WorldWideScience

Sample records for oklo natural fission

  1. Isotopic studies relative to the Oklo natural fission reactors

    International Nuclear Information System (INIS)

    It has been clearly demonstrated that natural fission reactors operated about 2 109 years ago, in rich uranium one deposits of the Oklo mine in the Republique of Gabon. Six reactions zones have been identified in which approximately six tons of 235U were consumed and the same amount of fission products deposited in the ground. These fission products, their filiation isotopes and nuclei formed from neutron captures are precious tracers, which now can be analysed on well localized samples, to obtain informations on the stability in soil of such elements and data on the nuclear parameters and characteristics of the nuclear reactors. The studies which have been developed at Saclay concern several aspects of this phenomenon: the migrations of fission products, the age of the nuclear reaction, the date of the uranium deposit and the temperature of the reaction zones during the operation of the reactors

  2. The Oklo natural reactor: Cumulative fission yields and retentivity of the symmetric mass region fission products

    Science.gov (United States)

    De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L.

    1980-10-01

    Solid source mass spectrometry has been used to determine the relative cumulative fission yields of five elements in three samples of uranium ore from reactor zones in the Oklo mine site. Eighteen fission chains covering the mass range from 105 ≤ A ≤ 130 have been measured for Pd, Ag, Cd, Sn and Te. These measurements have enabled a number of nuclear parameters to be calculated including the relative proportions of 235U, 238U and 239Pu involved in the fission process. The concentration of the five elements in the Oklo samples have also been measured using the stable isotope dilution technique. These values have then been compared to the estimates of the amount of these elements produced by fission under the conditions that are appropriate to the three samples. This procedure enables the retentivity of the elements in the reactor zones to be evaluated. Our work confirms the fact that Pd and Te are retained almost in their entirety in the samples, whereas the other three elements have been partially lost from the reactor site. Almost all the Cd fission products have been lost, and more than 50% of the Ag and Sn fission-produced material has been removed.

  3. Uraninite recrystallization and Pb loss in the Oklo and Bangombé natural fission reactors, Gabon

    Science.gov (United States)

    Evins, Lena Z.; Jensen, Keld A.; Ewing, Rodney C.

    2005-03-01

    The Oklo and Bangombé natural fossil fission reactors formed ca. 2 Ga ago in the Franceville basin, Gabon. The response of uraninite in the natural reactors to different geological conditions has implications for the disposal of the UO 2 in spent nuclear fuel. Uraninite and galena from two reactor zones, RZ16 at Oklo and RZB at Bangombé, were studied to clarify the chronology and effect of alteration events on the reactor zones. In addition, ion microprobe U-Pb analysis of zircons from a dolerite dyke in the Oklo deposit were completed to better constrain the age of the dyke, and thereby testing the link between the dyke and an important alteration event in the reactor zones. The analyzed uraninite from RZ16 and RZB contains ca. 6 wt% PbO, indicating a substantial loss of radiogenic Pb. Transmission electron microscopy showed that microscopic uraninite grains in the reactor zones consist of mainly defect-free nanocrystalline to microcrystalline aggregates. However, the nanocrystalline regions have elevated Si contents and lower Pb contents than coarser uraninite crystallites. Single stage model ages of large, millimeter-sized galena grains at both RZ16 and RZB correlate well with the age of the Oklo dolerite dyke, 860 ± 39 Ma (2σ). Thus, the first major Pb loss from uraninite occurred at both Oklo and Bangombé during regional extension and the intrusion of a dyke swarm in the Franceville basin, ˜860-890 Ma ago. Uraninite Pb isotopes from RZ16 and RZB give lower ages of ca. 500 Ma. These ages agree with the "chemical" ages of the uraninite, and show that an ancient Pb loss occurred after the intrusion of the dolerite dykes. The presence of nanocrystallites in the reactor uraninite indicates internal recrystallization, which may have occurred around 500 Ma, resulting in the 6wt% PbO uraninite. It is suggested that leaching by fluid interaction triggered by the Pan-African orogeny was important during this second Pb-loss event. Thus, there are indications that

  4. Heterogeneity and alteration of uraninite from the natural fission reactor 10 at Oklo, Gabon

    International Nuclear Information System (INIS)

    A mineralogical study of uranium ore from reactor zone 10 revealed that uraninite in the natural reactors at Oklo, Gabon, has been altered through partial dissolution, Pb loss, and replacement by coffinite, USiO4.nH2O. The dissolution occurred during formation of the clay mantle surrounding the ore body and was probably caused by hydrothermal saline solutions under reducing conditions. The loss of lead (up to 11 wt%) from uraninite occurred approximately one billion years after the operation of the reactors. As a result, there are two generations of uraninite in the reactor zone that differ in chemical composition and unit cell parameters [a1 = 0.5495(2) and a2 = 0.5455(2) nm]. Minor coffinitization of uraninite has also occurred. Thus, the Oklo deposit has been altered since the event of nuclear criticality. This provides several distinct geochemical environments in which one may analyze the corrosion of uraninite and the subsequent retention or migration of fission products. (author). 20 refs., 3 figs., 1 tab

  5. Oklo natural reactors: geological and geochemical conditions

    International Nuclear Information System (INIS)

    Published as well as unpublished material on the Oklo natural reactors in Gabon was evaluated with regard to the long-term aspects of nuclear waste disposal. Even though the vast data base available at present can provide only a site specific description of the phenomenon, already this material gives relevant information on plutonium retention, metamictization, fission product release, hydrogeochemical stability and migration of fission products. Generalized conclusions applicable to other nuclear waste repository would require the quantitative reconstruction of t s coupled thermo-hydrologic-chemical processes. This could be achieved by studying the deviations in the 2H/1H and 18O/16O ratios of minerals at Oklo. A further generalization of the findings from Oklo could be realized by examining the newly-discovered reactor zone 10, which was active under very different thermal conditions than the other reactors. 205 refs

  6. Reappraisal of the limit on the variation in α implied by the Oklo natural fission reactors

    Science.gov (United States)

    Davis, Edward D.; Hamdan, Leila

    2015-07-01

    Background: A signature of many dynamical models of dark energy is that they admit variation in the fine structure constant α over cosmological time scales. Purpose: We reconsider the analysis of the sensitivity of neutron resonance energies Ei to changes in α with a view to resolving uncertainties that plague earlier treatments. Methods: We point out that with more appropriate choices of nuclear parameters, the standard estimate (from Damour and Dyson) of the sensitivity for resonances in Sm is increased by a factor of 2.5. We go on to identify and compute excitation, Coulomb, and deformation corrections. To this end, we use deformed Fermi density distributions fitted to the output of Hartree-Fock (HF) + BCS calculations (with both the SLy4 and SkM* Skyrme functionals), the energetics of the surface diffuseness of nuclei, and thermal properties of their deformation. We also invoke the eigenstate thermalization hypothesis, performing the requisite microcanonical averages with two phenomenological level densities which, via the leptodermous expansion of the level density parameter, include the effect of increased surface diffuseness. Theoretical uncertainties are assessed with the inter-model prescription of Dobaczewski et al. [J. Phys. G: Nucl. Part. Phys. 41, 074001 (2014), 10.1088/0954-3899/41/7/074001]. Results: The corrections diminish the revised Sm sensitivity but not by more than 25%. Subject to a weak and testable restriction on the change in mq/Λ (relative to the change in α ) since the time when the Oklo reactors were active (mq is the average of the u and d current quark masses, and Λ is the mass scale of quantum chromodynamics), we deduce that | αOklo-αnow|Oklo bound on changes in α is reliable. It is one order of magnitude lower than the Oklo-based bound most commonly adopted in earlier attempts to identify phenomenologically successful models of α variation.

  7. Oklo natural fission reactor program. Progress report, April 1-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.B. (comp.)

    1980-12-01

    An interim report has been published on the redistribution of uranium, thorium, and lead in samples representing several million cubic meters of sandstone and metamorphosed sediments in the Athabasca Basin which is located in the northwest corner of the Canadian province of Saskatchewan. The region of study includes zones of uranium mineralization at Key Lake. Mineralization occurs at the unconformity between the Athabasca sandstone and the underlying metasediments and in fault zones within the metasediments. Lead isotopes record a radiometric age of 1300 +- 150 m.y. in samples from above and below the unconformity. This age probably reflects the time of deposition of the sandstones and an associated redistribution of uranium and/or lead in the underlying rocks. Many of the samples have been fractionated with respect to radiogenic lead and the actinide parent elements since that time. Sandstones and altered rocks from the region above the unconformity have been a transport path and are a repository for lead. In contrast, mineralized rocks are deficient in radiogenic lead and must be an important source of lead in the local geologic environment. Samples from Oklo reactor zone 9 and nearby host rocks have been prepared for isotopic analyses of ruthenium, molybdenum, uranium and lead.

  8. Migration and retention of elements at the Oklo natural reactor

    Science.gov (United States)

    Brookins, Douglas G.

    1982-09-01

    The Oklo natural reactor, Gabon, permits study of fission-produced elemental behavior in a natural geologic environment. The uranium ore that sustained fission reactions formed about 2 billion years before present (BYBP), and the reactor was operative for about 5 × 105 yrs between about 1.95 to 2 BYBP. The many tons of fission products can, for the most part, be studied for their abundance and distribution today. Since reactor shutdown, many fissiogenic elements have not migrated from host pitchblende, and several others have migrated only a few tens of meters from the reactor ore. Only Xe and Kr have apparently been largely removed from the reactor zones. An element by element assessment of the Oklo rocks' ability to retain the fission products, and actinides and radiogenic Pb and Bi as well, leads to the conclusion that no widespread migration of the elements occurred. This suggests that rocks with more favorable geologic characteristics are indeed well suited for consideration for the storage of radioactive waste.

  9. Isotopic evidence for the retention of Sr-90 inferred from excess Zr-90 in the Oklo natural fission reactors: Implication for geochemical behaviour of fissiogenic Rb, Sr, Cs and Ba

    Science.gov (United States)

    Hidaka, Hiroshi; Sugiyama, Takeshi; Ebihara, Mitsuru; Holliger, Philippe

    1994-03-01

    In order to investigate the mobility of fissiogenic Sr-90 in the geological environment, the Zr isotopic compositions of seven samples from one of the newly formed Oklo natural reactor zones (i.e., reactor core and adjacent rocks (10, SF84)) in the Republic of Gabon were determined with an inductively coupled plasma mass spectrometer (ICP-MS). Zr isotopes in uraninite grains from different reactor zones were also measured by secondary ion mass spectrometry (SIMS). Fissiogenic Zr isotopic abundances of three samples from the reactor core have excess Zr-90, which has never before been formed in previous Oklo samples. In this paper, the geochemical behaviour of Zr-90 is discussed by making use of the relative retentivity inferred from the isotopic abundance of Sr. The excess in Zr-90 suggests dependence on the degree of retention/migration of Sr-90, the precursor of Zr-90 in the fission chain. In the aqueous phase, chemical fractionation between Sr and Zr could have occurred before radioactive Sr-90 decayed. Considering the halflife of Sr-90 (t(sub 1/2) = 29.1 y), considerable amounts of the latter have been produced during criticality. Sr and Zr (including Zr-90) could have been redistributed between the reactor core and its vicinity. The retentivity of fissiogenic Zr-90 in reactor core 10 is not homogeneous. In addition, the distributions of Rb, Cs and Ba is also heterogeneous.

  10. Inception and evolution of Oklo natural nuclear reactors

    Science.gov (United States)

    Bentridi, Salah-Eddine; Gall, Benoît; Gauthier-Lafaye, François; Seghour, Abdeslam; Medjadi, Djamel-Eddine

    2011-11-01

    The occurrence of more than 15 natural nuclear Reactor Zones (RZ) in a geological environment remains a mystery even 40 years after their discovery. The present work gives for the first time an explanation of the chemical and physical processes that caused the start-up of the fission reactions with two opposite processes, uranium enrichments and progressive impoverishment in 235U. Based on Monte-Carlo neutronics simulations, a solution space was defined taking into account realistic combinations of relevant parameters acting on geological conditions and neutron transport physics. This study explains criticality occurrence, operation, expansion and end of life conditions of Oklo natural nuclear reactors, from the smallest to the biggest ones.

  11. Inception and evolution of Oklo natural nuclear reactors; Genese et evolution des reacteurs nucleaires fossiles d'Oklo

    Energy Technology Data Exchange (ETDEWEB)

    Bentridi, Salah-Eddine [UMR 7517, laboratoire d' hydrologie et de geochimie de Strasbourg, CNRS/universite de Strasbourg, 1, rue Blessig, 67084 Strasbourg (France); Laboratoire de l' energie et des systemes intelligents, CUKM, route de Theniet, El-Hed 44225 (Algeria); Gall, Benoit [UMR 7178, institut pluridisciplinaire Hubert-Curien, CNRS-IN2P3/universite de Strasbourg, 23, rue du Loess, 67037 Strasbourg (France); Gauthier-Lafaye, Francois [UMR 7517, laboratoire d' hydrologie et de geochimie de Strasbourg, CNRS/universite de Strasbourg, 1, rue Blessig, 67084 Strasbourg (France); Seghour, Abdeslam [Centre de recherches nucleaires d' Alger - CRNA, 2, boulevard Frantz-Fanon, 16000 Alger (Algeria); Medjadi, Djamel-Eddine [Ecole normale superieure, Vieux-Kouba, 16050 Alger (Algeria)

    2011-11-15

    The occurrence of more than 15 natural nuclear Reactor Zones (RZ) in a geological environment remains a mystery even 40 years after their discovery. The present work gives for the first time an explanation of the chemical and physical processes that caused the start-up of the fission reactions with two opposite processes, uranium enrichments and progressive impoverishment in {sup 235}U. Based on Monte-Carlo neutronics simulations, a solution space was defined taking into account realistic combinations of relevant parameters acting on geological conditions and neutron transport physics. This study explains criticality occurrence, operation, expansion and end of life conditions of Oklo natural nuclear reactors, from the smallest to the biggest ones. (authors)

  12. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    Science.gov (United States)

    Nagy, B.; Gauthier-Lafaye, F.; Holliger, P.; Davis, D.W.; Mossman, D.J.; Leventhal, J.S.; Rigali, M.J.; Parnell, J.

    1991-01-01

    SOME of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter1,2, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid3,4. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite5. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the resolidified, graphitic bitumen. Unlike water-soluble (humic) organic matter, the graphitic bituminous organics at Oklo thus enhanced radionu-clide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lan-thanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pretreated nuclear waste warrants further investigation. ?? 1991 Nature Publishing Group.

  13. The role of mass spectrometry to study the Oklo-Bangombé natural reactors.

    Science.gov (United States)

    De Laeter, J R; Hidaka, H

    2007-01-01

    The discovery of the existence of chain reactions at the Oklo natural reactors in Gabon, Central Africa in 1972 was a triumph for the accuracy of mass spectrometric measurements, in that a 0.5% anomaly in the (235)U/(238)U ratio of certain U ore samples indicated a depletion in (235)U. Mass spectrometric techniques thereafter played a dominant role in determining the nuclear parameters of the reactor zones themselves, and in deciphering the geochemical characteristics of various elements in the U-rich ore and in the surrounding rock strata. The variations in the isotopic composition of a large number of elements, caused by a combination of nuclear fission, neutron capture and radioactive decay, provide a powerful tool for investigating this unique geological environment. Mass spectrometry can be used to measure the present-day elemental and isotopic abundances of numerous elements, so as to decipher the past history of the reactors and examine the retentivity/mobility of these elements. Many of the fission products have a radioactive decay history that have been used to date the age and duration of the reactor zones, and to provide insight into their nuclear and geochemical behavior as a function of time. The Oklo fission reactors and their near neighbor at Bangombé, some 30 km to the south-east of Oklo, are unique in that not only did they become critical some 2 x 10(9) years ago, but also the deposits have been preserved over this period of geological time. The long-term geochemical behavior of actinides and fission products have been extensively studied by a variety of mass spectrometric techniques over the past 30 years to provide us with significant information on the mobility/retentivity of this material in a natural geological repository. The Oklo-Bangombé natural reactors are therefore geological analogs that can be evaluated in terms of possible radioactive waste containment sites. As more reactor zones were discovered, it was realized that they could be

  14. γ-ray fluxes in Oklo natural reactors

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Sonzogni, A. A.

    2012-11-01

    Background: Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant α. Improved 176Lu/175Lu thermometry has been discussed but its usefulness may be complicated by photoexcitation of the isomeric state 176mLu by 176Lu(γ,γ') fluorescence.Purpose: We calculate prompt, delayed, and equilibrium γ-ray fluxes due to fission of 235U in pulsed mode operation of Oklo zone RZ10.Methods: We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes.Results: We find γ-ray fluxes as a function of energy and derive values for the coefficients λγ,γ' that describe burn-up of 176Lu through the isomeric 176mLu state.Conclusion: The contribution of the (γ,γ') channel to the 176Lu/175Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium thermometry is fully applicable to analyses of Oklo reactor data.

  15. Recent outputs of the Oklo (Gabon) natural analogue study to nuclear waste disposal

    International Nuclear Information System (INIS)

    In the past twenty five years, the natural nuclear reactors of Oklo have been the subject of numerous detailed studies. First investigated for the physical and neutron aspects of the nuclear reaction, they were then reconsidered because they provide a unique opportunity in the world to study the containment of actinides and fission products in a geological formation over a broad timescale (two billion years). Although the sites investigated do not represent a complete analogue of a repository system, many of the processes studied (mass transfer to the surface, transport, migration / retention), the spatial extent of these processes, and the timescales involved, are compatible with processes liable to occur during the lifespan of a repository for the deep geological disposal of spent nuclear fuel. A fresh program was therefore initiated as a European Commission project in 1990, entitled''Oklo as a natural analog for transfer processes in a radioactive waste repository'- phase 7, and then extended by a phase 2 entitled Oklo, Natural Analogue - Behavior of Nuclear Reaction Products in a Natural Environment''. Researches conducted in phase I served to determine the physical conditions of the operation of the natural reactor, reconstruct the geological history of the reactor environment, and decode the behavior of actinides as well as fission products in the surrounding geological formations. Phase N, which ended in June 1999, had three main objectives: i) to assess radionuclide migration and retention processes from the reactor zones to the geological environment, ii) to define the confinement properties and long-term behavior of geological materials; iii) to test models of processes related to radionuclide migration and retention, and eventually to provide suitable data and scenarios for performance assessment of nuclear waste disposal. This paper proposes a synthesis of the main outputs of the Oklo project to the performance assessment of nuclear waste disposal, the

  16. Gamma-ray fluxes in Oklo natural reactors

    CERN Document Server

    Gould, C R; Sonzogni, A A; 10.1103/PhysRevC.86.054602

    2012-01-01

    Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant $\\alpha$. Improved $^{176}$Lu/$^{175}$Lu thermometry has been discussed but its usefulness may be complicated by photo excitation of the isomeric state $^{176m}$Lu by $^{176}$Lu($\\gamma,\\gamma^\\prime $) fluorescence. We calculate prompt, delayed and equilibrium $\\gamma$-ray fluxes due to fission of $^{235}$U in pulsed mode operation of Oklo zone RZ10. We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes. We find $\\gamma$-ray fluxes as a function of energy and derive values for the coefficients $\\lambda_{\\gamma,\\gamma^\\prime}$ that describe burn-up of $^{176}$Lu through the isomeric $^{176m}$Lu state. The contribution of the ($\\gamma,\\gamma^\\prime $) channel to the $^{176}$Lu/$^{175}$Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium...

  17. Record of cycling operation of the natural nuclear reactor in the Oklo/Okelobondo area in Gabon

    International Nuclear Information System (INIS)

    Using selective laser extraction technique combined with sensitive ion-counting mass spectrometry, we have analyzed the isotopic structure of fission noble gases in U-free La-Ce-Sr-Ca aluminous hydroxy phosphate associated with the 2 billion yr old Oklo natural nuclear reactor. In addition to elevated abundances of fission-produced Zr, Ce, and Sr, we discovered high (up to 0.03 cm3 STP/g) concentrations of fission Xe and Kr, the largest ever observed in any natural material. The specific isotopic structure of xenon in this mineral defines a cycling operation for the reactor with 30-min active pulses separated by 2.5 h dormant periods. Thus, nature not only created conditions for self-sustained nuclear chain reactions, but also provided clues on how to retain nuclear wastes, including fission Xe and Kr, and prevent uncontrolled runaway chain reaction

  18. Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon

    Science.gov (United States)

    Meshik, A. P.; Hohenberg, C. M.; Pravdivtseva, O. V.

    2004-10-01

    Using selective laser extraction technique combined with sensitive ion-counting mass spectrometry, we have analyzed the isotopic structure of fission noble gases in U-free La-Ce-Sr-Ca aluminous hydroxy phosphate associated with the 2 billion yr old Oklo natural nuclear reactor. In addition to elevated abundances of fission-produced Zr, Ce, and Sr, we discovered high (up to 0.03 cm3 STP/g) concentrations of fission Xe and Kr, the largest ever observed in any natural material. The specific isotopic structure of xenon in this mineral defines a cycling operation for the reactor with 30-min active pulses separated by 2.5h dormant periods. Thus, nature not only created conditions for self-sustained nuclear chain reactions, but also provided clues on how to retain nuclear wastes, including fission Xe and Kr, and prevent uncontrolled runaway chain reaction.

  19. Xenon in oklo al phosphate: implication for operational conditions of natural reactors.

    Science.gov (United States)

    Meshik, A. P.; Hohenberg, C. M.; Pravdivtseva, O. V.

    2003-04-01

    New data for the Oklo natural reactor (Gabon), obtained by laser microprobe extraction and high precision noble gas mass-spectrometry, confirm our previous findings of large amount of anomalous Xe in U-free Al-phosphate adjacent to uraninite [1]. Compared with known fission spectra, the anomalous Xe is enriched in 132Xe, 131Xe and, to a less extent, 129Xe and 134Xe. It was suggested [1] that the observed Xe anomalies are due to chemical fractionation of Xe from β^ precursors (mainly I and Te) in isobaric decay chains. However, no mechanisms were proposed at that time. In this work, a follow-up to the previous studies, we explore the manner in which these anomalies may be produced. Apparently, under the temperatures present during the active periods of the Oklo reactor (300 - 450^oC), both I and Xe may easily diffuse out of U-oxides. Te in general is less mobile, due to slightly higher ionic radius, and has better retention than I and Xe. When the chain reaction is stopped, the temperature starts dropping and at the certain moment Xe formed from Te starts to retain in the Al-phosphate. Since that moment, accumulation of each Xe isotope must be proportional to decay time of corresponding Te isotope. This may in fact be responsible for the Xe anomalies found in Al-phosphate. 132Te, 131Te and 134Te have different half-lives and therefore ratios of these isotopes will not remain constant after the chain reaction is terminated due to the lack of water. Our calculation demonstrates that to produce the observed Xe anomalies the reactor must have been cycling with about 1frac{3}{4} hour period. Large concentration of fission products found in Al-phosphate also suggests that this material may be suitable for long-term storage of nuclear wastes. We are grateful to Don Bogard and to late Paul K. Kuroda with whom the idea of thermal cycling of Oklo reactor has been discussed. The Oklo sample was provided by Maurice Pagel and Yuri Dymkov. This work is supported by NASA grant

  20. Nuclear Data and the Oklo Natural Nuclear Reactors

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Sonzogni, A. A.

    2014-04-01

    Data from the Oklo natural nuclear reactors have enabled some of the most sensitive terrestrial tests of time variation of dimensionless fundamental constants. The constraints on variation of αEM, the fine structure constant are particular good, but depend on the reliability of the nuclear data, and on the reliability of the modeling of the reactor environment. We briefly review the history of these tests and discuss our recent work in 1) attempting to better bound the temperatures at which the reactors operated, 2) investigating whether the γ-ray fluxes in the reactors could have contributed to changing lutetium isotopic abundances and 3) determining whether lanthanum isotopic data could provide an alternate estimate of the neutron fluence.

  1. Limits on the variability of coupling constants from the Oklo natural reactor

    Science.gov (United States)

    Irvine, J. M.

    1983-12-01

    The theoretical basis of prehistoric natural nuclear reactors is summarized and the natural reactor at Oklo in Gabon is discussed. An analysis of isotopic abundances at the Oklo site suggests that the extremely narrow neutron capture resonance in Sm-149 has moved by less than 0.01 eV in the past two billion years. This result is used to place limits on the variability of coupling constants over this period.

  2. What we learn from the nuclear data in Oklo natural reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Fukahori, Tokio; Ohnuki, Toshihiko; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fujii, Y. [Nihon Fukushi Univ., Aichi (Japan); Hidaka, H. [Hiroshima Univ. (Japan); Ohura, Y. [Tokyo Metropolitan Univ. (Japan); Moeller, P. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2001-03-01

    We reexamined the constraint for the time variation of the coupling constant of the fundamental interaction by studying the isotropic abundance of Sm observed at Oklo natural reactor. Using the most modern and reliable data, together with the study of the isotropic abundance of Gd, we found that the original finding of Shlyakhter is essentially correct, that is, the Oklo data provides us the most stringent limit for the time variation compared with any other methods. (author)

  3. Natural fission reactors from Gabon. Contribution to the study of the conditions of stability of a natural radioactive wastes storage site (2 Ga)

    International Nuclear Information System (INIS)

    The natural fission reactors of Oklo consists of a core of uraninite (60%) with fission products, embedded in a pure clay matrix. Thus, the aim of geological, mineral, and geochemical studies of the Oklo Reactors is to assess the behaviour of fission products in an artificial waste depository. Previous studies have shown that Reactor Zone 10, located in the Oklo mine, represents an example for an exceptional confinement of fission products since 2 Ga. In reactor Zone 9, located in Oklo open pit, migrations are more important. Reactor ZOne 13 was influenced by a thermal event due to a doleritic intrusion, located some twenty meters far away, one Ga years after fission reaction operations. In this study,we characterized temperature and redox conditions of fluids by using stable isotopes of uraninites and clays. Moreover mineralogical and chemical characteristics were defined. (author)

  4. ^176Lu/^175Lu thermometry for Oklo natural reactors: a new look at old data

    Science.gov (United States)

    Gould, Chris; Sharapov, Eduard

    2012-03-01

    Lutetium thermometry has been used to analyze Oklo natural nuclear reactor zones but leads to widely varying and puzzling predictions for the temperatures TO, which in turn impacts Oklo bounds on the time variation of the fine structure constant α. We revisit results for reactor zone RZ10 in light of new astrophysical measurements of the isomer branching ratio B^g in ^175Lu neutron capture at 5 and 25 keV. We recalculate predictions for TO as a function of B^g using realistic models of the Oklo neutron flux. We find TO= 100 ±30 C using a new value of B^g, in contrast to 350 Oklo reactor data, but a better measurement of B^g with thermal neutrons is needed to confirm the reliability of temperature predictions.

  5. Recent outputs of the Oklo (Gabon) natural analogue study to nuclear waste disposal; Apports recents de l'etude de l'analogue naturel Oklo (Gabon) dans le domaine du stockage des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, V.; Trotignon, L. [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SESD), 13 - Saint-Paul-lez-Durance (France); Louvat, D. [CEA Cadarache, (IPSN/DPRE/SERNAT/LERCM), 13 - Saint-Paul-lez-Durance (France)

    2000-07-01

    In the past twenty five years, the natural nuclear reactors of Oklo have been the subject of numerous detailed studies. First investigated for the physical and neutron aspects of the nuclear reaction, they were then reconsidered because they provide a unique opportunity in the world to study the containment of actinides and fission products in a geological formation over a broad timescale (two billion years). Although the sites investigated do not represent a complete analogue of a repository system, many of the processes studied (mass transfer to the surface, transport, migration / retention), the spatial extent of these processes, and the timescales involved, are compatible with processes liable to occur during the lifespan of a repository for the deep geological disposal of spent nuclear fuel. A fresh program was therefore initiated as a European Commission project in 1990, entitled''Oklo as a natural analog for transfer processes in a radioactive waste repository'- phase 7, and then extended by a phase 2 entitled Oklo, Natural Analogue - Behavior of Nuclear Reaction Products in a Natural Environment''. Researches conducted in phase I served to determine the physical conditions of the operation of the natural reactor, reconstruct the geological history of the reactor environment, and decode the behavior of actinides as well as fission products in the surrounding geological formations. Phase N, which ended in June 1999, had three main objectives: i) to assess radionuclide migration and retention processes from the reactor zones to the geological environment, ii) to define the confinement properties and long-term behavior of geological materials; iii) to test models of processes related to radionuclide migration and retention, and eventually to provide suitable data and scenarios for performance assessment of nuclear waste disposal. This paper proposes a synthesis of the main outputs of the Oklo project to the performance assessment of

  6. The Oklo Natural Reactor and the Time Variability of the Fundamental Constants of Nature

    Energy Technology Data Exchange (ETDEWEB)

    Lamoreaux, Steve (LANL)

    2005-11-07

    Natural nuclear reactors? Changes in the speed of light? If either of these concepts seem implausible to you now they certainly won't once Dr. Steve Lamoreaux (LANL) delivers his SLAC Colloquium lecture in the Panofsky Auditorium on November 7th at 4:15 pm entitled The Oklo Natural Reactor and the Time Variability of the Fundamental Constants of Nature. This lecture is a rare opportunity to learn not only about Oklo's incredible natural nuclear reactors but also to gain understanding about how the present-day study of these sites may alter our understanding of fundamental constants such as the speed of light. This event is a must-see for the curious!

  7. Fate of the Epsilon Phase in the Oklo Natural Reactors

    Energy Technology Data Exchange (ETDEWEB)

    S. Utsunomiya; R.C. Ewing

    2005-03-31

    In spent nuclear fuel (SNF), the micron- to submicron-sized epsilon phase (Mo-Ru-Pd-Tc-Rh) is an important host of {sup 99}Tc which has a long half life (2.13 x 10{sup 5} years) and can be an important contributor to dose in safety assessments of nuclear waste repositories. In addition, Tc is predominantly present as TcO{sub 4}{sup -} under oxidizing conditions at wide range of pH, weakly adsorbed onto mineral surfaces, and unlikely to be incorporated into alteration uranyl minerals. In the Oklo natural reactor (2.0 Ga), essentially all of the {sup 99}Tc has decayed to {sup 99}Ru. Thus, this study focuses on Ru and the other metals of the epsilon phase in order to investigate the occurrence and the fate of the epsilon phase during the corrosion of this natural SNF. Samples from reactor zone (RZ)-10 (836, 819, 687); from RZ-13 (864, 910); were investigated using TEM (transmission electron microscopy). Within the UO{sub 2} matrix, a Bi-Pd particle (40-60 nm), fioodite, PdBi{sub 2}, was observed with trace amounts of As, Fe, and Te surrounded by an amorphous Pb-rich area. (Pd,Rh){sub 2}As, palladodymite or rhodarsenide, was observed (400-500 nm in size). Ruthenarsinite, (Ru,Ni)As, was identified in most samples: with a representative composition of As, 59.9: Co, 2.5: Ni, 5.2; Ru, 18.6; Rh, 8.4; Pd, 3.1; Sb, 2.4 in atomic percent. The particles diameters are a few hundred nanometers and, in most cases, surrounded by a Pb-rich phase (400-500 nm). Typically, the ruthenarsenite does not occur as single particle but an aggregate of {approx}200 nm-sized particles. Some Ru-particles revealed a complex phase separation within the grain such as a Ru-particle (600-700 nm) with Pb at the core of the particle and enrichment of Ni, Co, and As at the rim. Some ruthenarsenite crystals were embedded in chlorite immediately adjacent to uraninite. A few particles were still coated by Pb. These results suggest a history for the epsilon phases: (1) The original epsilon phase was

  8. Lutetium thermometry for Oklo natural reactors: a new look at old data

    CERN Document Server

    Gould, C R; 10.1103/PhysRevC.85.024610

    2012-01-01

    Lutetium thermometry has been used to analyze Oklo natural nuclear reactor zones but leads to widely varying and puzzling predictions for the temperatures $T_O$ which in turn impacts bounds on time variation of the fine structure constant $\\alpha$. We revisit results for reactor zone RZ10 in light of new measurements of the isomer branching ratio $B^g$ in $^{175}$Lu neutron capture at 5 and 25 keV. We recalculate predictions for $T_O$ as a function of $B^g$ using realistic models of the Oklo neutron flux. We find $T_O = 100 \\pm 30$ C using a new value of $B^g$, in contrast to $350 < T_O < 500 $ C using the evaluated value at thermal energy. Lutetium thermometry can be applicable to analyses of Oklo reactor data, but a better measurement of $B^g$ with thermal neutrons is needed to confirm the reliability of temperature predictions.

  9. Evidence of fissiogenic Cs estimated from Ba isotopic deviations in an Oklo natural reactor zone

    Science.gov (United States)

    Hidaka, Hiroshi; Holliger, Philippe; Masuda, Akimasa

    1993-01-01

    Isotopic studies of many elements from the uranium ore natural nuclear reactors at Oklo provide useful information on the migration of radioactive nuclides. The fissiogenic isotopic composition of Ba is particularly interesting, as it is an important indication in the search for fissiogenic Cs. In this report we detail the detection of remarkable isotopic deviations of Ba in the Oklo samples and estimate the geochemical behaviour of fissiogenic Cs from excess Ba isotopes. Six samples systematically collected from borehole SF84 (zone 10) at the Oklo uranium mine have been analyzed. Isotopic deviations of Ba indicate the existence of fissiogenic Cs and Ba. A good correlation between the elemental abundance of Cs and isotopic abundances of excess 135Ba and 137Ba suggests that fissiogenic 135Ba and 137Ba behaved as Cs rather than Ba.

  10. 176Lu/175Lu thermometry for the Oklo natural reactors: A new examination of old data

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.

    2012-02-01

    Background: Lutetium thermometry has been used to analyze Oklo natural nuclear reactor zones but leads to widely varying and puzzling predictions for the temperatures TO which in turn impacts bounds on time variation of the fine structure constant α.Purpose: We revisit results for reactor zone RZ10 in light of new measurements of the isomer branching ratio Bg in 175Lu neutron capture at 5 and 25 keV.Method: We recalculate predictions for TO as a function of Bg using realistic models of the Oklo neutron flux.Results: We find TO=100±30 ∘C using a new value of Bg, in contrast to 350Oklo reactor data, but a better measurement of Bg with thermal neutrons is needed to confirm the reliability of temperature predictions.

  11. Lutetium thermometry for Oklo natural reactors: a new look at old data

    OpenAIRE

    Gould, C.R.; Sharapov, E. I.

    2012-01-01

    Lutetium thermometry has been used to analyze Oklo natural nuclear reactor zones but leads to widely varying and puzzling predictions for the temperatures $T_O$ which in turn impacts bounds on time variation of the fine structure constant $\\alpha$. We revisit results for reactor zone RZ10 in light of new measurements of the isomer branching ratio $B^g$ in $^{175}$Lu neutron capture at 5 and 25 keV. We recalculate predictions for $T_O$ as a function of $B^g$ using realistic models of the Oklo ...

  12. Fate of the epsilon phase in the Oklo natural reactors

    Energy Technology Data Exchange (ETDEWEB)

    Utsunomiya, S.; Ewing, R.C. [Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1063 (United States)

    2005-07-01

    Full text of publication follows: In spent nuclear fuel (SNF), the micron- to submicron-sized epsilon phase (Mo-Ru-Pd-Tc-Rh) is an important host of {sup 99}Tc which has a long half life (2.13 x 10{sup 5} years) and can be an important contributor to dose in safety assessments of nuclear waste repositories. In addition, Tc is predominantly present as TcO{sub 4} - under oxidizing conditions at wide range of pH, weakly adsorbed onto mineral surfaces, and unlikely to be incorporated into alteration uranyl minerals. In the Oklo natural reactor (2.0 Ga), essentially all of the {sup 99}Tc has decayed to {sup 99}Ru. Thus, this study focuses on Ru and the other metals of the epsilon phase in order to investigate the occurrence and the fate of the epsilon phase during the corrosion of this natural SNF. Samples from reactor zone (RZ)-10 (836, 819, 687); from RZ-13 (864, 910); were investigated using TEM (transmission electron microscopy). Within the UO{sub 2} matrix, a Bi-Pd particle (40-60 nm), froodite, PdBi{sub 2}, was observed with trace amounts of As, Fe, and Te surrounded by an amorphous Pb-rich area. (Pd,Rh){sub 2}As, palladodymite or rhodarsenide, was observed (400-500 nm in size). Ruthenarsinite, (Ru,Ni)As, was identified in most samples: with a representative composition of As, 59.9: Co, 2.5: Ni, 5.2; Ru, 18.6; Rh, 8.4; Pd, 3.1; Sb, 2.4 in atomic percent. The particles diameters are a few hundred nanometers and, in most cases, surrounded by a Pb-rich phase (400-500 nm). Typically, the ruthenarsenite does not occur as single particle but an aggregate of {approx}200 nm-sized particles. Some Ru-particles revealed a complex phase separation within the grain such as a Ru-particle (600-700 nm) with Pb at the core of the particle and enrichment of Ni, Co, and As at the rim. Some ruthenarsenite crystals were embedded in chlorite immediately adjacent to uraninite. A few particles were still coated by Pb. These results suggest a history for the epsilon phases: (i) The

  13. Thermohydraulic and nuclear modeling of natural fission reactors

    Science.gov (United States)

    Viggato, Jason Charles

    Experimental verification of proposed nuclear waste storage schemes in geologic repositories is not possible, however, a natural analog exists in the form of ancient natural reactors that existed in uranium-rich ores. Two billion years ago, the enrichment of natural uranium was high enough to allow a sustained chain reaction in the presence of water as a moderator. Several natural reactors occurred in Gabon, Africa and were discovered in the early 1970's. These reactors operated at low power levels for hundreds of thousands of years. Heated water generated from the reactors also leached uranium from the surrounding rock strata and deposited it in the reactor cores. This increased the concentration of uranium in the core over time and served to "refuel" the reactor. This has strong implications in the design of modern geologic repositories for spent nuclear fuel. The possibility of accidental fission events in man-made repositories exists and the geologic evidence from Oklo suggests how those events may progress and enhance local concentrations of uranium. Based on a review of the literature, a comprehensive code was developed to model the thermohydraulic behavior and criticality conditions that may have existed in the Oklo reactor core. A two-dimensional numerical model that incorporates modeling of fluid flow, temperatures, and nuclear fission and subsequent heat generation was developed for the Oklo natural reactors. The operating temperatures ranged from about 456 K to about 721 K. Critical reactions were observed for a wide range of concentrations and porosity values (9 to 30 percent UO2 and 10 to 20 percent porosity). Periodic operation occurred in the computer model prediction with UO2 concentrations of 30 percent in the core and 5 percent in the surrounding material. For saturated conditions and 30 percent porosity, the model predicted temperature transients with a period of about 5 hours. Kuroda predicted 3 to 4 hour durations for temperature transients

  14. Oklo. A review and critical evaluation of literature

    Energy Technology Data Exchange (ETDEWEB)

    Zetterstroem, Lena [Swedish Museum of Natural History, Stockholm (Sweden). Lab. for Isotope Geology

    2000-10-01

    The Oklo natural fossil fission reactors in Gabon, Equatorial Africa, have been studied as a natural analogue for spent nuclear fuel in a geological environment. For these studies, it is important to know what has happened to these reactors since they formed. This review is focussed on existing geological and geochronological information concerning the Oklo reactors and the surrounding ore. A sequence of geological and geochemical events in the Oklo area, as described in the literature, is given. The data and the studies behind this established geochronology are discussed and evaluated. Of the regional geology, special attention is given to the dating of the Francevillian sediments, and the intrusion of a dolerite dyke swarm. The processes that led to the mineralisation at Oklo, the subsequent formation of the nuclear reactors and later migration of fission products are described. Further discussion concerns the studies of the dolerite dyke swarm, since this appears to be one of the most important events related to fission product migration. A close look at the data related to this event shows that further study of the age of the dolerite dykes, and their effect on the uraninite in the Oklo reactors, is needed.

  15. Isotopic evidence for trapped fissiogenic REE and nucleogenic Pu in apatite and Pb evolution at the Oklo natural reactor

    Science.gov (United States)

    Horie, Kenji; Hidaka, Hiroshi; Gauthier-Lafaye, François

    2004-01-01

    A part of the boundary layer of reactor zone 10 at the Oklo natural reactor shows a unique petrologic texture, which contains high-grade uraninite and massive apatite concretions. In order to study distribution behavior of fission products around the boundary between the reactor zone and the wall rock and to clarify the relation of migration mechanisms of fission products with geochemical factors, in-situ isotopic analyses of Nd, Sm, Gd, Pb and U in uraninite and apatite from the sample were performed by Sensitive High Resolution Ion Microprobe (SHRIMP). Sm and Gd isotopic ratios of uraninite and apatite show evidence of neutron irradiation with fluence between 4.4-6.8×10 19 n/cm 2. Judging from the isotopic anomalies of Nd and U, the apatite coexisting with the uraninite plays an important role in trapping fissiogenic LREE and nucleogenic 239Pu into the structure. Systematic Pb isotopic data from apatite, uraninite, galena and minium suggest the following chronological interpretations. The apatite formed 1.92±0.01 Ga ago and trapped fissiogenic light REE and nucleogenic 239Pu that migrated from the reactor during the criticality. The uraninite around the boundary between reactor and sandstone dissolved once 1.1˜1.2 Ga ago. Galena grains were formed by U-Pb mobilization in association with the intrusion of dolerite dyke 0.45˜0.83 Ga ago. Minium was derived from recent dissolution of galena under locally oxidizing conditions.

  16. The Oklo reactors

    International Nuclear Information System (INIS)

    The Oklo reactors comprise up to nine 235-U depleted zones in an uranium ore in the Republic of Gabon in West Africa. The depletion in fissile U-235 has been proved to have caused by nuclear chain reactions. The study of the Oklo phenomenon indicates that very efficient retardation mechanisms may operate in nature - at least under special conditions. A closer study of these processes ought to be made to establish the limitations to their occurrence. The Oklo sandstone formation today would probably be considered unacceptable as a host rock for a repository. (EG)

  17. Direct test of the time-independence of fundamental nuclear constants using the Oklo natural reactor

    CERN Document Server

    Shlyakhter, A I

    The positions of neutron resonances have been shown to be highly sensitive to the variation of fundamental nuclear constants. The analysis of the measured isotopic shifts in the natural fossil reactor at Oklo gives the following restrictions on the possible rates of the interaction constants variation: strong ~2x10^-19 yr^-1, electromagnetic ~5x10^-18 yr^-1, weak ~10^-12 yr^-1. These limits permit to exclude all the versions of nuclear constants contemporary variation discussed in the literature. URL: http://alexonline.info >. For more recent analyses see hep-ph/9606486, hep-ph/0205206 and astro-ph/0204069 .

  18. Neutron Moderation in the Oklo Natural Reactor and the Time Variation of alpha

    CERN Document Server

    Lamoreaux, S K

    2003-01-01

    In the analysis of the Oklo (gabon) natural reactor to test for a possible time variation of the fine structure constant alpha, a Maxwell-Boltzmann low energy neutron spectrum was assumed. We present here an analysis where a more realistic spectrum is employed and show that the most recent isotopic analysis of samples implies a non-zero change in alpha, over the last two billion years since the reactor was operating, of \\Delta\\alpha/\\alpha\\geq 2.2\\times 10^{-7} (6\\sigma confidence). Issues regarding the interpretation of the shifts of the low energy neutron resonances are discussed.

  19. Neutron moderation in the Oklo natural reactor and the time variation of α

    Science.gov (United States)

    Lamoreaux, S. K.; Torgerson, J. R.

    2004-06-01

    In previous analyses of the Oklo (Gabon) natural reactor to test for a possible time variation of the fine-structure constant α, a Maxwell-Boltzmann low energy neutron spectrum was assumed. We present here an analysis where a more realistic spectrum is employed and show that the most recent isotopic analysis of samples implies a decrease in α, over the last 2×109 years since the reactor was operating, of (αpast-αnow)/α⩾4.5×10-8 (6σ confidence). Issues regarding the interpretation of the shifts of the low energy neutron absorption resonances are discussed.

  20. Gamma-ray spectrometer measurement of 238U/235U in uranium ore from a natural reactor at Oklo, Gabon

    Science.gov (United States)

    Moxham, Robert M.

    1976-01-01

    About 20 years ago, Kuroda theorized that a high-grade uranium deposit emplaced about 2x109 years ago could achieve criticality and sustain a nuclear chain reaction, given a sufficient thickness of high-grade ore and an appropriate water content. Such a natural reactor was found in 1972 at the Oklo deposit, Gabon. The ore contains as much as 60 percent uranium, but the isotopic abundance of 235U is as little as 0.4 percent in contrast to the normal abundance of 0.7110 percent 235U. A sample from the Oklo deposit containing about 0.51 atom percent 235U (by mass spectrometer) was analyzed by a gamma-ray spectrometer system, using a high-purity planar germanium detector. The 235U was determined from its daughter's (234Th) 63.3 keV photopeak; the 235U was determined from its 143.8 and 163.4 keV photopeaks. The ratios of these photopeaks were compared with that from a standard having normal uranium isotopic content; the resulting calculations give a 235U abundance of 0.54 atom percent in the Oklo sample. The gamma-ray spectrum also contains lines from five other isotopes in the uranium series, which indicate the Oklo sample to be at or near secular equilibrium, as the time elapsed since the nuclear reaction ended was sufficient to permit the daughters to achieve equilibrium.

  1. Oklo working group meeting

    International Nuclear Information System (INIS)

    Natural analogue studies have been carried out for several years in the framework of the European Community's R and D programme on radioactive waste; and within its recent fourth five-year programme on 'Management and storage of radioactive waste (1990-94)' the Community is participating in the Oklo study, natural analogue for transfer processes in a geological repository. The Oklo project is coordinated by CEA-IPSN (F) and involves laboratories from several CEA directorates (IPSN, DTA and DCC) which collaborate with other institutions from France: CREGU, Nancy; CNRS, Strasbourg and ENSMD, Fontainebleau. Moreover, institutes from non-EC member States are also taking part in the Oklo study. The second joint CEC-CEA progress meeting of the Oklo Working Group was held in April 1992 in Brussels and gave the possibility of reviewing and discussing progress made since its first meeting in February 1991 at CEA in Fontenay-aux-Roses. About 40 participants from 15 laboratories and organizations coming from France, Canada, Gabon, Japan, Sweden and the USA underline the great interest in the ongoing research activities. The meeting focused on the different tasks within the CEC-CEA Oklo project concerning (i) field survey and sampling, (ii) characterization of the source term, (iii) studies of the petrographical and geochemical system, and (iv) studies of the hydrogeological system and hydrodynamic modelling. (author) 17 papers are presented

  2. Formation and geochemical significance of micrometallic aggregates including fissiogenic platinum group elements in the Oklo natural reactor, Gabon

    Science.gov (United States)

    Kikuchi, Makiko; Hidaka, Hiroshi; Gauthier-Lafaye, François

    2010-08-01

    Metallic aggregates with a size of a few tens μm and consisting mainly of Ru, Rh, Pd, Te, Pb, As, Sb, S and Bi were found in the acid residue of SD37-S2/CD uraninite taken from Oklo natural reactor zone (RZ) 13. Quantitative analyses of major elements using an electron probe microanalyzer and in situ isotopic analyses of Zr, Mo, Ru, Pb and U using a sensitive high-resolution ion microprobe were performed on the metallic aggregates to determine the geochemical behaviors of fission products and actinides and to ascertain the processes of formation of the aggregates in the RZs. The chemical compositions of the aggregates investigated in this study are significantly different from those reported previously, showing lower Pb content and no correlation between the contents of Pb and S in the individual grains. The 235U/ 238U ratios in metallic aggregates vary significantly from 0.00478 to 0.01466, indicating chemical fractionation between U and Pu during the formation of the aggregates. The Pb isotopic data indicate that most of the Pb in the aggregates decayed from 2.05 Ga-old uraninite that existed in the RZ originally and that there was chemical fractionation between U and Pb in some aggregates. The Zr and Mo isotopic ratios, 90Zr/ 91Zr and 95Mo/ 97Mo, for most of the aggregates had small variations, which can be simply explained by constant separate mixing of fissiogenic and nonfissiogenic components. On the other hand, a large variation in the 99Ru/ 101Ru ratio (0.324-1.73) cannot be explained only by a two component mixing theory; thus, chemical fractionation between Tc and Ru during the reactor criticality is suggested. The large variations in the 235U/ 238U and 99Ru/ 101Ru isotopic ratios suggest that the aggregates formed under various redox conditions owing to the radiolysis of water.

  3. Natural Nuclear Reactor Oklo and Variation of Fundamental Constants Part 1: Computation of Neutronic of Fresh Core

    CERN Document Server

    Petrov, Yu V; Onegin, M S; Petrov, V Yu; Sakhnovskii, E G; Petrov, Yu.V.

    2006-01-01

    Using a modern methods of reactor physics we have performed the full-scale calculations of the natural reactor Oklo. For reliability we have used the recent version of two Monte Carlo codes: the Russian code MCU REA and world wide known code MCNP (USA). Both codes produce close results. We constructed computer model of zone RZ2 of reactor Oklo which takes into account all details of design and composition. The calculations were performed for the three fresh cores with different uranium contents. Multiplication factors, reactivities and neutron fluxes were calculated. We estimated also the temperature and void effects for the fresh core. As would be expected, we have found for the fresh core a great difference between reactor spectra and Maxwell's one, which was used before for averaging cross sections in the Oklo reactor. The averaged cross section of Sm and its dependence on the shift of resonance position (due to variation of fundamental constants) are significantly different from previous results. Contrary...

  4. Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core

    Science.gov (United States)

    Petrov, Yu. V.; Nazarov, A. I.; Onegin, M. S.; Petrov, V. Yu.; Sakhnovsky, E. G.

    2006-12-01

    Using modern methods of reactor physics, we performed full-scale calculations of the Oklo natural reactor. For reliability, we used recent versions of two Monte Carlo codes: the Russian code MCU-REA and the well-known international code MCNP. Both codes produced similar results. We constructed a computer model of the Oklo reactor zone RZ2 which takes into account all details of design and composition. The calculations were performed for three fresh cores with different uranium contents. Multiplication factors, reactivities, and neutron fluxes were calculated. We also estimated the temperature and void effects for the fresh core. As would be expected, we found for the fresh core a significant difference between reactor and Maxwell spectra, which had been used before for averaging cross sections in the Oklo reactor. The averaged cross section of 62149Sm and its dependence on the shift of a resonance position Er (due to variation of fundamental constants) are significantly different from previous results. Contrary to the results of previous papers, we found no evidence of a change of the samarium cross section: a possible shift of the resonance energy is given by the limits -73⩽ΔEr⩽62 meV. Following tradition, we have used formulas of Damour and Dyson to estimate the rate of change of the fine structure constant α. We obtain new, more accurate limits of -4×10-17⩽α·/α⩽3×10-17yr-1. Further improvement of the accuracy of the limits can be achieved by taking account of the core burn-up. These calculations are in progress.

  5. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff

    Science.gov (United States)

    Mossman, David; Eigendorf, Guenter; Tokaryk, Dennis; Gauthier-Lafaye, François; Guckert, Kristal D.; Melezhik, Victor; Farrow, Catharine E. G.

    2003-03-01

    Fullerenes have been reported from diverse geologic environments since their discovery in shungite from Karelian Russia. Our investigation is prompted by the presence of onionskin-like structures in some carbonaceous substances associated with the fossil nuclear fission reactors of Oklo, Gabon. The same series of extractions and the same instrumental techniques, laser desorption ionization and high-resolution mass spectroscopy (electron-impact mass spectroscopy), were employed to test for fullerenes in samples from three different localities: two sites containing putative fullerenes (Sudbury Basin and Russian Karelia) and one new location (Oklo, Gabon). We confirm the presence of fullerenes (C60 and C70) in the Black Tuff of the Onaping Formation impact breccia in the Sudbury Basin, but we find no evidence of fullerenes in shungite samples from various locations in Russian Karelia. Analysis of carbonaceous substances associated with the natural nuclear fission reactors of Oklo yields no definitive signals for fullerenes. If fullerenes were produced during sustained nuclear fission at Oklo, then they are present below the detection limit (˜100 fmol), or they have destabilized since formation. Contrary to some expectations, geologic occurrences of fullerenes are not commonplace.

  6. The Oklo phenomenon

    International Nuclear Information System (INIS)

    During 1972, research workers of the French Commissariat a I'Energie Atomique made an astonishing discovery: fission chain reactions had been triggered spontaneously in the very remote past within a uranium deposit in Gabon and parts of the deposit had behaved like a modern nuclear reactor for hundreds of thousands of years. Subsequent investigations showed that the reaction sites had remained in a remarkable state of preservation, so that detailed study was possible. he IAEA felt that the Oklo phenomenon would be an excellent subject for international co-operation in fundamental research and agreed to the suggestion of the Gabon Government and the French Commissariat a I'Energie Atomique that a jointly organized symposium be held. The symposium will take place at Franceville, Gabon, from 23 to 27 June 1975. (author)

  7. Radioactive wastes in Oklo

    International Nuclear Information System (INIS)

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put

  8. Gas, benefits and question marks. The Oklo reactors: 100 % natural. The Kyoto protocol: use it or lose it?. Small hydro power: a great leap forward. The energy mix of South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2005-07-01

    This issue of Alternatives newsletter contains a main press-kit about natural gas economics worldwide and 4 articles dealing with the Oklo natural reactor, the Kyoto protocol, the small hydro-power in China, and the energy mix of South Korea: 1 - 'Gas benefits and question marks': The world's most widely distributed fossil fuel, natural gas is also the fastest-growing energy source of the past thirty years. Its position as the fuel of choice in the global energy mix is due in large part to its many domestic and industrial applications. 2 - 'The Oklo reactors: 100% natural': Another look at this extraordinary 2 billion year-old phenomenon in words and pictures: the nuclear fission reaction that created the natural reactors of Gabon. 3 - 'The Kyoto Protocol: use it or lose it?': Nearly eight years after its signature, the Kyoto Protocol is still hotly debated. Two experts give us their views: Spencer Abraham, former U.S. Secretary for Energy, and Jean-Charles Hourcade of CIRED, the international center for research on the environment and development. 4 - 'Small hydro power: a great leap forward': The Chinese government has responded to the need for rural electrification with an aid program for the country's poorest cantons. Enter the small hydro plant in northern Guangxi province. 5 - 'The energy mix of South Korea': Faced with continuing strong economic growth and energy demand, South Korea has multiplied its projects, from hydropower to tidal power to nuclear and even hydrogen in the longer term.

  9. Oklo as a natural analogue. Reconstruction of ancient fluid circulations using trace-element geochemistry from near to far field

    International Nuclear Information System (INIS)

    The natural nuclear reactors located in the Oklo uranium ore deposit (Gabon) represent one of the best analogy of what could be the interaction of a site of radioactive wastes storage with geological medium. It is under this view of natural analogue that reaction zones and uranium ore deposit are studied in part of european program coordinated by C.E.A. The aim of the thesis is to characterize the ancient fluid circulation which have induced some elementary redistributions from near field to far field. Tracing fluid phase geochemistry have been made by study of several mineral populations (apatite, zircon, pyrite chalcopyrite). Fluids escaping from reaction zones during their critically have been identified by isotopic and elementary compositions of apatites located in 'argiles de pile'. Geochemical feature of those fluids have not been founded in the bearing sandstones. Although, mineralogical observations, chemical analysis on whole rocks and analysis of trace elements of zircons and apatites allowed to characterize an early hydrothermal stage which predates criticality in reaction zones. At the scale of uranium ore deposit, study of sulfur allowed to identify several hydrothermal stages. All those stages are later with respect to criticality in reaction zones. The principal fluid circulation stage, present both in pyrites and galena is interpreted as a resulting from mixing between a locally induced fluid and a regional circulation. A second stage is certainly later and correspond to a reworking of lead in galena and precipitation of pyrites and chalcopyrites. (author)

  10. Ba isotopic signature for early differentiation between Cs and Ba in natural fission reactors

    Science.gov (United States)

    Hidaka, Hiroshi; Gauthier-Lafaye, François

    2008-08-01

    Ba isotopic studies of the Oklo and Bangombé natural fission reactors in east Gabon provide information on the geochemical behavior of radioactive Cs ( 135Cs and 137Cs) in a geological medium. Large isotopic deviations derived from fissiogenic Ba were found in chemical leachates of the reactor uraninites. The fissiogenic Ba isotopic patterns calculated by subtracting the non-fissiogenic component are classified into three types that show different magnifications of chemical fractionation between Cs and Ba. In addition, the isotopic signatures of fissiogenic 135Ba, 137Ba and 138Ba suggest an early differentiation between Cs and Ba of less than 20 years after the production of fissiogenic Cs and Ba. On the other hand, only small excesses of 135Ba ( ɛ < +1.8) and/or 137Ba ( ɛ < +1.3) were identified in some clay samples, which might have resulted from selective adsorption of 135Cs and 137Cs that migrated from the reactors by differentiation.

  11. The Oklo bound on the time variation of the fine-structure constant revisited

    Science.gov (United States)

    Damour, Thibault; Dyson, Freeman

    1996-02-01

    It has been pointed out by Shlyakhter that data from the natural fission reactors which operated about two billion years ago at Oklo (Gabon) had the potential of providing an extremely tight bound on the variability of the fine-structure constant α. We revisit the derivation of such a bound by (i) reanalyzing a large selection of published rare-earth data from Oklo, (ii) critically taking into account the very large uncertainty of the temperature at which the reactors operated, and (iii) connecting in a new way (using isotope shift measurements) the Oklo-derived constraint on a possible shift of thermal neutron-capture resonances with a bound on the time variation of α. Our final (95% C.L.) results are: -0.9 × 10 -7 < ( αOklo - αnow)/ α < 1.2 × 10 -7 and -6.7 × 10 -17yr-1 < αdotaveraged/α < 5.0 × 10 -17yr-1.

  12. The Oklo bound on the time variation of the fine-structure constant revisited

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume; Damour, Thibault; Dyson, Freeman

    1996-01-01

    It has been pointed out by Shlyakhter that data from the natural fission reactors which operated about two billion years ago at Oklo (Gabon) had the potential of providing an extremely tight bound on the variability of the fine-structure constant alpha. We revisit the derivation of such a bound by: (i) reanalyzing a large selection of published rare-earth data from Oklo, (ii) critically taking into account the very large uncertainty of the temperature at which the reactors operated, and (iii) connecting in a new way (using isotope shift measurements) the Oklo-derived constraint on a possible shift of thermal neutron-capture resonances with a bound on the time variation of alpha. Our final (95% C.L.) results are: -0.9 \\times 10^{-7} <(alpha^{Oklo} - alpha^{now})/alpha <1.2\\times 10^{-7} and -6.7 \\times 10^{-17} {yr}^{-1} < {\\dot alpha}^{averaged}/alpha <5.0\\times10^{-17} {yr}^{-1}.

  13. Far field hydrogeochemistry in the Oklo reactor area (Gabon)

    International Nuclear Information System (INIS)

    In the frame of a general study of the Oklo natural reactor, which takes into account the natural analogue aspect, a complete hydrogeological and hydrogeochemical study is undertaken. The partners of this study are the following: - Section de geochimie, CEA (France): P. Toulhoat, J.P. Gallien, P. L'Henoret, V. Moulin (groundwater chemistry and colloids). - Ecole des Mines de Paris (CIG, Fontainebleau) E. Ledoux, I. Gurban (hydrogeology and modelling) - SKB and Conterra AB (Sweden) J.A.T. Smellie, A. Winberg (hydrogeology, isotope geochemistry). The aim of this study is to try to understand and to characterize the possible mobilization of elements or isotopes when groundwaters come in contact with nuclear reaction zones. The first step of the study is presented here, which comprises a general geochemical and hydrodynamical characterization of the site. In this presentation, the site of Bagombe is also mentioned as it has been confirmed as sector in which nuclear fission reactions occurred as in Oklo. (author). 10 refs., 6 figs., 6 tabs

  14. Oklo reactors and implications for nuclear science

    CERN Document Server

    Davis, E D; Sharapov, E I

    2014-01-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross sections are input to all Oklo modeling and we discuss a parameter, the $^{175}$Lu ground state cross section for thermal neutron capture leading to the isomer $^{176\\mathrm{m}}$ Lu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant $\\alpha$ and the ratio $X_q=m_q/\\Lambda$ (where $m_...

  15. Radioactive wastes in Oklo; Desechos radiactivos en Oklo

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Flores R, J.H.; Pena, P.; Lopez, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive

  16. Uranium redistribution under oxidizing conditions in Oklo natural reactor zone 2, Gabon

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, H.; Ohnuki, T. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Murakami, T. [Ehime Univ., Matsuyama, Ehime (Japan); Gauthier-Lafaye, F. [CNRS, Strasbourg (France). Centre de Geochemie de la Surface

    1995-12-31

    This mineralogical study was completed to elucidate the relationships between uranium distribution and alteration products of the host rock of natural reactor zone clays just below the reactor core. Uraninite is preserved without any alteration in the reactor core. Uranium minerals are found to be present in the fractures in the reactor zone clays associated with iron-mineral veins, galena and Ti-bearing minerals. Uranium, for which the phases could not be identified, occurs in iron-mineral veins and the iron-mineral rim of pyrite grains in the reactor zone clays. Uranium is not associated with granular iron minerals occurring in the illite matrix of the reactor zone clays. The degree of crystallinity and uranium content of the three iron-bearing alteration products suggest that they formed under different conditions; the granular iron minerals, under alteration conditions where uranium was not mobilized while the iron-mineral veins and the iron-mineral rim of pyrite, under conditions in which uranium is mobilized after the formation of the granular iron minerals.

  17. Oklo Constraint on the Time-Variability of the Fine-Structure Constant

    CERN Document Server

    Fujii, Y

    2003-01-01

    The Oklo phenomenon, natural fission reactors which had taken place in Gabon about 2 billion years ago, porvides one of the most stringent constraints on the possible time-variability of the fine-structure constant $\\alpha$. We first review briefly what it is and how reliable it is in constraining $\\alpha$. We then compare the result with a more recent result on the nonzero change of $\\alpha$ obtained from the observation of the QSO absoorption lines. We suggest a possible way to make these results consistent with each other in terms of the behavior of a scalar field which is expected to be responsible for the accelaration of the universe.

  18. Oklo Constraint on the Time-Variabilityof the Fine-Structure Constant

    Science.gov (United States)

    Fujii, Yasunori

    The Oklo phenomenon, natural fission reactors which had taken place in Gabon about 2 billion years ago, provides one of the most stringent constraints on the possible time-variability of the fine-structure constant . We first review briefly what it is and how reliable it is in constraining . We then compare the result with a more recent result on the nonzero change of obtained from the observation of the QSO absorption lines. We suggest a possible way to make these results consistent with each other in terms of the behavior of a scalar field which is expected to be responsible for the acceleration of the universe.

  19. Mobilization and mechanisms of retardation in the Oklo natural reactor zone 2 (Gabon)--inferences from U, REE, Zr, Mo and Se isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bros, Regis; Hidaka, Hiroshi; Kamei, Gento; Ohnuki, Toshihiko

    2003-12-01

    Mineralogical and isotopic studies were carried out on the natural nuclear reaction zone 2 from the Oklo deposit to evaluate the mobility of several nuclear reaction products in response to the alteration of the reaction zone and to identify the mechanisms which could retard the transport of released radionuclides. To address these issues, in situ isotopic analyses by SHRIMP and a selective extraction procedure were performed to constrain the structural location of nuclear reaction products (exchangeable and non exchangeable) and their association with mineral phases. The distribution patterns of U, REE, Zr and Mo isotopes reveal that substantial amounts were released from the core and migrated through the hydrothermal alteration halo over metric distances, owing to uraninite dissolution and advective transport by hydrothermal solutions during and soon after criticality. The results emphasize the mobility of Zr at Oklo, this element being often considered as 'immobile' during water-rock interactions. The main output is the demonstration of the net effects of sorption and coprecipitation processes. Chlorite and to a lesser extent illite were found to have adsorbed significant amounts of U, REE, Zr (and probably Th) and less sorbing elements such as Mo. Coprecipitation of secondary UO{sub 2} and P-rich coffinite within the alteration halo is also an important means of retardation. The concentration of radionuclides released from the reactor were probably high and they display solubility limited transport behaviour. No retention effect was found for Se in the immediate vicinity of the reactor and this element may have moved farther from its source of production. These results have interesting implications for the evaluation of long-term containment of radionuclides. They provide a simple illustration of the performance of a clay barrier in the uptake of radionuclides by sorption onto clays and reincorporation in secondary U-minerals. This study also

  20. Oklo 2 Billion Years Before Fermi; Les reacteurs naturels d'Oklo (Gabon): 2 milliards d'annees avant Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Barre, B

    2005-02-15

    The author aims to present the little-known story of the Oklo natural reactors. He recalls the historical aspects of the Oklo reactors discovery by the CEA in 1972, he explains the scientific phenomenon and the interest, notably as a 'natural analogue' for the geological disposal of high level radioactive wastes. (A.L.B.)

  1. Oklo reactors and implications for nuclear science

    Science.gov (United States)

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-04-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross-sections are input to all Oklo modeling and we discuss a parameter, the 175Lu ground state cross-section for thermal neutron capture leading to the isomer 176mLu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant α and the ratio Xq = mq/Λ (where mq is the average of the u and d current quark masses and Λ is the mass scale of quantum chromodynamics (QCD)). We suggest a formula for the combined sensitivity to α and Xq that exhibits the dependence on proton number Z and mass number A, potentially allowing quantum electrodynamic (QED) and QCD effects to be disentangled if a broader range of isotopic abundance data becomes available.

  2. Time variability of α from realistic models of Oklo reactors

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Lamoreaux, S. K.

    2006-08-01

    We reanalyze Oklo Sm149 data using realistic models of the natural nuclear reactors. Disagreements among recent Oklo determinations of the time evolution of α, the electromagnetic fine structure constant, are shown to be due to different reactor models, which led to different neutron spectra used in the calculations. We use known Oklo reactor epithermal spectral indices as criteria for selecting realistic reactor models. Two Oklo reactors, RZ2 and RZ10, were modeled with MCNP. The resulting neutron spectra were used to calculate the change in the Sm149 effective neutron capture cross section as a function of a possible shift in the energy of the 97.3-meV resonance. We independently deduce ancient Sm149 effective cross sections and use these values to set limits on the time variation of α. Our study resolves a contradictory situation with previous Oklo α results. Our suggested 2σ bound on a possible time variation of α over 2 billion years is stringent: -0.11≤Δα/α≤0.24, in units of 10-7, but model dependent in that it assumes only α has varied over time.

  3. Bound on the variation in the fine structure constant implied by Oklo data

    CERN Document Server

    Hamdan, Leila

    2015-01-01

    Dynamical models of dark energy can imply that the fine structure constant $\\alpha$ varies over cosmological time scales. Data on shifts in resonance energies $E_r$ from the Oklo natural fission reactor have been used to place restrictive bounds on the change in $\\alpha$ over the last 1.8 billion years. We review the uncertainties in these analyses, focussing on corrections to the standard estimate of $k_\\alpha\\!=\\!\\alpha\\,dE_r/d\\alpha$ due to Damour and Dyson. Guided, in part, by the best practice for assessing systematic errors in theoretical estimates spelt out by Dobaczewski et al. [in J. Phys. G: Nucl. Part. Phys. 41, 074001 (2014)], we compute these corrections in a variety of models tuned to reproduce existing nuclear data. Although the net correction is uncertain to within a factor of 2 or 3, it constitutes at most no more than 25% of the Damour-Dyson estimate of $k_\\alpha$. Making similar allowances for the uncertainties in the modeling of the operation of the Oklo reactors, we conclude that the rela...

  4. Characterization of near- to far-field ancient migrations around Oklo reaction zones (Gabon) using minerals as geochemical tracers

    International Nuclear Information System (INIS)

    We developed a method allowing the identification of ancient fluid circulations through trace-element patterns in hydrothermal minerals. Application of this technique to Oklo nuclear reactors as natural analogues involves apatite and lanthanides for early circulations, and sulfides and chalcophile elements for late events. At least four different fluid generations have been found, and are tentatively assigned to episodes of Oklo site history. (1) Zr- and U-rich fluids predate criticality near reaction zone 10. (2) Isotopic anomalies of lanthanides provide evidence for mobility of fission products during criticality. Up to now, anomalies are restricted to the near field (desilicified zone around reaction zones). (3) A first pyrite stage is focused around reaction zones, up to a few tens of meters. (4) The latest event is most probably of regional extent. Besides direct evidence of fission-product migration, the present study is expected to provide the geological background and geochemical constraints for modelling ancient fluid circulation and consequent element migration near reaction zones. (orig.)

  5. Modification of apparent fission yields by Chemical Fractionation following Fission (CFF)

    Science.gov (United States)

    Hohenberg, Charles; Meshik, Alex

    2008-04-01

    Grain-by-grain studies of the 2 billion year old Oklo natural reactor, using laser micro-extraction^1,2, yield detailed information about Oklo, a water-moderated pulsed reactor, cycle times, total neutron fluence and duration, but it also demonstrates Chemical Fractionation following Fission. In the CFF process, members of an isobaric yield chain with long half-lives are subject to migration before decay can occur. Of particular interest is the 129 isobar where 17 million ^129I can migrate out of the host grain before decay, and iodine compounds are water soluble. This is amply demonstated by the variation of Xe spectra between micron-sized uranium-bearing minerals and adjacent uranium-free minerals. Fission 129 yields for the spontaneous fission of ^238U generally come from measured ^129Xe in pitchblend^2, ores emplaced by aqueous activity, and are incorrect due to the CFF process. ^238U yields for the 131 and 129 chains, reported in Hyde^3, as 0.455 +- .02 and < 0.012, respectively, the latter being anomalously low. ^1A Meshik, C Hohenberg and O Pravdivtesva, PRL 93, 182302 (2004); A Meshik Sci. Am. Nov (2005), 55; ^2E K Hyde, Nucl Prop of Heavy Elements III (1964).

  6. Geochemistry of actinides and fission products in natural aquifer systems

    International Nuclear Information System (INIS)

    The progress in the research area of the community project MIRAGE: 'Geochemistry of actinides and fission products in natural aquatic systems' has been reviewed. This programme belongs to a specific research and technical development programme for the European Atomic Energy Community in the field of management and storage of radioactive waste. The review summarizes research progresses in subject areas: complexation with organics, colloid generation in groundwater and basic retention mechanisms in the framework of the migration of radionuclides in the geosphere. The subject areas are being investigated by 23 laboratories under interlaboratory collaborations or independent studies. (orig.)

  7. Time-variability of alpha from realistic models of Oklo reactors

    CERN Document Server

    Gould, C R; Lamoreaux, S K

    2006-01-01

    We reanalyze Oklo $^{149}$Sm data using realistic models of the natural nuclear reactors. Disagreements among recent Oklo determinations of the time evolution of $\\alpha$, the electromagnetic fine structure constant, are shown to be due to different reactor models, which led to different neutron spectra used in the calculations. We use known Oklo reactor epithermal spectral indices as criteria for selecting realistic reactor models. Two Oklo reactors, RZ2 and RZ10, were modeled with MCNP. The resulting neutron spectra were used to calculate the change in the $^{149}$Sm effective neutron capture cross section as a function of a possible shift in the energy of the 97.3-meV resonance. We independently deduce ancient $^{149}$Sm effective cross sections, and use these values to set limits on the time-variation of $\\alpha$. Our study resolves a contradictory situation with previous Oklo $\\alpha$-results. Our suggested $2 \\sigma$ bound on a possible time variation of $\\alpha$ over two billion years is stringent: $ -...

  8. Time-variability of alpha from realistic models of Oklo reactors

    Science.gov (United States)

    Gould, Chris; Sharapov, Eduard; Lamoreaux, Steve

    2006-10-01

    We reanalyze Oklo ^149Sm data using realistic models of the natural nuclear reactors. Disagreements among recent Oklo determinations of the time evolution of α, the electromagnetic fine structure constant, are shown to be due to different reactor models, which led to different neutron spectra used in the calculations. We use known Oklo reactor epithermal spectral indices as criteria for selecting realistic reactor models. Two Oklo reactors, RZ2 and RZ10, were modeled with MCNP. The resulting neutron spectra were used to calculate the change in the ^149Sm effective neutron capture cross section as a function of a possible shift in the energy of the 97.3-meV resonance. We independently deduce ancient ^149Sm effective cross sections, and use these values to set limits on the time-variation of α. Our study resolves a contradictory situation with previous Oklo α-results. Our suggested 2 σ bound on a possible time variation of α over two billion years is stringent: -0.11 <=δαα <=0.24, in units of 10-7, but model dependent in that it assumes only α has varied over time.

  9. The Oklo reactors: five years of exploration of the site

    International Nuclear Information System (INIS)

    The main phases of the exploration of the Oklo site since the discovery of the ''reactor'' phenomenon are outlined briefly. Over 180 sampling holes were drilled during the interruption of the mining activities in the sector concerned. Several new zones have been found. Mining was resumed in the second half of 1975, providing an opportunity for highly fruitful geological follow-up work: more precise knowledge was gained of the morphology of the reactors, and very many additional samples were taken. Plant treatment of the ore and the systematic analysis of batches have made it possible to establish a balance of missing uranium-235. A small portion containing sites of intense reaction has been preserved by being anchored to the quarry wall. Mining in this sector has now finished, but new indications of fission have been found, especially in the Okelobondo sector. (author)

  10. Technical Application of Nuclear Fission

    Science.gov (United States)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  11. Reconstitution of fluid paleo-circulations and element migrations in the environments of Oklo's natural nuclear reactors (Gabon) and of Tournemire's argillites (France)

    International Nuclear Information System (INIS)

    To better characterize the mobilization and migration process in rocks, a petrological and geochemical study of fluid paleo-circulation through fractures has been made in two different sites: (1) The environment of natural nuclear reactors from Proterozoic Oklo uranium ores (Gabon). The Archean basement typical of TTG series and the sandstones-pelites series of the Franceville basin are affected by a fracturing mainly filled by quartz-daphnite-calcite-sulfides and barren ou mineralized bitumens. Three paragenetic stages has been correlated to three regional structural phases. During the first extensional phase, a low saline (1.7-6.5 wt% NaCl), heated in the basement (190-210 deg. C) and impoverished in 18O meteoric recharge is injected into the basin, along major N-S faults. It was responsible of silicification. The circulation of diagenetic brines is able to leach U, Pb, Zr, REEs and P resulting from accessory minerals alteration, at the basin-scale between 2104 Ma and 1719 Ma (Pb/Pb isochrone obtained on galena incorporated in zircons). These brines are responsible of anomalous Th/La ratios (1.8) of FA silicified sandstones higher than those (0.25) of most of Archean and Proterozoic metasediments. They are highly chlorine, calco-sodic ([Cl] > 6 m, from 28 wt% NaCl to 30 wt% CaCl2), equilibrated with carbonate and evaporitic layers of FA sandstones, with low temperatures (130 deg. C) and rich in Ca, Li and Br. They are expulsed laterally due to the compaction of FA sandstones, and upwards along sub-vertical fractures. During the second extensional phase, the mineralization stage, mainly controlled by N-S faults corresponds to a mixing (155-220 deg. C) between the brines, the meteoric recharge and hydrocarbons C9 and C10-rich fluids derived from organic matter maturation in the FB pelites. The interaction of the three fluids is responsible of the mineralization in sandstones and in calcites displaying an organic carbon origin (δ13C=-10 to -15 0/00 vs. PDB). The

  12. Decontamination of radioactive waste fission products by treated natural clays

    International Nuclear Information System (INIS)

    The removal of carrier free long living fission products such as iodine-131, strontium-90 and cesium-137 by treated local clays is successfully achieved with large capacity. Iodine-131 which is difficultly adsorbed has been removed completely by silver treated phosphate clay. Strontium-90 and cesium-137 have been almost removed by adequate heat treating of the clays. The results of column experiments agree well with the authors' batch experiments. (author)

  13. The nuclear interaction at Oklo 2 billion years ago

    CERN Document Server

    Fujii, Y; Fukahori, T; Ohnuki, T; Nakagawa, M; Hidaka, H; Oura, Y; Møller, P; Fujii, Yasunori; Iwamoto, Akira; Fukahori, Tokio; Ohnuki, Toshihiko; Nakagawa, Masayuki; Hidaka, Hiroshi; Oura, Yasuji; Moller, Peter

    2000-01-01

    We re-examine Shlyakhter's effort to constrain the time-variability of the coupling constants of the fundamental interactions by studying the anomalous isotopic abundance of Sm observed at the remnants of the natural reactors which were in operation at Oklo about 2 billion years ago. We rely on new samples that were carefully collected to minimize natural contamination and also on a careful temperature estimate of the operating reactor. We find that our result almost re-establishes the original conclusion; the upper bounds on the fractional rate of change of the strong and electromagnetic interaction coupling constants are 10^{-18}-10^{-19} y^{-1} and 10^{-17} y^{-1}, respectively. To reinforce the results obtained from Sm, we also applied our analysis to Gd, for which it was essential to take into account the effect of contamination.

  14. Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville basin, Gabon

    Science.gov (United States)

    Cuney, Michel; Mathieu, Régis

    2000-08-01

    The anomalously high Th/La ratio (˜1.14) of the Early Proterozoic silicified sandstones of the Franceville basin (Gabon), compared to Archean and Proterozoic metasedimentary rocks (Th/La ˜0.27), results from extreme light rare earth element (REE) migration during diagenesis. Monazite, which represents the main light REE-bearing phase in the sandstones, was altered by diagenetic brines at 140 °C and 1 kbar. The alteration phase is a microcrystalline Th-silicate phase, indicating low Th solubility at these conditions. Light REEs are simultaneously leached out together with P and U. The increase in Th/La from detrital monazite to residual Th-silicate phase indicates that about 76% of the light REEs were leached out, corresponding to a global amount of 2.01 × 109 metric tons at the scale of the FA Formation in the Franceville basin. Uranium was also leached during monazite alteration and may have contributed significantly to the genesis of the high-grade uranium deposits of the Franceville basin that host the natural nuclear reaction zones.

  15. The Oklo Constraints on Alpha-Decay Half-Lives

    Science.gov (United States)

    Chaffin, Eugene; Molgaard, Joshua

    2003-11-01

    Beginning with Shlyakhter in 1976, Oklo natural reactor data have been used by many authors to put limits on the time variation of "constants" such as the fine structure constant and the strong coupling constant. The Sm-149 resonance absorption data constrain the depth of the nuclear potential well to a small margin of error, determined by various unknowns, such as the reactor temperature. Although this change in well depth is slight, nevertheless at certain critical values the number of nodes in the wavefunction can change precipitously, with a corresponding change in other quantities. We show that even these small variations could allow the U-238 half-life to vary by more than one order of magnitude.

  16. Uranium deposits of Gabon and Oklo reactors. Metallogenic model for rich deposits of the lower proterozoic

    International Nuclear Information System (INIS)

    The geology of the Franceville basin (Gabon) is examined: stratigraphy, tectonics and geodynamics. The mobile zone of the Ogooue is specially studied: lithology, metamorphism and tectonics, isotopic geochronologic data are given. The different uranium deposits are described. A whole chapter is devoted to the study of Oklo natural nuclear reactor. A metallogenic model is proposed evidencing conditions required for deposit genesis. Tectonics, microstructures sedimentology, organic matter, diagenesis and uraniferous mineralizations are examined

  17. Time variation of the fine structure constant α from realistic models of Oklo reactors.

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Lamoreaux, S. K.

    2006-11-01

    The topic of whether the fundamental constants of nature vary with time has been a subject of great interest since Dirac originally proposed the possibility that GN˜1/tuniverse. Recent observations of absorption spectra lines from distant quasars appeared to indicate a possible increase in the fine structure constant α over ten billion years. Contrarily, analyses of the time evolution of α from Oklo natural nuclear reactor data have yielded inconsistent results, some indicating a decrease over two billion years while others indicated no change. We have used known Oklo reactor epithermal spectral indices as criteria for selecting realistic reactor models. Reactors RZ2 and RZ10 were modeled with MCNP and the resulting neutron spectra were used to calculate the change in the ^149Sm capture cross section as a function of a possible shift in the energy of the 97.3-meV resonance. Our study resolves the contradictory situation with previous Oklo α-results. Our suggested 2 σ bound on a possible time variation of α over two billion years is stringent: -0.11 <=δαα <=0.24, in units of 10-7, but model dependent in that it assumes only α has varied over time.

  18. Investigation of the fundamental constants stability based on the reactor Oklo burn-up analysis

    CERN Document Server

    Onegin, M S

    2014-01-01

    New severe constraints on the variation of the fine structure constant have been obtained from reactor Oklo analysis in our previous work. We investigate here how these constraints confine the parameter of BSBM model of varying $\\alpha$. Integrating the coupled system of equations from the Big Bang up to the present time and taking into account the Oklo limits we have obtained the following margin on the combination of the parameters of BSBM model: $$ |\\zeta_m (\\frac{l}{l_{pl}})^2|<6\\cdot 10^{-7}, $$ where $l_{pl}=(\\frac{G\\hbar}{c^3})^{\\frac{1}{2}} \\approx 1.6 \\cdot 10^{-33}$ cm is a Plank length and $l$ is the characteristic length of the BSBM model. The natural value of the parameter $\\zeta_m$ - the fraction of electromagnetic energy in matter - is about $10^{-4}$. As a result it is followed from our analysis that the characteristic length $l$ of BSBM theory should be considerably smaller than the Plank length to fulfill the Oklo constraints on $\\alpha$ variation.

  19. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.

    2015-04-09

    The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.

  20. Neutronic study of an innovative natural uranium–thorium based fusion–fission hybrid energy system

    International Nuclear Information System (INIS)

    Highlights: • An innovative fusion-fission hybrid reactor blanket design is presented. • The blanket adopts seed–blanket concept to improve overall neutron economy. • The blanket is designed with two types of modules, i.e. uranium and thorium module. • The reactor could reach multi operating system purpose. - Abstract: An innovative design for a water cooled fusion–fission hybrid reactor (FFHR), aiming at efficiently utilizing natural uranium and thorium resources, is presented. The major objective is to study the feasibility of this concept balanced with multi-purposes, including energy gain, tritium breeding and 233U breeding. In order to improve overall neutron economy of the system, the fission blanket is designed with two types of modules, i.e. the natural uranium modules (U-modules) and thorium modules (Th-modules), which are alternately arranged in the toroidal and poloidal directions of the blanket. This innovative design is based on a simple intuition of neutron distribution: with the alternate geometrical arrangement, energy multiplication by uranium fission, tritium breeding and 233U breeding are performed separately in different sub-zones in the blanket. The uranium modules which has excellent neutron economy under the combined neutron spectrum, plays the dominant role in the energy production, neutron multiplication and tritium breeding. Excess neutrons produced by the uranium modules are then used to drive the thorium modules (which have poor neutron economy) to breed 233U fuel. Therefore, it creates a new free dimension to realize the blanket’s balanced design. The COUPLE code developed by INET of Tsinghua University is used to simulate the neutronic behavior in the blanket. The simulated results show that with the volumetric ratio of thorium modules about 0.4, the balanced design for multi purposes is achievable, with energy multiplication M ⩾ 9, tritium breeding ratio TBR ⩾ 1.05, and at the end of the five years refueling cycle

  1. Chemically fractionated fission-xenon in meteorites and on the earth

    Science.gov (United States)

    Shukolyukov, Yuri A.; Jessberger, Elmar K.; Meshik, Alexander P.; Vu Minh, Dang; Jordan, Jimmy L.

    1994-07-01

    This is a report on the nature of isotopically anomalous xenon, which has been detected in two Ca-Al-rich inclusions of the Allende carbonaceous chondrite. It is extremely enriched in 132Xe, 129Xe, and to a lesser extent in 131Xe. Similar large excesses of 132Xe as well as of 131Xe, 134Xe, and 129Xe have previously been found in material processed in a natural nuclear reactor (Oklo phenomenon). Excess of these isotopes had also been encountered in MORB-glasses, in an ancient Greenland anorthosite. Thus, this Xe-type, which had previously been termed "alien" ( JORDON et al., 1980a) does not seem to be unique. To determine the origin of "alien" Xe, we analysed Xe (a) in neutron irradiated pitchblende and in the irradiation capsule, (b) in non-irradiated extremely fine-grained pitchblende (so-called Colorado-type deposit), and (c) in sandstone taken from the epicentre of an atomic explosion. In addition, the isotopic composition of xenon released by stepwise degassing and after selective dissolving of rocks from the Oklo natural reactor was determined. The results of these dedicated experiments demonstrate that the formation of alien Xe is due to the migration of the radioactive precursors of the stable isotopes 134Xe, 132Xe, 131Xe, and 129Xe. Due to this reason we now call it CFF-Xe - Chemically Fractionated Fission Xenon. Prerequisites for its formation are the simultaneous prevalence of two conditions: (1) fission (of 238U, 235U, and/ or 244Pu) and (2) a physicochemical environment (temperature, pressure, fluidity) at which the precursors of xenon (mainly Te and I) are mobile. Taking into account the occurrence of xenon in meteorites and terrestrial rocks, not all excesses of 129Xe in mantle rocks and natural gases are necessarily connected with the decay of primordial 129I.

  2. The role of off-line mass spectrometry in nuclear fission.

    Science.gov (United States)

    De Laeter, J R

    1996-01-01

    The role of mass spectrometry in nuclear fission has been invaluable since 1940, when A. O. C. Nier separated microgram quantities of (235) U from (238) U, using a gas source mass spectrometer. This experiment enabled the fissionable nature of (235) U to be established. During the Manhattan Project, the mass spectrometer was used to measure the isotope abundances of uranium after processing in various separation systems, in monitoring the composition of the gaseous products in the Oak Ridge Diffusion Plant, and as a helium leak detector. Following the construction of the first reactor at the University of Chicago, it was necessary to unravel the nuclear systematics of the various fission products produced in the fission process. Off-line mass spectrometry was able to identify stable and long-lived isotopes produced in fission, but more importantly, was used in numerous studies of the distribution of mass of the cumulative fission yields. Improvements in sensitivity enabled off-line mass spectrometric studies to identify fine structure in the mass-yield curve and, hence, demonstrate the importance of shell structure in nuclear fission. Solid-source mass spectrometry was also able to measure the cumulative fission yields in the valley of symmetry in the mass-yield curve, and enabled spontaneous fission yields to be quantified. Apart from the accurate measurement of abundances, the stable isotope mass spectrometric technique has been invaluable in establishing absolute cumulative fission yields for many isotopes making up the mass-yield distribution curve for a variety of fissile nuclides. Extensive mass spectrometric studies of noble gases in primitive meteorites revealed the presence of fission products from the now extinct nuclide (244) Pu, and have eliminated the possibility of fission products from a super-heavy nuclide contributing to isotopic anomalies in meteoritic material. Numerous mass spectrometric studies of the isotopic and elemental abundances of

  3. Limits on Cosmological Variation of Strong Interaction and Quark Masses from Big Bang Nucleosynthesis, Cosmic, Laboratory and Oklo Data

    CERN Document Server

    Flambaum, V V

    2002-01-01

    Recent data on cosmological variation of the electromagnetic fine structure constant from distant quasar (QSO) absorption spectra have inspired a more general discussion of possible variation of other constants. We discuss variation of strong scale and quark masses. We derive the limits on their relative change from (i) primordial Big-Bang Nucleosynthesis (BBN); (ii) Oklo natural nuclear reactor, (iii) quasar absorption spectra, and (iv) laboratory measurements of hyperfine intervals.

  4. The Oklo Constraints on Alpha-Decay Half-Lives

    CERN Document Server

    Chaffin, E

    2003-01-01

    The Oklo data constrain the depth of the nuclear potential well to a small margin of error, determined by various unknowns, such as the reactor temperature. However, we show that even these small variations could allow the U-238 half-life to vary by more than one order of magnitude.

  5. Fission xenon in trinities from the first nuclear test

    Science.gov (United States)

    Meshik, Alexander; Pravdivtseva, Olga; Hohenberg, Charles

    2008-04-01

    Trinitites, greenish glassy remnants found in the crater of the first nuclear test, refer to the molten material of the desert where the Trinity test was conducted. Recently the Los Alamos Lab^1 suggested that the sand was first vaporized by the fireball and then precipitated onto a cooler desert surface forming trinitites. We measured the Xe mass-spectra during stepped pyrolysis of two trinitites and found an unusual Xe isotopic structure, dominated by ^132Xe and ^131Xe compared to the nominal fission yield spectra, which cannot be due to n-capture or any other nuclear processes. This structure is caused by the chemical separation of the immediate neutron-rich fission products, a process similar to CFF observed in the Oklo natural reactor^2. When quantitatively applied to our observations it suggests that 17 min after the test one of the samples had a temperature of 1390^oC, while 5 min after the test the other was at 1320^oC. These results contribute to a reconstruction of the cooling history of the trinities and a demonstration of which formation scenario is the more likely. ^1V. Montoya et al, Denver X-ray Conf. (2007), ^2A. Meshik, C. Hohenberg and O. Pravdivtseva, PRL 93, 182302 (2004).

  6. Implications of the Oklo Phenomenon in a Chiral Approach to Nuclear Matter

    Science.gov (United States)

    Davis, Edward D.

    2015-09-01

    It has been customary to use data from the Oklo natural nuclear reactor to place bounds on the change that has occurred in the electromagnetic fine structure constant α over the last 2 billion years. Alternatively, an analysis could be based on a recently proposed expression for shifts in resonance energies which relates them to changes in both α and the average m q of the u and d current quark masses, and which makes explicit the dependence on mass number A and atomic number Z. (Recent model independent results on hadronic -terms suggest sensitivity to the strange quark mass is negligible.) The most sophisticated analysis, to date, of the quark mass term invokes a calculation of the nuclear mean-field within the Walecka model of quantum hadrodynamics. We comment on this study and consider an alternative in which the link to low-energy quantum chromodynamics and its pattern of chiral symmetry-breaking is more readily discernible. Specifically, we investigate the sensitivity to changes in the pion mass of a single nucleon potential determined by an in-medium chiral perturbation theory (PT) calculation which includes virtual -excitations. Subject to some reasonable assumptions about low-energy constants, we confirm that the m q -contribution to resonance shifts is enhanced by a factor of 10 or so relative to the -term and deduce that the Oklo data for Sm imply that.

  7. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  8. Groundwater chemistry of the Okélobondo uraninite deposit area (Oklo, Gabon): two-dimensional reactive transport modelling

    Science.gov (United States)

    Salas, J.; Ayora, C.

    2004-03-01

    The stability of uranium-bearing minerals in natural environments is of interest to evaluate the feasibility of radioactive waste repositories. The uraninite bodies, UO 2(s), in the Oklo district (Gabon) are the result of a natural fission process, which took place 1970 Ma ago. These deposits can be regarded as natural analogues for spent fuel. One of the uraninite bodies, the Okélobondo deposit, is located at a depth of 300 m. Groundwater samples from boreholes located at shallow depths (100-200 m) show neutral to basic pH, anoxic conditions (Eh=0.10 to -0.05 V) and are saturated with respect to uraninite. In contrast, deeper samples collected in the vicinity of the ore body are oxidising (Eh=0.32-0.47 V), slightly basic (pH=7.0-8.5) and undersaturated with respect to uraninite. These oxidising conditions at depth, if present under repository conditions, may affect the stability of uranium oxide. In order to improve our understanding of the observed site geochemistry, the available information on the lithology and groundwater flow was integrated in a reactive transport model. The chemical composition and the pH-Eh values of the water sampled above and in the western side of the Okélobondo deposit can be explained by the interaction of meteoric recharge with pelites, dolomites and sandstones. The dissolution of Fe(II)-silicates and the oxidation of the Fe(II)-aqueous species maintained the pH-Eh distribution along the Fe 2+-Fe(OH) 3(am) equilibrium, with the result that uraninite does not dissolve. This may explain the lower uranium content in the water samples from pelites and dolomites above the Okélobondo deposit. The high Mn/Fe ratio and the high pH-Eh values of the water sampled at depth, close to the Okélobondo deposit, suggest a control by the Mn 2+-MnOOH(s) equilibrium. This control is attributed to the dissolution of a large rhodochrosite, MnCO 3(s), and manganite, MnOOH(s) deposit in the recharge area on the eastern side.

  9. Searches for superheavy elements in nature: Cosmic-ray nuclei; spontaneous fission

    Science.gov (United States)

    Ter-Akopian, G. M.; Dmitriev, S. N.

    2015-12-01

    There is little chance that superheavy nuclei with lifetimes of no less than 100 million years are present on the stability island discovered at present. Also, pessimistic are the results of estimates made about their nucleosynthesis in r-process. Nevertheless, the search for these nuclei in nature is justified in view of the fundamental importance of this topic. The first statistically significant data set was obtained by the LDEF Ultra-Heavy Cosmic-Ray Experiment, consisting of 35 tracks of actinide nuclei in galactic cosmic rays. Because of their exceptionally long exposure time in Galaxy, olivine crystals extracted from meteorites generate interest as detectors providing unique data regarding the nuclear composition of ancient cosmic rays. The contemporary searches for superheavy elements in the earth matter rely on knowledge obtained from chemical studies of artificially synthesized superheavy nuclei. New results finding out the chemical behavior of superheavy elements should be employed to obtain samples enriched in their homologues. The detection of rare spontaneous fission events and the technique of accelerator mass spectrometry are employed in these experiments.

  10. Time-variability of the coupling constants of fundamental particles and Oklo phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yasunori [Nihon Fukushi Univ., Handa, Aichi (Japan); Iwamoto, Akira; Hidaka, Hiroshi

    2000-09-01

    About 60 years ago, Dirac, P.A.M. presented that gravitational constant was not a constant but varied with a time in universe. As it has not obtained any determining proof experimentally, a fundamental concept on physical constants was disturbed since then, which has been succeeded to trials on the present integral theory. In special, some interesting researches on what is called coupling constants of fundamental particles, such as if fundamental charge of an electron changes actually, are continued. As proof on this change was not established, the observing and experimental upper values contain some important suggestions. The most serious result as its upper limit was obtained as well by an investigation on a surprising fact (a natural reactor) that uranium naturally reached a criticality at a place (Oklo) on the earth two billion years ago. Here were introduced on some their recent researches. (G.K.)

  11. Thermal fission rates with temperature dependent fission barriers

    CERN Document Server

    Zhu, Yi

    2016-01-01

    \\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...

  12. Investigation of the Fundamental Constants Stability Based on the Reactor Oklo Burn-Up Analysis

    Science.gov (United States)

    Onegin, M. S.; Yudkevich, M. S.; Gomin, E. A.

    2012-12-01

    The burn-up of few samples of the natural Oklo reactor zones 3, 5 was calculated using the modern Monte Carlo code. We reconstructed the neutron spectrum in the core by means of the isotope ratios: 147Sm/148Sm and 176Lu/175Lu. These ratios unambiguously determine the water content and core temperature. The isotope ratio of the 149Sm in the sample calculated using this spectrum was compared with experimental one. The disagreement between these two values allows one to limit a possible shift of the low lying resonance of 149Sm. Then, these limits were converted to the limits for the change of the fine structure constant α. We have found out, that for the rate of α change, the inequality ěrt˙ {α }/α ěrt<= 5× 10-18 is fulfilled, which is one order higher than our previous limit.

  13. Investigation of the fundamental constants stability based on the reactor Oklo burn-up analysis

    CERN Document Server

    Onegin, M S

    2010-01-01

    The burn-up for SC56-1472 sample of the natural Oklo reactor zone 3 was calculated using the modern Monte Carlo codes. We reconstructed the neutron spectrum in the core by means of the isotope ratios: $^{147}$Sm/$^{148}$Sm and $^{176}$Lu/$^{175}$Lu. These ratios unambiguously determine the spectrum index and core temperature. The effective neutron absorption cross section of $^{149}$Sm calculated using this spectrum was compared with experimental one. The disagreement between these two values allows to limit a possible shift of the low laying resonance of $^{149}$Sm even more . Then, these limits were converted to the limits for the change of the fine structure constant $\\alpha$. We found that for the rate of $\\alpha$ change the inequality $|\\delta \\dot{\\alpha}/\\alpha| \\le 5\\cdot 10^{-18}$ is fulfilled, which is of the next higher order than our previous limit.

  14. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast

    DEFF Research Database (Denmark)

    Clément-Ziza, Mathieu; Marsellach, Francesc X.; Codlin, Sandra;

    2014-01-01

    Our current understanding of how natural genetic variation affects gene expression beyond well-annotated coding genes is still limited. The use of deep sequencing technologies for the study of expression quantitative trait loci (eQTLs) has the potential to close this gap. Here, we generated...... the first recombinant strain library for fission yeast and conducted an RNA-seq-based QTL study of the coding, non-coding, and antisense transcriptomes. We show that the frequency of distal effects (trans-eQTLs) greatly exceeds the number of local effects (cis-eQTLs) and that non-coding RNAs are as likely...

  15. Natural uranium impurities in fission track detectors and associated geocronological parameters

    International Nuclear Information System (INIS)

    A technique, based in counting neutron induced fission tracks, has been developed for the measurement of uranium impurities in mica. Uranium concentrations of 10-10 and 10-9 (U atom/mica atom) have been measured. As a part of the development of this technique, the mica geological age was also measured, by fossil and induced track detection. The agreement obtained by this method, T = (472+-52) x 106 years with that of (450+-15) x 106 years obtained by the Ar-K technique is satisfactory and is an indirect test of the fission track technique used. A careful analysis of the neutron field parameters and nuclear data used in the age determination was made. This analysis is useful for applications in geocronology. According to this analysis a value of lambdasub(f)=(7.1+-0.1) x 10-17 years-1 is recommended for the spontaneous fission of U238. However, in order to compare the results, the quoted age, T=(472+-52) x 106 years, was obtained with the generally accepted value of lambdasub(f)=(6.85-0.20) x 10-17 years-1 (Fleischer and Price 1964). (author)

  16. News on the natural nuclear reactor

    International Nuclear Information System (INIS)

    Data characterizing conditions of occurrence and the status of a natural nuclear reactor the remnants of which are discovered in the ore open pit of the Oklo deposit (Gabon) are presented. Transport of alkali earth elements (Rb, Sr, Cs and Ba) as well as Pd, Ag, Cd and Te isotopes near the reactor was investigated. Reactor criticality arose, probably, during or soon after U deposition. The reactor has ceased after 500000 years of operation; the energy of about 15 GW x year was generated. Approximately 80 t of uranium (12 tons of sup(235)U) were utilized during reactor operation. Approximately 10 tons of fission products and 4 tons of sup(239)Pu were formed. Reactor operation was periodical, multiply repeated. Water migrating over sandstone pores was not only a moderator but a self-regulator as well

  17. Des analogues naturels de sites de stockage de déchets nucléaires vieux de 2 milliards d'années : les réacteurs de fission nucléaire naturels du Gabon (Afrique)

    Science.gov (United States)

    Gauthier-Lafaye, François

    2002-10-01

    Two billion years ago, the increase of oxygen in atmosphere and the high 235U/ 238U uranium ratio (>3%) made possible the occurrence of natural nuclear reactors on Earth. These reactors are considered to be a good natural analogue for nuclear waste disposal. Their preservation during such a long period of time is mainly due to the geological stability of the site, the occurrence of clays surrounding the reactors and acting as an impermeable shield, and the occurrence of organic matter that maintained the environment in reducing conditions, favourable for the stability of uraninite. Hydrogeochemical studies and modelling have shown the complexity of the geochemical system at Oklo and Bangombé (Gabon) and the lack of precise data about uranium and fission products retention and migration mechanisms in geological environments. To cite this article: F. Gauthier-Lafaye, C. R. Physique 3 (2002) 839-849.

  18. Thermal fission rates with temperature dependent fission barriers

    Science.gov (United States)

    Zhu, Yi; Pei, J. C.

    2016-08-01

    Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.

  19. On the oxidation of uraninite from natural reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Cui, D.; Eriksen, T.; Eklund, U.B.

    1999-07-01

    Natural nuclear reactors provide unique evidence in helping to understand the processes that might occur over long timescales in radioactive waste disposal sites. In the presented work, the extent and kinetics of oxidation of core material from the Oklo-Bangombe natural reactors are investigated. The X-ray powder diffraction analysis shows that the uraninites core samples from the Bangombe Reactor and Oklo Reactor 2, and Oklo Reactor 13 have the same unit-cell parameters as synthetic UO{sub 2.25}. A significant amount of fourmarierite, Pb(UO{sub 2}){sub 4}O{sub 3}(OH){sub 4}.4H{sub 2}O, was identified in the core samples from two shallow reactors Bangombe and Oklo 2, but not in the deeper reactor Oklo 13. The results of U(IV)/U(IV) measurements indicate that the extent of oxidative weathering of shallow reactors (Bangombe and Oklo 2) is greater than for the deeper reactor Oklo 13. Evaporable organic compounds found in the uraninite inclusion containing bitumen at the edge of Okelobondo Reactor (400 C) and in the black shale immediately above the Bangombe Reactor (260 C) may work as a reducing buffer or/and a hydrophobic water shield to depress the oxidative dissolution of the uraninite cores.

  20. Implications of the Oklo phenomenon in a chiral approach to nuclear matter

    CERN Document Server

    Davis, Edward D

    2014-01-01

    It has been customary to use data from the Oklo natural nuclear reactor to place bounds on the change that has occurred in the electromagnetic fine structure constant $\\alpha$ over the last 2 billion years. Alternatively, an analysis could be based on a recently proposed expression for shifts in resonance energies which relates them to changes in both $\\alpha$ and the average $m_q$ of the $u$ and $d$ current quark masses, and which makes explicit the dependence on mass number $A$ and atomic number $Z$. (Recent model independent results on hadronic $\\sigma$-terms suggest sensitivity to the strange quark mass is negligible.) The most sophisticated analysis, to date, of the quark mass term invokes a calculation of the nuclear mean-field within the Walecka model of quantum hadrodynamics. We comment on this study and consider an alternative in which the link to low-energy quantum chromodynamics (QCD) and its pattern of chiral symmetry-breaking is more readily discernible. Specifically, we investigate the sensitivi...

  1. Enhanced effect of quark mass variation in 229Th and limits from Oklo data

    CERN Document Server

    Flambaum, V V

    2008-01-01

    The effects of the variation of the dimensionless strong interaction parameter Xq=mq/Lambda{QCD} (mq is the quark mass, Lambda{QCD} is the QCD scale) are enhanced about 1.5 x 10**5 times in the 7.6 eV "nuclear clock" transition between the ground and first excited states in the 229Th nucleus and about 1 x 10**8 times in the relative shift of the 0.1 eV compound resonance in 150Sm.The best terrestrial limit on the temporal variation of the fundamental constants, |delta(Xq)/Xq| < 4 x 10**-9 at 1.8 billion years ago (|d(Xq/Xq)/dt| < 2.2 x 10**-18 y**-1), is obtained from the shift of this Sm resonance derived from the Oklo natural nuclear reactor data. The results for 229Th and 150Sm are obtained by extrapolation from light nuclei where the many-body calculations can be performed more accurately. The errors produced by such extrapolation may be smaller than the errors of direct calculations in heavy nuclei. The extrapolation results are compared with the "direct" estimates obtained using the Walecka model....

  2. La138/139 Isotopic Data and Neutron Fluences for Oklo RZ10 Reactor

    CERN Document Server

    Gould, C R; 10.1103/PhysRevC.86.027601

    2012-01-01

    Recent years have seen a renewed interest in the Oklo phenomenon, particularly in relation to the study of time variation of the fine structure constant. The neutron fluence is one of the crucial parameters for Oklo reactors. Several approaches to its determination were elaborated in the past. We consider whether it possible to use the present isotopic La138/139 data for RZ10 as an additional indicator of neutron fluences in the active cores of the reactors. We calculate the dependence of the Oklo La138 abundance on neutron fluence and elemental lanthanum concentration. The neutron fluence in RZ10 can be deduced from lanthanum isotopic data, but requires reliable data on the primordial elemental abundance. Conversely, if the fluence is known, the isotope ratio provides information on the primordial lanthanum abundance that is not otherwise easily determined.

  3. La-138/139 isotopic data and neutron fluences for Oklo RZ10 reactor

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.

    2012-08-01

    Background: Recent years have seen a renewed interest in the Oklo phenomenon, particularly in relation to the study of time variation of the fine structure constant α. The neutron fluence is one of the crucial parameters for Oklo reactors. Several approaches to its determination were elaborated in the past.Purpose: We consider whether it is possible to use the present isotopic 138La-139La data for RZ10 as an additional indicator of neutron fluences in the active cores of the reactors.Results: We calculate the dependence of the Oklo 138La abundance on neutron fluence and elemental lanthanum concentration.Conclusion: The neutron fluence in RZ10 can be deduced from lanthanum isotopic data, but requires reliable data on the primordial elemental abundance. Conversely, if the fluence is known, the isotope ratio provides information on the primordial lanthanum abundance that is not otherwise easily determined.

  4. Chemistry and migration behaviour of the actinides and fission products in natural aquatic systems

    International Nuclear Information System (INIS)

    The 66th PTB seminar was held on April 24th and 25th, 1986, at the Munich Technical University (TUM) in Garching in cooperation with the Institute for Radiochemistry of the Munich Technical University, the 'Nuclear Chemistry' special group of the Society of German Chemists, and UB/SN responsible for the BMFT project. The seminar was organized by the TUM's Institute for Radiochemistry. The seminar dealt with the following main topics: primary geochemical reactions and colloid formation; sorption mechamisms and migration behaviour in Konrad/Gorleben aquifer systems; sampling and experimental investigations; evaluation and interpretation of the data obtained by experiments. The seminar was to achieve the following objectives: information and exchange of experience with regard to the work carried out up to the present; if necessary, formulation of new issues to be discussed; improvement of the interdisciplinary cooperation (chemistry, geosciences, modelling). The following topics and individual aspects were of particular interest and were given special attention: complementary basic research in order to interpret, support and model the results obtained by experiments (sorption mechanisms and thermodynamic data for natural systems); comparability of batch, column and diffusion tests; transferability of laboratory data to natural systems (e.g. Gorleben, Konrad); redox transitions for Np, Tc at Eh values of the natural systems; dependence of the sorption/desorption data on different influencing factors, importance of the influencing factors and selection of data for model calculations. Subject analyses of the individual contributions have been made for the Energy data base. (orig./RB)

  5. Spontaneous fission

    International Nuclear Information System (INIS)

    Recent experimental results for spontaneous fission half-lives and fission fragment mass and kinetic-energy distributions and other properties of the fragments are reviewed and compared with recent theoretical models. The experimental data lend support to the existence of the predicted deformed shells near Z = 108 and N = 162. Prospects for extending detailed studies of spontaneous fission properties to elements beyond hahnium (element 105) are considered. (orig.)

  6. Anomalous Xenon in the Precambrian Nuclear Reactor in Okelobondo (Gabon): A Possible Connection to the Fission Component in the Terrestrial Atmosphere

    Science.gov (United States)

    Meshik, A. P.; Kehm, K.; Hohenberg, C. M.

    1999-01-01

    Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.

  7. From natural to synthetic apatites: the use of apatites as conditioning material for separated nuclear wastes

    International Nuclear Information System (INIS)

    The minerals with an apatite structure formed two billion years ago during natural nuclear reactions in Oklo (Gabon) are phospho-silicate apatites called britholites. In the lattice, they contain as substitutions or inclusions radioactive elements or the fission products. They remain totally stable and appear to be excellent to be excellent nuclear waste conditioning materials. From these observations, the study of synthetics britholites was carried out. The optimal chemical composition was determined, solid/solid synthesis was performed and the stability under radioactive, thermal conditions was studied in relation to geological observations. The first results indicating resistance to radiation and leaching open a supplementary way for the preparation of conditioning material for separated nuclear waste. (authors)

  8. Oklo: The fossil nuclear reactors. Physics study - Translation of chapters 6, 13 and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Naudet, R. [CEA, Paris (France)

    1996-09-01

    Three parts of the 1991 book `Oklo: reacteurs nucleaires fossiles. Etude physique` have been translated in this report. The chapters bear the titles `Study of criticality`(45 p.), `Some problems with the overall functioning of the reactor zones`(45 p.) and `Conclusions` (15 p.), respectively.

  9. Enhanced effect of quark mass variation in Th229 and limits from Oklo data

    Science.gov (United States)

    Flambaum, V. V.; Wiringa, R. B.

    2009-03-01

    The effects of the variation of the dimensionless strong interaction parameter Xq=mq/ΛQCD (mq is the quark mass, ΛQCD is the QCD scale) are enhanced about 1.5×105 times in the 7.6 eV “nuclear clock” transition between the ground and first excited states in the Th229 nucleus and about 1×108 times in the relative shift of the 0.1 eV compound resonance in Sm150. The best terrestrial limit on the temporal variation of the fundamental constants, |δXq/Xq|Oklo natural nuclear reactor data. The results for Th229 and Sm150 are obtained by extrapolation from light nuclei where the many-body calculations can be performed more accurately. The errors produced by such extrapolation may be smaller than the errors of direct calculations in heavy nuclei. The extrapolation results are compared with the “direct” estimates obtained using the Walecka model. A number of numerical relations needed for the calculations of the variation effects in nuclear physics and atomic spectroscopy have been obtained: for the nuclear binding energy δE/E≈-1.45δmq/mq, for the spin-orbit intervals δEso/Eso≈-0.22δmq/mq, for the nuclear radius δr/r≈0.3δmq/mq (in units of ΛQCD); for the shifts of nuclear resonances and weakly bound energy levels δEr≈10δXq/Xq MeV.

  10. Calculations of fission rates for r-process nucleosynthesis

    OpenAIRE

    Panov, I. V.; Kolbe, E.; Pfeiffer, B.; Rauscher, T.; Kratz, K.-L.; Thielemann, F. -K.

    2004-01-01

    Fission plays an important role in the r-process which is responsible not only for the yields of transuranium isotopes, but may have a strong influence on the formation of the majority of heavy nuclei due to fission recycling. We present calculations of beta-delayed and neutron-induced fission rates, taking into account different fission barriers predictions and mass formulae. It is shown that an increase of fission barriers results naturally in a reduction of fission rates, but that neverthe...

  11. Ternary fission

    Indian Academy of Sciences (India)

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  12. Uranium transport around the reactor zone at Bangombé and Okélobondo (Oklo): examples of hydrogeological and geochemical model integration and data evaluation

    Science.gov (United States)

    Gurban, I.; Laaksoharju, M.; Madé, B.; Ledoux, E.

    2003-03-01

    The sites at Bangombé and Okélobondo (Oklo) in Gabon provide a unique opportunity to study the behaviour of products from natural nuclear reactions in the vicinity of reactor zones which were active around two billion years ago. The Commission of the European Communities initiated the Oklo Natural Analogue Programme. One of the principal aims was to study indications of present time migration of elements from the reactor zones under ambient conditions. The hydrogeological and hydrochemical data from the Oklo sites were modelled in order to better understand the geochemical behaviour of radionuclides in the natural system, by using independent models and by comparing the modelling outcome. Two modelling approaches were used: M3 code (hydrochemical mixing and mass balance model), developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) and HYTEC (reactive transport model) developed by Ecole des Mines de Paris. Two different reactor zones were studied: Bangombé, a shallow site, the reactor being at 11 m depth, and OK84 at Okélobondo, situated at about 450 m depth, more comparable with a real repository location. This allowed the validation of modelling tools in two different sedimentary environments: one shallow, with a more homogeneous layering situated in an area of meteoric alteration, and the other offering the opportunity to study radionuclide migration from the reaction zone over a distance of 450 m through very heterogeneous sedimentary layers. The modeling results indicate that the chemical reactions retarding radionuclide transport are very different at the two sites. At Bangombé, the decomposition of organic material consumes oxygen and at Okélobondo the oxygen is consumed by inorganic reactions resulting, in both cases, in uranium retardation. Both modelling approaches (statistic with M3 code and deterministic with HYTEC code) could describe this situation. The goal of this exercise is to test codes which can help to describe and

  13. Fission Spectrum

    Science.gov (United States)

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  14. The transantarctic mountains: A natural laboratory for apatite fission-track analysis. Results from Italian antarctic expeditions

    International Nuclear Information System (INIS)

    Apatite fission-track analysis has been applied to samples collected during the 1991/1992, 1993/1994 and 1996/1997 campaigns of the Italian Antarctic Project in the Transantarctic Mountains. Samples from the first two campaigns, collected in the area between the Mariner and the David Glaciers (northern Victoria Land), reveal that a Late Cretaceous uplift - denudation phase already identified in other sectors of the chain took place also in this region. They also confirm the occurrence of a more recent phase starting in the Late Paleocene. Offsets in apatite age profiles regarding samples collected further north during the third campaign reveal Cenozoic normal faulting with variable sense of offset

  15. Enhanced effect of quark mass variation in {sup229}Th and limits from Oklo data.

    Energy Technology Data Exchange (ETDEWEB)

    Flambaum, V. V.; Wiringa, R. B.; Physics; Univ. of New South Wales; Perimeter Inst. for Theoretical Physics

    2009-01-01

    The effects of the variation of the dimensionless strong interaction parameter X{sub q} = m{sub q}/{Lambda}{sub QCD} (m{sub q} is the quark mass, {Lambda}{sub QCD} is the QCD scale) are enhanced about 1.5 x 10{sup 5} times in the 7.6 eV 'nuclear clock' transition between the ground and first excited states in the {sup 229}Th nucleus and about 1 x 10{sup 8} times in the relative shift of the 0.1 eV compound resonance in {sup 150}Sm. The best terrestrial limit on the temporal variation of the fundamental constants, |{delta}X{sub q}/X{sub q}| < 4 x 10{sup -9} at 1.8 billion years ago (|X{sub q}/X{sub q}| < 2.2 x 10{sup -18}y{sup -1}), is obtained from the shift of this Sm resonance derived from the Oklo natural nuclear reactor data. The results for {sup 229}Th and {sup 150}Sm are obtained by extrapolation from light nuclei where the many-body calculations can be performed more accurately. The errors produced by such extrapolation may be smaller than the errors of direct calculations in heavy nuclei. The extrapolation results are compared with the 'direct' estimates obtained using the Walecka model. A number of numerical relations needed for the calculations of the variation effects in nuclear physics and atomic spectroscopy have been obtained: for the nuclear binding energy {delta} E/E {approx} -1.45 {delta}m{sub q}/m{sub q}, for the spin-orbit intervals {delta}E{sub so}/E{sub so} {approx} -0.22 {delta}m{sub q}/m{sub q}, for the nuclear radius {delta}r/r {approx} 0.3 {delta}m{sub q}/m{sub q} (in units of {Lambda}{sub QCD}); for the shifts of nuclear resonances and weakly bound energy levels {delta}E{sub r} {approx} 10 {delta}X{sub q}/X{sub q} MeV.

  16. A study of the effect of natural radiation damage in a zircon crystal using thermoluminescence, fission track etching and X-ray diffraction

    International Nuclear Information System (INIS)

    The natural radiation damage in zircon caused by the decay of uranium and thorium, present as impurities, is studied. The radiation damage is first gauged by etching the fission tracks. It is found that thermoluminescence (TL) sensitivity (defined as light output per unit test-dose) decreases as the radiation damage increases, suggesting a destruction of TL centers. The spacing d of the (112)-plane is also measured. It is also found that the d-value increases with radiation damage, suggesting the displacement of atoms from their normal lattice sites. However, as the track density increases beyond ≅ 3x106 tracks/cm2, the d-value remains at ≅ 2.52 A. By annealing the crystal, the displaced atoms are found to return to the original lattice sites, and this is followed by a reduction in d-value as well as the recovery of TL sensitivity. The fission track density also decreases and all the tracks disappear at the annealing temperature of ≅ 8000C. (orig.)

  17. Isotopic composition and neutronics of the Okelobondo natural reactor

    Science.gov (United States)

    Palenik, Christopher Samuel

    The Oklo-Okelobondo and Bangombe uranium deposits, in Gabon, Africa host Earth's only known natural nuclear fission reactors. These 2 billion year old reactors represent a unique opportunity to study used nuclear fuel over geologic periods of time. The reactors in these deposits have been studied as a means by which to constrain the source term of fission product concentrations produced during reactor operation. The source term depends on the neutronic parameters, which include reactor operation duration, neutron flux and the neutron energy spectrum. Reactor operation has been modeled using a point-source computer simulation (Oak Ridge Isotope Generation and Depletion, ORIGEN, code) for a light water reactor. Model results have been constrained using secondary ionization mass spectroscopy (SIMS) isotopic measurements of the fission products Nd and Te, as well as U in uraninite from samples collected in the Okelobondo reactor zone. Based upon the constraints on the operating conditions, the pre-reactor concentrations of Nd (150 ppm +/- 75 ppm) and Te (<1 ppm) in uraninite were estimated. Related to the burnup measured in Okelobondo samples (0.7 to 13.8 GWd/MTU), the final fission product inventories of Nd (90 to 1200 ppm) and Te (10 to 110 ppm) were calculated. By the same means, the ranges of all other fission products and actinides produced during reactor operation were calculated as a function of burnup. These results provide a source term against which the present elemental and decay abundances at the fission reactor can be compared. Furthermore, they provide new insights into the extent to which a "fossil" nuclear reactor can be characterized on the basis of its isotopic signatures. In addition, results from the study of two other natural systems related to the radionuclide and fission product transport are included. A detailed mineralogical characterization of the uranyl mineralogy at the Bangombe uranium deposit in Gabon, Africa was completed to improve

  18. Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...

  19. Two neutron correlations in photo-fission

    Science.gov (United States)

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-09-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  20. Calculations of fission rates for r-process nucleosynthesis

    CERN Document Server

    Panov, I V; Pfeiffer, B; Rauscher, T; Kratz, K L; Thielemann, F K

    2005-01-01

    Fission plays an important role in the r-process which is responsible not only for the yields of transuranium isotopes, but may have a strong influence on the formation of the majority of heavy nuclei due to fission recycling. We present calculations of beta-delayed and neutron-induced fission rates, taking into account different fission barriers predictions and mass formulae. It is shown that an increase of fission barriers results naturally in a reduction of fission rates, but that nevertheless fission leads to the termination of the r-process. Furthermore, it is discussed that the probability of triple fission could be high for $A>260$ and have an effect on the formation of the abundances of heavy nuclei. Fission after beta-delayed neutron emission is discussed as well as different aspects of the influence of fission upon r-process calculations.

  1. Manifestations of a spatial variation of fundamental constants on atomic clocks, Oklo, meteorites, and cosmological phenomena

    CERN Document Server

    Berengut, J C

    2010-01-01

    The remarkable detection of a spatial variation in the fine-structure constant, alpha, from quasar absorption systems must be independently confirmed by complementary searches. In this letter, we discuss how terrestrial measurements of time-variation of the fundamental constants in the laboratory, meteorite data, and analysis of the Oklo nuclear reactor can be used to corroborate the spatial variation seen by astronomers. Furthermore, we show that spatial variation of the fundamental constants may be observable as spatial anisotropy in the cosmic microwave background, the accelerated expansion (dark energy), and large-scale structure of the Universe.

  2. Nuclear Data in Oklo and Time-Variability of Fundamental Coupling Constants

    CERN Document Server

    Fujii, Y; Fukahori, T; Ohnuki, T; Nakagawa, M; Hidaka, H; Oura, Y; Møller, P; Fujii, Yasunori; Iwamoto, Akira; Fukahori, Tokio; Ohnuki, Toshihiko; Nakagawa, Masayuki; Hidaka, Hiroshi; Oura, Yasuji; Moller, Peter

    2001-01-01

    We re-examined Shlyakhter's analysis of the Sm data in Oklo. With a special care of minimizing contamination due to the inflow of the isotope after the end of the reactor activity, we confirmed that his result on the time-variability of the fine-structure constant, $|\\dot{\\alpha}/\\alpha |\\lsim 10^{-17}{\\rm y}^{-1}$, was basically correct. In addition to this upper bound, however, we obtained another result that indicates a different value of $\\alpha$ 2 billion years ago. We add comments on the recent result from QSO's.

  3. Seminar on Fission VI

    Science.gov (United States)

    Wagemans, Cyriel; Wagemans, Jan; D'Hondt, Pierre

    2008-04-01

    Topical reviews. Angular momentum in fission / F. Gönnenwein ... [et al.]. The processes of fusion-fission and quasi-fission of heavy and super-heavy nuclei / M. G. Itkis ... [et al.] -- Fission cross sections and fragment properties. Minor-actinides fission cross sections and fission fragment mass yields via the surrogate reaction technique / B. Jurado ... [et al.]. Proton-induced fission on actinide nuclei at medium energy / S. Isaev ... [et al.]. Fission cross sections of minor actinides and application in transmutation studies / A. Letourneau ... [et al.]. Systematics on even-odd effects in fission fragments yields: comparison between symmetric and asymmetric splits / F. Rejmund, M Caamano. Measurement of kinetic energy distributions, mass and isotopic yields in the heavy fission products region at Lohengrin / A. Bail ... [et al.] -- Ternary fission. On the Ternary [symbol] spectrum in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Energy degrader technique for light-charged particle spectroscopy at LOHENGRIN / A. Oberstedt, S. Oberstedt, D. Rochman. Ternary fission of Cf isotopes / S. Vermote ... [et al.]. Systematics of the triton and alpha particle emission in ternary fission / C. Wagemans, S. Vermote, O. Serot -- Neutron emission in fission. Scission neutron emission in fission / F.-J. Hambsch ... [et al.]. At and beyond the Scission point: what can we learn from Scission and prompt neutrons? / P. Talou. Fission prompt neutron and gamma multiplicity by statistical decay of fragments / S. Perez-Martin, S. Hilaire, E. Bauge -- Fission theory. Structure and fission properties of actinides with the Gogny force / H. Goutte ... [et al.]. Fission fragment properties from a microscopic approach / N. Dubray, H. Goutte, J.-P. Delaroche. Smoker and non-smoker neutron-induced fission rates / I. Korneev ... [et al.] -- Facilities and detectors. A novel 2v2E spectrometer in Manchester: new development in identification of fission fragments / I. Tsekhanovich ... [et al

  4. Advanced Fission Reactor Program objectives

    International Nuclear Information System (INIS)

    The objective of an advanced fission reactor program should be to develop an economically attractive, safe, proliferation-resistant fission reactor. To achieve this objective, an aggressive and broad-based research and development program is needed. Preliminary work at Brookhaven National Laboratory shows that a reasonable goal for a research program would be a reactor combining as many as possible of the following features: (1) initial loading of uranium enriched to less than 15% uranium 235, (2) no handling of fuel for the full 30-year nominal core life, (3) inherent safety ensured by core physics, and (4) utilization of natural uranium at least 5 times as efficiently as light water reactors

  5. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  6. Geochemical behavior of radionuclides in highly altered zircon above the Bangombé natural fission reactor, Gabon

    Science.gov (United States)

    Kikuchi, Makiko; Hidaka, Hiroshi; Horie, Kenji

    The isotopic compositions of rare earth elements (REE), Pb and U of highly altered zircons from the clay and black shale layers above the Bangombé natural reactor, Gabon, were determined by a sensitive high resolution ion microprobe (SHRIMP) to discuss the redistribution processes of elements into zircons under the supergene weathering. The clay layer trapped most of the fissiogenic Nd, Sm and Eu derived from the reactor and prevented them migrating into the black shale layer. On the other hand, only the Ce isotopic ratios of the clay and black shale layers have about 2 times larger variations than the other REE. This result suggests that a large chemical fractionation between Ce and other REE above the reactor occurred under the oxidizing condition. The U-Pb data of zircons suggest that the U-Pb system was largely disturbed by migration of chemically fractionated Pb and U from the 2.0 Ga-old uraninite in association with recent weathering.

  7. Fast fission phenomenon

    Science.gov (United States)

    In these lectures we have described two different phenomena occuring in dissipative heavy ion collisions : neutron-proton asymmetry and fast fission. Neutron-proton asymmetry has provided us with an example of a fast collective motion. As a consequence quantum fluctuations can be observed. The observation of quantum or statistical fluctuations is directly connected to the comparison between the phonon energy and the temperature of the intrinsic system. This means that this mode might also provide a good example for the investigation of the transition between quantum and statistical fluctuations which might occur when the bombarding energy is raised above 10 MeV/A. However it is by no means sure that in this energy domain enough excitation energy can be put into the system in order to reach such high temperatures over the all system. The other interest in investigating neutron-proton asymmetry above 10 MeV/A is that the interaction time between the two incident nuclei will decrease. Consequently, if some collective motion should still be observed, it will be one of the last which can be seen. Fast fission corresponds on the contrary to long interaction times. The experimental indications are still rather weak and mainly consist of experimental data which cannot be understood in the framework of standard dissipative models. We have seen that a model which can describe both the entrance and the exit configuration gives this mechanism in a natural way and that the experimental data can, to a good extend, be explained. The nicest thing is probably that our old understanding of dissipative heavy ion collisions is not changed at all except for the problems that can now be understood in terms of fast fission. Nevertheless this area desserve further studies, especially on the experimental side to be sure that the consistent picture which we have on dissipative heavy ion collisions still remain coherent in the future.

  8. Activation Energy for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1952-08-29

    The experimentally determined exponential dependence of spontaneous fission rate on Z{sup 2}/A has been used to derive an expression for the dependence of the fission activation energy on Z{sup 2}/A. This expression has been used to calculate the activation energy for slow neutron induced fission and photofission. The correlation with the experimental data on these types of fission seems to be quite good.

  9. To fission or not to fission

    CERN Document Server

    Pomorski, Krzysztof; Ivanyuk, Fedir A

    2016-01-01

    The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.

  10. Excitation-energy dependence of the nuclear fission characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H.; Saito, T.; Takahashi, N. [Osaka City Univ. (Japan). Faculty of Science] [and others

    1996-03-01

    It is known that the width parameter of the fragment mass yield distribution follows a beautiful systematics with respect to the excitation energy. According to this systematics, the fission characteristics following the systematics should disappear when the excitation energy Ex goes down to 14 MeV. The present purpose is to elucidate if, where, how and why a transition takes place in the fission characteristics of the asymmetric fission of light actinide elements. Two types of experiments are performed, one is the double-energy measurement of the kinetic energies of complementary fragments in the thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at 13.3- and 15.7-MeV excitations, and the other is the radiochemical study of proton-induced fission and photofission of {sup 238}U at various excitation energies. In conclusion, it has demonstrated that there are two distinctive fission mechanisms in the low-energy fission of light actinide elements and the transition between them takes place around 14-MeV excitation. The characteristics of proton fission and photofission in the energy range lower than the above transition point are the essentially the same as those of thermal-neutron fission and also spontaneous fission. The results of GDR fission indicates the fission in the high-energy side starts from the nuclear collective states, whereas the lower-energy fission is of non-collective nature. It is likely that thermal-neutron fission is rather of the barrier-penetrating type like spontaneous fission than the threshold fission. (S.Y.)

  11. Fifty years of nuclear fission: Nuclear data and measurements series

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, J.E.

    1989-06-01

    This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.

  12. Fission neutron statistical emission

    International Nuclear Information System (INIS)

    The statistical model approach FINESSE (FIssion NEutronS' Statistical Emission) for the description of fission neutron multiplicities, energy spectra and angular distributions is described. Based on an extended Weisskopf ansatz and on a realistic temperature distribution it provides a fragment mass number dependent description of fission neutron data. Model parameters (optical potential, n/γ competition) were fixed on the basis of the 252Cf(sf) (nuclear data standard). Combined with a phenomenological fission model for predicting relevant fragment data as function of asymmetry. FINESSE can be applied to any fission reaction of actinides in the Th-Cf region without further parameter adjustment. Results are presented for 252Cf(sf) and neutron induced fission of 235U, 239Pu, 232Th. Effects of multiple-chance fission are discussed for 232Th(n,xnf) reacation. (author). 46 refs, 11 figs

  13. Ideological Fission

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    of a monster's very nature, but the monster in Cloverfield is both frightingly different and hauntingly familiar. We have seen such monsters many times before in earlier movies, so we cannot fully feel that it is different and apart from ourselves. At the same time, the monster is irrational, without meaning......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...

  14. Dissolution studies of natural analogues spent fuel and U(VI)-Silicon phases of and oxidative alteration process

    International Nuclear Information System (INIS)

    In order to understand the long-term behavior of the nuclear spent fuel in geological repository conditions, we have performed dissolution studies with natural analogues to UO2 as well as with solid phases representatives of the oxidative alteration pathway of uranium dioxide, as observed in both natural environment and laboratory studies. In all cases, we have studied the influence of the bicarbonate concentration in the dissolution process, as a first approximation to the groundwater composition of a granitic environment, where carbonate is one of the most important complexing agents. As a natural analogue to the nuclear spent fuel some uraninite samples from the Oklo are deposit in Gabon, where chain fission reactions took place 2000 millions years ago, as well as a pitchblende sample from the mine Fe ore deposit, in Salamanca (spain) have been studied. The studies have been performed at 25 and 60 deg C and 60 deg C, and they have focussed on the determination of both the thermodynamic and the kinetic properties of the different samples studied, using batch and continuous experimental methodologies, respectively. (Author)

  15. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  16. Fission product yields

    International Nuclear Information System (INIS)

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235U, 239Pu, 241Pu and for fast fission (approximately 1 MeV) of 235U, 238U, 239Pu, 241Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  17. Thermal fission rates with temperature dependent fission barriers

    OpenAIRE

    Zhu, Yi; Pei, Junchen

    2016-01-01

    The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective ...

  18. Time-variability of the fine-structure constant expected from the Oklo constraint and the QSO absorption lines

    CERN Document Server

    Fujii, Y

    2003-01-01

    The data from the QSO absorption lines indicating a nonzero time-variability of the fine-structure constant has been re-analyzed on the basis of a "damped-oscillator" fit, as motivated by the same type of behavior of a scalar field, dilaton, which mimics a cosmological constant to understand the accelerating universe. We find nearly as good fit to the latest data as the simple weighted mean. In this way, we offer a way to fit the more stringent result from the Oklo phenomenon, as well.

  19. Time-variability of the fine-structure constant expected from the Oklo constraint and the QSO absorption lines

    Science.gov (United States)

    Fujii, Yasunori

    2003-10-01

    The data from the QSO absorption lines indicating a nonzero time-variability of the fine-structure constant has been re-analyzed on the basis of a ``damped-oscillator'' fit, as motivated by the same type of behavior of a scalar field, dilaton, which mimics a cosmological constant to understand the accelerating universe. We find nearly as good fit to the latest data as the simple weighted mean. In this way, we offer a way to fit the more stringent result from the Oklo phenomenon, as well.

  20. Muon-induced fission

    International Nuclear Information System (INIS)

    A review of recent experimental results on negative-muon-induced fission, both of 238U and 232Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238U. (author)

  1. Fission Measurements with Dance

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  2. An evaluation of the dissolution process of natural uranium ore as an analogue of nuclear fuel

    International Nuclear Information System (INIS)

    The assumption of congruent dissolution of uraninite as a mechanism for the dissolution behaviour of spent fuel was critically examined with regard to the fate of toxic radionuclides. The fission and daughter products of uranium are typically present in spent unreprocessed fuel rods in trace abundances. The principles of trace element geochemistry were applied in assessing the behaviour of these radionuclides during fluid/solid interactions. It is shown that the behaviour of radionuclides in trace abundances that reside in the crystal structure can be better predicted from the ionic properties of these nuclides rather than from assuming that they are controlled by the dissolution of uraninite. Geochemical evidence from natural uranium ore deposits (Athabasca Basin, Northern Territories of Australia, Oklo) suggests that in most cases the toxic radionuclides are released from uraninite in amounts that are independent of the solution behaviour of uranium oxide. Only those elements that have ionic and thus chemical properties similar to U4+, such as plutonium, americium, cadmium, neptunium and thorium can be satisfactorily modelled by the solution properties of uranium dioxide and then only if the environment is reducing. (84 refs., 7 tabs.)

  3. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  4. Bacteria, colloids and organic carbon in groundwater at the Bangombe site in the Oklo area

    International Nuclear Information System (INIS)

    This report describes how microorganisms, colloids and organic matter were sampled from groundwater from six boreholes at the Bangombe site in the Oklo region and subsequently analyzed. For analysis of microorganisms, DNA was extracted from groundwater, amplified and cloned and information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes, a result that probably reflects documented differences in the geochemical environment. Analyses of sampled colloids included SEM and ICP-MS analysis of colloids on membrane and single particle analysis of samples in bottles. The colloid concentration was rather low in these Na-Mg-Ca-HCO3 type waters. Trace element results show that transition metals and some heavy metals are associated with the colloid phase. Distribution coefficients of trace elements between the water and colloid phases were estimated. For example for uranium, an average of 200 pg/ml was detected in the water, and 40 pg/ml was detected in the colloid phase. A Kp value of 2* 106 ml/g was calculated, considering (colloid) = 100 ng/ml. Groundwater samples were collected for analysis of the concentration of organic carbon (TOC), humic substances and metals associated with the humic substances. TOC varied in the range 4-14 mg/l in three boreholes, one borehole had a TOC<1.5 mg/l. The metal speciation study indicated that a large fraction, 8-67% of uranium was bound to the humic matter compared to the fractions of Ca and Fe (<0.4% and 0.02-10%, resp.). 60 refs, 8 figs, 16 tabs

  5. Bacteria, colloids and organic carbon in groundwater at the Bangombe site in the Oklo area

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K. [ed.

    1996-02-01

    This report describes how microorganisms, colloids and organic matter were sampled from groundwater from six boreholes at the Bangombe site in the Oklo region and subsequently analyzed. For analysis of microorganisms, DNA was extracted from groundwater, amplified and cloned and information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes, a result that probably reflects documented differences in the geochemical environment. Analyses of sampled colloids included SEM and ICP-MS analysis of colloids on membrane and single particle analysis of samples in bottles. The colloid concentration was rather low in these Na-Mg-Ca-HCO{sub 3} type waters. Trace element results show that transition metals and some heavy metals are associated with the colloid phase. Distribution coefficients of trace elements between the water and colloid phases were estimated. For example for uranium, an average of 200 pg/ml was detected in the water, and 40 pg/ml was detected in the colloid phase. A K{sub p} value of 2* 10{sup 6} ml/g was calculated, considering (colloid) = 100 ng/ml. Groundwater samples were collected for analysis of the concentration of organic carbon (TOC), humic substances and metals associated with the humic substances. TOC varied in the range 4-14 mg/l in three boreholes, one borehole had a TOC<1.5 mg/l. The metal speciation study indicated that a large fraction, 8-67% of uranium was bound to the humic matter compared to the fractions of Ca and Fe (<0.4% and 0.02-10%, resp.). 60 refs, 8 figs, 16 tabs.

  6. Study on Fission Blanket Fuel Cycling of a Fusion-Fission Hybrid Energy Generation System

    International Nuclear Information System (INIS)

    Full text: Direct application of ITER-scale tokamak as a neutron driver in a subcritical fusion-fission hybrid reactor to generate electric power is of great potential in predictable future. This paper reports a primary study on neutronic and fuel cycle behaviors of a fission blanket for a new type of fusion-driven system (FDS), namely a subcritical fusion-fission hybrid reactor for electric power generation aiming at energy generation fueled with natural or depleted uranium. Using COUPLE2 developed at INET of Tsinghua University by coupling the MCNP code with the ORIGEN code to study the neutronic behavior and the refueling scheme, this paper focuses on refueling scheme of the fissionable fuel while keeping some important parameters such as tritium breeding ratio (TBR) and energy gain. Different fission fuels, coolants and their volumetric ratios arranged in the fission blanket satisfy the requirements for power generation. The results show that soft neutron spectrum with optimized fuel to moderator ratio can yield an energy amplifying factor of M> 20 while maintaining the TBR > 1.1 and the CR > 1 (the conversion ratio of fissile materials) in a reasonably long refueling cycle. Using an in-site fuel recycle plant, it will be an attractive way to realize the goal of burning 238U with such a new type of fusion-fission hybrid reactor system to generate electric power. (author)

  7. Singlet exciton fission photovoltaics.

    Science.gov (United States)

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  8. Prompt Neutrons from Fission

    International Nuclear Information System (INIS)

    A survey is given of the present state of knowledge of the spectrum, angular distribution and number of prompt fission neutrons, as functions of incident neutron energy and individual fragment mass, for low-energy fission. The energy spectrum of prompt neutrons has been found to be of the same form (nearly Maxwellian) for many different types of fission. It has been shown that this type of spectrum is to be expected on the basis of evaporation from moving fragments, and theoretical predictions of the spectrum agree very accurately with experimental data. Some data are now available on the variation of the neutron spectrum with fragment mass and angle of emission. Only recently has it become possible to take accurate data on the angular distribution of the neutrons. It appears that the neutrons have the angular distribution to be expected if emitted almost isotropically from the moving fragments, with a possibility that some small fraction are not emitted in this way, but directly from the fissioning nuclide. Much work has been done on the variation of fission neutron number v with incident neutron energy for neutron-induced fission. The neutron number increases roughly linearly with energy, with a slope of about 0.15 n/MeV. There is now evidence that this slope changes somewhat with energy. This change must be associated with other changes in the-fission process. The most interesting recent discovery concerning fission neutrons is the strong dependence of neutron number on individual fragment mass. The data are being rapidly improved by means of the newer techniques of determining fragment mass yields from velocity and pulse-height data, and of determining neutron yields from cumulative mass yields. There is evidence of similar dependence of neutron yield on fragment mass in a number of cases. It has been suggested that this property is directly connected with the deformability of the fragments, and in particular with the near-spherical shapes of magic

  9. Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400

    Science.gov (United States)

    Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.

  10. Fission waves can oscillate

    CERN Document Server

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  11. Discovery of Naturally Etched Fission Tracks and Alpha-Recoil Tracks in Submarine Glasses: Reevaluation of a Putative Biosignature for Earth and Mars

    Directory of Open Access Journals (Sweden)

    Jason E. French

    2016-01-01

    Full Text Available Over the last two decades, conspicuously “biogenic-looking” corrosion microtextures have been found to occur globally within volcanic glass of the in situ oceanic crust, ophiolites, and greenstone belts dating back to ~3.5 Ga. These so-called “tubular” and “granular” microtextures are widely interpreted to represent bona fide microbial trace fossils; however, possible nonbiological origins for these complex alteration microtextures have yet to be explored. Here, we reevaluate the origin of these enigmatic microtextures from a strictly nonbiological standpoint, using a case study on submarine glasses from the western North Atlantic Ocean (DSDP 418A. By combining petrographic and SEM observations of corrosion microtextures at the glass-palagonite interface, considerations of the tectonic setting, measurement of U and Th concentrations of fresh basaltic glass by ICP-MS, and theoretical modelling of the present-day distribution of radiation damage in basaltic glass caused by radioactive decay of U and Th, we reinterpret these enigmatic microtextures as the end product of the preferential corrosion/dissolution of radiation damage (alpha-recoil tracks and fission tracks in the glass by seawater, possibly combined with pressure solution etch-tunnelling. Our findings have important implications for geomicrobiology, astrobiological exploration of Mars, and understanding of the long-term breakdown of nuclear waste glass.

  12. Synthesis report on the relevant diffusion coefficients of fission products and helium in spent nuclear fuels; Rapport de synthese sur les coefficients de diffusion des produits de fission et de l'helium dans le combustible irradie

    Energy Technology Data Exchange (ETDEWEB)

    Lovera, P.; Ferry, C.; Poinssot, Ch. [CEA Saclay, Dept. de Physico-Chimie (DPC), 91 - Gif sur Yvette (France); Johnson, L. [Nagra, Baden (Switzerland)

    2003-07-01

    This document corresponds to the deliverable D2 of the Work Package 1 of the 'Spent Fuel Stability under repository conditions' (SFS) European project. It constitutes a synthesis report on relevant diffusion coefficients of fission products and helium in spent nuclear fuels at high and low temperatures. Coefficients corresponding to thermally activated diffusion were reviewed from literature data for O, U (self-diffusion coefficients), fission gases and other fission products. Data showed that thermal diffusion was irrelevant at temperatures expected in repository conditions. The occurrence of diffusion enhanced by alpha self-irradiation was studied through different theoretical approaches. A 'best estimate' value of the alpha self-irradiation diffusion coefficient, D (m{sup 2}.s{sup -1}), is proposed. It is extrapolated from enhanced diffusion under irradiation observed in reactor and would be proportional to the volume alpha activity in the spent nuclear fuel, A{sub v} (Bq.m{sup -3}) as: D/A{sub v} {approx_equal} 2.10{sup -41} (m{sup 5})The migration of stable Pb in Oklo's uraninites was studied in order to validate the proposed diffusion coefficient. The obtained value is one order of magnitude higher than the theoretical proposed value. As for He behaviour in spent nuclear fuel, a few data are today available in open literature. The document will be completed as soon as new experimental results are available. (authors)

  13. Current position on fission product behavior

    International Nuclear Information System (INIS)

    The following phenomena are treated and modeled: fission product release from fuel, both in-vessel and ex-vessel; fission product deposition in the primary system, fission product deposition in the containment, and fission product revolatization

  14. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  15. Fission modelling with FIFRELIN

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)

    2015-12-15

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for

  16. Fission modelling with FIFRELIN

    Science.gov (United States)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  17. Dissolution studies of natural analogues spent fuel and U(VI)-Silicon phases of and oxidative alteration process; Estudios de disolucion de analogos naturales de combustible nuclear irradiado y de fases de U(VI)-Silicio representativas de un proceso de alteracion oxidativa

    Energy Technology Data Exchange (ETDEWEB)

    Perez Morales, I.

    2000-07-01

    In order to understand the long-term behavior of the nuclear spent fuel in geological repository conditions, we have performed dissolution studies with natural analogues to UO{sub 2} as well as with solid phases representatives of the oxidative alteration pathway of uranium dioxide, as observed in both natural environment and laboratory studies. In all cases, we have studied the influence of the bicarbonate concentration in the dissolution process, as a first approximation to the groundwater composition of a granitic environment, where carbonate is one of the most important complexing agents. As a natural analogue to the nuclear spent fuel some uraninite samples from the Oklo are deposit in Gabon, where chain fission reactions took place 2000 millions years ago, as well as a pitchblende sample from the mine Fe ore deposit, in Salamanca (spain) have been studied. The studies have been performed at 25 and 60 degree centigree and 60 degree centigree, and they have focussed on the determination of both the thermodynamic and the kinetic properties of the different samples studied, using batch and continuous experimental methodologies, respectively. (Author)

  18. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  19. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  20. Fission product data library

    International Nuclear Information System (INIS)

    A library is described of data for 584 isotopes of fission products, including decay constants, branching ratios (both burn-up and decay), the type of emitted radiation, relative and absolute yields, capture cross sections for thermal neutrons, and resonance integrals. When a detailed decay scheme is not known, the mean energies of beta particles and neutrino and gamma radiations are given. In the ZVJE SKODA system the library is named BIBFP and is stored on film No 49 of the NE 803 B computer. It is used in calculating the inventory of fission products in fuel elements (and also determining absorption cross sections for burn-up calculations, gamma ray sources, heat generation) and in solving radioactivity transport problems in the primary circuit. It may also be used in the spectrometric method for burn-up determination of fuel elements. The library comprises the latest literary data available. It serves as the basis for library BIBGRFP storing group constants of fission products with independent yields of isotopes from fission. This, in turn, forms the basis for the BIBDN library collecting data on the precursors of delayed neutron emitters. (author)

  1. Monte Carlo simulation based toy model for fission process

    Science.gov (United States)

    Kurniadi, Rizal; Waris, Abdul; Viridi, Sparisoma

    2016-09-01

    Nuclear fission has been modeled notoriously using two approaches method, macroscopic and microscopic. This work will propose another approach, where the nucleus is treated as a toy model. The aim is to see the usefulness of particle distribution in fission yield calculation. Inasmuch nucleus is a toy, then the Fission Toy Model (FTM) does not represent real process in nature completely. The fission event in FTM is represented by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. By adopting the nucleon density approximation, the Gaussian distribution is chosen as particle distribution. This distribution function generates random number that randomizes distance between particles and a central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. The yield is determined from portion of nuclei distribution which is proportional with portion of mass numbers. By using modified FTM, characteristic of particle distribution in each fission event could be formed before fission process. These characteristics could be used to make prediction about real nucleons interaction in fission process. The results of FTM calculation give information that the γ value seems as energy.

  2. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Santanu Pal

    2015-08-01

    It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.

  3. Fission fragment angular distributions

    International Nuclear Information System (INIS)

    Recently a Letter appeared (Phys. Rev. Lett., 522, 414(1984)) claiming that the usual expression for describing the angula distribution of fission fragments from compound nuclear decay is not a necessarily valid limit of a more general expression. In this comment we wish to point out that the two expressions arise from distinctly different models, and that the new expression as used in the cited reference is internally inconsistent

  4. Propagation of a constant velocity fission wave

    Science.gov (United States)

    Deinert, Mark

    2011-10-01

    The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.

  5. Low-energy ternary fission

    International Nuclear Information System (INIS)

    With the detector system DIOGENES thermal neutron induced and spontaneous α particle associated fission and spontaneous nuclear tripartition into three fragments of similar masses has been investigated. DIOGENES is a concentric arrangement of toroidal angular position sensitive ionization chambers and proportional counters to measure the kinetic energies and relative angular distributions of the three reaction products of ternary fission. For α-particle accompanied fission some of the many possible α particle fission-fragment parameter correlations will be discussed. For nearly symmetric low-energy nuclear tripartition new upper limits are presented. Former experimental results which pretended evidence for so called true ternary fission could be explained by charged-particle associated fission with a light particle in the mass range of 13 < A < 23

  6. Fission in Rapidly Rotating Nuclei

    Directory of Open Access Journals (Sweden)

    A. K. Rhine Kumar

    2014-02-01

    Full Text Available We study the effect of rotation in fission of the atomic nucleus 256Fm using an independent-particle shell model with the mean field represented by a deformed Woods-Saxon potential and the shapes defined through the Cassinian oval parametrization. The variations of barrier height with increasing angular momentum, appearance of double hump in fission path are analysed. Our calculations explain the appearance of double hump in fission path of 256Fm nucleus. The second minimum vanishes with increase in angular momentum which hints that the fission barrier disappears at large spin.

  7. Hidden systematics of fission channels

    Directory of Open Access Journals (Sweden)

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy

  8. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  9. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  10. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    D N Poenaru; R A Gherghescu

    2015-09-01

    Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.

  11. Study on Natural Deposition of Fission Product Aerosol in Severe Accidents%严重事故下裂变产物气溶胶自然沉积现象研究

    Institute of Scientific and Technical Information of China (English)

    黄高峰; 曹学武; 佟立丽

    2012-01-01

    以600 MW压水堆核电厂为研究对象,在一体化安全分析模型的基础上建立重力沉降、扩散电泳、惯性碰撞和热电泳4种裂变产物气溶胶的自然沉积模型,选取典型的严重事故序列,分析严重事故下裂变产物气溶胶的自然沉积现象.将MELCOR程序的重力沉降模型植入本文的一体化分析模型,对重力沉降份额进行比较.研究表明,重力沉降对气溶胶沉积的贡献最大;本文采用的重力沉降模型比MELCOR程序重力沉降模型的沉降效应稍强.%Aerosol natural deposition model of gravitational sedimentation, diffusionphoresis, inertial impaction and thermophoresis are established based on integrated safety analysis model for 600 MW pressurized water reactor. Typical severe accidents are chosen, and natural deposition phenomenon of fission product aerosol is analyzed. Additionally, gravitational sedimentation model of MELOCR is coupled into integrated safety analysis model, and fraction of gravitational sedimentation is compared. The results show that gravitational sedimentation is the most important deposition mechanism, and deposition effect of gravitational sedimentation model in this paper is stronger than MELCOR.

  12. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc

  13. The partial fission of fast spinning asteroids

    Science.gov (United States)

    Tardivel, Simon; Sanchez, Paul; Scheeres, Daniel J.

    2016-10-01

    The spin rates of asteroids systematically change over time due the Yarkovsky–O'Keefe–Radzievskii–Paddack (YORP) effect. Above a certain spin rate that depends on the body's density, regions of an asteroid can enter in tension, with components held to the body by cohesive forces. When the body fails, deformation or fission can occur. Catastrophic fission leading to complete disruption has been directly observed in active asteroid P/2013 R3. Partial fission, the loss of only part of the body, has been proposed as a mechanism for the formation of binaries and is explored here.The equatorial cavities of (341843) 2008 EV5 and of (185851) 2000 DP107 (a binary system) are consistent with a localized partial fission of the body (LPSC 2016 #1036). The examination of the gravity field of these bodies reveals that a mass placed within these cavities could be shed. In this mechanism, the outward pull of inertial forces creates an average stress at the cavity interface of ≈1 Pa for 2008 EV5 and ≈3 Pa for 2000 DP107 at spin periods of ≈3.15 h for the assumed densities of 1.3 g/cm3.This work continues the study of this partial, localized fission. Specifically, it addresses the issue of the low cohesion necessary to the mechanism. These cohesion values are typically lower than global strength values inferred on other asteroids (10 - 200 Pa), meaning that partial fission may occur prior to larger-scale deformations. Yet, several processes can explain the discrepancy, as they can naturally segregate particles by size. For instance, landslides or granular convection (Brazil nut effect) could bring larger boulders to the equator of the body, while finer particles are left at higher latitudes or sink to the center. Conversely, failure of the interior could bring boulders to the surface. The peculiar profile shape of these asteroids, shared by many binaries (e.g. 1999 KW4, 1996 FG3) may also be a clue of this heterogeneity, as this "spin top" shape is obtained in

  14. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  15. The SPIDER fission fragment spectrometer for fission product yield measurements

    Energy Technology Data Exchange (ETDEWEB)

    Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-11

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.

  16. Energy from nuclear fission(*

    Directory of Open Access Journals (Sweden)

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  17. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  18. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    L Satpathy; S K Patra; R K Choudhury

    2008-01-01

    The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with = 154-172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving -process nucleosynthesis.

  19. Observation of cold fission in 242Pu spontaneous fission

    International Nuclear Information System (INIS)

    Coincidence γ-ray data from the spontaneous fission of 242Pu were collected at the Lawrence Berkeley Laboratory high purity Ge (HPGe) array, GAMMASPHERE. Data from several cold-fission (0 neutron emission) isotopic pairs were observed and are presented. An interesting trend in the fractional population of cold-fission events was observed and is discussed. Relative yields of Zr-Xe, Sr-Ba, and Mo-Te pairs were measured. The Zr-Xe system has the most complete data set. Some speculations on the trend in the number of neutrons emitted as a function of the mass of the Xe isotope populated are presented. Comparisons between the yields from the spontaneous fission of 242Pu and the yields from thermal-neutron-induced fission of 241Pu are also presented. copyright 1996 The American Physical Society

  20. Determination for β-delayed fission probability of 230Ac

    Institute of Scientific and Technical Information of China (English)

    袁双贵; 杨维凡; 徐岩冰; 肖永厚; 罗亦孝

    2002-01-01

    The 230Ra has been produced via 232Th-2p reaction induced by 60 MeV/u 18O ion irradia-tion of natural thorium. The radium was radiochemically separated from the mixture of thorium andreaction products. Thin Ra sources in which 230Ac was got through 230Ra β- → 230Ac were pre-pared for observing fission fragments from β-delayed fission of 230Ac. The sources were exposedto the mica fission track detectors and measured by the HPGe γ detector. The precursor 230Ac wasidentified by means of observed two fission events as well as γ spectra, and the β-delayed fissionprobability of 230Ac was obtained to be (1.19±0.85) × 10-8.

  1. Fission throughout the periodic table

    International Nuclear Information System (INIS)

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  2. Fission throughout the periodic table

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs.

  3. Disintegration constant of uranium-238 by spontaneous fission redetermined by glass track method

    International Nuclear Information System (INIS)

    The disintegration constant of U238 by spontaneous fission using glass as fission fragment detector was redetermined. A film of natural uranium (UO3) prepared by chemical methods on the glass lamina was used in a long time experience of exposure (about 16 years). The good conditions of sample preparation and storage allow to observe, after chemical etching, fission fragment tracks. (M.C.K.)

  4. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  5. Fission modes in charged-particle induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Matthies, A.; Kotte, R.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1990-12-01

    The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding {sup 232}Th and {sup 238}U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy. (orig.).

  6. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  7. Monte Carlo Based Toy Model for Fission Process

    CERN Document Server

    Kurniadi, R; Viridi, S

    2014-01-01

    Fission yield has been calculated notoriously by two calculations approach, macroscopic approach and microscopic approach. This work will proposes another calculation approach which the nucleus is treated as a toy model. The toy model of fission yield is a preliminary method that use random number as a backbone of the calculation. Because of nucleus as a toy model hence the fission process does not represent real fission process in nature completely. Fission event is modeled by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. The toy model is formed by Gaussian distribution of random number that randomizes distance like between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean ({\\mu}CN, {\\mu}L, {\\mu}R), and standard d...

  8. Fission track studies of tektites

    International Nuclear Information System (INIS)

    The fission track analysis method was used for the age determination of tektites. The tektite samples were obtained from Hainan Island and Leizhou Peninsula. The method consists in cutting and polishing two sections of a sample, irradiating one of these with a known thermal neutron flux (5.90 x 1015/cm2), etching each section identically with hydrofluoric acid, and then comparing the fission track densities in two cases with a microscope. Their fission track age is found to be around 0.7 Ma

  9. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  10. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author)

  11. Background radiation from fission pulses

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Arthur, E.D.; Brady, M.C.; LaBauve, R.J.

    1988-05-01

    Extensive source terms for beta, gamma, and neutrons following fission pulses are presented in various tabular and graphical forms. Neutron results from a wide range of fissioning nuclides (42) are examined and detailed information is provided for four fuels: /sup 235/U, /sup 238/U, /sup 232/Th, and /sup 239/Pu; these bracket the range of the delayed spectra. Results at several cooling (decay) times are presented. For ..beta../sup -/ and ..gamma.. spectra, only /sup 235/U and /sup 239/Pu results are given; fission-product data are currently inadequate for other fuels. The data base consists of all known measured data for individual fission products extensively supplemented with nuclear model results. The process is evolutionary, and therefore, the current base is summarized in sufficient detail for users to judge its quality. Comparisons with recent delayed neutron experiments and total ..beta../sup -/ and ..gamma.. decay energies are included. 27 refs., 47 figs., 9 tabs.

  12. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  13. Velocity fluctuations of fission fragment.

    OpenAIRE

    Llanes Estrada, Felipe José; Martínez Carmona, Belén; Muñoz Martínez, José L.

    2016-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fr...

  14. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238U and 232Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides (232Th, 235U, 238U, 234U, 237Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np. This sphere was

  15. Relative quantifying technique to measure mass of fission plate in a fission chamber

    International Nuclear Information System (INIS)

    Under the same neutron radiation conditions, fission counts are proportional to the number of fission nuclei. Based on this concept, a relative quantifying method has been developed to measure the mass of fission plate in fission chamber on a 14 MeV accelerator neutron source at the Neutron Physics Laboratory, INPC, CAEP. The experimental assembly was introduced and mass of the fission material in several fission chambers was measured. The results by this method agree well (within 1%) with the α-quantifying method. Therefore, it is absolutely feasible to quantify the fission plate mass in fission chambers. The measurement uncertainty is 2%-4%. (authors)

  16. Temperature transients of a fusion-fission ITER pebble bed reactor in loss of coolant accident

    International Nuclear Information System (INIS)

    In this preliminary scoping study, post-accident temperature transients of several fusion-fission designs utilizing ITER-FEAT-like parameters and fission pebble bed fuel technology are examined using a 1-D cylindrical MATLAB heat transfer code along with conventional fission decay heat approximations. Scenarios studied include systems with no additional passive safety features to systems with melting reflectors designed to increase emissivity after reaching a specified temperature. Results show that for a total fission power of ∼1400-2800 MW, two of the realistic variants investigated are passively safe. The crucial time, defined as the time when either any structural part of the fusion-fission tokamak reaches melting point, or when the pebble fuel reaches 1873 K, ranges from 5.7 to 76 h for the unsafe configurations. Additionally, it is illustrated that, fundamentally, the LOCA characteristics of pure fission pebble beds and fusion-fission pebble beds are different. Namely, the former depends on the pebble fuel's large thermal capacity, along with external radiation and natural convective cooling, while the latter depends significantly more on the tokamak's sizeable total internal heat capacity. This difference originates from the fusion-fission reactor's conflicting goal of having to minimize heat transfer to the magnets during normal operation. These results are discussed in the context of overall fusion-fission reactor design and safety

  17. Sequential Detection of Fission Processes for Harbor Defense

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V; Walston, S E; Chambers, D H

    2015-02-12

    With the large increase in terrorist activities throughout the world, the timely and accurate detection of special nuclear material (SNM) has become an extremely high priority for many countries concerned with national security. The detection of radionuclide contraband based on their γ-ray emissions has been attacked vigorously with some interesting and feasible results; however, the fission process of SNM has not received as much attention due to its inherent complexity and required predictive nature. In this paper, on-line, sequential Bayesian detection and estimation (parameter) techniques to rapidly and reliably detect unknown fissioning sources with high statistical confidence are developed.

  18. Assessment of fissionable material behaviour in fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cabellos, O., E-mail: oscar.cabellos@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Fernandez, P. [Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain)

    2010-06-21

    A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.

  19. Compact fission counter for DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed

  20. Compact fission counter for DANCE

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF2 crystals with equal solid-angle coverage. DANCE is a 4π γ-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed γ-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture γ rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to α particles, which is important for experiments with α-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from α's. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable

  1. The latest progress of fission track analysis

    International Nuclear Information System (INIS)

    Fission track analysis as a new nuclear track technique is based on fission track annealing in mineral and is used for oil and gas exploration successfully. The west part of China is the main exploration for oil and gas. The oil and gas basins there experienced much more complicated thermal history and higher paleotemperature. In order to apply fission track analysis to these basins, following work was be carried out: 1. The decomposition of grain age distribution of zircon fission tracks. 2. Study on thermal history of Ordos basin using zircon fission track analysis. 3. The fission track study on the Qiang Tang basin in tibet

  2. Neutron emission prior to fission

    International Nuclear Information System (INIS)

    In recent years, many groups have measured neutrons and light charged particles in coincidence with fission fragments in heavy ion reactions. In most cases, particles emitted with an energy spectrum and angular distribution characteristic of that of compound nucleus evaporation have been measured in excess of statistical model predictions. They have chosen to investigate this effect in detail by studying neutron emission in the 158Er composite system. The advantage of this system is that it can be produced by a variety of projectile target combinations. They have chosen four combinations which form 158Er with similar critical angular momenta but varying excitation energy. The rationale is to form the same system with different neutron emission times; if the enhanced neutrons are being emitted during the fission process, the different emission time scales might possibly be used to time the fission process. In addition, they impose an additional constraint - that they have a significant fission barrier for most of the partial waves involved in the fission process. The reactions they have selected are 16O + 142Nd (207 MeV beam energy), 24Mg + 134Ba (180 MeV), 32S + 126Te (180 MeV), 50Ti + 108Pd (216 MeV)

  3. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  4. Developments for neutron-induced fission at IGISOL-4

    Science.gov (United States)

    Gorelov, D.; Penttilä, H.; Al-Adili, A.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V. S.; Koponen, J.; Lantz, M.; Mattera, A.; Moore, I. D.; Pohjalainen, I.; Pomp, S.; Rakopoulos, V.; Reinikainen, J.; Rinta-Antila, S.; Simutkin, V.; Solders, A.; Voss, A.; Äystö, J.

    2016-06-01

    At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at different angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with preliminary results from the first neutron-induced fission experiment at IGISOL-4 are presented in this report.

  5. A precursor of β-delayed fission:230Ac

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The 230Ra has been produced via multinucleon transfer and dissipativefragmentation of heavy target in the 60 MeV/u 18O ion reaction with natural thorium.The radium was radiochemically separated from irradiated thorium targets. 230Acwas obtained by 230Ra β-→ 230Ac. Thin Ra sources were prepared for observing fissionfragments from β-delayed fission of 230Ac. The sources were exposed to the micafission track detectors and measured by a HPGe γ detector. The two fission eventswere obtained and could been assigned to theβ-delayed fission of 230Ac. The β-delayedfission probability of 230Ac was determined to be (1.19+0.85) × 10-8.

  6. Prompt Emission in Fission Induced with Fast Neutrons

    Science.gov (United States)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  7. Separation of fission molybdenum for the production of technetium generators

    International Nuclear Information System (INIS)

    There are two basically different methods for Mo-99 production: Activation of Mo-98 contained at about 24% in natural isotopic mixtures. Mo-98 enriched targets are irradiated in high-flux reactors in order to achieve the highest possible specific acitivity of the product. Isolation of fission molybdenum from irradiated nuclear fuel targets which have undergone short-term cooling. Maximum fission yields can be attained by irradiation of uranium-235 with the highest possible enrichment. On account of its approximately 1000 times higher specific activity, fission molybdenum has almost replaced worldwide the product fabricated by activation. However, fission molybdenum-99 production has as its prerequisite a suitably advanced technology by which the production process taking place under high activity conditions can be controlled. An integral part of the process consists in the retention of the fission gases the recycling of non-consumed nuclear fuel, and the treatment of the waste streams arising. Ths publication will deal with the individual steps in the process. (orig.)

  8. Status of fission yield data

    International Nuclear Information System (INIS)

    In this paper we summarize the current status of the recent US evaluation for 34 fissioning nuclides at one or more neutron incident energies and for spontaneous fission. Currently there are 50 yields sets, and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized the recommended data will become part of Version VI of the US ENDF/B. Other major evaluations in progress that are included in a recently formed IAEA Coordinated Research Program are also summarized. In a second part we review two empirical models in use to estimate independent yields. Comparison of model estimates with measured data is presented, including a comparison with some recent data obtained from Lohengrin (Cf-249 T). 18 refs., 13 figs., 3 tabs

  9. Report of fission study meeting

    International Nuclear Information System (INIS)

    This book is the report of fission Study Meeting held from September 19 to 21, 1985 in the Research Center for Nuclear Physics, Osaka University. The objective of this study meeting was to stimulate the research on nuclear physics in Japan, which began to show new development accompanying the advance of the research on heavy ion nuclear reaction, and to make this a new starting point. More than 50 participants from physical, chemical and engineering fields, who have interest in the theory and experiment related to nuclear fission, gathered, and the meeting was a success beyond expectation. The contents covered a wide range including nuclear smashing reaction as well as nuclear fission in a narrow sense. In this book, the gists of 28 papers are collected. (Kako, I.)

  10. How good are the laws of physics

    International Nuclear Information System (INIS)

    The nature of the stringent constraints on the temporal variation of the basic interactions of physics which has been demonstrated in studies of the relative abundances of naturally occurring and fission fragment produced isotopes at the natural reactor site at Oklo, are considered. (U.K.)

  11. Sampling ENDL Watt Fission Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D E

    2004-04-01

    All of the fission spectra in the Evaluated Nuclear Data Library, ENDL [1], are defined by a simple analytical function: a Watt spectrum [2], W(a,b,E') = C*Exp[-a*E']*Sinh[(b*E'){sup 1/2}]. Where the normalization, C, is given by, C = [{pi}b/4a]{sup 1/2} Exp[b/4a]/a. The coefficients a and b vary from one isotope to another and also vary weakly with the incident neutron energy. Here E' is the secondary energy, i.e., the energy at which the fission neutrons are emitted. In ENDL energy units of MeV for incident neutron energies between 0 and 20 MeV, in all cases b is very close to 1.0, and a varies over a rather small range near 1.0. Currently there are 38 fissionable isotopes in ENDL. For each of these isotopes I have parameterized a as a simple function of the incident neutron energy, and I treat b as always equal to unity. The values of these parameters are available to TART users as part of the TART CD package [3]. This parameterization coupled with the general Watt sampling method described below results in a very fast and accurate method of sampling all of the fission spectra in ENDL. In all cases I select the fissioning isotope, define a based on isotope and incident neutron energy, and then use the below described method to sample the energy E' of a neutron emitted due to fission.

  12. Early results utilizing high-energy fission product gamma rays to detect fissionable material in cargo

    International Nuclear Information System (INIS)

    Full text: A concept for detecting the presence of special nuclear material (235U or 239Pu) concealed in inter modal cargo containers is described. It is based on interrogation with a pulsed beam of 6-8 MeV neutrons and fission events are identified between beam pulses by their β-delayed neutron emission or β -delayed high-energy γ-radiation. The high-energy γ-ray signature is being employed for the first time. Fission product γ-rays above 3 MeV are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. High-energy γ-radiation is nearly 10X more abundant than the delayed neutrons and penetrates even thick cargo's readily. The concept employs two large (8x20 ft) arrays of liquid scintillation detectors that have high efficiency for the detection of both delayed neutrons and delayed γ-radiation. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. This information, together with predicted signature strength, has been applied to the estimation of detection probability for the nuclear material and estimation of false alarm rates. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  13. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  14. Velocity fluctuations of fission fragments

    CERN Document Server

    Llanes-Estrada, Felipe J; Martinez, Jose L Muñoz

    2015-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramer-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  15. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  16. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  17. Observation of Two Triplet-Pair Intermediates in Singlet Exciton Fission.

    Science.gov (United States)

    Pensack, Ryan D; Ostroumov, Evgeny E; Tilley, Andrew J; Mazza, Samuel; Grieco, Christopher; Thorley, Karl J; Asbury, John B; Seferos, Dwight S; Anthony, John E; Scholes, Gregory D

    2016-07-01

    Singlet fission is an excitation multiplication process in molecular systems that can circumvent energy losses and significantly boost solar cell efficiencies; however, the nature of a critical intermediate that enables singlet fission and details of its evolution into multiple product excitations remain obscure. We resolve the initial sequence of events comprising the fission of a singlet exciton in solids of pentacene derivatives using femtosecond transient absorption spectroscopy. We propose a three-step model of singlet fission that includes two triplet-pair intermediates and show how transient spectroscopy can distinguish initially interacting triplet pairs from those that are spatially separated and noninteracting. We find that the interconversion of these two triplet-pair intermediates is limited by the rate of triplet transfer. These results clearly highlight the classical kinetic model of singlet fission and expose subtle details that promise to aid in resolving problems associated with triplet extraction. PMID:27281713

  18. Ceramic Hosts for Fission Products Immobilization

    International Nuclear Information System (INIS)

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  19. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  20. Development of Fission Chamber Assembly

    Institute of Scientific and Technical Information of China (English)

    YANGJinwei; ZHANGWei; SONGXianying; LIXu

    2003-01-01

    The fission chambers which are gas counters with fissile material inside chamber,provide essential information for plasma opcharacteristics. In conjunction with the neutron flux monitor system these provide time-resolved measurements of the global neutron source strength and fusion power from thermal nuclear fusion reactor as ITER for all plasma conditions for which neutrons are produced.

  1. Production techniques of fission 99Mo

    International Nuclear Information System (INIS)

    Generally two different techniques are available for molybdenum-99 production for use in medical technetium-99 generation. The first one is based on neutron irradiation of molybdenum targets of natural isotopic composition or enriched in molybdenum-98. In these cases the Mo-99 is generated via the nuclear reaction 98Mo (n,γ) 99Mo. Although this process can be carried out at low expenditure it gives a product of low specific activity and, hence, restricted applicability. In a second process Mo-99 is obtained as a result of the neutron induced fission of U-235 according to 235U (n,f) 99Mo. This technique provides a product with a specific activity several orders of magnitude higher than that obtained from the 98Mo (n,γ) 99Mo nuclear reaction and perhaps even more important up to several thousands curies of Mo-99 per production run. In this paper a modern production procedure of Mo-99 via the fission reaction, which was developed at the Institute of Radiochemistry of the Nuclear Research Centre Karlsruhe will be described. The targeting, irradiation of U-235, the separation and purification steps involved as well as the recycling of the non-converted U-235, which should be a major consideration in any production technique, will be discussed. (author). 24 refs, 14 figs, 1 tab

  2. Nuclear waste criticality analysis. Final report, 1 July 1995--30 June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Culbreth, W.G.

    1996-07-03

    The natural reactors that occurred in Gabon, Africa over 2 billion years ago present an interesting analog to the underground repositories proposed around the world for the long-term storage of high-level spent nuclear fuel. Many articles have been written concerning the low migration rates of actinides and fission products from the Oklo reactor sites, but Oklo also presents researchers with an opportunity to discover the conditions that led to nuclear criticality in uranium oxides with low enrichments. A computer model was developed to predict the conditions that were necessary to lead to criticality in the Oklo reactors. Critical core dimensions and infinite multiplication factors are presented as a function of time, the porosity of the host rock, and the water and uranium content of the sandstone deposits at Oklo.

  3. Spontaneous fission. A many-body approach

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Bonasera, A. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    We propose new model to calculate the fission phenomena in tunnel region. By the Vlasov equation and the imaginary time method, we could calculate actinides nuclear fission. This method makes possible to describe unified the motion of fission inside and outside of potential wall. The potential energy and mass parameters can be calculated by no means of the special model. The freedom of internal motion are calculated automatically both collective and a particle motion. Accordingly, particle released during fission process can be calculated. The kinetic energy of fragment after fission was very agreeable with the calculation results. (S.Y.)

  4. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the eleventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS

  5. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  6. Fission yield studies at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Weber, C.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2012-04-15

    Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future. (orig.)

  7. Fission dynamics at low excitation energy

    CERN Document Server

    Aritomo, Y

    2013-01-01

    The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.

  8. Cluster fission from the standpoint of nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmoo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics

    1996-03-01

    Atomic nucleus belongs to a quantal finite many body system. Nucleus shows great resemblance to cluster, above all metal cluster, although the strength of interaction is different. The works of Brechignac group, Saunder, Martin and P. Froeblich are explained by the critical size Nc as the central term. The differences between cluster and nucleus are investigated and a future view of cluster fission is explained. (S.Y.)

  9. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  10. The risks of the nuclear fission fuel cycle

    International Nuclear Information System (INIS)

    An overview is given of the title subject in comparison with other electric power generating techniques. This overview is based on reports from several foreign institutes (UNSCEAR, EPRI, US-DOE, EC, and ORNL) and Dutch institutes (VROM, COVRA, URENCO, and ECN). It appears that the Dutch nuclear power plants (Dodewaard and Borssele) and other installations of the nuclear fission fuel cycle in the Netherlands show a lower individual risk than the risk values estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The risks, outlined by UNSCEAR, is mainly determined by ore exploration and processing, the reactor operation and the breeder conversion. The total global risk of the nuclear fission fuel cycle (with 200 GWej and 100% recycling) is a factor 10,000 lower than the risk, caused by natural radiation. The main cause of risks of the cycle by accidents are nuclear power plant accidents (varying in the literature from circa 95% to more than 99%). For normal operational conditions nuclear fission, natural gas, wind and thermal solar energy are more favourable than coal, oil and photovoltaic solar cells. It is expected that the use of hydro power (dam collapse and floods) and coal (mine disasters) on average per GWje will cause the largest amount of immediate victims. A separate abstract has been prepared for the appendices in which descriptions are given of all the processes of the nuclear fission fuel cycle: mining and extraction, refining and conversion, enrichment, fission fuel elements fabrication, reactor operation, reprocessing, aboveground storage facilities, ultimate storage, and transport. 4 figs., 14 refs., 2 appendices, 17 refs

  11. The fundamental role of fission during r-process nucleosynthesis in neutron star mergers

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2015-02-01

    The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Despite important efforts, the astrophysical site of the r-process remains unidentified. Here we study r-process nucleosynthesis in a material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars. r-process nucleosynthesis during the decompression is known to be largely insensitive to the detailed astrophysical conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Due to the important role played by fission in such a scenario, the impact of fission is carefully analyzed. We consider different state-of-the-art global models for the determination of the fission paths, nuclear level densities at the fission saddle points and fission fragment distributions. Based on such models, the sensitivity of the calculated r-process abundance distribution is studied. The fission path is found to strongly affect the region of heavy nuclei responsible for the fission recycling, while the fission fragment distribution of nuclei along the A ≅ 278 isobars defines the abundance pattern of nuclei produced in the 110 fission neutrons is also shown to affect the abundance distribution, and in particular the shape of the third r-process peak around A ≅ 195. (orig.)

  12. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D;

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  13. Fission Data and Nuclear Technology

    International Nuclear Information System (INIS)

    Accurate nuclear data for fissile nuclei are required not only by reactor designers, but also by reactor physicists for the interpretation of integral experiments, e.g. studies of the change of reactivity with irradiation. Some of the requests that have been made for such fission data, and the reasons behind them, are discussed, along with the progress that has been made towards their fulfilment. An attempt is made to outline those areas where better data are required. (author)

  14. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  15. Fission fusion hybrids- recent progress

    Science.gov (United States)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  16. Status of fission yield evaluations

    International Nuclear Information System (INIS)

    Very few yield compilations are also evaluations, and very few contain an extensive global library of measured data and extensive models for unmeasured data. The earlier U.K. evaluations and US evaluations were comparable up to the retirements of the primary evaluators. Only the effort in the US has been continued and expanded. The previous U.K. evaluations have been published. In this paper we summarize the current status of the US evaluation, philosophy, and various integral yield tests for 34 fissioning nuclides at one or more neutron incident energies and/or for spontaneous fission. Currently there are 50 yield sets and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized, the recommended data will become part of the next version of the US Evaluated Nuclear Data File (ENDF/B-VI). The complete set of data, including the basic input of measured yields, will be issued as a sequel to the General Electric evaluation reports (better known by the authors' names: Rider - or earlier - Meek and Rider). 16 references

  17. Nature

    OpenAIRE

    Ferretti, Federico; Schmidt Di Friedberg, Marcella

    2012-01-01

    International audience From the ancient times to the present debates on nature and environment, the idea of Nature has been one of the main concepts which interested Geographers. This paper deals with the representations of this idea in the works of thinkers who played a major role in shaping modern Geography, with a special focus on the Mediterranean world. It aims to clarify how Nature was important in defining heuristic strategies of the geographical sciences and their explications of r...

  18. Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres

    OpenAIRE

    Gadaleta, Mariana C.; Das, Mukund M.; Hideki Tanizawa; Ya-Ting Chang; Ken-ichi Noma; Nakamura, Toru M.; Eishi Noguchi

    2016-01-01

    Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus...

  19. Radiochemical studies on nuclear fission at Trombay

    Indian Academy of Sciences (India)

    Asok Goswami

    2015-08-01

    Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.

  20. Collective spectra along the fission barrier

    Directory of Open Access Journals (Sweden)

    Pigni M. T.

    2012-12-01

    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  1. International conference on fifty years research in nuclear fission

    International Nuclear Information System (INIS)

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  2. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  3. Fission-product retention in HTGR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  4. Rapid Separation of Fission Product 141La

    Institute of Scientific and Technical Information of China (English)

    XIA; Wen; YE; Hong-sheng; LIN; Min; CHEN; Ke-sheng; XU; Li-jun; ZHANG; Wei-dong; CHEN; Yi-zhen

    2013-01-01

    141La was separated and purified from fission products in this work for physical measurements aimed at improving the accuracy of its decay parameters.As the impact of 142La and other fission products,cesium(141Cs,142Cs included)was rapid separated from the fission products,141Cs and 142Ba separation was prepared after a cooling time about 25 s when 142Cs decays to daughter 142Ba,141La purification then

  5. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  6. Fission product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  7. Mechanisms of Mitochondrial Fission and Fusion

    OpenAIRE

    van der Bliek, Alexander M.; Shen, Qinfang; Kawajiri, Sumihiro

    2013-01-01

    Mitochondria continually change shape through the combined actions of fission, fusion, and movement along cytoskeletal tracks. The lengths of mitochondria and the degree to which they form closed networks are determined by the balance between fission and fusion rates. These rates are influenced by metabolic and pathogenic conditions inside mitochondria and by their cellular environment. Fission and fusion are important for growth, for mitochondrial redistribution, and for maintenance of a hea...

  8. Fission barriers and half-lives

    International Nuclear Information System (INIS)

    The authors briefly review the development of theoretical models for the calculation of fission barriers and half-lives. They focus on how results of actual calculations in a unified macroscopic-microscopic approach provide an interpretation of the mechanisms behind some of the large number of phenomena observed in fission. As instructive examples they choose studies of the rapidly varying fission properties of elements at the end of the periodic system

  9. Temporal evolution of the diffusion process and variability of a natural reactor

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Bruna Cristina; Aquino, Verisssimo Manuel de; Iwamoto, Hiromi [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text: The Earth's magnetic field is one of the evidences of an energy source in the inner core of the Earth. Conventional energy sources such as transformation of potential energy into heat, latent heat of crystallization, remaining heat of the early Earth's formation, or based on the decay of heavy nuclei have the disadvantage of operating for a relatively short period of time and present a slow variability in only one direction in the time. The magnetic field, however, presents variability in its intensity, reversing its direction irregularly at certain time intervals. Nowadays, the most interesting proposal for explication of the Earth's dynamo is based in a nuclear fission reactor at the inner core. As initially proposed by Kuroda, the possibility of the existence of naturals reactors in remote times, when the percentage of U{sup 235} in natural uranium was higher, it acquired credibility with the discovery of one these reactors in 1972 at Oklo in the Gabon Republic. Herndon, in 1979, then suggests the existence in the Earth's core of a regenerator reactor (i.e. a reactor burning and producing U{sup 235}) as an energy source for the terrestrial dynamo. If this reactor operates with a variable power, then the flux of antineutrinos it produces is also variable and, in principle, it could be measured on Earth's surface, and this could serve to corroborate this hypothesis. In this work, from a simple model of neutron diffusion, we analyzed some arguments which lead us to expect a variable power for the reactor. The neutrons density, which is created through introduction of a sudden source at the system, is obtained by solving the diffusion equation time-dependent in one-dimension. Next, we analyzed the criticality conditions of the system. The cumulative effect of several sudden sources independent of each other is calculated. After, the cases in which the system changes of the critical condition for the subcritical condition are

  10. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    Science.gov (United States)

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  11. Fission properties for r-process nuclei

    OpenAIRE

    Erler, J.; Langanke, K; Loens, H. P.; Martínez-Pinedo, G.; Reinhard, P.-G.

    2011-01-01

    We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. Th...

  12. Effect of nuclear viscosity on fission process

    Energy Technology Data Exchange (ETDEWEB)

    Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa

    1989-02-01

    According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.

  13. Some aspects of fission and quasifission processes

    Indian Academy of Sciences (India)

    B B Back

    2015-08-01

    The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were described in a ground-breaking paper by Bohr and Wheeler only six months after the discovery, the fission process is very complex and it has been a challenge for both experimentalists and theorists to achieve a complete and satisfactory understanding of this phenomenon. Many aspects of nuclear physics are involved in fission and it continues to be a subject of intense study even three quarters of a century after its discovery. In this talk, I will review an incomplete subset of the major milestones in fission research, and briefly discuss some of the topics that I have been involved in during my career. These include studies of vibrational resonances and fission isomers that are caused by the second minimum in the fission barrier in actinide nuclei, studies of heavy-ion-induced fission in terms of the angular distributions and the mass–angle correlations of fission fragments. Some of these studies provided evidence for the importance of the quasifission process and the attendant suppression of the complete fusion process. Finally, some of the circumstances around the establishment of large-scale nuclear research in India will be discussed.

  14. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  15. Fission investigations and evaluation activities at IRMM

    International Nuclear Information System (INIS)

    The IRMM has a longstanding tradition in the field of neutron induced fission physics studies. It is especially well equipped with world-class facilities as the high resolution neutron time-of-flight spectrometer GELINA and the 7 MV Van de Graaff accelerator for the quasi-monoenergetic neutron production. During the past decade several neutron induced fission reactions have been studied in the energy range from eV up to 6 MeV and spontaneous fission. The isotopes under investigation were 235,238 U(n,f), 239 Pu(n,f), 237 Np(n,f), 252 Cf(SF) and 233 Pa(n,f). For all isotopes but 233 Pa, the fission fragment mass-yield and total kinetic energy distributions were measured. 233 Pa was only investigated for the fission cross-section. The results have been described within the multi-modal fission model. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) as well as the the symmetric superlong mode were used for all the isotopes but 252 Cf. For this isotope at least one other fission mode had to be taken into account, the so--called standard III (S3) mode. Since the theoretical interpretation of experimental results was rather successful also an attempt was made to improve the evaluation of the respective fission cross-section as well as their neutron multiplicities and spectra. Here, the statistical model for fission cross-section evaluation was extended by including the multi-modality concept for fission. Based on the underlying model, separate outer fission barriers have been considered for each mode, while the inner barriers and isomeric wells are assumed to be the same. The self-consistent calculations of the fission cross-section as well as total, capture, elastic and inelastic cross-sections were in good agreement with the experimental data and evaluated nuclear data libraries. As a side product, also fission fragment mass yield distributions have been deduced at incident neutron energies hitherto unaccessible. Very

  16. Terracentric Nuclear Fission Reactor: Background, Basis, Feasibility, Structure, Evidence, and Geophysical Implications

    CERN Document Server

    Herndon, J Marvin

    2013-01-01

    The background, basis, feasibility, structure, evidence, and geophysical implications of a naturally occurring Terracentric nuclear fission georeactor are reviewed. For a nuclear fission reactor to exist at the center of the Earth, all of the following conditions must be met: (1) There must originally have been a substantial quantity of uranium within Earth's core; (2) There must be a natural mechanism for concentrating the uranium; (3) The isotopic composition of the uranium at the onset of fission must be appropriate to sustain a nuclear fission chain reaction; (4) The reactor must be able to breed a sufficient quantity of fissile nuclides to permit operation over the lifetime of Earth to the present; (5) There must be a natural mechanism for the removal of fission products; (6) There must be a natural mechanism for removing heat from the reactor; (7) There must be a natural mechanism to regulate reactor power level, and; (8) The location of the reactor or must be such as to provide containment and prevent ...

  17. Diversity and distribution of subterranean bacteria in groundwater at Oklo in Gabon, Africa, as determined by 16S rRNA gene sequencing.

    Science.gov (United States)

    Pedersen, K; Arlinger, J; Hallbeck, L; Pettersson, C

    1996-06-01

    This paper describes how ground water was sampled, DNA extracted, amplified and cloned and how information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of subterranean bacteria in groundwater at the Bangombé site in the Oklo region. The results showed that this site was inhabited by a diversified population of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes; a result that probably reflects documented differences in the geochemical environment. Two of the sequences obtained were identified at genus level to represent Acinetobacter and Zoogloea, but most of the 44 sequences found were only distantly related to species in the DNA database. The deepest borehole, BAX01 (105 m), had the highest number of bacteria and also total organic carbon (TOC). This borehole harboured only Proteobacteria beta group sequences while sequences related to Proteobacteria beta, gamma and delta groups and Gram-positive bacteria were found in the other four boreholes. Two of the boreholes, BAX02 (34 m) and BAX04 (10 m) had many 16S rRNA gene sequences in common and also had similar counts of bacteria, content of TOC, pH and equal conductivity, suggesting a hydraulic connection between them.

  18. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  19. Analysis of fission-product effects in a Fast Mixed-Spectrum Reactor concept

    International Nuclear Information System (INIS)

    The Fast Mixed-Spectrum Reactor (FMSR) concept has been proposed by BNL as a means of alleviating certain nonproliferation concerns relating to civilian nuclear power. This breeder reactor concept has been tailored to operate on natural uranium feed (after initial startup), thus eliminating the need for fuel reprocessing. The fissile material required for criticality is produced, in situ, from the fertile feed material. This process requires that large burnup and fluence levels be achievable, which, in turn, necessarily implies that large fission-product inventories will exist in the reactor. It was the purpose of this study to investigate the effects of large fission-product inventories and to analyze the effect of burnup on fission-product nuclide distributions and effective cross sections. In addition, BNL requested that a representative 50-group fission-product library be generated for use in FMSR design calculations

  20. Future Scenarios for Fission Based Reactors

    Science.gov (United States)

    David, S.

    2005-04-01

    The coming century will see the exhaustion of standard fossil fuels, coal, gas and oil, which today represent 75% of the world energy production. Moreover, their use will have caused large-scale emission of greenhouse gases (GEG), and induced global climate change. This problem is exacerbated by a growing world energy demand. In this context, nuclear power is the only GEG-free energy source available today capable of responding significantly to this demand. Some scenarios consider a nuclear energy production of around 5 Gtoe in 2050, wich would represent a 20% share of the world energy supply. Present reactors generate energy from the fission of U-235 and require around 200 tons of natural Uranium to produce 1GWe.y of energy, equivalent to the fission of one ton of fissile material. In a scenario of a significant increase in nuclear energy generation, these standard reactors will consume the whole of the world's estimated Uranium reserves in a few decades. However, natural Uranium or Thorium ore, wich are not themselves fissile, can produce a fissile material after a neutron capture ( 239Pu and 233U respectively). In a breeder reactor, the mass of fissile material remains constant, and the fertile ore is the only material to be consumed. In this case, only 1 ton of natural ore is needed to produce 1GWe.y. Thus, the breeding concept allows optimal use of fertile ore and development of sustainable nuclear energy production for several thousand years into the future. Different sustainable nuclear reactor concepts are studied in the international forum "generation IV". Different types of coolant (Na, Pb and He) are studied for fast breeder reactors based on the Uranium cycle. The thermal Thorium cycle requires the use of a liquid fuel, which can be reprocessed online in order to extract the neutron poisons. This paper presents these different sustainable reactors, based on the Uranium or Thorium fuel cycles and will compare the different options in term of fissile

  1. Isoscaling of the Fission Fragments with Langevin Equation

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; TIAN Wen-Dong; ZHONG Chen; ZHOU Xing-Fei; MA Yu-Gang; WEI Yi-Bin; CAI Xiang-Zhou; CHEN Jin-Gen; FANG De-Qing; GUO Wei; MA Guo-Liang; SHEN Wen-Qing

    2005-01-01

    @@ The Langevin equation is used to simulate the fission process of 112Sn + 112Sn and 116Sn + 116Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. The isoscaling behaviour has been observed from the analysis of fission fragments of both the reactions, and the isoscaling parameter α seems to be sensitive to the width of fission probability and the beam energy.

  2. Isoscaling of the Fission Fragments with Langevin Equation

    OpenAIRE

    Wang, K.; Ma, Y. G.; Wei, Y. B.; Cai, X. Z.; Chen, J. G.; Fang, D Q; Guo, W; Ma, G. L.; Shen, W.Q.(Shanghai Institute of Applied Physics, Shanghai, 201800, China); Tian, W.D.; Zhong, C.; Zhou, X. F.

    2004-01-01

    Langevin equation is used to simulate the fission process of $^{112}$Sn + $^{112}$Sn and $^{116}$Sn + $^{116}$Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. Isoscaling behavior has been observed from the analysis of fission fragments of both reactions and the isoscaling parameter $\\alpha$ seems to be sensitive to the width of fission probability and the beam energy.

  3. Fission

    International Nuclear Information System (INIS)

    Progress is reported in the areas of radiation physics; radiation dosimetry and radiation biophysics; microdosimetry of internal sources; dosimetry of internal emitters; real-time measurement of Pu in air at below-MPC levels; analytical techniques for measurement of 99Tc in environmental samples; and radiation instrumentation--radiological chemistry

  4. Radiometric dating of sediments using fission tracks in conodonts

    Science.gov (United States)

    Sachs, H.M.; Denkinger, M.; Bennett, C.L.; Harris, A.G.

    1980-01-01

    Conodonts are microfossils which are commonly found in marine rocks of Cambrian to Triassic age. Although their biological affinities are difficult to assess, conodonts are valuable stratigraphical indices for much of their geological range1. Recent work has also established that conodont colour alteration indices (CAI) are useful guides to diagenetic temperatures and hence burial depth2. Fission tracks3 in conodonts allow measurement of uranium concentrations and estimates of 'age' to be made using isotopic methods4. We report here that fission tracks counted in irradiated, thermally unaltered (as indicated by CAI) middle Palaeozoic conodonts indicate typical uranium concentrations of ???1 part in 10 9, with some samples higher. A single specimen of Siphonodella from the Lower Mississippian yielded an age estimate of 380??140 Myr consistent with conventional interpolations. This method may also allow the unroofing of deeply buried sediments to be dated. ?? 1980 Nature Publishing Group.

  5. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  6. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  7. Correlation measurements of fission-fragment properties

    Directory of Open Access Journals (Sweden)

    Oberstedt A.

    2010-10-01

    Full Text Available For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.

  8. Spontaneous fission properties and lifetime systematics

    International Nuclear Information System (INIS)

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs

  9. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  10. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  11. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    E Vardaci; A Di Nitto; P N Nadtochy; A Brondi; G La Rana; R Moro; M Cinausero; G Prete; N Gelli; E M Kozulin; G N Knyazheva; I M Itkis

    2015-08-01

    A 4 light charged particle spectrometer, called 8 LP, is in operation at the Laboratori Nazionali di Legnaro, Italy, for studying reaction mechanisms in low-energy heavy-ion reactions. Besides about 300 telescopes to detect light charged particles, the spectrometer is also equipped with an anular PPAC system to detect evaporation residues and a two-arm time-of-flight spectrometer to detect fission fragments. The spectrometer has been used in several fission dynamics studies using as a probe light charged particles in the fission and evaporation residues (ER) channels. This paper proposes a journey within some open questions about the fission dynamics and a review of the main results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular, the advantages of using systems of intermediate fissility will be discussed.

  12. Fission Surface Power Technology Development Status

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  13. Physics of neutron emission in fission

    International Nuclear Information System (INIS)

    The document contains the proceedings of the IAEA Consultants' Meeting on the Physics of Neutron Emission in Fission, Mito City (Japan), 24-27 May 1988. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers cover the following topics: Energy dependence of the number of fission neutrons ν-bar (3 papers), multiplicity distribution of fission neutrons (3 papers), competition between neutron and γ-ray emission (4 papers), the fission neutron yield in resonances (2 papers) and the energy spectrum of fission neutrons in experiment (9 papers), theory (4 papers) and evaluation (1 paper). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  14. Microscopic Theory of Nuclear Fission: A Review

    CERN Document Server

    Schunck, N

    2015-01-01

    This article reviews how nuclear fission is described within nuclear density functional theory. In spontaneous fission, half-lives are the main observables and quantum tunnelling the essential concept, while in induced fission the focus is on fragment properties and explicitly time-dependent approaches are needed. The cornerstone of the current microscopic theory of fission is the energy density functional formalism. Its basic tenets, including tools such as the HFB theory, effective two-body effective nuclear potentials, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The EDF approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schr\\"odinger equation into a collective Schr\\"odinge...

  15. Fission dynamics at low excitation energy. 2

    CERN Document Server

    Aritomo, Y; Ivanyuk, F A

    2014-01-01

    The mass asymmetry in the fission of U-236 at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.

  16. Calculated medium energy fission cross sections

    International Nuclear Information System (INIS)

    An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission

  17. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity bar νp. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and bar νp on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and bar νp with higher accuracy than is currently possible

  18. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  19. Fission and Properties of Neutron-Rich Nuclei

    Science.gov (United States)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    near A= 120 / M. A. Stoyer and W. B. Walters -- Nuclear structure IV. First observation of new neutron-rich magnesium, aluminum and silicon isotopes / A. Stolz ... [et al.]. Spectroscopy of [symbol]Na revolution of shell structure with isospin / V. Tripathi ... [et al.]. Rearrangement of proton single particle orbitals in neutron-rich potassium isotopes - spectroscopy of [symbol]K / W. Królas ... [et al.]. Laser spectroscopy and the nature of the shape transition at N [symbol] 60 / B. Cheal ... [et al.]. Study of nuclei near stability as fission fragments following heavy-ion reactions / N. Fotiadis. [symbol]C and [symbol]N: lifetime measurements of their first-excited states / M. Wiedeking ... [et al.] -- Nuclear astrophysics. Isomer spectroscopy near [symbol]Sn - first observation of excited states in [symbol]Cd / M. Pfitzner ... [et al.]. Nuclear masses and what they imply for the structures of neutron rich nuclei / A. Awahamian and A. Teymurazyan. Multiple nucleosynthesis processes in the early universe / F. Montes. Single-neutron structure of neutron-rich nuclei near N = 50 and N = 82 / J. A. Cizewski ... [et al.]. [symbol]Cadmium: ugly duckling or young swan / W. B. Walters ... [et al.] -- Nuclear structure V. Evidence for chiral doublet bands in [symbol]Ru / Y. X. Luo ... [et al.]. Unusual octupole shape deformation terms and K-mixing / J. O. Rasmussen ... [et al.]. Spin assignments, mixing ratios, and g-factors in neutron rich [symbol]Cf fission products / C. Goodin ... [et al.]. Level structures and double [symbol]-bands in [symbol]Mo, [symbol]Mo and [symbol]Ru / S. J. Zhu ... [et al.] -- Nuclear theory. Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara ... [et al.]. Nuclear structure, double beta decay and test of physics beyond the standard model / A. Faessler. Collective modes in elastic nuclear matter / Ş. Mişicu and S. Bastrukov. From N = Z to neutron rich: magnetic moments of Cu isotopes at and above the

  20. Overview of fission yeast septation.

    Science.gov (United States)

    Pérez, Pilar; Cortés, Juan C G; Martín-García, Rebeca; Ribas, Juan C

    2016-09-01

    Cytokinesis is the final process of the vegetative cycle, which divides a cell into two independent daughter cells once mitosis is completed. In fungi, as in animal cells, cytokinesis requires the formation of a cleavage furrow originated by constriction of an actomyosin ring which is connected to the plasma membrane and causes its invagination. Additionally, because fungal cells have a polysaccharide cell wall outside the plasma membrane, cytokinesis requires the formation of a septum coincident with the membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod-shaped fungus that has become a popular model organism for the study of actomyosin ring formation and constriction during cell division. Here we review the current knowledge of the septation and separation processes in this fungus, as well as recent advances in understanding the functional interaction between the transmembrane enzymes that build the septum and the actomyosin ring proteins. PMID:27155541

  1. Aerosols and fission product transport

    International Nuclear Information System (INIS)

    A survey is presented of current knowledge of the possible role of aerosols in the consequences of in- and out-of-core LOCAs and of end fitting failures in CANDU reactors. An extensive literature search has been made of research on the behaviour of aerosols in possible accidents in water moderated and cooled reactors and the results of various studies compared. It is recommended that further work should be undertaken on the formation of aerosols during these possible accidents and to study their subsequent behaviour. It is also recommended that the fission products behaviour computer code FISSCON II should be re-examined to determine whether it reflects the advances incorporated in other codes developed for light water reactors which have been extensively compared. 47 refs

  2. Production of fission 131I

    International Nuclear Information System (INIS)

    A method of iodine separation from other radionuclides generated by 235U fission has been developed in order to explore the possibilities to obtain 131I as by-product of the 99Mo routine production in the Ezeiza Atomic Centre. The experiments were designed to remove this element to gas phase, and the recoveries were investigated both with and without carrier addition. High volatilization percentages were achieved in the presence of iodine carrier. Some other alternatives to increase the iodine displacement to the gaseous phase, namely vacuum distillation, addition of hydrogen peroxide and use of a carrier gas, were also studied. The method developed, which employs a carrier gas stream, without carrier addition, allows the recovery of about 97% of the 131I, with high specific activity, in a simple and clean way. (author)

  3. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  4. Empirical description of beta-delayed fission partial half-lives

    CERN Document Server

    Ghys, L; Antalic, S; Huyse, M; Van Duppen, P

    2015-01-01

    Background: The process of beta-delayed fission (bDF) provides a versatile tool to study low-energy fission in nuclei far away from the beta-stability line, especially for nuclei which do not fission spontaneously. Purpose: The aim of this paper is to investigate systematic trends in bDF partial half-lives. Method: A semi-phenomenological framework was developed to systematically account for the behavior of bDF partial half-lives. Results: The bDF partial half-life appears to exponentially depend on the difference between the Q value for beta decay of the parent nucleus and the fission-barrier energy of the daughter (after beta decay) product. Such dependence was found to arise naturally from some simple theoretical considerations. Conclusions: This systematic trend was confirmed for experimental bDF partial half-lives spanning over 7 orders of magnitudes when using fission barriers calculated from either the Thomas-Fermi or the liquid-drop fission model. The same dependence was also observed, although less p...

  5. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.;

    2004-01-01

    groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual......Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...

  6. The chemistry of the fission products

    International Nuclear Information System (INIS)

    This is a review of chemistry of some chemical elements in fission products. The elements mentioned are krypton, xenon, rubidium, caesium, silver, strontium, barium, cadmium, rare earth elements, zirconium, niobium, antimony, molybdenum, tellurium, technetium, bromine, iodine, ruthenium, rhodium and palladium. The chemistry of elements and their oxides is briefly given together with the chemical species in aqueous solution. The report also contains tables of the physical properties of the elements and their oxides, of fission products nuclides with their half-life and fission yields and of the permissible concentrations. (author)

  7. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  8. Fission Matrix Capability for MCNP Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a

  9. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  10. Fission dynamics within time-dependent Hartree-Fock: boost-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...

  11. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    Science.gov (United States)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  12. Fission fragment mass and angular distributions: Probes to study non-equilibrium fission

    Indian Academy of Sciences (India)

    R G Thomas

    2015-08-01

    Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the signatures of these non-equilibrium processes based on macroscopic variables. The importance of the sticking time of the dinuclear complex with respect to the equilibration times of various degrees of freedom is emphasized.

  13. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  14. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  15. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  16. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  17. Electron spectra from decay of fission products

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J K

    1982-09-01

    Electron spectra following decay of individual fission products (72 less than or equal to A less than or equal to 162) are obtained from the nuclear data given in the compilation using a listed and documented computer subroutine. Data are given for more than 500 radionuclides created during or after fission. The data include transition energies, absolute intensities, and shape parameters when known. An average beta-ray energy is given for fission products lacking experimental information on transition energies and intensities. For fission products having partial or incomplete decay information, the available data are utilized to provide best estimates of otherwise unknown decay schemes. This compilation is completely referenced and includes data available in the reviewed literature up to January 1982.

  18. "UCx fission targets oxidation test stand"

    CERN Document Server

    Lacroix, Rachel

    2014-01-01

    "Set up a rig dedicated to the oxidation of UCx and define a procedure for repeatable, reliable and safe method for converting UC2 fission targets into an acceptable uranium carbide oxide waste for subsequent disposal by the Swiss Authorities."

  19. Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes

    OpenAIRE

    Lestone, J. P.

    2014-01-01

    Fortran subroutines have been written to simulate the production of fission neutrons from the spontaneous fission of 252Cf and 240Pu, and from the thermal neutron induced fission of 239Pu and 235U. The names of these four subroutines are getnv252, getnv240, getnv239, and getnv235, respectively. These subroutines reproduce measured first, second, and third moments of the neutron multiplicity distributions, measured neutron-fission correlation data for the spontaneous fission of 252Cf, and meas...

  20. General Description of Fission Observables: GEF Model Code

    OpenAIRE

    Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte; Schmitt, C.

    2015-01-01

    The GEF (" GEneral description of Fission observables ") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barrie...

  1. General view on the progress in nuclear fission : a review

    OpenAIRE

    Schmidt, Karl-Heinz; Jurado, Beatriz

    2016-01-01

    An overview is given on some of the main advances in experimental methods, experimental results and theoretical models and ideas of the last years in the field of nuclear fission. New approaches extended the availability of fissioning systems for experimental studies of nuclear fission considerably and provided a full identification of all fission products in A and Z for the first time. In particular, the transition from symmetric to asymmetric fission around 226 Th and some unexpected struct...

  2. Phebus FP: fission product behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Lewi, J.; Schwarz, M. [Inst. de Protection et de Surete Nucleaire (IPSN), Dept. de Recherche en Securite, Saint Paul les Durance (France); Hardt, P. von der [European Commission, Joint Research Center, Inst. for Systems, Informatics and Safety (Isis), Saint Paul les Durance (France)

    1998-02-01

    The ongoing Phebus FP programme is the centrepiece of a wide international co-operation investigating, through a series of six integral in-pile experiments, key-phenomena involved in the progression of a postulated severe accident in a Light Wate Reactor (LWR). The Phebus facility offers the capability to study the degradation of real core material, from the early phase of cladding oxidation and hydrogen production up to the late phase of melt progression and molten pool formation. The subsequent release of fission products and structural materials is also experimentally studied, including their transport in the cooling system, and their deposition in the containment, under representative physicochemical conditions. The volatility of iodine in the containment is in particular receiving a special interest in the first experiments, as large uncertainties related to its modelling subsist. FPT-0 and FPT-1, performed respectively in December 1993 and July 1996, have reached very advanced states of degradation, comparable to what was observed in TMI-2, and generated a wealth of results on core degradation and fission product behaviour in particular, pool formation was obtained for a temperature well below the melting point of (U, Zr) O{sub 2} and volatile forms of iodine were detected in the containment much earlier than expected. The resulting database is used to develop and validate the computer codes used to assess the safety of the currently operating plants, to check the efficiency of accident management procedures and also support the design of future plants as EPR. (orig.) [Deutsch] Das laufende Phebus-FP-Programm ist das Herzstueck einer weiten internationalen Zusammenarbeit, durch eine Serie von sechs realitaetsnahen Experimenten die Schluesselphaenomene zu erforschen, die fuer die Ausbreitung eines unterstellten schweren Unfalls in einem Leichtwasserreaktor (LWR) verantwortlich sind. Die Phebus-Anlage in Cadarache ermoeglicht die Untersuchung der Veraenderung

  3. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  4. Seventy-five years of nuclear fission

    Indian Academy of Sciences (India)

    S S Kapoor

    2015-08-01

    Nuclear fission process is one of the most important discoveries of the twentieth century. In these 75 years since its discovery, the nuclear fission related research has not only provided new insights in the physics of large scale motion, deformation and subsequent division of a heavy nucleus, but has also opened several new frontiers of research in nuclear physics. This article is a narrative giving an overview of the landmarks of the progress in the field.

  5. MCNP6 Fission Multiplicity with FMULT Card

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Trevor [Los Alamos National Laboratory; Fensin, Michael Lorne [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; McKinney, Gregg W. [Los Alamos National Laboratory

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  6. A revised calculational model for fission

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  7. Spontaneous fission of 256Rf, new data

    Science.gov (United States)

    Svirikhin, A. I.; Yeremin, A. V.; Izosimov, I. N.; Isaev, A. V.; Kuznetsov, A. N.; Malyshev, O. N.; Popeko, A. G.; Popov, Yu. A.; Sokol, E. A.; Chelnokov, M. L.; Chepigin, V. I.; Andel, B.; Asfari, M. Z.; Gall, B.; Yoshihiro, N.; Kalaninova, Z.; Mullins, S.; Piot, J.; Stefanova, E.; Tonev, D.

    2016-07-01

    Spontaneous fission properties of the short-lived neutron-deficient 256Rf nucleus produced in the complete fusion reaction with a beam of multiply charged heavy 50Ti ions from the U-400 cyclotron (FLNR, JINR) are experimentally investigated. Its half-life and decay branching ratio are measured. The average number of neutrons per spontaneous fission of 256Rf (bar v = 4.47 ± 0.09) is determined for the first time.

  8. Fission Barriers of Compound Superheavy Nuclei

    OpenAIRE

    Pei, J C; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.

    2009-01-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for $^{264}$Fm, $^{272}$Ds, $^{278}$112, $^{292}$114, and $^{312}$124. F...

  9. Our 50-year odyssey with fission: Summary

    International Nuclear Information System (INIS)

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs

  10. Dynamics in heavy ion fusion and fission

    International Nuclear Information System (INIS)

    Dynamical aspects of heavy ion fussion and fission, mainly the aspect of damping which is meant as the dissipation of kinetic energy and the aspect of the effective mass of the fission motion, are discussed. Two categories of evidence of damping effects are given. One relates to the damping of the fission motion for the ground state shape and for the isomeric more elongated shape. The other relates to the damping of the fission motion from the last barrier to the scission point. The dependence of the effective mass associated with the fission motion on the deormation of nucleus is shown. As the elongation of the nucleus increases the effective mass of the fission motion varies strongly from being about forty times greater than the reduced mass in the beta-vibrational state of the ground state shape to being equal to the reduced mass in the moment of scission. Damping effects are expected to be propartional to the difference between the effective mass and the reduced mass. It is concluded that the damping in fussion reactions is relatively weak for lighter products and quite strong for superheavy products like 236U or 252Cf. (S.B.)

  11. Biological effectiveness of fission neutrons

    International Nuclear Information System (INIS)

    Human peripheral blood lymphocytes were exposed to the uranium fission neutrons with different energy spectra, and the effects of changing pattern of energy spectrum on the relative biological effectiveness (RBE) were studied by analyzing dose-response relationship of chromosome aberrations. When the contribution of contaminated gamma-rays was subtracted, the efficiency of chromosomal response to the neutron dose was found to be refractory to the difference in the energy spectrum while the mean energy ranged from 2 MeV to 27 keV. This chromosomal refractoriness to energy spectrum may be explained by the similarity of energy spectrum for kerma contribution; most of the doses being given by neutrons with energy above 50 keV. Small doses given by short tracks may be less efficient. A comparison of these observations with chromosome aberration frequencies in lymphocytes of A-bomb survivors leads to somewhat higher estimate of neutron dose in Hiroshima than the estimate by the recently revised dosimetry system, DS86. (author)

  12. Fission product release and thermal behaviour

    International Nuclear Information System (INIS)

    Release of fission products from the fuel matrix is an important aspect in relation to performance and safety evaluations. Of particular importance amongst fission products are the isotopes of iodine for radiological considerations and the isotopes of xenon and krypton for fuel thermal behaviour. It is believed that the main mechanism for fission gas release is diffusion but the magnitudes of the relevant diffusion coefficients, which exhibit strong temperature dependences, are not well established. The conductivity of the main gaseous fission product, xenon, is much lower than that of the fill gas helium and hence fission gas release may lead to a deterioration of the fill gas conductivity resulting in higher fuel temperatures and consequently higher fission product release. The two effects, thermal response of fuel to fill gas composition and fission gas/product release are thus intimately connected and have been investigated in a number of instrumented fuel assemblies in the Halden reactor. In such an assembly, the instrumentation includes fuel centre thermocouples, pressure sensors and neutron detectors. In addition pins in the assembly may be swept, whilst at power, with various gases, for example Xe, He or Ar or mixtures thereof. A gamma spectrometer is incorporated into the gas circuit to facilitate the performance of on-line fission product release measurements. At various stages in the lifetime of the assembly thermal tests and fission product release measurements have been made. At low operating temperatures and up to moderate burn-ups, no major fuel restructuring phenomena have been observed and consequently the fission product release has remained at low level dictated by the exposed surfaces of the fuel. Axial gas flow measurements indicate that fuel cracking and irreversible relocation occurred as early as the first ramps to power. The processes have continued throughout life and an absence of any change in response pressurization tests indicates that

  13. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  14. Understanding of fission dynamics from fragment mass distribution studies

    International Nuclear Information System (INIS)

    Nuclear fission is a complex process involving large scale collective rearrangement of nuclear matter. The shape of the fissioning nucleus evolves in the multidimensional space of relative separation, neck opening, mass asymmetry and deformation of the fragments. Various types of nuclear shape deformation have been observed from the fission fragment spectroscopy studies, which provide crucial information in the understanding of the dynamics of the fission process. The fission fragment mass and charge distributions are decided during saddle to scission transition and are directly related to the scission configuration. Several nuclear models have been put forward to describe the fission fragment mass distribution as well as shape deformation of the fragments. The width of the fission fragment mass distribution is related to the fission process and provides information on the type of fission reactions

  15. Progress on the conceptual design of a mirror hybrid fusion--fission reactor

    International Nuclear Information System (INIS)

    A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel

  16. Experimental Determination of the Antineutrino Spectrum of the Fission Products of $^{238}$U

    CERN Document Server

    Haag, N; Hofmann, M; Oberauer, L; Potzel, W; Schreckenbach, K; Wagner, F M

    2013-01-01

    An experiment was performed at the scientific neutron source FRM II in Garching to determine the cumulative antineutrino spectrum of the fission products of $^{238}$U. This was achieved by irradiating target foils of natural uranium with a thermal and a fast neutron beam and recording the emitted $\\beta$-spectra with a gamma-suppressing electron-telescope. The obtained $\\beta$-spectrum of the fission products of $^{235}$U was normalized to the data of the magnetic spectrometer BILL of $^{235}$U. This method strongly reduces systematic errors in the $^{238}$U measurement. The $\\beta$-spectrum of $^{238}$U was converted into the corresponding antineutrino spectrum. The final $\\bar\

  17. Realization of a flat fission power density in a hybrid blanket over long operation periods

    International Nuclear Information System (INIS)

    A straightforward numerical graphical method is applied to achieve a flat fission power density (FPD) in a hybrid blanket by using a mixed fuel (ThO2 and natural UO2) with variable fractions of the fuel components in the radial direction. The neutronic analysis is carried out on a blanket with a hard neutron spectrum in the fissionable zone by simply omitting the moderating beryllium neutron multiplier. Mainly due to this precaution in the blanket design, the FPD could be kept quasi-constant over a relatively long plant lifetime

  18. Derivation of Energy Generated by Nuclear Fission-Fusion Reaction

    OpenAIRE

    Kayano, Hideo; Teshigawara, Makoto; Konashi, Kenji; Yamamoto, Takuya

    1994-01-01

    In the solids which contain fissionable elements and deuterium, it is expected that the energy generated by nuclear fission contributes to the promotion of the D-D nuclear fusion in the solids. When nuclear fission occurs by neutrons in the solid, the fissionable elements divide into two fission product nuclei having the energy of 100MeV, respectively. It is expected that the hige energy fission products promote rapidly nuclear fision reaction by knocking out the D atoms in the solids and by ...

  19. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  20. Fission product decay heat for thermal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J. K.

    1979-01-01

    In the past five years there have been new experimental programs to measure decay heat (i.e., time dependent beta- plus gamma-ray energy release rates from the decay of fission products) following thermal-neutron fission of /sup 235/U, /sup 239/Pu, and /sup 241/Pu for times after fission between 1 and approx. 10/sup 5/ sec. Experimental results from the ORNL program stress the very short times following fission, particularly in the first few hundred sec. Complementing the experimental effort, computer codes have been developed for the computation of decay heat by summation of calculated individual energies released by each one of the fission products. By suitably combining the results of the summation calculations with the recent experimental results, a new Decay Heat Standard has been developed for application to safety analysis of operations of light water reactors. The new standard indicates somewhat smaller energy release rates than those being used at present, and the overall uncertainties assigned to the new standard are much smaller than those being used at present.

  1. Rupture of the neck in nuclear fission

    International Nuclear Information System (INIS)

    We introduce a degree of freedom to describe the rupture of the neck in nuclear fission and calculate the point at which the neck ruptures as the nucleus descends dynamically from its fission saddle point. This is done by mentally slicing the system into two portions at its minimum neck radius and calculating the force required to separate the two portions while keeping their shapes fixed. This force is obtained by differentiating with respect to separation the sum of the Coulomb and nuclear interaction energies between the two portions. For nuclei throughout the Periodic Table we calculate this force along dynamical paths leading from the fission saddle point. The force is initially attractive but becomes repulsive when the neck reaches a critical size. For actinide nuclei the neck radius at which rupture occurs is about 2 fm. This increases the calculated translational kinetic energy of the fission fragments at infinity relative to that calculated for scission occurring at zero neck radius. With the effect of neck rupture taken into account, we calculate and compare with experimental results fission-fragment kinetic energies for two types of nuclear dissipation: ordinary two-body viscosity and one-body dissipation

  2. An improved technique for fission track dating

    International Nuclear Information System (INIS)

    The necessity of improving the fission track dating (FTD) technique both at home and abroad is illustrated. The ways of making such improvement are also proposed. It is suggested to calibrate the constant b value of the uranium standard glass by using the method of fission products activity. The 3 kinds of uranium standard glass which have been calibrated are NBS SRM962a, UB1 and UB2. An established new method σ·Φ ρd/b, to measure neutron fluence, avoids the influence of the varying neutron spectrum on measuring neutron fluence. The improved etching technique for fission tracks in zircon adopted a two-step method which includes the molten alkali system etching using NaOH + KOH and the mixed acid system etching using HNO3 + HF; this technique results in adequate track etching, increased track clarity and less interference. In this way the intensity of tracks is authentically reflected. Dividing angular zone in accordance with the angular distribution of spontaneous fission track on the crystal surface of minerals to count the tracks and using the improved etching technique to remove the non-uniform angular distribution of spontaneous fission tracks in zircon, ensure the accuracy of tracks count. The improved FTD techniques were used to finish Laboratory Standardized Calibration. The tests using international FTD age standards samples have proved that above mentioned techniques are reliable and practical in obtaining the accurate FTD data. (8 tabs.; 3 figs.)

  3. Heavy-ion-induced fission reactions

    International Nuclear Information System (INIS)

    Fission-cross-section excitation functions were measured from near threshold to approx. 10 MeV/nucleon using heavy-ion beams from the Brookhaven National Laboratory three-stage Tandem Accelerator Facility. The systems studied included 210Po formed in 12C and 18O induced reactions, 186Os formed in 9Be, 12C, 16O, and 26Mg reactions, 158Er formed in 16O, 24Mg, 32S, and 64Ni reactions. In addition the composite systems 204206, 208Po formed with 16O and 18O projectiles were studied. The measured fission excitation functions along with previous data from 4He and 11B bombardments for the 186Os and 210Po systems and recent data on the 200Pb system are compared to predictions from a statistical model using recent fission-barrier calculations from A. Sierk. Comparisons of calculated and measured fission excitation functions show good overall agreement between data and calculations and between calculations with two different level-density functions. It is concluded that the barriers from Sierk give a good description of both the mass and angular momentum dependence of fission barriers in this region

  4. Anatomy of neck configuration in fission decay

    CERN Document Server

    Patra, S K; Satpathy, L

    2010-01-01

    The anatomy of neck configuration in the fission decay of Uranium and Thorium isotopes is investigated in a microscopic study using Relativistic mean field theory. The study includes $^{236}U$ and $^{232}Th$ in the valley of stability and exotic neutron rich isotopes $^{250}U$, $^{256}U$, $^{260}U$, $^{240}Th$, $^{250}Th$, $^{256}Th$ likely to play important role in the r-process nucleosynthesis in stellar evolution. Following the static fission path, the neck configurations are generated and their composition in terms of the number of neutrons and protons are obtained showing the progressive rise in the neutron component with the increase of mass number. Strong correlation between the neutron multiplicity in the fission decay and the number of neutrons in the neck is seen. The maximum neutron-proton ratio is about 5 for $^{260}$U and $^{256}$Th suggestive of the break down of liquid-drop picture and inhibition of the fission decay in still heavier isotopes. Neck as precursor of a new mode of fission decay li...

  5. Control of a laser inertial confinement fusion-fission power plant

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  6. Determination of the fission coefficients in thermal nuclear reactors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Lenilson M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Cabral, Ronaldo G., E-mail: rgcabral@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Anjos, Joao C.C. dos, E-mail: janjos@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Dept. GLN - G

    2011-07-01

    The nuclear reactors in operation periodically need to change their fuel. It is during this process that these reactors are more vulnerable to occurring of several situations of fuel diversion, thus the monitoring of the nuclear installations is indispensable to avoid events of this nature. Considering this fact, the most promissory technique to be used for the nuclear safeguard for the nonproliferation of nuclear weapons, it is based on the detection and spectroscopy of antineutrino from fissions that occur in the nuclear reactors. The detection and spectroscopy of antineutrino, they both depend on the single contribution for the total number of fission of each actinide in the core reactor, these contributions receive the name of fission coefficients. The goal of this research is to show the computational and mathematical modeling used to determinate these coefficients for PWR reactors. (author)

  7. Fission physics experiments at the time-of-flight spectrometer GNEIS in Gatchina (PNPI)

    International Nuclear Information System (INIS)

    The outline of and fission physics experiments at the Gatchina neutron spectrometer GNEIS based on the 1 GeV PNPI proton synchrotron are presented. The prefission gamma-ray spectrum of the (n, gamma f) reaction were investigated. The capture gamma-ray spectra for 721.6 eV and 1211.4 eV resonances in U-238 were measured and the nature of the 721.6 eV resonance in U-238 were examined. The forward-backward asymmetry in slow neutron fission of U-235 and energy dependence of the forward-backward and instrumental asymmetry coefficients were obtained. Fission cross section ratios for Th-232 to U-235 and for U-238 to U-235 in the energy range up to 200 MeV were measured. The results of the cross section ratios agreed well with those of Behrens et al. and Difilippo et al. (T.H.)

  8. Reference reactor module for NASA's lunar surface fission power system

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David I [Los Alamos National Laboratory; Kapernick, Richard J [Los Alamos National Laboratory; Dixon, David D [Los Alamos National Laboratory; Werner, James [INL; Qualls, Louis [ORNL; Radel, Ross [SNL

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  9. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  10. Solar vs. Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per

  11. Fission Enhanced diffusion of uranium in zirconia

    CERN Document Server

    Bérerd, N; Moncoffre, N; Sainsot, P; Faust, H; Catalette, H

    2005-01-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin $^{235}UO\\_2$ layer in direct contact with an oxidized zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 10$^{11}$ ions cm$^{-2}$ s$^{-1}$ and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10$^{-15}$ cm$^2$ s$^{-1}$ at 480$\\circ$C and compared to uranium thermal diffusion data in ZrO$\\_2$ in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  12. Lunar surface fission power supplies: Radiation issues

    Energy Technology Data Exchange (ETDEWEB)

    Houts, M.G.; Lee, S.K.

    1994-07-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield.

  13. Process for fine purification of fission molybdenum

    International Nuclear Information System (INIS)

    The invention deals with a method for the fine purification of fission molybdenum, dissolved in anionic form together with the anions of the fission products of J, Sn, Ce, Ru, and Zr in an aqueous mineral acid solution; in this process the fission molybdenum is a) fixed on a metal oxide in a sorption step and b) released again in a desorption step. By the invention, a method shall be created, which is, under less favourable working conditions, almost insusceptible to failure and can be safely carried out with low expenditure of operation time, working equipment and handling technique and which delivers a highly pure Mo-99 product with a decreased volume of radioactive waste at the same time. (orig./RB)

  14. Energy partition in low energy fission

    CERN Document Server

    Mirea, M

    2011-01-01

    The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the another separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The fission path is obtained in the frame of the macroscopic-microscopic model. The single particle level schemes are obtained within the two center Woods-Saxon shell model. It is shown that the available intrinsic dissipated energy is not shared proportionally to the masses of the two fission fragments. If the heavy fragment possesses nucleon numbers close to the magic ones, the accumulated intrinsic excitation energy is lower than that of the light fragment.

  15. Phase Transition Induced Fission in Lipid Vesicles

    CERN Document Server

    Leirer, C; Myles, V M; Schneider, M F

    2010-01-01

    In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (Tfission of the neck, while the mother vesicle remains intact. Pearling tubes which formed upon heating break-up and decay into multiple individual vesicles which then diffuse freely. Finally we demonstrate that mimicking the intracellular bulk viscosity by increasing the bulk viscosity to 40cP does not affect the overall fission process, but leads to a significant decrease in size of the released vesicles.

  16. Evaluation of covariance for fission neutron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Ohsawa, Takaaki; Shibata, Keiichi

    1999-02-01

    A covariance evaluation system for the evaluated nuclear data library JENDL-3.2 was established, and the covariance data for fission neutron spectra of {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu were evaluated. Two methods were employed to evaluate the covariance. One is based on the experimental data, and the other is based on a model calculation including some kinds of renormalizations. The latter technique was adopted for the covariance evaluation of the fission neutron spectra in JENDL-3.2. We performed an adjustment of the evaluated fission neutron spectrum of {sup 235}U using the spectrum averaged cross sections for the {sup 27}Al(n, p), {sup 46,47,48}Ti(n, p), {sup 54,56}Fe(n, p), {sup 58}Ni(n, p), {sup 90}Zr(n, 2n) reactions. The adjusted spectrum integrated over energy was found to be unity. (author)

  17. Coincident measurements of prompt fission γ rays and fission fragments at DANCE

    Science.gov (United States)

    Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.

    2015-10-01

    Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.

  18. Solar Versus Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.

  19. Heavy ion fusion and fission reactions

    International Nuclear Information System (INIS)

    Various methods of probing the partial wave distribution are reviewed and new results using fission fragment angular distributions are discussed. Evidence that existing models of fusion reactions near-barrier and sub-barrier energies underestimate the mean-square spin values are presented. The dynamics of fusion reactions at higher energies are also discussed. The controversy over the interpretation of fission fragment and angular distributions are reviewed. Both statistical scission models and dynamical models with incomplete K mixing are discussed. New developments related to the effective moment of inertia of the saddlepoint shape are presented

  20. Uranium arc fission reactor for space propulsion

    Science.gov (United States)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    1991-01-01

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  1. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  2. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  3. Actinide and fission product separation and transmutation

    International Nuclear Information System (INIS)

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  4. Fission cross section for 242Am.met

    International Nuclear Information System (INIS)

    The neutron-induced fission cross section for 242Am.met (152y) was measured at the Livermore 100-MeV electron linac in the neutron energy range of 0.01 eV to 20 MeV. Fission fragments were detected using a hemispherical fission chamber. The neutron flux was measured below 10 keV using lithium glass scintillators. Above 10 keV, the 242Am.met fission cross section was measured relative to the 235U fission cross section. Below 20 eV, the data were fit with a sum of single-level Breit-Wigner resonances. Results for the distribution of fission widths, the average fission width, and the average level spacing are presented. The fission cross section in the 100 keV to 20 MeV range is compared with previous measurements

  5. A fission-fragment-sensitive target for X-ray spectroscopy in neutron-induced fission

    CERN Document Server

    Ethvignot, T; Giot, L; Casoli, P; Nelson, R O

    2002-01-01

    A fission-fragment-sensitive detector built for low-energy photon spectroscopy applications at the WNR 'white' neutron source at Los Alamos is described. The detector consists of eight layers of thin photovoltaic cells, onto which 1 mg/cm sup 2 of pure sup 2 sup 3 sup 8 U is deposited. The detector serves as an active target to select fission events from background and other reaction channels. The fairly small thickness of the detector with respect to transmission of 20-50 keV photons permits the measurement of prompt fission-fragment X-rays. Results with the GEANIE photon spectrometer are presented.

  6. Microscopic description of complex nuclear decay: multimodal fission

    OpenAIRE

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-01-01

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fissi...

  7. Development and Utilization of Space Fission Power Systems

    Science.gov (United States)

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  8. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  9. Dynamical effects in fission investigated at high excitation energy

    OpenAIRE

    Benlliure J.

    2016-01-01

    The experimental techniques used for the investigation of nuclear fission have progressed considerably during the last decade. Most of this progress is based on the use of the inverse kinematics technique allowing for the first time the complete isotopic and kinematic characterization of both fission fragments. These measurements make possible to characterize the fissioning system at saddle and at scission, and can be used to benchmark fission model calculations. One of the important ingredie...

  10. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  11. SPIDER Progress Towards High Resolution Correlated Fission Product Data

    Science.gov (United States)

    Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team

    2014-09-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.

  12. Developing an "atomic clock" for fission lifetime measurements

    NARCIS (Netherlands)

    Wilschut, H.W.E.M.; Kravchuk, V.

    2004-01-01

    The relevance of measuring fission lifetimes of hot nuclei is briefly discussed. It is shown that K X-ray emission prior to fission can be used to measure fission lifetimes. The preparation of the K-shell hole, the simultaneous nuclear excitation, and the analysis of the X-ray spectra is described.

  13. The effect of atomic electrons on nuclear fission

    OpenAIRE

    Dzuba, V. A.; Flambaum, V. V.

    2008-01-01

    We calculate correction to the nuclear fission barrier produced by the atomic electrons. The result presented in analytical form is convenient to use in future nuclear calculations. The atomic electrons have a small stabilizing effect on nuclei, increasing lifetime in nuclear fission channel. This effect gives a new instrument to study the fission process.

  14. Design and Simulation of High Radioactivity Fission Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    WANG; Qi

    2012-01-01

    <正>It is great effect that the fission neutron release in 239Pu(n, 2n) cross section measurement by using multi-unit gadolinium loaded liquid scintillation detector system, for the 239Pu fission cross section is larger than (n, 2n) cross section one order of magnitude. In order to deduct the effect of fission neutrons,

  15. Cold fission studies using a double-ionization chamber

    International Nuclear Information System (INIS)

    An investigation on spontaneous fission of 252Cf is described. Both fission fragments are detected coincidentally with a double ionization chamber as a 4 π detector. Special techniques are demonstrated which allow the determination of nuclear masses and charges for cold fission fragments. Detector properties such as systematic errors and their correction are studied with the help of α particles. (orig.)

  16. Enabling the Use of Space Fission Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Houts; Melissa Van Dyke; Tom Godfroy; James Martin; Kevin Pedersen; Ricky Dickens; Ivana Hrbud; Leo Bitteker; Bruce Patton; Suman Chakrabarti; Joe Bonometti

    2000-06-04

    This paper gives brief descriptions of advantages of fission technology for reaching any point in the solar system and of earlier efforts to develop space fission propulsion systems, and gives a more detailed description of the safe, affordable fission engine (SAFE) concept being pursued at the National Aeronautics and Space Administration's Marshall Space Flight Center.

  17. Overview of research by the fission group in Trombay

    Indian Academy of Sciences (India)

    R K Chourdhury

    2015-08-01

    Nuclear fission studies in Trombay began nearly six decades ago, with the commissioning of the APSARA research reactor. Early experimental work was based on mass, kinetic energy distributions, neutron and X-ray emission in thermal neutron fission of 235U, which were carried out with indigenously developed detectors and electronics instrumentation. With the commissioning of CIRUS reactor and the availability of higher neutron flux, advanced experiments were carried out on ternary fission, pre-scission neutron emission, fragment charge distributions, quarternary fission, etc. In the late eighties, heavy-ion beams from the pelletron-based medium energy heavy-ion accelerator were available, which provided a rich variety of possibilities in nuclear fission studies. Pioneering work on fragment angular distributions, fission time-scales, transfer-induced fission, -ray multiplicities and mass–energy correlations were carried out, providing important information on the dynamics of the fission process. More recently, work on fission fragment -ray spectroscopy has been initiated, to understand the nuclear structure aspects of the neutron-rich fission fragment nuclei. There have also been parallel efforts to carry out theoretical studies in the areas of shell effects, superheavy nuclei, fusion–fission dynamics, fragment angular distributions, etc. to complement the experimental studies. This paper will provide a glimpse of the work carried out by the fission group at Trombay in the above-mentioned topics.

  18. Fission barrier heights in the A ∼ 200 mass region

    Indian Academy of Sciences (India)

    K Mahata

    2015-08-01

    Statistical model analysis is carried out for - and -induced fission reactions using a consistent description for fission barrier and level density in A ∼ 200 mass region. A continuous damping of shell correction with excitation energy is considered. Extracted fission barriers agree well with the recent microscopic–macroscopic model. The shell corrections at the saddle point were found to be insignificant.

  19. Entrance channel dependence of fission fragment anisotropies - a direct experimental signature of fission before equilibration

    International Nuclear Information System (INIS)

    In several cases of heavy ion induced fusion-fission reactions, the fission fragment angular distributions exhibit much larger anisotropies than predicted by the standard Halpern-Strutinsky theory. Several explanations have been put forward to interpret these anomalous angular distributions. One of them is that a characteristic signature of fission before full K-equilibration will be an entrance channel dependence of the fragment anisotropies for target-projectile combinations across the Businaro-Gallone ridge in the mass/charge asymmetry degree of freedom. To look for any such entrance channel dependence of fragment anisotropies, we have carried out measurements of fragment angular distributions in fission induced by boron, carbon, oxygen ions on thorium and neptunium targets and by fluorine ions on neptunium target at above barrier energies. (author). 7 refs., 1 fig

  20. Fission barriers and probabilities of spontaneous fission for elements with Z$\\geq$100

    CERN Document Server

    Baran, A; Reinhard, P -G; Robledo, L M; Staszczak, A; Warda, M

    2015-01-01

    This is a short review of methods and results of calculations of fission barriers and fission half-lives of even-even superheavy nuclei. An approvable agreement of the following approaches is shown and discussed: The macroscopic-microscopic approach based on the stratagem of the shell correction to the liquid drop model and a vantage point of microscopic energy density functionals of Skyrme and Gogny type selfconsistently calculated within Hartree-Fock-Bogoliubov method. Mass parameters are calculated in the Hartree-Fock-Bogoliubov cranking approximation. A short part of the paper is devoted to the nuclear fission dynamics. We also discuss the predictive power of Skyrme functionals applied to key properties of the fission path of $^{266}$Hs. It applies the standard techniques of error estimates in the framework of a $\\chi^2$ analysis.

  1. Fission fragment formation and fission yields in the model of octupole neutron-proton oscillations

    Directory of Open Access Journals (Sweden)

    Yavshits S.

    2010-03-01

    Full Text Available The fission fragment formation is considered as a result of neck instability in the process of octupole oscillations of neutrons and protons near the scission point. To describe such a phenomenon the potential surface of fissionning nucleus with neck radius about 1 fm was calculated with shell correction approach. The new version of smooth liquid drop part of deformation energy is proposed. The liquid drop part is formulated in a double folding model with n-n, p-p, and n-p Yukawa interaction potential. Fission fragment mass and charge distributions correspond approximately to isoscalar and isovector modes of vibrations and are defined by wave functions of oscillations. The preliminary calculation results have shown a rather good description of main integral fission yield observables.

  2. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  3. UBA domain containing proteins in fission yeast

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P;

    2003-01-01

    characterised on both the functional and structural levels. One example of a widespread ubiquitin binding module is the ubiquitin associated (UBA) domain. Here, we discuss the approximately 15 UBA domain containing proteins encoded in the relatively small genome of the fission yeast Schizosaccharomyces pombe...

  4. Fission--fusion systems: classification and critique

    International Nuclear Information System (INIS)

    A useful classification scheme for hybrid systems is described and some common features that the scheme makes apparent are pointed out. The early history of fusion-fission systems is reviewed. Some designs are described along with advantages and disadvantages of each. The extension to low and moderate Q devices is noted. (U.S.)

  5. Brownian shape motion: Fission fragment mass distributions

    Directory of Open Access Journals (Sweden)

    Sierk Arnold J.

    2012-02-01

    Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.

  6. Angular-momentum-bearing modes in fission

    International Nuclear Information System (INIS)

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  7. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  8. Energy Correlation of Prompt Fission Neutrons

    Science.gov (United States)

    Elter, Zs.; Pázsit, I.

    2016-03-01

    In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements) are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons) need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  9. Energy Correlation of Prompt Fission Neutrons

    Directory of Open Access Journals (Sweden)

    Elter Zs.

    2016-01-01

    Full Text Available In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  10. Fission in intermediate energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S. (Los Alamos National Lab., NM (USA)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L. (Lawrence Livermore National Lab., CA (USA)); Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G. (Lawrence Berkeley Lab., CA (USA)); Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W. (Brookhaven National Lab., Upton, NY (USA)); Dichter, B.; Kaufman, S.; Videbaek, F. (Argonne National Lab. (USA)); Fraenkel, Z.; Mamane, G. (Weizmann Inst. of Science, Rehovoth (Israel)); Cebra, D.; Westfall, G.D. (Michigan State Univ., East Lansing (USA))

    1989-10-09

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.).

  11. Subminiature fission chamber with gas tight penetration

    International Nuclear Information System (INIS)

    Fission chambers suffer from gas leaks at electric feed-trough. This micro chamber suppresses that defect thanks to an alumina plug and welded seal of the chamber sleeve. This device is easy to produce at industrial scale with reduced dimensions (1,5 mm diameter, 25 mm length). It can work with 30 m long feeding cables. (D.L.). 3 figs

  12. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  13. Dynamics of fission and heavy ion reactions

    International Nuclear Information System (INIS)

    Recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear motion such as occurs in fission and heavy ion reactions are discussed. With the goal of finding observable quantities that depend upon the magnitude and mechanism of nuclear dissipation, one-body dissipation and two-body viscosity within the framework of a generalized Fokker-Planck equation for the time dependence of the distribution function in phase space of collective coordinates and momenta are considered. Proceeding in two separate directions, the generalized Hamilton equations of motion for the first moments of the distribution function with a new shape parametrization and other technical innovations are first solved. This yields the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as the energy required for fusion in symmetric heavy-ion reactions and the mass transfer and capture cross section in asymmetric heavy-ion reactions. In a second direction, we specialize to an inverted-oscillator fission barrier and use Kramers' stationary solution to calculate the mean time from the saddle point to scission for a heavy-ion-induced fission reaction for which experimental information is becoming available. 25 references

  14. Angular distribution of oriented nucleus fission neutrons

    International Nuclear Information System (INIS)

    Calculations of anisotropy of angular distribution of oriented 235U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%

  15. Otto Hahn (1944). Discovery of nuclear fission

    CERN Document Server

    Hahn, Otto

    2003-01-01

    Otto Hahn (Frankfurt-on-Main, 1879-Gotinga, 1968) is the discoverer of nuclear fission, which awarded him the Nobel Prize for Chemistry in 1944. After leaving Germany during the Second World War to settle in the United Kingdom, he returned to this country as a renown figure.

  16. Model for fission-product calculations

    International Nuclear Information System (INIS)

    Many fission-product cross sections remain unmeasurable thus considerable reliance must be placed upon calculational interpolation and extrapolation from the few available measured cross sections. The vehicle, particularly for the lighter fission products, is the conventional optical-statistical model. The applied goals generally are: capture cross sections to 7 to 10% accuracies and inelastic-scattering cross sections to 25 to 50%. Comparisons of recent evaluations and experimental results indicate that these goals too often are far from being met, particularly in the area of inelastic scattering, and some of the evaluated fission-product cross sections are simply physically unreasonable. It is difficult to avoid the conclusion that the models employed in many of the evaluations are inappropriate and/or inappropriately used. In order to alleviate the above unfortunate situations, a regional optical-statistical (OM) model was sought with the goal of quantitative prediction of the cross sections of the lighter-mass (Z = 30-51) fission products. The first step toward that goal was the establishment of a reliable experimental data base consisting of energy-averaged neutron total and differential-scattering cross sections. The second step was the deduction of a regional model from the experimental data. It was assumed that a spherical OM is appropriate: a reasonable and practical assumption. The resulting OM then was verified against the measured data base. Finally, the physical character of the regional model is examined

  17. Density Functional Theory Approach to Nuclear Fission

    CERN Document Server

    Schunck, N

    2012-01-01

    The Skyrme nuclear energy density functional theory (DFT) is used to model neutron-induced fission in actinides. This paper focuses on the numerical implementation of the theory. In particular, it reports recent advances in DFT code development on leadership class computers, and presents a detailed analysis of the numerical accuracy of DFT solvers for near-scission calculations.

  18. Airborne measurements of fission product fall-out

    Energy Technology Data Exchange (ETDEWEB)

    Hovgaard, J.; Korsbech, U.

    1992-12-01

    During 1993 the Danish Emergency Management Agency will install an airborne [gamma]-ray detector system for area survey of contamination with radioactive nuclides - primarily fission products that may be released during a heavy accident at a nuclear power plant or from accidents during transport of radioactive material. The equipment is based on 16 liter NaI(TI) crystals and multichannel analysers from Exploranium (Canada). A preliminary investigation of the possibilities for detection of low and high level contamination - and the problems that may be expected during use of the equipment, and during interpretation of the measured data, is described. Several days after reactor shut-down some of the nuclides can be identified directly from the measured spectrum, and contamination levels may be determined within a factor two. After several weeks, most fission products have decayed. Concentrations and exposure rates can be determined with increasing accuracy as time passes. Approximate calibration of the equipment for measurements of surface contamination and natural radioactivity can be performed in the laboratory. Further checks of equipment should include accurate measurements of the spectrum resolution. Detectors should be checked individually, and all together. Further control of dead time and pulse pile-up should be performed. Energy calibration, electronics performance and data equipment should be tested against results from the original calibration. (AB).

  19. Fission power flattening in hybrid blankets using mixed fuel

    International Nuclear Information System (INIS)

    In a source-driven fissionable blanket, a flat fission power density (FPD) is achieved by using a mixed fuel (ThO2 and natural UO2) with the thoriumuranium ratio changing from front to back in the ten fuel rows along the radial direction. A straightforward graphic method is used. The temporal behavior of the FPD has been observed for an operation period of 6 months and for a plant load factor of 75% by applying a fusion driver neutron flux of 1014 14-MeV neutrons(cm2 . s) at the first wall, corresponding to --2.25 MWm2. To keep the power density flat, it is necessary to replace the fuel in rows 1, 2, and 3, close to the first wall. The time intervals for this operation increase, counting from initial start-up, typically, 2 months, 6 months, etc. One result of this study is that plutonium produced in such a hybrid blanket contains very low amounts of even isotopic components even over very long operation times of --3 yr. Hence, if fusion reactors are introduced into the energy market, special regulations are needed for international safeguarding

  20. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A. [Argonne National Lab., IL (United States)

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  1. Neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Pomp S.

    2012-02-01

    Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean

  2. Microscopic theory of nuclear fission: a review

    Science.gov (United States)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to

  3. SOFIA, a Next-Generation Facility for Fission Yields Measurements and Fission Study. First Results and Perspectives

    Science.gov (United States)

    Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.

    2015-10-01

    Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.

  4. 14. International workshop on nuclear fission physics. Proceedings

    International Nuclear Information System (INIS)

    The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed

  5. Geometrical and statistical factors in fission of small metal clusters

    OpenAIRE

    Obolensky, O. I.; Lyalin, A. G.; Solov'yov, A. V.; Greiner, W.

    2005-01-01

    Fission of metastable charged univalent metal clusters has been studied on example of Na_{10}^{2+} and Na_{18}^{2+} clusters by means of density functional theory methods. Energetics of the process, i.e. dissociation energies and fission barriers, as well as its dynamics, i.e. fission pathways, have been analyzed. The dissociation energies and fission barriers have been calculated for the full range of fission channels for the Na_{10}^{2+} cluster. The impact of cluster structure on the fissi...

  6. Application of the dinuclear system model to fission process

    Science.gov (United States)

    Andreev, A. V.; Shneidman, T. M.; Ventura, A.

    2016-01-01

    A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron-induced fission of 239Pu.

  7. Application of the dinuclear system model to fission process

    Directory of Open Access Journals (Sweden)

    Andreev A. V.

    2016-01-01

    Full Text Available A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron–induced fission of 239Pu.

  8. Irradiation effects and behaviour of fission products in zirconia and spinel; Effets d'irradiation et comportement des produits de fission dans la zircone et le spinelle

    Energy Technology Data Exchange (ETDEWEB)

    Gentils, A

    2003-10-01

    Crystalline oxides, such as zirconia (ZrO{sub 2}) and spinel (MgAl{sub 2}O{sub 4}), are promising inert matrices for the transmutation of plutonium and minor actinides. This work deals with the study of the physico-chemical properties of these matrices, more specifically their behaviour under irradiation and their capacity to retain fission products. Irradiations at low energy and incorporation of stable analogs of fission products (Cs, I, Xe) into yttria-stabilized zirconia and magnesium-aluminate spinel single crystals were performed by using the ion implanter IRMA (CSNSM-Orsay). Irradiations at high energy were made on several heavy ion accelerators (GANIL-Caen, ISL-Berlin, HIL-Warsaw). The damage induced by irradiation and the release of fission products were monitored by in situ Rutherford Backscattering Spectrometry experiments. Transmission electron microscopy was also used in order to determine the nature of the damage induced by irradiation. The results show that irradiation of ZrO{sub 2} and MgAl{sub 2}O{sub 4} with heavy ions (about hundred keV and about hundred MeV) induces a huge structural damage in crystalline matrices. Total disorder (amorphization) is however never reached in zirconia, contrary to what is observed in the case of spinel. The results also emphasize the essential role played by the concentration of implanted species on their retention capacity. A dramatic release of fission products was observed when the concentration exceeds a threshold of a few atomic percent. Irradiation of implanted samples with medium-energy noble-gas ions leads to an enhancement of the fission product release. The exfoliation of spinel crystals implanted at high concentration of Cs ions is observed after a thermal treatment at high temperature. (author)

  9. Fast Neutron Induced Fission neutron Spectra Below the Incident Energy

    Energy Technology Data Exchange (ETDEWEB)

    Woodring, Mitchell L.; Egan, James J.; Kegel, Gunter H.; DeSimone, David J.

    2008-06-15

    Fission neutron spectra from neutron induced fission in 235U and 239Pu for energies below that of the neutron inducing fission have been measured. The spectra were obtained for 1.5 MeV and 2.5 MeV incident neutrons. Previous accelerator-based fission neutron spectra measurements have been seriously complicated by time-correlated gamma rays and scattered neutrons from the fission sample. Three barium fluoride detectors were placed near the sample undergoing induced fission and used to identify fission gamma rays. A coincidence of fission gamma rays was used to gate a liquid scintillator neutron detector to distinguish fission events from other events. The fission neutron spectral shape and average energy measured in this experiment compare well to both previous measurements and prior theory and also suggest a dependence on incident neutron energy and mass of the fissioning nucleus. An overview of the experiment, a discussion of the results, and the importance of this work to homeland security are given.

  10. Conservation of Isospin in Neutron-rich Fission Fragments

    Science.gov (United States)

    Jain, A. K.; Choudhury, D.; Maheshwari, B.

    2014-06-01

    On the occasion of the 75th anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions 238U(18O,f) and 208Pb(18O,f) as well as a thermal neutron fission reaction 245Cm(nth,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  11. Conservation of Isospin in Neutron-Rich Fission Fragments

    CERN Document Server

    Jain, Ashok Kumar; Maheshwari, Bhoomika

    2014-01-01

    On the occasion of the $75^{th}$ anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavy-ion reactions $^{238}$U($^{18}$O,f) and $^{208}$Pb($^{18}$O,f) as well as a thermal neutron fission reaction $^{245}$Cm(n$^{th}$,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  12. Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes

    CERN Document Server

    Lestone, J P

    2014-01-01

    Fortran subroutines have been written to simulate the production of fission neutrons from the spontaneous fission of 252Cf and 240Pu, and from the thermal neutron induced fission of 239Pu and 235U. The names of these four subroutines are getnv252, getnv240, getnv239, and getnv235, respectively. These subroutines reproduce measured first, second, and third moments of the neutron multiplicity distributions, measured neutron-fission correlation data for the spontaneous fission of 252Cf, and measured neutron-neutron correlation data for both the spontaneous fission of 252Cf and the thermal neutron induced fission of 235U. The codes presented here can be used to study the possible uses of neutron-neutron correlations in the area of transparency measurements and the uses of neutron-neutron correlations in coincidence neutron imaging.

  13. A transferable model for singlet-fission kinetics.

    Science.gov (United States)

    Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications. PMID:24848234

  14. Progress in fission product nuclear data. No. 14

    International Nuclear Information System (INIS)

    This is the 14th issue of a report series on Fission Product Nuclear Data published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of fission product yields, neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data from neutron induced and spontaneous fission, lumped fission product data. The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. The third part contains requirements for further measurements

  15. Nucleation and spreading of a heterochromatic domain in fission yeast.

    Science.gov (United States)

    Obersriebnig, Michaela J; Pallesen, Emil M H; Sneppen, Kim; Trusina, Ala; Thon, Geneviève

    2016-01-01

    Outstanding questions in the chromatin field bear on how large heterochromatin domains are formed in space and time. Positive feedback, where histone-modifying enzymes are attracted to chromosomal regions displaying the modification they catalyse, is believed to drive the formation of these domains; however, few quantitative studies are available to assess this hypothesis. Here we quantified the de novo establishment of a naturally occurring ∼20-kb heterochromatin domain in fission yeast through single-cell analyses, measuring the kinetics of heterochromatin nucleation in a region targeted by RNAi and its subsequent expansion. We found that nucleation of heterochromatin is stochastic and can take from one to ten cell generations. Further silencing of the full region takes another one to ten generations. Quantitative modelling of the observed kinetics emphasizes the importance of local feedback, where a nucleosome-bound enzyme modifies adjacent nucleosomes, combined with a feedback where recruited enzymes can act at a distance. PMID:27167753

  16. Sub-library of Updated Fission Barrier Parameters(CENPL-FBP2)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fission barrier parameters are important to determine the fission character of a nucleus. The fission barrier parameters and fission level densities are key ingredients in calculations of not only fission cross section but also various cross sections, and spectra for the fissile nuclides, even heavy nuclides at higher incident energies. It is necessaries that the accuracy of fission barrier parameters requires even higher, and nuclides with fission barrier parameters can cover even wider nuclear range.

  17. Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres.

    Science.gov (United States)

    Gadaleta, Mariana C; Das, Mukund M; Tanizawa, Hideki; Chang, Ya-Ting; Noma, Ken-ichi; Nakamura, Toru M; Noguchi, Eishi

    2016-03-01

    Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless), a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless) in regulation of telomere stability in cancer cells. PMID:26990647

  18. Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres.

    Directory of Open Access Journals (Sweden)

    Mariana C Gadaleta

    2016-03-01

    Full Text Available Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless, a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless in regulation of telomere stability in cancer cells.

  19. Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres

    Science.gov (United States)

    Gadaleta, Mariana C.; Das, Mukund M.; Tanizawa, Hideki; Chang, Ya-Ting; Noma, Ken-ichi; Nakamura, Toru M.; Noguchi, Eishi

    2016-01-01

    Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1Timeless, a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1Timeless in regulation of telomere stability in cancer cells. PMID:26990647

  20. SABR Fusion-Fission Hybrid Studies

    Science.gov (United States)

    Stewart, Chris

    2012-03-01

    The Subcritical Advanced Burner Reactor (SABR) concept is a fast reactor comprised of a tokamak fusion neutron source based on ITER surrounded by an annular fission core adapted from Integral Fast Reactor designs. Previous work has examined SABR used to help close the nuclear fuel cycle by fissioning the transuranics from spent nuclear fuel. One focus of the present work is a SABR Breeder Reactor to achieve tritium self-sufficieny and a Pu breeding ratio significantly above 1 in order to provide fuel for SABR as well as for MOX-fueled LWR's and other fast reactors. Another focus of this research is the dynamic safety simulation of lloss-of-flow loss-of-heat-sink, loss-of-power, and positive reactivity accidents in the TRU fuel SABR burner reactor. The reactivity effect of thermal-induced bowing of fuel pins has been modeled, which is expected to provide passive safety.

  1. Fusion-fission energy systems evaluation

    International Nuclear Information System (INIS)

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept

  2. FALSTAFF: A new tool for fission studies

    Directory of Open Access Journals (Sweden)

    Dore D.

    2013-12-01

    Full Text Available The future NFS installation will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest for the nuclear community in view of the development of the fast reactor technology will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow the simultaneous measurement of the complementary fragments velocity and energy. The performances of TOF detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown.

  3. In-beam Fission Study at JAEA

    Directory of Open Access Journals (Sweden)

    Nishio Katsuhisa

    2013-12-01

    Full Text Available Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  4. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  5. Delayed Fission Neutrons. Proceedings of a Panel

    International Nuclear Information System (INIS)

    Proceedings of a panel organized by the IAEA and held in Vienna, 24-27 April 1967. The increasing sophistication in reactor design and, in particular, the advent of fast reactors have shown that delayed fission neutrons play a major role in considerations of operational stability and safety. Fourteen leading scientists from nine Member States made vital new data available and defined areas of investigation for future experimental and theoretical work. The data are summarized in an Annex at the end of the Proceedings. The contents include papers on the importance of delayed neutron data in reactor design, on which fission products should be considered as precursors, and on experimental methods for separating and determining the precursors. Each paper is in its original language (11 English, 1 French, 2 Russian) and is preceded by an abstract in English with a second one in the original language if this is not English. The summarized discussions, summary and Annex are in English. (author)

  6. Opimization of fusion-driven fissioning systems

    International Nuclear Information System (INIS)

    Potential advantages of hybrid or fusion/fission systems can be exploited in different ways. With selection of the 238U--239Pu fuel cycle, we show that the system has greatest value as a power producer. Numerical examples of relative revenue from power production vs. 239Pu production are discussed, and possible plant characteristics described. The analysis tends to show that the hybrid may be more economically attractive than pure fusion systems

  7. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  8. Singlet fission: Towards efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Zdeněk; Wen, Jin [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic); Michl, Josef [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)

    2015-12-31

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  9. Fissionable material handlers certification training program

    International Nuclear Information System (INIS)

    A formal program for certification of fissionable material handlers is presented that cultivates safe working practices. This certification complies with the training requirements of the Department of Energy Directive 0530 (ERDA Manual Chapter 0530), Nuclear Criticality Safety. The program consists of a series of classroom lectures, on-the-job training, and examinations in criticality safety, radiation protection, industrial safety, emergency procedures, and the employee's specific work operations. The program for recertification is also discussed

  10. Neutron measurements performed with miniature fission chambers

    International Nuclear Information System (INIS)

    This research aims at proposing solutions regarding instruments to perform neutron flow measurements in nuclear power reactors and to perform measurements of the reaction rates of highly radioactive transuranic fissile elements in experimental reactors. This research is also part of a program aimed at the adjustment of the Cadarache cross section set. The report defines the instrumentation, recalls the operation of fission chambers, discusses the implemented instrumentation, and discusses the obtained measurements

  11. Singlet fission: Towards efficient solar cells

    International Nuclear Information System (INIS)

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency

  12. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  13. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  14. Fission product release in conditions of a spent fuel pool severe accident

    International Nuclear Information System (INIS)

    Full text: Depending on the residence time, fuel burnup, and fuel rack configuration, there may be sufficient decay heat for the fuel clad to heat up, swell, and burst in case of a loss of pool water. Initiating event categories can be: loss of offsite power from events initiated by severe weather, internal fire, loss of pool cooling, loss of coolant inventory, seismic event, aircraft impact, tornado, missile attack. The breach in the clad releases the radioactive gases present in the gap between the fuel and clad, what is called 'gap release'. If the fuel continues to heat up, the zirconium clad will reach the point of rapid oxidation in air. This reaction of zirconium and air, or zirconium and steam is exothermic. The energy released from the reaction, combined with the fuel's decay energy, can cause the reaction to become self-sustaining and ignite the zirconium. The increase in heat from the oxidation reaction can also raise the temperature in adjacent fuel assemblies and propagate the oxidation reaction. Simultaneously, the sintered UO2 pellets resulting from pins destroying are oxidized. Due to the self-disintegration of pellets by oxidation, fission gases and low volatile fission products are released. The release rate, the chemical nature and the amount of fission products depend on powder granulation distribution and environmental conditions. The zirconium burning and pellets self-disintegration will result in a significant release of spent fuel fission products that will be dispersed from the reactor site. (author)

  15. A brief history of the Delayed'' discovery of nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E.

    1989-08-01

    This year marks the Fiftieth Anniversary of the discovery of Nuclear Fission. In the early 1930's, the neutron was discovered, followed by the discovery of artificial radioactivity and then the use of the neutron to produce artificial radioactivity. The first experiments resulting in the fission of uranium took place in 1934. A paper which speculated on fission as an explanation was almost immediately published, yet no one took it seriously not even the author herself. Why did it take an additional five years before anyone realized what had occurred This is an abnormally long time in a period when discoveries, particularly in nuclear physics, seemed to be almost a daily occurrence. The events which led up to the discovery are recounted, with an attempt made to put them into their historical perspective. The role played by Mendeleev's Periodic Table, the role of the natural radioactive decay chain of uranium, the discovery of protactinium, the apparent discovery of masurium (technetium) and a speculation on the reason why Irene Curie may have missed the discovery of nuclear fission will all be discussed. 43 refs.

  16. General Description of Fission Observables - JEFF Report 24. GEF Model

    International Nuclear Information System (INIS)

    The Joint Evaluated Fission and Fusion (JEFF) Project is a collaborative effort among the member countries of the OECD Nuclear Energy Agency (NEA) Data Bank to develop a reference nuclear data library. The JEFF library contains sets of evaluated nuclear data, mainly for fission and fusion applications; it contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yield data and thermal scattering law data. The General fission (GEF) model is based on novel theoretical concepts and ideas developed to model low energy nuclear fission. The GEF code calculates fission-fragment yields and associated quantities (e.g. prompt neutron and gamma) for a large range of nuclei and excitation energy. This opens up the possibility of a qualitative step forward to improve further the JEFF fission yields sub-library. This report describes the GEF model which explains the complex appearance of fission observables by universal principles of theoretical models and considerations on the basis of fundamental laws of physics and mathematics. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that comply with the needs for applications in nuclear technology. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated. (authors)

  17. Optimization of coolant arrangement for fusion-fission hybrid reactor and analysis of ex-core nature circulation%聚变-裂变混合堆冷却剂布置优化及堆外自然循环分析

    Institute of Scientific and Technical Information of China (English)

    喻章程; 解衡

    2013-01-01

    The simulation and numerical computation with FLUENT code are conducted for the fuel zone of fusion-fission hybrid reactor.Two coolant flowing arrangement schemes,uniform flow,and proportional flow based on the gross heat of each fuel cell,are compared for optimization.The results of the numerical computation show that the heat conduction between adjacent fuel cells is weak and the heat is carried away by the coolant in the duct,and it is almost completely equal to the heat produced by corresponding fuel cell except the fuel cell 1.Then the value of heat structure of the coolant duct is the gross heat of each fuel cell that means there is no need to remodel the fuel zone with system analysis program.The fuel zone has lower maximum temperature and more even temperature distribution in the case of proportional flow compared with uniform flow,but the effect of flattening temperature is not obvious.The capacity of heat transfer of ex-core nature circulation in the imaginary LOCA is also evaluated.The results show that the reactor core will be melted within 520s after shut-down without the nature circulation and the maximum temperature in the fuel region will be only elevated to 584.4℃ within 1000s after shut-down if with the nature circulation.%根据聚变-裂变混合堆概念堆型的燃料区水冷设计,通过FLUENT建模和模拟计算,比较了均匀流量和按燃料单元发热量比例分配流量两种冷却剂布置方案.数值计算结果表明,这两种布置方案中燃料单元之间的导热很小,除燃料单元1中冷却管道外,其余的冷却管道带走的热量几乎等于相应燃料单元的发热量,在用系统分析程序等效建模时,不必重新确定冷却管道的热构件;对后一种布置方案燃料区的最高温度更低,温度分布更均匀,但温度展平效果并不明显.计算了堆外自然循环系统在假设的失水事故(LOCA)中的导热能力.结果表明,如果不采用自然循环系统,停堆后520s

  18. Spontaneous fission of superheavy nucleus $^{286}$Fl

    CERN Document Server

    Poenaru, Dorin N

    2016-01-01

    The decimal logarithm of spontaneous fission half-life of the superheavy nucleus $^{286}$Fl experimentally determined is $\\log_{10} T_f^{exp} (s) = -0.632$. We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. In the first stage we study the statics. At a given mass asymmetry up to about $\\eta=0.5$ the potential barrier has a two hump shape, but for larger $\\eta$ it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay and $\\alpha$~decay. The least action trajectory is determined in the plane $(R,\\eta)$ where $R$ is the separation distance of the fission fragments and $\\eta$ is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deforma...

  19. Parametric analyses of fusion-fission systems

    International Nuclear Information System (INIS)

    After a short review of the nuclear reactions relevant to fusion-fission systems the various types of blankets and characteristic model cases are presented. The fusion-fission system is modelled by its energy flow diagram. The system components and the system as a whole are characterized by 'component parameters' and 'system parameters' all of which are energy ratios. A cost estimate is given for the net energy delivered by the system, and a collection of formulas for the various energies flowing in the system in terms of the thermal energy delivered by the fusion part is presented. For sensitivity analysis four reference cases are defined which combine two plasma confinement schemes (mirror and tokamak) with two fissile fuel cycles (thorium-uranium and uranium-plutonium). The sensitivity of the critical plasma energy multiplication, of the circulating energy fraction, and of the energy cost with respect to changes of the component parameters is analysed. For the mirror case only superconducting magnets are considered, whereas two tokimak cases take into account both superconducting and normal-conducting coils. A section presenting relations between the plasma energy multiplication and the confinement parameter n tausub(E) of driven tokamak plasmas is added for reference. The conclusions summarize the results which could be obtained within the framework of energy balances, cost estimates and their parametric sensitivities. This is supplemented by listing those issues which lie beyond this scope but have to be taken into account when assessments of fusion-fission systems are made. (orig.)

  20. Simulating an Exploding Fission-Bomb Core

    Science.gov (United States)

    Reed, Cameron

    2016-03-01

    A time-dependent desktop-computer simulation of the core of an exploding fission bomb (nuclear weapon) has been developed. The simulation models a core comprising a mixture of two isotopes: a fissile one (such as U-235) and an inert one (such as U-238) that captures neutrons and removes them from circulation. The user sets the enrichment percentage and scattering and fission cross-sections of the fissile isotope, the capture cross-section of the inert isotope, the number of neutrons liberated per fission, the number of ``initiator'' neutrons, the radius of the core, and the neutron-reflection efficiency of a surrounding tamper. The simulation, which is predicated on ordinary kinematics, follows the three-dimensional motions and fates of neutrons as they travel through the core. Limitations of time and computer memory render it impossible to model a real-life core, but results of numerous runs clearly demonstrate the existence of a critical mass for a given set of parameters and the dramatic effects of enrichment and tamper efficiency on the growth (or decay) of the neutron population. The logic of the simulation will be described and results of typical runs will be presented and discussed.

  1. Capture and fission with DANCE and NEUANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2015-12-15

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  2. Capture and fission with DANCE and NEUANCE

    Science.gov (United States)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-01

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  3. Tritium chemistry in fission and fusion reactors

    International Nuclear Information System (INIS)

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 1013Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 1010Bq (0.5 Ci) per day per ton of fuel

  4. Mass and Inertia Parameters for Nuclear Fission

    International Nuclear Information System (INIS)

    The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)

  5. Mass and inertia parameters for nuclear fission

    International Nuclear Information System (INIS)

    The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)

  6. Time dependent particle emission from fission products

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Shannon T [Los Alamos National Laboratory; Kawano, Toshihiko [Los Alamos National Laboratory; Moller, Peter [Los Alamos National Laboratory

    2010-01-01

    Decay heating following nuclear fission is an important factor in the design of nuclear facilities; impacting a variety of aspects ranging from cooling requirements to shielding design. Calculations of decay heat, often assumed to be a simple product of activity and average decay product energy, are complicated by the so called 'pandemonium effect'. Elucidated in the 1970's this complication arises from beta-decays feeding high-energy nuclear levels; redistributing the available energy between betas and gammas. Increased interest in improving the theoretical predictions of decay probabilities has been, in part, motivated by the recent experimental effort utilizing the Total Absorption Gamma-ray Spectrometer (TAGS) to determine individual beta-decay transition probabilities to individual nuclear levels. Accurate predictions of decay heating require a detailed understanding of these transition probabilities, accurate representation of particle decays as well as reliable predictions of temporal inventories from fissioning systems. We will discuss a recent LANL effort to provide a time dependent study of particle emission from fission products through a combination of Quasiparticle Random Phase Approximation (QRPA) predictions of beta-decay probabilities, statistical Hauser-Feshbach techniques to obtain particle and gamma-ray emissions in statistical Hauser-Feshbach and the nuclear inventory code, CINDER.

  7. Capture and fission with DANCE and NEUANCE

    International Nuclear Information System (INIS)

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  8. Accurate fission data for nuclear safety

    CERN Document Server

    Solders, A; Jokinen, A; Kolhinen, V S; Lantz, M; Mattera, A; Penttila, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S

    2013-01-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons...

  9. Development of fission Mo production technology

    International Nuclear Information System (INIS)

    The feasibility study is accomplished in this project for the development of fission moly production. The KAERI process proposed for development in KAERI is discussed together with those of the American Cintichem and Russian IPPE, each of which would be plausible for introduction whenever the indigenous development is not much feasible. For the conceptual design of the KAERI irradiation target, analysis method is set up and some preliminary analysis is performed accordingly for the candidate design. To establish chemical process concepts for the afore-mentioned three processes, characteristics, operation conditions, and the management of the generated wastes are investigated. Basic requirements of hotcell facilities for chemical processing and a possible way of utilizing the existing hotcells are discussed in parallel with the counter-measures for the construction of new hotcell facilities. Various conditions of target irradiation for fission moly production in Hanaro are analyzed. Plan for introduction of the relevant technology introduction and for procurement of highly enriched uranium are considered. On the basis of assuming some conditions, the economic feasibility study for fission moly production is also overviewed. (author). 22 refs., 28 tabs., 24 figs

  10. Gas-phase transport of fission products

    International Nuclear Information System (INIS)

    The paper presents the results of an experimental investigation to show the importance of nuclear aerosol formation as a mechanism for semi-volatile fission product transport under certain postulated HTGR accident conditions. Simulated fission product Sr and Ba as oxides are impregnated in H451 graphite and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperatures. Increasing carrier-gas flow rate greatly enhances the extent of particulate transport. The release and transport of simulated fission product Ag as metal are also investigated. Electron microscopic examinations of the collected Sr and Ag aerosols show large agglomerates composed of primary particles roughly 0.06 to 0.08 μm in diameter

  11. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    OpenAIRE

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast...

  12. 50 years with nuclear fission, April 25-28, 1989. A prelude to fission: France

    International Nuclear Information System (INIS)

    A personal account of the events leading to the 1938 discovery, by Irene Joliot-Curie and the author, of the unidentified element R3.5h will be presented, as well as the experimental methods proving the R3.5h had chemical properties similar to lanthanum which in turn led Hahn and Strassmann to the discovery of fission in 1939. The author points out that Irene Curie's intuition indicated the path towards the solution of the problem of uranium irradiated by neutrons, which made possible the discovery of fission by Hahn and Strassmann. Further applications of fission became possible by tremendous efforts and excellent contributions of scientists in the USA

  13. Prompt Fission Neutron Spectra of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  14. Negative Pion Induced Fission with Heavy Target Nuclei

    Institute of Scientific and Technical Information of China (English)

    G. Sher; Mukhtar A. Rana; S. Manzoor; M. I. Shahzad

    2011-01-01

    We investigate fission induced by negative pions in copper and bismuth targets using CR-39 dielectric track detectors. The target-detector assemblies in Air-geometric configuration were exposed at the AGS facility of Brookhaven National Laboratory, USA. The exposed detectors were chemically etched under appropriate etching conditions and scanned to collect data in the form of fission fragments tracks produced as a result of interaction of pions with the target nuclei. Using the track counts, the experimental fission cross sections for copper and bismuth have been measured at energies of 500, 672, 1068 and 1665 MeV and compared with the calculation using the Cascade-Exciton Model code (CEM95). The values of fission probability based on experimental fission cross-sections have been compared with the theoretically calculated values of fission probabilities obtained using the CEM95 code. Good agreement is observed between the measured and computed results.

  15. Prompt Fission Gamma-ray Studies at DANCE

    Science.gov (United States)

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O'Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on 252Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and 239Pu. Correlated PFG data from 252Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  16. Nuclear data for neutron emission in the fission process

    International Nuclear Information System (INIS)

    This document contains the proceedings of the IAEA Consultants' Meeting on Nuclear Data for Neutron Emission in the Fission Process, Vienna, 22 - 24 October 1990. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers provide a review of the status of experimental and theoretical data on neutron emission in spontaneous and neutron induced fission with reference to the data needs for reactor applications oriented towards actinide burner studies. The specific topics covered are the following: experimental measurements and theoretical predictions and evaluations of fission neutron energy spectra, average prompt fission neutron multiplicity, correlation in neutron emission from complementary fragments, neutron emission during acceleration of fission fragments, statistical properties of neutron rich nuclei by study of emission spectra of neutrons from the excited fission fragments, integral qualification of nu-bar for the major fissile isotopes, nu-bar total of 239Pu and 235U, and related problems. Refs figs and tabs

  17. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. (author)

  18. Revision of the JENDL FP Fission Yield Data

    Directory of Open Access Journals (Sweden)

    Katakura Jun-ichi

    2016-01-01

    Full Text Available Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011 revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.

  19. Revision of the JENDL FP Fission Yield Data

    Science.gov (United States)

    Katakura, Jun-ichi; Minato, Futoshi; Ohgama, Kazuya

    2016-03-01

    Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011) revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.

  20. Microscopic description of 258Fm fission dynamic with pairing

    Science.gov (United States)

    Scamps, Guillaume; Simenel, Cédric; Lacroix, Denis

    2016-05-01

    Fission dynamic remains a challenge for nuclear microscopic theories. In order to understand the dynamic of the last stage of the fission process, the time-dependent Hartree-Fock approach with BCS pairing is applied to the describe the fission of the 258Fm. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.

  1. Microscopic description of 258Fm fission dynamic with pairing

    OpenAIRE

    Scamps Guillaume; Simenel Cédric; Lacroix Denis

    2016-01-01

    Fission dynamic remains a challenge for nuclear microscopic theories. In order to understand the dynamic of the last stage of the fission process, the time-dependent Hartree-Fock approach with BCS pairing is applied to the describe the fission of the 258Fm. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.

  2. Delayed fission of the 238U muonic atom

    International Nuclear Information System (INIS)

    The time distributions of fission and muon free decay events with respect to the moment of the muon-stop event have been measured for double and triple coincidences between these three events. The triple-coincidence time distributions give an indication of the o-curence of two new effects: the delayed fission of muonic 238U atom and conversion of muons from the fission fragments

  3. Fission fragment mass distributions in reactions populating 200Pb

    CERN Document Server

    Chaudhuri, A; Ghosh, T K; Banerjee, K; Sadhukhan, Jhilam; Bhattacharya, S; Roy, P; Roy, T; Bhattacharya, C; Asgar, Md A; Dey, A; Kundu, S; Manna, S; Meena, J K; Mukherjee, G; Pandey, R; Rana, T K; Srivastava, V; Dubey, R; Kaur, Gurpreet; Saneesh, N; Sugathan, P; Bhattacharya, P

    2016-01-01

    The fission fragment mass distributions have been measured in the reactions 16O + 184W and 19F+ 181Ta populating the same compound nucleus 200Pb? at similar excitation energies. It is found that the widths of the mass distribution increases monotonically with excitation energy, indicating the absence of quasi-fission for both reactions. This is contrary to two recent claims of the presence of quasi-fission in the above mentioned reactions.

  4. Possible origin of transition from symmetric to asymmetric fission

    Science.gov (United States)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-09-01

    The charged distributions of fragments produced in the electromagnetic-induced fission of the even-even isotopes of Rn, Ra, Th, and U are described within an improved scission-point model and compared with the available experimental data. The three-equal-peaked charge distributions are predicted for several fissioning nuclei with neutron number N = 136. The possible explanation of the transition from a symmetric fission mode to an asymmetric one around N ∼ 136 is presented. The excitation energy dependencies of the asymmetric and symmetric fission modes are anticipated.

  5. Spontaneous Muon Emission during Fission, a New Nuclear Radioactivity

    OpenAIRE

    Ion, D. B.; Ion, M. L. D.; Ion-Mihai, Reveica

    2011-01-01

    In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility par...

  6. New fission-fragment detector for experiments at DANCE

    Science.gov (United States)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-10-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a veto/trigger detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4 π detection of the fission fragments. The scintillation events caused by the fission fragment interactions in the films are registered with silicon photomultipliers. Design of the detector and test measurements are described. Work supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.

  7. Neutrino-Induced Fission and r-Process Nucleosynthesis

    OpenAIRE

    Qian, Y. -Z.

    2002-01-01

    An r-process scenario with fission but no fission cycling is considered to account for the observed abundance patterns of neutron-capture elements in ultra-metal-poor stars. It is proposed that neutrino reactions play a crucial role in inducing the fission of the progenitor nuclei after the r-process freezes out in Type II Supernovae. To facilitate neutrino-induced fission, the proposed r-process scenario is restricted to occur in a low-density environment such as the neutrino-driven wind fro...

  8. Fuel rod internal chemistry and fission products behaviour

    International Nuclear Information System (INIS)

    The present meeting was scheduled by the International Atomic Energy Agency upon the proposal of the members of the International Working Group on Water Reactor Fuel Performance and Technology. Forty-six participants representing fourteen countries and two international organizations attended the meeting. Twenty-one presentations were discussed in four sessions: thermodynamics of fission products (six papers); fission products migration and release (seven papers); fission product release in transients or accident conditions (four papers); fission products to cladding interaction - stress corrosion cracking (five papers). A separate abstract was prepared for all twenty-one papers

  9. Geometrical and statistical factors in fission of small metal clusters

    CERN Document Server

    Obolensky, O I; Solovyov, A V; Greiner, W

    2005-01-01

    Fission of metastable charged univalent metal clusters has been studied on example of Na_{10}^{2+} and Na_{18}^{2+} clusters by means of density functional theory methods. Energetics of the process, i.e. dissociation energies and fission barriers, as well as its dynamics, i.e. fission pathways, have been analyzed. The dissociation energies and fission barriers have been calculated for the full range of fission channels for the Na_{10}^{2+} cluster. The impact of cluster structure on the fission process has been elucidated. The calculations show that the geometry of the smaller fragment and geometry of its immediate neighborhood in the larger fragment play a leading role in defining the fission barrier height. The present study demonstrates importance of rearrangement of the cluster structure during fission. It may include forming a neck between the two fragments or fissioning via another isomer state of the parent cluster; examples of such processes are given. For several low-lying isomers of Na_{10}^{2+} clu...

  10. The multi-step prompt particle emission from fission fragments

    International Nuclear Information System (INIS)

    The purpose of this work is the study of non-equilibrium high-energy gamma emission from 252 Cf. In the framework of the formalism of statistical multi-step compound processes in nuclear reactions. A relation was found between the shape of the high-energy part of the gamma spectrum and different mechanisms of excitation of the fission fragments. Agreement with experimental data for different groups of fission fragments was obtained. The analysis of the experimental high-energy part of gamma spectra yields information about the mechanism of excitation of fission fragments. The influence of dissipation of the deformation excess on intrinsic excitation of fission fragments was studied. (authors)

  11. Observation of attachment ratio of fission products on solution aerosol

    International Nuclear Information System (INIS)

    Attachment behavior of fission products to solution aerosols has been observed to elucidate the role of chemical effects in the generation mechanism of fissionproduct aerosols. Primary aerosols generated from aqueous solution of sodium chloride or ammonium sulfate were passed through a fission-product chamber, and radioactive aerosols were generated by attaching fission products to the primary aerosol particles. Attachment ratios of the fission products on aerosols were estimated from activity measurements. It was found that the attachment ratio of the sodium chloride solution aerosol is larger than that of the ammonium sulfate solution aerosol. (author)

  12. Measurement of the fission yields of selected prompt and decay fission

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Reber; R.J. Gehrke; R. Aryaeinejad; J.K. Hartwell

    2005-03-01

    Gamma-ray spectrometry measurements have been made of the fission yields of selected ?-rays emitted by the spontaneously fissioning isotopes 252Cf and 244Cm. The measured ?-rays were selected based on their relative abundance in the spectrum and their freedom from interference or, in a few instances, ease of interference correction. From these data and the cumulative and independent yield data of ENGLAND and RIDER, those ?-rays that are primarily produced by radioactive decay, as opposed to direct yield, were converted into the decays per spontaneous fission expressed in percent and compared to cumulative yield values of ENGLAND and RIDER. For those ?-rays whose production is dominated by direct (independent) yield, the ratio of ?-rays per spontaneous fission is reported. The ?-ray yield can be compared to the independent yield values of ENGLAND and RIDER when 100% of the direct feeding passes through the ?-ray. In those cases where both cumulative and independent yields contribute to the observed ?-ray emission rate, a direct comparison is not possible but a method to quantify the contribution from each is proposed.

  13. Molecular distinction between true centric fission and pericentric duplication-fission

    NARCIS (Netherlands)

    Perry, J; Nouri, S; La, P; Daniel, A; Wu, ZH; Purvis-Smith, S; Northrop, E; Choo, KHA; Slater, HR

    2005-01-01

    Centromere (centric) fission, also known as transverse or lateral centric misdivision, has been defined as the splitting of one functional centromere of a metacentric or submetacentric chromosome to produce two derivative centric chromosomes. It has been observed in a range of organisms and has been

  14. Measurement of energy dependence of fission fragment angular anisotropy for resonance neutron induced fission of 235U aligned target

    International Nuclear Information System (INIS)

    The results of the experiment on measuring the energy dependence of fission fragment angular anisotropy in resonance neutron induced fission of 235U aligned target in energy region up to 42 eV are presented. The agreement with the data of Pattenden and Postma in resonances is good enough, while the theoretical curve, calculated using the R-matrix multilevel two fission channel approach, does not seem to describe the energy dependence of fission fragment angular anisotropy property. The necessity of taking into account the interference between levels with different spins is discussed. 11 refs., 2 figs

  15. Decay Chain Deduction of Uranium Fission Products.

    Science.gov (United States)

    Guo, Huiping; Tian, Chenyang; Wang, Xiaotian; Lv, Ning; Ma, Meng; Wei, Yingguang

    2016-07-01

    Delayed gamma spectrum is the fingerprint of uranium materials in arms control verification technology. The decay chain is simplified into basic state linear chain and excitation state linear chain to calculate and analyze the delayed gamma spectra of fission products. Formulas of the changing rule for nuclide number before and after zero-time are deduced. The C program for calculating the delayed gamma ray spectra data is constructed, and related experiments are conducted to verify this theory. Through analysis of the delayed gamma counts of several nuclides, the calculated results are found to be consistent with experimental values. PMID:27218290

  16. Material recognition using fission gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)], E-mail: giuseppe.viesti@pd.infn.it; Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2009-07-21

    Material recognition is studied by measuring the transmission spectrum of {sup 252}Cf fission gamma rays in the energy range E{sub {gamma}}=0.1-5.5 MeV for 0.1-MeV-wide energy bins through a number of elementary samples. Each transmitted spectrum is compared with a library of reference spectra for different elements providing the possibility of material identification. In case of elemental samples with known thickness, this procedure allows the identification of the sample Z with uncertainty typically lower than 3 Z-units over a wide range of elements. Applications to composite materials are also reported.

  17. True ternary fission of superheavy nuclei

    OpenAIRE

    Zagrebaev, V.I.; A. V. Karpov; Greiner, Walter

    2010-01-01

    We found that a true ternary fission with formation of a heavy third fragment (a new type of radioactivity) is quite possible for superheavy nuclei due to the strong shell effects leading to a three-body clusterization with the two doubly magic tin-like cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tin-like clusters with appropriate kinematics in low-energy collisions of medium mass nuclei with actinide targets. The three-b...

  18. Fission track age of Transantarctic Mountain microtektites

    Science.gov (United States)

    Folco, L.; Bigazzi, G.; D'Orazio, M.; Balestrieri, M. L.

    2011-05-01

    We determined the fission track age of Transantarctic Mountain microtektites. The plateau method yielded a formation age of 0.85 ± 0.17 Ma. This age overlaps within error with that of the catastrophic impact that produced the Australasian tektite-microtektite strewn field ca. 0.8 Ma ago. This provides further evidence that Transantarctic Mountain microtektites belong to the Australasian tektite-microtektite strewn field, as previously suggested on the basis of geochemical evidence, Sr-Nd isotope systematics and poorly resolved radiometric data.

  19. Adiabatic fission barriers in superheavy nuclei

    OpenAIRE

    Jachimowicz, P.; Kowal, M; Skalski, J.

    2016-01-01

    Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from ...

  20. The SOFIA experiment: Measurement of 236U fission fragment yields in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Grente L.

    2016-01-01

    Full Text Available The SOFIA (Studies On FIssion with Aladin experiment aims at measuring fission-fragments isotopic yields with high accuracy using inverse kinematics at relativistic energies. This experimental technique allows to fully identify the fission fragments in nuclear charge and mass number, thus providing very accurate isotopic yields for low energy fission of a large variety of fissioning systems. This report focuses on the latest results obtained with this set-up concerning electromagnetic-induced fission of 236U.

  1. Major features of a mirror fusion--fast fission hybrid reactor

    International Nuclear Information System (INIS)

    A conceptual design was made of a fusion-fission reactor. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and sustained by hot neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and is cooled by helium. It was shown how the reactor can be built using essentially present day construction technology and how the uranium bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel of which approximately 1200 kg of plutonium are produced each year along with the approximately 750 MW of electricity. (U.S.)

  2. Sodium aerosol release rate and nonvolatile fission product retention factor during a sodium-concrete reaction

    International Nuclear Information System (INIS)

    This paper reports on a series of tests conducted to study the mechanical release behavior of sodium aerosols containing nonvolatile fission products during a sodium-concrete reaction in which release behavior due to hydrodynamic breakup of the hydrogen bubble is predominant at the sodium pool surface. In the tests, nonradioactive materials, namely, strontium oxide, europium oxide, and ruthenium particles, whose sizes range from a few microns to several tens of microns, are used as nonvolatile fission product stimulants. The following results are obtained: The sodium aerosol release rate during the sodium-concrete reaction is larger than that of natural evaporation. The difference, however, becomes smaller with increasing sodium temperature: nearly ten times smaller at 400 degrees C and three times at 700 degrees C. The retention factors for the nonvolatile materials in the sodium pool increase to the range of 0.5 to 104 with an increase in the sodium temperature from 400 to 700 degrees C

  3. Design of fission neutron converter in HFETR

    International Nuclear Information System (INIS)

    In order to increase local fast neutron fluence rate in High Flux Engineering Test Reactor (HFETR), the fission neutron converter adopted the crisscross fuel rod whose fuel pellet was made of high fission density alloy UMo with 7% Mo. 62 fuel rods in the converter were arranged with triangle dot-matrix between outer tube with diameter of 6.3 mm and inner tube with diameter of 24 mm. And the converter has an irradiation hole with diameter of 20 mm in the center. The calculation result with MCNP shows that fast neutron (E>1 MeV) fluence rate of irradiated samples in the converter can achieve up to 3.34 × 1014 cm-2·s-1, which is about 40% higher than that in the HFETR core at the same position without converter. On the other hand, under the condition of design flow velocity and pressure, the analysis results with ANSYS/CFX show that the maximum permission power can reach 2.4 MW and the maximum power density of fuel pellet is S. 007 kW/cm3. Here, the cladding temperature of the fuel rod is 193.6 ℃, and the converter can fulfill the requirement of thermal-hydraulic design criteria of HFETR and flow instability will not occur. (authors)

  4. Exciton Correlations in Intramolecular Singlet Fission.

    Science.gov (United States)

    Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Appavoo, Kannatassen; Steigerwald, Michael L; Campos, Luis M; Sfeir, Matthew Y

    2016-06-15

    We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases. PMID:27183040

  5. Resuspension of fission products from sump water

    International Nuclear Information System (INIS)

    Resuspension of fission products from the boiling sump in the container has long been known as a source of airborne radioactivity. Since this source is very weak, however, not much attention had been paid to it as long as radiological source terms were governed by stronger sources. Recently, the continuous reduction of source terms and the introduction of accident management measures led to a situation where weak but longlasting sources of radioactivity may become important, either as a contribution to the radiological sources term or as an impact to accident filtration systems. Existing data on resuspension from boiling contaminated water all suffered from two deficiencies: they were measured under conditions unlike those in a reactor accident and they scattered over more than two orders of magnitude. In a precursor study this uncertainty was considered to be too large to use the data for source term calculations. A later experimental research programme REST (REsuspension Source Term) was carried out at the Laboratorium fuer Aerosolphysik und Filtertechnik (LAF), Kernforschungszentrum Karlsruhe (KfK). The programme was supported by the Commission of the European Communities Ispra, under Contract No 3009-86-07 ELISPD in the framework of the shared-cost action programme on reactor safety. The investigations started in 1987 and ended in 1990. The objectives of the REST programme were to measure resuspension source characteristics under simulated accident conditions such that an application of the data in fission product transport and depletion models is possible

  6. Application of fission track analysis to hydrocarbon exploration

    International Nuclear Information System (INIS)

    The temperature range over which fission tracks in apatite show observable annealing effects coincides with that responsible for the maximum generation of liquid hydrocarbons. Work is currently in progress in a number of Australian and overseas sedimentary basins, applying Apatite Fission Track Analysis (AFTA) to investigate the thermal evolution of these hydrocarbon prospective regions

  7. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D. [Argonne National Lab., IL (United States)

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  8. Metal cluster fission: jellium model and Molecular dynamics simulations

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia;

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18^2+ ...

  9. Probability of induced nuclear fission in diffusion model

    International Nuclear Information System (INIS)

    The apparatus of the fission diffusion model taking into account nonequilibrium stage of the process as applied to the description of the probability of induced nuclear fission is described. The results of calculation of the energy dependence of 212Po nuclear fissility according to the new approach are presented

  10. Fission-track ages from the Precambrian of Shropshire.

    Science.gov (United States)

    Naeser, C.W.; Toghill, P.; Ross, R.J.

    1982-01-01

    Four samples of Longmyndian and Uriconian strata from S of Shrewsbury, England have been processed for apatite and/or zircon fission-track ages. The resultant ages illustrate how depth of burial may affect fission-track ages. The analytical procedures followed were as described in Naeser (1979).-from Authors

  11. About the dynamics of statistical fluctuations at fission

    International Nuclear Information System (INIS)

    The dynamics of statistical fluctuations at fission are discussed. Quadratic and non-quadratic potentials are considered and the Fokker-Planck equation is solved for a one-dimensional model. As an example the fission of 205At is discussed. (BRB)

  12. Late Time Emission of Prompt Fission Gamma Rays

    CERN Document Server

    Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B

    2016-01-01

    The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...

  13. Fission energy program of the US Department of Energy, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Robert L.

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.

  14. Fission energy program of the US Department of Energy, FY 1981

    International Nuclear Information System (INIS)

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems

  15. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  16. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. Chemical effects have been shown to be important in defining and quantifying fission product source terms in a wide range of accident sequences. Both the chemical forms of the fission product vapours and their interactions with reactor materials aerosols could have a major effect on the magnitude and physicochemical forms of the radioactive emission from a severe reactor accident. Only the main conclusions are presented in this summary document; detailed technical aspects of the work are described in separate reports listed in the annex

  17. Characterization of the scission point from fission-fragment velocities

    CERN Document Server

    Caamaño, M; Delaune, O; Schmidt, K -H; Schmitt, C; Audouin, L; Bacri, C -O; Benlliure, J; Casarejos, E; Derkx, X; Fernández-Domínguez, B; Gaudefroy, L; Golabek, C; Jurado, B; Lemasson, A; Ramos, D; Rodríguez-Tajes, C; Roger, T; Shrivastava, A

    2015-01-01

    The isotopic-yield distributions and kinematic properties of fragments produced in transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV of excitation energy respectively, were measured in inverse kinematics with the spectrometer VAMOS. The kinematic properties of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.

  18. Applications of Event-by-Event Fission Modeling with FREYA

    Directory of Open Access Journals (Sweden)

    Vogt R.

    2012-02-01

    Full Text Available The recently developed code FREYA (Fission Reaction Event Yield Algorithm generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on 239Pu(nth,f, 240Pu(sf and 252Cf(sf, we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.

  19. Development of fission chamber for nuclear reactors controlling

    International Nuclear Information System (INIS)

    Fission Chambers are gas-filled type detectors that operate in the ionization chamber regime, which is without electron multiplication. As the fill-gas is not directly ionized by neutrons, fission chambers are lined with fissile material that through interaction with neutrons fission products are produced, are highly ionizing particles. Pulse type operation of these detectors are used for neutron flux measurements during start up and shut-down reactor conditions in which pulses of high amplitude produced by fission products can be easily discriminated from those produced by alpha radiation from uranium and also from the external gamma field. With current or current fluctuation mode operation (Campbell) the use of these detectors can be extended for the whole range of reactor operation. In this work, it is presented the development and construction of a fission chamber at IPEN-CNEN/SP. Furthermore, the material and techniques used and also the operational characteristics obtained with the first prototype are given. (author)

  20. Determining isotopic distributions of fission products with a penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Karvonen, P.; Eronen, T.; Elomaa, V.V.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Peraejaervi, K.; Rahaman, S.; Rinta-Antila, S.; Saastamoinen, A.; Sonoda, T.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2010-04-15

    A novel method to determine independent yields in particle-induced fission employing the ion guide technique and ion counting after a Penning trap has been developed. The method takes advantage of the fact that a Penning trap can be used as a precision mass filter, which allows an unambiguous identification of the fission fragments. The method was tested with 25MeV and 50MeV proton-induced fission of {sup 238}U. The data is internally reproducible with an accuracy of a few per cent. A satisfactory agreement was obtained with older ion guide yield measurements in 25MeV proton-induced fission. The results for Rb and Cs yields in 50MeV proton-induced fission agree with previous measurements performed at an isotope separator equipped with a chemically selective ion source. (orig.)

  1. Simple estimate of fission rate during JCO criticality accident

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro [Faculty of Studies on Contemporary Society, Aichi Shukutoku Univ., Nagakute, Aichi (Japan)

    2000-03-01

    The fission rate during JCO criticality accident is estimated from fission-product (FP) radioactivities in a uranium solution sample taken from the preparation basin 20 days after the accident. The FP radioactivity data are taken from a report by JAERI released in the Accident Investigation Committee. The total fission number is found quite dependent on the FP radioactivities and estimated to be about 4x10{sup 16} per liter, or 2x10{sup 18} per 16 kgU (assuming uranium concentration 278.9 g/liter). On the contrary, the time dependence of the fission rate is rather insensitive to the FP radioactivities. Hence, it is difficult to determine the fission number in the initial burst from the radioactivity data. (author)

  2. Fission fragment mass distributions via prompt -ray spectroscopy

    Indian Academy of Sciences (India)

    L S Danu; D C Biswas; B K Nayak; R K Choudhury

    2015-09-01

    The distribution of fragment masses formed in nuclear fission is one of the most striking features of the process. Such measurements are very important to understand the shape evolution of the nucleus from ground state to scission through intermediate saddle points. The fission fragment mass distributions, generally obtained via conventional methods (i.e., by measuring the energy and/or the velocity of the correlated fission fragments) are limited to a mass resolution of 4–5 units. On the other hand, by employing the -ray spectroscopy, it is possible to estimate the yield of individual fission fragments. In this work, determination of the fission fragment mass distribution by employing prompt -ray spectroscopy is described along with the recent results on 238U(18O, f) and 238U(32S, f) systems.

  3. The distribution and behavior of fission products inside the containment

    International Nuclear Information System (INIS)

    Following accident scenarios resulting in core melt and failure of reactor pressure vessel, the molten core debris will be ejected from the vessel by the process of high pressure melt ejection or relocation by gravity to the reactor cavity. After the ejection of the fission products laden molten core debris, the fission products will be released and distributed to the containment atmosphere. Noble gases and other high-volatile fission products, such as Xe, I, Cs, and Te, contained in the molten core debris will be released completely to the containment, while the more refractory fission products, which include lanthanides and actinides (Sr, Ba, Ru, La) will be partially released. Fission products are distributed in the containment atmosphere in the forms of gases, aerosols, particles, and deposition on surfaces and water pools

  4. Characteristics of fission product release from a molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.I.; Suh, K.Y.; Kang, C.S. [Seoul National Univ., Dept. of Nuclear Engineering (Korea, Republic of)

    2001-07-01

    The volatile fission products are released from the debris pool, while the less volatile fission products tend to remain as condensed phases because of their low vapor pressure. The release of noble gases and the volatile fission products is dominated by bubble dynamics. The release of the less volatile fission products from the pool can be analyzed based on mass transport through a liquid with the convection flow. The physico-numerical models were orchestrated from existing submodels in various disciplines of engineering to estimate the released fraction of fission products from a molten pool. It was assumed that the pool has partially filled hemispherical geometry. For the high pool pressure, the diameter of the bubbles at detachment was calculated utilizing the Cole and Shulman correlation with the effect of system pressure. Sensitivity analyses were performed and results of the numerical calculations were compared with analysis results for the TMI-2 accident. (author)

  5. ISOLDE experiment explores new territory in nuclear fission

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    An international collaboration led by the University of Leuven, Belgium, exploiting ISOLDE’s radioactive beams, has recently discovered an unexpected new type of asymmetric nuclear fission, which challenges current theories. The surprising result opens the way for new nuclear structure models and further theories to elucidate the question.   Resonance Ionization Laser Ion Source (RILIS) in action at ISOLDE. RILIS was instrumental in providing the pure beam necessary for the successful nuclear fission experiment. In nuclear fission, the nucleus splits into two fragments (daughter nuclei), releasing a huge amount of energy. Nuclear fission is exploited in power plants to produce energy. From the fundamental research point of view, fission is not yet fully understood decades after its discovery and its properties can still surprise nuclear physicists. The way the process occurs can tell us a lot about the internal structure of the nucleus and the interactions taking place inside the com...

  6. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  7. Experimental studies of fission properties utilized in reactor design

    International Nuclear Information System (INIS)

    Experimental studies of fission properties utilized in reactor design. A programme of experimental studies of fission parameters useful in reactor design is described including the following: (a) The periods and yields of delayed-neutron groups emitted following the neutron-induced fission of Pu241 are measured. Evidence for systematic isotopic dependence of delayed-neutron yields is presented. An experimental investigation of the relation between the time behaviour of delayed-neutron emission and the energy of the incident neutron inducing fission is described. (b) The cross-section for the inducing, of fission in Am243, Pu242 and Pu241 with neutrons in the energy range 0.030 to 1.8 MeV is measured. Emphasis is placed upon the detailed dependence of the fission cross-section on the incident-neutron energy. The absolute values of the cross-sections are given to a precision of ∼25%. (c) Detailed results of a measurement of the Pu241 fission-neutron spectrum are given, including the spectral shape and average fission-neutron energy. Techniques and methods of measuring prompt-fission-neutron spectra are described. (d) The dependence of #-v# (the average number of neutrons emitted per fission) of U235 on the incident neutron energy is measured from 100 keV to 1.6 MeV. #-v# of U238 and other fissile isotopes is compared to #-v# of U235 (thermal). The relative precision of the measurements is #>approx#1.2%. (author)

  8. Report on simulation of fission gas and fission product diffusion in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division

    2016-07-22

    In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving XeU3O cluster recombines quickly with irradiation induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher

  9. Report on simulation of fission gas and fission product diffusion in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division

    2016-07-22

    In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving XeU3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher

  10. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  11. Detecting fission from special nuclear material sources

    Science.gov (United States)

    Rowland, Mark S.; Snyderman, Neal J.

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  12. Lasers from fission. [nuclear pumping feasibility experiments

    Science.gov (United States)

    Schneider, R. T.; Thom, K.; Helmick, H. H.

    1975-01-01

    The feasibility of the nuclear pumping of lasers was demonstrated in three experiments conducted independently at three different laboratories. In this context nuclear pumping of lasers is understood to be the excitation of a laser by the kinetic energy of the fission fragments only. A description is given of research concerned with the use of nuclear energy for the excitation of gas lasers. Experimental work was supplemented by theoretical research. Attention is given to a nuclear pumped He-Xe laser, a nuclear pumped CO laser, and a neon-nitrogen laser pumped by alpha particles. Studies involving uranium hexafluoride admixture to laser media are discussed along with research on uranium hexafluoride-fueled reactors.

  13. Fusion-Fission hybrid reactors and nonproliferation

    International Nuclear Information System (INIS)

    New options for the development of the nuclear energy economy which might become available by a successful development of fusion-breeders or fusion-fission hybrid power reactors, identified and their nonproliferative attributes are discussed. The more promising proliferation-resistance ettributes identified include: (1) Justification for a significant delay in the initiation of fuel processing, (2) Denaturing the plutonium with 238Pu before its use in power reactors of any kind, and (3) Making practical the development of denatured uranium fuel cycles and, in particular, denaturing the uranium with 232U. Fuel resource utilization, time-table and economic considerations associated with the use of fusion-breeders are also discussed. It is concluded that hybrid reactors may enable developing a nuclear energy economy which is more proliferation resistant than possible otherwise, whileat the same time, assuring high utilization of t he uranium and thorium resources in an economically acceptable way. (author)

  14. A Fission-Fusion Origin for Life

    Science.gov (United States)

    Norris, V.; Raine, D. J.

    1998-10-01

    To develop a comprehensive `cells-first' approach to the origin of life, we propose that protocells form spontaneously and that the fission and fusion of these protocells drives the dynamics of their evolution. The fitness criterion for this evolution is taken to be the the stability (conservation) of domains in the protocellular membrane as determined by non-covalent molecular associations between the amphiphiles of the membrane and a subset of the macromolecules in the protocell. In the presence of a source of free energy the macromolecular content of the protocell (co-)evolves as the result of (domain-dependent) membrane-catalysed polymerisation of the prebiotic constituents delivered to the protocell by fusion. The metabolism of the cell therefore (co-)evolves on a rugged fitness landscape. We indicate how domain evolution with the same fitness criterion can potentially give rise to coding. Membrane domains may therefore provide the link between protocells and the RNA/DNA-world.

  15. Intramolecular Singlet Fission in Oligoacene Heterodimers.

    Science.gov (United States)

    Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Steigerwald, Michael L; Sfeir, Matthew Y; Campos, Luis M

    2016-03-01

    We investigate singlet fission (SF) in heterodimers comprising a pentacene unit covalently bonded to another acene as we systematically vary the singlet and triplet pair energies. We find that these energies control the SF process, where dimers undergo SF provided that the resulting triplet pair energy is similar or lower in energy than the singlet state. In these systems the singlet energy is determined by the lower-energy chromophore, and the rate of SF is found to be relatively independent of the driving force. However, triplet pair recombination in these heterodimers follows the energy gap law. The ability to tune the energies of these materials provides a key strategy to study and design new SF materials-an important process for third-generation photovoltaics. PMID:26836223

  16. Fission product margin in burnup credit analyses

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is currently working toward the licensing of a methodology for using actinide-only burnup credit for the transportation of spent nuclear fuel (SNF). Important margins are built into this methodology. By using comparisons with a representative experimental database to determine bias factors, the methodology ensures that actinide concentrations and worths are estimated conservatively; furthermore, the negative net reactivity of certain actinides and all fission products (FPs) is not taken into account, thus providing additional margin. A future step of DOE's effort might aim at establishing an actinide and FP burnup credit methodology. The objective of this work is to establish the uncertainty to be applied to the total FP worth in SNF. This will serve two ends. First, it will support the current actinide-only methodology by demonstrating the margin available from FPs. Second, it will identify the major contributions to the uncertainty and help set priorities for future work

  17. Structural materials for fission & fusion energy

    Directory of Open Access Journals (Sweden)

    Steven J. Zinkle

    2009-11-01

    Full Text Available Structural materials represent the key for containment of nuclear fuel and fission products as well as reliable and thermodynamically efficient production of electrical energy from nuclear reactors. Similarly, high-performance structural materials will be critical for the future success of proposed fusion energy reactors, which will subject the structures to unprecedented fluxes of high-energy neutrons along with intense thermomechanical stresses. Advanced materials can enable improved reactor performance via increased safety margins and design flexibility, in particular by providing increased strength, thermal creep resistance and superior corrosion and neutron radiation damage resistance. In many cases, a key strategy for designing high-performance radiation-resistant materials is based on the introduction of a high, uniform density of nanoscale particles that simultaneously provide good high temperature strength and neutron radiation damage resistance.

  18. Reflections on the discovery of fission

    Energy Technology Data Exchange (ETDEWEB)

    Peieris, Rudolf (Oxford Univ. (UK). Dept. of Theoretical Physics)

    1989-12-28

    In this article an eminent scientist looks back on the fifty years since the discovery of nuclear fission. Starting with Enrico Fermi's work with neutrons in the 1930s, the author then introduces Neils Bohr's ideas about atomic structure. The puzzle of what happens when uranium was bombarded by neutrons was gradually unravelled. Finally by 1939 it was becoming realised that the uranium nucleus had split in two. Gradually physicists began to speculate on the possibility of harnessing some of the energy stored in the nucleus and on the idea of a chain reaction. As the end of the decade approached, workers in the field combined with military forces to develop a weapon based on this reaction, the Manhatton Project. The author notes how fast an obscure, esoteric piece of physics research, can be taken up into the military and political area. (UK).

  19. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  20. Nuclear fission and the transuranium elements

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs.