in mat and non-mat soils; however, community analysis revealed distinct fungal and bacterial communities in the two soil types. The higher respiration associated with EM mats does not appear to be due only to a proliferation of EM fungi, but to a shift in overall community composition to organisms that efficiently utilize the unique resources available within the mat, including plant and

  2. Forests and Forest Cover - MDC_NaturalForestCommunity

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A point feature class of NFCs - Natural Forest Communities. Natural Forest Community shall mean all stands of trees (including their associated understory) which...

  3. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes

    Science.gov (United States)

    Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme

    2018-06-01

    Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.

  4. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    Science.gov (United States)

    Brookshire, E N Jack; Thomas, Steven A

    2013-01-01

    Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.

  5. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    Directory of Open Access Journals (Sweden)

    E N Jack Brookshire

    Full Text Available Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N. In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy; the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.

  6. Linking plant functional traits and forest carbon stocks in the Congo Basin

    Science.gov (United States)

    Kearsley, Elizabeth; Verbeeck, Hans; Hufkens, Koen; Lewis, Simon; Huygens, Dries; Beeckman, Hans; Steppe, Kathy; Boeckx, Pascal

    2013-04-01

    Accurate estimates of the amount of carbon stored in tropical forests represent crucial baseline data for recent climate change mitigation policies. Such data are needed to quantify possible emissions due to deforestation and forest degradation, and to evaluate the potential of these forests to act as carbon sinks. Currently, only rough estimates of the carbon stocks for Central African tropical forests are available due to a lack of field data, and little is known about the response of these stocks to climate change. We present the first ground-based carbon stock data for the central Congo Basin in Yangambi, D. R. Congo, based on data of 20 inventory plots of 1 ha covering different forest types. We found an average aboveground carbon stock of 163 ± 19 Mg C ha-1 for intact old-growth forest, which is significantly lower than the stocks recorded in the outer regions of the Congo Basin. Commonly studied drivers for variations of carbon stocks include climatic and edaphic factors, but detailed trait-based studies are lacking. We identified a significant difference in height-diameter relations across the Congo Basin as a driver for spatial differences in carbon stocks. The study of a more detailed interaction of the environment and the available tree species pool as drivers for differences in carbon storage could have large implications. The effect of the species pool on carbon storage can be large since species differ in their ability to sequester carbon, and the collective functional characteristics of plant communities could be a major driver of carbon accumulation. The use of a trait-based approach shows high potential for identifying and quantifying carbon stocks as an ecosystem service. We test for associations between functional trait values and carbon storage across multiple regrowth and old-growth forests types in the Yangambi study area, with soil properties and climate similar for all plots. A selection of traits associated with carbon dynamics is made

  7. High Arctic Forests During the Middle Eocene Supported by ~400 ppm Atmospheric CO2

    Science.gov (United States)

    Maxbauer, D. P.; Royer, D. L.; LePage, B. A.

    2013-12-01

    Fossils from Paleogene High Arctic deposits provide some of the clearest evidence for greenhouse climates and offer the potential to improve our understanding of Earth system dynamics in a largely ice-free world. One of the most well-known and exquisitely-preserved middle Eocene (47.9-37.8 Myrs ago) polar forest sites, Napartulik, crops out on eastern Axel Heiberg Island (80 °N), Nunavut, Canada. An abundance of data from Napartulik suggest mean annual temperatures of up to 30 °C warmer than today and atmospheric water loads 2× above current levels. Despite this wealth of paleontological and paleoclimatological data, there are currently no direct constraints on atmospheric CO2 levels for Napartulik or any other polar forest site. Here we apply a new plant gas-exchange model to Metasequoia (dawn redwood) leaves to reconstruct atmospheric CO2 from six fossil forests at Napartulik. Individual reconstructions vary between 405-489 ppm with a site mean of 437 ppm (337-564 ppm at 95% confidence). These estimates represent the first direct constraints on CO2 for polar fossil forests and suggest that the temperate conditions present at Napartulik during the middle Eocene were maintained under CO2 concentrations ~1.6× above pre-industrial levels. Our results strongly support the case that long-term climate sensitivity to CO2 in the past was sometimes high, even during largely ice-free periods, highlighting the need to better understand the climate forcing and feedback mechanisms responsible for this amplification.

  8. dwindling ethiopian forests

    African Journals Online (AJOL)

    eliasn

    1999-05-26

    May 26, 1999 ... Shelter for animals: Forests are natural “habitats for many wild animals. .... nificance of forest conservation and development in Ethiopia's combat ...... of forests are not, unfortunately, analogues to traffic lights where the impact.

  9. Tenure and forest income

    DEFF Research Database (Denmark)

    Jagger, Pamela; Luckert, Martin K.; Duchelle, Amy E.

    2014-01-01

    We explore the relationship between tenure and forest income in 271 villages throughout the tropics. We find that state-owned forests generate more forest income than private and community-owned forests both per household and per hectare. We explore whether forest income varies according...... to the extent of rule enforcement, and congruence (i.e., overlap of user rights between owners and users). We find negative associations between enforcement and smallholder forest income for state-owned and community forests, and positive associations for privately owned forests. Where user rights are limited...... to formal owners we find negative associations for state-owned forests. Overlapping user rights are positively associated with forest income for community forests. Our findings suggest that policy reforms emphasizing enforcement and reducing overlapping claims to forest resources should consider possible...

  10. Wildfire exposure analysis on the national forests in the Pacific Northwest, USA.

    Science.gov (United States)

    Ager, Alan A; Buonopane, Michelle; Reger, Allison; Finney, Mark A

    2013-06-01

    We analyzed wildfire exposure for key social and ecological features on the national forests in Oregon and Washington. The forests contain numerous urban interfaces, old growth forests, recreational sites, and habitat for rare and endangered species. Many of these resources are threatened by wildfire, especially in the east Cascade Mountains fire-prone forests. The study illustrates the application of wildfire simulation for risk assessment where the major threat is from large and rare naturally ignited fires, versus many previous studies that have focused on risk driven by frequent and small fires from anthropogenic ignitions. Wildfire simulation modeling was used to characterize potential wildfire behavior in terms of annual burn probability and flame length. Spatial data on selected social and ecological features were obtained from Forest Service GIS databases and elsewhere. The potential wildfire behavior was then summarized for each spatial location of each resource. The analysis suggested strong spatial variation in both burn probability and conditional flame length for many of the features examined, including biodiversity, urban interfaces, and infrastructure. We propose that the spatial patterns in modeled wildfire behavior could be used to improve existing prioritization of fuel management and wildfire preparedness activities within the Pacific Northwest region. © 2012 Society for Risk Analysis.

  11. History and Productivity Determine the Spatial Distribution of Key Habitats for Biodiversity in Norwegian Forest Landscapes

    Directory of Open Access Journals (Sweden)

    Magne Sætersdal

    2016-01-01

    Full Text Available Retention forestry, including the retention of woodland key habitats (WKH at the forest stand scale, has become an essential management practice in boreal forests. Here, we investigate the spatial distribution of 9470 habitat patches, mapped according to the Complementary Habitat Inventory method (CHI habitats, as potential WKHs in 10 sample areas in Norway. We ask whether there are parts of the forest landscapes that have consistently low or high density of CHI habitats compared to the surveyed landscape as a whole, and therefore have a low or high degree of conflict with harvesting, respectively. We found that there was a general pattern of clumped distribution of CHI habitats at distances up to a few kilometres. Furthermore, results showed that most types of CHI habitats were approximately two to three times as common in the 25% steepest slopes, lowest altitudes and highest site indices. CHI habitats that are most common in old-growth forests were found at longer distances from roads, whereas habitats rich in deciduous trees were found at shorter distances from roads than expected. Both environmental factors and the history of human impact are needed to explain the spatial distribution of CHI habitats. The overrepresentation of WKHs in parts of the forest landscapes represents a good starting point to develop more efficient inventory methods.

  12. Indiana's Forests 2008

    Science.gov (United States)

    Christopher W. Woodall; Mark N. Webb; Barry T. Wilson; Jeff Settle; Ron J. Piva; Charles H. Perry; Dacia M. Meneguzzo; Susan J. Crocker; Brett J. Butler; Mark Hansen; Mark Hatfield; Gary Brand; Charles. Barnett

    2011-01-01

    The second full annual inventory of Indiana's forests reports more than 4.75 million acres of forest land with an average volume of more than 2,000 cubic feet per acre. Forest land is dominated by the white oak/red oak/hickory forest type, which occupies nearly a third of the total forest land area. Seventy-six percent of forest land consists of sawtimber, 16...

  13. Percent Forest Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCTFuture) generally indicate healthier ecosystems and cleaner surface water....

  14. Percent Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCT) generally indicate healthier ecosystems and cleaner surface water. More...

  15. European mixed forests

    DEFF Research Database (Denmark)

    Bravo-Oviedo, Andres; Pretzsch, Hans; Ammer, Christian

    2014-01-01

    Aim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) review the research perspectives in mixed forests. Area of study: The definition is developed in Europe but can be tested worldwide. Material...... and Methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests. Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any...... density in mixed forests, (iii) conversion of monocultures to mixed-species forest and (iv) economic valuation of ecosystem services provided by mixed forests. Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields...

  16. Forest tenure and sustainable forest management

    Science.gov (United States)

    J.P. Siry; K. McGinley; F.W. Cubbage; P. Bettinger

    2015-01-01

    We reviewed the principles and key literature related to forest tenure and sustainable forest management, and then examined the status of sustainable forestry and land ownership at the aggregate national level for major forested countries. The institutional design principles suggested by Ostrom are well accepted for applications to public, communal, and private lands....

  17. Concentrating anthropogenic disturbance to balance ecological and economic values: applications to forest management.

    Science.gov (United States)

    Tittler, Rebecca; Messier, Christian; Fall, Andrew

    2012-06-01

    To maintain healthy ecosystems, natural-disturbance-based management aims to minimize differences between unmanaged and managed landscapes. Two related approaches may help accomplish this goal, either applied together or in isolation: (1) concentrating anthropogenic disturbance through zoning (with protected areas and intensive management); and (2) emulating natural disturbances. The purpose of this paper is to examine the effects of these two approaches, applied both in isolation and in combination, on the structure of the forest landscape. To do so, we use a spatially explicit landscape simulation model on a large fire-dominated landscape in eastern Canada. Specifically, we examine the effects of (1) increasing the maximum size of logged stands (cutblocks) to better emulate the full range of fire sizes in a fire-dominated landscape, (2) increasing protected areas, and (3) adding aggregated or dispersed intensive wood production areas to the landscape in addition to protected areas (triad management). We focus on maximizing the amount and minimizing the fragmentation of old-growth forest and on reducing road construction. Increasing maximum cutblock size and adding protected areas led to reduced road construction, while the latter also resulted in less fragmentation and more old growth. Although protected areas led to reduced harvest volume, the addition of an intensive production zone (triad management) counterbalanced this loss and resulted in more old growth than equivalent scenarios with protected areas but no intensive production zone. However, we found no differences between aggregated and dispersed intensive wood production. Our results imply that differences between unmanaged and managed landscapes can be reduced by concentrating logging efforts through a combination of protected areas and intensive wood production, and by creating some larger cutblocks. We conclude that the forest industry and regulators should therefore seek to increase protected areas

  18. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model.

    Directory of Open Access Journals (Sweden)

    Alvaro G Gutiérrez

    Full Text Available Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S. The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area. We compared the responses of a young stand (YS, ca. 60 years-old and an old-growth forest (OG, >500 years-old in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.

  19. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model.

    Science.gov (United States)

    Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas

    2014-01-01

    Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.

  20. Restoring forests

    DEFF Research Database (Denmark)

    Jacobs, Douglass F.; Oliet, Juan A.; Aronson, James

    2015-01-01

    of land requiring restoration implies the need for spatial prioritization of restoration efforts according to cost-benefit analyses that include ecological risks. To design resistant and resilient ecosystems that can adapt to emerging circumstances, an adaptive management approach is needed. Global change......, in particular, imparts a high degree of uncertainty about the future ecological and societal conditions of forest ecosystems to be restored, as well as their desired goods and services. We must also reconsider the suite of species incorporated into restoration with the aim of moving toward more stress resistant...... and competitive combinations in the longer term. Non-native species may serve an important role under some circumstances, e.g., to facilitate reintroduction of native species. Propagation and field establishment techniques must promote survival through seedling stress resistance and site preparation. An improved...

  1. Sustaining Urban Forests

    Science.gov (United States)

    John F. Dwyer; David J. Nowak

    2003-01-01

    The significance of the urban forest resource and the powerful forces for change in the urban environment make sustainability a critical issue in urban forest management. The diversity, connectedness, and dynamics of the urban forest establish the context for management that will determine the sustainability of forest structure, health, functions, and benefits. A...

  2. North Dakota's forests 2005

    Science.gov (United States)

    David E. Haugen; Michael Kangas; Susan J. Crocker; Charles H. Perry; Christopher W. Woodall; Brett J. Butler; Barry T. Wilson; Dan J. Kaisershot

    2009-01-01

    The first completed annual inventory of North Dakota's forests reports estimates of more than 724,000 acres of forest land. Information about forest attributes and forest health is presented along with information on agents of change including changing land use patterns and the introduction of nonnative plants, insects, and disease.

  3. Forest Health Detectives

    Science.gov (United States)

    Bal, Tara L.

    2014-01-01

    "Forest health" is an important concept often not covered in tree, forest, insect, or fungal ecology and biology. With minimal, inexpensive equipment, students can investigate and conduct their own forest health survey to assess the percentage of trees with natural or artificial wounds or stress. Insects and diseases in the forest are…

  4. Wisconsin's forests, 2004

    Science.gov (United States)

    Charles H. (Hobie) Perry; Vern A. Everson; Ian K. Brown; Jane Cummings-Carlson; Sally E. Dahir; Edward A. Jepsen; Joe Kovach; Michael D. Labissoniere; Terry R. Mace; Eunice A. Padley; Richard B. Rideout; Brett J. Butler; Susan J. Crocker; Greg C. Liknes; Randall S. Morin; Mark D. Nelson; Barry T. (Ty) Wilson; Christopher W. Woodall

    2008-01-01

    The first full, annualized inventory of Wisconsin's forests was completed in 2004 after 6,478 forested plots were visited. There are more than 16.0 million acres of forest land in the Wisconsin, nearly half of the State's land area; 15.8 million acres meet the definition of timberland. The total area of both forest land and timberland continues an upward...

  5. Managing Sierra Nevada forests

    Science.gov (United States)

    Malcolm North

    2012-01-01

    There has been widespread interest in applying new forest practices based on concepts presented in U.S. Forest Service General Technical Report PSW-GTR-220, "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests." This collection of papers (PSW-GTR-237) summarizes the state of the science in some topics relevant to this forest management approach...

  6. West Virginia Forests 2013

    Science.gov (United States)

    Randall S. Morin; Gregory W. Cook; Charles J. Barnett; Brett J. Butler; Susan J. Crocker; Mark A. Hatfield; Cassandra M. Kurtz; Tonya W. Lister; William G. Luppold; William H. McWilliams; Patrick D. Miles; Mark D. Nelson; Charles H. (Hobie) Perry; Ronald J. Piva; James E. Smith; Jim Westfall; Richard H. Widmann; Christopher W. Woodall

    2016-01-01

    The annual inventory of West Virginia's forests, completed in 2013, covers nearly 12.2 million acres of forest land with an average volume of more than 2,300 cubic feet per acre. This report is based data collected from 2,808 plots located across the State. Forest land is dominated by the oak/hickory forest-type group, which occupies 74 percent of total forest...

  7. Illinois' Forests 2010

    Science.gov (United States)

    Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Tonya W. Lister; Dacia M. Meneguzzo; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall

    2013-01-01

    The second full annual inventory of Illinois' forests, completed in 2010, reports more than 4.8 million acres of forest land and 97 tree species. Forest land is dominated by oak/hickory and elm/ash/cottonwood forest-type groups, which occupy 93 percent of total forest land area. The volume of growing stock on timberland totals 7.2 billion cubic feet. The average...

  8. Nebraska's Forests 2010

    Science.gov (United States)

    Dacia M Meneguzzo; Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Greg C. Liknes; Andrew J. Lister; Tonya W. Lister; Ronald J. Piva; Barry T. (Ty) Wilson; Christopher W. Woodall

    2012-01-01

    The second full annual inventory of Nebraska's forests reports more than 1.5 million acres of forest land and 39 tree species. Forest land is dominated by the elm/ash/cottonwood and oak/hickory forest types, which occupy nearly half of the total forest land area. The volume of growing stock on timberland currently totals 1.1 billion cubic feet. The average annual...

  9. New Jersey's forests, 2008

    Science.gov (United States)

    Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Gary J. Brand; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Tonya W. Lister; Dacia M. Meneguzzo; Charles H. Perry; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall; Bill. Zipse

    2011-01-01

    The first full annual inventory of New Jersey's forests reports more than 2.0 million acres of forest land and 83 tree species. Forest land is dominated by oak-hickory forest types in the north and pitch pine forest types in the south. The volume of growing stock on timberland has been rising since 1956 and currently totals 3.4 billion cubic feet. The average...

  10. Forest Grammar(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    张松懋

    1994-01-01

    Forest grammar,a new type of high-dimensional grammar,is proposed in this paper,of which both the left and the right parts of every production are concatenations of tree structures.A classification of forest grammar is studied,especially,a subclass of the forest grammar,i.e.the context-sensitive forest grammar,and one of its subclasses is defined,called the weak precedence forest grammar.

  11. New Jersey Forests 2013

    Science.gov (United States)

    Susan J. Crocker; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Tonya W. Lister; Dacia M. Meneguzzo; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Ronald J. Piva; Rachel Riemann; James E. Smith; Christopher W. Woodall; William. Zipse

    2017-01-01

    The second full annual inventory of New Jersey’s forests reports more than 2.0 million acres of forest land and 77 tree species. Forest land is dominated by oak/hickory forest types in the north and pitch pine forest types in the south. The volume of growing stock on timberland has been rising since 1956 and currently totals 3.3 billion cubic feet. Average annual net...

  12. Michigan's Forests 2009

    Science.gov (United States)

    Scott A. Pugh; Lawrence D. Pedersen; Douglas C. Heym; Ronald J. Piva; Christopher W. Woodall; Charles J. Barnett; Cassandra M. Kurtz; W. Keith. Moser

    2012-01-01

    The seventh inventory of Michigan's forests, completed in 2009, describes more than 19.9 million acres of forest land. The data in this report are based on visits to 7,516 forested plots from 2005 to 2009. Timberland accounts for 97 percent of this forest land, and 62 percent is privately owned. The sugar maple/beech/yellow birch forest type accounts for 18...

  13. Michigan's forests 2004

    Science.gov (United States)

    Scott A. Pugh; Mark H. Hansen; Lawrence D. Pedersen; Douglas C. Heym; Brett J. Butler; Susan J. Crocker; Dacia Meneguzzo; Charles H. Perry; David E. Haugen; Christopher Woodall; Ed Jepsen

    2009-01-01

    The first annual inventory of Michigan's forests, completed in 2004, covers more than 19.3 million acres of forest land. The data in this report are based on visits to 10,355 forested plots from 2000 to 2004. In addition to detailed information on forest attributes, this report includes data on forest health, biomass, land-use change, and timber-product outputs....

  14. Cost-effective age structure and geographical distribution of boreal forest reserves.

    Science.gov (United States)

    Lundström, Johanna; Ohman, Karin; Perhans, Karin; Rönnqvist, Mikael; Gustafsson, Lena; Bugman, Harald

    2011-02-01

    1. Forest reserves are established to preserve biodiversity, and to maintain natural functions and processes. Today there is heightened focus on old-growth stages, with less attention given to early successional stages. The biodiversity potential of younger forests has been overlooked, and the cost-effectiveness of incorporating different age classes in reserve networks has not yet been studied.2. We performed a reserve selection analysis in boreal Sweden using the Swedish National Forest Inventory plots. Seventeen structural variables were used as biodiversity indicators, and the cost of protecting each plot as a reserve was assessed using the Heureka system. A goal programming approach was applied, which allowed inclusion of several objectives and avoided a situation in which common indicators affected the result more than rare ones. The model was limited either by budget or area.3. All biodiversity indicators were found in all age classes, with more than half having the highest values in ages ≥ 100 years. Several large-tree indicators and all deadwood indicators had higher values in forests 0-14 years than in forests 15-69 years.4. It was most cost-effective to protect a large proportion of young forests since they generally have a lower net present value compared to older forests, but still contain structures of importance for biodiversity. However, it was more area-effective to protect a large proportion of old forests since they have a higher biodiversity potential per area.5. The geographical distribution of reserves selected with the budget-constrained model was strongly biassed towards the north-western section of boreal Sweden, with a large proportion of young forest, whereas the area-constrained model focussed on the south-eastern section, with dominance by the oldest age class.6.Synthesis and applications. We show that young forests with large amounts of structures important to biodiversity such as dead wood and remnant trees are cheap and cost

  15. Monitoring Forest Regrowth Using a Multi-Platform Time Series

    Science.gov (United States)

    Sabol, Donald E., Jr.; Smith, Milton O.; Adams, John B.; Gillespie, Alan R.; Tucker, Compton J.

    1996-01-01

    Over the past 50 years, the forests of western Washington and Oregon have been extensively harvested for timber. This has resulted in a heterogeneous mosaic of remaining mature forests, clear-cuts, new plantations, and second-growth stands that now occur in areas that formerly were dominated by extensive old-growth forests and younger forests resulting from fire disturbance. Traditionally, determination of seral stage and stand condition have been made using aerial photography and spot field observations, a methodology that is not only time- and resource-intensive, but falls short of providing current information on a regional scale. These limitations may be solved, in part, through the use of multispectral images which can cover large areas at spatial resolutions in the order of tens of meters. The use of multiple images comprising a time series potentially can be used to monitor land use (e.g. cutting and replanting), and to observe natural processes such as regeneration, maturation and phenologic change. These processes are more likely to be spectrally observed in a time series composed of images taken during different seasons over a long period of time. Therefore, for many areas, it may be necessary to use a variety of images taken with different imaging systems. A common framework for interpretation is needed that reduces topographic, atmospheric, instrumental, effects as well as differences in lighting geometry between images. The present state of remote-sensing technology in general use does not realize the full potential of the multispectral data in areas of high topographic relief. For example, the primary method for analyzing images of forested landscapes in the Northwest has been with statistical classifiers (e.g. parallelepiped, nearest-neighbor, maximum likelihood, etc.), often applied to uncalibrated multispectral data. Although this approach has produced useful information from individual images in some areas, landcover classes defined by these

  16. The complete nitrogen cycle of an N-saturated spruce forest ecosystem.

    Science.gov (United States)

    Kreutzer, K; Butterbach-Bahl, K; Rennenberg, H; Papen, H

    2009-09-01

    Long-term nitrogen deposition into forest ecosystems has turned many forests in Central Europe and North America from N-limited to N-saturated systems, with consequences for climate as well as air and groundwater quality. However, complete quantification of processes that convert the N deposited and contributed to ecosystem N cycling is scarce. In this study, we provide the first complete quantification of external and internal N fluxes in an old-growth spruce forest, the Höglwald, Bavaria, Germany, exposed to high chronic N deposition. In this forest, N cycling is dominated by high rates of mineralisation of soil organic matter, nitrification and immobilisation of ammonium and nitrate into microbial biomass. The amount of ammonium available is sufficient to cover the entire N demand of the spruce trees. The data demonstrate the existence of a highly dynamic internal N cycle within the soil, driven by growth and death of the microbial biomass, which turns over approximately seven times each year. Although input and output fluxes are of high environmental significance, they are low compared to the internal fluxes mediated by microbial activity.

  17. Forest dynamics.

    Science.gov (United States)

    Frelich, Lee

    2016-01-01

    Forest dynamics encompass changes in stand structure, species composition, and species interactions with disturbance and environment over a range of spatial and temporal scales. For convenience, spatial scale is defined as individual tree, neighborhood, stand, and landscape. Whether a given canopy-leveling disturbance will initiate a sequence of development in structure with little change in composition or initiate an episode of succession depends on a match or mismatch, respectively, with traits of the dominant tree species that allow the species to survive disturbance. When these match, certain species-disturbance type combinations lock in a pattern of stand and landscape dynamics that can persist for several generations of trees; thus, dominant tree species regulate, as well as respond to, disturbance. A complex interaction among tree species, neighborhood effects, disturbance type and severity, landform, and soils determines how stands of differing composition form and the mosaic of stands that compose the landscape. Neighborhood effects (e.g., serotinous seed rain, sprouting, shading, leaf-litter chemistry, and leaf-litter physical properties) operate at small spatial extents of the individual tree and its neighbors but play a central role in forest dynamics by contributing to patch formation at stand scales and dynamics of the entire landscape. Dominance by tree species with neutral to negative neighborhood effects leads to unstable landscape dynamics in disturbance-prone regions, wherein most stands are undergoing succession; stability can only occur under very low-severity disturbance regimes. Dominance by species with positive effects leads to stable landscape dynamics wherein only a small proportion of stands undergo succession at any one time. Positive neighborhood effects are common in temperate and boreal zones, whereas negative effects are more common in tropical climates. Landscapes with positive dynamics have alternate categories of dynamics

  18. Local-scale drivers of tree survival in a temperate forest.

    Science.gov (United States)

    Wang, Xugao; Comita, Liza S; Hao, Zhanqing; Davies, Stuart J; Ye, Ji; Lin, Fei; Yuan, Zuoqiang

    2012-01-01

    Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1-20 cm dbh) and medium trees (20-40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management.

  19. Investigating the relationship between tree heights derived from SIBBORK forest model and remote sensing measurements

    Science.gov (United States)

    Osmanoglu, B.; Feliciano, E. A.; Armstrong, A. H.; Sun, G.; Montesano, P.; Ranson, K.

    2017-12-01

    Tree heights are one of the most commonly used remote sensing parameters to measure biomass of a forest. In this project, we investigate the relationship between remotely sensed tree heights (e.g. G-LiHT lidar and commercially available high resolution satellite imagery, HRSI) and the SIBBORK modeled tree heights. G-LiHT is a portable, airborne imaging system that simultaneously maps the composition, structure, and function of terrestrial ecosystems using lidar, imaging spectroscopy and thermal mapping. Ground elevation and canopy height models were generated using the lidar data acquired in 2012. A digital surface model was also generated using the HRSI technique from the commercially available WorldView data in 2016. The HRSI derived height and biomass products are available at the plot (10x10m) level. For this study, we parameterized the SIBBORK individual-based gap model for Howland forest, Maine. The parameterization was calibrated using field data for the study site and results show that the simulated forest reproduces the structural complexity of Howland old growth forest, based on comparisons of key variables including, aboveground biomass, forest height and basal area. Furthermore carbon cycle and ecosystem observational capabilities will be enhanced over the next 6 years via the launch of two LiDAR (NASA's GEDI and ICESAT 2) and two SAR (NASA's ISRO NiSAR and ESA's Biomass) systems. Our aim is to present the comparison of canopy height models obtained with SIBBORK forest model and remote sensing techniques, highlighting the synergy between individual-based forest modeling and high-resolution remote sensing.

  20. Canopy transpiration of pure and mixed forest stands with variable abundance of European beech

    Science.gov (United States)

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2012-06-01

    SummaryThe importance of tree species identity and diversity for biogeochemical cycles in forests is not well understood. In the past, forestry has widely converted mixed forests to pure stands while contemporary forest policy often prefers mixed stands again. However, the hydrological consequences of these changes remain unclear. We tested the hypotheses (i) that significant differences in water use per ground area exist among the tree species of temperate mixed forests and that these differences are more relevant for the amount of stand-level canopy transpiration (Ec) than putative complementarity effects of tree water use, and (ii) that the seasonal patterns of Ec in mixed stands are significantly influenced by the identity of the present tree species. We measured xylem sap flux during 2005 (average precipitation) and 2006 (relatively dry) synchronously in three nearby old-growth forest stands on similar soil differing in the abundance of European beech (pure beech stand, 3-species stand with 70% beech, 5-species stand with sapwood area basis, reflecting a considerable variation in hydraulic architecture and leaf conductance regulation among the co-existing species. Moreover, transpiration per crown projection area (ECA) also differed up to 5-fold among the different species in the mixed stands, probably reflecting contrasting sapwood/crown area ratios. We conclude that Ec is not principally higher in mixed forests than in pure beech stands. However, tree species-specific traits have an important influence on the height of Ec and affect its seasonal variation. Species with a relatively high ECA (notably Tilia) may exhaust soil water reserves early in summer, thereby increasing drought stress in dry years and possibly reducing ecosystem stability in mixed forests.

  1. Forest and climate change

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled the challenges the French forest has to face, and a brief overview of the status of forests in the world, this report proposes an overview of actions which are implemented to strengthen the carbon sequestration role of forests, at the international level and in France. It discusses the distribution of carbon, the forest carbon stocks (in the world, Europe and France), the actions against climate change, the costs and financing of the reduction of greenhouse gas emissions in the forest sector. It comments the status of international negotiations and how forests are taken into account. It presents the French forest and wood sector (characteristics of the forest in metropolitan France and overseas, wood as material and as energy). It recalls the commitment of the Grenelle de l'Environnement, and indicates the current forest studies

  2. Forest inventory in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Sit [Forest Resource Div., Forest Department (Myanmar)

    1993-10-01

    Forest inventory in Myanmar started in 1850s. Up till 1975, Myanmar Forest Department conducted forest inventories covering approximately one forest division every year. The National Forest Survey and Inventory Project funded by UNDP and assisted by FAO commenced in 1981 and the National Forest Management and Inventory project followed in 1986. Up till end March 1993, pre-investment inventory has covered 26.7 million acres, reconnaissance inventory 5.4 million acres and management inventory has carried out in 12 townships

  3. Forest inventory in Myanmar

    International Nuclear Information System (INIS)

    Sit Bo

    1993-01-01

    Forest inventory in Myanmar started in 1850s. Up till 1975, Myanmar Forest Department conducted forest inventories covering approximately one forest division every year. The National Forest Survey and Inventory Project funded by UNDP and assisted by FAO commenced in 1981 and the National Forest Management and Inventory project followed in 1986. Up till end March 1993, pre-investment inventory has covered 26.7 million acres, reconnaissance inventory 5.4 million acres and management inventory has carried out in 12 townships

  4. Forest resources of Mississippi’s national forests, 2006

    Science.gov (United States)

    Sonja N. Oswalt

    2011-01-01

    This bulletin describes forest resource characteristics of Mississippi’s national forests, with emphasis on DeSoto National Forest, following the 2006 survey completed by the U.S. Department of Agriculture Forest Service, Forest Inventory and Analysis program. Mississippi’s national forests comprise > 1 million acres of forest land, or about 7 percent of all forest...

  5. Forest report 2013; Waldzustandsbericht 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This forest report of Lower Saxony (Germany) contains the following topics: weather and climate, forest protection, crown defoliation, infiltrated substances, environmental monitoring, insects and fungi, forest soil survey and forest site mapping, and nutritional status of beech on loess.

  6. Evaluation of hydrologic equilibrium in a mountainous watershed: incorporating forest canopy spatial adjustment to soil biogeochemical processes

    Science.gov (United States)

    Mackay, D. Scott

    Hydrologic equilibrium theory has been used to describe both short-term regulation of gas exchange and long-term adjustment of forest canopy density. However, by focusing on water and atmospheric conditions alone a hydrologic equilibrium may impose an oversimplification of the growth of forests adjusted to hydrology. In this study nitrogen is incorporated as a third regulation of catchment level forest dynamics and gas exchange. This was examined with an integrated distributed hydrology and forest growth model in a central Sierra Nevada watershed covered primarily by old-growth coniferous forest. Water and atmospheric conditions reasonably reproduced daily latent heat flux, and predicted the expected catenary trend of leaf area index (LAI). However, it was not until the model was provided a spatially detailed description of initial soil carbon and nitrogen pools that spatial patterns of LAI were generated. This latter problem was attributed to a lack of soil history or memory in the initialization of the simulations. Finally, by reducing stomatal sensitivity to vapor pressure deficit (VPD) the canopy density increased when water and nitrogen limitations were not present. The results support a three-control hydrologic equilibrium in the Sierra Nevada watershed. This has implications for modeling catchment level soil-vegetation-atmospheric interactions over interannual, decade, and century time-scales.

  7. National Forest Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...

  8. Forest Grammar (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    张松懋

    1994-01-01

    The syntactic parsing algorithm of weak precedence forest grammar has been introduced and the correctness and unambiguity of this algorithm have been proved. An example is given to the syntactic parsing procedure of weak precedence forest grammar.

  9. West Virginia's Forests 2008

    Science.gov (United States)

    Richard H. Widmann; Gregory W. Cook; Charles J. Barnett; Brett J. Butler; Douglas M. Griffith; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Ronald J. Piva; Rachel Riemann; Christopher W. Woodall

    2012-01-01

    The first full annual inventory of West Virginia's forests reports 12.0 million acres of forest land or 78 percent of the State's land area. The area of forest land has changed little since 2000. Of this land, 7.2 million acres (60 percent) are held by family forest owners. The current growing-stock inventory is 25 billion cubic feet--12 percent more than in...

  10. Forests and water cycle

    Directory of Open Access Journals (Sweden)

    Iovino F

    2009-06-01

    Full Text Available Based on a comprehensive literature analysis, a review on factors that control water cycle and water use in Mediterranean forest ecosystems is presented, including environmental variables and silvicultural treatments. This important issue is considered in the perspective of sustainable forest management of Mediterranean forests, with special regard to crucial environmental hazards such as forest fires and desertification risks related to climate change.

  11. Maine's forests 2008

    Science.gov (United States)

    George L. McCaskill; William H. McWilliams; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Christopher W. Woodall

    2011-01-01

    The second annual inventory of Maine's forests was completed in 2008 after more than 3,160 forested plots were measured. Forest land occupies almost 17.7 million acres, which represents 82 percent of the total land area of Maine. The dominant forest-type groups are maple/beech/yellow birch, spruce/fir, white/red/jack pine, and aspen/white birch. Statewide volume...

  12. Iowa Forests, 2013

    Science.gov (United States)

    Mark D. Nelson; Charles J. Barnett; Matt Brewer; Brett J. Butler; Susan J. Crocker; Grant M. Domke; Dale D. Gormanson; Cassandra M. Kurtz; Tonya W. Lister; Stephen Matthews; William H. McWilliams; Dacia M. Meneguzzo; Patrick D. Miles; Randall S. Morin; Ronald J. Piva; Rachel Riemann; James E. Smith; Brian F. Walters; Jim Westfall; Christopher W. Woodall

    2016-01-01

    The third full annual inventory of Iowa's forests (2009-2013) indicates that just under 3 million acres of forest land exists in the State, 81 percent of which is in family forest ownership. Almost all of Iowa's forest land is timberland (96 percent), with an average volume of more than 1,000 cubic feet of growing stock per acre on timberland and more than 1,...

  13. Dipterocarpaceae: forest fires and forest recovery

    NARCIS (Netherlands)

    Priadjati, A.

    2002-01-01

    One of the serious problems Indonesia is facing today is deforestation. Forests have been playing a very important role in Indonesia as the main natural resources for the economic growth of the country. Large areas of tropical forests, worldwide

  14. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.

    Science.gov (United States)

    Wood, Tana E; Lawrence, Deborah; Clark, Deborah A; Chazdon, Robin L

    2009-01-01

    Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release from decomposing litter influences the magnitude. Seasonal or annual variation in leaf litter mass, such as occurs in strong El Niño events, could positively

  15. Connecticut's forest resources, 2010

    Science.gov (United States)

    Brett J. Butler; Cassandra Kurtz; Christopher Martin; W. Keith Moser

    2011-01-01

    This publication provides an overview of forest resource attributes for Connecticut based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...

  16. Connecticut's forest resources, 2009

    Science.gov (United States)

    Brett J. Butler; Christopher Martin

    2011-01-01

    This publication provides an overview of forest resource attributes for Connecticut based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...

  17. Forests of Connecticut, 2015

    Science.gov (United States)

    Brett J. Butler

    2016-01-01

    This report provides an overview of forest resources in Connecticut based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. Estimates are based on field data collected using the FIA annualized sample design. Results are for the measurement years 2010-2015 with comparisons made to 2005-...

  18. Vermont's Forest Resources, 2006

    Science.gov (United States)

    R.S. Morin; R. De Geus

    2008-01-01

    This publication provides an overview of forest resource attributes for Vermont based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information regarding past inventory reports...

  19. Forests of Virginia, 2016

    Science.gov (United States)

    T.J. Brandeis; A.J. Hartsell; K.C. Randolph; C.M. Oswalt

    2018-01-01

    This resource update provides an overview of forest resources in Virginia based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Virginia Department of Forestry.

  20. Forests of Kentucky, 2012

    Science.gov (United States)

    C.M. Oswalt

    2015-01-01

    This resource update provides an overview of forest resource attributes for the Commonwealth of Kentucky based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) Program at the Southern Research Station of the Forest Service, U.S. Department of Agriculture in cooperation with the Kentucky Department of Natural Resources Division of Forestry....

  1. Forests of Alabama, 2014

    Science.gov (United States)

    Andy Hartsell

    2016-01-01

    This resource update provides an overview of forest resources in Alabama based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Alabama Forestry Commission. Estimates are based on field data collected using the FIA annualized sample design and are updated yearly....

  2. Forests of Wisconsin, 2013

    Science.gov (United States)

    Charles H. Perry

    2014-01-01

    This resource update provides an overview of forest resources in Wisconsin based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the Wisconsin Department of Natural Resources. Data estimates are based on field data collected using the FIA annualized sample design and...

  3. Forests of Pennsylvania, 2014

    Science.gov (United States)

    Richard H. Widmann

    2015-01-01

    This resource update provides an overview of the forest resources in Pennsylvania based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. Estimates are based on field data collected using the FIA annualized sample design and are updated yearly (see footnote 1 on page 4). Information about...

  4. Pennsylvania's forest resources, 2012

    Science.gov (United States)

    G.L. McCaskill; W.H. McWilliams; C.J. Barnett

    2013-01-01

    This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of...

  5. Pennsylvania's forest resources, 2009

    Science.gov (United States)

    G.L. McCaskill; W.H. McWilliams; B.J. Butler; D.M. Meneguzzo; C.J. Barnett; M.H. Hansen

    2011-01-01

    This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of...

  6. Pennsylvania's forest resources, 2011

    Science.gov (United States)

    G.L. McCaskill; W.H. McWilliams; C.J. Barnett

    2012-01-01

    This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of...

  7. Pennsylvania's forest resources, 2008

    Science.gov (United States)

    G.L. McCaskill; W.H. McWilliams; B.J. Butler; D.M. Meneguzzo; C.J. Barnett; M.H. Hansen

    2011-01-01

    This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of...

  8. Forests of Pennsylvania, 2015

    Science.gov (United States)

    Richard H. Widmann

    2016-01-01

    This resource update provides an overview of the forest resources in Pennsylvania based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station (NRS). Estimates are based on field data collected using the FIA annualized sample design and are updated yearly1(see footnote 1, page 2). Information...

  9. Pennsylvania's forest resources, 2010

    Science.gov (United States)

    G.L. McCaskill; W.H. McWilliams; C.J. Barnett

    2011-01-01

    This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of...

  10. Pennsylvania's forest resources, 2007

    Science.gov (United States)

    G.L. McCaskill; W.H. McWilliams; B.J. Butler; D.M. Meneguzzo; C.J. Barnett; M.H. Hansen

    2011-01-01

    This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 6 of...

  11. Forests of Pennsylvania, 2013

    Science.gov (United States)

    George L. McCaskill

    2014-01-01

    This publication provides an overview of the forest resources in Pennsylvania based upon inventories conducted by the USDA Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. Information about the national and regional FIA program is available online at http://fia.fs.fed.us. Since 1999, FIA has implemented an annual inventory...

  12. Forests of Kansas, 2015

    Science.gov (United States)

    Dacia M. Meneguzzo

    2016-01-01

    This resource update provides an overview of forest resources in Kansas based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2001-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2015 inventory,...

  13. Forests of Iowa, 2015

    Science.gov (United States)

    Mark D. Nelson; Matt Brewer; Dacia M. Meneguzzo; Kathryne. Clark

    2016-01-01

    This resource update provides an overview of forest resources in Iowa based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the Iowa Department of Natural Resources. Estimates are based on field data collected using the FIA annualized sample design and are updated...

  14. Forests of Nebraska, 2014

    Science.gov (United States)

    Dacia M. Meneguzzo; Susan J. Crocker

    2015-01-01

    This resource update provides an overview of forest resource attributes for Nebraska based on annual inventories conducted by the Forest Inventory and Analysis (FIA) Program of the Northern Research Station (NRS), U.S. Forest Service. The estimates presented in this update are based on field data collected in 2010-2014 with comparisons made to data collected from 2005-...

  15. Forests of Kansas, 2016

    Science.gov (United States)

    Dacia M. Meneguzzo

    2017-01-01

    This resource update provides an overview of forest resources in Kansas based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2001-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2016 inventory,...

  16. Forests of Nebraska, 2015

    Science.gov (United States)

    Dacia M. Meneguzzo

    2016-01-01

    This resource update provides an overview of forest resources in Nebraska based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2001-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2015 inventory...

  17. Forest resources and conditions

    Science.gov (United States)

    William H. McWilliams; Linda S. Heath; Gordon C. Reese; Thomas L. Schmidt

    2000-01-01

    The forests of the northern United States support a rich mix of floral and faunal communities that provide inestimable benefits to society. Today's forests face a range of biotic and abiotic stressors, not the least of which may be environmental change. This chapter reviews the compositional traits of presettlement forests and traces the major land use patterns...

  18. Wisconsin's forest resources, 2010

    Science.gov (United States)

    C.H. Perry

    2011-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...

  19. Wisconsin's forest resources, 2006

    Science.gov (United States)

    C.H. Perry; V.A. Everson

    2007-01-01

    Figure 2 was revised by the author in August 2008. This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis program at the Northern Research Station of the U.S. Forest Service from 2002-2006. These estimates, along with associated core tables postedon the Internet, are...

  20. Wisconsin's Forest Resources, 2007

    Science.gov (United States)

    C.H. Perry; V.A. Everson

    2008-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service, Northern Research Station. These estimates, along with web-posted core tables, are updated annually. For more information please refer to page 4 of this report.

  1. Wisconsin's forest resources, 2009

    Science.gov (United States)

    C.H. Perry

    2011-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this report...

  2. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  3. Forests Regenerating after Clear-Cutting Function as Habitat for Bryophyte and Lichen Species of Conservation Concern

    Science.gov (United States)

    Rudolphi, Jörgen; Gustafsson, Lena

    2011-01-01

    The majority of managed forests in Fennoscandia are younger than 70 years old but yet little is known about their potential to host rare and threatened species. In this study, we examined red-listed bryophytes and lichens in 19 young stands originating from clear-cutting (30–70 years old) in the boreal region, finding 19 red-listed species (six bryophytes and 13 lichens). We used adjoining old stands, which most likely never had been clear-cut, as reference. The old stands contained significantly more species, but when taking the amount of biological legacies (i.e., remaining deciduous trees and dead wood) from the previous forest generation into account, bryophyte species number did not differ between old and young stands, and lichen number was even higher in young stands. No dispersal effect could be detected from the old to the young stands. The amount of wetlands in the surroundings was important for bryophytes, as was the area of old forest for both lichens and bryophytes. A cardinal position of young stands to the north of old stands was beneficial to red-listed bryophytes as well as lichens. We conclude that young forest plantations may function as habitat for red-listed species, but that this depends on presence of structures from the previous forest generation, and also on qualities in the surrounding landscape. Nevertheless, at repeated clear-cuttings, a successive decrease in species populations in young production stands is likely, due to increased fragmentation and reduced substrate amounts. Retention of dead wood and deciduous trees might be efficient conservation measures. Although priority needs to be given to preservation of remnant old-growth forests, we argue that young forests rich in biological legacies and located in landscapes with high amounts of old forests may have a conservation value. PMID:21490926

  4. Salvage logging following fires can minimize boreal caribou habitat loss while maintaining forest quotas: An example of compensatory cumulative effects.

    Science.gov (United States)

    Beguin, Julien; McIntire, Eliot J B; Raulier, Frédéric

    2015-11-01

    Protected area networks are the dominant conservation approach that is used worldwide for protecting biodiversity. Conservation planning in managed forests, however, presents challenges when endangered species use old-growth forests targeted by the forest industry for timber supply. In many ecosystems, this challenge is further complicated by the occurrence of natural disturbance events that disrupt forest attributes at multiple scales. Using spatially explicit landscape simulation experiments, we gather insights into how these large scale, multifaceted processes (fire risk, timber harvesting and the amount of protected area) influenced both the persistence of the threatened boreal caribou and the level of timber supply in the boreal forest of eastern Canada. Our result showed that failure to account explicitly and a priori for fire risk in the calculation of timber supply led to an overestimation of timber harvest volume, which in turn led to rates of cumulative disturbances that threatened both the long-term persistence of boreal caribou and the sustainability of the timber supply itself. Salvage logging, however, allowed some compensatory cumulative effects. It minimised the reductions of timber supply within a range of ∼10% while reducing the negative impact of cumulative disturbances caused by fire and logging on caribou. With the global increase of the human footprint on forest ecosystems, our approach and results provide useful tools and insights for managers to resolve what often appear as lose-lose situation between the persistence of species at risk and timber harvest in other forest ecosystems. These tools contribute to bridge the gap between conservation and forest management, two disciplines that remain too often disconnected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    Science.gov (United States)

    Cui, X.; Liu, S.; Wei, X.

    2012-05-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently-completed research programs (one of them known as "973 of the China National Major Fundamental Science" with funding of 3.5 million USD in 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings at a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation at both spatial scales. The impact magnitudes caused by forest harvesting indicate that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yields in the Minjiang River watershed. In addition, different types of forests have different magnitudes of ET with old-growth natural

  6. Hydrologic and forest management controls on DOC dynamics in the small watersheds of the H.J. Andrews Experimental Forest, OR

    Science.gov (United States)

    Lajtha, K.; Jones, J. A.

    2016-12-01

    Dissolved organic carbon (DOC) export from hillslopes to streams is an important component of the carbon cycle of a catchment and may be a critical source of energy for the aquatic food web in receiving waters. Using a long-term record of DOC and other dissolved nutrients and elements from paired watersheds from the H.J. Andrews Experimental Forest in Oregon, we explored hydrologic, climatic, and land-use controls on seasonal and inter-annual patterns of DOC flux in a seasonally dry ecosystem. Seasonal patterns of DOC flux demonstrated source limitations to DOC export, with DOC concentrations highest immediately following the first rains after a dry summer, and lowest after winter rains. In contrast, more geochemically-controlled elements showed simple dilution-concentration patterns with no seasonal hysteresis. Inter-annual patterns of DOC flux, however, did not provide evidence of source limitation, with DOC flux within a watershed tightly correlated to total discharge but not temperature. Among watersheds, forest harvest, even over 50 years ago, significantly reduced DOC flux but not fluxes of other elements including N; this response was linked to the loading of coarse woody debris to the forest floor. Chemical fingerprinting of DOC revealed that old-growth watersheds had higher fluxes of DOC characteristic of forest floor organic materials, likely delivered to streams through more surficial preferential flow pathways not subject to microbial alteration, respiration, or sorption losses. Taken together these results suggest that the biogeochemical composition of forested streams reflects both current hydrologic patterns and also processes that occurred many decades ago within the catchment.

  7. Forests and Forest Cover - DCNR - State Forest Lands 2015

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The state forest boundry coverage is being updated frequently. It is derived from survey descriptions and will be, and has been in certain areas, adjusted to GPS...

  8. Hyperspectral sensing of forests

    Science.gov (United States)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  9. Assessing the Impacts of forest degradation on water, energy, and carbon budgets in Amazon forest using the Functionally Assembled Terrestrial Ecosystem Simulator

    Science.gov (United States)

    Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R. G.; Koven, C.; Fisher, R.

    2017-12-01

    Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining observational infrastructures, and the lack of proper modeling tools for capturing the interactions among biophysical properties, ecosystem demography, and biogeochemical cycling in tropical forests. As a first step to address these limitations, we implemented a selective logging module into the Functional Assembled Terrestrial Ecosystem Simulator (FATES) and parameterized the model to reproduce the selective logging experiment at the Tapajos National Forest in Brazil. The model was spun up until it reached the steady state, and simulations with and without logging were compared with the eddy covariance flux towers located at the logged and intact sites. The sensitivity of simulated water, energy, and carbon fluxes to key plant functional traits (e.g. Vcmax and leaf longevity) were quantified by perturbing their values within their documented ranges. Our results suggest that the model can reproduce water and carbon fluxes in intact forests, although sensible heat fluxes were overestimated. The effects of logging intensity and techniques on fluxes were assessed by specifying different disturbance parameters in the models (e.g., size-dependent mortality rates associated with timber harvest, collateral damage, and mechanical damage for infrastructure construction). The model projections suggest that even though the degraded forests rapidly recover water and energy fluxes compared with old-growth forests, the recovery times for carbon stocks, forest structure and composition are much longer. In addition, the simulated recovery trajectories are highly dependent on choices of values for functional traits. Our study highlights the advantages of an Earth system modeling approach

  10. Forested wetland habitat

    Science.gov (United States)

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  11. Human-Forest Relationships

    DEFF Research Database (Denmark)

    Ritter, Eva; Dauksta, D.

    2012-01-01

    The relationship between human beings and forests has been important for the development of society. It is based on various productive, ecological, social and cultural functions of forests. The cultural functions, including the spiritual and symbolic role of forests, are often not addressed...... with the same attention as the other functions. The aim of this paper is to put a stronger emphasis on the fact that the acknowledgement of cultural bonds is needed in the discussion of sustainable development. Forest should not only be considered as a technical means to solve environmental and economic...... problems. To achieve a deeper understanding of the dependency of society on forests, it is necessary to recognise the role of forests in our consciousness of being human. Giving a historical overview about the cultural bonds between people and forests, the first part of the paper puts focus on non...

  12. Long-term persistence of pioneer species in tropical forest soil seed banks

    Energy Technology Data Exchange (ETDEWEB)

    Dalling, J W; Brown, T A

    2008-10-05

    In tropical forests, pioneer species regenerate from seeds dispersed directly into canopy gaps, and from seeds that persisted in soil seed banks before gap formation. However, life-history models suggest that selection for long-term persistence of seeds in soil should be weak, as persistence incurs a fitness cost resulting from prolonged generation time. We use a carbon dating technique to provide the first direct measurements of seed persistence in undisturbed tropical forest seed banks. We show that seeds germinate successfully from surface soil microsites up to 38 years after dispersal. Decades-long persistence may be common in pioneers with relatively large mass, and appears to be unrelated to specific regeneration requirements. In Croton billbergianus, a sub-canopy tree that recruits in abundant small gaps, long-term persistence is associated with short-distance ballistic seed dispersal. In Trema micrantha, a canopy tree with widespread dispersal, persistence is associated with a requirement for large gaps that form infrequently in old-growth forest.

  13. Effects of Lakes on Wildfire Activity in the Boreal Forests of Saskatchewan, Canada

    Directory of Open Access Journals (Sweden)

    Scott E. Nielsen

    2016-11-01

    Full Text Available Large lakes can act as firebreaks resulting in distinct patterns in the forest mosaic. Although this is well acknowledged, much less is known about how wildfire is affected by different landscape measures of water and their interactions. Here we examine how these factors relate to historic patterns of wildfire over a 35-year period (1980–2014 for the boreal forest of Saskatchewan, Canada. This includes the amount of water in different-sized neighborhoods, the presence of islands, and the direction, distance, and shape of nearest lake of different sizes. All individual factors affected wildfire presence, with lake sizes ≥5000 ha and amount of water within a 1000-ha surrounding area the most supported spatial scales. Overall, wildfires were two-times less likely on islands, more likely further from lakes that were circular in shape, and in areas with less surrounding water. Interactive effects were common, including the effect of direction to lake as a function of distance from lakeshore and amount of surrounding water. Our results point to a strong, but complex, bottom-up control of local wildfire activity based on the configuration of natural firebreaks. In fact, fire rotation periods predicted for one area varied more than 15-fold (<47 to >700 years depending on local patterns in lakes. Old-growth forests within this fire-prone ecosystem are therefore likely to depend on the surrounding configuration of larger lakes.

  14. The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile.

    Science.gov (United States)

    Urrutia-Jalabert, Rocio; Malhi, Yadvinder; Lara, Antonio

    2015-01-01

    Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1) and 448-517 Mg C ha(-1) in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1) year(-1) in AC and 2.22-2.54 Mg C ha(-1) year(-1) in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1) year(-1) in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.

  15. The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile.

    Directory of Open Access Journals (Sweden)

    Rocio Urrutia-Jalabert

    Full Text Available Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP, carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1 and 448-517 Mg C ha(-1 in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1 year(-1 in AC and 2.22-2.54 Mg C ha(-1 year(-1 in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1 year(-1 in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.

  16. Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest

    Science.gov (United States)

    Nyirambangutse, Brigitte; Zibera, Etienne; Uwizeye, Félicien K.; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2017-03-01

    As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tropical forest ecosystems (ca. 8 %, elevation > 1000 m a.s.l.), there are still significant knowledge gaps regarding the carbon dynamics and stocks of these forests, and how these differ between early (ES) and late successional (LS) stages. This study examines the carbon (C) stock, relative growth rate (RGR) and net primary production (NPP) of ES and LS forest stands in an Afromontane tropical rainforest using data from inventories of quantitatively important ecosystem compartments in fifteen 0.5 ha plots in Nyungwe National Park in Rwanda. The total C stock was 35 % larger in LS compared to ES plots due to significantly larger above-ground biomass (AGB; 185 and 76 Mg C ha-1 in LS and ES plots), while the soil and root C stock (down to 45 cm depth in the mineral soil) did not significantly differ between the two successional stages (178 and 204 Mg C ha-1 in LS and ES plots). The main reasons for the difference in AGB were that ES trees had significantly lower stature and wood density compared to LS trees. However, ES and LS stands had similar total NPP (canopy, wood and roots of all plots ˜ 9.4 Mg C ha-1) due to counterbalancing effects of differences in AGB (higher in LS stands) and RGR (higher in ES stands). The AGB in the LS plots was considerably higher than the average value reported for old-growth tropical montane forest of south-east Asia and Central and South America at similar elevations and temperatures, and of the same magnitude as in tropical lowland forest of these regions. The results of this study highlight the importance of accounting for disturbance regimes and differences in wood density and allometry of

  17. Estimating forest conversion rates with annual forest inventory data

    Science.gov (United States)

    Paul C. Van Deusen; Francis A. Roesch

    2009-01-01

    The rate of land-use conversion from forest to nonforest or natural forest to forest plantation is of interest for forest certification purposes and also as part of the process of assessing forest sustainability. Conversion rates can be estimated from remeasured inventory plots in general, but the emphasis here is on annual inventory data. A new estimator is proposed...

  18. Forest resources of the Nez Perce National Forest

    Science.gov (United States)

    Michele Disney

    2010-01-01

    As part of a National Forest System cooperative inventory, the Interior West Forest Inventory and Analysis (IWFIA) Program of the USDA Forest Service conducted a forest resource inventory on the Nez Perce National Forest using a nationally standardized mapped-plot design (for more details see the section "Inventory methods"). This report presents highlights...

  19. Forest report 2016; Waldzustandsbericht 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    This forest condition report of Hesse (Germany) includes the following topics: forest condition survey for all tree species, forest in the in the Rhine-Main area, weather and climate, soil water balance and drought stress, insects and fungi, Forestry Environment Monitoring, infiltrated substances, main results of Forest soil survey in Hesse (BZE II), the substrate group red sandstone, heavy metal contamination of forests.

  20. 78 FR 18307 - Forest Service

    Science.gov (United States)

    2013-03-26

    ... DEPARTMENT OF AGRICULTURE Forest Service Forest Resource Coordinating Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting; Correction. SUMMARY: The Forest Service published a document in the Federal Register of January 31, 2013, concering a notice of meeting for the Forest Resource...

  1. Forests of east Texas, 2013

    Science.gov (United States)

    K.J.W. Dooley; T.J. Brandeis

    2014-01-01

    This resource update provides an overview of forest resources in east Texas based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Texas A&M Forest Service. Forest resource estimates are based on field data collected using the FIA annualized sample design and...

  2. Forest health from different perspectives

    Science.gov (United States)

    T. E. Kolb; M. R. Wagner; W. W. Covington

    1995-01-01

    Forest health is an increasingly important concept in natural resource management. However, definition of forest health is difficult and dependent on human perspective. From a utilitarian perspective, forest health has been defined by the production of forest conditions which directly satisfy human needs. From an ecosystem-centered perspective, forest health has been...

  3. The negative impact of intentionally introduced Quercus rubra L. on a forest community

    Directory of Open Access Journals (Sweden)

    Beata Woziwoda

    2014-03-01

    Full Text Available Some alien woody species used in commercial forestry become invasive and, as invaders, cause major problems in natural and semi-natural ecosystems. However, the deliberate introduction of aliens can bring unintended negative changes also within areas of their cultivation. This paper presents the effects of the intentional introduction of the North-American Quercus rubra in European mixed Scots pine-Pedunculate oak forests (POFs: Querco roboris-Pinetum (W. Mat. 1981 J. Mat. 1988. Phytosociological data from field research combined with GIS data analysis of the current distribution of Northern Red oak in the studied habitat were used to determine the composition and structure of forest communities in plots with and without Q. rubra participation.  The results show that Q. rubra significantly reduces native species richness and abundance, both in old-growth and in secondary (post-agricultural forests. Not one resident vascular plant benefits from the introduction of Northern Red oak and only a few are able to tolerate its co-occurrence. The natural restocking of all native woody species is also strongly limited by this alien tree.  The introduction of Northern Red oak significantly limits the environmental functions of the POF ecosystem and weakens its economic and social aspects. However, its further cultivation is justified from an economic point of view, as the essential function of the studied forests is commercial timber production, and the introduction of this fast growing alien tree supports the provisioning ecosystem services. A clear description of the level of trade-off between the accepted negative and positive effects of the introduction of Q. rubra on forest ecosystem services requires further interdisciplinary studies.

  4. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe.

    Science.gov (United States)

    Seibold, Sebastian; Brandl, Roland; Buse, Jörn; Hothorn, Torsten; Schmidl, Jürgen; Thorn, Simon; Müller, Jörg

    2015-04-01

    To reduce future loss of biodiversity and to allocate conservation funds effectively, the major drivers behind large-scale extinction processes must be identified. A promising approach is to link the red-list status of species and specific traits that connect species of functionally important taxa or guilds to resources they rely on. Such traits can be used to detect the influence of anthropogenic ecosystem changes and conservation efforts on species, which allows for practical recommendations for conservation. We modeled the German Red List categories as an ordinal index of extinction risk of 1025 saproxylic beetles with a proportional-odds linear mixed-effects model for ordered categorical responses. In this model, we estimated fixed effects for intrinsic traits characterizing species biology, required resources, and distribution with phylogenetically correlated random intercepts. The model also allowed predictions of extinction risk for species with no red-list category. Our model revealed a higher extinction risk for lowland and large species as well as for species that rely on wood of large diameter, broad-leaved trees, or open canopy. These results mirror well the ecological degradation of European forests over the last centuries caused by modern forestry, that is the conversion of natural broad-leaved forests to dense conifer-dominated forests and the loss of old growth and dead wood. Therefore, conservation activities aimed at saproxylic beetles in all types of forests in Central and Western Europe should focus on lowlands, and habitat management of forest stands should aim at increasing the amount of dead wood of large diameter, dead wood of broad-leaved trees, and dead wood in sunny areas. © 2014 Society for Conservation Biology.

  5. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-06-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  6. Disturbance and topography shape nitrogen availability and δ15 N over long-term forest succession

    Science.gov (United States)

    Perakis, Steven; Tepley, Alan J.; Compton, Jana

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane landscape influenced by human logging and wildfire. In contrast to expectations, we found that disturbance caused declines in surface mineral soil δ15N values, both in logged forests measured 40–50 years after disturbance, and in unlogged forests disturbed by severe wildfire within the last 200 years. Both symbiotic N fixation and N transfers from disturbed vegetation and detritus could lower soil δ15N values after disturbance. A more important role for symbiotic N fixation is suggested by lower soil δ15N values in slow-successional sites with slow canopy closure, which favors early-successional N fixers. Soil δ15N values increased only marginally throughout 800 years of succession, reflecting soil N uptake by vegetation and strong overall N retention. Although post-disturbance N inputs lowered surface soil δ15N values, steady-state mass balance calculations suggest that wildfire combustion of vegetation and detritus can dominate long-term N loss and increase whole-ecosystem δ15N. On steeper topography, declining soil δ15N values highlight erosion and accelerated soil turnover as an additional abiotic control on N balances. We conclude for N-limited montane forests that soil δ15N and N availability are less influenced by nitrate leaching and denitrification loss than by interactions between disturbance, N fixation, and erosion.

  7. Habitat correlates of the red panda in the temperate forests of Bhutan.

    Directory of Open Access Journals (Sweden)

    Sangay Dorji

    Full Text Available Anthropogenic activities and associated global climate change are threatening the biodiversity in the Himalayas against a backdrop of poor knowledge of the region's threatened species. The red panda (Ailurus fulgens is a threatened mammal confined to the eastern Himalayas, and because of Bhutan's central location in the distributional range of red pandas, its forests are integral to the long-term viability of wild populations. Detailed habitat requirements of the red panda are largely speculative, and there is virtually no ecological information available on this species in Bhutan. Between 2007 and 2009, we established 615 presence/absence plots in a systematic sampling of resident habitat types within Jigme Dorji and Thrumshingla National Parks, Bhutan, to investigate broad and fine-scale red panda habitat associations. Additional locality records of red pandas were obtained from interviewing 664 park residents. Red pandas were generally confined to cool broadleaf and conifer forests from 2,110-4,389 m above sea level (asl, with the majority of records between 2,400-3,700 m asl on south and east-facing slopes. At a finer scale, multivariate analysis revealed that red pandas were strongly associated with old growth Bhutan Fir (Abies densa forest dominated by a dense cover of Yushania and Arundanaria bamboo with a high density of fallen logs and tree stumps at ground level; a high density of trees, dead snags, and rhododendron shrubs in the mid-storey; and locations that were close to water. Because Bhutan's temperate forests that encompass prime red panda habitat are also integral to human subsistence and socio-economic development, there exists an inadvertent conflict between the needs of people and red pandas. As such, careful sustainable management of Bhutan's temperate forests is necessary if a balance is to be met between the socioeconomic needs of people and the conservation goals for red pandas.

  8. Does participatory forest management promote sustainable forest utilisation in Tanzania?

    DEFF Research Database (Denmark)

    Treue, Thorsten; Ngaga, Y.M.; Meilby, Henrik

    2014-01-01

    Over the past 20 years, Participatory Forest Management (PFM) has become a dominant forest management strategy in Tanzania, covering more than 4.1 million hectares. Sustainable forest use and supply of wood products to local people are major aims of PFM. This paper assesses the sustainability...... of forest utilisation under PFM, using estimates of forest condition and extraction rates based on forest inventories and 480 household surveys from 12 forests; seven under Community Based Forest Management (CBFM), three under Joint Forest Management (JFM) and two under government management (non......-PFM). Extraction of products is intense in forests close to Dar es Salaam, regardless of management regime. Further from Dar es Salaam, harvesting levels in forests under PFM are, with one prominent exception, broadly sustainable. Using GIS data from 116 wards, it is shown that half of the PFM forests in Tanzania...

  9. Drivers of aboveground wood production in a lowland tropical forest of West Africa: teasing apart the roles of tree density, tree diversity, soil phosphorus, and historical logging.

    Science.gov (United States)

    Jucker, Tommaso; Sanchez, Aida Cuni; Lindsell, Jeremy A; Allen, Harriet D; Amable, Gabriel S; Coomes, David A

    2016-06-01

    Tropical forests currently play a key role in regulating the terrestrial carbon cycle and abating climate change by storing carbon in wood. However, there remains considerable uncertainty as to whether tropical forests will continue to act as carbon sinks in the face of increased pressure from expanding human activities. Consequently, understanding what drives productivity in tropical forests is critical. We used permanent forest plot data from the Gola Rainforest National Park (Sierra Leone) - one of the largest tracts of intact tropical moist forest in West Africa - to explore how (1) stand basal area and tree diversity, (2) past disturbance associated with past logging, and (3) underlying soil nutrient gradients interact to determine rates of aboveground wood production (AWP). We started by statistically modeling the diameter growth of individual trees and used these models to estimate AWP for 142 permanent forest plots. We then used structural equation modeling to explore the direct and indirect pathways which shape rates of AWP. Across the plot network, stand basal area emerged as the strongest determinant of AWP, with densely packed stands exhibiting the fastest rates of AWP. In addition to stand packing density, both tree diversity and soil phosphorus content were also positively related to productivity. By contrast, historical logging activities negatively impacted AWP through the removal of large trees, which contributed disproportionately to productivity. Understanding what determines variation in wood production across tropical forest landscapes requires accounting for multiple interacting drivers - with stand structure, tree diversity, and soil nutrients all playing a key role. Importantly, our results also indicate that logging activities can have a long-lasting impact on a forest's ability to sequester and store carbon, emphasizing the importance of safeguarding old-growth tropical forests.

  10. Missouri Forests 2013

    Science.gov (United States)

    Ronald J. Piva; Thomas B. Treiman; Brett J. Butler; Susan J. Crocker; Dale D. Gormanson; Douglas M. Griffith; Cassandra M. Kurtz; Tonya W. Lister; William G. Luppold; William H. McWilliams; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Charles H. (Hobie) Perry; Rachel Riemann; James E. Smith; Brian F. Walters; Christopher W. Woodall

    2016-01-01

    The third full cycle of annual inventories (2009-2013) of Missouri's forests, completed in 2013, reports that there are an estimated 15.5 million acres of forest land in the State. An estimated 60 percent of the forest land area is in sawtimber size stands, 30 percent are pole timber size, and 10 percent are seedling/sapling size or nontstocked. The net volume of...

  11. Maine Forests 2013

    Science.gov (United States)

    George L. McCaskill; Thomas Albright; Charles J. Barnett; Brett J. Butler; Susan J. Crocker; Cassandra M. Kurtz; William H. McWilliams; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Richard H. Widmann; Christopher W. Woodall

    2016-01-01

    The third 5-year annualized inventory of Maine's forests was completed in 2013 after more than 3170 forested plots were measured. Maine contains more than 17.6 million acres of forest land, an area that has been quite stable since 1960, covering more than 82 percent of the total land area. The number of live trees greater than 1 inch in diameter are approaching 24...

  12. Pennsylvania forests 2014

    Science.gov (United States)

    Thomas A. Albright; William H. McWilliams; Richard H. Widmann; Brett J. Butler; Susan J. Crocker; Cassandra M. Kurtz; Shawn Lehman; Tonya W. Lister; Patrick D. Miles; Randall S. Morin; Rachel Riemann; James E. Smith

    2017-01-01

    This report summarizes the third cycle of annualized inventory of Pennsylvania with field data collected from 2009 through 2014. Pennsylvania has 16.9 million acres of forest land dominated by sawtimber stands of oak/hickory and maple/beech/birch forest-type groups. Volumes continue to increase as the forests age with an average of 2,244 cubic feet per acre on...

  13. Ghana's high forests

    OpenAIRE

    Oduro, K.A.

    2016-01-01

    Deforestation and forest degradation in the tropics have been receiving both scientific and political attention in recent decades due to its impacts on the environment and on human livelihoods. In Ghana, the continuous decline of forest resources and the high demand for timber have raised stakeholders concerns about the future timber production prospects in the country. The principal drivers of deforestation and forest degradation in Ghana are agricultural expansion (50%), wood harvesting (35...

  14. Kentucky's forests, 2004

    Science.gov (United States)

    Jeffery A. Turner; Christopher M. Oswalt; James L. Chamberlain; Roger C. Conner; Tony G. Johnson; Sonja N. Oswalt; KaDonna C. Randolph

    2008-01-01

    Forest land area in the Commonwealth of Kentucky amounted to 11.97 million acres, including 11.6 million acres of timberland. Over 110 different species, mostly hardwoods, account for an estimated 21.2 billion cubic feet of all live tree volume. Hardwood forest types occupy 85 percent of Kentucky’s timberland, and oak-hickory is the dominant forest-type group...

  15. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia).

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Meriem, Selis; Hertel, Dietrich

    2015-10-01

    Natural forests in South-East Asia have been extensively converted into other land-use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large-scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal ) in above- and belowground tree biomass in land-use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above- and belowground carbon pools in tree biomass together with NPPtotal in natural old-growth forests, 'jungle rubber' agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land-use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha(-1) ) was more than two times higher than in jungle rubber stands (147 Mg ha(-1) ) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha(-1) ). NPPtotal was higher in the natural forest (24 Mg ha(-1)  yr(-1) ) than in the rubber systems (20 and 15 Mg ha(-1)  yr(-1) ), but was highest in the oil palm system (33 Mg ha(-1)  yr(-1) ) due to very high fruit production (15-20 Mg ha(-1)  yr(-1) ). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha(-1) ) but also in carbon sequestration as carbon residence time (i.e. biomass-C:NPP-C) was 3-10 times higher in the natural forest than in rubber and oil palm plantations. © 2015 John Wiley & Sons Ltd.

  16. Understory Structure and Vascular Plant Diversity in Naturally Regenerated Deciduous Forests and Spruce Plantations on Similar Clear-Cuts: Implications for Forest Regeneration Strategy Selection

    Directory of Open Access Journals (Sweden)

    ZhiQiang Fang

    2014-04-01

    Full Text Available The active effect of natural regeneration on understory vegetation and diversity on clear-cut forestlands, in contrast to conifer reforestation, is still controversial. Here we investigated differences in understory vegetation by comparing naturally regenerated deciduous forests (NR and reforested spruce plantations (SP aged 20–40 years on 12 similar clear-cuts of subalpine old-growth spruce-fir forests from the eastern Tibetan Plateau. We found that 283 of the 334 vascular plant species recorded were present in NR plots, while only 264 species occurred in SP plots. This was consistent with richer species, higher cover, and stem (or shoot density of tree seedlings, shrubs, and ferns in the NR plots than in the SP plots. Moreover, understory plant diversity was limited under dense canopy cover, which occurred more frequently in the SP plots. Our findings implied that natural deciduous tree regeneration could better preserve understory vegetation and biodiversity than spruce reforestation after clear-cutting. This result further informed practices to reduce tree canopy cover for spruce plantations or to integrate natural regeneration and reforestation for clear-cuts in order to promote understory vegetation and species diversity conservation.

  17. Threatened and neglected forests

    International Nuclear Information System (INIS)

    Pellicane, P.J.; Gutkowski, R.M.; Czarnock, J.

    1997-01-01

    Polands once considerable forest resource suffered destruction during World War II and is now a victim of the legacy of past forest practices, the toxic effects of industrial pollution, and the urgent needs of its people today. Polish forest are threatened by a variety of abiotic, biotic and anthropogenic factors. Extremes of climate and declining groundwater tables add to the problem. Pollution is the most serious problem, particularly air pollution. Much of the air pollution in Poland is attributable to mining and burning high-sulfur coal. Besides describing the causes of the forest decline, this article discusses solutions

  18. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Science.gov (United States)

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  19. Forest report 2014; Waldzustandsbericht 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    This forest report of Hesse (Germany) contains the following topics: weather and climate, forest protection, crown defoliation, infiltrated substances, environmental monitoring, insects and fungi, and water quality of forest streams.

  20. Forest Policy: Theory and Application

    Directory of Open Access Journals (Sweden)

    Antonova N. E.

    2010-06-01

    Full Text Available Based on summarizing the experiences of countries with the developed forest sector (Finland, Sweden, Japan, Germany, Canada, USA, and Russia the forest policy concept, objectives, and tools are viewed. Types of forest users- recipients of the forest policy are singled out in order to form a rational structure of the forest industry on the basis of the society’s priorities in forest management by means of institutional measures