WorldWideScience

Sample records for oils oleaginous species

  1. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species.

    Science.gov (United States)

    Dai, Ziyu; Deng, Shuang; Culley, David E; Bruno, Kenneth S; Magnuson, Jon K

    2017-08-01

    Interest in using renewable sources of carbon, especially lignocellulosic biomass, for the production of hydrocarbon fuels and chemicals has fueled interest in exploring various organisms capable of producing hydrocarbon biofuels and chemicals or their precursors. The oleaginous (oil-producing) yeast Lipomyces starkeyi is the subject of active research regarding the production of triacylglycerides as hydrocarbon fuel precursors using a variety of carbohydrate and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements through the development and use of the tools of synthetic biology for this oleaginous species. The first step in establishment of synthetic biology tools for an organism is the development of effective and reliable transformation methods with suitable selectable marker genes and demonstration of the utility of the genetic elements needed for expression of introduced genes or deletion of endogenous genes. Chemical-based methods of transformation have been published but suffer from low efficiency. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species. The deletion of the peroxisomal biogenesis factor 10 gene was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial β-glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1α promoter was also stably expressed in six different Lipomyces species. The results from this study demonstrate that Agrobacterium-mediated transformation is a reliable and effective genetic tool for homologous recombination and expression of heterologous genes in L. starkeyi and other Lipomyces

  2. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Deng, Shuang; Culley, David E.; Bruno, Kenneth S.; Magnuson, Jon K.

    2017-06-19

    Background: Because of interest in the production of renewable bio-hydrocarbon fuels, various living organisms have been explored for their potential use in producing fuels and chemicals. The oil-producing (oleaginous) yeast Lipomyces starkeyi is the subject of active research regarding the production of lipids using a wide variety of carbon and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements using the tools of synthetic biology and metabolic engineering. However, using these tools for strain improvement requires the establishment of effective and reliable transformation methods with suitable selectable markers (antibiotic resistance or auxotrophic marker genes) and the necessary genetic elements (promoters and terminators) for expression of introduced genes. Chemical-based methods have been published, but suffer from low efficiency or the requirement for targeting to rRNA loci. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. Results: In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species and that the introduced DNA can be reliably integrated into the chromosomes of these species. The gene deletion of Ku70 and Pex10 was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial -glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1 promoter was also stably expressed in seven different Lipomyces species. Conclusion: The results from this study clearly demonstrate that Agrobacterium-mediated transformation is a reliable genetic tool for gene deletion and integration and expression of heterologous genes in L. starkeyi and other Lipomyces species.

  3. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species

    Czech Academy of Sciences Publication Activity Database

    Kolouchová, I.; Schreiberová, O.; Sigler, Karel; Masák, J.; Řezanka, Tomáš

    2015-01-01

    Roč. 15, č. 7 (2015) ISSN 1567-1356 R&D Projects: GA ČR GA14-00227S Institutional support: RVO:61388971 Keywords : oleaginous yeasts * non-oleaginous yeasts * volatile fatty acids Subject RIV: EE - Microbiology, Virology Impact factor: 2.479, year: 2015

  4. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    Science.gov (United States)

    2010-01-01

    Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1), lipid/biomass (68%) and lipid/glucose yields (16%). Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils. PMID:20863365

  5. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    Directory of Open Access Journals (Sweden)

    De Lucia Marzia

    2010-09-01

    Full Text Available Abstract Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1, lipid/biomass (68% and lipid/glucose yields (16%. Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils.

  6. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel

    Directory of Open Access Journals (Sweden)

    Khot Mahesh

    2012-05-01

    Full Text Available Abstract Background Single cell oils (SCOs accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. Results In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w of their dry cell mass (4.14 - 6.44 g L-1 as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0, stearic (C18:0 and oleic (C18:1 acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass

  7. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel.

    Science.gov (United States)

    Khot, Mahesh; Kamat, Srijay; Zinjarde, Smita; Pant, Aditi; Chopade, Balu; Ravikumar, Ameeta

    2012-05-30

    Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w) of their dry cell mass (4.14 - 6.44 g L-1) as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0), stearic (C18:0) and oleic (C18:1) acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass and lipid content were obtained at 30gL-1

  8. EVALUATION OFAMATHEMATICAL MODEL FOR OIL EXTRACTION FROM OLEAGINOUS SEEDS

    Directory of Open Access Journals (Sweden)

    Giuseppe Toscano

    2007-06-01

    Full Text Available Mechanical extraction from seeds represents an important process in the production of vegetable oils. The efficiency of this step can have an effect on the economic convenience of the entire production chain of vegetable oils. However, the mechanical presses used for extraction are designed following criteria based more on the experience and intuition of the operators than on rigorous analyses of the physical principles involved in the process. In this study we have tested the possibility of applying a mathematical model that reproduces oil extraction from seeds, on a laboratory type of continuous press. In other words, we have compared the results of our mathematical model with those obtained from real extractions with mechanical presses on sunflower seeds. Our model is based on determining the main operating parameters of mechanical extraction, such as temperature, pressure and compression time, and on the knowledge of some physical characteristics of the solid matrix of the seeds. The results obtained are interesting because they include the role of operating parameters involved in extraction while the application of the mathematical model studied here allows, although with potential for improvement, a mathematical instrument to be developed for optimising the sizing and the operating conditions of mechanical presses.

  9. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms

    Directory of Open Access Journals (Sweden)

    Fortunate Laker

    2018-01-01

    Full Text Available The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  10. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.

    Science.gov (United States)

    Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul

    2018-01-01

    The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  11. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    Science.gov (United States)

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  12. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species.

    Science.gov (United States)

    Sitepu, Irnayuli R; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J Bruce; Gillies, Laura A; Almada, Luis A G; Boundy-Mills, Kyria L

    2013-09-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Bioremediation of wastewater from edible oil refinery factory using oleaginous microalga Desmodesmus sp. S1.

    Science.gov (United States)

    Mar, Cho Cho; Fan, Yong; Li, Fu-Li; Hu, Guang-Rong

    2016-12-01

    Edible oil industry produced massive wastewater, which requires extensive treatment to remove pungent smell, high phosphate, carbon oxygen demand (COD), and metal ions prior to discharge. Traditional anaerobic and aerobic digestion could mainly reduce COD of the wastewater from oil refinery factories (WEORF). In this study, a robust oleaginous microalga Desmodesmus sp. S1 was adapted to grow in WEORF. The biomass and lipid content of Desmodesmus sp. S1 cultivated in the WEORF supplemented with sodium nitrate were 5.62 g·L(-1) and 14.49%, whereas those in the WEORF without adding nitrate were 2.98 g·L(-1) and 21.95%. More than 82% of the COD and 53% of total phosphorous were removed by Desmodesmus sp. S1. In addition, metal ions, including ferric, aluminum, manganese and zinc were also diminished significantly in the WEORF after microalgal growth, and pungent smell vanished as well. In comparison with the cells grown in BG-11 medium, the cilia-like bulges and wrinkles on the cell surface of Desmodesmus sp. S1 grown in WEORF became out of order, and more polyunsaturated fatty acids were detected due to stress derived from the wastewater. The study suggests that growing microalgae in WEORF can be applied for the dual roles of nutrient removal and biofuel feedstock production.

  14. Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species.

    Science.gov (United States)

    Liu, Yanbin; Yap, Sihui Amy; Koh, Chong Mei John; Ji, Lianghui

    2016-11-25

    Red yeast species in the Rhodotorula/Rhodosporidium genus are outstanding producers of triacylglyceride and cell biomass. Metabolic engineering is expected to further enhance the productivity and versatility of these hosts for the production of biobased chemicals and fuels. Promoters with strong activity during oil-accumulation stage are critical tools for metabolic engineering of these oleaginous yeasts. The upstream DNA sequences of 6 genes involved in lipid biosynthesis or accumulation in Rhodotorula toruloides were studied by luciferase reporter assay. The promoter of perilipin/lipid droplet protein 1 gene (LDP1) displayed much stronger activity (4-11 folds) than that of glyceraldehyde-3-phosphate dehydrogenase gene (GPD1), one of the strongest promoters known in yeasts. Depending on the stage of cultivation, promoter of acetyl-CoA carboxylase gene (ACC1) and fatty acid synthase β subunit gene (FAS1) exhibited intermediate strength, displaying 50-160 and 20-90% levels of GPD1 promoter, respectively. Interestingly, introns significantly modulated promoter strength at high frequency. The incorporation of intron 1 and 2 of LDP1 (LDP1in promoter) enhanced its promoter activity by 1.6-3.0 folds. Similarly, the strength of ACC1 promoter was enhanced by 1.5-3.2 folds if containing intron 1. The intron 1 sequences of ACL1 and FAS1 also played significant regulatory roles. When driven by the intronic promoters of ACC1 and LDP1 (ACC1in and LDP1in promoter, respectively), the reporter gene expression were up-regulated by nitrogen starvation, independent of de novo oil biosynthesis and accumulation. As a proof of principle, overexpression of the endogenous acyl-CoA-dependent diacylglycerol acyltransferase 1 gene (DGA1) by LDP1in promoter was significantly more efficient than GPD1 promoter in enhancing lipid accumulation. Intronic sequences play an important role in regulating gene expression in R. toruloides. Three intronic promoters, LDP1in, ACC1in and FAS1in, are

  15. Compositional Shift in Fatty Acid Profiles of Lipids Obtained from Oleaginous Yeasts upon the Addition of Essential Oil from Citrus sinensis L.

    Science.gov (United States)

    Uprety, Bijaya K; Rakshit, Sudip K

    2017-12-01

    Tailoring lipids from oleaginous yeasts to contain specific types of fatty acid is of considerable interest to food, fuel, and pharmaceutical industries. In this study, the essential oil obtained from Citrus sinesus L. has been used to alter the fatty acid composition of two common oleaginous yeasts, Rhodosporidium toruloides and Cryptococcus curvatus. With increasing levels of essential oil in the medium, the metabolic flux of the fatty acid biosynthesis pathway shifted towards saturated fatty acid production. Essential oil reduced the activities of elongase and ∆9 desaturase. This made the lipid obtained from both these yeasts rich in saturated fatty acids. At certain specific concentrations of the essential oil in the medium, the lipid obtained from R. toruloides and C. curvatus cultures was similar to mahuwa butter and palm oil, respectively. Limonene is the major constituents of orange essential oil. Its effect on one of the oleaginous yeasts, R. toruloides, was also studied separately. Effects similar to orange essential oil were obtained with limonene. Thus, we can conclude that limonene in orange essential oil brings about compositional change of microbial lipid produced in this organism.

  16. Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides.

    Science.gov (United States)

    Mitra, Debjani; Rasmussen, Mary L; Chand, Priyanka; Chintareddy, Venkat Reddy; Yao, Linxing; Grewell, David; Verkade, John G; Wang, Tong; van Leeuwen, J Hans

    2012-03-01

    This study highlights the potential of oleaginous fungus, Mucor circinelloides in adsorbing/assimilating oil and nutrients in thin stillage (TS), and producing lipid and protein-rich fungal biomass. Fungal cultivation on TS for 2 days in a 6-L airlift bioreactor, resulted in a 92% increase in oil yield from TS, and 20 g/L of fungal biomass (dry) with a lipid content of 46% (g of oil per 100g dry biomass). Reduction in suspended solids and soluble chemical oxygen demand (SCOD) in TS were 95% and 89%, respectively. The polyunsaturated fatty acids in fungal oil were 52% of total lipids. Fungal cells grown on Yeast Malt (YM) broth had a higher concentration of γ-linolenic acid (17 wt.%) than those grown on TS (1.4 wt.%). Supplementing TS with crude glycerol (10%, v/v) during the stationary growth phase led to a further 32% increase (from 46% to 61%) in cellular oil content. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species.

    Science.gov (United States)

    Vongsangnak, Wanwipa; Klanchui, Amornpan; Tawornsamretkit, Iyarest; Tatiyaborwornchai, Witthawin; Laoteng, Kobkul; Meechai, Asawin

    2016-06-01

    We present a novel genome-scale metabolic model iWV1213 of Mucor circinelloides, which is an oleaginous fungus for industrial applications. The model contains 1213 genes, 1413 metabolites and 1326 metabolic reactions across different compartments. We demonstrate that iWV1213 is able to accurately predict the growth rates of M. circinelloides on various nutrient sources and culture conditions using Flux Balance Analysis and Phenotypic Phase Plane analysis. Comparative analysis of three oleaginous genome-scale models, including M. circinelloides (iWV1213), Mortierella alpina (iCY1106) and Yarrowia lipolytica (iYL619_PCP) revealed that iWV1213 possesses a higher number of genes involved in carbohydrate, amino acid, and lipid metabolisms that might contribute to its versatility in nutrient utilization. Moreover, the identification of unique and common active reactions among the Zygomycetes oleaginous models using Flux Variability Analysis unveiled a set of gene/enzyme candidates as metabolic engineering targets for cellular improvement. Thus, iWV1213 offers a powerful metabolic engineering tool for multi-level omics analysis, enabling strain optimization as a cell factory platform of lipid-based production. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Harnessing indigenous plant seed oil for the production of bio-fuel by an oleaginous fungus, Cunninghamella blakesleeana- JSK2, isolated from tropical soil.

    Science.gov (United States)

    Sukrutha, S K; Janakiraman, Savitha

    2014-01-01

    Cunninghamella blakesleeana- JSK2, a gamma-linolenic acid (GLA) producing tropical fungal isolate, was utilized as a tool to evaluate the influence of various plant seed oils on biomass, oleagenicity and bio-fuel production. The fungus accumulated 26 % total lipid of their dry biomass (2 g/l) and 13 % of GLA in its total fatty acid. Among the various plant seed oils tested as carbon sources for biotransformation studies, watermelon oil had an effect on biomass and total lipid increasing up to 9.24 g/l and 34 % respectively. Sunflower, pumpkin, and onion oil increased GLA content between 15-18 %. Interestingly, an indigenous biodiesel commodity, Pongamia pinnata oil showed tremendous effect on fatty acid profile in C. blakesleeana- JSK2, when used as a sole source of carbon. There was complete inhibition of GLA from 13 to 0 % and increase in oleic acid content, one of the key components of biodiesel to 70 % (from 20 % in control). Our results suggest the potential application of indigenous plant seed oils, particularly P. pinnata oil, for the production of economically valuable bio-fuel in oleaginous fungi in general, and C. blakesleeana- JSK2, in particular.

  19. Selection of oleaginous yeasts for fatty acid production

    NARCIS (Netherlands)

    Lamers, Dennis; Biezen, van Nick; Martens, Dirk; Peters, Linda; Zilver, van de Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H.; Lokman, Christien

    2016-01-01

    Background: Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts

  20. Comparative Studies of Oleaginous Fungal Strains (Mucor circinelloides and Trichoderma reesei) for Effective Wastewater Treatment and Bio-Oil Production

    OpenAIRE

    Bhanja, Anshuman; Minde, Gauri; Magdum, Sandip; Kalyanraman, V.

    2014-01-01

    Biological wastewater treatment typically requires the use of bacteria for degradation of carbonaceous and nitrogenous compounds present in wastewater. The high lipid containing biomass can be used to extract oil and the contents can be termed as bio-oil (or biodiesel or myco-diesel after transesterification). The separate experiments were conducted on actual wastewater samples with 5% v/v inoculum of Mucor circinelloides MTCC1297 and Trichoderma reesei NCIM992 strains. The observed reduction...

  1. Biodiesel production by various oleaginous microorganisms from organic wastes.

    Science.gov (United States)

    Cho, Hyun Uk; Park, Jong Moon

    2018-05-01

    Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits.

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2014-01-01

    Full Text Available Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains and one time-series transcriptome dataset for triacylglycerol (TAG synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2 in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels.

  3. Selection of oleaginous yeasts for fatty acid production.

    Science.gov (United States)

    Lamers, Dennis; van Biezen, Nick; Martens, Dirk; Peters, Linda; van de Zilver, Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H; Lokman, Christien

    2016-05-27

    Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts can be used as the so-called second generation biofuels, which are based on non-food competing "waste carbon sources". In this study the selection of potentially new interesting oleaginous yeast strains is described. Important selection criteria were: a broad maximum temperature and pH range for growth (robustness of the strain), a broad spectrum of carbon sources that can be metabolized (preferably including C-5 sugars), a high total fatty acid content in combination with a low glycogen content and genetic accessibility. Based on these selection criteria, among 24 screened species, Schwanniomyces occidentalis (Debaromyces occidentalis) CBS2864 was selected as a promising strain for the production of high amounts of lipids.

  4. Bioprospecting the thermal waters of the Roman baths: isolation of oleaginous species and analysis of the FAME profile for biodiesel production

    Science.gov (United States)

    2013-01-01

    The extensive diversity of microalgae provides an opportunity to undertake bioprospecting for species possessing features suited to commercial scale cultivation. The outdoor cultivation of microalgae is subject to extreme temperature fluctuations; temperature tolerant microalgae would help mitigate this problem. The waters of the Roman Baths, which have a temperature range between 39°C and 46°C, were sampled for microalgae. A total of 3 green algae, 1 diatom and 4 cyanobacterial species were successfully isolated into ‘unialgal’ culture. Four isolates were filamentous, which could prove advantageous for low energy dewatering of cultures using filtration. Lipid content, profiles and growth rates of the isolates were examined at temperatures of 20, 30, 40°C, with and without nitrogen starvation and compared against the oil producing green algal species, Chlorella emersonii. Some isolates synthesized high levels of lipids, however, all were most productive at temperatures lower than those of the Roman Baths. The eukaryotic algae accumulated a range of saturated and polyunsaturated FAMEs and all isolates generally showed higher lipid accumulation under nitrogen deficient conditions (Klebsormidium sp. increasing from 1.9% to 16.0% and Hantzschia sp. from 31.9 to 40.5%). The cyanobacteria typically accumulated a narrower range of FAMEs that were mostly saturated, but were capable of accumulating a larger quantity of lipid as a proportion of dry weight (M. laminosus, 37.8% fully saturated FAMEs). The maximum productivity of all the isolates was not determined in the current work and will require further effort to optimise key variables such as light intensity and media composition. PMID:23369619

  5. Thermogravimetric kinetics of corn stalk pretreated by oleaginous fungi Cunninghamella echinulata.

    Science.gov (United States)

    Wu, Jianguo; Gao, Shi; Wan, Jilin; Zeng, Yelin; Ma, Fuying; Zhang, Xiaoyu

    2011-04-01

    The thermogravimetric and composition of corn stalk pretreated by oleaginous fungi Cunninghamella echinulata had been studied in this paper. Results indicated that pretreatment by oleaginous fungi C. echinulata could decrease the activation energy and make the pyrolysis more efficient and energy-saving. By bio-pretreatment, the contents of elements agreed with the weight loss, sugar content, and oil contents, especially the sulfur content was greatly decreased, greatly eliminating the inventory of gas contamination such as the emission of SOx and making the pyrolysis more environmentally friendly. Therefore, corn stalk with sugar pretreated by oleaginous fungi C. echinulata should be a good pyrolysis material to obtain high quality bio-oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. ... Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. C Dai, J Tao, F Xie, Y Dai, M Zhao. Abstract. This study explored a strategy to convert agricultural and forestry residues into ...

  7. Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts

    Science.gov (United States)

    Bruce S. Dien; Junyong Zhu; Patricia J. Slininger; Cletus P. Kurtzman; Bryan R. Moser; Patricia J. O' Bryan; Roland Gleisner; Michael A. Cotta

    2016-01-01

    Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils (SCO) using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrolyzing using commercial cellulases. A new SPORL process that uses pH...

  8. Effect of Sludge Concentration and Crude Glycerol Matrix as a Substrate on the Production of Single-Cell Oil by Oleaginous Yeast Yarrowia lipolytica SKY7

    Directory of Open Access Journals (Sweden)

    Saurabh Kumar Ram

    2018-04-01

    Full Text Available The disposal of excess crude glycerol produced by the booming biodiesel industry and wastewater sludge solid waste has become a severe problem, and alternate routes of use and valorization of these waste byproducts are needed. The use of cheaply available wastewater sludge solids in fermentation media is very much desirable to reduce the cost of production. The strains of Yarrowia lipolytica can assimilate a wide array of waste substrates, such as crude glycerol, waste cooking oil, starch wastewater, and cellulosic. This study optimized the concentration of wastewater sludge solids (5–35 g/L to be used with crude glycerol in fermentation media to produce microbial oil as feedstock for biodiesel production. The results indicated that 20 g/L of sludge solids with 40 g/L of crude glycerol resulted in highest lipid content of 29.35% in 96 h. Further, assuming wet extraction of lipids, it was found that at least 11.2% or higher lipid content is required for this process to have an overall positive net solid waste reduction. Insignificant inhibition was observed by the crude glycerol used in this study as compared to pure glycerol, which proves it to be an adequate source of carbon substrate for lipid production.

  9. Supercritical extraction of oleaginous: parametric sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Santos M.M.

    2000-01-01

    Full Text Available The economy has become universal and competitive, thus the industries of vegetable oil extraction must advance in the sense of minimising production costs and, at the same time, generating products that obey more rigorous patterns of quality, including solutions that do not damage the environment. The conventional oilseed processing uses hexane as solvent. However, this solvent is toxic and highly flammable. Thus the search of substitutes for hexane in oleaginous extraction process has increased in the last years. The supercritical carbon dioxide is a potential substitute for hexane, but it is necessary more detailed studies to understand the phenomena taking place in such process. Thus, in this work a diffusive model for semi-continuous (batch for the solids and continuous for the solvent isothermal and isobaric extraction process using supercritical carbon dioxide is presented and submitted to a parametric sensitivity analysis by means of a factorial design in two levels. The model parameters were disturbed and their main effects analysed, so that it is possible to propose strategies for high performance operation.

  10. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  11. Co-expression of Exo-inulinase and Endo-inulinase Genes in the Oleaginous Yeast Yarrowia lipolytica for Efficient Single Cell Oil Production from Inulin.

    Science.gov (United States)

    Shi, Nianci; Mao, Weian; He, Xiaoxia; Chi, Zhe; Chi, Zhenming; Liu, Guanglei

    2018-05-01

    Yarrowia lipolytica is a promising platform for the single cell oil (SCO) production. In this study, a transformant X+N8 in which exo- and endo-inulinase genes were co-expressed could produce an inulinase activity of 124.33 U/mL within 72 h. However, the inulinase activity of a transformant X2 carrying a single exo-inulinase gene was only 47.33 U/mL within 72 h. Moreover, the transformant X+N8 could accumulate 48.13% (w/w) SCO from inulin and the cell dry weight reached 13.63 g/L within 78 h, which were significantly higher than those of the transformant X2 (41.87% (w/w) and 11.23 g/L) under the same conditions. In addition, inulin hydrolysis and utilization of the transformant X+N8 were also more efficient than those of the transformant X2 during the fermentation process. These results demonstrated that the co-expression of the exo- and endo-inulinase genes significantly enhanced the SCO production from inulin due to the improvement of the inulinase activity and the synergistic action of exo- and endo-inulinase. Besides, over 95.01% of the fatty acids from the transformant X+N8 were C16-C18, especially C18:1 (53.10%), suggesting that the fatty acids could be used as feedstock for biodiesel production.

  12. Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae

    NARCIS (Netherlands)

    Ghafari, Mohsen; Rashidi, Behzad; Haznedaroglu, Berat Zeki

    2018-01-01

    In this study, effects of key macro and micronutrients on neutral lipid accumulation of six oleaginous microalgae species were investigated. For each nutrient, three different concentrations (0.5×, 1×, and 2×) were tested individually and compared to the most commonly utilized growth medium recipes.

  13. Crude oil degradation by Bacillus and Micrococcus species isolated ...

    African Journals Online (AJOL)

    Microorganisms capable of degrading crude oil were isolated from soil compost in Kano, northwestern Nigeria. The work was carried out with the aim of determining crude-oil biodegradation potentials of Bacillus and Micrococcus species isolated from the soil compost as well as the assessment of the applicability of ...

  14. LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Daniele Cocco

    2014-09-01

    Full Text Available This paper reports outcomes of life cycle assessments (LCAs of three different oleaginous bioenergy chains (oilseed rape, Ethiopian mustard and cardoon under Southern Europe conditions. Accurate data on field practices previously collected during a three-year study at two sites were used. The vegetable oil produced by oleaginous seeds was used for power generation in medium-speed diesel engines while the crop residues were used in steam power plants. For each bioenergy chain, the environmental impact related to cultivation, transportation of agricultural products and industrial conversion for power generation was evaluated by calculating cumulative energy demand, acidification potential and global warming potential. For all three bioenergy chains, the results of the LCA study show a considerable saving of primary energy (from 70 to 86 GJ·ha−1 and greenhouse gas emissions (from 4.1 to 5.2 t CO2·ha−1 in comparison to power generation from fossil fuels, although the acidification potential of these bioenergy chains may be twice that of conventional power generation. In addition, the study highlights that land use changes due to the cultivation of the abovementioned crops reduce soil organic content and therefore worsen and increase greenhouse gas emissions for all three bioenergy chains. The study also demonstrates that the exploitation of crop residues for energy production greatly contributes to managing environmental impact of the three bioenergy chains.

  15. Antifungal activity of some essential oils against toxigenic Aspergillus species.

    Science.gov (United States)

    Alizadeh, Alireza; Zamani, Elham; Sharaifi, Rohollah; Javan-Nikkhah, Mohammad; Nazari, Somayeh

    2010-01-01

    Increasing attentions have been paid on the application of essential oils and plant extracts for control of postharvest pathogens due to their natural origin and less appearance of resistance in fungi pathogens. Some Aspergillus species are toxigenic and responsible for many cases of food and feed contamination. Some Toxins that produce with some Aspergillus species are known to be potent hepatocarcinogens in animals and humans. The present work evaluated the parameters of antifungal activity of the essential oils of Zataria multiflora, Thymus migricus, Satureja hortensis, Foeniculum vulgare, Carum capticum and thiabendazol fungicide on survival and growth of different species of Aspergillus. Aerial part and seeds of plant species were collected then dried and its essential oils isolated by means of hydrodistillation. Antifungal activity was evaluated in vitro by poisonous medium technique with PDA medium at six concentrations. Results showed that all essential oils could inhibit the growth of Aspergillus species. The essential oil with the best effect and lowest EC50 and MIC (Minimum Inhibitory Concentration) was Z. multiflora (223 microl/l and 650 microl/l, respectively). The chemical composition of the Z. multiflora essential oil was analyzed by GC-MS.

  16. A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil

    Directory of Open Access Journals (Sweden)

    Aggelis, G.

    1995-06-01

    Full Text Available    The accumulation of lipids In microorganisms cultivated In growth media having as sole carbon and energy source vegetable or animal fat has been an object of research and industrial interest for many years. Interestingly, the accumulated fat often has a composition and structure much different from that of the fat present In the substrate.
       The present work describes a mathematical approach to the accumulation of fat by oleaginous microorganisms growing on medium containing vegetable oil as carbon source. A mathematical model, correlating the accumulation of reserve fat with the growth of microbial population and the available quantity of exocellular fat, is proposed. This model is verified by experimental data taken by cultivation of Mucor circinelloides CBS 172-27 on sunflower oil.
       The proposed model is described by the equation: XL = XLo + Lo(1-e-k2.t– (lnx-lnxo/k1    where XL(mg/l the concentration of reserve lipids at time t(h, XLo(mg/l the concentration of lipid reserves at time t=o, Lo(mg/l the initial concentration of exocellular fat (a t=o, X(mg/l the concentration of fat-free biomass at a given time t and Xo the concentration of fat-free biomass at time t=o; k1 and k2 constants.

       Durante muchos años la acumulación de lípidos en microorganismos desarrollados en medio de cultivo, tomando como única fuente de carbono y energía grasas vegetales o animales, ha sido objeto de investigación e Interés industrial.    Interesadamente, la grasa acumulada tiene a menudo una composición y estructura muy diferente de la que tiene la grasa presente en el sustrato.    El presente trabajo describe una aproximación matemática a la acumulaci

  17. Morphological diversity in oleaginous watermelon ( Citrullus ...

    African Journals Online (AJOL)

    A hundred and seventy-one oleaginous watermelon accessions either collected from different countries or obtained from gene banks were evaluated and compared based on 11 quantitative morphological traits. Principal component analysis on 11 traits revealed 81.19% of the total variability and pointed out variations ...

  18. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xylose assimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 ...

  19. Phytochemical and pharmacological properties of essential oils from Cedrus species.

    Science.gov (United States)

    Saab, Antoine M; Gambari, Roberto; Sacchetti, Gianni; Guerrini, Alessandra; Lampronti, Ilaria; Tacchini, Massimo; El Samrani, Antoine; Medawar, Samir; Makhlouf, Hassane; Tannoury, Mona; Abboud, Jihad; Diab-Assaf, Mona; Kijjoa, Anake; Tundis, Rosa; Aoun, Jawad; Efferth, Thomas

    2018-06-01

    Natural products frequently exert pharmacological activities. The present review gives an overview of the ethnobotany, phytochemistry and pharmacology of the Cedrus genus, e.g. cytotoxic, spasmolytic immunomodulatory, antiallergic, anti-inflammatory and analgesic activities. Cancer patients frequently seek remedies from traditional medicinal plants that are believed to exert less side effects than conventional therapy with synthetic drugs. A long-lasting goal of anti-cancer and anti-microbial therapy research is to find compounds with reduced side effects compared to currently approved drugs. In this respect, Cedrus species might be of interest. The essential oil isolated from Cedrus libani leaves may bear potential for drug development due to its high concentrations of germacrene D and β-caryophyllene. The essential oils from Cedrus species also show bioactivity against bacteria and viruses. More preclinical analyses (e.g. in vivo experiments) as well as clinical trials are required to evaluate the potential of essential oils from Cedrus species for drug development.

  20. Essential oil composition of four Artemisia species from Ethiopia

    Directory of Open Access Journals (Sweden)

    N. Asfaw

    2015-01-01

    Full Text Available The essential oil composition of four Artemisia species, namely A. schimperi Sch. Bip. ex Engl. A. abyssinica Sch. Bip. ex A. Rich., A. afra Jacq. ex Willd., and A. absinthium L. (previously called A. rehan from Ethiopia has been studied. The essential oil obtained from A. absinthium (seedling from Europe grown in two places in Ethiopia (Addis Ababa and Butajira was also analyzed for comparison. Morphological study on the leaves of A. absinthium L. from Ethiopia (previously called A. rehan and A. absinthium (from Europe was also conducted. The essential oils were obtained by hydrodistillation using a Clevenger apparatus and analyzed by capillary GC and GC/MS. Forty three compounds representing 76 to 94% of the oils were identified. The composition of the essential oils of A. schimperi, A. afra and A. abyssinica are mainly dominated by irregular monoterpenes: yogomi alcohol (13.5-37.6%, artemisyl acetate (12.7-35.5%, and artemisia ketone (2.3-13.2%. The composition of the oil of A. absinthium (previously A. rehan however, differs from the other three species in having camphor (21.2-28.3% and davanone (21.3-26.5% as major components. The composition of A. absinthum (Europe was found to have β-thujone (42.3-66.4% and chamazulene (11.3-24.2% as major components. The study indicated that the composition of the essential oil of A. absinthium (previously A. rehan is not only different from the other three species but also from A. absinthium from Europe and does not belong to any of the chemotypes described for the species in the literature. The morphological study on the leaves also showed that it differs from that of A. absinthium from Europe. DOI: http://dx.doi.org/10.4314/bcse.v29i1.11

  1. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Directory of Open Access Journals (Sweden)

    Jahanshir Amini

    2016-02-01

    Full Text Available In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC₅₀ values (ppm of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm. Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC₅₀ values for inhibition of the mycelial growth of P. capsici (31.473, P. melonis (33.097 and P. drechsleri (69.112, respectively. The mean EC₅₀ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral (39.16% and z-citral (30.95% were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05. Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

  2. Plant species responses to oil degradation and toxicity reduction in ...

    African Journals Online (AJOL)

    Vegetated plots were established by planting different plant species – legumes and vegetable (Abelmoschus, esculentus, Telfaria occidentalis and Vigna unguiculata) and applied with sawdust and chromolaena leaves at different intensities of oil pollution. Toxicity of the soil was evaluated using germination percentage, ...

  3. Olive oil adulterated with hazelnut oils: simulation to identify possible risks to allergic consumers

    NARCIS (Netherlands)

    Arlorio, M.; Coisson, J. D.; Bordiga, M.; Travaglia, F.; Garino, C.; Zuidmeer, L.; van Ree, R.; Giuffrida, M. G.; Conti, A.; Martelli, A.

    2010-01-01

    According to European Union Regulation EC 1531/2001, olive oil labelled as oextra-virgino should be cold-pressed and contain no refined oil or oil from other oleaginous seeds or nuts. Adulteration of extra virgin olive oil (EVOO) with hazelnut oil (HAO) is a serious concern both for oil suppliers

  4. Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609

    Directory of Open Access Journals (Sweden)

    Christine Sambles

    2017-09-01

    Full Text Available Most eukaryotic oleaginous species are yeasts and among them the basidiomycete red yeast, Rhodotorula (Rhodosporidium toruloides (Pucciniomycotina is known to produce high quantities of lipids when grown in nitrogen-limiting media, and has potential for biodiesel production. The genome of the CGMCC 2.1609 strain of this oleaginous red yeast was sequenced using a hybrid of Roche 454 and Illumina technology generating 13× coverage. The de novo assembly was carried out using MIRA and scaffolded using MAQ and BAMBUS. The sequencing and assembly resulted in 365 scaffolds with total genome size of 33.4 Mb. The complete genome sequence of this strain was deposited in GenBank and the accession number is LKER00000000. The annotation is available on Figshare (doi:10.6084/m9.figshare.4754251.

  5. Terpenes of Salvia species leaf oils: chemosystematic implications

    OpenAIRE

    Coassini Lokar, Laura; Moneghini, Mariarosa

    2017-01-01

    Wild specimens of Salvia L. were collected in three different moments of anthesis and their volatile leaf oils were analyzed by GC/GCMS. The quantitative terpene composition is very variable with the anthesis. S. bertolonii is the richest species in a-thujone. S. officinalis is characterized by high percentages of 1,8 cineole, 4-terpineol, isorboneol and a -bisabolol. In S. verticillata high percentages of borneol and {3-cariophyllene are present. In the three species a-thujone was always mor...

  6. Engineering the Chloroplast Genome of Oleaginous Marine Microalga Nannochloropsis oceanica

    Directory of Open Access Journals (Sweden)

    Qinhua Gan

    2018-04-01

    Full Text Available Plastid engineering offers an important tool to fill the gap between the technical and the enormous potential of microalgal photosynthetic cell factory. However, to date, few reports on plastid engineering in industrial microalgae have been documented. This is largely due to the small cell sizes and complex cell-wall structures which make these species intractable to current plastid transformation methods (i.e., biolistic transformation and polyethylene glycol-mediated transformation. Here, employing the industrial oleaginous microalga Nannochloropsis oceanica as a model, an electroporation-mediated chloroplast transformation approach was established. Fluorescent microscopy and laser confocal scanning microscopy confirmed the expression of the green fluorescence protein, driven by the endogenous plastid promoter and terminator. Zeocin-resistance selection led to an acquisition of homoplasmic strains of which a stable and site-specific recombination within the chloroplast genome was revealed by sequencing and DNA gel blotting. This demonstration of electroporation-mediated chloroplast transformation opens many doors for plastid genome editing in industrial microalgae, particularly species of which the chloroplasts are recalcitrant to chemical and microparticle bombardment transformation.

  7. Spatial undergrowth species composition in oil palm (Elaeis guineensis Jacq.) in West Sumatra

    OpenAIRE

    Germer, Jörn Uwe

    2003-01-01

    The area planted to oil palm expanded during the last decades substantially, making it become the world's second most important oil crop. Despite its economic significance the oil palm remains remarkably unknown. Little attention is paid also to the oil palm undergrowth, though important in stabilizing the agro-ecosystem in plantations. Comprehensive knowledge of undergrowth species adapted to specific ecological niches in oil palm plantations is essential to investigate their function in ...

  8. Essential Oils from Neotropical Piper Species and Their Biological Activities

    Science.gov (United States)

    da Trindade, Rafaela; Alves, Nayara Sabrina; Figueiredo, Pablo Luís; Maia, José Guilherme S.; Setzer, William N.

    2017-01-01

    The Piper genus is the most representative of the Piperaceae reaching around 2000 species distributed in the pantropical region. In the Neotropics, its species are represented by herbs, shrubs, and lianas, which are used in traditional medicine to prepare teas and infusions. Its essential oils (EOs) present high yield and are chemically constituted by complex mixtures or the predominance of main volatile constituents. The chemical composition of Piper EOs displays interspecific or intraspecific variations, according to the site of collection or seasonality. The main volatile compounds identified in Piper EOs are monoterpenes hydrocarbons, oxygenated monoterpenoids, sesquiterpene hydrocarbons, oxygenated sesquiterpenoids and large amounts of phenylpropanoids. In this review, we are reporting the biological potential of Piper EOs from the Neotropical region. There are many reports of Piper EOs as antimicrobial agents (fungi and bacteria), antiprotozoal (Leishmania spp., Plasmodium spp., and Trypanosoma spp.), acetylcholinesterase inhibitor, antinociceptive, anti-inflammatory and cytotoxic activity against different tumor cells lines (breast, leukemia, melanoma, gastric, among others). These studies can contribute to the rational and economic exploration of Piper species, once they have been identified as potent natural and alternative sources to treat human diseases. PMID:29240662

  9. Essential Oils Composition and Antioxidant Properties of Three Thymus Species

    Directory of Open Access Journals (Sweden)

    Hamzeh Amiri

    2012-01-01

    Full Text Available The essential oils of three wild-growing Thymus species, collected from west of Iran during the flowering stage, were obtained by hydrodistillation and analyzed by gas chromatography (GC and gas chromatography/mass spectrometry (GC-MS. Under the optimum extraction and analysis conditions, 44, 38, and 38 constituents (mainly monoterpenes compounds were identified in T. kotschyanus Boiss. and Hohen, T. eriocalyx (Ronniger Jalas, and T. daenensis subsp lancifolius (Celak Jalas which represented 89.9%, 99.7%, and 95.8% of the oils, respectively. The main constituents were thymol (16.4–42.6%, carvacrol (7.6–52.3%, and γ-terpinene (3–11.4%. Antioxidant activity was employed by two complementary test systems, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH free-radical scavenging and β-carotene/linoleic acid systems. Antioxidant activity of polar subfraction of T. daenensis subsp lancifolius (Celak Jalas was found to be higher than those of the others in DPPH assay, while nonpolar subfraction of T. eriocalyx (Ronniger Jalas has most antioxidant activity in β-carotene/linoleic acid test (19.1±0.1 μg/mL and 96.1±0.8% inhibition rate, resp..

  10. Comparison of Methods for Isolating High Quality DNA and RNA from an Oleaginous Fungus Cunninghamella bainieri Strain 2a1

    OpenAIRE

    Noor Adila, A. K.; Farah Diba, A. B.; Zamri, Z.; Wan Mohtar, W. Y.; Aidil, A. H.; Mahadi, N. M.; Murad, A. M. A.

    2007-01-01

    A number of protocols have been reported for efficient fungal DNA and RNA isolation. However, many of these methods are often designed for certain groups or morphological forms of fungi and, in some cases, are species dependent. In this report, we compared four published protocols for DNA isolation from a locally isolated oleaginous fungus, Cunninghamella bainieri strain 2a1. These protocols either involved the use of polyvinyl pyrrolidone (PVP), hexacetyltrimethylammonium bromide (CTAB) or w...

  11. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction.

    Science.gov (United States)

    Cao, Xuan; Lv, Yu-Bei; Chen, Jun; Imanaka, Tadayuki; Wei, Liu-Jing; Hua, Qiang

    2016-01-01

    Limonene, a monocyclic monoterpene, is known for its using as an important precursor of many flavoring, pharmaceutical, and biodiesel products. Currently, d-limonene has been produced via fractionation from essential oils or as a byproduct of orange juice production, however, considering the increasing need for limonene and a certain amount of pesticides may exist in the limonene obtained from the citrus industry, some other methods should be explored to produce limonene. To construct the limonene synthetic pathway in Yarrowia lipolytica , two genes encoding neryl diphosphate synthase 1 (NDPS1) and limonene synthase (LS) were codon-optimized and heterologously expressed in Y. lipolytica . Furthermore, to maximize limonene production, several genes involved in the MVA pathway were overexpressed, either in different copies of the same gene or in combination. Finally with the optimized pyruvic acid and dodecane concentration in flask culture, a maximum limonene titer and content of 23.56 mg/L and 1.36 mg/g DCW were achieved in the final engineered strain Po1f-LN-051, showing approximately 226-fold increase compared with the initial yield 0.006 mg/g DCW. This is the first report on limonene biosynthesis in oleaginous yeast Y. lipolytica by heterologous expression of codon-optimized tLS and tNDPS1 genes. To our knowledge, the limonene production 23.56 mg/L, is the highest limonene production level reported in yeast. In short, we demonstrate that Y. lipolytica provides a compelling platform for the overproduction of limonene derivatives, and even other monoterpenes.

  12. Cultivation of oleaginous Rhodotorula mucilaginosa in airlift bioreactor by using seawater.

    Science.gov (United States)

    Yen, Hong-Wei; Liao, Yu-Ting; Liu, Yi Xian

    2016-02-01

    The enormous water resource consumption is a concern to the scale-up fermentation process, especially for those cheap fermentation commodities, such as microbial oils as the feedstock for biodiesel production. The direct cultivation of oleaginous Rhodotorula mucilaginosa in a 5-L airlift bioreactor using seawater instead of pure water led to a slightly lower biomass being achieved, at 17.2 compared to 18.1 g/L, respectively. Nevertheless, a higher lipid content of 65 ± 5% was measured in the batch using seawater as compared to the pure water batch. Both the salinity and osmotic pressure decreased as the cultivation time increased in the seawater batch, and these effects may contribute to the high tolerance for salinity. No effects were observed for the seawater on the fatty acid profiles. The major components for both batches using seawater and pure water were C16:0 (palmitic acid), C18:1 (oleic acid) and C18:2 (linoleic acid), which together accounted for over 85% of total lipids. The results of this study indicated that seawater could be a suitable option for scaling up the growth of oleaginous R. mucilaginosa, especially from the perspective of water resource utilization. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Physico-Chemical Evaluation of Honey Fortified with Oleaginous Seeds

    Directory of Open Access Journals (Sweden)

    Ariana Bianca Velciov

    2014-11-01

    Full Text Available This research followed to achieve some natural-fortified food, based on honey and oleaginous fruits. Honey and oleaginous fruits are extremely valuable for human diet. With their rich nutrient content, new products obtained by mixing honey with seeds may be considered both traditional food with high nutritional value as well as fortified food. The samples were constituted from acacia flowers honey bought directly from the producer, to which were added various quantities of oleaginous fruits (seeds. Thus, we obtained 3 different types of fortified honey, using pumpkin seeds, sunflower seeds and hemp seeds. Samples obtained were stored in appropriate conditions. From these samples, were made analytical tests: ascorbic acid and humidity.

  14. Study of the oxidative stability of oils vegetables for production of Biodiesel

    Directory of Open Access Journals (Sweden)

    Marco Aurélio R Melo

    2014-04-01

    Full Text Available Biodiesel is technological and estrategical Brazilian oportunity once this country has abundant vegetable species which oils are extracted to produce this biofuel. Oleaginous viability depends on its technical, economical and social-environmental competitiviness. Fatty acid variety determines its thermal and oxidative stability, mainly polyunsaturated ones. In this point of view, this papers aims evaluate oxidative stability and resistence to thermal decomposition of pequi, buriti and macauba oils. These fatty acids profiles are in agreement with literature data. Comparing thermal and oxidative stability of these oils, it can be seen pequi oil is more easily to oxidate than buriti and macauba oils when PetroOXY and Rancimat methods are employed.

  15. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species.

    Science.gov (United States)

    Wang, Ming Li; Morris, Brad; Tonnis, Brandon; Davis, Jerry; Pederson, Gary A

    2012-07-04

    The Hibiscus genus encompasses more than 300 species, but kenaf (Hibiscus cannabinus L.) and roselle (Hibiscus sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterculic and vernolic acids. The fatty acid composition in the oil can directly affect oil quality and its utilization. However, the variability in oil content and fatty acid composition for these two species is unclear. For these two species, 329 available accessions were acquired from the USDA germplasm collection. Their oil content and fatty acid composition were determined by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Using NMR and GC analyses, we found that Hibiscus seeds on average contained 18% oil and seed oil was composed of six major fatty acids (each >1%) and seven minor fatty acids (each Hibiscus cannabinus seeds contained significantly higher amounts of oil (18.14%), palmitic (20.75%), oleic (28.91%), vernolic acids (VA, 4.16%), and significantly lower amounts of stearic (3.96%), linoleic (39.49%), and dihydrosterculic acids (DHSA, 1.08%) than H. sabdariffa seeds (17.35%, 18.52%, 25.16%, 3.52%, 4.31%, 44.72%, and 1.57%, respectively). For edible oils, a higher oleic/linoleic (O/L) ratio and lower level of DHSA are preferred, and for industrial oils a high level of VA is preferred. Our results indicate that seeds from H. cannabinus may be of higher quality than H. sabdariffa seeds for these reasons. Significant variability in oil content and major fatty acids was also detected within both species. The variability in oil content and fatty acid composition revealed from this study will be useful for exploring seed utilization and developing new cultivars in these Hibiscus species.

  16. Production of Palmitoleic and Linoleic Acid in Oleaginous and Nonoleaginous Yeast Biomass

    Directory of Open Access Journals (Sweden)

    Irena Kolouchová

    2016-01-01

    Full Text Available We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, and Candida sp. and traditional biotechnological nonoleaginous ones (Kluyveromyces polysporus, Torulaspora delbrueckii, and Saccharomyces cerevisiae as potential producers of dietetically important major fatty acids. The main objective was to examine the cultivation conditions that would induce a high ratio of dietary fatty acids and biomass. Though genus-dependent, the type of nitrogen source had a higher influence on biomass yield than the C/N ratio. The nitrogen source leading to the highest lipid accumulation was potassium nitrate, followed by ammonium sulfate, which is an ideal nitrogen source supporting, in both oleaginous and nonoleaginous species, sufficient biomass growth with concomitantly increased lipid accumulation. All yeast strains displayed high (70–90% content of unsaturated fatty acids in total cell lipids. The content of dietary fatty acids of interest, namely, palmitoleic acid and linoleic acid, reached in Kluyveromyces and Trichosporon strains over 50% of total fatty acids and the highest yield, over 280 mg per g of dry cell weight of these fatty acids, was observed in Trichosporon with ammonium sulfate as nitrogen source at C/N ratio 70.

  17. Oleaginous crops as integrated production platforms for food, feed, fuel and renewable industrial feedstock

    Directory of Open Access Journals (Sweden)

    Beaudoin Frédéric

    2014-11-01

    Full Text Available The world faces considerable challenges including how to produce more biomass for food, feed, fuel and industrial feedstock without significantly impacting on our environment or increasing our consumption of limited resources such as water or petroleum-derived carbon. This has been described as sustainable intensification. Oleaginous crops have the potential to provide renewable resources for all these commodities, provided they can be engineered to meet end-use requirements, and that they can be produced on sufficient scale to meet current growing world population and industrial demand. Although traditional breeding methods have been used successfully to modify the fatty acid composition of oils, metabolic engineering provides a more rapid and direct method for manipulating plant lipid composition. Recent advances in our understanding of the biochemical mechanisms of seed oil biogenesis and the cloning of genes involved in fatty acid and oil metabolic pathways, have allowed the generation of oilseed crops that produce ‘designer oils’ tailored for specific applications and the conversion of high biomass crops into novel oleaginous crops. However, improvement of complex quantitative traits in oilseed crops remains more challenging as the underlying genetic determinants are still poorly understood. Technological advances in sequencing and computing have allowed the development of an association genetics method applicable to crops with complex genomes. Associative transcriptomics approaches and high throughput lipidomic profiling can be used to identify the genetic components controlling quantitative variation for lipid related traits in polyploid crops like oilseed rape and provide molecular tools for marker assisted breeding. In this review we are citing examples of traits with potential for bio-refining that can be harvested as co-products in seeds, but also in non-harvested biomass.

  18. A sustainable use of low-cost raw substrates for biodiesel production by the oleaginous yeast Wickerhamomyces anomalus.

    Science.gov (United States)

    Arous, Fatma; Atitallah, Imen Ben; Nasri, Moncef; Mechichi, Tahar

    2017-08-01

    Over the past decade, the increasing demand of vegetable oils for biodiesel production has highlighted the need for alternative oil feedstocks that do not compete with food production. In this context, the combined use of agro-industrial wastes and oleaginous microorganisms could be a promising strategy for sustainable biodiesel production. The present investigation involves the performance of the oleaginous yeast Wickerhamomyces anomalus strain EC28 to produce lipids from different agro-industrial wastewaters (i.e., deproteinized cheese whey, olive mill wastewater, and wastewaters from confectionary industries) and waste frying oils (i.e., waste oil from frying fish, waste oil from frying potato and waste oil from frying meat). Results indicated that this strain can adequately grow on agro-industrial wastewater-based media and produce substantial amounts of lipids [up to 24%, wt/wt in deproteinized cheese whey-based medium and olive mill wastewater-based medium (75%, v/v in water)] of similar fatty acid composition to that of the most commonly used vegetable oils in the biodiesel industry. However, the addition of frying oils to the culture media resulted in a significant decrease in total lipid content, probably due to excess of available nitrogen released from meat, fish, and potato into the frying oil. The estimated properties of the resulting biodiesels, such as SV (190.69-203.13), IV (61.77-88.32), CN (53.45-59.32), and CFPP (-0.54 to 10.4), are reported, for the first time, for W. anomalus and correlate well with specified standards. In conclusion, W. anomalus strain EC28, for which there is very limited amount of available information, might be regarded as a promising candidate for biodiesel production and additional efforts for process improvement should be envisaged.

  19. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    International Nuclear Information System (INIS)

    Chang, Yi-Huang; Chang, Ku-Shang; Lee, Ching-Fu; Hsu, Chuan-Liang; Huang, Cheng-Wei; Jang, Hung-Der

    2015-01-01

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l −1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l −1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l −1 , 7.6 g l −1 , and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  20. A mathematical model for the study of lipid accumulation in oleaginous microorganisms. II. Study of cellular lipids of Mucor circinelloides during growth on a vegetable oil

    Directory of Open Access Journals (Sweden)

    Aggelis, G.

    1995-10-01

    Full Text Available Microbial oil production from fatty materials of animal or plant origin has been an object of research and industrial interest for many years. During the process of microbial growth/accumulation of fat reserves, the dominating phenomena that define the composition of endocellular fat are, first, the specific process of incorporation of substrate fatty acids into the microbial cell and, second, the endocellular changes of fatty acids defined by the enzymic capabilities of the microorganism. The fatty acids will either be degraded for growth needs or act as substrate of endocellular biotransformation processes, leading to concentration changes and production of "new" fatty acids which did not previously exist in the substrate.
    The purpose of the present work is to study the endocellular lipids of Mucor circinelloidesCBS 172-27 grown on sunflower oil. The mathematical model, described in part I, was applied in order to investigate the following:
    a. Microorganism specificity in the incorporation of substrate fatty acids.
    b. Microorganism specificity in the degradation of fatty acids present in the reserve fat.
    c. Possibilities of endocellular biotransformations during the microbial growth.
    In conclusion, this work is aimed at developing a quantitative expression of parameters defining the lipid composition of fat reserves. The proposed mathematical model can be used not only for selection of microbial strains having specific enzymic potential but also for substrate selection.

    La producción de aceites microbianos a partir de materiales grasos de origen animal o vegetal ha sido objeto de investigación e interés industrial durante muchos años. En el proceso de crecimiento microbiano/acumulación de reservas grasas, los fenómenos dominantes que definen la composición de grasa endocelular son, primero, el proceso específico de incorporación de ácidos grasos como sustratos en la célula microbiana

  1. Yarrowia lipolytica as an Oleaginous Cell Factory Platform for Production of Fatty Acid-Based Biofuel and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Abghari, Ali; Chen, Shulin, E-mail: chens@wsu.edu [Bioprocessing and Bioproducts Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Pullman, WA (United States)

    2014-06-19

    Today’s biotechnologists seek new biocatalysts to meet the growing demand for the bioproducts. This review critically evaluates the potential use of Y. lipolytica as an oleaginous cell factory platform. This yeast has undergone extensive modifications for converting a wide range of hydrophobic and hydrophilic biomass, including alkane, oil, glycerol, and sugars to fatty acid-based products. This article highlights challenges in the development of this platform and provides an overview of strategies to enhance its potential in the sustainable production of biodiesel, functional dietary lipid compounds, and other value-added oleochemical compounds. Future applications of the recombinant Y. lipolytica platform are also discussed.

  2. A new source of elemol rich essential oil and existence of multicellular oil glands in leaves of the Dioscorea species.

    Science.gov (United States)

    Odimegwu, Joy I; Odukoya, Olukemi; Yadav, Ritesh K; Chanotiya, C S; Ogbonnia, Steve; Sangwan, Neelam S

    2013-01-01

    Dioscorea species is a very important food and drug plant. The tubers of the plant are extensively used in food and drug purposes owing to the presence of steroidal constituent's diosgenin in the tubers. In the present study, we report for the first time that the leaves of Dioscorea composita and Dioscorea floribunda grown under the field conditions exhibited the presence of multicellular oil glands on the epidermal layers of the plants using stereomicroscopy (SM) and scanning electron microscopy (SEM). Essential oil was also isolated from the otherwise not useful herbage of the plant, and gas chromatographic-mass spectroscopy analysis revealed confirmation of the essential oil constituents. Out of the 76 compounds detected in D. floribunda and 37 from D. composita essential oil, major terpenoids which are detected and reported for Dioscorea leaf essential oil are α -terpinene, nerolidol, citronellyl acetate, farnesol, elemol, α -farnesene, valerenyl acetate, and so forth. Elemol was detected as the major constituent of both the Dioscorea species occupying 41% and 22% of D. Floribunda and D. composita essential oils, respectively. In this paper, we report for the first time Dioscorea as a possible novel bioresource for the essential oil besides its well-known importance for yielding diosgenin.

  3. A New Source of Elemol Rich Essential Oil and Existence of Multicellular Oil Glands in Leaves of the Dioscorea Species

    Directory of Open Access Journals (Sweden)

    Joy I. Odimegwu

    2013-01-01

    Full Text Available Dioscorea species is a very important food and drug plant. The tubers of the plant are extensively used in food and drug purposes owing to the presence of steroidal constituent’s diosgenin in the tubers. In the present study, we report for the first time that the leaves of Dioscorea composita and Dioscorea floribunda grown under the field conditions exhibited the presence of multicellular oil glands on the epidermal layers of the plants using stereomicroscopy (SM and scanning electron microscopy (SEM. Essential oil was also isolated from the otherwise not useful herbage of the plant, and gas chromatographic-mass spectroscopy analysis revealed confirmation of the essential oil constituents. Out of the 76 compounds detected in D. floribunda and 37 from D. composita essential oil, major terpenoids which are detected and reported for Dioscorea leaf essential oil are α-terpinene, nerolidol, citronellyl acetate, farnesol, elemol, α-farnesene, valerenyl acetate, and so forth. Elemol was detected as the major constituent of both the Dioscorea species occupying 41% and 22% of D. Floribunda and D. composita essential oils, respectively. In this paper, we report for the first time Dioscorea as a possible novel bioresource for the essential oil besides its well-known importance for yielding diosgenin.

  4. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications.

    Science.gov (United States)

    Xue, Si-Jia; Chi, Zhe; Zhang, Yu; Li, Yan-Feng; Liu, Guang-Lei; Jiang, Hong; Hu, Zhong; Chi, Zhen-Ming

    2018-02-01

    Oleaginous yeasts, fatty acids biosynthesis and regulation in the oleaginous yeasts and the fatty acids from the oleaginous yeasts and their applications are reviewed in this article. Oleaginous yeasts such as Rhodosporidium toruloides, Yarrowia lipolytica, Rhodotorula mucilaginosa, and Aureobasidium melanogenum, which can accumulate over 50% lipid of their cell dry weight, have many advantages over other oleaginous microorganisms. The fatty acids from the oleaginous yeasts have many potential applications. Many oleaginous yeasts have now been genetically modified to over-produce fatty acids and their derivatives. The most important features of the oleaginous yeasts are that they have special enzymatic systems for enhanced biosynthesis and regulation of fatty acids in their lipid particles. Recently, some oleaginous yeasts such as R. toruloides have been found to have a unique fatty acids synthetase and other oleaginous yeasts such as A. melanogenum have a unique highly reducing polyketide synthase (HR-PKS) involved in the biosynthesis of hydroxyl fatty acids. It is necessary to further enhance lipid biosynthesis using metabolic engineering and explore new applications of fatty acids in biotechnology.

  5. Essential Oil Composition of Two Grammosciadium DC Species, G ...

    African Journals Online (AJOL)

    Turk J Bot 2012; 36: 637-643. 7. Buchbauer G. The detailed analysis of essential oils leads to the understanding of their properties. Perfumer. & Flavourist 2000; 25: 64-67. 8. Tzakou O, Pitarokili D, Chinou IB, Harvala C. Composition and antimicrobial activity of the essential oil of Salvia ringens. Planta Med 2001; 67: 81-83.

  6. Chemically emulsified crude oil as substrate for bacterial oxidation : differences in species response

    International Nuclear Information System (INIS)

    Bruheim, P.; Eimhjellen, K.

    1998-01-01

    The ability of bacterial species to oxidize alkanes in crude oil in water emulsions was studied. Alkanes in crude oil need specific physiological adaptations to the microorganisms. Synthesis of biosurfactants has been considered as a prerequisite for either specific adhesion mechanisms to large oil drops or emulsification of oil followed by uptake of submicron oil droplets. In this study four bacterial species were tested. Emulsions were prepared by nonionic sorbitan ester and polyoxyethylene ether surfactants. The oxidation rates were measured. Both positive and negative effects of surfactant amendments were observed. The same surfactant affected different bacteria in different ways. The response to the surfactant amendment depended on the physiological state of the bacteria. The results showed that surfactants resulted in decreased cell adhesion to the oil phase for all the bacteria. 19 refs., 3 tabs., 4 figs

  7. Antimicrobial activity and chemical constituents of essential oils and oleoresins extracted from eight pepper species

    Directory of Open Access Journals (Sweden)

    Laira Martinelli

    Full Text Available ABSTRACT: Essential oils are the most important compounds produced during secondary metabolism in aromatic plants. Essential oils are volatile, have characteristic odor and are used as defensive agents by plants. In pepper, it is possible to say that essential oils are the “flavor fingerprint” of each species. In the present article, eight species of pepper were studied in order to extract their essential oils and oleoresins, test their antibacterial and antifungal activities and also to identify the compounds present in the most bioactive samples. Results demonstrated that two essential oils [Pimenta dioica (L. Merr. and Schinus terebinthifolius] and three oleoresins (Schinus terebinthifolius and Piper nigrum white and black recorded significant antimicrobial activity. These active essential oils and oleoresins are interesting for use in biotechnological processes employed in food, pharmaceutical and other industries.

  8. Volatile constituents of the essential oils of two Polygonum species from Vietnam

    NARCIS (Netherlands)

    Dung, N.X.; Van, le H.; Moi, La Dinh; Cu, Lu'u Dam; Leclercq, P.A.

    1994-01-01

    Polygonum species grown in many places in Vietnam, esp. on the rice-field. It is used in the traditional medicine. After Pham Hoang Ho until now in Vietnam, 40 Polygonum species have been found. From the polygonum genus (Family Polygonaceae) the essential oils of 2 species are reported: Polygonum

  9. A multi-criteria analysis approach for ranking and selection of microorganisms for the production of oils for biodiesel production.

    Science.gov (United States)

    Ahmad, Farah B; Zhang, Zhanying; Doherty, William O S; O'Hara, Ian M

    2015-08-01

    Oleaginous microorganisms have potential to be used to produce oils as alternative feedstock for biodiesel production. Microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa), and fungi (Aspergillus oryzae and Mucor plumbeus) were investigated for their ability to produce oil from glucose, xylose and glycerol. Multi-criteria analysis (MCA) using analytic hierarchy process (AHP) and preference ranking organization method for the enrichment of evaluations (PROMETHEE) with graphical analysis for interactive aid (GAIA), was used to rank and select the preferred microorganisms for oil production for biodiesel application. This was based on a number of criteria viz., oil concentration, content, production rate and yield, substrate consumption rate, fatty acids composition, biomass harvesting and nutrient costs. PROMETHEE selected A. oryzae, M. plumbeus and R. mucilaginosa as the most prospective species for oil production. However, further analysis by GAIA Webs identified A. oryzae and M. plumbeus as the best performing microorganisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Shuobo Shi

    2017-11-01

    Full Text Available Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  11. Antifungal Properties of Chenopodium ambrosioides Essential Oil Against Candida Species

    Directory of Open Access Journals (Sweden)

    Gerard Vilarem

    2010-09-01

    Full Text Available The essential oil of the aerial part (leaves, flowers and stem of Chenopodium ambrosioides was obtained by hydrodistillation and its chemical composition analyzed by GC and GC/MS, which permitted the identification of 14 components, representing 98.8% of the total oil. Major components were α-terpinene (51.3%, p-cymene (23.4% and p-mentha-1,8-diène (15.3%. The antifungal properties of this essential oil were investigated in vitro by the well diffusion and broth microdilution methods. The in vitro antifungal activity was concentration dependent and minimum inhibitory concentration values varied from 0.25 to 2 mg/mL. The in vivo antifungal activity was evaluated on an induced vaginal candidiasis rat model. The in vivo activity of the oil on mice vaginal candidiasis was not dose-dependent. Indeed, all the three tested doses; 0.1%, 1% and 10% led to the recovery of mice from the induced infection after 12 days of treatment. The effect of the essential oil on C. albicans ATCC 1663 fatty acid profile was studied. This oil has a relatively important dose-dependent effect on the fatty acids profile.

  12. Induction of reactive oxygen species in marine phytoplankton under crude oil exposure.

    Science.gov (United States)

    Ozhan, Koray; Zahraeifard, Sara; Smith, Aaron P; Bargu, Sibel

    2015-12-01

    Exposure of phytoplankton to the water-accommodated fraction of crude oil can elicit a number of stress responses, but the mechanisms that drive these responses are unclear. South Louisiana crude oil was selected to investigate its effects on population growth, chlorophyll a (Chl a) content, antioxidative defense, and lipid peroxidation, for the marine diatom, Ditylum brightwellii, and the dinoflagellate, Heterocapsa triquetra, in laboratory-based microcosm experiments. The transcript levels of several possible stress-responsive genes in D. brightwellii were also measured. The microalgae were exposed to crude oil for up to 96 h, and Chl a content, superoxide dismutase (SOD), the glutathione pool (GSH and GSSG), and lipid peroxidation content were analyzed. The cell growth of both phytoplankton species was inhibited with increasing crude oil concentrations. Crude oil exposure did not affect Chl a content significantly in cells. SOD activities showed similar responses in both species, being enhanced at 4- and 8-mg/L crude oil exposure. Only H. triquetra demonstrated enhanced activity in GSSG pool and lipid peroxidation at 8-mg/L crude oil exposure, suggesting that phytoplankton species have distinct physiological responses and tolerance levels to crude oil exposure. This study indicated the activation of reactive oxygen species (ROS) in phytoplankton under crude oil exposure; however, the progressive damage in cells is still unknown. Thus, ROS-related damage in nucleic acid, lipids, proteins, and DNA, due to crude oil exposure could be a worthwhile subject of study to better understand crude oil toxicity at the base of the food web.

  13. Assessing the sustainability of Brazilian oleaginous crops - possible raw material to produce biodiesel

    International Nuclear Information System (INIS)

    Takahashi, Fabio; Ortega, Enrique

    2010-01-01

    The aim of this paper is to make an emergy assessment of oleaginous crops cultivated in Brazil, available to produce biodiesel, in order to determine which crop is the most sustainable. This study evaluates conventional agro-chemical farms that produce rapeseed (canola), oil palm, soybean, sunflower and cotton. Rapeseed (canola) crop uses 40.41% of renewable energy and it is the most sustainable conventional oil crop; on the other hand, it is not widely produced in Brazil, probably due to climate restrictions or low market demand. The oil palm emergy indicators are contradictory: its emergy exchange ratio (EER) value is the lower, showing the possibility of fair exchange, and the low transformity value indicates high efficiency; however, it also has low renewability (28.31%), indicating a high dependency on agro-chemicals (basically fertilizers). Oil palm is a potential energy source due to its high agricultural productivity, but appropriate management is necessary to increase its sustainability and reduce the use of non-renewable resources.

  14. Assessing the sustainability of Brazilian oleaginous crops - possible raw material to produce biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Fabio, E-mail: fabiotak@fea.unicamp.b [FEA - College of Food Engineering - Unicamp, CP 6121, CEP 13083-862 Campinas, SP (Brazil); Ortega, Enrique, E-mail: fabiotak@gmail.co [FEA - College of Food Engineering - Unicamp, CP 6121, CEP 13083-862 Campinas, SP (Brazil)

    2010-05-15

    The aim of this paper is to make an emergy assessment of oleaginous crops cultivated in Brazil, available to produce biodiesel, in order to determine which crop is the most sustainable. This study evaluates conventional agro-chemical farms that produce rapeseed (canola), oil palm, soybean, sunflower and cotton. Rapeseed (canola) crop uses 40.41% of renewable energy and it is the most sustainable conventional oil crop; on the other hand, it is not widely produced in Brazil, probably due to climate restrictions or low market demand. The oil palm emergy indicators are contradictory: its emergy exchange ratio (EER) value is the lower, showing the possibility of fair exchange, and the low transformity value indicates high efficiency; however, it also has low renewability (28.31%), indicating a high dependency on agro-chemicals (basically fertilizers). Oil palm is a potential energy source due to its high agricultural productivity, but appropriate management is necessary to increase its sustainability and reduce the use of non-renewable resources.

  15. Chemical and Biological Analyses of the Essential Oils and Main Constituents of Piper Species

    Directory of Open Access Journals (Sweden)

    Leonor Laura Leon

    2012-02-01

    Full Text Available The essential oils obtained from leaves of Piper duckei and Piper demeraranum by hydrodistillation were analyzed by gas chromatography-mass spectrometry. The main constituents found in P. demeraranum oil were limonene (19.3% and β-elemene (33.1% and in P. duckei oil the major components found were germacrene D (14.7% and trans-caryophyllene (27.1%. P. demeraranum and P. duckei oils exhibited biological activity, with IC50 values between 15 to 76 μg mL−1 against two Leishmania species, P. duckei oil being the most active. The cytotoxicity of the essential oils on mice peritoneal macrophage cells was insignificant, compared with the toxicity of pentamidine. The main mono- and sesquiterpene, limonene (IC50 = 278 μM and caryophyllene (IC50 = 96 μM, were tested against the strains of Leishmania amazonensis, and the IC50 values of these compounds were lower than those found for the essential oils of the Piper species. The HET-CAM test was used to evaluate the irritation potential of these oils as topical products, showing that these oils can be used as auxiliary medication in cases of cutaneous leishmaniasis, with less side effects and lower costs.

  16. Relationship of species Piper based on morphological and leaf essential oils characters in Yogyakarta

    Directory of Open Access Journals (Sweden)

    PURNOMO

    2005-01-01

    Full Text Available Some of Piper species were used for traditional medicines and condiments. The leaf essential oil (terpenoid of those Piper species usually were used as a main component in traditional medicine. The taxonomycal study was aimed to determined Piper species relationships based on morphological and leaf essential oils characters. The plants were obtained by exploring this province, and samples were collected for identification and leaf essential oils isolation purposes. Species identification were carried out based on identification key (Backer and Bakhuizen v.d. Brink, 1965; Heyne, 1987; Shaorong, 1982. The isolation of leaf essential oils was carried out using Stahl destillation method, and their composition were interpreted with liquid gas chromatography, using caryophyllene and -pinene as a standard of essential oils component. Dendrogram, which showed phenetic relationships among those species, were obtained by hierarchical cluster analysis method. Results of the research showed that there were 8 species found as cultivated plants in Yogyakarta, which were P. miniatum Bl., P. betle L., P. recurvum Bl., P. aduncum L., P. nigrum L., P. cubeba L.f., P. retrofractum Vahl., and P. sarmentosum Roxb. Ex Hunter. Relationship between species of Piper based on morphological character showed that P. aduncum and P. sarmentosum at the same cluster on 69.2% similarity level, and 40.4% similarity level to the other clusters. Relationsips between species of Piper based on leaf essential oils character resulted the difference cluster among the species, P. retrofractum separated from the other species at 45.5% similarity level, P. aduncum and P. cubeba indicated the higest similarity level (81.5%.

  17. Application of airlift bioreactor for the cultivation of aerobic oleaginous yeast Rhodotorula glutinis with different aeration rates.

    Science.gov (United States)

    Yen, Hong-Wei; Liu, Yi Xian

    2014-08-01

    The high cost of microbial oils produced from oleaginous microorganisms is the major obstacle to commercial production. In this study, the operation of an airlift bioreactor is examined for the cultivation of oleaginous yeast-Rhodotorula glutinis, due to the low process cost. The results suggest that the use of a high aeration rate could enhance cell growth. The maximum biomass concentration of 25.40 g/L was observed in the batch with a 2.0 vvm aeration rate. In addition, a higher aeration rate of 2.5 vvm could achieve the maximum growth rate of 0.46 g/L h, about twice the 0.22 g/L h obtained in an agitation tank. However, an increase in tank pressure instead of the aeration rate did not enhance cell growth. The operation of airlift bioreactor described in this work has the advantages of simple operation and low energy consumption, thus making it suitable for the accumulation of microbial oils. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Seasonal variation of the essential oil from two Brazilian native Aldama La Llave (Asteraceae) species.

    Science.gov (United States)

    Oliveira, Tuane S DE; Bombo, Aline B; Oliveira, Adriana S S DE; Garcia, Vera L; Appezzato-DA-Glória, Beatriz

    2016-01-01

    Aldama arenaria and A. robusta are morphologically similar aromatic species that have seasonal development. The yield and chemical composition of essential oils from aerial and underground vegetative organs of these species were compared to verify the production of volatile metabolites in flowering and dormant phases of development and to identify if there are unique compounds for either species. The major compound in the essential oils from A. arenaria leaves was palustrol (16.22%) and for aerial stems was limonene (15.3%), whereas limonene (11.16%) and α-pinene (19.64%) were the major compounds for leaves and aerial stems from A. robusta, respectively. The major compound for the underground organs was α-pinene, in both species and phenological stages. High amounts of diterpenes were found especially for A. arenaria essential oils. Each analyzed species presented unique compounds, which can provide a characteristic chemical profile for both species helping to solve their taxonomic problems. This study characterized for the first time the yield and essential oil composition of A. arenaria and A. robusta, which have medicinal potential, and some of the compounds in their essential oils are unique to each one and may be useful in helping the correct identification of them.

  19. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves.

    Science.gov (United States)

    Sebei, Khaled; Sakouhi, Fawzi; Herchi, Wahid; Khouja, Mohamed Larbi; Boukhchina, Sadok

    2015-01-19

    In this paper, we have studied the essential oils chemical composition of the leaves of seven Eucalyptus species developed in Tunisia. Eucalyptus leaves were picked from trees growing in different arboretums in Tunisia. Choucha and Mrifeg arboretums located in Sedjnene, region of Bizerte (Choucha: E. maideni, E. astrengens et E. cinerea; Mrifeg : E. leucoxylon), Korbous arboretums located in the region of Nabeul, North East Tunisia with sub-humid bioclimate, (E. lehmani), Souiniet-Ain Drahem arboretum located in region of Jendouba (E. sideroxylon, E. bicostata). Essential oils were individually tested against a large panel of microorganisms including Staphylococcus aureus (ATCC 6539), Escherichia coli (ATCC 25922), Enterococcus faecalis (ATCC29212), Listeria ivanovii (RBL 30), Bacillus cereus (ATCC11778). The yield of essential oils ranged from 1.2% to 3% (w/w) for the different Eucalyptus species. All essential oils contain α-pinene, 1,8-cineol and pinocarveol-trans for all Eucalyptus species studied. The 1,8-cineol was the major compound in all species (49.07 to 83.59%). Diameter of inhibition zone of essential oils of Eucalyptus species varied from 10 to 29 mm. The largest zone of inhibition was obtained for Bacillus cereus (E. astrengens) and the lowest for Staphylococcus aureus (E. cinerea). The essential oils from E. maideni, E. astrengens, E. cinerea (arboretum of Bizerte), E. bicostata (arboretum of Aindraham) showed the highest antibacterial activity against Listeria ivanovii and Bacillus cereus. The major constituents of Eucalyptus leaves essential oils are 1,8-cineol (49.07 to 83.59%) and α-pinene (1.27 to 26.35%). The essential oils from E. maideni, E. astrengens, E. cinerea, E. bicostata showed the highest antibacterial activity against Listeria ivanovii and Bacillus cereus, they may have potential applications in food and pharmaceutical products.

  20. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America

    Directory of Open Access Journals (Sweden)

    Cristina M. Pérez Zamora

    2018-03-01

    Full Text Available The Verbenaceae family includes 2600 species grouped into 100 genera with a pantropical distribution. Many of them are important elements of the floras of warm-temperature and tropical regions of America. This family is known in folk medicine, and its species are used as digestive, carminative, antipyretic, antitussive, antiseptic, and healing agents. This review aims to collect information about the essential oils from the most reported species of the Verbenaceae family growing in South America, focusing on their chemical composition, antimicrobial activity, and synergism with commercial antimicrobials. The information gathered comprises the last twenty years of research within the South American region and is summarized taking into consideration the most representative species in terms of their essential oils. These species belong to Aloysia, Lantana, Lippia, Phyla, and Stachytarpheta genera, and the main essential oils they contain are monoterpenes and sesquiterpenes, such as β-caryophyllene, thymol, citral, 1,8-cineole, carvone, and limonene. These compounds have been found to possess antimicrobial activities. The synergism of these essential oils with antibiotics is being studied by several research groups. It constitutes a resource of interest for the potential use of combinations of essential oils and antibiotics in infection treatments.

  1. Distribution of dimorphic yeast species in commercial extra virgin olive oil.

    Science.gov (United States)

    Zullo, B A; Cioccia, G; Ciafardini, G

    2010-12-01

    Recent microbiological research has demonstrated the presence of a rich microflora mainly composed of yeasts in the suspended fraction of freshly produced olive oil. Some of the yeasts are considered useful as they improve the organoleptic characteristics of the oil during preservation, whereas others are considered harmful as they can damage the quality of the oil through the hydrolysis of the triglycerides. However, some dimorphic species can also be found among the unwanted yeasts present in the oil, considered to be opportunistic pathogens to man as they have often been isolated from immunocompromised hospital patients. Present research demonstrates the presence of dimorphic yeast forms in 26% of the commercial extra virgin olive oil originating from different geographical areas, where the dimorphic yeasts are represented by 3-99.5% of the total yeasts. The classified isolates belonged to the opportunistic pathogen species Candida parapsilosis and Candida guilliermondii, while among the dimorphic yeasts considered not pathogenic to man, the Candida diddensiae species was highlighted for the first time in olive oil. The majority of the studied yeast strains resulted lipase positive, and can consequently negatively influence the oil quality through the hydrolysis of the triglycerides. Furthermore, all the strains showed a high level of affinity with some organic solvents and a differing production of biofilm in "vitro" corresponded to a greater or lesser hydrophobia of their cells. Laboratory trials indicated that the dimorphic yeasts studied are sensitive towards some components of the oil among which oleic acid, linoleic acid and triolein, whereas a less inhibiting effect was observed with tricaprilin or when the total polyphenols extracted from the oil were used. The observations carried out on a scanning electron microscope (SEM), demonstrated the production of long un-branched pseudohyphae in all the tested dimorphic yeasts when cultivated on nutrient

  2. Evaluation of the toxic properties of naturally weathered Exxon Valdez crude oil to surrogate wildlife species

    International Nuclear Information System (INIS)

    Stubblefield, W.A.; Hancock, G.A.; Ford, W.H.; Prince, H.H.; Ringer, R.K.

    1995-01-01

    The toxic properties of naturally weathered Exxon Valdez crude oil (WEVC) to avian and mammalian wildlife species were evaluated using the surrogate species, mallard duck, Anas platyrhynchos, and European ferret, Mustela putorius. This study was conducted to evaluate the potential for toxic (rather than physical) injury to wildlife species that may have been exposed to WEVC, either through external contact or through dietary uptake. Previous studies have assessed the toxicity of unweathered crude oils, including Alaska North Slope Crude, but little information exists regarding the toxicity of a naturally weathered crude oil, typical of that encountered following a spill. A battery of laboratory toxicity tests was conducted, in compliance with standard and published test procedures, to evaluate acute and subchronic toxicity of WEVC. These included tests of food avoidance, reproductive effects, and direct eggshell application toxicity. Naturally weathered EVC, recovered postspill from Prince William Sound, was used as the test material. 36 refs., 7 figs., 4 tabs

  3. Chemical composition of the essential oil and hexanic fraction of Lippia and Lantana species

    Directory of Open Access Journals (Sweden)

    Pâmela S. Silva

    2010-11-01

    Full Text Available A comparison between two extraction approaches of volatiles compounds from six species of Verbenaceae collected at Serra do Cipó, Minas Gerais, Brazil was done. The essential oil and hexanic fraction of leaves from two Lantana and four Lippia species collected in two different seasons were analyzed by GC/MS. Among various identified compounds from both extraction methods the majority of species showed major amounts of β-caryophyllene followed by germacrene D, bicyclogermacrene and α-pinene. Few differences were observed between the composition of essential oil and the hexanic fraction regarding the two studied genera. These results suggest that the analysis of hexanic fraction can be used, as an alternative way, to analyze the volatile compounds of the essential oil.

  4. Species-specific vulnerability of Arctic copepods to oil contamination and global warming

    DEFF Research Database (Denmark)

    Dinh, Khuong Van; Nielsen, Torkel Gissel

    Arctic ecosystems are predicted to have more severe effects from global warming as during the last decades the temperatures have increased in this region at a rate of 2-4 times higher than the global average. In addition, oil exploitation and shipping activities in the Arctic are predicted...... to increase under global warming as the result of the retreat of sea ice, posing the risk of oil contamination. It is poorly known how cold adapted copepods in the Arctic deal with the combined effects of global warming and oil exposure. To address this, we exposed females of two copepods species Calanus...... of temperatures. Notably, exposure to high pyrene resulted in ca. 70% of mortality in C. finmarchicus, the species with North Atlantic Origin, that was two times higher than the mortality observed for C. glacialis, the true Arctic species. These results suggest that extreme temperature under global warming...

  5. Attractiveness of essential oils of three Cymbopogon species to Tribolium castaneum (Herbst adults

    Directory of Open Access Journals (Sweden)

    Đukić Nikola

    2016-01-01

    Full Text Available Behavior bioassays were conducted in the laboratory (23 ± 1°C and 50 ± 5% r.h. using the olfactometer to determine the effects of essential oils of three plant species in the Cymbopogon genus (Lemongrass, Cymbopogon nervatus, C. proximus and C. schoenanthus, on adults of Tribolium castaneum. The effect of essential oils was compared to a commercial biopesticide based on azadirachtin at three concentrations (0.0001, 0.001 and 0.01%. The results showed that all essential oils and the azadirachtin-based biopesticide had significant (p <0.05 repellent effects on T. castaneum adults at all tested concentrations, except C. proximus essential oil which showed a neutral effect at the lowest concentration. The highest concentrations of the essential oils of C. nervatus and C. proximus had significantly stronger repellent effects (p <0.05 than the lowest concentration. At the concentrations of 0.0001 and 0.001% all tested essential oils and azadirachtin showed a similar repellent effect without statistically significant difference, whereas the oil of C. nervatus had the highest repellent effect on adults of T. castaneum at the 0.01% concentration. Considering all tested variations, the essential oils of plants of the genus Cymbopogon showed similar or stronger repellent effects on T. castaneum adults than the biopesticide based on azadirachtin.

  6. Effects of oil spill responses on key Arctic zooplankton species

    DEFF Research Database (Denmark)

    Toxværd, Kirstine Underbjerg; Hansen, Pil Hagenbøl; Köhler, Eva

    and hatching of the Arctic copepod Calanus glacialis. Eight mesocosms with open top and bottom were deployed in the sea ice in Van Mijenfjorden, Svalbard, in February 2015. Two replicates were used for all treatments. After application, surface ice was allowed to re-establish. Water was collected from the top...... 2 cm water column in March and just before sea ice break up in May, and was used in two 14-day incubation experiments with C. glacialis collected in Isfjorden. Copepods were fed during the experiment and eggs and pellets were quantified daily. Egg hatching was determined in the beginning and end....... As a part of a large joint industry initiative (www.arcticresponsetechnology.org) a first of its kind mesocosm experiment was executed in an Arctic fjord of the Island of Svalbard. Effects of natural attenuation of the oil, in-situ burning and chemical dispersion were studied on grazing, egg production...

  7. Oil palm natural diversity and the potential for yield improvement

    Science.gov (United States)

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604

  8. Oil palm natural diversity and the potential for yield improvement.

    Science.gov (United States)

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N V; Lopes, Ricardo; Motoike, Sérgio Y; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.

  9. Oil palm natural diversity and the potential for yield improvement

    Directory of Open Access Journals (Sweden)

    Edson eBarcelos

    2015-03-01

    Full Text Available African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfil the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step towards this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.

  10. Evaluation of Chemical Composition and Antileishmanial and Antituberculosis Activities of Essential Oils of Piper Species

    Directory of Open Access Journals (Sweden)

    Karine Zanoli Bernuci

    2016-12-01

    Full Text Available Essential oils from fresh Piperaceae leaves were obtained by hydrodistillation and analyzed by gas chromatography mass spectrometry (GC–MS, and a total of 68 components were identified. Principal components analysis results showed a chemical variability between species, with sesquiterpene compounds predominating in the majority of species analyzed. The composition of the essential oil of Piper mosenii was described for the first time. The cytotoxicity of the essential oils was evaluated in peritoneal macrophages and the oils of P. rivinoides, P. arboretum, and P. aduncum exhibited the highest values, with cytotoxic concentration at 50% (CC50 > 200 µg/mL. Both P. diospyrifolium and P. aduncum displayed activity against Leishmania amazonensis, and were more selective for the parasite than for the macrophages, with a selectivity index (SI of 2.35 and >5.52, respectively. These SI values were greater than the 1 for the standard drug pentamidine. The antileishmanial activity of the essential oils of P. diospyrifolium and P. aduncum was described for the first time. P. rivinoides, P. cernuum, and P. diospyrifolium displayed moderate activity against the Mycobacterium tuberculosis H37Rv bacillus, with a minimum inhibitory concentration (MIC of 125 µg/mL. These results are relevant and suggests their potential for therapeutic purposes. Nevertheless, further studies are required to explain the exact mechanism of action of these essential oils.

  11. Evaluation of Chemical Composition and Antileishmanial and Antituberculosis Activities of Essential Oils of Piper Species.

    Science.gov (United States)

    Bernuci, Karine Zanoli; Iwanaga, Camila Cristina; Fernandez-Andrade, Carla Maria Mariano; Lorenzetti, Fabiana Brusco; Torres-Santos, Eduardo Caio; Faiões, Viviane Dos Santos; Gonçalves, José Eduardo; do Amaral, Wanderlei; Deschamps, Cícero; Scodro, Regiane Bertin de Lima; Cardoso, Rosilene Fressatti; Baldin, Vanessa Pietrowski; Cortez, Diógenes Aparício Garcia

    2016-12-12

    Essential oils from fresh Piperaceae leaves were obtained by hydrodistillation and analyzed by gas chromatography mass spectrometry (GC-MS), and a total of 68 components were identified. Principal components analysis results showed a chemical variability between species, with sesquiterpene compounds predominating in the majority of species analyzed. The composition of the essential oil of Piper mosenii was described for the first time. The cytotoxicity of the essential oils was evaluated in peritoneal macrophages and the oils of P. rivinoides , P. arboretum , and P. aduncum exhibited the highest values, with cytotoxic concentration at 50% (CC 50 ) > 200 µg/mL. Both P. diospyrifolium and P. aduncum displayed activity against Leishmania amazonensis , and were more selective for the parasite than for the macrophages, with a selectivity index (SI) of 2.35 and >5.52, respectively. These SI values were greater than the 1 for the standard drug pentamidine. The antileishmanial activity of the essential oils of P. diospyrifolium and P. aduncum was described for the first time. P. rivinoides, P. cernuum , and P. diospyrifolium displayed moderate activity against the Mycobacterium tuberculosis H 37 Rv bacillus, with a minimum inhibitory concentration (MIC) of 125 µg/mL. These results are relevant and suggests their potential for therapeutic purposes. Nevertheless, further studies are required to explain the exact mechanism of action of these essential oils.

  12. Dissolution and degradation of crude oil droplets by different bacterial species and consortia by microcosm microfluidics

    Science.gov (United States)

    Jalali, Maryam; Sheng, Jian

    2017-11-01

    Bacteria are involved in cleanup and degradation of crude oil in polluted marine and soil environments. A number of bacterial species have been identified for consuming petroleum hydrocarbons with diverse metabolic capabilities. We conducted laboratory experiments to investigate bacterial consumption by monitoring the volume change to oil droplets as well as effects of oil droplet size on this process. To conduct our study, we developed a micro-bioassay containing an enclosed chamber with bottom substrate printed with stationary oil microdroplets and a digital holographic interferometer (DHI). The morphology of microdroplets was monitored in real time over 100 hours and instantaneous flow field was also measured by digital holographic microscope. The substrates with printed oil droplets were further evaluated with atomic force microscopy (AFM) at the end of each experiment. Three different bacteria species, Pseudomonas sp, Alcanivorax borkumensis, and Marinobacter hydrocarbonoclasticus, as well as six bacterial consortia were used in this study. The results show that droplets smaller than 20µm in diameter are not subject to bacterial degradation and the volume of droplet did not change beyond dissolution. Substantial species-specific behaviors have been observed in isolates. The experiments of consortia and various flow shears on biodegradation and dissolution are ongoing and will be reported.

  13. Inhibitory Activity of Artemisia spicigera Essential Oil Against Fungal Species Isolated From Minced Meat

    Directory of Open Access Journals (Sweden)

    Ghajarbeygi

    2015-11-01

    Full Text Available Background Meat is an important source of several nutrients. The capability top of fresh meat to rot, causing the group of studies food science, biological and chemical stability meat consideration. Objectives This study was conducted to examine the inhibitory effect of Artemisias spicigera essential oil against fungal species isolated from minced meat. Materials and Methods Two types of media dichloran 18% glycerol (DG18 agar and dichloran rosebengal chloramphenicol (DRBC agar were selected for the mycological analysis of the minced meat samples. To evaluate the antifungal activity of essential oils, the microdilution broth method based on the CLSI (M27A guideline was used. Results Artemisias spicigera essential oil has an inhibitory effect on the growth of fungi found in samples of minced meat. Aspergillus, Penicillium and Cladosporium were the most common genera on both medium types. Average Minimum Inhibitory Concentration 50 = 1.88 µL/mL and MIC90 = 2 µL/mL were reported. The genus of Mucor with MIC = 1.0 µL/mL was the most sensitive and Aspergilus versicolor was the most resistant species to the essential oil with MIC = 4 µL/mL. Conclusions The results of the present study show a favorable inhibitory effect of Artemisias spicigera essential oil on fungal growth, especially Aspergillus species. According to the results, antifungal components of Artemisias spicigera in different forms are used to prevent fungal pollution.

  14. Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination

    NARCIS (Netherlands)

    Pérez-Hernández, I.; Ochoa-Gaona, S.; Adams, R.H.; Rivera-Cruz, M.C.; Pérez-Hernández, V.; Jarquín-Sánchez, A.; Geissen, V.; Martínez-Zurimendi, P.

    2017-01-01

    Under greenhouse conditions, we evaluated establishment of four tree species and their capacity to degrade crude oil recently incorporated into the soil; the species were as follows: Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia macrophylla (mahogany), and

  15. Acaricidal activity of five essential oils of Ocimum species on Rhipicephalus (Boophilus) microplus larvae.

    Science.gov (United States)

    Hüe, T; Cauquil, L; Fokou, J B Hzounda; Dongmo, P M Jazet; Bakarnga-Via, I; Menut, C

    2015-01-01

    The aim of this study was to evaluate the acaricidal activity on the cattle tick Rhipicephalus (Boophilus) microplus of essential oils from three Ocimum species. Acaricidal activity of five essential oils extracted from Ocimum gratissimum L. (three samples), O. urticaefolium Roth, and O. canum Sims was evaluated on 14- to 21-day-old Rhipicephalus microplus tick larvae using larval packet test bioassay. These essential oils were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS) showing great variations of their chemical compositions according to the botanical species and even within the O. gratissimum species; the acaricidal activity of their main compounds was also evaluated. The essential oils of O. urticaefolium and O. gratissimum collected in Cameroon were the most efficient with respective LC50 values of 0.90 and 0.98%. The two essential oils obtained from O. gratissimum collected in New Caledonia were partially active at a dilution of 5% while the essential oil of O. canum collected in Cameroon showed no acaricidal activity. The chemical analysis shows five different profiles. Whereas the essential oils of O. urticaefolium from Cameroon and O. gratissimum from New Caledonia contain high amounts of eugenol (33.0 and 22.3-61.0%, respectively), 1,8-cineole was the main component of the oil of an O. canum sample from Cameroon (70.2%); the samples of O. gratissimum oils from New Caledonia are also characterized by their high content of (Z)-β-ocimene (17.1-49.8%) while the essential oil of O. gratissimum collected in Cameroon is mainly constituted by two p-menthane derivatives: thymol (30.5%) and γ-terpinene (33.0%). Moreover, the essential oil of O. urticaefolium showed the presence of elemicin (18.1%) as original compound. The tests achieved with the main compounds confirmed the acaricidal activity of eugenol and thymol with residual activity until 0.50 and 1%, respectively, and revealed the acaricidal property of elemicin

  16. Essential oils from Schinus species of northwest Argentina: Composition and antifungal activity.

    Science.gov (United States)

    Sampietro, Diego A; Belizana, Maria Melina E; Baptista, Zareath P Terán; Vattuone, Marta A; Catalán, Cesar A N

    2014-07-01

    The composition of the essential oils from leaves (Sal) and fruits of S. areira (Saf), and fruits of S. fasciculatus (Sff) and S. gracilipes (Sgf) were analyzed by GC/MS. The major compounds identified were sabinene (26.0 +/- 0.5%), bicyclogermacrene (14.5 +/- 0.4%), and E-citral (6.7+/- 0.2%) in Sal oil, limonene (27.7 +/- 0.7%), sabinene (16.0+/- 0.5%), beta-phellandrene (14.6 +/- 0.8%) and bicyclogermacrene (8.1 +/- 0.2%) in Saf oil, sabinene (22.7 +/- 0.6%), alpha-phellandrene (18.7 +/- 0.3%), beta-phellandrene (15.7 +/- 0.4%), and bicyclogermacrene (8.1 +/- 0.2%) in Sff oil and beta-pinene (25.4 +/- 0.8%), alpha-pinene (24.7 +/- 0.7%), and sabinene (13.6 +/- 0.4%) in Sgf oil.The antifungal activity of the four oils was evaluated on strains of Fusarium verticillioides and F. graminearum, and the results compared with the effect of epoxyconazole, pyraclostrobin and thyme oil. The Sff oil had the highest antifungal activity among the Schinus oils tested, with MIC100 (F. graminearum) = 6 per thousand and MIC100 (F. verticillioides) = 12 per thousand. A principal component analysis suggests that 9 constituents (alpha-thujene, alpha-terpinene, p-cymene, gamma-terpinene, terpinolene, 1-terpineol, alpha-calacorene, alpha-phellandrene, and terpinen-4-ol) explain the higher antifungal effect of Sff. The MIC100s of Schinus oils were on average 30-60 and 8.5-17 fold lower than those obtained for thyme oil on F. verticillioides and F. graminearum, respectively. In the case of commercial fungicides, their MIC100s were three orders of magnitude lower than those of Schinus oils. The last ones showed an additive interaction when assayed in mixtures with the commecial fungicides and thyme oil. The results suggest that the doses of fungicides required for control of the Fusarium species can be reduced when they are assayed in mixtures with the Schinus oils.

  17. Antiphytoviral Activity of Sesquiterpene-Rich Essential Oils from Four Croatian Teucrium Species

    Directory of Open Access Journals (Sweden)

    Franko Burčul

    2011-09-01

    Full Text Available The purpose of this study was to compare the essential oil profiles of four Croatian Teucrium species (Lamiaceae, as determined by GC and GC/MS, with their antiphytoviral efficiency. A phytochemical analysis showed that T. polium, T. flavum, T. montanum and T. chamaedrys are characterized by similar essential oil compositions. The investigated oils are characterized by a high proportion of the sesquiterpene hydrocarbons β-caryophyllene (7.1–52.0% and germacrene D (8.7–17.0%. Other important components were β-pinene from T. montanum and α-pinene from T. flavum. The investigated essential oils were proved to reduce lesion number in the local host Chenopodium quinoa Willd. infected with Cucumber Mosaic Virus (CMV, with reductions of 41.4%, 22.9%, 44.3% and 25.7%, respectively.

  18. Use of oleaginous plants in phytotreatment of grey water and yellow water from source separation of sewage.

    Science.gov (United States)

    Lavagnolo, Maria Cristina; Malagoli, Mario; Alibardi, Luca; Garbo, Francesco; Pivato, Alberto; Cossu, Raffaello

    2017-05-01

    Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management, source separation of yellow (urine), brown (faecal matter) and grey waters aims to recover the organic substances concentrated in brown water, the nutrients (nitrogen and phosphorous) in the urine and to ensure an easier treatment and recycling of grey waters. With the objective of emphasizing the potential of recovery of resources from sewage management, a lab-scale research study was carried out at the University of Padova in order to evaluate the performances of oleaginous plants (suitable for biodiesel production) in the phytotreatment of source separated yellow and grey waters. The plant species used were Brassica napus (rapeseed), Glycine max (soybean) and Helianthus annuus (sunflower). Phytotreatment tests were carried out using 20L pots. Different testing runs were performed at an increasing nitrogen concentration in the feedstock. The results proved that oleaginous species can conveniently be used for the phytotreatment of grey and yellow waters from source separation of domestic sewage, displaying high removal efficiencies of nutrients and organic substances (nitrogen>80%; phosphorous >90%; COD nearly 90%). No inhibition was registered in the growth of plants irrigated with different mixtures of yellow and grey waters, where the characteristics of the two streams were reciprocally and beneficially integrated. Copyright © 2016. Published by Elsevier B.V.

  19. Discrimination of Pulp Oil and Kernel Oil from Pequi (Caryocar brasiliense) by Fatty Acid Methyl Esters Fingerprinting, Using GC-FID and Multivariate Analysis

    NARCIS (Netherlands)

    Faria-Machado, A.F.; Tres, Alba; Ruth, Van S.M.; Antoniassi, Rosemar; Junqueira, N.T.V.; Lopes, P.S.N.; Bizzo, H.R.

    2015-01-01

    Pequi is an oleaginous fruit whose edible oil is composed mainly by saturated and monounsaturated fatty acids. The biological and nutritional properties of pequi oil are dependent on its composition, which can change according to the oil source (pulp or kernel). There is little data in the

  20. Chemical Analysis and Biological Activity of the Essential Oils of Two Endemic Soqotri Commiphora Species

    Directory of Open Access Journals (Sweden)

    Wulf Schultze

    2010-02-01

    Full Text Available The barks of two endemic Commiphora species namely, Commiphora ornifolia (Balf.f. Gillett and Commiphora parvifolia Engl., were collected from Soqotra Island in Yemen and their essential oils were obtained by hydrodistillation. The chemical composition of both oils was investigated by GC and GC-MS. Moreover, the essential oils were evaluated for their antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria and one yeast species by using a broth micro-dilution assay for minimum inhibitory concentrations (MIC and for their antioxidant activity by measuring the DPPH radical scavenging activity. A total of 45 constituents of C. ornifolia (85.6% and 44 constituents of C. parvifolia (87.1% were identified. The oil of C. ornifolia was characterized by a high content of oxygenated monoterpenes (56.3%, of which camphor (27.3%, α-fenchol (15.5%, fenchone (4.4% and borneol (2.9% were identified as the main components. High contents of oxygenated sesquiterpenes (36.1% and aliphatic acids (22.8% were found in C. parvifolia oil, in which caryophyllene oxide (14.2%, β-eudesmol (7.7%, bulnesol (5.7%, T-cadinol (3.7% and hexadecanoic acid (18.4% predominated. The results of the antimicrobial assay showed that both oils exhibited moderate to high antibacterial activity especially against Gram-positive bacteria. C. ornifolia oil was the most active. In addition, the DPPH-radical scavenging assay exhibited only weak antioxidant activities for both oils at the high concentration tested.

  1. In vitro biological activity and essential oil composition of four indigenous South African Helichrysum species.

    Science.gov (United States)

    Lourens, A C U; Reddy, D; Başer, K H C; Viljoen, A M; Van Vuuren, S F

    2004-12-01

    Helichrysum species are used widely to treat various medical conditions. In this study, the anti-microbial, anti-oxidant (DPPH assay) and anti-inflammatory activity (5-lipoxygenase assay) of Helichrysum dasyanthum, Helichrysum felinum, Helichrysum excisum and Helichrysum petiolare were investigated. The essential oil compositions of these species were determined. The acetone and methanol extracts as well as the essential oils exhibited activity against Gram-positive bacteria, while both the methanol and acetone extracts of all four species were active in the anti-oxidant assay. The essential oils, on the other hand, displayed activity in the 5-lipoxygenase assay, which was used as an indication of anti-inflammatory activity. Two extracts exhibited promising activity in the anti-microbial assay, the acetone extract of Helichrysum dasyanthum with a MIC value of 15.63 microg/ml and the methanol extract of Helichrysum excisum with a MIC value of 62.5 microg/ml. The acetone extract of Helichrysum dasyanthum was the most active free radical scavenger in the DPPH assay (IC(50) of 9.53 microg/ml) while values for the anti-inflammatory activity of the essential oils ranged between 25 and 32 microg/ml. The essential oil compositions of three species (Helichrysum dasyanthum, Helichrysum excisum and Helichrysum petiolare) were dominated by the presence of monoterpenes such as alpha-pinene, 1,8-cineole and p-cymene. In the oil of Helichrysum felinum, monoterpenes were largely absent. Its profile consisted of a variety of sesquiterpenes in low concentrations with beta-caryophyllene dominating.

  2. Effects of oil palm shell coarse aggregate species on high strength lightweight concrete.

    Science.gov (United States)

    Yew, Ming Kun; Bin Mahmud, Hilmi; Ang, Bee Chin; Yew, Ming Chian

    2014-01-01

    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3-5, 6-9, and 10-15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10-15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.

  3. Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Ming Kun Yew

    2014-01-01

    Full Text Available The objective of this study was to investigate the effects of different species of oil palm shell (OPS coarse aggregates on the properties of high strength lightweight concrete (HSLWC. Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera, in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old. The results showed that the workability and dry density of the oil palm shell concrete (OPSC increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV results showed that the OPS HSLWC attain good condition at the age of 3 days.

  4. LD50 and repellent effects of essential oils from Argentinian wild plant species on Varroa destructor.

    Science.gov (United States)

    Ruffinengo, Sergio; Eguaras, Martin; Floris, Ignazio; Faverin, Claudia; Bailac, Pedro; Ponzi, Marta

    2005-06-01

    The repellent and acaricidal effects of some essential oils from the most typical wild plant species of northern Patagonia, Argentina, on Varroa destructor Anderson & Trueman were evaluated using a complete exposure test. Honey bees, Apis mellifera L., and mites (five specimens of each per dish) were introduced in petri dishes having different oil concentrations (from 0.1 to 25 micro per cage). Survival of bees and mites was registered after 24, 48, and 72 h. An attraction/repellence test was performed using a wax tube impregnated with essential oil and another tube containing wax only. The lowest LD50 values for mites were registered for Acantholippia seriphioides (A. Gray) Mold. (1.27 microl per cage) and Schinus molle L. (2.65 microl per cage) after 24 h, and for Wedelia glauca (Ortega) O. Hoffm. ex Hicken (0.59 microl per cage) and A. seriphioides (1.09 microl per cage) after 72 h of treatment. The oil with the highest selectivity ratio (A. mellifera LD50/V. destructor LD50) was the one extracted from S. molle (>16). Oils of Lippia junelliana (Mold.) Troncoso, Minthostachys mollis (HBK) Grieseb., and Lippia turbinata Grieseb. mixed with wax had repellent properties. None of the oils tested had attractive effects on Varroa mites.

  5. A review on using essential oil of Labiatae species in food products

    Directory of Open Access Journals (Sweden)

    M. Kazeminia

    2017-04-01

    Full Text Available Background: Medicinal herbs have been widely used due to antimicrobial, antioxidant properties and less harmful than of chemical composition. The carcinogenic effects of chemical compounds has increased the use of medicinal plants. Also proven carcinogenic chemical composition, the importance of the use of medicinal plants has increased. Objective: This study was performed on the application of the Lamiaceae family plants in the food industry. Methods: In this study, a review of 428 studies about functional properties essential oil of Lamiaceae family plants in the food industry from 2006 to 2016 (a decade, were studied. The information was collected with referred to databases Pub Med, Science Direct, Elsevier, SID, MagIran, Civilica, the World Health Organization, Food and Agriculture Organization of the United Nations based on keywords essential oil, Lamiaceae species, antioxidant activity and antimicrobial effect. Findings: In the past, Lamiaciae family herbs just used as flavoring agents in some dairy products (yogurt drink and yogurt. With the passage of time and advancement of science, the importance of protecting this species was appeared as far as antimicrobial and antioxidant prevailed on the taste and smell of this species. Conclusion: According to the previous studies, Lamiaceae family essential oil can be applied as an antimicrobial and antioxidant agent in food or packing material. It seems Lamiaceae family essential oil and extracts can reduce and prevent the growth of pathogenic microbes in food, but further studies are recommended.

  6. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution

    Directory of Open Access Journals (Sweden)

    Li Pin Lee

    2015-01-01

    Full Text Available Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.

  7. A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species

    Directory of Open Access Journals (Sweden)

    Kandasamy Sowndhararajan

    2017-09-01

    Full Text Available A number of Angelica species have been used in traditional systems of medicine to treat many ailments. Especially, essential oils (EOs from the Angelica species have been used for the treatment of various health problems, including malaria, gynecological diseases, fever, anemia, and arthritis. EOs are complex mixtures of low molecular weight compounds, especially terpenoids and their oxygenated compounds. These components deliver specific fragrance and biological properties to essential oils. In this review, we summarized the chemical composition and biological activities of EOs from different species of Angelica. For this purpose, a literature search was carried out to obtain information about the EOs of Angelica species and their bioactivities from electronic databases such as PubMed, Science Direct, Wiley, Springer, ACS, Google, and other journal publications. There has been a lot of variation in the EO composition among different Angelica species. EOs from Angelica species were reported for different kinds of biological activities, such as antioxidant, anti-inflammatory, antimicrobial, immunotoxic, and insecticidal activities. The present review is an attempt to consolidate the available data for different Angelica species on the basis of major constituents in the EOs and their biological activities.

  8. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Wei, Hui; Knoshaug, Eric; Van Wychen, Stefanie; Xu, Qi; Himmel, Michael E.; Zhang, Min

    2016-04-25

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.

  9. Impacts of 2 species of predatory Reduviidae on bagworms in oil palm plantations

    Institute of Scientific and Technical Information of China (English)

    Syari Jamian; Ahmad Norhisham; Amal Ghazali; Azlina Zakaria; Badrul Azhar

    2017-01-01

    Integrated pest management (IPM) is widely practiced in commercial oil palm agriculture.This management system is intended to minimize the number of attacks by pest insects such as bagworms on crops,as well as curb economic loss with less dependency on chemical pesticides.One practice in IPM is the use of biological control agents such as predatory insects.In this study,we assessed the response of predatory natural enemies to pest outbreak and water stress,and document the habitat associations of potential pest predators.The abundances of 2 predatory insect species,namely Sycanus dichotomus and Cosmolestes picticeps (Hemiptera:Reduviidae),were compared bagworm outbreak sites and nonoutbreak sites within oil palm plantations.We also examined habitat characteristics that influence the abundances of both predatory species.We found that the abundance of C.picticeps was significantly higher in bagworm outbreak sites than in nonoutbreak sites.There were no significant differences in the abundance of S.dichotomus among outbreak and non-outbreak sites.Both species responded negatively to water stress in oil palm plantations.Concerning the relationship between predatory insect abundance and in situ habitat quality characteristics,our models explained 46.36% of variation for C.picticeps and 23.17% of variation for S.dichotomus.Both species of predatory insects thrived from the planting of multiple beneficial plants in oil palm plantations.The results suggest that C.picticeps can be used as a biological agent to control bagworm populations in oil palm plantations,but S.dichotomus has no or little potential for such ecosystem service.

  10. The Oleaginous Yeast Meyerozyma guilliermondii BI281A as a New Potential Biodiesel Feedstock: Selection and Lipid Production Optimization.

    Science.gov (United States)

    Ramírez-Castrillón, Mauricio; Jaramillo-Garcia, Victoria P; Rosa, Priscila D; Landell, Melissa F; Vu, Duong; Fabricio, Mariana F; Ayub, Marco A Z; Robert, Vincent; Henriques, João A P; Valente, Patricia

    2017-01-01

    A high throughput screening (HTS) methodology for evaluation of cellular lipid content based on Nile red fluorescence reads using black background 96-wells test plates and a plate reader equipment allowed the rapid intracellular lipid estimation of strains from a Brazilian phylloplane yeast collection. A new oleaginous yeast, Meyerozyma guilliermondii BI281A, was selected, for which the gravimetric determination of total lipids relative to dry weight was 52.38% for glucose or 34.97% for pure glycerol. The lipid production was optimized obtaining 108 mg/L of neutral lipids using pure glycerol as carbon source, and the strain proved capable of accumulating oil using raw glycerol from a biodiesel refinery. The lipid profile showed monounsaturated fatty acids (MUFA) varying between 56 or 74% in pure or raw glycerol, respectively. M. guilliermondii BI281A bears potential as a new biodiesel feedstock.

  11. The Oleaginous Yeast Meyerozyma guilliermondii BI281A as a New Potential Biodiesel Feedstock: Selection and Lipid Production Optimization

    Directory of Open Access Journals (Sweden)

    Mauricio Ramírez-Castrillón

    2017-09-01

    Full Text Available A high throughput screening (HTS methodology for evaluation of cellular lipid content based on Nile red fluorescence reads using black background 96-wells test plates and a plate reader equipment allowed the rapid intracellular lipid estimation of strains from a Brazilian phylloplane yeast collection. A new oleaginous yeast, Meyerozyma guilliermondii BI281A, was selected, for which the gravimetric determination of total lipids relative to dry weight was 52.38% for glucose or 34.97% for pure glycerol. The lipid production was optimized obtaining 108 mg/L of neutral lipids using pure glycerol as carbon source, and the strain proved capable of accumulating oil using raw glycerol from a biodiesel refinery. The lipid profile showed monounsaturated fatty acids (MUFA varying between 56 or 74% in pure or raw glycerol, respectively. M. guilliermondii BI281A bears potential as a new biodiesel feedstock.

  12. Alterations in the energy budget of Arctic benthic species exposed to oil-related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Gro Harlaug [Akvaplan-niva, Polar Environmental Center, N-9296 Tromso (Norway) and Norwegian College of Fishery Science, University of Tromso, N-9037 Tromso (Norway)]. E-mail: gho@akvaplan.niva.noph; Sva, Eirin [Akvaplan-niva, Polar Environmental Center, N-9296 Tromso (Norway); Carroll, JoLynn [Akvaplan-niva, Polar Environmental Center, N-9296 Tromso (Norway); Camus, Lionel [Akvaplan-niva, Polar Environmental Center, N-9296 Tromso (Norway); De Coen, Wim [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (UA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Smolders, Roel [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (UA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Environmental Toxicology, VITO, Boeretang 200, B-2400 Mol (Belgium); Overaas, Helene [Norwegian Institute for Water Research (NIVA), CIENS, Gaustadalleen, N-0316 Oslo (Norway); Multiconsult AS, Hoffsveien 1, N-0275 Oslo (Norway); Hylland, Ketil [Norwegian Institute for Water Research (NIVA), CIENS, Gaustadalleen, N-0316 Oslo (Norway); Department of Biology, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo (Norway)

    2007-06-15

    We studied cellular energy allocation (CEA) in three Arctic benthic species (Gammarus setosus (Amphipoda), Onisimus litoralis (Amphipoda), and Liocyma fluctuosa (Bivalvia)) exposed to oil-related compounds. The CEA biomarker measures the energy budget of organisms by biochemically assessing changes in energy available (carbohydrates, protein and lipid content) and the integrated energy consumption (electron transport system activity (ETS) as the cellular aspect of respiration). Energy budget was measured in organisms subjected to water-accommodated fraction (WAF) of crude oil and drill cuttings (DC) to evaluate whether these compounds affect the energy metabolism of the test species. We observed significantly lower CEA values and higher ETS activity in G. setosus subjected to WAF treatment compared to controls (p {<=} 0.03). Higher CEA value and lower cellular respiration were observed in O. litoralis exposed to DC compared to controls (p = 0.02). No difference in the energy budget of L. fluctuosa was observed between the treatments (p {>=} 0.19). Different responses to oil-related compounds between the three test species are likely the result of differences in feeding and burrowing behavior and species-specific sensitivity to petroleum-related compounds.

  13. Cultural keystone species in oil sands reclamation, Fort McKay, Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Garibaldi, A.; Straker, J. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2009-12-15

    This presentation discussed a reclamation project conducted in Fort McKay, Alberta that was designed to address some of the social and cultural concerns related to oil sands mining in the region. Conventional reclamation practices in the region have demonstrated a lack of communication and participation from surrounding communities. The project was designed to address future land use plans and to include cultural values in the reclamation process. An integrative approach was used to address community landscapes issues and to explore methods of reclaiming the social and ecological components impacted by oil sands development. Traditional environmental knowledge was also incorporated into the program's design. Cultural keystone species (CKS) were used to provide a culturally relevant compass to guide people engaging in long-term reclamation and land use planning. Cultural keystone species were defined as salient species that significantly shape the cultural identity of a people. Keystone species in the region include the beaver; the moose; the ratroot; and cranberries and blueberries. Challenges to the program included the fact that the scale of oil sands disturbances are so immense that some community recommendations for reclaiming CKS may be impractical. tabs., figs.

  14. Chemotaxonomic Evaluation of Species of Turkish Salvia: Fatty Acid Composition of Seed Oils. II

    Directory of Open Access Journals (Sweden)

    Turgut Kılıç

    2007-05-01

    Full Text Available Fatty acids composition of seed oil of Salvia viridis, S. hydrangea, S. blepharochleana, S. chianantha, S. staminea, S. hypergeia,, S. cilicica, S. caespitosa, S. sclarea, S. cadmica, S. microstegia, S. pachystachys and S. verticillata were analyzed by GC/MS. The main compound were found to be as linoleic acid (18:2; 12.8 % to 52.2 %, linolenic acid (18:3; 3.2 % to 47.7 %, oleic acid (18:1; 11.3 % to 25.6 %, palmitic acid (16:0; 0.7 % to 16.8 % and stearic acid (18:0; 1.8 % to 4.8 %. A phylogenetic tree of species of Salvia were reported and compared to 18:3/18:2 ratio of the seed oils. Fatty acid composition of Salvia seed oils could be used as a chemotaxonomical marker.

  15. Comparative analysis of essential oil components of two Pinus species from Taibai Mountain in China.

    Science.gov (United States)

    Zhang, Yuan; Wang, Zhezhi

    2010-08-01

    Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to compare between the essential oil components from needles of Pinus armandii Franch versus P. tabulaeformis Carr., growing on the same site at Taibai Mountain, China. Under optimum extraction and analysis conditions, 65 and 66 constituents each were identified in P. armandii and P. tabulaeformis, which accounted for 87.9% and 87.1%, respectively, of their oils. Based on their terpene compositions, we concluded that these species belong to a high-caryophyllene chemotype, with sesquiterpenes comprising 54.4% to 54.8% of the total contents. We also determined minor qualitative and major quantitative variations in some compounds. Compared with that from P. tabulaeformis, P. armandii oil had more gamma-muurolene (7.5%), terpinolene (5.8%), and longifolene (5.7%). In contrast, alpha-pinene (8.6%) and caryophyllene oxide (7.4%) were the dominant compounds in P. tabulaeformis.

  16. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2015-03-01

    Full Text Available The key properties of microalgal biodiesel are largely determined by the composition of its fatty acid methyl esters (FAMEs. The gas chromatography (GC based techniques for fatty acid analysis involve energy-intensive and time-consuming procedures and thus are less suitable for high-throughput screening applications. In the present study, a novel quantification method for microalgal fatty acids was established based on the near-infrared spectroscopy (NIRS technique. The lyophilized cells of oleaginous Chlorella containing different contents of lipids were scanned by NIRS and their fatty acid profiles were determined by GC-MS. NIRS models were developed based on the chemometric correlation of the near-infrared spectra with fatty acid profiles in algal biomass. The optimized NIRS models showed excellent performances for predicting the contents of total fatty acids, C16:0, C18:0, C18:1 and C18:3, with the coefficient of determination (R2 being 0.998, 0.997, 0.989, 0.991 and 0.997, respectively. Taken together, the NIRS method established here bypasses the procedures of cell disruption, oil extraction and transesterification, is rapid, reliable, and of great potential for high-throughput applications, and will facilitate the screening of microalgal mutants and optimization of their growth conditions for biodiesel production.

  17. Comparative study on the quality of oil extracted from two tucumã varieties using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Bárbara Elizabeth Teixeira COSTA

    2016-01-01

    Full Text Available Abstract The vast Amazon region has considerable territorial peculiarities and plant species diversity, sometimes from the same botanical family, which can exhibit significant differences in physicochemical properties. From this diversity, two species stand out – Amazonas tucumã (Astrocaryum aculeatum Meyer and Pará tucumã (Astrocaryum vulgare Mart.. The research focus is to analyze, comparatively, these oleaginous fruits, their similarities, particularities and potentials regarding the oil quality extracted from two tucumã varieties from the states of Amazonas and Pará, obtained using supercritical carbon dioxide, under different extraction parameters. The results demonstrate the biometric particularities of each species, highlighting the Amazon fruit, which also showed higher oil yield using supercritical CO2 extraction. The fatty acid quality and profile aspects of the oils show their unsaturated predominance, considering carotenoid content and how the extraction temperature can influence the nutritional quality of the oils. The statistical analyses indicated that the Amazon tucumã oil is superior to the Pará tucumã oil. However, in terms of added value both oils have potential applications in various industrial segments.

  18. Nutritional quality of the seed oil in thirteen Asphodeline species (Xanthorrhoeaceae) from Turkey

    International Nuclear Information System (INIS)

    Zengin, G.; Aktumsek, A.; Giron-Calle, J.; Vioque, J.; Megias, C.

    2016-01-01

    The fatty acid composition of the seed oil from 13 Turkish Asphodeline species was analyzed. The seed oil content ranged between 0.9% and 4.6%, and included 26 different fatty acids from C12:0 to C22:5. The most abundant saturated, monounsaturated, and polyunsaturated fatty acids were C16:0 (5.7% to 23.7% of their total fatty acid content), C18:1ω9 (11.3% to 30.3%), and C18:2ω6 (49.2% to 66.1%). A. tenuior subsp. tenuiflora, which had the highest content of unsaturated fatty acids, also had the best fatty acid profile from a nutritional point of view. Asphodeline seed oil composition was similar to that of local, related vegetables such as onion seeds. Asphodeline species, which are most frequently grown to use the leaves in salads, may also be a good source of seed oil with good nutritional properties. Results of a cluster analysis using data on the fatty acid composition are consistent with the taxonomic classification of genus Asphodeline. [es

  19. Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils.

    Science.gov (United States)

    Loizzo, Monica Rosa; Ben Jemia, Mariem; Senatore, Felice; Bruno, Maurizio; Menichini, Francesco; Tundis, Rosa

    2013-09-01

    The chemical composition of Cistus creticus, Cistus salvifolius, Cistus libanotis, Cistus monspeliensis and Cistus villosus essential oils has been examined by GC and GC-MS analysis. Height-nine constituents were identified in C. salvifolius oil, sixty in C. creticus, fifty-six in C. libanotis, fifty-four in C. villosus, forty-five in C. monspeliensis. Although the five species belong to the same genus, the composition showed interesting differences. Essential oils were screened also for their potential antioxidant effects (by DPPH, ABTS, FRAP and β-carotene bleaching test) and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, useful for prevention and treatment of Alzheimer's disease. C. monspeliensis exhibited the most promising activity in β-carotene bleaching test (IC₅₀ of 54.7 μg/mL). In FRAP test C. libanotis showed a value of 19.2 μM Fe(II)/g. C. salvifolius showed the highest activity against AChE (IC₅₀ of 58.1 μg/mL) while C. libanotis, C. creticus, C. salvifolius demonstrated a good inhibitory activity against BChE with IC₅₀ values of 23.7, 29.1 and 34.2 μg/mL, respectively. Overall our results could promote the use of the essential oil of different Cistus species as food additives and for formulation of herbal infusion or nutraceutical products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Chemosystematic Value of the Essential Oil Composition of Thuja species Cultivated in Poland—Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Caroline Spyropoulos

    2009-11-01

    Full Text Available In the framework of the correlation between chemotaxonomy and chemical analysis studies, the chemical composition of the essential oils of four varieties of Thuja species cultivated in Poland − T. occidentalis ‘globosa’, T. occidentalis ‘aurea’, T. plicata and T. plicata ‘gracialis’ − were investigated by GC and GC-MS. Thirty-one compounds were identified from T. occidentalis ‘globosa’, representing 96.92% of the total oil; twenty-seven from T. occidentalis ‘aurea’ (94.34%; thirty-one from T. plicata (94.75%; and thirty compounds from T. plicata ‘gracialis’ (96.36%. The main constituents in all samples were the monoterpene ketones α- and β-thujone, fenchone and sabinene, as well as the diterpenes beyerene and rimuene.The chemosystematic value of the total ketone content of all samples (which varied from 54.30–69.18% has been discussed and investigated. The constituents, beyerene and the mixture of α- and β-thujone, were isolated from the oils and tested against six Gram-positive and -negative bacteria and three pathogenic fungi. The oils of the two T. plicata species exhibited significant antimicrobial activity, while the mixture of α- and β-thujone showed very strong activity as well.

  1. Comparative study of the chemical composition of essential oils of five Tagetes species collected in Venezuela.

    Science.gov (United States)

    Armas, Kaylin; Rojas, Janne; Rojas, Luis; Morales, Antonio

    2012-09-01

    The leaves and inflorescences of five species of Tagetes, family Asteraceae, were collected from different locations in Mérida state, Venezuela, and their essential oils analyzed by GC and GC/MS. Several differences were observed in the composition of these oils, mainly regarding the major components, which for T. caracasana were trans-ocimenone (64.3%) and cis-tagetone (13.7%), and for T. erecta, piperitone (35.9%) and terpinolene (22.2%). High amounts of trans-anethole (87.5%) and estragole (10.7%) were observed in T. filifolia, while T. subulata essential oil contained terpinolene (26.0%), piperitenone (13.1%) and limonene (10.8%). For T. patula, two different oil samples were analyzed, leaves (TPL) and inflorescences (TPI). The TPL oil showed terpinolene (20.9%) and piperitenone (14.0%) as main components, while the TPI sample was composed mainly of beta-caryophyllene (23.7%), terpinolene (15.6%) and cis-beta-ocimene (15.5%).

  2. Emulsification of crude oil by an alkane-oxidizing Rhodococcus species isolated from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bredholt, H.; Bruheim, P.; Eimhjellen, K. [Norwegian Univ. of Scince and Technology, Trondheim (Norway); Josefsen, K.; Vatland, A. [SINTEF SI, Oslo (Norway). Industrial Chemistry Div.

    1998-04-01

    A Rhodococcus species, which has proven to be the best of 99 oil-emulsifying bacteria isolated from seawater, was characterized. This bacterium produced very stable oil-in-water emulsions from different crude oils with various content of aliphatic and aromatic compounds, by utilizing C{sub 1}1 and C{sub 3}3 n-alkanes as carbon and energy sources. Bacteria that produce stable emulsions are often able to adhere strongly to hydrocarbons or hydrophobic surfaces. It was at these surfaces that extensive emulsification of the residual oil and accumulation of acidic oxidation products occurred. The acidic products were consumed in a second step. This step was characterized by linear growth and an increasing number of cells growing in the water phase. The most extensive emulsification occurred at the end of the exponential phase. There was no evidence of surfactants at the end of the exponential phase, however, a polymeric compound with emulsifying activity, tightly bound to the oil droplets, was isolated, suggesting that the emulsification resulted from the release of the hydrophobic cell surface discarded during growth limitations. 38 refs., 7 figs.

  3. Composition of the essential oils of three Uzbek Scutellaria species (Lamiaceae) and their antioxidant activities.

    Science.gov (United States)

    Mamadalieva, Nilufar Zokirjonovna; Sharopov, Farukh; Satyal, Prabodh; Azimova, Shahnoz Sadykovna; Wink, Michael

    2017-05-01

    The chemical composition of the essential oils obtained from aerial parts of Scutellaria immaculata Nevski ex Juz., Scutellaria ramosissima M. Pop. and Scutellaria schachristanica Juz. (Lamiaceae) growing wild in Uzbekistan was analysed by GC and GC-MS. The main constituents of the essential oils from S. immaculata were acetophenone (30.39%), eugenol (20.61%), thymol (10.04%) and linalool (6.92%), whereas constituents of the essential oils fromS. schachristanica were acetophenone (34.74%), linalool (26.98%) and eugenol (20.67%). The S. ramosissima oil is dominated by germacrene D (23.96%), β-caryophyllene (11.09%), linalool (9.63%) and hexadecanoic acid (8.34%). The essential oils of Scutellaria species exhibited weaker antioxidant effects in DPPH, ABTS and FRAP assays. In FRAP assay, only eugenol exhibited a substantial reducing power IC 50  = 2476.92 ± 15.8 (mM Fe(II)/g).

  4. Differential Essential Oil Composition and Morphology between Perennial Satureja species Growing in Spain

    Directory of Open Access Journals (Sweden)

    David García-Rellán

    2015-06-01

    Full Text Available Chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of thirty six samples of perennial Spanish savouries (Satureja montana L., Satureja innota (Pau G. López, Satureja cuneifolia Ten. and Satureja intricata Lange, was investigated by GC and GC-MS. A total of 72 compounds accounting between 98.25-99.55% of the total oil were identified. High content of carvacrol (59.72±1.50% followed by g -terpinene (17.40±1.11% were found in S.montana essential oils. S. cuneifolia yielded an oil rich in camphor (45.04±1.67% and camphene (12.42±1.71% whereas S. innota produces an essential oil with linalool (23.94±7.58% or geraniol (8.62±3.45% according to the locality of collection and S. intricata showed chemical polymorphism with camphor (16.02±1.75%, as the main compound followed with populations with myrcene (8.46±1.46% and populations with g -terpinene (8.22±1.33%. Although the morphological affinity between S. innota, S.cuneifolia and S. intricata could lead to consider the subspecies level, the phytochemical discriminant analysis support the taxonomic classification of Flora Iberica which ranks these taxa into species.

  5. Study of the dynamic of Bacillus species during of oil contaminated soil by PCR-DGGE

    OpenAIRE

    Mahmoud Shavandi; Nima Zamanian; Azam Haddadi

    2018-01-01

    Introduction: Bioremediation is an effective, inexpensive and environmental friendly manner for removing oil pollutions. Studding the biodiversity of indigenous microorganisms and their function is very important for bioremediation strategy selection and performance. This study was aimed to investigate the rule of Bacillus species in bioremediation of diesel contaminated soil. Materials and Methods: Soil microcosms were prepared by adding 2 and 4% (W/W) of diesel to the soil. A control mic...

  6. Chemistry and bioactivities of essential oils of some Ocimum species: an overview

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Pandey

    2014-09-01

    Full Text Available Essential oils of different species of the genus Ocimum are natural flavouring materials of commercial importance. The data given in current literature are pertaining to the chemical composition of essential oils of different Ocimum species viz., Ocimum basilicum Linn. (alt. Ocimum basilicum var. minimum, Ocimum basilicum var. purpurience, Ocimum campechianum Mill., Ocimum canum Sims. (Ocimum americanum, Ocimum citriodorum, Ocimum gratissimum Linn., Ocimum kilimandscharicum Linn., Ocimum micranthum Willd., Ocimum sanctum Linn., (alt. Ocimum tenuiflorum Linn., Ocimum selloi Benth., Ocimum trichodon, Ocimum utricifolium from different geographical regions. A considerable difference in chemical composition of a particular species is found, which may be due to their occurrence in different eco-climatic zones and changes in edaphic factors. Attention is also focused on the biological properties of Ocimum oils which are related to their various interesting applications as antimicrobial, antioxidant, repellent, insecticidal, larvicidal, nematicidal and therapeutic (anti-inflammatory, antinociceptive, antipyretic, antiulcer, analgesic, anthelmintic, anticarcinogenic, skin permeation enhancer, immunomodulatory, cardio-protective, antilipidemic agents.

  7. Komponen Kimia Minyak Atsiridaun Tiga Jenis Piperaceae*[chemical Compounds of Essential Oil on Three Piperaceae Species

    OpenAIRE

    Jamal, Yuliasri

    2002-01-01

    Chemical analysis of leaves essential oil on three Piper species, P. malamiri, P. baccatum and P. majusculum was conducted using gas chromatography and mass spectrometry (GCMS) method.Chromatogram result showed 52, 56 and 47 peaks on leaves essential oil of P.malamiri, P.baccatum and P.majusculum respectively. Based on the peaks,it is known that isocaryofilene is the major, common and as the highest component found in the three essential oils, beside several other major components.

  8. In vitro activity of Origanum vulgare essential oil against Candida species

    Directory of Open Access Journals (Sweden)

    Marlete Brum Cleff

    2010-03-01

    Full Text Available The aim of this study was to evaluate the in vitro activity of the essential oil extracted from Origanum vulgare against sixteen Candida species isolates. Standard strains tested comprised C. albicans (ATCC strains 44858, 4053, 18804 and 3691, C. parapsilosis (ATCC 22019, C. krusei (ATCC 34135, C. lusitaniae (ATCC 34449 and C. dubliniensis (ATCC MY646. Six Candida albicans isolates from the vaginal mucous membrane of female dogs, one isolate from the cutaneous tegument of a dog and one isolate of a capuchin monkey were tested in parallel. A broth microdilution technique (CLSI was used, and the inoculum concentration was adjusted to 5 x 10(6 CFU mL-1. The essential oil was obtained by hydrodistillation in a Clevenger apparatus and analyzed by gas chromatography. Susceptibility was expressed as Minimal Inhibitory Concentration (MIC and Minimal Fungicidal Concentration (MFC. All isolates tested in vitro were sensitive to O. vulgare essential oil. The chromatographic analysis revealed that the main compounds present in the essential oil were 4-terpineol (47.95%, carvacrol (9.42%, thymol (8.42% and □-terpineol (7.57%. C. albicans isolates obtained from animal mucous membranes exhibited MIC and MFC values of 2.72 µL mL-1 and 5 µL mL-1, respectively. MIC and MFC values for C. albicans standard strains were 2.97 µL mL-1 and 3.54 µL mL-1, respectively. The MIC and MFC for non-albicans species were 2.10 µL mL-1 and 2.97 µL mL-1, respectively. The antifungal activity of O. vulgare essential oil against Candida spp. observed in vitro suggests its administration may represent an alternative treatment for candidiasis.

  9. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts.

    Science.gov (United States)

    Signori, Lorenzo; Ami, Diletta; Posteri, Riccardo; Giuzzi, Andrea; Mereghetti, Paolo; Porro, Danilo; Branduardi, Paola

    2016-05-05

    Microbial lipids can represent a valuable alternative feedstock for biodiesel production in the context of a viable bio-based economy. This production can be driven by cultivating some oleaginous microorganisms on crude-glycerol, a 10% (w/w) by-product produced during the transesterification process from oils into biodiesel. Despite attractive, the perspective is still economically unsustainable, mainly because impurities in crude glycerol can negatively affect microbial performances. In this view, the selection of the best cell factory, together with the development of a robust and effective production process are primary requirements. The present work compared crude versus pure glycerol as carbon sources for lipid production by three different oleaginous yeasts: Rhodosporidium toruloides (DSM 4444), Lipomyces starkeyi (DSM 70295) and Cryptococcus curvatus (DSM 70022). An efficient yet simple feeding strategy for avoiding the lag phase caused by growth on crude glycerol was developed, leading to high biomass and lipid production for all the tested yeasts. Flow-cytometry and fourier transform infrared (FTIR) microspectroscopy, supported by principal component analysis (PCA), were used as non-invasive and quick techniques to monitor, compare and analyze the lipid production over time. Gas chromatography (GC) analysis completed the quali-quantitative description. Under these operative conditions, the highest lipid content (up to 60.9% wt/wt) was measured in R. toruloides, while L. starkeyi showed the fastest glycerol consumption rate (1.05 g L(-1) h(-1)). Being productivity the most industrially relevant feature to be pursued, under the presented optimized conditions R. toruloides showed the best lipid productivity (0.13 and 0.15 g L(-1) h(-1) on pure and crude glycerol, respectively). Here we demonstrated that the development of an efficient feeding strategy is sufficient in preventing the inhibitory effect of crude glycerol, and robust enough to ensure high lipid

  10. Chemical compositions of essential oils from two Artemisia species used in Mongolian traditional medicine

    Directory of Open Access Journals (Sweden)

    Javzmaa N

    2018-02-01

    Full Text Available Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess many active constituents that work through a several modes of action. Artemisia, the largest genus of the family Asteraceae, has a number of effects against human and plant diseases. The main purpose of the present study was to investigate chemical compositions of essential oils of two Artemisia species, Artemisia palustris L and Artemisia sericea Weber ex Stechm from the Mongolian steppe zone using gas chromatography and gas chromatography-mass spectrometry. The essential oil of A.palustris was characterized by the presence of monoterpene hydrocarbons such as  trans-β-ocimene (59.1%, cis-β-ocimene (11.6% and myrcene (7.1%, while the oil of A.sericea was dominated by the presence of three oxygenated monoterpenoids as 1,8-cineole (25.8%, borneol (22.5% and camphor (18.8% which are used for preparation of a fragrance and medicinal products.

  11. Deoxy-liquefaction of three different species of macroalgae to high-quality liquid oil.

    Science.gov (United States)

    Li, Jinhua; Wang, Guoming; Chen, Ming; Li, Jiedong; Yang, Yaoyao; Zhu, Qiuyan; Jiang, Xiaohuan; Wang, Zonghua; Liu, Haichao

    2014-10-01

    Three species of macroalgae (Ulva lactuca, Laminaria japonica and Gelidium amansii) were converted into liquid oils via deoxy-liquefaction. The elemental analysis, FTIR and GC-MS results showed that the three liquid oils were all mainly composed of aromatics, phenols, alkanes and alkenes, other oxygen-containing compounds, and some nitrogen-containing compounds though there were some differences in terms of their types or contents due to the different constituents in the macroalgae feedstocks. The oxygen content was only 5.15-7.30% and the H/C molar ratio was up to 1.57-1.73. Accordingly, the HHV of the three oils were 42.50, 41.76 and 40.00 MJ/kg, respectively. The results suggested that U. lactuca, L. japonica and G. amansii have potential as biomass feedstock for fuel and chemicals and that deoxy-liquefaction technique may be an effective way to convert macroalgae into high-quality liquid oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Butyryl- and acetyl-cholinesterase inhibitory activities in essential oils of Salvia species and their constituents.

    Science.gov (United States)

    Savelev, Sergey U; Okello, Edward J; Perry, Elaine K

    2004-04-01

    Extracts of Salvia (sage) species have been reported to have cholinergic activities relevant to the treatment of Alzheimer's disease. A lack of information on the inhibition of the enzyme butyrylcholinesterase, also considered to be a target in the treatment of the disease, prompted this in vitro investigation of the essential oils of S. fruticosa, S. lavandulaefolia, S. of ficinalis and S. of ficinalis var. purpurea for anti-butyrylcholinesterase activity. Dose-dependent inhibition of human cholinesterases by the extracts and constituents was determined using the method of Ellman. A time dependent increase in the inhibition of butyrylcholinesterase by the oils of S. fruticosa and S. of ficinalis var. purpurea was evident. IC(50) values decreased from 0.15 +/- 0.007 and 0.14 +/- 0.007 mg/mL after 5 min to 0.035 +/- 0.016 and 0.06 +/- 0.018 mg/mL after 90 min incubation time respectively. The slow onset of inhibition of butyrylcholinesterase was also shown by individual constituents, such as 3-carene and beta-pinene. Analyses of the chemical composition of the oils and anti-butyrylcholinesterase activity of their constituents revealed that none of the compounds tested would account for the total activity of the oils and that synergy is likely. Copyright 2004 John Wiley & Sons, Ltd.

  13. Chemical composition of essential oils from four Vietnamese species of piper (piperaceae).

    Science.gov (United States)

    Hieu, Le D; Thang, Tran D; Hoi, Tran M; Ogunwande, Isiaka A

    2014-01-01

    The chemical composition of essential oils from four Piper species, Piper retrofractum Vahl., P. boehmeriaefolium (Miq.) C. DC., P. sarmentosum Roxb., and P. maclurei Merr., were analysed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Nineteen to sixty-four compounds representing 92.0%-98.4% of the total contents were identified in the oil samples. The major constituents identified in P. retrofractum leaf oil were benzyl benzoate (14.4%), myrcene (14.4%), bicycloelemene (9.9%), bicyclogermacrene (7.0%) and β-caryophyllene (5.3%). On the other hand, the main constituents of P. boehmeriaefolium were α-copaene (28.3%), α-pinene (7.4%) and 1, 8-cineole (5.7%). P. sarmentosum showed a very different chemical profile characterized mainly by aromatic compounds and devoid of monoterpene hydrocarbons. The major constituents were benzyl benzoate (49.1%), benzyl alcohol (17.9%), 2-hydroxy-benzoic acid phenylmethyl ester (10.0%) and 2-butenyl-benzene (7.9%). The leaf of P. maclurei was characterized by higher amount of (E)-cinnamic acid (37.4%) and (E)-nerolidol (19.4%). Moreover, (Z)-9-octadecanoic acid methyl ester (28.0%), (E)-cinnamyl acetate (17.2%), phytol (12.2%) and (E)-cinnamaldehyde (8.8%) were the major compounds identified in the stem oil.

  14. Chemical and biological study of essential oils from Eugenia pruniformis cambess., an endemic species from Brazilian Atlantic Forest

    OpenAIRE

    Albuquerque, Ricardo D.D.G.; Tietbohl, Luis A. C.; Fernandes, Caio P.; Couteiro, Pedro P.; Eiriz, Débora N.; Santos, Marcelo G.; Silva Filho, Moacélio V.; Alves, Gutemberg G.; Bachinski, Róber; Rocha, Leandro

    2012-01-01

    Eugenia pruniformis Cambess. is an endemic species from Brazilian Atlantic Forest. Essential oils from leaves and fruits from this species were obtained by hydrodistillation and analyzed by GCMS/CG-FID. In all, 25 compounds were identified, with predominance of sesquiterpene hydrocarbons in both plant parts. The major compounds were β-caryophyllene, bicyclogermacrene, germacrene D, δ- cadinene and α-copaene. Antioxidant activity was performed for essential oil from leaves using ORAC method, s...

  15. Growth and metabolic characteristics of oleaginous microalgal isolates from Nilgiri biosphere Reserve of India.

    Science.gov (United States)

    Thangavel, Kalaiselvi; Radha Krishnan, Preethi; Nagaiah, Srimeena; Kuppusamy, Senthil; Chinnasamy, Senthil; Rajadorai, Jude Sudhagar; Nellaiappan Olaganathan, Gopal; Dananjeyan, Balachandar

    2018-01-03

    Renewable energy for sustainable development is a subject of a worldwide debate since continuous utilization of non-renewable energy sources has a drastic impact on the environment and economy; a search for alternative energy resources is indispensable. Microalgae are promising and potential alternate energy resources for biodiesel production. Thus, our efforts were focused on surveying the natural diversity of microalgae for the production of biodiesel. The present study aimed at identification, isolation, and characterization of oleaginous microalgae from shola forests of Nilgiri Biosphere Reserve (NBR), the biodiversity hot spot of India, where the microalgal diversity has not yet been systematically investigated. Overall the higher biomass yield, higher lipid accumulation and thermotolerance observed in the isolated microalgal strains have been found to be the desirable traits for the efficient biodiesel production. Species composition and diversity analysis yielded ten potential microalgal isolates belonging to Chlorophyceae and Cyanophyceae classes. The chlorophytes exhibited higher growth rate, maximum biomass yield, and higher lipid accumulation than Cyanophyceae. Among the chlorophytes, the best performing strains were identified and represented by Acutodesmus dissociatus (TGA1), Chlorella sp. (TGA2), Chlamydomonadales sp. (TGA3) and Hindakia tetrachotoma (PGA1). The Chlamydomonadales sp. recorded with the highest growth rate, lipid accumulation and biomass yield of 0.28 ± 0.03 day -1 (μ exp ), 29.7 ± 0.69% and 134.17 ± 16.87 mg L -1  day -1 , respectively. It was also found to grow well at various temperatures, viz., 25 °C, 35 °C, and 45 °C, indicating its suitability for open pond cultivation. The fatty acid methyl ester (FAME) analysis of stationary phase cultures of selected four algal strains by tandem mass spectrograph showed C16:0, C18:1 and C18:3 as dominant fatty acids suitable for biodiesel production. All the three

  16. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A® to the Brachionus plicatilis species complex (Rotifera)

    International Nuclear Information System (INIS)

    Rico-Martínez, Roberto; Snell, Terry W.; Shearer, Tonya L.

    2013-01-01

    Using the marine rotifer Brachionus plicatilis acute toxicity tests, we estimated the toxicity of Corexit 9500A ® , propylene glycol, and Macondo oil. Ratios of 1:10, 1:50 and 1:130 for Corexit 9500A ® :Macondo oil mixture represent: maximum exposure concentrations, recommended ratios for deploying Corexit (1:10–1:50), 1:130 the actual dispersant:oil ratio used in the Deep Water Horizon spill. Corexit 9500A ® and oil are similar in their toxicity. However, when Corexit 9500A ® and oil are mixed, toxicity to B. manjavacas increases up to 52-fold. Extrapolating these results to the oil released by the Macondo well, suggests underestimation of increased toxicity from Corexit application. We found small differences in sensitivity among species of the B. plicatilis species complex, likely reflecting phylogenetic similarity. Just 2.6% of the water-accommodated fraction of oil inhibited rotifer cyst hatching by 50%, an ecologically significant result because rotifer cyst in sediments are critical resources for the recolonization of populations each Spring. - Highlights: ► We determined LC50's of Corexit 9500A ® , propylene glycol, and oil to B. plicatilis. ► Corexit 9500A ® and oil are equivalent in toxicity. ► When Corexit 9500A ® and oil are mixed, toxicity increases 52-fold to B. plicatilis. ► Results suggest underestimation of increased toxicity due to Corexit application. ► Sensitivity differences are small among species of the B. plicatilis species complex. - Using Brachionus plicatilis acute toxicity tests we estimated Corexit 9500A ® and oil toxicity. When these compounds are mixed a 52-fold increase in toxicity was observed.

  17. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions

    DEFF Research Database (Denmark)

    Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2017-01-01

    Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0–C18:1–C16......, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability...... and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future....

  18. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions.

    Science.gov (United States)

    Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2017-05-01

    Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0-C18:1-C16:0), POS (C16:0-C18:1-C18:0), and SOS (C18:0-C18:1-C18:0). The storage lipids of yeasts, mainly TAGs, also contain relative high-level of C16 and C18 fatty acids and might be used as CB-like lipids (CBL). In this study, we cultivated six different yeasts, including one non-oleaginous yeast strain, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability. Under the same growth conditions, we found that TAGs were the main lipids in all six yeasts and that T. oleaginosus can produce more TAGs than the other five yeasts. Less than 3% of the total TAGs were identified as potential SOS in the six yeasts. However, T. oleaginosus produced 27.8% potential POP and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future.

  19. On the stabilizing role of species diffusion in chemical enhanced oil recovery

    Science.gov (United States)

    Daripa, Prabir; Gin, Craig

    2015-11-01

    In this talk, the speaker will discuss a problem on the stability analysis related to the effect of species diffusion on stabilization of fingering in a Hele-Shaw model of chemical enhanced oil recovery. The formulation of the problem is motivated by a specific design principle of the immiscible interfaces in the hope that this will lead to significant stabilization of interfacial instabilities, there by improving oil recovery in the context of porous media flow. Testing the merits of this hypothesis poses some challenges which will be discussed along with some numerical results based on current formulation of this problem. Several open problems in this context will be discussed. This work is currently under progress. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  20. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides

    Science.gov (United States)

    Geiselman, Gina M; Ito, Masakazu; Mondo, Stephen J; Reilly, Morgann C; Cheng, Ya-Fang; Bauer, Stefan; Grigoriev, Igor V; Gladden, John M; Simmons, Blake A; Brem, Rachel B

    2018-01-01

    The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi. PMID:29521624

  1. Chemical Composition and Biological Activity of Essential Oils from Different Species of Piper from Panama.

    Science.gov (United States)

    Santana, Ana I; Vila, Roser; Cañigueral, Salvador; Gupta, Mahabir P

    2016-07-01

    The chemical composition of leaf essential oils from 11 species of Piper from Panama was analyzed by a combination GC-FID and GC-MS procedures. Six of them had sesquiterpene hydrocarbons as major constituents, three were characterized by monoterpene hydrocarbons, one by a diterpene, and one by a phenylpropanoid, dillapiole. The main components identified in each species were: cembratrienol (25.4 %) in Piper augustum; β-pinene (26.6 %) in Piper corrugatum; α-pinene (19.4 %) in Piper curtispicum; trans-β-farnesene (63.7 %) in Piper darienense; p-cymene (43.9 %) in Piper grande; dillapiole (57.7 %) in Piper hispidum; linalool (14.5 %), α-phellandrene (13.8 %), and limonene (12.2 %) in Piper jacquemontianum; β-caryophyllene (45.2 %) in Piper longispicum; linalool (16.5 %), α-phellandrene (11.8 %), limonene (11.4 %), and p-cymene (9.0 %) in Piper multiplinervium; β-selinene (19.0 %), β-elemene (16.1 %), and α-selinene (15.5 %) in Piper reticulatum; and germacrene D (19.7 %) in Piper trigonum. The essential oils of P. hispidum and P. longispicum at a concentration of 250 µg/mL showed larvicidal activity against Aedes aegypti, while the oils from P. curtispicum, P. multiplinervium, P. reticulatum, and P. trigonum were inactive (LC100 ≥ 500 µg/mL). The essential oils of P. grande, P. jacquemontianum, and P. multiplinervium showed no significant antifungal activity (MIC > 250 µg/mL) against several yeasts and filamentous fungal strains. Georg Thieme Verlag KG Stuttgart · New York.

  2. Chemical analysis and antioxidant activity of the essential oils of three Piperaceae species growing in the central region of Cuba.

    Science.gov (United States)

    Rodríguez, Elisa Jorge; Saucedo-Hernández, Yanelis; Vander Heyden, Yvan; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo; Lerma-García, María Jesús; Monteagudo, Urbano; Bravo, Luis; Medinilla, Mildred; de Armas, Yuriam; Herrero-Martínez, José Manuel

    2013-09-01

    The present study describes the phytochemical profile and antioxidant activity of the essential oils of three Piperaceae species collected in the central region of Cuba. The essential oils of Piper aduncum, P. auritum and P. umbellatum leaves, obtained by hydrodistillation, were analyzed by gas chromatography-mass spectrometry. The main components of P. aduncum oil were piperitone (34%), camphor (17.1%), camphene (10.9%), 1,8-cineol (8.7%) and viridiflorol (7.4%), whereas that of P. auritum and P. umbellatum was safrole (71.8 and 26.4%, respectively). The antioxidant properties of the essential oils were also evaluated using several assays for radical scavenging ability (DPPH test and reducing power) and inhibition of lipid oxidation (ferric thiocyanate method and evaluation against Cucurbita seed oil by peroxide, thiobarbituric acid and p-anisidine methods). P. auritum showed the strongest antioxidant activity among the Piper species investigated, but lower than those of butylated hydroxyanisol and propyl gallate.

  3. Chemical constituents variations of essential oils from rhizomes of four Zingiberaceae species

    International Nuclear Information System (INIS)

    Sukari, M.A.; Mohd Sharif, N.W.; Yap, A.L.C.; Tang, S.W.; Rahmani, M.; Ee, G.C.L.; Taufiq-Yap, Y.H.; Yusof, U.K.

    2008-01-01

    The essential oils were extracted using the hydrodistillation method from four Zingiberaceae species; Zingiber officinale var.rubrum, Zingiber amaricans, Kaempferia galanga, and Boesenbergia pandurata. Volatile components of all extracts were analyzed by gas chromatography-mass spectrometry (GC-MS) techniques. The major constituents of Zingiber officinale, Zingiber amaricans, Kaempferia galanga, and Boesenbergia pandurata were identified as E-citral (20.98%), zerumbone (40.70%), ethyl p -methoxycinnamate (58.47%) and camphor (57.97%), respectively. Kaempferia galanga and Zingiber amaricans were rich in sesquiterpenes whereas Boesenbergia pandurata and Zingiber officinale var. rubrum contained mostly monoterpenes. (author)

  4. Introduction of non-native marine fish species to the Canary Islands waters through oil platforms as vectors

    Science.gov (United States)

    Pajuelo, José G.; González, José A.; Triay-Portella, Raül; Martín, José A.; Ruiz-Díaz, Raquel; Lorenzo, José M.; Luque, Ángel

    2016-11-01

    This work documents the introduction of non-native fish species to the Canary Islands (central-eastern Atlantic) through oil rigs. Methodological approaches have included surveys by underwater visual censuses around and under oil platforms and along the docking area of rigs at the Port of Las Palmas. Eleven non-native fish species were registered. Paranthias furcifer, Abudefduf hoefleri, Acanthurus bahianus, Acanthurus chirurgus, and Acanthurus coeruleus are first recorded from the Canaries herein. Other three species could not be identified, although they have never been observed in the Canaries. Cephalopholis taeniops, Abudefduf saxatilis, and Acanthurus monroviae had been previously recorded. Native areas of these species coincide with the areas of origin and the scale of oil rigs with destination the Port of Las Palmas. The absence of native species in the censuses at rigs and their presence at rigs docking area, together with the observation of non-native species after the departure of platforms, reject the possibility that these non-native species were already present in the area introduced by another vector. C. taeniops, A. hoefleri, A. saxatilis, A. chirurgus, A. coeruleus and A. monroviae are clearly seafarer species. A. bahianus seems to be a potential seafarer species. P. furcifer is a castaway species. For the moment, the number of individuals of the non-native species in marine ecosystems of the Canaries seems to be low, and more investigation is needed for controlling these translocations.

  5. Essential Oil Composition and Volatile Profile of Seven Helichrysum Species Grown in Italy.

    Science.gov (United States)

    Giovanelli, Silvia; De Leo, Marinella; Cervelli, Claudio; Ruffoni, Barbara; Ciccarelli, Daniela; Pistelli, Luisa

    2018-03-06

    Helichrysum genus consists of about 600 species widespread throughout the world, especially in South Africa and in the Mediterranean area. In this study the aroma profile (HS-SPME) and the EO compositions of seven Helichrysum species (H. cymosum, H. odoratissimum, H. petiolare, H. fontanesii, H. saxatile, H. sanguineum, and H. tenax) were evaluated. All the plants were grown in Italy under the same growth conditions. The volatile constituents, particularly monoterpenes, depended by the plant's genotype and ecological adaptation. This study represents the first headspace evaluation on the selected plants and the results evidenced that monoterpenes represented the main class of constituents in five of the seven species analysed (from 59.2% to 95.0%). The higher content in sesquiterpene hydrocarbons was observed in the Mediterranean species of H. sanguineum (68.0%). Only H. saxatile showed relative similar abundance of monoterpenes and sesquiterpene hydrocarbons. The essential oil composition of the majority of examined species are characterised by high percentage of sesquiterpenes (especially β-caryophyllene and δ-cadinene) ranging from 51.3% to 92.0%, except for H. cymosum, H. tenax, and H. sanguineum leaves where monoterpenes predominated (from 51.7% to 74.7%). © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  6. Toxicity of crude oil to early life stages of two fish species

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, L.M.; Hodson, P.V. [Queen' s Univ., Kingston, ON (Canada). Dept. of Biology; Brown, R.S. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry; King, T.; Lee, K. [Department of Fisheries and Oceans, Dartmouth, NS (Canada). Bedford Inst. of Oceanography

    2004-07-01

    Fish exposed to crude oil in their early life stages exhibit signs of dioxin-like toxicity which is linked to the presence of alkyl-substituted polycyclic aromatic hydrocarbons (PAHs). Exposure is characterized by the presence of blue-sac disease which manifests itself in edema, hemorrhaging, deformities and induction of CYP1A enzymes. In this study, the extent of CYP1A induction and BSD was compared in the early life stages of rainbow trout and Japanese medaka following exposure to two crude oils (Scotian Shelf and Alaskan North Slope Crude). Embryos were exposed to a broad range of concentrations of chemically enhanced water fractions of both oils which have unique PAH composition and chemical characteristics. It was assumed that Alaskan North Slope Crude would be more toxic than Scotian Shelf because it has a higher PAH concentration. The occurrence and severity of BSD was characterized along with the extent of PAH exposure. Preliminary results confirm that PAH exposure is greater for Alaskan North Slope Crude and that the responses of the two fish species were highly correlated.

  7. Specific characteristics of essential oils of four Artemisia species from the Mongolian Trans-Altai Gobi

    Directory of Open Access Journals (Sweden)

    N. Javzmaa

    2016-03-01

    Full Text Available The essential oil compositions of four Artemisia species in Mongolian Trans-Altai Gobi were studied by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS. The oil from A.macrocephala Jacq and A.dracunculus Ledeb. were characterized by the presence of monoterpene hydrocarbons and oxygenated monoterpeneoids predominately. E-nerolidol (26.95%, methyleugenol (23.29% and sabinene (13.21% were found as main components in the essential oils of A.dracunculus. A.macrocephalla was characterized by the presence of chamazulene (13.8%, cineol (11.7%, myrcene (9.0%, germacrene-D (7.1%. A.anethifolia Web was characterized by the presence of fragrant compounds as camphor (26.05%, α-thujone (10.1%, borneol (5.1%. Davanone and davanone derivatives were also detected in the sample in amount of 7.7% in total. A.scoparia Waldst differed by domination of monoterpene hydrocarbons (78.9% with (Z- β-ocimene (29.24%, α-pinene (15.19%, limonene (10.27% and myrcene (9.61%.Mongolian Journal of Chemistry 16 (42, 2015, 34-38

  8. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    Science.gov (United States)

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro; Fernandes, Patricia Dias

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

  9. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    Directory of Open Access Journals (Sweden)

    Jorge Luis Amorim

    Full Text Available Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o. and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

  10. Antifungal Activity of Thapsia villosa Essential Oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species

    Directory of Open Access Journals (Sweden)

    Eugénia Pinto

    2017-09-01

    Full Text Available The composition of the essential oil (EO of Thapsia villosa (Apiaceae, isolated by hydrodistillation from the plant’s aerial parts, was analysed by GC and GC-MS. Antifungal activity of the EO and its main components, limonene (57.5% and methyleugenol (35.9%, were evaluated against clinically relevant yeasts (Candida spp., Cryptococcus neoformans and Malassezia furfur and moulds (Aspergillus spp. and dermatophytes. Minimum inhibitory concentrations (MICs were measured according to the broth macrodilution protocols by Clinical and Laboratory Standards Institute (CLSI. The EO, limonene and methyleugenol displayed low MIC and MFC (minimum fungicidal concentration values against Candida spp., Cryptococcus neoformans, dermatophytes, and Aspergillus spp. Regarding Candida species, an inhibition of yeast–mycelium transition was demonstrated at sub-inhibitory concentrations of the EO (MIC/128; 0.01 μL/mL and their major compounds in Candida albicans. Fluconazole does not show this activity, and the combination with low concentrations of EO could associate a supplementary target for the antifungal activity. The association of fluconazole with T. villosa oil does not show antagonism, but the combination limonene/fluconazole displays synergism. The fungistatic and fungicidal activities revealed by T. villosa EO and its main compounds, associated with their low haemolytic activity, confirm their potential antimicrobial interest against fungal species often associated with human mycoses.

  11. Age-related macular degeneration: Effects of a short-term intervention with an oleaginous kale extract--a pilot study.

    Science.gov (United States)

    Arnold, Christin; Jentsch, Susanne; Dawczynski, Jens; Böhm, Volker

    2013-01-01

    Age-related macular degeneration (AMD) is a multifactorial degenerative disease of the retina, which accounts for slowly progressive visual impairment in the elderly. An increased dietary intake of xanthophylls is suggested to be inversely related to the risk of macular disease. The present study was designed as a randomized, double-blind, placebo-controlled, parallel trial examining the influence of a short-term intervention with an oleaginous extract of Brassica oleracea var. sabellica L. (kale) on plasma xanthophyll concentrations and the optical density of the macular pigment xanthophylls (MPOD). Twenty patients with non-exudative AMD were recruited for a 10-wk study period (2-wk run-in, 4-wk intervention, 4-wk washout). All participants received 50 mL of a beverage containing either an oleaginous extract of kale (kale) or refined rapeseed oil (placebo). The verum product provides 10 mg lutein and 3 mg zeaxanthin per day. The concentrations of the xanthophylls in plasma and the MPOD increased significantly in the kale group after 4 wk of intervention. The successive washout period resulted in a significant decline of the values in plasma and macula. The values at the end of the study were still significantly higher than the initial values. Nevertheless, the improvements did not persist over 4 wk of washout. The distribution of the xanthophylls in the macula seems to be more dynamic than originally assumed. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Enhancement of durability properties of heat-treated oil palm shell species lightweight concrete

    Science.gov (United States)

    Yew, Ming Kun; Yew, Ming Chian; Saw, Lip Huat; Ang, Bee Chin; Lee, Min Lee; Lim, Siong Kang; Lim, Jee Hock

    2017-04-01

    Oil palm shell (OPS) are non-hazardous waste materials and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. A study on preparing the OPS species (dura and tenera) lightweight concrete (LWC) using with and without heat-treated OPS aggregate has been investigated. Two different species of OPS coarse aggregate are subjected to heat treatment at 65 and 130 °C with duration of 1 hour. The results reveal that the slump value of the OPSC increases significantly with an increase in temperature of heat treatment of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 45.6 and 47.5 MPa, respectively. Furthermore, rapid chloride penetration test (RCPT) and water absorption tests were performance to signify the effects of heat-treated on OPS species LWC. The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. Hence, the findings of this study are of primary importance as they revealed the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability of OPSLWC.

  13. Chemical composition and antifungal activity of essential oil of Salvia sclarea L. from Bulgaria against isolates of Candida species

    Directory of Open Access Journals (Sweden)

    Yana Hristova

    2013-01-01

    Full Text Available The essential oil of Salvia sclarea L., growing in Bulgaria, was analyzed by gas chromatography – mass spectrometry. A total of 52 different compounds were identified, representing 98.25% of total oil content. Linalyl acetate (56.88% and linalool (20.75% were determined as major essential oil constituents, followed by germacrene D (5.08% and β-cariophyllene (3.41%. Antifungal activities of clary sage essential oil and major compounds linalyl acetate and linalool against 30 clinical isolates, belonging to species Candida albicans, Candida tropicalis, Candida krusei, Candida glabrata and Candida parapsilosis were evaluated. Essential oil characterized with stronger anticandidial activity in comparison with pure compounds.

  14. Nutritional quality of the seed oil in thirteen Asphodeline species (Xanthorrhoeaceae from Turkey

    Directory of Open Access Journals (Sweden)

    Zengin, G.

    2016-09-01

    Full Text Available The fatty acid composition of the seed oil from 13 Turkish Asphodeline species was analyzed. The seed oil content ranged between 0.9% and 4.6%, and included 26 different fatty acids from C12:0to C22:5. The most abundant saturated, monounsaturated, and polyunsaturated fatty acids were C16:0 (5.7% to 23.7% of their total fatty acid content, C18:1ω9 (11.3% to 30.3%, and C18:2ω6 (49.2% to 66.1%. A. tenuior subsp. tenuiflora, which had the highest content of unsaturated fatty acids, also had the best fatty acid profile from a nutritional point of view. Asphodeline seed oil composition was similar to that of local, related vegetables such as onion seeds. Asphodeline species, which are most frequently grown to use the leaves in salads, may also be a good source of seed oil with good nutritional properties. Results of a cluster analysis using data on the fatty acid composition are consistent with the taxonomic classification of genus Asphodeline.Se ha analizado la composición en ácidos grasos del aceite de las semillas de 13 especies de Asphodeline de Turquía. El contenido en aceite de las semillas osciló entre el 0.9% y el 4.6% e incluyó 26 ácidos grasos distintos entre C12:0y C22:5. Los ácidos grasos saturados, monoinsaturados y poliinsaturados más abundantes fueron C16:0 (5.7% a 23.7%, C18:1ω9 (11.3% a 30.3% y C18:2ω6 (49.2% a 66.1%. A. tenuior subsp. tenuiflora, que presentó el contenido más alto en ácidos grasos insaturados, también tenía el mejor perfil en ácidos grasos desde un punto de vista nutricional. La composición del aceite de las semillas de Asphodeline fue similar a la de vegetales relacionados como la cebolla. Asphodeline, cuyas hojas son consumidas en ensaladas, puede representar también una buena fuente de aceite de las semillas con buenas propiedades nutricionales. Los resultados del análisis de grupos usando los datos de la composición en ácidos grasos son consistentes con la clasificación taxonómica del g

  15. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A(®) to the Brachionus plicatilis species complex (Rotifera).

    Science.gov (United States)

    Rico-Martínez, Roberto; Snell, Terry W; Shearer, Tonya L

    2013-02-01

    Using the marine rotifer Brachionus plicatilis acute toxicity tests, we estimated the toxicity of Corexit 9500A(®), propylene glycol, and Macondo oil. Ratios of 1:10, 1:50 and 1:130 for Corexit 9500A(®):Macondo oil mixture represent: maximum exposure concentrations, recommended ratios for deploying Corexit (1:10-1:50), 1:130 the actual dispersant:oil ratio used in the Deep Water Horizon spill. Corexit 9500A(®) and oil are similar in their toxicity. However, when Corexit 9500A(®) and oil are mixed, toxicity to B. manjavacas increases up to 52-fold. Extrapolating these results to the oil released by the Macondo well, suggests underestimation of increased toxicity from Corexit application. We found small differences in sensitivity among species of the B. plicatilis species complex, likely reflecting phylogenetic similarity. Just 2.6% of the water-accommodated fraction of oil inhibited rotifer cyst hatching by 50%, an ecologically significant result because rotifer cyst in sediments are critical resources for the recolonization of populations each Spring. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Chemical composition and antioxidant activities of essential oils and methanol extracts of three wild Lavandula L. species.

    Science.gov (United States)

    Messaoud, C; Chograni, H; Boussaid, M

    2012-11-01

    A comparative study of essential oil composition, polyphenol content and antioxidant activities of Lavandula coronopifolia, Lavandula multifida and Lavandula stoechas subsp. stoechas were reported. Qualitative and quantitative variations in the composition of oils according to species were shown. Lavandula coronopifolia's oil was characterised by high proportions of trans-β-ocimene (26.9%), carvacrol (18.5%), β-bisabolene (13.1%) and myrcene (7.5%). The main components of L. multifida oil are carvacrol (65.1%) and β-bisabolene (24.7%). Lavandula stoechas oil is rich in fenchone (34.3%) and comphor (27.4%). The total phenolic and flavonoid contents also significantly varied among species. Lavandula coronopifolia exhibits the highest phenolic and flavonoid contents (31.3 mg GAE g(-1) and 16.3 mg RE g(-1), respectively), followed by L. multifida (30.8 mg GAE g(-1) and 12.3 mg RE g(-1)). Methanolic extracts and essential oils displayed significant antioxidant activities. The level of antioxidant capacity varied according to extracts and species.

  17. Analysis of oil content and oil quality in oilseeds by low-field NMR; Analise do teor e da qualidade dos lipideos presentes em sementes de oleaginosas por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Constantino, Andre F.; Lacerda Junior, Valdemar; Santos, Reginaldo B. dos; Greco, Sandro J.; Silva, Renzo C.; Neto, Alvaro C.; Barbosa, Lucio L.; Castro, Eustaquio V.R. de [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Quimica; Freitas, Jair C.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Fisica

    2014-07-01

    To choose among the variety of oleaginous plants for biodiesel production, the oil content of several matrices was determined through different low-field {sup 1}H nuclear magnetic resonance (NMR) experiments with varied pulse sequences, namely single-pulse, spin-echo, CPMG, and CWFP. The experiments that involved the first three sequences showed high correlation with each other and with the solvent extraction method. The quality of the vegetable oils was also evaluated on the basis of the existing correlation between the T{sub 2} values of the oils and their properties, such as viscosity, iodine index, and cetane index. These analyses were performed using HCA and PCA chemometric tools. The results were sufficiently significant to allow separation of the oleaginous matrices according to their quality. Thus, the low-field {sup 1}H NMR technique was confirmed as an important tool to aid in the selection of oleaginous matrices for biodiesel production. (author)

  18. Characterization of Acorn Fruit Oils Extracted from Selected Mediterranean Quercus Species

    Directory of Open Access Journals (Sweden)

    Al-Rousan, W. M.

    2013-12-01

    Full Text Available The present study is aimed to identifying the acorn fruit oil composition of three Mediterranean white oak group species, Quercus aegilops (QA, Quercus infectoria (QI, and Quercus calliprinus (QC. Samples were estimated for the oil contents of acorn fruits, oil chemical and physical constants, fatty acid profile, tocopherols, phenolic compounds, and sterols.The oil content, expressed as dry weight, was found to be 3.40-7.51%. The physical and chemical constants included specific gravity 0.912-0.922, refractive index 1.4529-1.4645, specific extinction at 232 nm 2.497-2.536 and at 270 nm 1.495-2.037, iodine value 75.2-87.6, and saponification value 192.6-219.4. The fatty acid compositions were determined by GC as methyl esters. The most abundant fatty acids were oleic (53.3-56.1%, linoleic 21.3-23.4%, palmitic 17.8-18.7%, linolenic 1.5-1.6% and stearic acid 1.02-1.60%. The Tocopherol content was high in the range of 1440-1783 mg kg-1, γ-tocopherol constituted 84-91% of total tocopherols. Phenolic compounds were in remarkable amounts in all the three species 84-109 mg gallic acid kg-1 oil. Total sterol contents were between 2040-2480 mg kg-1 oil, with β-sitosterol being the main component comprising of 77.20-84.61%, followed by ∆5-avenasterol (5.8-11.4%, campesterol (3.6-4.5%, and stigmasterol (2.6-3.8. The cholesterol content was relatively high (0.42-0.55%.El presente estudio tuvo como objetivo identificar la composición de aceites de bellota de tres especies del grupo del roble blanco del Mediterráneo, Quercus Aegilops (QA, Quercus infectoria (QI y Quercus calliprinus (QC. Las muestras fueron evaluadas por el contenido de aceite, parámetros físico-químicos del aceite, perfil de ácidos grasos, tocoferoles, compuestos fenólicos y esteroles. El contenido de aceite, expresado en peso seco encontrado fue de 3,40 a 7,51%. Las constantes físico-químicas fueron: densidad 0,912-0,922, índice de refracción 1,4529 a 1,4645, extinción espec

  19. Pattern recognition of acorns from different Quercus species based on oil content and fatty acid profile

    Directory of Open Access Journals (Sweden)

    Abreu, José M.F.

    2003-12-01

    Full Text Available The aim of this study was (i to characterize different species of Quercus genus and (ii to discriminate among them on the basis of the content and fatty acid composition of the oil in their fruits and/or their morphological aspects via pattern recognition techniques (Principal Component Analysis, PCA, Cluster Analysis, CA, and Discriminant Analysis, DA. Quercus rotundifolia Lam., Quercus suber L. and Quercus pyrenaica Willd., grown in the same stand in the centre of Portugal, were investigated. When oil content and respective fatty acid composition were used to characterize samples, well-separated groups corresponding to each of the species were observed by PCA and confirmed by CA and DA. The ‘‘width’’ and ‘‘length’’ of acorns exhibited a low discriminant power. Acorns from Q. rotundifolia showed the highest average oil content followed by Q. suber and Q. pyrenaica acorns (9.1, 5.2 and 3.8%, respectively. Fatty acid profiles of Q. rotundifolia and Q. suber oils are similar to olive oil while the oil from Q. pyrenaica acorns is more unsaturated.El objetivo de este estudio fué (i la caracterización de diferentes especies del género Quercus y (ii la clasificación de las mismas en base al contenido y composición de ácidos grasos del aceite de sus frutos y/o en sus caracteres morfológicos, via técnicas de patrón de reconocimiento (Análisis de Componentes Principales, ACP, Análisis de Cluster, AC, y Análisis Discriminante, AD. Se han estudiado Quercus rotundifolia Lam., Quercus suber L. y Quercus pyrenaica Willd., pertenecientes a la misma zona del centro de Portugal. Al emplear el contenido de aceite y sus respectivas composiciones de ácidos grasos para caracterizar a las muestras, el ACP reveló grupos bien separados correspondientes a cada especie, los cuales, a su vez, se confirmarón con el AC y el AD. El ‘‘ancho’’ y ‘‘longitud’’ de las bellotas

  20. Chemical composition, toxicity and antioxidant activities of essential oils of stem bark of Nigerian species of guava (Psidium guajava Linn.)

    Science.gov (United States)

    Fasola, Taiye R.; Oloyede, Ganiyat Kehinde; Aponjolosun, Babalola S.

    2011-01-01

    Essential oil from the stem bark of Nigerian species of Psidium guajava of the family Myrtaceae was obtained by hydro-distillation using an all-glass Clavenger apparatus. GC and GC/MS analysis were carried out on the essential oil and was found to contain 62 compounds constituting 99.98 % of the total oil composition. The principal constituents are hydrocarbons, amines, amides and esters with 3,6-dioxa-2,4,5,7-tetraoctane,2,2,4,4,5,5,7,7-octamethyl (11.67 %) and cyclononane (10.66 %) dominating the total essential oil. Brine shrimp lethality test was carried out to determine the toxicity of the oils to living organisms (shrimps). LC50 value (µg/ml) of 1.0009 obtained showed that the essential oil of P. guajava stem bark was toxic. The antioxidant property of essential oil was investigated by measuring the decrease in absorption at 517 nm of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) in a UV/visible spectrophotometer. The oil showed better activity as a radical scavenger than α-tocopherol. The oil activity was 71.83 % at 0.2 mg/ml and the absorption is stoichiometric with respect to the number of electron taken up. Thus, the results of this study showed that the essential oil from P. guajava was not only toxic; it possessed antioxidant activity, which could exert beneficial actions against pathological alterations caused by the presence of highly reactive free radicals. The toxicity of the oil can be taken advantage of in the therapy of diseases involving cell or tumor growth. PMID:27857663

  1. Regiospecific Analysis of Fatty Acids and Calculation of Triglyceride Molecular Species in Marine Fish Oils

    Directory of Open Access Journals (Sweden)

    Huijun Zhang

    2018-01-01

    Full Text Available The regiospecific distribution of fatty acids (FAs and composition of triglyceride (TAG molecular species of fishes were analyzed and calculated by pancreatic lipase (PL hydrolysis and Visual Basic (VB program. DHA was preferentially located at sn-2 position in TAG molecule, whereas EPA was almost equally distributed in each position of glycerol backbone. DOP, DPP, EPP, PoPP, PPO, and PPP were the predominant TAG species. MPP in anchovy, DDP, DOP, DPP in tuna, and EOO and OOO in salmon were the characteristic TAG molecules, which were meaningful to differentiate marine fish oils. Furthermore, the data management, according to TCN and ECN, was firstly applied to classify the TAG molecular species. The ECN42, ECN46, and ECN48 groups were rich in TAGs. The lower ECN values, compared to the higher TCN values, indicated that the most abundant TAGs exhibited a higher unsaturated degree. Therefore, our study not only offered a simple and feasible approach for the analysis of TAG composition but also firstly summarized the information by data management within ECN and TCN.

  2. Diversity of morphology and oil content of rosa damascena land races and related rosa species from Pakistan

    International Nuclear Information System (INIS)

    Farooq, A.; Khan, M.; Riaz, A.; Ali, A.

    2011-01-01

    For the perfume industry, Rosa damascena is the most important species used in the production of rose attar which is made by distilling volatile oils from the petals of flowers. It is also used widely in the production of rose water, a flavoring agent. Other species like R. gallica L., R. centifolia L., R. bourboniana and Gruss an Teplitz also exhibit the fragrance that is sought by perfumeries in the world. Eight land races of Damask rose along with related Rosa species were collected from Punjab province and evaluated to determine the diversity on the basis of morphology and oil yield. The investigated characters were flower weight, flower diameter, peduncle length, number of petals, number of stamens and oil content. Pearson's coefficients showed a negative association of flower weight with peduncle length (r = -0.3348) and a positive and strong correlation was observed for flower weight with the all other morphological characters. Flower diameter showed a positive but weak correlation with peduncle length, number of petals and number of stamens with the values of r = 0.0733, r 0.5302 and r = 0.1241, respectively. Oil content (%) was measured from the Rosa species by using Soxhlet extractor with N-hexane. R. damascena land race from Choha Syedan Shah produced the highest oil content of absolute oil (0.147%) on petal basis while the lowest value for absolute oil content was 0.36% from R. indica. Dendrogram created by cluster analysis for morphological characters, indicated no relationship of genetic variation with their collection sites. This study has revealed that the selection of land races for their specific characteristic could be possible for future breeding program. It also provides practical information for the future collection of Damask rose germplasm and breeding program. (author)

  3. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica.

    Science.gov (United States)

    Silverman, Andrew M; Qiao, Kangjian; Xu, Peng; Stephanopoulos, Gregory

    2016-04-01

    Single cell oil (SCO) is an attractive energy source due to scalability, utilization of low-cost renewable feedstocks, and type of product(s) made. Engineering strains capable of producing high lipid titers and yields is crucial to the economic viability of these processes. However, lipid synthesis in cells is a complex phenomenon subject to multiple layers of regulation, making gene target identification a challenging task. In this study, we aimed to identify genes in the oleaginous yeast Yarrowia lipolytica whose overexpression enhances lipid production by this organism. To this end, we examined the effect of the overexpression of a set of 44 native genes on lipid production in Y. lipolytica, including those involved in glycerolipid synthesis, fatty acid synthesis, central carbon metabolism, NADPH generation, regulation, and metabolite transport and characterized each resulting strain's ability to produce lipids growing on both glucose and acetate as a sole carbon source. Our results suggest that a diverse subset of genes was effective at individually influencing lipid production in Y. lipolytica, sometimes in a substrate-dependent manner. The most productive strain on glucose overexpressed the diacylglycerol acyltransferase DGA2 gene, increasing lipid titer, cellular content, and yield by 236, 165, and 246 %, respectively, over our control strain. On acetate, our most productive strain overexpressed the acylglycerol-phosphate acyltransferase SLC1 gene, with a lipid titer, cellular content, and yield increase of 99, 91, and 151 %, respectively, over the control strain. Aside from genes encoding enzymes that directly catalyze the reactions of lipid synthesis, other ways by which lipogenesis was increased in these cells include overexpressing the glycerol-3-phosphate dehydrogenase (GPD1) gene to increase production of glycerol head groups and overexpressing the 6-phosphogluconolactonase (SOL3) gene from the oxidative pentose phosphate pathway to increase NADPH

  4. Development and optimization of an efficient qPCR system for olive authentication in edible oils.

    Science.gov (United States)

    Alonso-Rebollo, Alba; Ramos-Gómez, Sonia; Busto, María D; Ortega, Natividad

    2017-10-01

    The applicability of qPCR in olive-oil authentication depends on the DNA obtained from the oils and the amplification primers. Therefore, four olive-specific amplification systems based on the trnL gene were designed (A-, B-, C- and D-trnL systems). The qPCR conditions, primer concentration and annealing temperature, were optimized. The systems were tested for efficiency and sensitivity to select the most suitable for olive oil authentication. The selected system (D-trnL) demonstrated specificity toward olive in contrast to other oleaginous species (canola, soybean, sunflower, maize, peanut and coconut) and showed high sensitivity in a broad linear dynamic range (LOD and LOQ: 500ng - 0.0625pg). This qPCR system enabled detection, with high sensitivity and specificity, of olive DNA isolated from oils processed in different ways, establishing it as an efficient method for the authentication of olive oil regardless of its category. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides.

    Science.gov (United States)

    Zhao, Lina; Cánovas-Márquez, José T; Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2016-02-01

    Fatty acid biosynthesis in oleaginous fungi requires the supply of reducing power, NADPH, and the precursor of fatty acids, acetyl-CoA, which is generated in the cytosol being produced by ATP: citrate lyase which requires citrate to be, transported from the mitochondrion by the citrate/malate/pyruvate transporter. This transporter, which is within the mitochondrial membrane, transports cytosolic malate into the mitochondrion in exchange for mitochondrial citrate moving into the cytosol (Fig. 1). The role of malate transporter in lipid accumulation in oleaginous fungi is not fully understood, however. Therefore, the expression level of the mt gene, coding for a malate transporter, was manipulated in the oleaginous fungus Mucor circinelloides to analyze its effect on lipid accumulation. The results showed that mt overexpression increased the lipid content for about 70 % (from 13 to 22 % dry cell weight, CDW), whereas the lipid content in mt knockout mutant decreased about 27 % (from 13 to 9.5 % CDW) compared with the control strain. Furthermore, the extracellular malate concentration was decreased in the mt overexpressing strain and increased in the mt knockout strain compared with the wild-type strain. This work suggests that the malate transporter plays an important role in regulating lipid accumulation in oleaginous fungus M. circinelloides.

  6. Enzyme Activities in Oleaginous Yeasts Accumulating and Utilizing Exogenous or Endogenous Lipids

    NARCIS (Netherlands)

    Holdsworth, Jane E.; Veenhuis, Marten; Ratledge, Colin

    1988-01-01

    The activities of ATP:citrate lyase (ACL; EC 4.1.3.8), carnitine acetyltransferase (CAT; EC 2.3.1.7), NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42), isocitrate lyase (ICL; EC 4.1.3.1) and malic enzyme (malate dehydrogenase; EC 1.1.1.40) were measured in four oleaginous yeasts, Candida

  7. Using Imaging Spectroscopy to Map Changing Distributions of Dominant Species in Oil-Contaminated Salt Marshes of Louisiana

    Science.gov (United States)

    Beland, M. C.; Roberts, D. A.; Peterson, S.; Biggs, T. W.; Kokaly, R. F.; Piazza, S.; Roth, K. L.; Khanna, S.; Ustin, S.

    2016-12-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes. Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010-2012 for oiled and non-oiled shorelines. CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%). Marshes that were heavily contaminated with oil exhibited variable responses from 2010-2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines doubled that of non-oiled

  8. Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy

    Science.gov (United States)

    Beland, Michael; Roberts, Dar A.; Peterson, Seth H.; Biggs, Trent W.; Kokaly, Raymond F.; Piazza, Sarai; Roth, Keely L.; Khanna, Shruti; Ustin, Susan L.

    2016-01-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes.Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010 to 2012 for oiled and non-oiled shorelines.CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28 m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%).Marshes that were heavily contaminated with oil exhibited variable responses from 2010 to 2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines

  9. Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities

    Directory of Open Access Journals (Sweden)

    Elaissi Ameur

    2012-06-01

    Full Text Available Abstract Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the antibacterial activities against reference strains. At that time it was not possible to evaluate their antimicrobial activities against clinical bacterial strains and other pathogens such as virus and fungi. Methods The essential oils of eight Eucalyptus species harvested from the Jbel Abderrahman, Korbous (North East Tunisia and Souinet arboreta (North of Tunisia were evaluated for their antimicrobial activities by disc diffusion and microbroth dilution methods against seven bacterial isolates: Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae and Streptococcus pyogenes. In addition, the bactericidal, fungicidal and the antiviral activities of the tested oils were carried out. Results Twenty five components were identified by GC/FID and GC/MS. These components were used to correlate with the biological activities of the tested oils. The chemical principal component analysis identified three groups, each of them constituted a chemotype. According to the values of zone diameter and percentage of the inhibition (zdi, % I, respectively, four groups and subgroups of bacterial strains and three groups of fungal strains were characterized by their sensitivity levels to Eucalyptus oils. The cytotoxic effect and the antiviral activity varied significantly within Eucalyptus species oils. Conclusions E. odorata showed the strongest activity against S. aureus, H. influenzae

  10. Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities

    Science.gov (United States)

    2012-01-01

    Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the antibacterial activities against reference strains. At that time it was not possible to evaluate their antimicrobial activities against clinical bacterial strains and other pathogens such as virus and fungi. Methods The essential oils of eight Eucalyptus species harvested from the Jbel Abderrahman, Korbous (North East Tunisia) and Souinet arboreta (North of Tunisia) were evaluated for their antimicrobial activities by disc diffusion and microbroth dilution methods against seven bacterial isolates: Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae and Streptococcus pyogenes. In addition, the bactericidal, fungicidal and the antiviral activities of the tested oils were carried out. Results Twenty five components were identified by GC/FID and GC/MS. These components were used to correlate with the biological activities of the tested oils. The chemical principal component analysis identified three groups, each of them constituted a chemotype. According to the values of zone diameter and percentage of the inhibition (zdi, % I, respectively), four groups and subgroups of bacterial strains and three groups of fungal strains were characterized by their sensitivity levels to Eucalyptus oils. The cytotoxic effect and the antiviral activity varied significantly within Eucalyptus species oils. Conclusions E. odorata showed the strongest activity against S. aureus, H. influenzae, S. agalactiae, S. pyogenes

  11. Potential Use of Essential oils from Four Tunisian Species of Lamiaceae: Biological Alternative for Fungal and Weed Control

    OpenAIRE

    Mohsen Hanana; Manel Ben Mansour; Methaq Algabr; Ismail Amri; Samia Gargouri; Abderrahmane Romane; Bassem Jamoussi; Lamia Hamrouni

    2017-01-01

    The chemical composition of the essential oils (EOs) of four Lamiaceae (Thymus capitatus Hoff. et Link. , Rosmarinus officinalis L., Origanum vulgare L. and Mentha pulegium L.) growing wild in Tunisia was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Obtained results showed significant variations among the different species. The major constituents identified for each species were respectively carvacrol (69%) and δ-terpinene (17%) for T. capitatus, 1,8-c...

  12. Evaluating the biodegradability and effects of dispersed oil using Arctic test species and conditions: phase 2 activities

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlin, Kelly M.; Perkins, Robert A. [University of Alaska Fairbanks (United States)], email: raperkins@alaska.edu; Gardiner, William W.; Word, Jack D. [NewFields NorthWest (United States)

    2011-07-01

    In the event of a marine oil spill, managers have to make correct and rapid decisions, weighing a number of possibilities, which include natural attenuation, mechanical recovery, in situ burning, and/or chemical dispersion. To do this, the relative toxicity of physically and chemically dispersed fresh oil and the rates of biodegradation for fresh and weathered oil need to be understood in advance. A joint industry program was established in 2008 to research and discuss these areas. Phase 1 activities included determining the species relevant to the Beaufort and Chukchi Sea ecosystems, creating and setting up a toxicity and biodegradation laboratory with a cold room in Barrow, Alaska, developing collection and culture methods for test organisms, and developing toxicity and biodegradation test protocols. The second phase of this now completed research is discussed in this paper. It consisted of toxicity testing of the local environmentally significant species, the copepod (C. glacialis), Arctic cod (B. saida), and larval sculpin (Myoxocephalus sp.).

  13. Chemical composition and fumigant toxicity of the essential oils from 16 species of Eucalyptus against Haematobia irritans (Diptera: Muscidae) adults

    OpenAIRE

    Juan, Laura W.; Lucía Mulas, Alejandro; Zerba, Eduardo N.; Harrand, Leonel; Marco, Martín; Masuh, Hector M.

    2011-01-01

    Oils extracted from various species of Eucalyptus (Eucalyptus badjensis Beuzev & Welch, Eucalyptus badjensis x Eucalyptus nitens, Eucalyptus benthamii variety dorrigoensis Maiden & Cambage, Eucalyptus botryoides Smith, Eucalyptus dalrympleana Maiden, Eucalyptus fastigata Deane & Maiden, Eucalyptus nobilis L.A.S. Johnson & K. D. Hill, Eucalyptus polybractea R. Baker, Eucalyptus radiata ssp. radiata Sieber ex Spreng, Eucalyptus resinifera Smith, Eucalyptus robertsonii Blakely, Eucalyptus rubida...

  14. Inter and intra GC-MS differential analysis of the essential oils of three Mentha species growing in Egypt

    Directory of Open Access Journals (Sweden)

    Mokhtar M. Bishr

    2018-06-01

    Full Text Available Gas chromatographic mass spectrometric analysis using head space was carried out on the roots, stems and leaves of three different species of Mint grown in Egypt. This study was carried out aiming to investigate the chemical composition of the essential oils obtained from roots, stem and leaves of Mentha piperita L, Mentha spicata Var. crispa L. and Mentha pulegum L. Also, we are looking to find out any difference in chemical composition between the studied species, through their studied organs. Study of different organs of the same species may give us an idea about the essential oil biosynthetic pathway and may serve as the chemotaxonomic marker for a specific species.Identification of the chemical components of the studied essential oils depends on their retention time, their Kovat retention index and their mass spectrum supported by the data from Wiley library. Results obtained revealed an obvious inter or intra differences in the chemical composition of the three mentioned Mentha species. The common components in all species (in one or more organ are 35 components, the major of which is P-menthone (32.24% in Mentha piperita leaf. Regarding the unique components it was found that Mentha piperita contain 7 unique components the major of which is 2,4-(10-thujadien (3.88%, while Mentha spicata has 18 unique components the major one is Cymene (24.44% and finally Mentha pulegum has 11 unique components the major one is (+-Isomenthol (16.64%. Keywords: Mint species, Mentha piperita, M. spicata and M. pulegum essential oil, GC-MS, Inter and intra differential analysis

  15. Chemical Analysis and Biological Activity of the Essential Oils of Two Valerianaceous Species from China: Nardostachys chinensis and Valeriana officinalis

    Directory of Open Access Journals (Sweden)

    Jianglin Zhao

    2010-09-01

    Full Text Available In order to investigate essential oils with biological activity from local wild plants, two valerianaceous species, Nardostachys chinensis and Valeriana officinalis, were screened for their antimicrobial and antioxidant activity. The essential oils were obtained from the roots and rhizomes of the two plants by hydro-distillation, and were analyzed for their chemical composition by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS. Calarene (25.31%, aristolone (13.35%, α-selinene (7.32% and β-maaliene (6.70% were the major compounds of the 23 identified components which accounted for 92.76% of the total oil of N. chinensis. Patchoulol (16.75%, α-pinene (14.81%, and β-humulene (8.19% were the major compounds among the 20 identified components, which accounted for 88.11% of the total oil of V. officinalis. Both oils were rich in sesquiterpene hydrocarbons as well as their oxygenated derivatives. Essential oils were shown to have broad spectrum antibacterial activity with MIC values that ranged from 62.5 μg/mL to 400 μg/mL, and IC50 values from 36.93 μg/mL to 374.72 μg/mL. The oils were also shown to have moderate antifungal activity to Candida albicans growth as well as inhibition of spore germination of Magnaporthe oryzae. Two essential oils were assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging, β-carotene bleaching and ferrozine-ferrous ions assays, respectively, to show moderate antioxidant activity. Results suggest that the isolated essential oils could be used for future development of antimicrobial and antioxidant agents.

  16. Cultural keystone species in oil sands mine reclamation, Fort McKay, Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Garibaldi, A.; Straker, J. [Stantec Ltd., Sidney, BC (Canada)

    2009-07-01

    Cultural keystone species (CKS) shape the cultural identify of people through the roles they have in diet, material and spiritual practices. The use of the CKS concept is regarded as a method of addressing linked social and ecological issues. This paper presented the results of using the CKS model in the indigenous community of Fort McKay, Alberta to address, social, ecological and spiritual values in regional mine-land reclamation. Fort McKay is at the epicenter of the existing mine developments. Its residents regard human and environmental health to be be linked and therefore experience the effects of development and subsequent reclamation on both cultural and ecological levels. The community is actively engaged in working with the local mining companies on issues of mine reclamation design. In order to hold meaning to the local people, oil sand operators used the CKS concept in their reclamation efforts to take into account ecological functionality and also address the linked social factors. Five CKS were identified through a literature review and extensive community interviews. The list includes moose, cranberry, blueberry, ratroot and beaver. These 5 CKS were used to focus discussions and make recommendations for relevant land reclamation within Fort McKay traditional territory. The project has influenced the way both the community and oil sands operators engage with reclamation. Lessons learned from this process will help direct reclamation activities on other portions of traditional territory, while offering guidance to other regional developers for addressing cultural values in reclamation on their leases. 15 refs., 1 fig.

  17. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers.

    Science.gov (United States)

    Slininger, Patricia J; Dien, Bruce S; Kurtzman, Cletus P; Moser, Bryan R; Bakota, Erica L; Thompson, Stephanie R; O'Bryan, Patricia J; Cotta, Michael A; Balan, Venkatesh; Jin, Mingjie; Sousa, Leonardo da Costa; Dale, Bruce E

    2016-08-01

    Oleaginous yeasts can convert sugars to lipids with fatty acid profiles similar to those of vegetable oils, making them attractive for production of biodiesel. Lignocellulosic biomass is an attractive source of sugars for yeast lipid production because it is abundant, potentially low cost, and renewable. However, lignocellulosic hydrolyzates are laden with byproducts which inhibit microbial growth and metabolism. With the goal of identifying oleaginous yeast strains able to convert plant biomass to lipids, we screened 32 strains from the ARS Culture Collection, Peoria, IL to identify four robust strains able to produce high lipid concentrations from both acid and base-pretreated biomass. The screening was arranged in two tiers using undetoxified enzyme hydrolyzates of ammonia fiber expansion (AFEX)-pretreated cornstover as the primary screening medium and acid-pretreated switch grass as the secondary screening medium applied to strains passing the primary screen. Hydrolyzates were prepared at ∼18-20% solids loading to provide ∼110 g/L sugars at ∼56:39:5 mass ratio glucose:xylose:arabinose. A two stage process boosting the molar C:N ratio from 60 to well above 400 in undetoxified switchgrass hydrolyzate was optimized with respect to nitrogen source, C:N, and carbon loading. Using this process three strains were able to consume acetic acid and nearly all available sugars to accumulate 50-65% of cell biomass as lipid (w/w), to produce 25-30 g/L lipid at 0.12-0.22 g/L/h and 0.13-0.15 g/g or 39-45% of the theoretical yield at pH 6 and 7, a performance unprecedented in lignocellulosic hydrolyzates. Three of the top strains have not previously been reported for the bioconversion of lignocellulose to lipids. The successful identification and development of top-performing lipid-producing yeast in lignocellulose hydrolyzates is expected to advance the economic feasibility of high quality biodiesel and jet fuels from renewable biomass, expanding the market

  18. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds

    Science.gov (United States)

    Singh, Rajinder; Ong-Abdullah, Meilina; Low, Eng-Ti Leslie; Manaf, Mohamad Arif Abdul; Rosli, Rozana; Nookiah, Rajanaidu; Ooi, Leslie Cheng-Li; Ooi, Siew–Eng; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Nagappan, Jayanthi; Bacher, Blaire; Lakey, Nathan; Smith, Steven W; He, Dong; Hogan, Michael; Budiman, Muhammad A; Lee, Ernest K; DeSalle, Rob; Kudrna, David; Goicoechea, Jose Louis; Wing, Rod; Wilson, Richard K; Fulton, Robert S; Ordway, Jared M; Martienssen, Robert A; Sambanthamurthi, Ravigadevi

    2013-01-01

    Oil palm is the most productive oil-bearing crop. Planted on only 5% of the total vegetable oil acreage, palm oil accounts for 33% of vegetable oil, and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8 gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators1, which are highly expressed in the kernel. We also report the draft sequence of the S. American oil palm Elaeis oleifera, which has the same number of chromosomes (2n=32) and produces fertile interspecific hybrids with E. guineensis2, but appears to have diverged in the new world. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations which restrict the use of clones in commercial plantings3, and thus helps achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop. PMID:23883927

  19. Sexual reproduction in species of the brown seaweed, Fucus, to assess damage and recovery from the World Prodigy oil spill

    International Nuclear Information System (INIS)

    Thursby, E.; Tagliabue, M.; Sheehan, C.; Steele, R.

    1990-01-01

    On Friday, June 23, 1989, the oil tanker World Prodigy ran aground on Brenton Reef off Newport, Rhode Island, USA, spilling No. 2 fuel oil into the mouth of Narragansett Bay. This paper reports that a shoreline survey of the intertidal and upper subtidal macroalgae was begun on June 24th as part of a larger effort to document the fate and effect of the oil. There was little evidence of necrotic tissue among the attached plants at most of the site visited. However, several species of the brown alga, Fucus, showed inhibition of sexual reproduction. Reproductive material of F. vesiculosus, F. spiralis or F. spiralis var. limitaneus was collected from various sites for later laboratory assessment of viability. Viability was determined by germination rate of embryos. Summer is not the optimal reproductive time for Fucus, and embryos of F. spiralis var. limitaneus never germinated at a rate greater than 25%, even from clean sites. Fucus spiralis plants were collected at Narragansett Pier, before arrival of oil from the spill. Embryos at this site had a germination rate of 63%. There was essentially no germination by either F. vesiculosus or F. spiralis at any oil sites visited during the first collections. However, by July 5th at some sites, and by July 13th at all sites, the germination rate of these two species averaged from 60 to 88%

  20. Status of selected bottomfish and crustacean species in Prince William Sound following the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Armstrong, D.A.; Dinnel, P.A.; Orensanz, J.M.

    1995-01-01

    Exposure and possible adverse effects of the Exxon Valdez oil spill (EVOS) at depth were studied between 1989 and 1991 on several species of crustaceans, molluscs, and finfish that are characterized by ontogenetic shifts in distribution from meroplanktonic larvae to benthic and demersal juveniles and adults. The authors approach was to search for (1) evidence of exposure to Exxon Valdez crude oil (EVC) at depth (generally between 20 to 150 m) and (2) measurable perturbations at both the individual and population levels. Primary species targeted were Tanner crab (Chionoecetes bairdi), several pandalid shrimps (Pandalus platyceros, P. hypsinotus, P. borealis), flathead sole (Hippoglossoides elassodon), and several bivalves including scallops (Chlamys rubida) and infaunal clams (Nuculana, Yoldia, and Macoma spp.). The survey design provided a comparison between variables measured in oiled bays around Knight Island and non-oiled bays at other locations within Prince William Sound. Polycyclic aromatic hydrocarbons (PAHs) of petrogenic origin were measured in all bays sampled in this study and levels of PAHs derived from EVC were elevated in the oiled bays following the spill, yet attenuated to less than 200 ng/g sediment by 1991. 95 refs., 22 figs., 6 tabs

  1. Enhancement of carotenoids and lipids production by oleaginous red yeast Sporidiobolus pararoseus KM281507.

    Science.gov (United States)

    Chaiyaso, Thanongsak; Manowattana, Atchara

    2018-01-02

    Bioconversion of biodiesel-derived crude glycerol into carotenoids and lipids was investigated by a microbial conversion of an oleaginous red yeast Sporidiobolus pararoseus KM281507. The methanol content in crude glycerol (0.5%, w/v) did not show a significant effect on biomass production by strain KM281507. However, demethanolized crude glycerol significantly supported the production of biomass (8.64 ± 0.13 g/L), lipids (2.92 ± 0.03 g/L), β-carotene (15.76 ± 0.85 mg/L), and total carotenoids (33.67 ± 1.28 mg/L). The optimal conditions suggested by central composite design were crude glycerol concentration (55.04 g/L), initial pH of medium (pH 5.63) and cultivation temperature (24.01°C). Under these conditions, the production of biomass, lipids, β-carotene, and total carotenoids were elevated up to 8.83 ± 0.05, 4.00 ± 0.06 g/L, 27.41 ± 0.20, and 53.70 ± 0.48 mg/L, respectively. Moreover, an addition of olive oil (0.5 - 2.0%) dramatically increased the production of biomass (14.47 ± 0.15 g/L), lipids (6.40 ± 0.09 g/L), β-carotene (54.43 ± 0.95 mg/L), and total carotenoids (70.92 ± 0.51 mg/L). The oleic acid content in lipids was also increased to 75.1% (w/w) of total fatty acids, indicating a good potential to be an alternative biodiesel feedstock. Meanwhile, the β-carotene content in total carotenoids was increased to 76.7% (w/w). Hence, strain KM281507 could be a good potential source of renewable biodiesel feedstock and natural carotenoids.

  2. Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Giatropoulos, Athanassios; Pitarokili, Danae; Papaioannou, Fotini; Papachristos, Dimitrios P; Koliopoulos, George; Emmanouel, Nickolaos; Tzakou, Olga; Michaelakis, Antonios

    2013-03-01

    The present study evaluated leaf essential oils from eight Cupresaceae species; Cupressus arizonica, Cupressus benthamii, Cupressus macrocarpa, Cupressus sempervirens, Cupressus torulosa, Chamaecyparis lawsoniana, Juniperus phoenicea, and Tetraclinis articulata for their larvicidal and repellent properties against Aedes albopictus, a mosquito of great ecological and medical importance. Based on the LC(50) values, C. benthamii essential oil was the most active (LC(50) = 37.5 mg/L) while the other tested Cupressaceae essential oils provided rather moderate toxicity against larvae (LC(50) = 47.9 to 70.6 mg/L). Under the used laboratory conditions, three of the essential oils (C. benthamii, C. lawsoniana, and C. macrocarpa) provided sufficient protection against mosquito adults, equivalent to the standard repellent "Deet" in the 0.2 mg/cm(2) dose, while C. macrocarpa assigned as the superior repellent oil in the 0.08 mg/cm(2) dose. Chemical analysis of the essential oils using gas chromatography and gas chromatography-mass spectrometry revealed the presence of 125 components.

  3. Essential Oils from Leaves of Medicinal Plants of Brazilian Flora: Chemical Composition and Activity against Candida Species

    Directory of Open Access Journals (Sweden)

    Maria da Conceição Mendes Ferreira da Costa

    2017-05-01

    Full Text Available Background: The biotechnological potential of medicinal plants from Brazilian Caatinga and the Atlantic Forest has not been extensively studied. Thus, screening programs are important in prospecting for compounds for developing new drugs. The purpose of this study was to determine the chemical composition and to evaluate the anti-Candida activity of essential oils from leaves of Hymenaea courbaril var. courbaril, Myroxylon peruiferum, and Vismia guianensis. Methods: The oils were extracted through hydrodistillation and their chemical compositions were analyzed by gas chromatography coupled with mass spectrometry. Antifungal activity against C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, and C. krusei was evaluated by determining the minimal inhibitory (MIC and fungicidal (MFC concentrations. Results: The major compounds of the oils were caryophyllene oxide and trans-caryophyllene for H. courbaril; spathulenol, α-pinene, and caryophyllene oxide for M. peruiferum; and caryophyllene oxide and humulene epoxide II for V. guianensis oil. The oils showed antifungal activity against all the strains tested, and the MIC values ranged between 0.625 and 1.25 μL/mL and MFC from 0.625 to 2.5 μL/mL. Conclusion: The essential oils from the species studied have the potential to be evaluated as clinical applications in the treatment of candidiasis.

  4. Chemical Composition and Insecticidal Activity of Essential Oils from Zanthoxylum dissitum Leaves and Roots against Three Species of Storage Pests.

    Science.gov (United States)

    Wang, Cheng-Fang; Yang, Kai; You, Chun-Xue; Zhang, Wen-Juan; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Wang, Yong-Yan

    2015-05-04

    This work aimed to investigate chemical composition of essential oils obtained from Zanthoxylum dissitum leaves and roots and their insecticidal activities against several stored product pests, namely the cigarette beetle (Lasioderma serricorne), red flour beetle (Tribolium castaneum) and black carpet beetle (Attagenus piceus). The analysis by GC-MS of the essential oils allowed the identification of 28 and 22 components, respectively. It was found that sesquiterpenoids comprised a fairly high portion of the two essential oils, with percentages of 74.0% and 80.9% in the leaves and roots, respectively. The main constituents identified in the essential oil of Z. dissitum leaves were δ-cadinol (12.8%), caryophyllene (12.7%), β-cubebene (7.9%), 4-terpineol (7.5%) and germacrene D-4-ol (5.7%), while humulene epoxide II (29.4%), caryophyllene oxide (24.0%), diepicedrene-1-oxide (10.7%) and Z,Z,Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (8.7%) were the major components in the essential oil of Z. dissitum roots. The insecticidal activity results indicated that the essential oil of Z. dissitum roots exhibited moderate contact toxicity against three species of storage pests, L. serricorne,T. castaneum and A. piceus, with LD50 values of 13.8, 43.7 and 96.8 µg/adult, respectively.

  5. Essential Oils of Satureja Species: Insecticidal Effect on Culex pipiens Larvae (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Nikos G. Chorianopoulos

    2007-12-01

    Full Text Available The chemical composition of the essential oils of the wild growing plants of Greek S. spinosa L., S. parnassica subsp. parnassica Heldr.& Sart ex Boiss., S. thymbra and S. montana were determined by GC and GC/MS analysis. The larvicidal activities of the essential oils were assayed against Culex pipiens biotype molestus. The analytical data indicated that various monoterpene hydrocarbons and phenolic monoterpenes constitute the major constituents of the oils, but their concentration varied greatly among the oils examined. The bioassay results indicated that the oils possess significant larvicidal activities and represent an inexpensive source of natural substances mixture that exhibit potentials for use to control the mosquito larvae.

  6. PRE-CLINICAL EVALUATION OF EXTRACTS AND ESSENTIAL OILS FROM BETEL-LIKE SCENT PIPER SPECIES IDENTIFIED POTENTIAL CANCER TREATMENT.

    Science.gov (United States)

    Sanubol, Arisa; Chaveerach, Arunrat; Tanee, Tawatchai; Sudmoon, Runglawan

    2017-01-01

    Nine Piper species with betel-like scents are sources of industrial and medicinal aromatic chemicals, but there is lack of information on cytotoxicity and genotoxicity for human safety, including how these plants impact human cervical cancer cell line. Plant leaves were extracted with hexane and hydro-distilled for essential oils. The extracts and oils were pre-clinically studied based on cyto - and genotoxicity using microculture tetrazolium (MTT) and comet assays. The crude extracts showed an IC 50 in leukocytes and HeLa cells of 58.59-97.31 mg/ml and 34.91-101.79 mg/ml, the LD 50 is higher than 5000 mg/kg. With lower values than the crude extracts, the essential oils showed an IC 50 in leukocytes and HeLa cells of 0.023-0.059 μg/ml and 0.025-0.043 μg/ml the LD 50 is less than 50 mg/kg. IC 50 values showed that the essential oils were highly toxic than the crude extracts. At the level of human genetic materials, the crude extracts of two species, including P. betloides and P. crocatum , showed a significant toxicity ( p Piper species showed insignificant toxicity in leukocytes. For HeLa cells, the eight-studied species showed significant toxicity in HeLa cells, whereas only P. submultinerve showed insignificant toxicity. The crude extracts and essential oils should be tested as putative cervical cancer treatments due to less toxicity in human normal cells.

  7. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

    Science.gov (United States)

    Zhang, Zhiping; Ji, Hairui; Gong, Guiping; Zhang, Xu; Tan, Tianwei

    2014-07-01

    The optimal mixed culture model of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was confirmed to enhance lipid production. A double system bubble column photo-bioreactor was designed and used for demonstrating the relationship of yeast and alga in mixed culture. The results showed that using the log-phase cultures of yeast and alga as seeds for mixed culture, the improvements of biomass and lipid yields reached 17.3% and 70.9%, respectively, compared with those of monocultures. Growth curves of two species were confirmed in the double system bubble column photo-bioreactor, and the second growth of yeast was observed during 36-48 h of mixed culture. Synergistic effects of two species for cell growth and lipid accumulation were demonstrated on O2/CO2 balance, substance exchange, dissolved oxygen and pH adjustment in mixed culture. This study provided a theoretical basis and culture model for producing lipids by mixed culture in place of monoculture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea.

    Science.gov (United States)

    Zhou, Jia-Yu; Li, Xia; Zhao, Dan; Deng-Wang, Meng-Yao; Dai, Chuan-Chao

    2016-09-01

    Pseudomonas fluorescens induces gibberellin and ethylene signaling via hydrogen peroxide in planta . Ethylene activates abscisic acid signaling. Hormones increase sesquiterpenoid biosynthesis gene expression and enzyme activity, inducing essential oil accumulation. Atractylodes lancea is a famous Chinese medicinal plant, whose main active components are essential oils. Wild A. lancea has become endangered due to habitat destruction and over-exploitation. Although cultivation can ensure production of the medicinal material, the essential oil content in cultivated A. lancea is significantly lower than that in the wild herb. The application of microbes as elicitors has become an effective strategy to increase essential oil accumulation in cultivated A. lancea. Our previous study identified an endophytic bacterium, Pseudomonas fluorescens ALEB7B, which can increase essential oil accumulation in A. lancea more efficiently than other endophytes; however, the underlying mechanisms remain unknown (Physiol Plantarum 153:30-42, 2015; Appl Environ Microb 82:1577-1585, 2016). This study demonstrates that P. fluorescens ALEB7B firstly induces hydrogen peroxide (H2O2) signaling in A. lancea, which then simultaneously activates gibberellin (GA) and ethylene (ET) signaling. Subsequently, ET activates abscisic acid (ABA) signaling. GA and ABA signaling increase expression of HMGR and DXR, which encode key enzymes involved in sesquiterpenoid biosynthesis, leading to increased levels of the corresponding enzymes and then an accumulation of essential oils. Specific reactive oxygen species and hormone signaling cascades induced by P. fluorescens ALEB7B may contribute to high-efficiency essential oil accumulation in A. lancea. Illustrating the regulation mechanisms underlying P. fluorescens ALEB7B-induced essential oil accumulation not only provides the theoretical basis for the inducible synthesis of terpenoids in many medicinal plants, but also further reveals the complex and diverse

  9. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species.

    Science.gov (United States)

    Xiang, Cai-Peng; Han, Jia-Xin; Li, Xing-Cong; Li, Yun-Hui; Zhang, Yi; Chen, Lin; Qu, Yan; Hao, Chao-Yun; Li, Hai-Zhou; Yang, Chong-Ren; Zhao, San-Jun; Xu, Min

    2017-05-10

    The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC 50 values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC 50 value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC 50 0.15 ± 0.01 mg/mL.

  10. Antigenotoxic Effect Against Ultraviolet Radiation-induced DNA Damage of the Essential Oils from Lippia Species.

    Science.gov (United States)

    Quintero Ruiz, Nathalia; Córdoba Campo, Yuri; Stashenko, Elena E; Fuentes, Jorge Luis

    2017-07-01

    The antigenotoxicity against ultraviolet radiation (UV)-induced DNA damage of essential oils (EO) from Lippia species was studied using SOS Chromotest. Based on the minimum concentration that significantly inhibits genotoxicity, the genoprotective potential of EO from highest to lowest was Lippia graveolens, thymol-RC ≈ Lippia origanoides, carvacrol-RC ≈ L. origanoides, thymol-RC > Lippia alba, citral-RC ≈ Lippia citriodora, citral-RC ≈ Lippia micromera, thymol-RC > L. alba, myrcenone-RC. EO from L. alba, carvone/limonene-RC, L. origanoides, α-phellandrene-RC and L. dulcis, trans-β-caryophyllene-RC did not reduce the UV genotoxicity at any of the doses tested. A gas chromatography with flame ionization detection analysis (GC-FID) was conducted to evaluate the solubility of the major EO constituents under our experimental conditions. GC-FID analysis showed that, at least partially, major EO constituents were water-soluble and therefore, they were related with the antigenotoxicity detected for EO. Constituents such as p-cymene, geraniol, carvacrol, thymol, citral and 1,8-cineole showed antigenotoxicity. The antioxidant activity of EO constituents was also determined using the oxygen radical antioxidant capacity (ORAC) assay. The results showed that the antigenotoxicity of the EO constituents was unconnected with their antioxidant activity. The antigenotoxicity to different constituent binary mixtures suggests that synergistic effects can occur in some of the studied EO. © 2017 The American Society of Photobiology.

  11. Efeito de sementes oleaginosas inteiras e óleo de soja sobre a digestibilidade in vitro e os padrões ruminais de bezerros holandeses Effect of oleaginous whole seeds and soybean oil on the in vitro digestibility and ruminal pattern in holstein calves

    Directory of Open Access Journals (Sweden)

    Márcia Villaça

    1999-01-01

    Full Text Available Este trabalho foi realizado para comparar os efeitos da adição de sementes inteiras de soja e algodão e de óleo de soja sobre os padrões ruminais e a digestibilidade in vitro, em bezerros Holandeses fistulados. Dois bezerros fistulados no rúmen foram alimentados com dieta basal com 2,5% de extrato etéreo (EE, o qual foi comparado com dietas com 5,0% de EE, em que as sementes de soja e algodão inteira ou o óleo de soja foram fontes de EE adicional. A adição de sementes de soja e de algodão resultou em decréscimo na digestibilidade in vitro da matéria seca e da fibra em detergente neutro (FDN, porém não houve alterações na digestibilidade in vitro da fibra em detergente ácido (FDA em relação à dieta controle. A adição de semente algodão provocou decréscimo na digestibilidade in vitro da proteína bruta em comparação à dieta controle. A concentração de ácido propiônico nas dietas com adição de óleo de soja foi 16% mais elevada que a proporcionada pelas demais dietas. O uso de óleo de soja pareceu ser a mais adequada em relação à digestibilidade da matéria seca, FDA e FDN e à manutenção de pH, quando comparado a outros tipos de adição lipídica, porém menos eficiente que a semente de soja em relação à digestibilidade in vitro da proteína bruta. O número de protozoários apresentou grande variação entre dietas, mas nenhum efeito com adição de óleo foi observado. A maior concentração de N-NH3 ruminal foi obtida na dieta com óleo de soja, quando comparada às outras dietas.This work was conducted to compare the effects of whole soybean and cotton seeds and soybean oil on the ruminal pattern and in vitro disappearance, in fistulated Holstein calves. Two calves fitted with rumen cannula were fed a basal diet with 2.5% of ether extract (EE, which was compared with 5.0% EE, where whole soybean, whole cotton seeds or soybean oil were the source of additional EE. The addition of whole soybean and

  12. [Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network].

    Science.gov (United States)

    Liu, Qian-qian; Wang, Chun-yan; Shi, Xiao-feng; Li, Wen-dong; Luan, Xiao-ning; Hou, Shi-lin; Zhang, Jin-liang; Zheng, Rong-er

    2012-04-01

    In this paper, a new method was developed to differentiate the spill oil samples. The synchronous fluorescence spectra in the lower nonlinear concentration range of 10(-2) - 10(-1) g x L(-1) were collected to get training data base. Radial basis function artificial neural network (RBF-ANN) was used to identify the samples sets, along with principal component analysis (PCA) as the feature extraction method. The recognition rate of the closely-related oil source samples is 92%. All the results demonstrated that the proposed method could identify the crude oil samples effectively by just one synchronous spectrum of the spill oil sample. The method was supposed to be very suitable to the real-time spill oil identification, and can also be easily applied to the oil logging and the analysis of other multi-PAHs or multi-fluorescent mixtures.

  13. Chemical composition and biological activities of the essential oils from two Pereskia species grown in Brazil.

    Science.gov (United States)

    Souza, Lucéia Fatima; De Barros, Ingrid Bergman Inchausti; Mancini, Emilia; De Martino, Laura; Scandolera, Elia; De Feo, Vincenzo

    2014-12-01

    The chemical composition of the essential oils of Pereskia aculeata Mill. and P. grandifolia Haw. (Cactaceae), grown in Brazil, was studied by means of GC and GC-MS. In all, 37 compounds were identified, 30 for P. aculeata and 15 for P. grandifolia. Oxygenated diterpenes are the main constituents, both in the oil ofP. grandifolia (55.5%) and in that ofP. aculeata (29.4%). The essential oils were evaluated for their in vitro phytotoxic activity against germination and initial radicle growth of Raphanus sativus L., Sinapis arvensis L., and Phalaris canariensis L. seeds. The essential oil of P. grandifolia, at all doses tested, significantly inhibited the radicle elongation of R. sativus. Moreover, the antimicrobial activity of the essential oils was assayed against ten bacterial strains. The essential oils showed weak inhibitory activity against the Gram-positive pathogens.

  14. Phytotoxic Effects of Nepeta meyeri Benth. Extracts and Essential Oil on Seed Germinations and Seedling Growths of Four Weed Species

    Directory of Open Access Journals (Sweden)

    Saban Kordali

    2015-05-01

    Full Text Available Essential oil isolated from the aerial parts of Nepeta meyeri Benth. by hydrodistilation was analysed by GC and GC-MS methods. A total 18 components were identified in the oil representing 100.0% of the oil. Main components were 4aα,7α,7aβ-nepetalactone (80.3%, 4aα,7α,7aα–nepetalactone (10.3%, trans-pulegol (3.1%, 1, 8-cineole (3.0% and β-bourbonene (2.0%. In addition, n-hexane extract of N. meyeri was analysed by using GC and GC-MS methods and 18 components were identified. Likewise, nepetalactones, 4aα,7α,7aβ-nepetalactone (83.7%, 4aα,7α,7aα–nepetalactone (3.6%, 1, 8-cineole (1.9% and α-terpinene (1.5% were the predominat compounds in the hexane extract. Three concentrations (0.5, 1.0 and 2.0 mg/mL of the essential oil and n-hexane, chloroform, acetone and methanol extracts isolated from the aerial partsand roots were tested for the herbicidal effects on the germination of the seeds of four weed species including Amaranthus retroflexus L., Chenopodium album L., Cirsium arvense L. and Sinapsis arvensis L. The essential oil of N. meyeri completely inhibited the germination of all weed seeds whereas the extracts showed various inhibition effects on the germination of the weed species. Herbicidal effect was increased with the increasing application concentrations of the extracts. In general, the acetone extract was found to be more effective as compared to the other extracts. All extracts also exhibited various inhibition effects on the seedling growths of the weed species. All extracts also tested for their phytotoxic effects on the weeds at greenhouse condition and the results showed that the oil and extracts caused mortality with 22.00-66.00% 48h after the treatments. These findings suggest that the essential oil and the extracts of N. meyeri have potentials for use as herbicides against those weed species.

  15. Chemical Compositions and Antibacterial Activities of the Essential Oils from Aerial Parts and Corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an Endemic Species to Turkey

    OpenAIRE

    Cosge, Belgin; Turker, Arzu; Ipek, Arif; Gurbuz, Bilal

    2009-01-01

    Essential oils extracted by hydrodistillation from the aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic Turkish flora species, were analyzed by GC-MS. The amounts of essential oil obtained from the aerial parts and the corollas were 0.73% and 0.93%, respectively. Twenty-five components in both the aerial parts oil and the corolla oil, representing 95.11% and 93.88%, respectively, were identified. The aerial parts and corolla oils were characterized by the pr...

  16. ANTIFUNGAL ACTIVITY OF SELECTED ESSENTIAL OILS AGAINST THE FUNGAL SPECIES OF THE GENUS EUROTIUM BY CONTACT VAPOUR

    Directory of Open Access Journals (Sweden)

    Miroslava Císarová

    2014-02-01

    Full Text Available The aim of this study was evaluation of the antifungal activity of 5 essential oils (EOs,we used concretely thyme, clove, basil, jasmine and rosemary, by vapour contact against the fungal species Eurotium rubrum, E. chevalieri and Eurotium sp.. Each fungus was inoculated in the centre on Czapek Yeast Autolysate Agar (CYA plates. Plates were tightly sealed with parafilm and incubated for 7, 14, and 21 days at 25 ± 1 °C (three replicates were used for each treatment. Volatile phase effect of concentration 50 µl of the essential oils was found to inhibit on growth of E. rubrum, E. chevalieri and Eurotium sp.. Complete growth inhibition of the isolates by EOs of thyme and clove was observed. The essential oil (EO of basil had antifungal activity on growth of E. chevalieri only after 7th and 14th days of the incubation, but in case of Eurotium sp. on all days of cultivation. Only E. rubrum was sensitive to jasmine EO and E. chevalieri to basil EO after all days of the incubation. Data was evaluated statistically by 95.0 % Tukey HSD test. The conclusions indicate that volatile phase of combinations of thyme oil and clove oil showed good potential in the inhibition of growth of Eurotium spp. EOs should find a practical application in the inhibition of the fungal mycelial growth in some kind of the food.

  17. Socio-Environmental Impact Assessment of Oleaginous Crops for Biodiesel Production in Brazil

    Directory of Open Access Journals (Sweden)

    Geraldo Stachetti Rodrigues

    2007-06-01

    Full Text Available Socio-environmental impact assessments were carried out on oleaginous crops for biodiesel production under the context of expanding demand in five regions of Brazil. The study brought together representatives of the main interest groups in Delphi-type workshops. Major impacts are related with increases in demand for inputs, resources, and energy, with potential risks on water quality and habitat conservation. In some instances, management practices may improve soil quality, favoring habitats recovery. Crop intensification is expected to bring important contributions for farmer capacitation, income generation and sources diversity, as well as improved management and administration. Institutional especially designed local productive arrangements offer the best options for fostering sustainable development and avoiding environmental degradation risks, under the scenario of expanding demand on oleaginous crops for biodiesel production.

  18. Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms.

    Science.gov (United States)

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Xiong, Lian; Li, Xiao-Mei; Chen, Xin-De

    2017-05-01

    Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically. By this article, some important information to develop this technology can be obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Relating biomarkers to whole-organism effects using species sensitivity distributions : A pilot study for marine species exposed to oil

    NARCIS (Netherlands)

    Smit, M.G.D.; Bechmann, R.K.; Hendriks, A.J.; Skadsheim, A.; Larsen, B.K.; Baussant, T.; Bamber, S.; Sannei, S.

    2009-01-01

    Biomarkers are widely used to measure environmental impacts on marine species. For many biomarkers, it is not clear how the signal levels relate to effects on the whole organism. This paper shows how species sensitivity distributions (SSDs) can be applied to evaluate multiple biomarker responses in

  20. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Directory of Open Access Journals (Sweden)

    Huang Chao

    2012-01-01

    Full Text Available Abstract Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of

  1. Scytalidium parasiticum sp. nov., a New Species Parasitizing on Ganoderma boninense Isolated from Oil Palm in Peninsular Malaysia.

    Science.gov (United States)

    Goh, Yit Kheng; Goh, Teik Khiang; Marzuki, Nurul Fadhilah; Tung, Hun Jiat; Goh, You Keng; Goh, Kah Joo

    2015-06-01

    A mycoparasite, Scytalidium parasiticum sp. nov., isolated from the basidiomata of Ganoderma boninense causing basal stem rot of oil palm in Johor, Malaysia, is described and illustrated. It is distinct from other Scytalidium species in having smaller asci and ascospores (teleomorphic stage), longer arthroconidia (anamorphic stage), hyaline to yellowish chlamydospores, and producing a fluorescent pigment. The phylogenetic position of S. parasiticum was determined by sequence analyses of the internal transcribed spacers and the small-subunit ribosomal RNA gene regions. A key to identify Scytalidium species with teleomorphic stage is provided.

  2. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities.

    NARCIS (Netherlands)

    Sokovic, M.D.; Vukojevic, J.; Marin, P.D.; Brkic, D.D.; Vajs, V.; Griensven, van L.J.L.D.

    2009-01-01

    The potential antifungal effects of Thymus vulgaris L., Thymus tosevii L., Mentha spicata L., and Mentha piperita L. (Labiatae) essential oils and their components against 17 micromycetal food poisoning, plant, animal and human pathogens are presented. The essential oils were obtained by

  3. Essential Oil Composition, Antioxidant, Antidiabetic and Antihypertensive Properties of Two Afromomum Species.

    Science.gov (United States)

    Adefegha, Stephen Adeniyi; Olasehinde, Tosin Abiola; Oboh, Ganiyu

    2017-01-01

    This study was designed to assess the antioxidant, antidiabetic and antihypertensive effects of essential oils from A. melegueta and A. danielli seeds. The essential oils were extracted via hydrodistillation, dried with anhydrous Na 2 SO 4 and characterized using gas chromatography-mass spectrometry (GC-MS). Antioxidant properties and inhibition of some pro-oxidant induced lipid peroxidation in rats' pancreas and heart homogenates were also determined. The results revealed that eugenol, eucalyptol, α-terpineol, α-caryophyllene and β-caryophyllene were the most abundant components in A. melegueta and A. danielli seeds. The essential oils inhibited α-amylase, α-glucosidase and angiotensin-I-converting enzyme in vitro. A.melegueta oil showed a higher α-amylase and α- glucosidase inhibitory activities with EC 50 values of 139.00 µL/mL and 91.83 µL/mL respectively than A. danielli. However, A. danielli oil (EC 50 = 48.73 µL/mL) showed the highest ACE inhibitory acivity. The highest NO radical scavenging ability was observed in A. melegueta oil while A. danielli had the highest OH radical scavenging and Fe 2+ - chelating ability. Furthermore, both essential oils inhibited SNP and Fe 2+ - induced lipid peroxidation in rats' pancreas and heart respectively in a dose dependent manner. This study reveals the biochemical principle by which essential oils from A. danielli and A.melegueta seed elicits their therapeutic effects on type-2 diabetes and hypertension.

  4. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy.

    Science.gov (United States)

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin

    2015-05-01

    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.

  5. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels.

    Science.gov (United States)

    Adrio, José L

    2017-09-01

    Oleaginous yeasts have a unique physiology that makes them the best suited hosts for the production of lipids, oleochemicals, and diesel-like fuels. Their high lipogenesis, capability of growing on many different carbon sources (including lignocellulosic sugars), easy large-scale cultivation, and an increasing number of genetic tools are some of the advantages that have encouraged their use to develop sustainable processes. This mini-review summarizes the metabolic engineering strategies developed in oleaginous yeasts within the last 2 years to improve process metrics (titer, yield, and productivity) for the production of lipids, free fatty acids, fatty acid-based chemicals (e.g., fatty alcohols, fatty acid ethyl esters), and alkanes. During this short period of time, tremendous progress has been made in Yarrowia lipolytica, the model oleaginous yeast, which has been engineered to improve lipid production by different strategies including increasing lipogenic pathway flux and biosynthetic precursors, and blocking degradation pathways. Moreover, remarkable advances have also been reported in Rhodosporidium toruloides and Lipomyces starkey despite the limited genetic tools available for these two very promising hosts. Biotechnol. Bioeng. 2017;114: 1915-1920. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis.

    Science.gov (United States)

    Yamada, Ryosuke; Kashihara, Tomomi; Ogino, Hiroyasu

    2017-05-01

    Oleaginous yeasts are considered a promising alternative lipid source for biodiesel fuel production. In this study, we attempted to improve the lipid productivity of the oleaginous yeast Rhodosporidium toruloides through UV irradiation mutagenesis and selection based on ethanol and H 2 O 2 tolerance or cerulenin, a fatty acid synthetase inhibitor. Glucose consumption, cell growth, and lipid production of mutants were evaluated. The transcription level of genes involved in lipid production was also evaluated in mutants. The ethanol and H 2 O 2 tolerant strain 8766 2-31M and the cerulenin resistant strain 8766 3-11C were generated by UV mutagenesis. The 8766 2-31M mutant showed a higher lipid production rate, and the 8766 3-11C mutant produced a larger amount of lipid and had a higher lipid production rate than the wild type strain. Transcriptional analysis revealed that, similar to the wild type strain, the ACL1 and GND1 genes were expressed at significantly low levels, whereas IDP1 and ME1 were highly expressed. In conclusion, lipid productivity in the oleaginous yeast R. toruloides was successfully improved via UV mutagenesis and selection. The study also identified target genes for improving lipid productivity through gene recombination.

  7. An assessment of the genotoxic impact of the Sea Empress oil spill by the measurement of DNA adduct levels in selected invertebrate and vertebrate species.

    Science.gov (United States)

    Harvey, J S; Lyons, B P; Page, T S; Stewart, C; Parry, J M

    1999-04-26

    The grounding of the Sea Empress oil tanker resulted in the release of 72,000 tonnes of crude oil into Milford Haven, Wales, UK. Our initial studies indicated that this contamination resulted in elevated levels of DNA adducts in one of the area's native marine species Lipophrys pholis [B.P. Lyons, J.S. Harvey, J.M. Parry, An initial assessment of the genotoxic impact of the Sea Empress oil spill by the measurement of DNA adduct levels in the intertidal teleost Lipophrys pholis, Mutat. Res. 390 (1997) 263-268]. These original studies were extended and the genotoxic impact of the oil contamination was investigated in the invertebrates Halichondria panicea and Mytilus edulis, along with the vertebrate fish species L. pholis, Pleuronectes platessa and Limanda limanda. DNA adduct levels were assessed in these species over a period of 2-17 months after the incident. The studies indicate differences in the impact of acute oil contamination upon vertebrate and invertebrate species. The oil contamination did not induce any detectable elevations in adduct levels in the invertebrate species H. panicea and M. edulis. In contrast, the oil contamination did appear to induce adducts in the vertebrate teleost species L. pholis, P. platessa and Lim. limanda. Despite some difficulties in sampling, the data obtained 12-17 months after the spill suggested that the affected species recovered from the oil contamination. While the studies indicate that the genetic impact of the oil contamination was less severe than might have been expected, it remains possible that the DNA adducts detected in the teleosts could lead to genetic changes in these species in the future. Copyright 1999 Elsevier Science B.V.

  8. Chemical Composition and Bioactivity of Essential Oil of Atalantia guillauminii against Three Species Stored Product Insects.

    Science.gov (United States)

    Yang, Kai; You, Chun-Xue; Wang, Cheng-Fang; Lei, Ning; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Ma, Ping; Deng, Zhi-Wei

    2015-01-01

    The toxic and repellent activities of the essential oil extracted from the leaves of Atalantia guillauminii Swingle were evaluated against three stored product insects, red flour beetles (Tribolium castaneum), cigarette beetles (Lasioderma serricorne) and booklice (Liposcelis bostrychophila). The essential oil obtained by hydrodistillation was investigated by GC-MS. The main constituents of the essential oil were β-thujene (27.18%), elemicin (15.03%), eudesma-3, 7(11)-diene (9.64%), followed by (-)-4-terpeniol (6.70%) and spathulenol (5.25%). The crude oil showed remarkable contact toxicity against T. castaneum, L. serricorne adults and L. bostrychophila with LD50 values of 17.11, 24.07 µg/adult and 55.83 µg/cm(2) respectively and it also displayed strong fumigant toxicity against T. castaneum, L. serricorne adults with LC50 values of 17.60 and 12.06 mg/L respectively, while weak fumigant toxicity against L. bostrychophila with a LC50 value of 16.75 mg/L. Moreover, the essential oil also exhibited the same level repellency against the three stored product insects, relative to the positive control, DEET. At the same concentrations, the essential oil was more repellent to T. castaneum than to L. serricorne. Thus, the essential oil of A. guillauminii may be potential to be developed as a new natural fumigant/repellent in the control of stored product insects.

  9. Chemical Composition, Larvicidal and Cytotoxic Activities of the Essential Oils from two Bauhinia Species

    Directory of Open Access Journals (Sweden)

    Leôncio M. de Sousa

    2016-05-01

    Full Text Available The essential oils obtained by hydrodistilation from leaves of Bauhinia pulchella Benth. and Bauhinia ungulata L. were analysed by GC-FID and GC-MS. The major components of B. pulchella essential oil were identified as a -pinene (23.9%, caryophyllene oxide (22.4% and b -pinene (12.2%, while in the B. ungulata essential oil were caryophyllene oxide (23.0%, (E-caryophyllene (14.5% and a -copaene (7.2%. The essential oils were subsequently evaluated for their larvicidal and cytotoxic activities. Larval bioassay against Aedes aegypti of B. pulchella and B. ungulata essential oils showed LC 50 values of 105.9 ± 1.5 and 75.1 ± 2.8 m g/mL, respectively. The essential oils were evaluated against four human cancer cells lines: HL-60 (pro-myelocytic leukemia, MCF-7 (breast adenocarcinoma, NCI-H292 (lung carcinoma and HEP-2 ( cervical adenocarcinoma, showing IC 50 values in the range of 9.9 to 53.1 m g/mL. This is the first report on chemical composition of essential from leaves of B. pulchella and on larvicidal and cytotoxic activities of the essential oils.

  10. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S

    1909-11-29

    Mineral, shale, and like oils are treated successively with sulfuric acid, milk of lime, and a mixture of calcium oxide, sodium chloride, and water, and finally a solution of naphthalene in toluene is added. The product is suitable for lighting, and for use as a motor fuel; for the latter purpose, it is mixed with a light spirit.

  11. Molecular and Phytochemical Investigation of Angelica dahurica and Angelica pubescentis Essential Oils and Their Biological Activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum Species

    Science.gov (United States)

    2014-08-18

    Molecular and Phytochemical Investigation of Angelica dahurica and Angelica pubescentis Essential Oils and Their Biological Activity against Aedes ...against yellow fever mosquito, Aedes aegypti, and azalea lace bugs, Stephanitis pyrioides, than A. pubescentis root oil. The major compounds in the A...dahurica, Angelica pubescentis, internal transcribed spacer region, Colletotrichum species, Aedes aegypti, Stephanitis pyrioides, 1-dodecanol, 1

  12. In chemico evaluation of tea tree essential oils as skin sensitizers: Impact of the chemical composition on aging and generation of reactive species

    Science.gov (United States)

    Tea tree oil (TTO) is a popular skin remedy obtained from the leaves of Melaleuca alternifolia, M. linariifolia or M dissitiflora. Due to the commercial importance ofTTO, substitution or adulteration with other tea tree species (such as cajeput, niaouli, manuka and kanuka oils) is common and may p...

  13. TOXICITY COMPARISON OF BIOSURFACTANTS AND SYNTHETIC SURFACTANTS USED IN OIL SPILL REMEDIATION TO TWO ESTUARINE SPECIES

    Science.gov (United States)

    The relative environmental toxicities of synthetic and biogenic surfactants used in oil spill remediation efforts are not well understood. Acute and chronic toxicities of three synthetic surfactants and three microbially produced surfactants were determined and compared in this s...

  14. Identification of molecular species of polyol oils produced from soybean oil by Pseudomonas aeruginosa e03-12 nrrl b-59991

    Science.gov (United States)

    The objective of this study is to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier methods for microbial screening and production of polyol oils from soybean oil (Hou and Lin, 2013). The polyol oil produced by Acinetobacter haemolyticus A01-35 (NR...

  15. Toxicity of essential oils from leaves of Piperaceae species in rice stalk stink bug eggs, Tibraca limbativentris (Hemiptera: Pentatomidae

    Directory of Open Access Journals (Sweden)

    Diones Krinski

    Full Text Available ABSTRACT Tibraca limbativentris to is an important rice pest and occurs in all rice-growing regions of Latin America. The control this insect is accomplished with synthetic chemical insecticides, however, new approaches are needed to reduce risks to the environment, to the natural enemies and also to avoid the onset of insecticides resistance. This study was designed to assess the toxicity of essential oils (EOs from leaves of Piper aduncum, P. gaudichaudianum, P. malacophyllum, P. marginatum and P. tuberculatum (Piperaceae on rice stalk stink bug eggs, T. limbativentris. Essential oils were extracted with steam distillation and dilutions were made for bioassays at concentrations of 0.25; 0.5; 1.0; 2.0 and 4.0%. Essential oils from all species of Piperaceae displayed ovicidal activity. The LC50 values indicated that both younger and older eggs were susceptible to these oils. Ovicidal activity is related to the potential toxicity of several compounds, especially dilapiolle, myristicin, cubebene, α-guaiene, longifolene, prezizane, spathulenol, sabinene and δ-2-carene. Thus, EOs tested showed promising results for use as biorational botanical insecticides.

  16. In vitro antimicrobial activity and antagonistic effect of essential oils from plant species.

    Science.gov (United States)

    Toroglu, Sevil

    2007-07-01

    Kahramanmaras, is a developing city located in the southern part of Turkey Thymus eigii (M. Zohary and RH. Davis) Jalas, Pinus nigraAm. sub sp pallasiana and Cupressus sempervirens L. are the useful plants of the Kahramanmaras province and have been understudy since 2004 for the traditional uses of plants empiric drug, spice, herbal tea industry herbal gum and fuel. The study was designed to examine the antimicrobial activities of essential oils of these plants by the disc diffusion and minimum inhibitory concentration (MIC) methods. In addition, antimicrobial activity of Thymus eigii was researched by effects when it was used together with antibiotics and even when it was combined with other essential oils. When the results of this study were compared with vancomycin (30 mcg) and erytromycin (15 mcg) standards, it was found that Thymus eigii essential oil was particularly found to possess strongerantimicrobial activity whereas other essential oils showed susceptible or moderate activity However, antimicrobial activity changed also by in vitro interactions between antibiotics and Thymus eigii essential oil, also between essential oils of these plants and that of Thymus eigii causing synergic, additive, antagonist effect.

  17. Chemical composition and antifungal activity of Hyptis suaveolens (L. poit leaves essential oil against Aspergillus species

    Directory of Open Access Journals (Sweden)

    Ana Carolina Pessoa Moreira

    2010-03-01

    Full Text Available This study aimed to identify the constituents of the essential oil from Hyptis suaveolens (L. leaves using a Gas Chromatograph -Mass Spectrometer and assess its inhibitory effect on some potentially pathogenic Aspergilli (A. flavus, A. parasiticus, A. ochraceus, A. fumigatus and A. niger. Eucaliptol (47.64 % was the most abundant component in the oil, followed for gama-ellemene (8.15 %, beta-pynene (6.55 %, (+3-carene (5.16 %, trans-beta-cariophyllene (4.69 % and germacrene (4.86 %. The essential oil revealed an interesting anti-Aspergillus property characterized by a Minimum Inhibitory Concentration and Minimum Fungicidal Concentration of 40 and 80 µL/mL, respectively. The oil at 80 and 40 µL/mL strongly inhibited the mycelial growth of A. fumigatus and A. parasiticus along 14 days. In addition, at 10 and 20 µL/mL the oil was able to cause morphological changes in A. flavus as decreased conidiation, leakage of cytoplasm, loss of pigmentation and disrupted cell structure suggesting fungal wall degeneration. These findings showed the interesting anti-Aspergillus property of H. suaveolens leaves essential oil supporting its possible rational use as alternative source of new antifungal compounds to be applied in the aspergillosis treatment.

  18. Chemical Composition and Biological Activities of the Essential Oils from Three Melaleuca Species Grown in Tunisia

    Directory of Open Access Journals (Sweden)

    Ismail Amri

    2012-12-01

    Full Text Available The chemical composition of the essential oils of Melaleuca armillaris Sm., Melaleuca styphelioides Sm. and Melaleuca acuminata F. Muell., collected in Tunisia, was studied by means of GC and GC-MS analysis. In all, 46 compounds were identified, 38 for M. armillaris, 20 for M. acuminata and eight for M. styphelioides, respectively. The presence of a sesquiterpenic fraction (52.2% characterized the oil from M. armillaris; M. sthypheliodes oil was rich in methyl eugenol, a phenolic compound (91.1%, while M. acuminata oil is mainly constituted by oxygenated monoterpenoids (95.6%. The essential oils were evaluated for their in vitro potentially phytotoxic activity against germination and initial radicle growth of Raphanus sativus L., Lepidium sativum L., Sinapis arvensis L., Triticum durum L. and Phalaris canariensis L. seeds. The radicle elongation of five seeds was inhibited at the highest doses tested, while germination of all seeds was not affected. Moreover, the essential oils showed low antimicrobial activity against eight selected microorganisms.

  19. Chemical composition and biological activities of the essential oils from three Melaleuca species grown in Tunisia.

    Science.gov (United States)

    Amri, Ismail; Mancini, Emilia; De Martino, Laura; Marandino, Aurelio; Lamia, Hamrouni; Mohsen, Hanana; Bassem, Jamoussi; Scognamiglio, Mariarosa; Reverchon, Ernesto; De Feo, Vincenzo

    2012-12-05

    The chemical composition of the essential oils of Melaleuca armillaris Sm., Melaleuca styphelioides Sm. and Melaleuca acuminata F. Muell., collected in Tunisia, was studied by means of GC and GC-MS analysis. In all, 46 compounds were identified, 38 for M. armillaris, 20 for M. acuminata and eight for M. styphelioides, respectively. The presence of a sesquiterpenic fraction (52.2%) characterized the oil from M. armillaris; M. sthypheliodes oil was rich in methyl eugenol, a phenolic compound (91.1%), while M. acuminata oil is mainly constituted by oxygenated monoterpenoids (95.6%). The essential oils were evaluated for their in vitro potentially phytotoxic activity against germination and initial radicle growth of Raphanus sativus L., Lepidium sativum L., Sinapis arvensis L., Triticum durum L. and Phalaris canariensis L. seeds. The radicle elongation of five seeds was inhibited at the highest doses tested, while germination of all seeds was not affected. Moreover, the essential oils showed low antimicrobial activity against eight selected microorganisms.

  20. Chemical Compositions and Antibacterial Activities of the Essential Oils from Aerial Parts and Corollas of Origanum acutidens (Hand.-Mazz. Ietswaart, an Endemic Species to Turkey

    Directory of Open Access Journals (Sweden)

    Belgin Cosge

    2009-04-01

    Full Text Available Essential oils extracted by hydrodistillation from the aerial parts and corollas of Origanum acutidens (Hand.-Mazz. Ietswaart, an endemic Turkish flora species, were analyzed by GC-MS. The amounts of essential oil obtained from the aerial parts and the corollas were 0.73% and 0.93%, respectively. Twenty-five components in both the aerial parts oil and the corolla oil, representing 95.11% and 93.88%, respectively, were identified. The aerial parts and corolla oils were characterized by the predominance of two components: p-cymene (9.43% and 17.51% and carvacrol (67.51% and 52.33%, respectively. The essential oils were also evaluated for their antimicrobial activity against ten bacteria by the disc diffusion assay. Our findings showed the following order in the sensitivity to the essential oils, as indicated by the corresponding inhibition zones: Proteus vulgaris > Salmonella typhimurium > Enterobacter cloacae > Klebsiella pneumonia > Escherichia coli > Serratia marcescens > Pseudomonas aeruginosa for the aerial parts essential oil, and Salmonella typhimurium > Proteus vulgaris > Enterobacter cloacae > Escherichia coli > Klebsiella pneumoniae > Serratia marcescens > Pseudomonas aeruginosa for the corolla essential oil. The studied essential oils thus exhibited a broad-spectrum of activity against both Gram-positive and Gram-negative bacteria, whereas the tested Gram-positive bacteria were more susceptible to the essential oil samples.

  1. Chemical compositions and antibacterial activities of the essential oils from aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic species to Turkey.

    Science.gov (United States)

    Cosge, Belgin; Turker, Arzu; Ipek, Arif; Gurbuz, Bilal

    2009-04-30

    Essential oils extracted by hydrodistillation from the aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic Turkish flora species, were analyzed by GC-MS. The amounts of essential oil obtained from the aerial parts and the corollas were 0.73% and 0.93%, respectively. Twenty-five components in both the aerial parts oil and the corolla oil, representing 95.11% and 93.88%, respectively, were identified. The aerial parts and corolla oils were characterized by the predominance of two components: p-cymene (9.43% and 17.51%) and carvacrol (67.51% and 52.33%), respectively. The essential oils were also evaluated for their antimicrobial activity against ten bacteria by the disc diffusion assay. Our findings showed the following order in the sensitivity to the essential oils, as indicated by the corresponding inhibition zones: Proteus vulgaris > Salmonella typhimurium > Enterobacter cloacae > Klebsiella pneumonia > Escherichia coli > Serratia marcescens > Pseudomonas aeruginosa for the aerial parts essential oil, and Salmonella typhimurium > Proteus vulgaris > Enterobacter cloacae > Escherichia coli > Klebsiella pneumoniae > Serratia marcescens > Pseudomonas aeruginosa for the corolla essential oil. The studied essential oils thus exhibited a broad-spectrum of activity against both Gram-positive and Gram-negative bacteria, whereas the tested Gram-positive bacteria were more susceptible to the essential oil samples.

  2. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction

    OpenAIRE

    Cao, Xuan; Lv, Yu-Bei; Chen, Jun; Imanaka, Tadayuki; Wei, Liu-Jing; Hua, Qiang

    2016-01-01

    Background Limonene, a monocyclic monoterpene, is known for its using as an important precursor of many flavoring, pharmaceutical, and biodiesel products. Currently, d-limonene has been produced via fractionation from essential oils or as a byproduct of orange juice production, however, considering the increasing need for limonene and a certain amount of pesticides may exist in the limonene obtained from the citrus industry, some other methods should be explored to produce limonene. Results T...

  3. Research into microscopic structure and essential oils of endemic medicinal plant species Satureja subspicata Bartl. ex Vis. (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Sulejman Redžić

    2008-05-01

    Full Text Available In this study we looked into the cells and histological organization of leaves (Saturejae folium as well as a phyto-chemical composition of overground parts (Saturejae herba of endemic species Satureja subspicata Bartl. ex Vis. (Lamiaceae collected during year 2003 on south slopes of mountain Velez in Herzegovina. Microscopic organization was analyzed in wet slides using light microscope. Estimation of stomata index was done according to Ph. Yug. IV. Chemical composition of overground material extracts was determined by thin layer chromatography (TLC using thymol as a reference. In our research we found the following: Leaf structure of the analyzed species Satureja subspicata points at numerous specificities in anatomical and histological sense. In histological sense, leaf is of ventral type, with differentiated upper and lower epidermis and palisade and spongy tissue in between. Stoma index assigned according to Ph. Yug. IV leads to a conclusion that it is the case of diastitic stomata, which is common feature of most species from Lamiaceae family. Comparative qualitative analysis of essential oils in species Satureja subspicata showed similarities with other species from Lamiaceae family such as Thymus L. (thymol. In fact, we found more common substances that are part of the species Satureja montana L. extract, but in different concentrations.

  4. Antifungal activity of the essential oils from some species of the genus Pinus.

    Science.gov (United States)

    Krauze-Baranowska, Mirosława; Mardarowicz, Marek; Wiwart, Marian; Pobłocka, Loretta; Dynowska, Maria

    2002-01-01

    The chemical composition of the essential oils from the needles of Pinus ponderosa (north american pine), P. resinosa (red pine) and P. strobus (eastern white pine) has been determined by GC/MS (FID). The essential oils from P. resinosa and P. ponderosa in comparison to P. strobus have been characterized by the higher content of beta-pinene (42.4%, 45.7% and 7.9% respectively). On the other hand, a-pinene (17.7%) and germacrene D (12.2%) were dominant compounds of P strobus. Moreover the essential oil from P. resinosa was more rich in myrcene-15.9%. Estragole and delta-3-carene, each one in amount ca 8% were identified only in P. ponderosa. The content of essential oils in the needles slightly varied--0.65%--P. resinosa, 0.4%--P strobus, 0.3%--P. ponderosa. The antifungal activity has been investigated towards Fusarium culmorum, F solani and F. poae. The strongest activity was observed for the essential oil from P. ponderosa, which fully inhibited the growth of fungi at the following concentrations--F. culmorum, F. solani at 2% and F. poae at 5%.

  5. Chemical Composition of Essential Oils of Xanthium spinosum L., an Invasive Species of Corsica.

    Science.gov (United States)

    Andreani, Stéphane; Paolini, Julien; Costa, Jean; Muselli, Alain

    2017-01-01

    Xanthium spinosum L. is a highly invasive plant originated from South America throughout the world as well as in Corsica Island. The chemical composition of X. spinosum essential oils from 25 Corsican locations was investigated using GC-FID and GC/MS. Seventy-four components, which accounted for 96.2% of the total amount, were reported for the first time in the essential oil from aerial parts. The main compounds were eudesma-4(14),7-dien-1β-ol (61; 21.3%), germacrene D (36; 8.8%) and cadalene (60; 8.7%). Comparison with the literature highlighted the originality of the Corsican essential oil and eudesma-4(14),7-dien-1β-ol could be used as taxonomical marker to the systematics of the Xanthium genus. The essential oils obtained from separate organs and during the plant vegetative cycle were also studied to gain more knowledge about the correlations between the volatile production and the phenological states of this weed. The production of oxygenated sesquiterpenes was predominant during the plant-flowering process. The study focuses on direct correlation between the chemical composition of individual 25 oil samples and the morphological differences of the plant. Our results have gained more knowledge about the secondary metabolite production that occurs during the plant life, they could be interesting in order to manage the dispersal of X. spinosum. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  6. Essential oils of leaves of Piper species display larvicidal activity against the dengue vector, Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    HT. SANTANA

    2015-03-01

    Full Text Available The mosquito Aedes aegypti is the vector of the dengue virus, an endemic arbovirus from tropical and subtropical regions of the world. The increasing resistance of mosquitoes to commercial insecticides impairs regular control programs; therefore, chemical prospecting originating from the Amazonian flora is promising for potential new insecticides. Several Piper species are, notably, rich in phenylpropanoids and terpenoids, substances with proven insecticidal activity. The composition and the larvicidal activity of three Piper species against A. aegypti were evaluated. Essential oils were extracted by hydrodistillation in a modified Clevenger apparatus and analyzed by GC/MS. The major components found in Piper arboreum were germacrene D (31.83% and bicyclogermacrene (21.40%; in Piper marginatum: (E-methyl isoeugenol (27.08%, (E-anethole (23.98% and (Z-methyl isoeugenol (12.01%; and in Piper aduncum: (E-isocroweacin (29.52% and apiole (28.62% and elemicin (7.82%. Essential oils from the Piperaceae species studied resulted in Lethal Concentrations (LC50 of 34-55 ppm, while LC90 was higher than 100 ppm, except for P. marginatum (85 ppm.

  7. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2014-01-01

    Full Text Available The role of arbuscular mycorrhizal fungi in alleviating water stress is well documented. In order to study the effects of water stress and two different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower, a field experiment as split plot design with three replications was conducted in the Research Field Station, Zabol University, Zabol, Iran in 2011. Water stress treatments included control as 90% of field capacity (W1, 70% field capacity (W2 and 50% field capacity (W3 assigned to the main plots and two different mycorrhiza species, consisting of M1 = control (without any inoculation, M2 = Glumus mossea and M3 = Glumus etanicatum as sub plots. Results showed that by increasing water stress from control (W1 to W3 treatment, grain yield was significantly decreased. The reduction in the level of W3 was 15.05%. The content of potassium in seeds significantly decreased due to water stress but water stress upto W2 treatment increased the content of phosphorus, nitrogen and oil content of seeds. In between two species of mycorrhiza in sunflower plants, Glumus etanicatum had the highest effect on grain yield and these elements in seeds and increased both.

  8. Essential Oils of Myrtaceae Species Growing Wild in Tunisia: Chemical Variability and Antifungal Activity Against Biscogniauxia mediterranea, the Causative Agent of Charcoal Canker.

    Science.gov (United States)

    Yangui, Islem; Zouaoui Boutiti, Meriem; Boussaid, Mohamed; Messaoud, Chokri

    2017-07-01

    The chemical composition of five Eucalyptus species and five Myrtus communis L. populations was investigated using GC/MS and GC-FID. For Eucalyptus essential oils, 32 compounds, representing 88.56 - 96.83% of the total oil according to species, were identified. The main compounds were 1,8-cineole, α-pinene, p-cymene, γ-gurjunene, α-aromadendrene, and β-phellandrene. For Myrtle essential oils, 26 compounds, representing 93.13 - 98.91% of the total oil were identified. α-Pinene, 1,8-cineole, linalool, and myrtenyl acetate were found to be the major compounds. Principal component analysis (PCA) showed chemical differentiation between Eucalyptus species and between Myrtle populations. Biscogniauxia mediterranea, the causative agent of charcoal canker, was identified according to its morphological and molecular characteristics. Essential oils of the investigated Eucalyptus species and Myrtle populations were tested for their antifungal capacity against this fungus. The antifungal activity varied according to the essential oil composition. Biscogniauxia mediterranea exhibited powerful resistance to some essential oils including them of Eucalyptus lehmannii and Eucalyptus sideroxylon but it was very sensitive to Eucalyptus camaldulensis oil (IC 50  = 3.83 mg/ml) and M. communis oil from Zaghouan (IC 50  = 1 mg/ml). This sensitivity was found to be correlated to some essential oil compounds such as p-cymene, carvacrol, cuminaldehyde, and linalool. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  9. Evaluation of tolerance to soils contaminated with diesel oil in plant species with bioremediation potential

    International Nuclear Information System (INIS)

    Petenello, Maria Cristina; Feldman, Susana Raquel.

    2012-01-01

    Soils contaminated with hydrocarbons or their derivate can be remediated by different methods. Many of them use live organisms such as plants that are able to mineralize these compounds, turning them into more simple molecules, similar to natural molecules. When the use of plants is decided, it is important to employ native plants because they are already adapted to the particular ecological conditions of the site. The response of spartina argentinensis, paspalum atratum, paspalum guenoarun and melilotus albus to the presence of diesel oil was evaluated considering seed germination, plant emergence and biomass production of plants growing on soils experimentally contaminated with different concentrations of diesel oil (1 and 2 %). Although all the parameters evaluated showed the negative impact of the presence of diesel-oil, the plants continued growing; therefore they can be considered useful management options for soil phytoremediation.

  10. Chemical and biological evaluation of essential oils from two species of Myrtaceae - Eugenia uniflora L. and Plinia trunciflora (O. Berg) Kausel.

    Science.gov (United States)

    Lago, João Henrique G; Souza, Elisângela Dutra; Mariane, Bruna; Pascon, Renata; Vallim, Marcelo A; Martins, Roberto Carlos C; Baroli, Adriana A; Carvalho, Bianca A; Soares, Marisi G; dos Santos, Roberta T; Sartorelli, Patricia

    2011-11-25

    The chemical composition and antimicrobial activity of essential oils obtained from leaves of two Myrtaceae species-Eugenia uniflora L. and Plinia trunciflora (O. Berg) Kausel-were determined. Analysis by GC/MS as well as determination of Kovatz indexes indicated atractylone (26.78%) and curzerene (17.96%) as major constituents of E. uniflora oil and α-cadinol (19.15%), apiole (11.15%) and cubenol (5.43%) as main components in P. trunciflora oil. Both essential oils were tested for antimicrobial activity against yeasts and bacteria. E. uniflora and P. trunciflora essential oils were active towards two Gram-positive bacteria, Streptococcus equi and Staphylococcus epidermis. In addition, biological activity of both essential oils was detected for pathogenic yeasts of the genus Candida and Cryptococcus. E. uniflora was active towards all yeast tested and exhibited interesting minimal inhibitory concentrations (0.11 to 3.75 mg/mL) across a broad spectrum of activity.

  11. Classification of pumpkin seed oils according to their species and genetic variety by attenuated total reflection Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Saucedo-Hernández, Yanelis; Lerma-García, María Jesús; Herrero-Martínez, José Manuel; Ramis-Ramos, Guillermo; Jorge-Rodríguez, Elisa; Simí-Alfonso, Ernesto F

    2011-04-27

    Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), followed by multivariate treatment of the spectral data, was used to classify seed oils of the genus Cucurbita (pumpkins) according to their species as C. maxima, C. pepo, and C. moschata. Also, C. moschata seed oils were classified according to their genetic variety as RG, Inivit C-88, and Inivit C-2000. Up to 23 wavelength regions were selected on the spectra, each region corresponding to a peak or shoulder. The normalized absorbance peak areas within these regions were used as predictors. Using linear discriminant analysis (LDA), an excellent resolution among all categories concerning both Cucurbita species and C. moschata varieties was achieved. The proposed method was straightforward and quick and can be easily implemented. Quality control of pumpkin seed oils is important because Cucurbita species and genetic variety are both related to the pharmaceutical properties of the oils.

  12. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.

    Science.gov (United States)

    Grimberg, Åsa; Carlsson, Anders S; Marttila, Salla; Bhalerao, Rishikesh; Hofvander, Per

    2015-08-08

    Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though

  13. Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Phoebe Z. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Chen, Huan [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Podgorski, David C. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); McKenna, Amy M. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Tarr, Matthew A., E-mail: mtarr@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States)

    2014-09-15

    Graphical abstract: Sunlight oxygenates petroleum. - Highlights: • Oxidation seen in water-soluble oil fraction after exposure to simulated sunlight. • Oxygen addition occurred across a wide range of carbon number and DBE. • Oil compounds were susceptible to addition of multiple oxygens to each molecule. • Results provide understanding of fate of oil on water after exposure to sunlight. - Abstract: In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid–liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O{sub 5}), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O{sub 2}). Higher-order oxygen classes (O{sub 5}–O{sub 9}) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N{sub 1}) concurrent with an increased abundance of N{sub 1}O{sub x} classes after irradiation. The predominance of higher

  14. MDGC-MS analysis of essential oils from Protium heptaphyllum (Aubl. and their antifungal activity against Candida specie

    Directory of Open Access Journals (Sweden)

    M. MOBIN

    Full Text Available ABSTRACT Protium heptaphyllum is found in the Amazon region, and in various Brazilian states and South American countries. Also Known as almecega, it produces an oil resin used in traditional medicine as analgesic, anti-inflammatory, cicatrizant and expectorant, it is rich in pentacyclic triterpenes and essential oil. The main objective of this study was to analyze the chemical composition of P. heptaphyllumresin (OEPh over different extraction times and to evaluate their antifungal activity against Candida species, obtained from gardeners with onychomycosis, using the disk diffusion method. The OEPh was obtained by hydrodistillation and analyzed by Multidimensional Gas Chromatography coupled with Mass Spectrometry (MDGC / MS. Candida species were obtained from lesions on the nails of horticulturist from a community garden in the city of Teresina, Piauí, Brazil. The antifungal activity in concentrations of 1000 µg/L, 500 µg/L and 250 µg/L, PROTOCOL M44-A2 (CLSI 2009 OEPh was tested. The main constituents identified were: l-limonene, α-terpineol, p-cineol, o-cymene and α-phellandrene, however, its composition varies significantly with extraction time. All species, except C. rugosa, were inhibited with halo (≥ 14 mm at 1000 μg / L. C. krusei is naturally resistant to the drug fluconazole, but when tested with OEPh the clinical species (case 9 demonstrated sensitivity in three dilutions (halo ≤ 10 ≥ 14 and the standard strain was inhibited at concentration of 1000 μg/Lg / L (halo 14mm. A similar situation also occurred with the standard strain of C. parapsilosis (halo ≥ 11mm. OEPh has considerable antifungal activity, which merits further investigation for alternative clinical applications, since this species is widely distributed in our community, and it presents good yields, and also has important therapeutic applications.

  15. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Cobbett, G T.B.

    1907-07-08

    Crude petroleum having a density of 850 to 900 is purified with sulfuric acid, decanted, mixed with benzine or petrol, and again treated with sulfuric acid and decanted. The remaining acid and coloring-matter are removed by washing with water, or treating with oxalic acid, zinc carbonate, lead carbonate, calcium carbonate, or oxide of zinc. The product is used as a fuel for internal-combustion engines. Specifications No. 28,104, A.D. 1906, and No. 12,606, A.D. 1907, are referred to. According to the Provisional Specification, the process is applicable to shale or schist oil.

  16. ANTIFUNGAL ACTIVITY OF SELECTED ESSENTIAL OILS AGAINST THE FUNGAL SPECIES OF THE GENUS EUROTIUM BY CONTACT VAPOUR

    OpenAIRE

    Miroslava Císarová; Jaroslava Kačinová; Dana Tančinová

    2014-01-01

    The aim of this study was evaluation of the antifungal activity of 5 essential oils (EOs),we used concretely thyme, clove, basil, jasmine and rosemary, by vapour contact against the fungal species Eurotium rubrum, E. chevalieri and Eurotium sp.. Each fungus was inoculated in the centre on Czapek Yeast Autolysate Agar (CYA) plates. Plates were tightly sealed with parafilm and incubated for 7, 14, and 21 days at 25 ± 1 °C (three replicates were used for each treatment). Volatile phase effect o...

  17. Extreme temperature and oil contamination shape the relative abundance of copepod species in the Arctic

    DEFF Research Database (Denmark)

    Dinh, Khuong Van; Nielsen, Torkel Gissel

    is of north Atlantic origin. Pyrene is one of the most toxic components of crude oil to marine copepods. The temperatures of 2, 6 and 10°C represent the mean sea water temperature, the 4°C increase in mean temperature by 2100 as predicted by IPCC scenario RCP8.5 (2013) and the extreme sea water temperature...

  18. Total phenolic content, radical scavenging properties, and essential oil composition of Origanum species from different populations.

    Science.gov (United States)

    Dambolena, José S; Zunino, María P; Lucini, Enrique I; Olmedo, Rubén; Banchio, Erika; Bima, Paula J; Zygadlo, Julio A

    2010-01-27

    The aim of this work was to compare the antiradical activity, total phenol content (TPC), and essential oil composition of Origanum vulgare spp. virens, Origanum x applii, Origanum x majoricum, and O. vulgare spp. vulgare cultivated in Argentina in different localities. The experiment was conducted in the research station of La Consulta (INTA-Mendoza), the research station of Santa Lucia (INTA-San Juan), and Agronomy Faculty of National University of La Pampa, from 2007 to 2008. The composition of the essential oils of oregano populations was independent of cultivation conditions. In total, 39 compounds were identified in essential oils of oregano from Argentina by means of GC-MS. Thymol and trans-sabinene hydrate were the most prominent compounds, followed by gamma-terpinene, terpinen-4-ol, and alpha-terpinene. O. vulgare vulgare is the only Origanum studied which is rich in gamma-terpinene. Among tested oregano, O. x majoricum showed the highest essential oil content, 3.9 mg g(-1) dry matter. The plant extract of O. x majoricum had greater total phenol content values, 19.36 mg/g dry weight, than the rest of oregano studied. To find relationships among TPC, free radical scavenging activity (FRSA), and climate variables, canonical correlations were calculated. The results obtained allow us to conclude that 70% of the TPC and FRSA variability can be explained by the climate variables (R(2) = 0.70; p = 8.3 x 10(-6)), the temperature being the most important climatic variable.

  19. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    Science.gov (United States)

    Liamocin oil from Aureobasidium pullulans NRRL 50380 was tested for antibacterial activity. Liamocins inhibited growth of Streptococcus agalactiae, S. uberis, S. mitis, S. infantarius, and S. mutans, with minimum inhibitory concentrations from 20 'g/ml to 78 'g/ml. Enterococcus faecalis was less sus...

  20. Antibacterial activity of liamocins oil from Aureobasidium pullulans is specific for species of Streptococcus

    Science.gov (United States)

    Liamocins are a heterogeneous mixture of denser-than-water oils produced by the fungus Aureobasidium pullulans. Liamocins have unique chemical structures with a mannitol head group linked to long chain polyester tails consisting of multiple 3,5-dihydroxydecanoic acid ester groups, some of which are ...

  1. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    Science.gov (United States)

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  2. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation

    Directory of Open Access Journals (Sweden)

    Rismani-Yazdi Hamid

    2012-09-01

    Full Text Available Abstract Background The lack of sequenced genomes for oleaginous microalgae limits our understanding of the mechanisms these organisms utilize to become enriched in triglycerides. Here we report the de novo transcriptome assembly and quantitative gene expression analysis of the oleaginous microalga Neochloris oleoabundans, with a focus on the complex interaction of pathways associated with the production of the triacylglycerol (TAG biofuel precursor. Results After growth under nitrogen replete and nitrogen limiting conditions, we quantified the cellular content of major biomolecules including total lipids, triacylglycerides, starch, protein, and chlorophyll. Transcribed genes were sequenced, the transcriptome was assembled de novo, and the expression of major functional categories, relevant pathways, and important genes was quantified through the mapping of reads to the transcriptome. Over 87 million, 77 base pair high quality reads were produced on the Illumina HiSeq sequencing platform. Metabolite measurements supported by genes and pathway expression results indicated that under the nitrogen-limiting condition, carbon is partitioned toward triglyceride production, which increased fivefold over the nitrogen-replete control. In addition to the observed overexpression of the fatty acid synthesis pathway, TAG production during nitrogen limitation was bolstered by repression of the β-oxidation pathway, up-regulation of genes encoding for the pyruvate dehydrogenase complex which funnels acetyl-CoA to lipid biosynthesis, activation of the pentose phosphate pathway to supply reducing equivalents to inorganic nitrogen assimilation and fatty acid biosynthesis, and the up-regulation of lipases—presumably to reconstruct cell membranes in order to supply additional fatty acids for TAG biosynthesis. Conclusions Our quantitative transcriptome study reveals a broad overview of how nitrogen stress results in excess TAG production in N. oleoabundans, and

  3. Membrane Proteomic Insights into the Physiology and Taxonomy of an Oleaginous Green Microalga.

    Science.gov (United States)

    Garibay-Hernández, Adriana; Barkla, Bronwyn J; Vera-Estrella, Rosario; Martinez, Alfredo; Pantoja, Omar

    2017-01-01

    Ettlia oleoabundans is a nonsequenced oleaginous green microalga. Despite the significant biotechnological interest in producing value-added compounds from the acyl lipids of this microalga, a basic understanding of the physiology and biochemistry of oleaginous microalgae is lacking, especially under nitrogen deprivation conditions known to trigger lipid accumulation. Using an RNA sequencing-based proteomics approach together with manual annotation, we are able to provide, to our knowledge, the first membrane proteome of an oleaginous microalga. This approach allowed the identification of novel proteins in E. oleoabundans, including two photoprotection-related proteins, Photosystem II Subunit S and Maintenance of Photosystem II under High Light1, which were considered exclusive to higher photosynthetic organisms, as well as Retinitis Pigmentosa Type 2-Clathrin Light Chain, a membrane protein with a novel domain architecture. Free-flow zonal electrophoresis of microalgal membranes coupled to liquid chromatography-tandem mass spectrometry proved to be a useful technique for determining the intracellular location of proteins of interest. Carbon-flow compartmentalization in E. oleoabundans was modeled using this information. Molecular phylogenetic analyses of protein markers and 18S ribosomal DNA support the reclassification of E. oleoabundans within the trebouxiophycean microalgae, rather than with the Chlorophyceae class, in which it is currently classified, indicating that it may not be closely related to the model green alga Chlamydomonas reinhardtii A detailed survey of biological processes taking place in the membranes of nitrogen-deprived E. oleoabundans, including lipid metabolism, provides insights into the basic biology of this nonmodel organism. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Polychaete Annelid (segmented worms) Species Composition in the Deep Gulf of Mexico following the Deep Water Horizon (DWH) Oil Spill

    Science.gov (United States)

    QU, F.; Rowe, G.

    2012-12-01

    Sediments 5 to 9 km from the Deep Water Horizon (DWH) Oil Spill site were sampled using a 0.2 m2 box corer 5 months after the event to assess the effects of the oil spill on polychaete annelid (segmented worms) community structure. Numbers of species, abundance, and biodiversity indices were all significantly lower than pre-spill values from similar depths in the eastern Gulf of Mexico (GoM). All of the five dominant species were different. Non-selective deposit feeders and selective deposit feeders were still the most frequent feeding guilds, but their abundances decreased significantly after the event. A large number of carnivorous Sigalionidae may be a response to an accumulation of PAHs on the sediment. Multivariate analyses (CLUSTER and multidimensional scaling (MDS)) illustrate the differences between assemblages near the DWH and those from prior studies in similar deep GoM habitats. In sum, the polychaete populations appeared to be at an early stage of succession in the recovery from the spill or they could be a resident assemblage that is the natural characteristic infauna in or adjacent to natural seeps of fossil hydrocarbons.

  5. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents.

    Science.gov (United States)

    Bonesi, Marco; Menichini, Federica; Tundis, Rosa; Loizzo, Monica R; Conforti, Filomena; Passalacqua, Nicodemo G; Statti, Giancarlo A; Menichini, Francesco

    2010-10-01

    This study aimed to investigate the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oils from Pinus nigra subsp. nigra, P. nigra var. calabrica, and P. heldreichii subsp. leucodermis. This activity is relevant to the treatment of Alzheimer's disease (AD), since cholinesterase drugs are currently the only drugs available to treat AD. P. heldreichii subsp. leucodermis exhibited the most promising activity, with IC(50) values of 51.1 and 80.6 microg/mL against AChE and BChE, respectively. An interesting activity against AChE was also observed with P. nigra subsp. nigra essential oil, with an IC(50) value of 94.4 microg/mL. Essential oils were analyzed by GC and GC-MS with the purpose of investigating their relationships with the observed activities. Among the identified constituents, terpinolene, beta-phellandrene, linalyl acetate, trans-caryophyllene, and terpinen-4-ol were tested. trans-Caryophyllene and terpinen-4-ol inhibited BChE with IC(50) values of 78.6 and 107.6 microg/mL, respectively. beta-Phellandrene was selective against AChE (IC(50) value of 120.2 microg/mL).

  6. Essential Oils as an Alternative to Pyrethroids' Resistance against Anopheles Species Complex Giles (Diptera: Culicidae).

    Science.gov (United States)

    Gnankiné, Olivier; Bassolé, Imaël Henri Nestor

    2017-09-22

    Widespread resistance of Anopheles sp. populations to pyrethroid insecticides has led to the search for sustainable alternatives in the plant kingdom. Among many botanicals, there is great interest in essential oils and their constituents. Many researchers have explored essential oils (EOs) to determine their toxicity and identify repellent molecules that are effective against Anopheles populations. Essential oils are volatile and fragrant substances with an oily consistency typically produced by plants. They contain a variety of volatile molecules such as terpenes and terpenoids, phenol-derived aromatic components and aliphatic components at quite different concentrations with a significant insecticide potential, essentially as ovicidal, larvicidal, adulticidal, repellency, antifeedant, growth and reproduction inhibitors. The current review provides a summary of chemical composition of EOs, their toxicity at different developmental stages (eggs, larvae and adults), their repellent effects against Anopheles populations, for which there is little information available until now. An overview of antagonist and synergistic phenomena between secondary metabolites, the mode of action as well as microencapsulation technologies are also given in this review. Finally, the potential use of EOs as an alternative to current insecticides has been discussed.

  7. Microorganisms as sources of oils

    Directory of Open Access Journals (Sweden)

    Thevenieau France

    2013-11-01

    Full Text Available A number of microorganism belonging to the genera of yeast, fungi, bacteria and microalgae have ability to accumulate substantial amounts of oil, sometimes up to an even in excess of 70% of their biomass weight under specific cultivation conditions. For nearly 100 years, the commercial opportunities of using microorganisms as sources of oils have been continuously examined. Although it was evident that microbial oils could never compete commercially with the major commodity plant oils, there were commercially opportunities for the production of some of the higher valued oils. Today, with the great progress of metabolic and genetic engineering, the developments are focus on the high value oils containing important polyunsaturated or specific fatty acids. Such oils have the potential to be used in different applications area as food, feed and oleochemistry. This review is covering the related researches about different oleaginous microorganisms for lipids production and microbial oils biosynthesis process. In add, the lipid metabolism, metabolic engineering strategies to increase lipid production and the economics of microbial oils production are introduced.

  8. De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Gene Discovery for Production of Next-Generation Biofuels

    Science.gov (United States)

    Wan, LingLin; Han, Juan; Sang, Min; Li, AiFen; Wu, Hong; Yin, ShunJi; Zhang, ChengWu

    2012-01-01

    Background Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs) for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production. Results We performed the de novo assembly of E. cf. polyphem transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 29,199,432 sequencing reads corresponding to 2.33 Gb total nucleotides. These reads were assembled into 75,632 unigenes with a mean size of 503 bp and an N50 of 663 bp, ranging from 100 bp to >3,000 bp. Assembled unigenes were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. These analyses identified the majority of carbohydrate, fatty acids, TAG and carotenoids biosynthesis and catabolism pathways in E. cf. polyphem. Conclusions Our data provides the construction of metabolic pathways involved in the biosynthesis and catabolism of carbohydrate, fatty acids, TAG and carotenoids in E. cf. polyphem and provides a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock. PMID:22536352

  9. De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels.

    Directory of Open Access Journals (Sweden)

    LingLin Wan

    Full Text Available Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production.We performed the de novo assembly of E. cf. polyphem transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 29,199,432 sequencing reads corresponding to 2.33 Gb total nucleotides. These reads were assembled into 75,632 unigenes with a mean size of 503 bp and an N50 of 663 bp, ranging from 100 bp to >3,000 bp. Assembled unigenes were subjected to BLAST similarity searches and annotated with Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology identifiers. These analyses identified the majority of carbohydrate, fatty acids, TAG and carotenoids biosynthesis and catabolism pathways in E. cf. polyphem.Our data provides the construction of metabolic pathways involved in the biosynthesis and catabolism of carbohydrate, fatty acids, TAG and carotenoids in E. cf. polyphem and provides a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock.

  10. Comparison of Methods for Isolating High Quality DNA and RNA from an Oleaginous Fungus Cunninghamella bainieri Strain 2a1

    Directory of Open Access Journals (Sweden)

    Noor Adila, A. K.

    2007-01-01

    Full Text Available A number of protocols have been reported for efficient fungal DNA and RNA isolation. However, many of these methods are often designed for certain groups or morphological forms of fungi and, in some cases, are species dependent. In this report, we compared four published protocols for DNA isolation from a locally isolated oleaginous fungus, Cunninghamella bainieri strain 2a1. These protocols either involved the use of polyvinyl pyrrolidone (PVP, hexacetyltrimethylammonium bromide (CTAB or without using PVB or CTAB. For RNA isolation, we tested two published protocols, one of which is based on TRI REAGENT (Molecular Research Center, USA and another is simple method employing phenol for RNA extraction and LiCl for precipitation. We found that the protocol involving the use of CTAB produced the highest genomic DNA yield with the best quality compared to other protocols. In the presence of CTAB, unwanted polysaccharides were removed and this method yielded an average amount of 816 ± 12.2 µg DNA/g mycelia with UV absorbance ratios A260/280 and A260/230 of 1.67 ± 0.64 and 1.97 ± 0.23, respectively. The genomic DNA isolated via this protocol is also suitable for PCR amplification and restriction enzyme digestion. As for RNA isolation, the method involving phenol extraction and LiCl precipitation produced the highest yield of RNA with an average amount of 372 ± 6.0 µg RNA/g mycelia. The RNA appears to be relatively pure since it has UV absorbance ratios A260/280 and A260/230 of 1.89 ± 2.00 and 1.99 ± 0.03, respectively. Finally, we have demonstrated that this method could produce RNA of sufficient quality for RT-PCR that amplified a 600 bp fragment of ∆12-fatty acid desaturase gene in C. bainieri.

  11. Comparative evaluation of 13 yeast species in the Yarrowia clade on lignocellulosic biomass hydrolysate and genetic engineering of inhibitor tolerant strains for lipid and biofuel production

    Science.gov (United States)

    Yarrowia lipolytica is an oleaginous yeast that has garnered interest for commercial production of single cell oil and other fatty acid-derived chemicals because of its GRAS status and genetic tractability. Three recent peer-reviewed studies have highlighted the possibility of lipid production by th...

  12. Phytophagous Arthropod Species Associated with Oil Bearing Rose, Rosa damascena Miller, in Isparta Province with Distributional Remarks

    Directory of Open Access Journals (Sweden)

    Ozan Demirözer

    2011-05-01

    Full Text Available Abstract: The study is based on field researches made in 2006–2007 in order to determine the phytophagous arthropod species and the deployment of those species that are economically important in the oil-bearing rose production fields in the province of Isparta. As a result, 62 species were determined, 60 of which belongs to 24 families of 6 orders in Insecta and 2 of which belongs to 2 families of 1 order in Arachnida. In the study, 57 species were identified up to species level and 5 species were identified up to genus level. It is seen that 20 species of them are previously identified as pests in Rosa damascena Miller in production fields in the literature. Ten of the species determined in the study are recorded as new for the oil-bearing rose pest fauna in the province of Isparta. Key words: Oil Bearing Rose, Rosa damascena, pest, phytophagous, Isparta Özet: Bu çalışma, Isparta ili yağ gülü üretim alanlarında bulunan fitofag türlerin belirlenmesi ve ekonomik açıdan önemlilerinin yayılışlarının ortaya çıkarılması amacıyla 2006-2007 yılları arasında yürütülmüştür. Çalışma sonucunda, Insecta sınıfının 6 takımına ait 24 familyadan toplam 60, Arachnida sınıfına ait 1 takıma bağlı 2 familyadan 2 olmak üzere toplamda 62 türün varlığı belirlenmiştir. Çalışmada 57 adet örneğin tür düzeyinde teşhisleri tamamlanırken, 5 türün cins düzeyine kadar teşhisleri yapılmıştır. Yapılan literatür çalışmalarında bu araştırmada belirlenen türlerden 20'sinin daha önceden Rosa damascena Miller üretim alanlarında zararlı olarak bildirildiği saptanmıştır. Çalışmada belirlenen türlerden 10'u ise Isparta ili yağ gülü zararlı faunası için yeni kayıt niteliği taşımaktadır. Anahtar kelimeler: Yağ gülü, Rosa damascena, zararlı, fitofag, Isparta

  13. Development of an Agrobacterium-Mediated Transformation Method and Evaluation of Two Exogenous Constitutive Promoters in Oleaginous Yeast Lipomyces starkeyi.

    Science.gov (United States)

    Lin, Xinping; Liu, Sasa; Bao, Ruiqi; Gao, Ning; Zhang, Sufang; Zhu, Rongqian; Zhao, Zongbao Kent

    2017-11-01

    Oleaginous yeast Lipomyces starkeyi, a promising strain of great biotechnical importance, is able to accumulate over 60% of its cell biomass as triacylglycerols (TAGs). It is promising to directly produce the derivatives of TAGs, such as long-chain fatty acid methyl esters and alkanes, in L. starkeyi. However, techniques for genetic modification of this oleaginous yeast are lacking, thus, further research is needed to develop genetic tools and functional elements. Here, we used two exogenous promoters (pGPD and pPGK) from oleaginous yeast Rhodosporidium toruloides to establish a simpler Agrobacterium-mediated transformation (AMT) method for L. starkeyi. Hygromycin-resistant transformants were obtained on antibiotic-contained plate. Mitotic stability test, genotype verification by PCR, and protein expression confirmation all demonstrated the success of this method. Furthermore, the strength of these two promoters was evaluated at the phenotypic level on a hygromycin-gradient plate and at the transcriptional level by real-time quantitative PCR. The PGK promoter strength was 2.2-fold as that of GPD promoter to initiate the expression of the hygromycin-resistance gene. This study provided an easy and efficient genetic manipulation method and elements of the oleaginous yeast L. starkeyi for constructing superior strains to produce advanced biofuels.

  14. (13)C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.

    Science.gov (United States)

    Zhao, Lina; Zhang, Huaiyuan; Wang, Liping; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2015-12-01

    The oleaginous fungus Mucor circinelloides is of industrial interest because it can produce high levels of polyunsaturated fatty acid γ-linolenic acid. M. circinelloides CBS 277.49 is able to accumulate less than 15% of cell dry weight as lipids, while M. circinelloides WJ11 can accumulate lipid up to 36%. In order to better understand the mechanisms behind the differential lipid accumulation in these two strains, tracer experiments with (13)C-glucose were performed with the growth of M. circinelloides and subsequent gas chromatography-mass spectrometric detection of (13)C-patterns in proteinogenic amino acids was carried out to identify the metabolic network topology and estimate intracellular fluxes. Our results showed that the high oleaginous strain WJ11 had higher flux of pentose phosphate pathway and malic enzyme, lower flux in tricarboxylic acid cycle, higher flux in glyoxylate cycle and ATP: citrate lyase, together, it might provide more NADPH and substrate acetyl-CoA for fatty acid synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Deterioration of natural antioxidant species of vegetable edible oils during the domestic deep-frying and pan-frying of potatoes.

    Science.gov (United States)

    Andrikopoulos, Nikolaos K; Dedoussis, George V Z; Falirea, Ageliki; Kalogeropoulos, Nick; Hatzinikola, Haristoula S

    2002-07-01

    In the present work, virgin olive oil, sunflower oil and a vegetable shortening were used as cooking oils for the deep-frying and pan-frying of potatoes, for eight successive sessions, under the usual domestic practice. Several chemical and physicochemical parameters (acidic value, peroxide value, total polar artefacts, total phenol content and triglyceride fatty acyl moiety composition) were assayed during frying operations in order to evaluate the status of the frying oils, which were found within expected ranges similar to those previously reported. The oil fatty acids were effectively protected from oxidation by the natural antioxidants. The frying oil absorption by the potatoes was quantitated within 6.1-12.8%, depending on the oil type and the frying process. The retention of alpha- and (beta + gamma)-tocopherols during the eight fryings ranged from 85-90% (first frying) to 15-40% (eighth frying), except for the (beta + gamma)-tocopherols of sunflower oil, which almost disappeared after the sixth frying. The deterioration during the successive frying of several phenolic species present in virgin olive oil is reported for the first time. The retention of total phenolics ranged from 70-80% (first frying) to 20-30% (eighth frying). Tannic acid, oleuropein and hydroxytyrosol-elenolic acid dialdeydic form showed remarkable resistance in all frying sessions in both frying methods, while hydroxytyrosol and hydroxytyrosol-elenolic acid were the faster eliminated. The deterioration of the other phenolic species account for 40-50% and 20-30% for deep-frying and pan-frying, respectively, after three to four frying sessions, which are the most usual in the household kitchen. Deep-frying resulted in better recoveries of all the parameters examined. The correlation of the deterioration rate of the phenolic compounds and tocopherols during frying is discussed and the nutritional aspects of the natural antioxidant intake, through the oil absorbed by the potatoes, are

  16. Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application.

    Science.gov (United States)

    Cha, Thye San; Chen, Jian Woon; Goh, Eng Giap; Aziz, Ahmad; Loh, Saw Hong

    2011-11-01

    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (pdifferentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 2. Induction of mixed function oxidase enzymes in barramundi, Lates calcarifer, a tropical fish species

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, Philip; Burns, Kathryn A.; Cavanagh, Joanne

    2004-05-01

    An increasing number of vegetable-based oils are being developed as environmentally friendly alternatives to petroleum products. However, toxicity towards key tropical marine species has not been investigated. In this study we used laboratory-based biomarker induction experiments to compare the relative stress of a vegetable-based lubricating oil for marine 2-stroke engines with its mineral oil-based counterpart on tropical fish. The sub-lethal stress of 2-stoke outboard lubricating oils towards the fish Lates calcarifer (barramundi) was examined using liver microsomal mixed function oxidase (MFO) induction assays. This study is the first investigation into the use of this key commercial species in tropical North Queensland, Australia in stress assessment of potential hydrocarbon pollution using ethoxyresorufin O-deethylase (EROD) induction. Our results indicated that barramundi provide a wide range of inducible rates of EROD activity in response to relevant organic stressors. The vegetable- and mineral-based lubricants induced significant EROD activity at 1.0 mg kg{sup -1} and there was no significant difference between the two oil treatments at that concentration. At increasing concentrations of 2 and 3 mg kg{sup -1}, the mineral-based lubricant resulted in slightly higher EROD activity than the vegetable-based lubricant. The EROD activity of control and treated barramundi are found to be within ranges for other species from temperate and tropical environments. These results indicate that vegetable-based lubricants may be less stressful to barramundi than their mineral counterparts at concentrations of lubricant {>=}2 mg kg{sup -1}. There is great potential for this species to be used in the biomonitoring of waterways around tropical North Queensland and SE Asia. - Vegetable-based lubricating oils appear to cause a tropical fish species less stress than mineral oils.

  18. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 2. Induction of mixed function oxidase enzymes in barramundi, Lates calcarifer, a tropical fish species

    International Nuclear Information System (INIS)

    Mercurio, Philip; Burns, Kathryn A.; Cavanagh, Joanne

    2004-01-01

    An increasing number of vegetable-based oils are being developed as environmentally friendly alternatives to petroleum products. However, toxicity towards key tropical marine species has not been investigated. In this study we used laboratory-based biomarker induction experiments to compare the relative stress of a vegetable-based lubricating oil for marine 2-stroke engines with its mineral oil-based counterpart on tropical fish. The sub-lethal stress of 2-stoke outboard lubricating oils towards the fish Lates calcarifer (barramundi) was examined using liver microsomal mixed function oxidase (MFO) induction assays. This study is the first investigation into the use of this key commercial species in tropical North Queensland, Australia in stress assessment of potential hydrocarbon pollution using ethoxyresorufin O-deethylase (EROD) induction. Our results indicated that barramundi provide a wide range of inducible rates of EROD activity in response to relevant organic stressors. The vegetable- and mineral-based lubricants induced significant EROD activity at 1.0 mg kg -1 and there was no significant difference between the two oil treatments at that concentration. At increasing concentrations of 2 and 3 mg kg -1 , the mineral-based lubricant resulted in slightly higher EROD activity than the vegetable-based lubricant. The EROD activity of control and treated barramundi are found to be within ranges for other species from temperate and tropical environments. These results indicate that vegetable-based lubricants may be less stressful to barramundi than their mineral counterparts at concentrations of lubricant ≥2 mg kg -1 . There is great potential for this species to be used in the biomonitoring of waterways around tropical North Queensland and SE Asia. - Vegetable-based lubricating oils appear to cause a tropical fish species less stress than mineral oils

  19. Gastroprotective effect of alpha-pinene and its correlation with antiulcerogenic activity of essential oils obtained from Hyptis species

    Science.gov (United States)

    Pinheiro, Marcelo de Almeida; Magalhães, Rafael Matos; Torres, Danielle Mesquita; Cavalcante, Rodrigo Cardoso; Mota, Francisca Sheila Xavier; Oliveira Coelho, Emanuela Maria Araújo; Moreira, Henrique Pires; Lima, Glauber Cruz; Araújo, Pamella Cristina da Costa; Cardoso, José Henrique Leal; de Souza, Andrelina Noronha Coelho; Diniz, Lúcio Ricardo Leite

    2015-01-01

    Background: Alpha-pinene (α-pinene) is a monoterpene commonly found in essential oils with gastroprotective activity obtained from diverse medicinal plants, including Hyptis species. The genus Hyptis (lamiaceae) consists of almost 400 species widespread in tropical and temperate regions of America. In the north and northeastern Brazil, some Hyptis species are used in traditional medicine to treat gastrointestinal disturbances. Objective: The present study has investigated the gastoprotective effect of purified α-pinene in experimental gastric ulcer induced by ethanol and indomethacin in mice. Materials and Methods: Gastric ulcers were induced in male Swiss mice (20-30 g) by oral administration of absolute ethanol or indomethacin 45 min after oral pretreatment with vehicle, standard control drugs or α-pinene (10, 30, and 100 mg/kg). One hour after the ulcerative challenges, the stomach were removed, and gastric lesions areas measured. The effects of α-pinene on the gastric juice acidity were determined by pylorus ligation model. The gastrointestinal motility and mucus depletion were determined by measuring the gastric levels of phenol red and alcian blue, respectively. Hematoxylin and eosin stained sections of gastric mucosa of the experimental groups were used for histology analysis. Results: α-pinene pretreatment inhibited ethanol-induced gastric lesions, reduced volume and acidity of the gastric juice and increased gastric wall mucus (P < 0.05). Furthermore, we showed an interesting correlation between concentration of α-pinene and gastroprotective effect of Hyptis species (P Pearson = 0.98). Conclusion: Our data showed that the α-pinene exhibited significant antiulcerogenic activity and a great correlation between concentration of α-pinene and gastroprotective effect of Hyptis species was also observed. PMID:25709221

  20. The production of reactive oxygen species and the mitochondrial membrane potential are modulated during onion oil-induced cell cycle arrest and apoptosis in A549 cells.

    Science.gov (United States)

    Wu, Xin-jiang; Stahl, Thorsten; Hu, Ying; Kassie, Fekadu; Mersch-Sundermann, Volker

    2006-03-01

    Protective effects of Allium vegetables against cancers have been shown extensively in experimental animals and epidemiologic studies. We investigated cell proliferation and the induction of apoptosis by onion oil extracted from Allium cepa, a widely consumed Allium vegetable, in human lung cancer A549 cells. GC/MS analysis suggested that propyl sulfides but not allyl sulfides are major sulfur-containing constituents of onion oil. Onion oil at 12.5 mg/L significantly induced apoptosis (13% increase of apoptotic cells) as indicated by sub-G1 DNA content. It also caused cell cycle arrest at the G2/M phase; 25 mg/L onion oil increased the percentage of G2/M cells almost 6-fold compared with the dimethyl sulfoxide control. The action of onion oil may occur via a reactive oxygen species-dependent pathway because cell cycle arrest and apoptosis were blocked by the antioxidants N-acetylcysteine and exogenous glutathione. Marked collapse of the mitochondrial membrane potential suggested that dysfunction of the mitochondria may be involved in the oxidative burst and apoptosis induced by onion oil. Expression of phospho-cdc2 and phospho-cyclin B1 were downregulated by onion oil, perhaps accounting for the G2/M arrest. Overall, these results suggest that onion oil may exert chemopreventive action by inducing cell cycle arrest and apoptosis in tumor cells.

  1. Potential Use of Essential oils from Four Tunisian Species of Lamiaceae: Biological Alternative for Fungal and Weed Control

    Directory of Open Access Journals (Sweden)

    Mohsen Hanana

    2017-05-01

    Full Text Available The chemical composition of the essential oils (EOs of four Lamiaceae (Thymus capitatus Hoff. et Link. , Rosmarinus officinalis L., Origanum vulgare L. and Mentha pulegium L. growing wild in Tunisia was analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS. Obtained results showed significant variations among the different species. The major constituents identified for each species were respectively carvacrol (69% and δ-terpinene (17% for T. capitatus, 1,8-cineole (41% and α-pinene (24% for R. officinalis, menthol (39% and 1.8-cineole (17% for M. pulegium , thymol (30%, p-cymene (30% and δ-terpinene (27% for O. vulgare . EO herbicidal effects were evaluated against three invasive weed species in most cultivated crops: Sinapis arvensis L., Phalaris paradoxa L. and Lolium rigidum Gaud. The study of herbicidal activity was carried out on seed germination and seedling vigor and growth. All tested EOs significantly inhibited the germination and growth of weeds in a dose dependent manner and their herbicidal activity could be attributed mainly to their high content in oxygenated monoterpenes. The antifungal ability of EOs was assessed by using disc agar diffusion against ten plant pathogenic fungi affecting crops and stored foods. The EOs displayed strong inhibitory effect on all tested fungi. Our results on EOs chemical composition and biological activities showed properties that could be valorized in managing biocontrol of weeds and plant fungi.

  2. Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid.

    Science.gov (United States)

    Zhao, Xuebing; Peng, Feng; Du, Wei; Liu, Canming; Liu, Dehua

    2012-08-01

    Microbial lipid produced using yeast fermentation with inexpensive carbon sources such as lignocellulosic hydrolyzate can be an alternative feedstock for biodiesel production. Several inhibitors that can be generated during acid hydrolysis of lignocellulose were added solely or together into the culture medium to study their individual inhibitory actions and their synergistic effects on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides. When the inhibitors were present in isolation in the medium, to obtain a high cell biomass accumulation, the concentrations of formic acid, acetic acid, furfural and vanillin should be lower than 2, 5, 0.5 and 1.5 g/L, respectively. However, the synergistic effects of these compounds could dramatically decrease the minimum critical inhibitory concentrations leading to significant growth and lipid production inhibitions. Unlike the above-cited inhibitors, sodium lignosulphonate had no negative influence on biomass accumulation when its concentration was in the range of 0.5-2.0 g/L; in effect, it was found to facilitate cell growth and sugar-to-lipid conversion. The fatty acid compositional profile of the yeast lipid was in the compositional range of various plant oils and animal tallow. Finally, the crude yeast lipid from bagasse hydrolyzate could be well converted into fatty acid methyl ester (FAME, biodiesel) by enzymatic transesterification in a tert-butanol system with biodiesel yield of 67.2% and lipid-to-biodiesel conversion of 88.4%.

  3. Study of the dynamic of Bacillus species during of oil contaminated soil by PCR-DGGE

    Directory of Open Access Journals (Sweden)

    Mahmoud Shavandi

    2018-06-01

    Discussion and conclusion: Comparison of the pattern of DGGE bands variation between the microcosms showed that by entry of the contaminant into the soil, the diversity of Bacillus species was increased, indicating that Bacillus species has a particular role in diesel degradation. Simultaneous with decline of the pollution and microbial count of the soil, diversity of DGGE bands was decreased. Out of these findings we may conclude that addition of diesel as a carbon source to the soil increases the Bacillus spp. diversity at the beginning of bioremediation and afterwards by elimination of the pollutant, the diversity decreases gradually and shifts back to its original structure.

  4. Cultivation of three medicinal mushroom species on olive oil press cakes containing substrates

    Directory of Open Access Journals (Sweden)

    Andrej GREGORI

    2015-12-01

    Full Text Available Olive oil press cakes (OOPC represent a waste that has a negative impact on environment. OOPC have little or no use and because of that solutions for their alternative use are sought after. In our experiments we investigated substrate mixtures composed of different proportions of OOPC, wheat bran, crushed corn seeds and beech sawdust for cultivation of Ganoderma lucidum, Lentinula edodes and Grifola frondosa fruiting bodies. The increasing amount of OOPC in fruiting bodies cultivation substrates resulted in decreasing production of fruiting bodies. Results show, that although OOPC in small portion can be successfully used as a medicinal mushroom fruiting bodies cultivating substrate, their use is rational only, if no other substrate composing materials can be found or when OOPC usage solves the problem of its deposition.

  5. Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shiyou; Xiaoliang, Xie

    2017-12-18

    Replacement of petroleum with advanced biofuels is critical for environmental protection needs, sustainable and secure energy demands, and economic development. Bacteria, yeasts, and fungi can naturally synthesize fatty acids, isoprenoids, or polyalkanoates for energy storage, and therefore are currently explored for hydrocarbon fuel production. Oleaginous yeasts can accumulate high levels of lipids in the form of triacylglycerols (TAGs) when encountering stress conditions or imbalanced growth (e.g., growing under excess carbon sources and limited nitrogen conditions). Advantages of using oleaginous yeast as cell factories include short duplication time (< 1 hour), high yield of intracellular droplets, and easy scale-up for industrial production. Currently, various oleaginous yeasts (e.g., Yarrowia, Candida, Rhodotorulla, Rhodosporidium, Cryptococcus, Trichosporon, and Lipomyces) have been developed as potential advanced biofuel producers. Oleaginous yeast lipid production has two phases: 1) growth phase, where cells utilize the carbon and nitrogen source to build up biomass. And 2) lipid accumulation phase, where they convert carbon source in media into the storage lipid body. (i.e. a high carbon to nitrogen ratio leads to high lipid production). The lipid production varies dramatically when different sugar, e.g. glucose, xylose is used as carbon source. The efficient utilization of all monomeric sugars of hexoses and pentoses from various lignocellulosic biomass processing approaches is the key for economic lignocellulosic biofuel production. In this project, we explored lipid production in oleaginous yeast under different nitrogen and sugar conditions at the single-cell level. To understand the lipid production mechanism and identify genetic features responsive to lipid accumulation in the presence of pentose and nitrogen, we developed an automated chemical imaging and single-cell transcriptomics method to correlate the lipid accumulation with the

  6. Castor and jatropha oils: production strategies – A review

    Directory of Open Access Journals (Sweden)

    Lago Regina C.A.

    2009-07-01

    Full Text Available The Brazilian bioenergy matrix is based on four platforms: ethanol, energy forests, residues and co-products and biodiesel. The food-energy dichotomy in the use of edible oils is one factor which has stimulated the search for non-edible oleaginous energy crops, such as many native palms. By the year 2000 Brazil had an annual deficit of 80 thousand tons of castor oil, making necessary to import oil from China and India. After a strong debate the National Program on Biodiesel Production (NPBP was launched by December 2004. After an initial excessive enthusiasm, small producers being focused in the program, a more mature and realistic planning is undertaken. Production in semi arid lands is being stimulated, mainly castor (Ricinus communis and Jatropha (Jatropha curcas. Apart from belonging to the same botanical family (Euphorbiaceae, both plants are well resistant to poor soils. Castor plant is well adapted to practically the whole country, except for some extreme areas (too low water availability or too much rain. Castor keeps being an alternative for the semi arid region but much more technology is requested to make it largely exploited. Following the petroleum crisis of 1980’s an ambitious research program on Jatropha curcas was initiated, later on discontinued and presently retaken by Embrapa and some Universities. Progress is slower than in the case of Ricinus communis. The first agronomical observations confirmed low productivity, problems with pests and diseases, high harvesting costs etc. Some strategic factors should be considered for the production of castor and Jatropha oils: 1. Production of raw materials; 2. Production of oils; 3. Detoxification and value aggregation to the extraction cakes and residues. Regarding raw material production, it is necessary a strong, long term research program on genetic breeding (short cycle varieties, with high productivity and allowing a sole harvesting, soil fertility, pest control, domestication

  7. Essential Oil of Cymbopogon nardus (L. Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species

    Directory of Open Access Journals (Sweden)

    Luciani Gaspar De Toledo

    2016-08-01

    Full Text Available Background: The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L. Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. Objective: The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. Methods: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS. Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC, time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic and MRC-5 (fibroblast cell lines. Results: According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL. The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred

  8. Potential and limitations of biomass production for energy purposes: Vegetable oils compared with alcohol

    International Nuclear Information System (INIS)

    Andrade, C.S.; Rosa, L.P.

    1984-01-01

    Since Brazil has favourable conditions for biomass production, as regards land mass, soil and climate, several agricultural products have been proposed as alternatives to petroleum-derived fuels. An analysis is made of the potential and limitations of energy systems using biomass production aimed at the use of vegetable oils in diesel engines compared with the experience acquired in Brazil with alcohol fuel in Otto engines. The current status of the national programme for alcohol production (PNA) within the framework of Brazilian agriculture in the last few years is presented, taking into account its objectives, achievements and impacts. Regarding vegetable oils, it must be emphasized that freight and mass passenger transport is being researched in every aspect - from the agricultural production of oleaginous plants to the use of oils in diesel engines. To assess the potential of oleaginous plant production, land needs for the years 1990 and 2000 have been estimated. From the study of some selected oleaginous plants and their potential expansion in a realistic way it was concluded that the viability of this alternative to diesel oil is limited in the short and medium term compared with alcohol, which provides better conditions for great expansion in the short term. It is believed that the option is viable, provided that it is launched gradually to avoid repeating the negative impacts that (according to some experts) were generated by PNA. (author)

  9. Analysis of genetic diversity and population structure of oil palm (Elaeis guineensis) from China and Malaysia based on species-specific simple sequence repeat markers.

    Science.gov (United States)

    Zhou, L X; Xiao, Y; Xia, W; Yang, Y D

    2015-12-08

    Genetic diversity and patterns of population structure of the 94 oil palm lines were investigated using species-specific simple sequence repeat (SSR) markers. We designed primers for 63 SSR loci based on their flanking sequences and conducted amplification in 94 oil palm DNA samples. The amplification result showed that a relatively high level of genetic diversity was observed between oil palm individuals according a set of 21 polymorphic microsatellite loci. The observed heterozygosity (Ho) was 0.3683 and 0.4035, with an average of 0.3859. The Ho value was a reliable determinant of the discriminatory power of the SSR primer combinations. The principal component analysis and unweighted pair-group method with arithmetic averaging cluster analysis showed the 94 oil palm lines were grouped into one cluster. These results demonstrated that the oil palm in Hainan Province of China and the germplasm introduced from Malaysia may be from the same source. The SSR protocol was effective and reliable for assessing the genetic diversity of oil palm. Knowledge of the genetic diversity and population structure will be crucial for establishing appropriate management stocks for this species.

  10. A Comparative Analysis of the Chemical Composition, Anti-Inflammatory, and Antinociceptive Effects of the Essential Oils from Three Species of Mentha Cultivated in Romania

    Directory of Open Access Journals (Sweden)

    Cristina Mogosan

    2017-02-01

    Full Text Available This work was aimed at correlating the chemotype of three Mentha species cultivated in Romania with an in vivo study of the anti-inflammatory and antinociceptive effects of essential oils. The selected species were Mentha piperita L. var. pallescens (white peppermint, Mentha spicata L. subsp. crispata (spearmint, and Mentha suaveolens Ehrh. (pineapple mint. Qualitative and quantitative analysis of the essential oils isolated from the selected Mentha species was performed by gas chromatography coupled with mass spectrometry (GC-MS. The anti-inflammatory activity of the essential oils was determined by the rat paw edema test induced by λ-carrageenan. The antinociceptive effect of the essential oils was evaluated by the writhing test in mice, using 1% (v/v acetic acid solution administered intraperitonealy and by the hot plate test in mice. The results showed a menthol chemotype for M. piperita pallescens, a carvone chemotype for M. spicata, and a piperitenone oxide chemotype for M. suaveolens. The essential oil from M. spicata L. (EOMSP produced statistically significant and dose-dependent anti-inflammatory and antinociceptive effects.

  11. Profiling of Polar Lipids in Marine Oleaginous Diatom Fistulifera solaris JPCC DA0580: Prediction of the Potential Mechanism for Eicosapentaenoic Acid-Incorporation into Triacylglycerol

    Directory of Open Access Journals (Sweden)

    Yue Liang

    2014-05-01

    Full Text Available The marine oleaginous diatom Fistulifera solaris JPCC DA0580 is a candidate for biodiesel production because of its high lipid productivity. However, the substantial eicosapentaenoic acid (EPA content in this strain would affect the biodiesel quality. On the other hand, EPA is also known as the essential health supplement for humans. EPAs are mainly incorporated into glycerolipids in the microalgal cell instead of the presence as free fatty acids. Therefore, the understanding of the EPA biosynthesis including the incorporation of the EPA into glycerolipids especially triacylglycerol (TAG is fundamental for regulating EPA content for different purposes. In this study, in order to identify the biosynthesis pathway for the EPA-containing TAG species, a lipidomic characterization of the EPA-enriched polar lipids was performed by using direct infusion electrospray ionization (ESI-Q-TRAP-MS and MS/MS analyses. The determination of the fatty acid positional distribution showed that the sn-2 position of all the chloroplast lipids and part of phosphatidylcholine (PC species was occupied by C16 fatty acids. This result suggested the critical role of the chloroplast on the lipid synthesis in F. solaris. Furthermore, the exclusive presence of C18 fatty acids in PC highly indicated the biosynthesis of EPA on PC. Finally, the PC-based acyl-editing and head group exchange processes were proposed to be essential for the incorporation of EPA into TAG and chloroplast lipids.

  12. Seasonal Variation in the Chemical Composition and Antimicrobial Activity of Volatile Oils of Three Species of Leptospermum (Myrtaceae Grown in Brazil

    Directory of Open Access Journals (Sweden)

    Antonio Lelis Pinheiro

    2011-01-01

    Full Text Available This study investigates the seasonal variation of three species of Leptospermum (Myrtaceae grown in Brazil. The chemical composition of the volatile oils of L. flavescens and L. petersonii did not show any significant seasonal variation in the major components, while for Leptospermum madidum subsp. sativum the levels of major constituents of the volatile oils varied with the harvest season. Major fluctuations in the composition of L. madidum subsp. sativum oil included α-pinene (0–15.2%, β-pinene (0.3–18.5%, α-humulene (0.8–30%, 1,8-cineole (0.4–7.1% and E-caryophyllene (0.4–11.9%. Levels of β-pinene (0.3–5.6%, terpinen-4-ol (4.7–7.2% and nerolidol (55.1–67.6% fluctuated seasonally in the L. flavescens oil. In L. petersonii, changes were noted for geranial (29.8–32.8%, citronellal (26.5–33.9% and neral (22.7–23.5%. The activity of the volatile oils against the tested bacteria differed, depending on season the oils were obtained. In general, the volatile oils were more active against Gram-positive bacteria.

  13. Comparative toxicity of two oil dispersants, superdispersant-25 and corexit 9527, to a range of coastal species.

    Science.gov (United States)

    Scarlett, Alan; Galloway, Tamara S; Canty, Martin; Smith, Emma L; Nilsson, Johanna; Rowland, Steven J

    2005-05-01

    The acute toxicity of the oil dispersant Corexit 9527 reported in the literature is highly variable. No peer-reviewed data exist for Superdispersant-25 (SD-25). This study compares the toxicity of the two dispersants to a range of marine species representing different phyla occupying a wide range of niches: The marine sediment-dwelling amphipod Corophium volutator (Pallas), the common mussel Mytilus edulis (L.), the symbiotic snakelocks anemone Anemonia viridis (Forskål), and the seagrass Zostera marina (L.). Organisms were exposed to static dispersant concentrations for 48-h and median lethal concentration (LC50), median effect concentration (EC50), and lowest-observable-effect concentration (LOEC) values obtained. The sublethal effects of 48-h exposures and the ability of species to recover for up to 72 h after exposure were quantified relative to the 48-h endpoints. Results indicated that the anemone lethality test was the most sensitive with LOECs of 20 ppm followed by mussel feeding rate, seagrass photosynthetic index and amphipod lethality, with mussel lethality being the least sensitive with LOECs of 250 ppm for both dispersants. The results were consistent with current theory that dispersants act physically and irreversibly on the respiratory organs and reversibly, depending on exposure time, on the nervous system. Superdispersant-25 was found overall to be less toxic than Corexit 9527 and its sublethal effects more likely to be reversible following short-term exposure.

  14. Alterations in the molecular species of rat liver lecithin by corn-oil feeding to essential fatty acid-deficient rats as a function of time

    NARCIS (Netherlands)

    Golde, L.M.G. van; Pieterson, W.A.; Deenen, L.L.M. van

    1968-01-01

    The present paper describes, as a function of time, the qualitative and quantitative alterations in the molecular species pattern of rat liver lecithin which are observed when corn oil is fed to essential fatty acid-deficient rats. One of the most important changes observed was a very rapid

  15. Quantification of the molecular species of acylglycerols containing hydroxy fatty acids in lesquerella oils using high-performance liquid chromatography and mass spectrometry

    Science.gov (United States)

    Ten molecular species of diacylglycerols (DAG), 54 of triacylglycerols (TAG) and 13 of tetraacylglycerols (tetraAG, triacylglycerol estolides) containing hydroxy fatty acids (FA) as well as 20 of TAG containing three normal FA (non-hydroxylated) in lesquerella oil were quantified by a newly improved...

  16. Chemical composition and biological activity of essential oils from wild growing aromatic plant species of Skimmia laureola and Juniperus macropoda from Western Himalaya

    Science.gov (United States)

    The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous ...

  17. Perspectives of microbial oils for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang; Du Wei; Liu Dehua [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering

    2008-10-15

    Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed. (orig.)

  18. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Pengcheng Pan

    Full Text Available With the emergence of energy scarcity, the use of renewable energy sources such as biodiesel is becoming increasingly necessary. Recently, many researchers have focused their minds on Yarrowia lipolytica, a model oleaginous yeast, which can be employed to accumulate large amounts of lipids that could be further converted to biodiesel. In order to understand the metabolic characteristics of Y. lipolytica at a systems level and to examine the potential for enhanced lipid production, a genome-scale compartmentalized metabolic network was reconstructed based on a combination of genome annotation and the detailed biochemical knowledge from multiple databases such as KEGG, ENZYME and BIGG. The information about protein and reaction associations of all the organisms in KEGG and Expasy-ENZYME database was arranged into an EXCEL file that can then be regarded as a new useful database to generate other reconstructions. The generated model iYL619_PCP accounts for 619 genes, 843 metabolites and 1,142 reactions including 236 transport reactions, 125 exchange reactions and 13 spontaneous reactions. The in silico model successfully predicted the minimal media and the growing abilities on different substrates. With flux balance analysis, single gene knockouts were also simulated to predict the essential genes and partially essential genes. In addition, flux variability analysis was applied to design new mutant strains that will redirect fluxes through the network and may enhance the production of lipid. This genome-scale metabolic model of Y. lipolytica can facilitate system-level metabolic analysis as well as strain development for improving the production of biodiesels and other valuable products by Y. lipolytica and other closely related oleaginous yeasts.

  19. Historical Population Estimates For Several Fish Species At Offshore Oil and Gas Structures in the US Gulf of Mexico

    Science.gov (United States)

    Gitschlag, G.

    2016-02-01

    Population estimates were calculated for four fish species occurring at offshore oil and gas structures in water depths of 14-32 m off the Louisiana and upper Texas coasts in the US Gulf of Mexico. From 1993-1999 sampling was conducted at eight offshore platforms in conjunction with explosive salvage of the structures. To estimate fish population size prior to detonation of explosives, a fish mark-recapture study was conducted. Fish were captured on rod and reel using assorted hook sizes. Traps were occasionally used to supplement catches. Fish were tagged below the dorsal fin with plastic t-bar tags using tagging guns. Only fish that were alive and in good condition were released. Recapture sampling was conducted after explosives were detonated during salvage operations. Personnel operating from inflatable boats used dip nets to collect all dead fish that floated to the surface. Divers collected representative samples of dead fish that sank to the sea floor. Data provided estimates for red snapper (Lutjanus campechanus), Atlantic spadefish (Chaetodipterus faber), gray triggerfish (Balistes capriscus), and blue runner (Caranx crysos) at one or more of the eight platforms studied. At seven platforms, population size for red snapper was calculated at 503-1,943 with a 95% CI of 478. Abundance estimates for Atlantic spadefish at three platforms ranged from 1,432-1,782 with a 95% CI of 473. At three platforms, population size of gray triggerfish was 63-129 with a 95% CI of 82. Blue runner abundance at one platform was 558. Unlike the other three species which occur close to the platforms, blue runner range widely and recapture of this species was dependent on fish schools being in close proximity to the platform at the time explosives were detonated. Tag recapture was as high as 73% for red snapper at one structure studied.

  20. INSECTICIDAL ACTIVITIES OF ESSENTIAL OILS EXTRACTED FROM THREE SPECIES OF POACEAE ON ANOPHELES GAMBIAE SPP, MAJOR VECTOR OF MALARIA

    Directory of Open Access Journals (Sweden)

    Dominique C. K. Sohounhloué

    2010-12-01

    Full Text Available In this paper, the insecticidal activities on Anopheles gambiae spp of the essential oils (EO extracted from the dry leaves of some species collected in Benin were studied. The essential oil yields are 2.8, 1.7 and 1.4�0respectively for Cymbopogon schoanenthus (L. Spreng (CS, Cymbopogon citratus Stapf. (CC and Cymbopogon giganteus (Hochst. Chiov (CG. The GC/MS analysis showed that the EO of CS had a larger proportion in oxygenated monoterpenes (86.3�20whereas those of the sheets of CC and CG are relatively close proportions (85.5�0and 82.7�0respectively with. The piperitone (68.5�  2-carene (11.5� and -eudesmol (4.6�20are the major components of the EO of CS while trans para-mentha-1(7,8-dien-2-ol (31.9� trans para-mentha-2,8-dien-1-ol (19.6� cis para-mentha-2,8-dien-1-ol (7.2� trans piperitol (6.3�20and limonene (6.3�20prevailed in the EO of CG. The EO of CC revealed a rich composition in geranial (41.3� neral (33� myrcene (10.4� and geraniol (6.6� The biological tests have shown that these three EO induced 100�0mortality of Anopheles gambiae to 1.1, 586.58 and 1549 µg•cm-2 respectively for CC, CS and CG. These effects are also illustrated by weak lethal concentration for 50�0anopheles population (CC: 0.306; CS: 152.453 and CG: 568.327 µg•cm-2 in the same order of reactivity. The EO of CC appeared most active on two stocks (sensitive and resistant of Anopheles gambiae.

  1. Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method

    Directory of Open Access Journals (Sweden)

    Andrea Muráriková

    2017-07-01

    Full Text Available Basil (Ocimum L. species are used as medicinal plants due to their essential oils exhibiting specific biological activity. The present work demonstrated that both the variety and season/conditions of cultivation had a significant effect on (i the produced amount (extraction yield, (ii qualitative, as well as (iii quantitative profile of basil essential oil. Among studied basil varieties, a new variety, ‘Mánes’, was characterized for the first time. Based on our quantitative evaluation of GC-MS profiles, the following chemotypes and average concentrations of a main component were detected in the studied basil varieties: ‘Ohře’, ‘Lettuce Leaf’, ‘Purple Opaal’, ‘Dark Green’ (linalool, 5.99, 2.49, 2.34, 2.01 mg/mL, respectively, and ‘Mammolo Genovese’, ‘Mánes’, ‘Red Rubin’ (eucalyptol, 1.34, 0.96, 0.76 mg/mL, respectively. At the same time, when considering other compounds identified in GC-MS profiles, all the studied varieties, except from ‘Lettuce Leaf’, were methyl eugenol-rich with a strong dependence of the eugenol:methyl eugenol ratio on the seasonal changes (mainly solar irradiation, but also temperature and relative humidity. More complex and/or variable (depending on the season and cultivation chemotypes were observed with ‘Lettuce Leaf’ (plus estragole, 2.27 mg/mL, ‘Dark Green’ (plus eucalyptol, 1.36 mg/mL, ‘Mammolo Genovese’ (plus eugenol, 1.19 mg/mL, ‘Red Rubin’ (plus linalool and eugenol, 0.46 and 0.56 mg/mL, respectively, and ‘Mánes’ (plus linalool and eugenol, 0.58 and 0.40 mg/mL, respectively. When considering superior extraction yield (ca. 17 mL·kg−1, i.e., two to five times higher than other examined varieties and consistent amounts (yields of essential oil when comparing inter-seasonal or inter-year data (RSD and inter-year difference in mean yield values ˂2.5%, this new basil variety is very promising for use in the pharmaceutical, food, and cosmetic industries.

  2. Essential oils from fruits with different colors and leaves of Neomitranthes obscura (DC.) N. Silveira: an endemic species from Brazilian Atlantic forest.

    Science.gov (United States)

    Amaral, Raquel R; Fernandes, Caio P; Caramel, Otávio P; Tietbohl, Luis A C; Santos, Marcelo G; Carvalho, José C T; Rocha, Leandro

    2013-01-01

    Neomitranthes obscura (DC.) N. Silveira is an endemic plant of Brazilian Atlantic Forest and widely spread in the sandbanks of "Restinga de Jurubatiba" National Park. It is popularly known by local population as "camboim-de-cachorro" or "cambuí-preto" and recognized by its black ripe fruits. However, specimens with yellow ripe fruits were localized in the "Restinga de Jurubatiba" National Park. The aim of the present study was to evaluate chemical composition of essential oils obtained from leaves and fruits of N. obscura specimens with different fruit color (black and yellow) by GC and GC-MS. Essential oils from leaves of specimens with black and yellow fruits indicated a predominance of sesquiterpenes (81.1% and 84.8%, resp.). Meanwhile, essential oil from black fruits presented a predominance of monoterpenes (50.5%), while essential oil from yellow fruits had sesquiterpenes (39.9%) as major substances. Despite previous studies about this species, including essential oil extraction, to our knowledge this is the first report on N. obscura fruits with different colors. Our results suggest the occurrence of unless two different varieties for this species.

  3. Essential Oils from Fruits with Different Colors and Leaves of Neomitranthes obscura (DC.) N. Silveira: An Endemic Species from Brazilian Atlantic Forest

    Science.gov (United States)

    Amaral, Raquel R.; Fernandes, Caio P.; Caramel, Otávio P.; Tietbohl, Luis A. C.; Santos, Marcelo G.; Carvalho, José C. T.; Rocha, Leandro

    2013-01-01

    Neomitranthes obscura (DC.) N. Silveira is an endemic plant of Brazilian Atlantic Forest and widely spread in the sandbanks of “Restinga de Jurubatiba” National Park. It is popularly known by local population as “camboim-de-cachorro” or “cambuí-preto” and recognized by its black ripe fruits. However, specimens with yellow ripe fruits were localized in the “Restinga de Jurubatiba” National Park. The aim of the present study was to evaluate chemical composition of essential oils obtained from leaves and fruits of N. obscura specimens with different fruit color (black and yellow) by GC and GC-MS. Essential oils from leaves of specimens with black and yellow fruits indicated a predominance of sesquiterpenes (81.1% and 84.8%, resp.). Meanwhile, essential oil from black fruits presented a predominance of monoterpenes (50.5%), while essential oil from yellow fruits had sesquiterpenes (39.9%) as major substances. Despite previous studies about this species, including essential oil extraction, to our knowledge this is the first report on N. obscura fruits with different colors. Our results suggest the occurrence of unless two different varieties for this species. PMID:23484148

  4. Essential Oils from Fruits with Different Colors and Leaves of Neomitranthes obscura (DC. N. Silveira: An Endemic Species from Brazilian Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Raquel R. Amaral

    2013-01-01

    Full Text Available Neomitranthes obscura (DC. N. Silveira is an endemic plant of Brazilian Atlantic Forest and widely spread in the sandbanks of “Restinga de Jurubatiba” National Park. It is popularly known by local population as “camboim-de-cachorro” or “cambuí-preto” and recognized by its black ripe fruits. However, specimens with yellow ripe fruits were localized in the “Restinga de Jurubatiba” National Park. The aim of the present study was to evaluate chemical composition of essential oils obtained from leaves and fruits of N. obscura specimens with different fruit color (black and yellow by GC and GC-MS. Essential oils from leaves of specimens with black and yellow fruits indicated a predominance of sesquiterpenes (81.1% and 84.8%, resp.. Meanwhile, essential oil from black fruits presented a predominance of monoterpenes (50.5%, while essential oil from yellow fruits had sesquiterpenes (39.9% as major substances. Despite previous studies about this species, including essential oil extraction, to our knowledge this is the first report on N. obscura fruits with different colors. Our results suggest the occurrence of unless two different varieties for this species.

  5. Composition of Essential Oils and Ethanol Extracts of the Leaves of Lippia Species: Identification, Quantitation and Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Maria T.S. Trevisan

    2016-01-01

    Full Text Available The principal components of essential oils, obtained by steam-hydrodistillation from the fresh leaves of five species of the genus Lippia, namely Lippia gracilis AV, Lippia sidoides Mart , Lippia alba carvoneifera, Lippia alba citralifera and Lippia alba myrceneifera and ethanol extracts , were evaluated. The greater antioxidant capacity (IC 50 = 980 µg/mL; p 2000 µg/mL. Major compounds in the oils were, thymol (Lippia sidoides Mart, 13.1 g/k, carvone (Lippia alba carvoneifera, 9.6 g/kg, geranial ( Lippia alba citraleifera, 4.61 g/kg; Lippiaalba myrceneifera, 1.6 g/kg, neral ( Lippia alba citraleifera, 3.4 g/kg; Lippia alba myrceneifera, 1.16 g/k, carvacrol (Lippia gracilis AV, 5.36 g/kg and limonene (Lippia alba carvoneifera, 5.14 g/kg. Of these, carvone (IC 50 = 330 µM along with thymol (1.88 units, and carvacrol (1.74 units, were highly active in the hypoxanthine/xanthine oxidase, and ORAC assays respectively. The following compounds namely I: calceolarioside E, II: acteoside, III: isoacteoside, IV: luteolin, V: 5,7,3´,4´-tetrahydroxy-3,6-dimethoxy flavone (spinacetin , VI: naringenin, VII: apigenin, VIII: 6-methoxy apigenin (hispidulin, IX: 5,7,3´-trihydroxy-3,6,4´-trimethoxy flavone , X:5,7,4´-trihydroxy-3,6-dimethoxy flavone , XI: naringenin-4´-methyl ether, XII: 5,7-dihydroxy-3,6,4´-trimethoxy flavone (santin , XIII:5,7-dihydroxy-6,4´-dimethoxy-flavone (pectolinaringenin and XIV: 5-hydroxy-3,7,4´-trimethoxy flavone were identified in the ethanol extracts . Of the leaf ethanol extracts, strong antioxidant capacity was only evident in that of Lippia alba carvoneifera (IC 50 = 1.23 mg/mL. Overall, the data indicates that use of the leaves of Lippia species in food preparations, should be beneficial to health.

  6. Steam sauna and mother roasting in Lao PDR: practices and chemical constituents of essential oils of plant species used in postpartum recovery

    Science.gov (United States)

    2011-01-01

    Background Fundamental in traditional postpartum recovery in Lao PDR is the use of hotbeds, mother roasting, steam sauna and steam baths. During these treatments medicinal plants play a crucial role, but little has been published about how the treatments are carried out precisely, which species are used, the medicinal properties of these species, and the medicinal efficacy of their chemical constituents. Methods Sixty-five interviews, in 15 rural villages, with women of 4 different ethnic groups were conducted to survey confinement rituals, and postpartum plant use and salience. Essential oils from the main species used were extracted using steam distillation and the main chemical constituents characterized using gas chromatography-mass spectrometry (GC-MS). Results A total of 10 different species were used by three or more of the ethnic groups included in this study. All species were used in steam sauna and bath, but only 3 species were used in hotbed and mother roasting. Essential oils of Amomum villosum, Amomum microcarpum and Blumea balsamifera were found to contain significant amounts of the following terpenes: β-pinene, camphor, bornyl acetate, borneol, linalool, D-limonene, fenchone, terpinen-4-ol and α-terpinene. Conclusions Many of these terpenes have documented antimicrobial and analgesic properties, and some have also synergistic interactions with other terpenes. The mode of application in hotbed and mother roasting differs from the documented mechanisms of action of these terpenes. Plants in these two practices are likely to serve mainly hygienic purposes, by segregating the mother from infection sources such as beds, mats, stools, cloth and towels. Steam sauna medicinal plant use through inhalation of essential oils vapors can possibly have medicinal efficacy, but is unlikely to alleviate the ailments commonly encountered during postpartum convalescence. Steam sauna medicinal plant use through dermal condensation of essential oils, and steam bath

  7. A fishery-dependent based study of fish species composition and associated catch rates around oil and gas structures off Louisiana

    International Nuclear Information System (INIS)

    Stanley, D.R.; Wilson, C.A.

    1990-01-01

    The impact of oil and gas development on fish populations off Louisiana is presumed significant but poorly understood. This study was undertaken to determine the applicability of a logbook program in developing a long-term database of species composition and relative abundance of fish associated with oil and gas structures. A pilot logbook program involving 120 private vessel owners and 25 charterboat operators was conducted between March 1987 and December 1988. Participants recorded date, fishing time, fishing method, number of anglers, and catch composition at each structure fished. Logbooks from a total of 55 private vessel owners and 10 charterboat operators were used in the analysis. Data collected included 15,780 angler hours of fishing effort and 61,227 fish caught over the study period. A total of 1,719 trips were made to 589 different oil and gas structures with at least 46 different species of fish caught. Red snapper and spotted seatrout were the most commonly caught species and had the highest catch rates. Results differed from past logbook programs and creel surveys, possibly indicating a change in the community of fish associated with oil and gas structures

  8. Chemical composition and in vitro antimicrobial activity of the essential oils of two Helichrysum species from Tanzania.

    Science.gov (United States)

    Bougatsos, Christos; Ngassapa, Olipa; Runyoro, Deborah K B; Chinou, Ioanna B

    2004-01-01

    The chemical composition of the essential oils obtained from the aerial parts of Helichrysum cymosum and H. fulgidum, from Tanzania, were analyzed by GC and GC/MS. A total of sixty-five compounds, representing 92.4% and 88.2% of the two oils, respectively, were identified. trans-Caryophyllene, caryophyllene oxide, beta-pinene, p-cymene, spathulenol and beta-bourbonene were found to be the main components. Furthermore, the oils were tested against six gram (+/-) bacteria and three pathogenic fungi. It was found that the oil of H. fulgidum exhibited significant antimicrobial activity, while the oil of H. cymosum was not active at all.

  9. Identification and functional analysis of delta-9 desaturase, a key enzyme in PUFA Synthesis, isolated from the oleaginous diatom Fistulifera.

    Directory of Open Access Journals (Sweden)

    Masaki Muto

    Full Text Available Oleaginous microalgae are one of the promising resource of nonedible biodiesel fuel (BDF feed stock alternatives. Now a challenge task is the decrease of the long-chain polyunsaturated fatty acids (PUFAs content affecting on the BDF oxidative stability by using gene manipulation techniques. However, only the limited knowledge has been available concerning the fatty acid and PUFA synthesis pathways in microalgae. Especially, the function of Δ9 desaturase, which is a key enzyme in PUFA synthesis pathway, has not been determined in diatom. In this study, 4 Δ(9 desaturase genes (fD9desA, fD9desB, fD9desC and fD9desD from the oleaginous diatom Fistulifera were newly isolated and functionally characterized. The putative Δ(9 acyl-CoA desaturases in the endoplasmic reticulum (ER showed 3 histidine clusters that are well-conserved motifs in the typical Δ(9 desaturase. Furthermore, the function of these Δ(9 desaturases was confirmed in the Saccharomyces cerevisiae ole1 gene deletion mutant (Δole1. All the putative Δ(9 acyl-CoA desaturases showed Δ(9 desaturation activity for C16∶0 fatty acids; fD9desA and fD9desB also showed desaturation activity for C18∶0 fatty acids. This study represents the first functional analysis of Δ(9 desaturases from oleaginous microalgae and from diatoms as the first enzyme to introduce a double bond in saturated fatty acids during PUFA synthesis. The findings will provide beneficial insights into applying metabolic engineering processes to suppressing PUFA synthesis in this oleaginous microalgal strain.

  10. Identification and functional analysis of delta-9 desaturase, a key enzyme in PUFA Synthesis, isolated from the oleaginous diatom Fistulifera.

    Science.gov (United States)

    Muto, Masaki; Kubota, Chihiro; Tanaka, Masayoshi; Satoh, Akira; Matsumoto, Mitsufumi; Yoshino, Tomoko; Tanaka, Tsuyoshi

    2013-01-01

    Oleaginous microalgae are one of the promising resource of nonedible biodiesel fuel (BDF) feed stock alternatives. Now a challenge task is the decrease of the long-chain polyunsaturated fatty acids (PUFAs) content affecting on the BDF oxidative stability by using gene manipulation techniques. However, only the limited knowledge has been available concerning the fatty acid and PUFA synthesis pathways in microalgae. Especially, the function of Δ9 desaturase, which is a key enzyme in PUFA synthesis pathway, has not been determined in diatom. In this study, 4 Δ(9) desaturase genes (fD9desA, fD9desB, fD9desC and fD9desD) from the oleaginous diatom Fistulifera were newly isolated and functionally characterized. The putative Δ(9) acyl-CoA desaturases in the endoplasmic reticulum (ER) showed 3 histidine clusters that are well-conserved motifs in the typical Δ(9) desaturase. Furthermore, the function of these Δ(9) desaturases was confirmed in the Saccharomyces cerevisiae ole1 gene deletion mutant (Δole1). All the putative Δ(9) acyl-CoA desaturases showed Δ(9) desaturation activity for C16∶0 fatty acids; fD9desA and fD9desB also showed desaturation activity for C18∶0 fatty acids. This study represents the first functional analysis of Δ(9) desaturases from oleaginous microalgae and from diatoms as the first enzyme to introduce a double bond in saturated fatty acids during PUFA synthesis. The findings will provide beneficial insights into applying metabolic engineering processes to suppressing PUFA synthesis in this oleaginous microalgal strain.

  11. Chemical Composition and Antimicrobial Activity of the Essential Oils from Two Species of Thymus Growing Wild in Southern Italy

    Directory of Open Access Journals (Sweden)

    Felice Senatore

    2009-11-01

    Full Text Available The volatile constituents of the aerial parts of two samples of Thymus longicaulis C. Presl, collected in Campania and in Sicily, and two samples of Thymus pulegioides L. from the same regions, were extracted by hydrodistillation and analyzed. Considering the four oils together, seventy-eight different compounds were identified: 57 for Thymus longicaulis from Sicily (91.1% of the total oil, 40 for Thymus longicaulis from Campania (91.5% of the oil, 39 for Thymus pulegioides from Sicily (92.5% of the oil and 29 for Thymus pulegioides from Campania (90.1% of the oil. The composition of the oils is different, although the most abundant components are identical in T. pulegioides. The essential oils showed antibacterial activity against eight selected microorganisms.

  12. Sequential chemical treatment of radium species in TENORM waste sludge produced from oil and natural gas production

    International Nuclear Information System (INIS)

    El Afifi, E.M.; Awwad, N.S.; Hilal, M.A.

    2009-01-01

    This paper is dedicated to the treatment of sludge occurring in frame of the Egyptian produced from oil and gas production. The activity levels of three radium isotopes: Ra-226 (of U-series), Ra-228 and Ra-224 (of Th-series) in the solid TENORM waste (sludge) were first evaluated and followed by a sequential treatment for all radium species (fractions) presented in TENORM. The sequential treatment was carried out based on two approaches 'A' and 'B' using different chemical solutions. The results obtained indicate that the activity levels of all radium isotopes (Ra-226, Ra-228 and Ra-224) of the environmental interest in the TENORM waste sludge were elevated with regard to exemption levels established by IAEA [International Atomic Energy Agency (IAEA), International basic safety standards for the protection against ionizing radiation and for the safety of radiation sources. GOV/2715/Vienna, 1994]. Each approach of the sequential treatment was performed through four steps using different chemical solutions to reduce the activity concentration of radium in a large extent. Most of the leached radium was found as an oxidizable Ra species. The actual removal % leached using approach B was relatively efficient compared to A. It is observed that the actual removal percentages (%) of Ra-226, Ra-228 and Ra-224 using approach A are 78 ± 2.8, 64.8 ± 4.1 and 76.4 ± 5.2%, respectively. Whereas in approach A, the overall removal % of Ra-226, Ra-228 and Ra-228 was increased to ∼91 ± 3.5, 87 ± 4.1 and 90 ± 6.2%, respectively

  13. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de, E-mail: mmoura@ufpi.edu.br [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Departamento de Quimica; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/IQ/CEMPEQC), Araraquara, SP (Brazil). Instituto de Quimica. Centro de Monitoramento e Pesquisa da Qualidade de Combustiveis, Biocombustiveis, Petroleo e Derivados

    2013-04-15

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO{sub 3} + SrO + Sr (OH){sub 2}) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  14. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    International Nuclear Information System (INIS)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de

    2013-01-01

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO 3 + SrO + Sr (OH) 2 ) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  15. Composition of essential oils from the leaves of six species of the Baccharis genus from 'campos de altitude' of the atlantic forest of Sao Paulo

    International Nuclear Information System (INIS)

    Lago, Joao Henrique G.; Romoff, Paulete; Favero, Oriana A.; Soares, Marisi G.; Baraldi, Patricia T.; Correa, Arlene G.; Souza, Fatima O.

    2008-01-01

    The essential oils from the leaves of six species of the Baccharis genus (B. dracunculifolia, B. microdonta, B. regnelli, B. schultzii, B. trimera, and B. uncinella), collected in the 'Campos de Altitude' of the Atlantic Forest (SP), were extracted using hydrodistillation procedures and analyzed by GC and GC/MS. There was a predominance of sesquiterpenes in all studied oils as β-elemene in B. dracunculifolia and B. regnelli, α-humulene in B. trimera, γ-gurjunene in B. schultzii, bicyclogermacrene in B. regnelli, δ-cadinene in B. regnelli and B. uncinella, spathulenol in B. schultzii, caryophyllene oxide in B. microdonta and guaiol in B. uncinella. However, a high amount of monoterpenes was also observed in B. uncinella (α-pinene), B. regnelli (δ-car-3-ene) and B. schultzii (limonene). The chemical compounds of the essential oils of B. schultzii, B. regnelli and B. microdonta are described for the first time in this work. (author)

  16. Fumigant Antifungal Activity of Myrtaceae Essential Oils and Constituents from Leptospermum petersonii against Three Aspergillus Species

    Directory of Open Access Journals (Sweden)

    Il-Kwon Park

    2012-09-01

    Full Text Available Commercial plant essential oils obtained from 11 Myrtaceae plant species were tested for their fumigant antifungal activity against Aspergillus ochraceus, A. flavus, and A. niger. Essential oils extracted from Leptospermum petersonii at air concentrations of 56 × 10−3 mg/mL and 28 × 10−3 mg/mL completely inhibited the growth of the three Aspergillus species. However, at an air concentration of 14 × 10−3 mg/mL, inhibition rates of L. petersonii essential oils were reduced to 20.2% and 18.8% in the case of A. flavus and A. niger, respectively. The other Myrtaceae essential oils (56 × 10−3 mg/mL only weakly inhibited the fungi or had no detectable affect. Gas chromatography-mass spectrometry analysis identified 16 compounds in L. petersonii essential oil. The antifungal activity of the identified compounds was tested individually by using standard or synthesized compounds. Of these, neral and geranial inhibited growth by 100%, at an air concentration of 56 × 10−3 mg/mL, whereas the activity of citronellol was somewhat lover (80%. The other compounds exhibited only moderate or weak antifungal activity. The antifungal activities of blends of constituents identified in L. petersonii oil indicated that neral and geranial were the major contributors to the fumigant and antifungal activities.

  17. Chemical and biological characterisation of solvent extracts and essential oils from leaves and fruit of two Australian species of Pittosporum (Pittosporaceae) used in aboriginal medicinal practice.

    Science.gov (United States)

    Sadgrove, Nicholas John; Jones, Graham Lloyd

    2013-02-13

    Although no known medicinal use for Pittosporum undulatum Vent. (Pittosporaceae) has been recorded, anecdotal evidence suggests that Australian Aboriginal people used Pittosporum angustifolium Lodd., G. Lodd. & W. Lodd. topically for eczema, pruritis or to induce lactation in mothers following child-birth and internally for coughs, colds or cramps. Essential oil composition and bioactivity as well as differential solvent extract antimicrobial activity from Pittosporum angustifolium are investigated here first, to partially describe the composition of volatiles released in traditional applications of Pittosporum angustifolium for colds or as a lactagogue, and second to investigate antibacterial activity related to topical applications. Essential oils were also investigated from Pittosporum undulatum Vent., first to enhance essential oil data produced in previous studies, and second as a comparison to Pittosporum angustifolium. Essential oils were hydrodistilled from fruit and leaves of both species using a modified approach to lessen the negative (frothing) effect of saponins. This was achieved by floating pumice or pearlite obsidian over the mixture to crush the suds formed while boiling. Essential oil extracts were analysed using GC-MS, quantified using GC-FID then screened for antimicrobial activity using a micro-titre plate broth dilution assay (MIC). Using dichloromethane, methanol, hexane and H(2)O as solvents, extracts were produced from leaves and fruit of Pittosporum angustifolium and screened for antimicrobial activity and qualitative phytochemical character. Although the essential oil from leaves and fruit of Pittosporum undulatum demonstrated some component variation, the essential oil from fruits of Pittosporum angustifolium had major constituents that strongly varied according to the geographical location of collection, suggesting the existence of at least two chemotypes; one with high abundance of acetic acid decyl ester. This chemotype had high

  18. Inhibitory Effect of Crude Oil on Vegetative and Physiologic Performance of Seeds and Seedlings of Ziziphus, Prosopis, Acacia and Robinia Species

    Directory of Open Access Journals (Sweden)

    P. Fayyaz

    2016-09-01

    Full Text Available In this study the effect of crude oil (0 to 20% w/w, one of the main pollutants of current age, on physiological characteristics of Prosopis juliflora, Acacia victoria, Ziziphus spina-chrisi and Robinia pseudoacacia in seed and seedling stages based on a completely randomized design with 10 replications in each experimental unit has been studied. The results revealed that germination rate of Prosopis and Acacia was not affected by the pollutant, but the germination reduced in Ziziphus with more than 6 percent pollutant and 4% pollution led to full inhibition in Robinia. The ED50 based on radicle growth for Acacia, Prosopis, Ziziphus and Robinia was 6.9, 3.2, 3.6 and 2.7%, respectively. In seedling stage green leaf percentage, chlorophyll concentration, and efficiency of photosystem II decreased by increasing contamination. Increasing oil concentration stopped seedling growth of Robinia and reduced stem length in Acacia and Prosopis, but no significant difference was observed in the root length. The increase of oil pollution up to more than three percentages was associated with increased growth of shoot and root in Ziziphus. The difference in response pattern of different species to crude oil enables us to select species based on a variety of objects from bio monitoring to phytoremediation.

  19. Methods for Assessing the Impact of Fog Oil Smoke on Availability, Palatability, & Food Quality of Relevant Life Stages of Insects for Threatened and Endangered Species

    Energy Technology Data Exchange (ETDEWEB)

    Driver, Crystal J.; Strenge, Dennis L.; Su, Yin-Fong; Cullinan, Valerie I.; Herrington, Ricky S.; Saunders, Danielle L.; Rogers, Lee E.

    2007-04-01

    A methodology for quantifying population dynamics and food source value of insect fauna in areas subjected to fog oil smoke was developed. Our approach employed an environmentally controlled re-circulating wind tunnel outfitted with a high-heat vaporization and re-condensation fog oil generator that has been shown to produce aerosols of comparable chemistry and droplet-size distribution as those of field releases of the smoke. This method provides reproducible exposures of insects under realistic climatic and environmental conditions to fog oil aerosols that duplicate chemical and droplet-size characteristics of field releases of the smoke. The responses measured take into account reduction in food sources due to death and to changes in availability of relevant life stages of insects that form the prey base for the listed Threatened and Endangered Species. The influence of key environmental factors, wind speed and canopy structure on these responses were characterized. Data generated using this method was used to develop response functions related to particle size, concentration, wind speed, and canopy structure that will allow military personnel to assess and manage impacts to endangered species from fog oil smoke used in military training.

  20. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    Science.gov (United States)

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases.

  1. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant.

    Science.gov (United States)

    Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi; Ledesma-Amaro, Rodrigo

    2016-09-01

    We previously created an oleaginous Saccharomyces cerevisiae transformant as a dga1 mutant overexpressing Dga1p lacking 29 amino acids at the N-terminal (Dga1∆Np). Because we have already shown that dga1 disruption decreases the expression of ESA1, which encodes histone acetyltransferase, the present study was aimed at exploring how Esa1p was involved in lipid accumulation. We based our work on the previous observation that Esa1p acetylates and activates phosphoenolpyruvate carboxykinase (PEPCK) encoded by PCK1, a rate-limiting enzyme in gluconeogenesis, and subsequently evaluated the activation of Pck1p by yeast growth with non-fermentable carbon sources, thus dependent on gluconeogenesis. This assay revealed that the ∆dga1 mutant overexpressing Dga1∆Np had much lower growth in a glycerol-lactate (GL) medium than the wild-type strain overexpressing Dga1∆Np. Moreover, overexpression of Esa1p or Pck1p in mutants improved the growth, indicating that the ∆dga1 mutant overexpressing Dga1∆Np had lower activities of Pck1p and gluconeogenesis due to lower expression of ESA1. In vitro PEPCK assay showed the same trend in the culture of the ∆dga1 mutant overexpressing Dga1∆Np with 10 % glucose medium, indicating that Pck1p-mediated gluconeogenesis decreased in this oleaginous transformant under the lipid-accumulating conditions introduced by the glucose medium. The growth of the ∆dga1 mutant overexpressing Dga1∆Np in the GL medium was also improved by overexpression of acetyl-CoA synthetase, Acs1p or Acs2p, indicating that supply of acetyl-CoA was crucial for Pck1p acetylation by Esa1p. In addition, the ∆dga1 mutant without Dga1∆Np also showed better growth in the GL medium, indicating that decreased lipid accumulation was enhancing Pck1p-mediated gluconeogenesis. Finally, we found that overexpression of Ole1p, a fatty acid ∆9-desaturase, in the ∆dga1 mutant overexpressing Dga1∆Np improved its growth in the GL medium. Although the exact

  2. Improving transcriptome de novo assembly by using a reference genome of a related species: Translational genomics from oil palm to coconut.

    Directory of Open Access Journals (Sweden)

    Alix Armero

    Full Text Available The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L. is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut and a reference species (oil palm to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/.

  3. Improving transcriptome de novo assembly by using a reference genome of a related species: Translational genomics from oil palm to coconut.

    Science.gov (United States)

    Armero, Alix; Baudouin, Luc; Bocs, Stéphanie; This, Dominique

    2017-01-01

    The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/).

  4. Involvement of Bax and Bcl-2 in Induction of Apoptosis by Essential Oils of Three Lebanese Salvia Species in Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Russo

    2018-01-01

    Full Text Available Prostate cancer is one of the most common forms of cancer in men, and research to find more effective and less toxic drugs has become necessary. In the frame of our ongoing program on traditionally used Salvia species from the Mediterranean Area, here we report the biological activities of Salvia aurea, S. judaica and S. viscosa essential oils against human prostate cancer cells (DU-145. The cell viability was measured by 3(4,5-dimethyl-thiazol-2-yl2,5-diphenyl-tetrazolium bromide (MTT test and lactate dehydrogenase (LDH release was used to quantify necrosis cell death. Genomic DNA, caspase-3 activity, expression of cleaved caspase-9, B-cell lymphoma 2 (Bcl-2 and Bcl-2 associated X (Bax proteins were analyzed in order to study the apoptotic process. The role of reactive oxygen species in cell death was also investigated. We found that the three essential oils, containing caryophyllene oxide as a main constituent, are capable of reducing the growth of human prostate cancer cells, activating an apoptotic process and increasing reactive oxygen species generation. These results suggest it could be profitable to further investigate the effects of these essential oils for their possible use as anticancer agents in prostate cancer, alone or in combination with chemotherapy agents.

  5. Comparative Toxicity of Louisiana Sweet Crude Oil (LSC) and Chemically Dispersed LSC to Two Gulf of Mexico Aquatic Test Species.

    Science.gov (United States)

    Environmental Protection Agency released peer reviewed results from the second phase of its independent toxicity testing on mixtures of eight oil dispersants with Louisiana Sweet Crude Oil. EPA conducted the tests as part of an effort to ensure that EPA decisions remain grounded ...

  6. Acaricidal Potentials of the Terpene-rich Essential Oils of Two Iranian Eucalyptus Species against Tetranychus urticae Koch.

    Science.gov (United States)

    Ebadollahi, Asgar; Sendi, Jalal Jalali; Maroufpoor, Mostafa; Rahimi-Nasrabadi, Mehdi

    2017-03-01

    There is a rapid growth in the screening of plant materials for finding new bio-pesticides. In the present study, the essential oils of E. oleosa and E. torquata leaves were extracted using a Clevenger apparatus and their chemical profiles were investigated by Gas Chromatography-Mass Spectrometry (GC-MS). Among identified compounds, the terpenes had highest amount for both essential oils; 93.59% for E. oleosa and 97.69% for E. torquata. 1,8-Cineole (31.96%), α-pinene (15.25%) and trans-anethole (7.32%) in the essential oil of E. oleosa and 1,8-cineole (28.57%), α-pinene (15.74%) and globulol (13.11%) in the E. torquata essential oil were identified as the main components. The acaricidal activity of the essential oils of E. oleosa and E. torquata were examined using fumigation methods against the adult females of Tetranychus urticae Koch. The essential oils have potential acaricidal effects on T. urticae. The essential oil of E. oleosa with LC 50 value of 2.42 µL/L air was stronger than E. torquata. A correlation between log concentration and mite mortality has been observed. Based on the results of present study, it can be stated that the essential oils of E. oleosa and E. torquata have a worthy potential in the management of T. urticae.

  7. A detailed study on chemical characterization of essential oil components of two Plectranthus species grown in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Merajuddin Khan

    2016-11-01

    Full Text Available The chemical composition of the essential oils of Plectranthus cylindraceus and Plectranthus arabicus grown in Saudi Arabia were analyzed using gas chromatography techniques (GC–MS, GC–FID, Co-GC, LRI determination, and database and literature searches using two different stationary phase columns (polar and nonpolar. The analysis led to the characterization of a total of 157 different compounds from both oils. In the oil derived from P. cylindraceus, 79 compounds were identified, whereas 132 compounds were identified in the oil derived from P. arabicus; these compounds account for 95.2% and 98.4% of the total oil compositions, respectively. The major constituents of P. cylindraceus oil were patchouli alcohol (55.5 ± 0.01%, 1,8-cineole (6.0 ± 0.01% and valerianol (3.8 ± 0.18%, whereas, the main compounds of the P. arabicus oil were 1,8-cineole (50.5 ± 1.37%, β-pinene (7.0 ± 0.08%, camphor (6.3 ± 0.19% and β-myrcene (4.1 ± 0.10%. To the best of our knowledge, patchouli alcohol found in high concentration in the P. cylindraceus oil has never been reported from the genus Plectranthus. Moreover, this is the first phytochemical study of P. arabicus.

  8. Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill

    Directory of Open Access Journals (Sweden)

    Olivia eMason

    2014-07-01

    Full Text Available During the Deepwater Horizon (DWH oil spill in the Gulf of Mexico a deep-sea hydrocarbon plume developed resulting in a rapid succession of bacteria. Colwellia eventually supplanted Oceanospirillales, which dominated the plume early in the spill. These successional changes may have resulted, in part, from the changing composition and abundance of hydrocarbons over time. Colwellia abundance peaked when gaseous and simple aromatic hydrocarbons increased, yet the metabolic pathway used by Colwellia in hydrocarbon disposition is unknown. Here we used single-cell genomics to gain insights into the genome properties of a Colwellia enriched during the DWH deep-sea plume. A single amplified genome (SAG of a Colwellia cell isolated from a DWH plume, closely related (avg. 98% 16S rRNA gene similarity to other plume Colwellia, was sequenced and annotated. The SAG was similar to the sequenced isolate Colwellia psychrerythraea 34H (84% avg. nucleotide identity. Both had genes for denitrification, chemotaxis and motility, adaptations to cold environments, and a suite of nutrient acquisition genes. The Colwellia SAG may be capable of gaseous and aromatic hydrocarbon degradation, which contrasts with a DWH plume Oceanospirillales SAG genome which encoded non-gaseous n-alkane and cycloalkane degradation. The disparate hydrocarbon degradation pathways are consistent with hydrocarbons that were abundant at different times in the deep-sea plume; first, non-gaseous n-alkanes and cycloalkanes that could be degraded by Oceanospirillales, followed by gaseous, and simple aromatic hydrocarbons that may have been degraded by Colwellia. These insights into the genomic properties of a Colwellia species, which were supported by existing metagenomic sequence data from the plume and DWH contaminated sediments, help further our understanding of the successional changes in the dominant microbial players in the plume over the course of the DWH spill.

  9. Chemical Compositions and Cytotoxic Activities of Leaf Essential Oils of Four Lauraceae Tree Species from Monteverde, Costa Rica

    Directory of Open Access Journals (Sweden)

    Maria C. Palazzo

    2009-01-01

    Full Text Available The leaf essential oils of four members of the Lauraceae Licaria excelsa, Licaria triandra, Perseaschiedeana, and Rhodostemonodaphne kunthiana, from Monteverde, Costa Rica, were obtained byhydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS. The leaf oil of L. excelsawas dominated by the monoterpenes a-pinene (42.9%, b-pinene (22.0% and myrcene (17.2%, while L.triandra was also rich in pinenes (40.9% and 28.5%, respectively. Persea schiedeana had considerableamounts of the sesquiterpenes d-cadinene (18.5%, a-copaene (15.1%, and (E-caryophyllene (13.3%.Rhodostemonodaphne kunthiana leaf oil had germacrene D (64.4% and bicyclogermacrene (17.6% as themajor components. The leaf essential oils were screened for in-vitro cytotoxic activity against MDA-MB-231and Hs 578T human tumor cells. R. kunthiana leaf oil showed notable activity against MDA-MB-231.

  10. Identification of the orotidine-5'-monophosphate decarboxylase gene of the oleaginous yeast Rhodosporidium toruloides.

    Science.gov (United States)

    Yang, Fan; Zhang, Sufang; Tang, Wei; Zhao, Zongbao K

    2008-09-01

    Oleaginous yeast Rhodosporidium toruloides is an excellent microbial lipid producer of great industrial potential, yet there is no effective genetic tool for rationally engineering this microorganism. To develop a marker recycling system, the orotidine-5'-monophosphate (OMP) decarboxylase gene of R. toruloides (RtURA3) was isolated using methods of degenerate polymerase chain reaction (PCR) together with rapid amplification of cDNA ends. The results showed that RtURA3 contains four extrons and three introns, and that the encoded polypeptide holds a sequence of 279 amino acid residues with significant homology to those of OMP decarboxylases from other yeasts. A shuttle vector pYES2/CT-RtURA3 was constructed via site-specific insertion of RtURA3 into the commercial vector pYES2/CT. Transformation of the shuttle vector into Saccharomyces cerevisiae BY4741, a URA3-deficient yeast strain, ensured the viability of the strain on synthetic dextrose agar plate without uracil, suggesting that the isolated RtURA3 was functionally equivalent to the URA3 gene from S. cerevisiae.

  11. Four inducible promoters for controlled gene expression in the oleaginous yeast Rhodotorula toruloides

    Directory of Open Access Journals (Sweden)

    Alexander Michael Bedford Johns

    2016-10-01

    Full Text Available Rhodotorula (Rhodosporidium toruloides is an oleaginous yeast with great biotechnological potential, capable of accumulating lipid up to 70 % of its dry biomass, and of carotenoid biosynthesis. However, few molecular genetic tools are available for manipulation of this basidiomycete yeast and its high genomic GC content can make routine cloning difficult. We have developed plasmid vectors for transformation of R. toruloides which include elements for Saccharomyces cerevisiae in-yeast assembly; this method is robust to the assembly of GC-rich DNA and of large plasmids. Using such vectors we screened for controllable promoters, and identified inducible promoters from the genes NAR1, ICL1, CTR3 and MET16. These four promoters have independent induction/repression conditions and exhibit different levels and rates of induction in R. toruloides, making them appropriate for controllable transgene expression in different experimental situations. Nested deletions were used to identify regulatory regions in the four promoters, and to delimit the minimal inducible promoters, which are as small as 200 bp for the NAR1 promoter. The NAR1 promoter shows very tight regulation under repressed conditions as determined both by an EGFP reporter gene and by conditional rescue of a leu2 mutant. These new tools facilitate molecular genetic manipulation and controllable gene expression in R. toruloides.

  12. [Effects of furfural on the growth and lipid production of oleaginous yeast Rhodotorula glutinis].

    Science.gov (United States)

    Yong, Zihan; Zhang, Xu; Tan, Tianwei

    2015-10-01

    In order to illustrate the effects of furfural, one of the most common inhibitory compounds in lignocellulosic hydrolysate, on oleaginous yeast Rhodotorula glutinis, we investigated the effects of different concentrations of furfural (0.1, 0.4, 0.6 and 1.5 g/L) on the biomass and lipid production of R. glutinis, as well as the effects of 1.0 g/L furfural on the utilization of glucose and xylose. Results showed that: when the furfural concentration reached 1.5 g/L, the lag phrase time was extended to 96 h, and the residual glucose was up to 17.7 g/L, with maximum biomass of only 6.6 g/L, which accounted for 47% of that in the basic medium (furfural-free), and the corresponding lipid content was reduced about 50%. Furfural showed lighter inhibitory degree on R. glutinis when xylose acted as the carbon source than glucose was the carbon source; more C18 fatty acids or unsaturated C18 fatty acids were generated in the presence of furfural.

  13. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis.

    Science.gov (United States)

    Rani, Sapa Hima; Saha, Saikat; Rajasekharan, Ram

    2013-01-01

    The biosynthesis of triacylglycerol (TAG) occurs in the microsomal membranes of eukaryotes. Here, we report the identification and functional characterization of diacylglycerol acyltransferase (DGAT), a member of the 10 S cytosolic TAG biosynthetic complex (TBC) in Rhodotorula glutinis. Both a full-length and an N-terminally truncated cDNA clone of a single gene were isolated from R. glutinis. The DGAT activity of the protein encoded by RgDGAT was confirmed in vivo by the heterologous expression of cDNA in a Saccharomyces cerevisiae quadruple mutant (H1246) that is defective in TAG synthesis. RgDGAT overexpression in yeast was found to be capable of acylating diacylglycerol (DAG) in an acyl-CoA-dependent manner. Quadruple mutant yeast cells exhibit growth defects in the presence of oleic acid, but wild-type yeast cells do not. In an in vivo fatty acid supplementation experiment, RgDGAT expression rescued quadruple mutant growth in an oleate-containing medium. We describe a soluble acyl-CoA-dependent DAG acyltransferase from R. glutinis that belongs to the DGAT3 class of enzymes. The study highlights the importance of an alternative TAG biosynthetic pathway in oleaginous yeasts.

  14. Identification and Characterization of Diacylglycerol Acyltransferase from Oleaginous Fungus Mucor circinelloides.

    Science.gov (United States)

    Zhang, Luning; Zhang, Huaiyuan; Song, Yuanda

    2018-01-24

    Acyl-CoA:diacylglycerol acyltransferase (DGAT) is a pivotal regulator of triacylglycerol (TAG) synthesis. The oleaginous fungus Mucor circinelloides has four putative DGATs: McDGAT1A, McDGAT1B, McDGAT2A, and McDGAT2B, classified into the DGAT1 and DGAT2 subfamilies, respectively. To identify and characterize DGATs in M. circinelloides, these four genes were expressed in Saccharomyces cerevisiae H1246 (TAG-deficient quadruple mutant), individually. TAG biosynthesis was restored only by the expression of McDGAT2B, and TAG content was significantly higher in the mutants with McDGAT2B expression than in a S. cerevisiae mutant with endogenous DGA1 expression. McDGAT2B prefers saturated fatty acids to monounsaturated fatty acids and has an obvious preference for C18:3 (ω-6) according to the results of substrate preference experiments. Furthermore, only the mRNA expression pattern of McDGAT2B correlated with TAG biosynthesis during a fermentation process. Our experiments strongly indicate that McDGAT2B is crucial for TAG accumulation, suggesting that it may be an essential target for metabolic engineering aimed at increasing lipid content of M. circinelloides.

  15. Detergent assisted ultrasonication aided in situ transesterification for biodiesel production from oleaginous yeast wet biomass.

    Science.gov (United States)

    Yellapu, Sravan Kumar; Kaur, Rajwinder; Tyagi, Rajeshwar D

    2017-01-01

    In situ transesterification of oleaginous yeast wet biomass for fatty acid methyl esters (FAMEs) production using acid catalyst, methanol with or without N-Lauroyl sarcosine (N-LS) treatment was performed. The maximum FAMEs yield obtained with or without N-LS treatment in 24h reaction time was 96.1±1.9 and 71±1.4% w/w, respectively. The N-LS treatment of biomass followed by with or without ultrasonication revealed maximum FAMEs yield of 94.3±1.9% and 82.9±1.8% w/w using methanol to lipid molar ratio 360:1 and catalyst concentration 360mM (64μL H 2 SO 4 /g lipid) within 5 and 25min reaction time, respectively. The FAMEs composition obtained in in situ transesterification was similar to that obtained with conventional two step lipid extraction and transesterification process. Biodiesel fuel properties (density, kinematic viscosity, cetane number and total glycerol) were in accordance with international standard (ASTM D6751), which suggests the suitability of biodiesel as a fuel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Composition, antibacterial, antioxidant and antiproliferative activities of essential oils from three Origanum species growing wild in Lebanon and Greece.

    Science.gov (United States)

    Marrelli, Mariangela; Conforti, Filomena; Formisano, Carmen; Rigano, Daniela; Arnold, Nelly Apostolides; Menichini, Francesco; Senatore, Felice

    2016-01-01

    The essential oils from Origanum dictamnus, Origanum libanoticum and Origanum microphyllum were analysed by GC-MS, finding carvacrol, p-cymene, linalool, γ-terpinene and terpinen-4-ol as major components. The antioxidant activity by the DPPH and FRAP tests and the antiproliferative activity against two human cancer cell lines, LoVo and HepG2, were investigated, showing that the essential oil of O. dictamnus was statistically the most inhibitory on both the cell lines, while all the oils exerted a weak antioxidant activity. Furthermore, the samples were tested against 10 Gram-negative and Gram-positive bacteria; all the oils were active on Gram-positive bacteria but O. dictamnus essential oil was the most effective (MIC = 25-50 μg/mL), showing also a good activity against the Gram-negative Escherichia coli (MIC = 50 μg/mL). Data suggest that these essential oils and particularly O. dictamnus oil could be used as valuable new flavours with functional properties for food or nutraceutical products.

  17. Comparison of the relative sensitivity of Arctic species to dispersed oil using total petroleum and PAH measures of toxicity

    Science.gov (United States)

    Extended periods of open water have expanded the potential opportunities for petroleum and gas exploration and production in the Arctic, increasing the focus on understanding the potential impacts of released oil on aquatic organisms. However, information regarding the toxicity o...

  18. Antimicrobial activity of Tulsi (Ocimum tenuiflorum essential oil and their major constituents against three species of bacteria

    Directory of Open Access Journals (Sweden)

    Hanaa Abbas M Yamani

    2016-05-01

    Full Text Available In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum teniflorum (Tulsi, to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity. Broth micro-dilution was used to determine the minimum inhibitory concentration (MIC of Tulsi essential oil against selected microbial pathogens. The oils, at concentrations of 4.5% and 2.25% completely inhibited the growth of Staphylococcus aureus (including MRSA and Escherichia coli, while the same concentrations only partly inhibited the growth of Pseudomonas aeruginosa. Of 54 compounds identified in Tulsi leaves, flower spikes or essential oil, three are proposed to be responsible for this activity; camphor, eucalyptol and eugenol. Since S. aureus (including MRSA, P. aeruginosa and E. coli are major pathogens causing skin and soft tissue infections, Tulsi essential oil could be a valuable topical antimicrobial agent for management of skin infections caused by these organisms.

  19. Foreword: The evolution from species-specific damage assessment to ecosystem centric studies over the multi-decade period following the Exxon Valdez oil spill

    Science.gov (United States)

    Rice, Stanley; Peterson, Charles

    2018-01-01

    The 1989 Exxon Valdez oil spill in Prince William Sound became the largest spill in U.S. waters at that time, and impacts and recovery from the spill were monitored extensively across time and species through to the present. By the 10-year anniversary, it was apparent that this spill had induced long-lasting oil contamination of shoreline habitats, long-lasting ecological effects, and demanded fundamental changes in the conceptual model of how to study spills and what to expect had been changed. This special volume (1) presents a selection of papers representing the evolution of studies leading to those currently underway; and (2) demonstrates how there is constant change in the environment, requiring larger and more complex studies to understand both natural and man-caused changes to a coastal ecosystem.

  20. Chemical Compositions and Cytotoxic Activities of Leaf Essential Oils of Four Lauraceae Tree Species from Monteverde, Costa Rica

    OpenAIRE

    Maria C. Palazzo; Brittany R. Agius; Brenda S. Wright; William A. Haber; Debra M. Moriarity; William N. Setzer

    2009-01-01

    The leaf essential oils of four members of the Lauraceae Licaria excelsa, Licaria triandra, Perseaschiedeana, and Rhodostemonodaphne kunthiana, from Monteverde, Costa Rica, were obtained byhydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). The leaf oil of L. excelsawas dominated by the monoterpenes a-pinene (42.9%), b-pinene (22.0%) and myrcene (17.2%), while L.triandra was also rich in pinenes (40.9% and 28.5%, respectively). Persea schiedeana had considerableamo...

  1. Oleosome-Associated Protein of the Oleaginous Diatom Fistulifera solaris Contains an Endoplasmic Reticulum-Targeting Signal Sequence

    Directory of Open Access Journals (Sweden)

    Yoshiaki Maeda

    2014-06-01

    Full Text Available Microalgae tend to accumulate lipids as an energy storage material in the specific organelle, oleosomes. Current studies have demonstrated that lipids derived from microalgal oleosomes are a promising source of biofuels, while the oleosome formation mechanism has not been fully elucidated. Oleosome-associated proteins have been identified from several microalgae to elucidate the fundamental mechanisms of oleosome formation, although understanding their functions is still in infancy. Recently, we discovered a diatom-oleosome-associated-protein 1 (DOAP1 from the oleaginous diatom, Fistulifera solaris JPCC DA0580. The DOAP1 sequence implied that this protein might be transported into the endoplasmic reticulum (ER due to the signal sequence. To ensure this, we fused the signal sequence to green fluorescence protein. The fusion protein distributed around the chloroplast as like a meshwork membrane structure, indicating the ER localization. This result suggests that DOAP1 could firstly localize at the ER, then move to the oleosomes. This study also demonstrated that the DOAP1 signal sequence allowed recombinant proteins to be specifically expressed in the ER of the oleaginous diatom. It would be a useful technique for engineering the lipid synthesis pathways existing in the ER, and finally controlling the biofuel quality.

  2. Fostering triacylglycerol accumulation in novel oleaginous yeast Cryptococcus psychrotolerans IITRFD utilizing groundnut shell for improved biodiesel production.

    Science.gov (United States)

    Deeba, Farha; Pruthi, Vikas; Negi, Yuvraj S

    2017-10-01

    The investigation was carried out to examine the potential of triacylglycerol (TAG) accumulation by novel oleaginous yeast isolate Cryptococcus psychrotolerans IITRFD on utilizing groundnut shell acid hydrolysate (GSH) as cost-effective medium. The maximum biomass productivity and lipid productivity of 0.095±0.008g/L/h and 0.044±0.005g/L/h, respectively with lipid content 46% was recorded on GSH. Fatty acid methyl ester (FAME) profile obtained by GC-MS analysis revealed oleic acid (37.8%), palmitic (29.4%) and linoleic (32.8%) as major fatty acids representing balance between oxidative stability (OS) and cold flow filter properties (CFFP) for improved biodiesel quality. The biodiesel property calculated were correlated well with the fuel standards limits of ASTM D6751, EN 14214 and IS 15607. The present findings raise the possibility of using agricultural waste groundnut shell as a substrate for production of biodiesel by novel oleaginous yeast isolate C. psychrotolerans IITRFD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The novel oleaginous bacterium Sphingomonas sp. EGY1 DSM 29616: a value added platform for renewable biodiesel.

    Science.gov (United States)

    Amer, Nehad N; Elbahloul, Yasser; Embaby, Amira M; Hussein, Ahmed

    2017-07-01

    Oleaginous microorganisms are regarded as efficient, renewable cell factories for lipid biosynthesis, a biodiesel precursor, to overwhelm the cosmopolitan energy crisis with affordable investment capital costs. Present research highlights production and characterization of lipids by a newly isolated oleaginous bacterium, Sphingomonas sp. EGY1 DSM 29616 through an eco-friendly approach. Only sweet whey [42.1% (v/v)] in tap water was efficiently used as a growth medium and lipid production medium to encourage cell growth and trigger lipid accumulation simultaneously. Cultivation of Sphingomonas sp. EGY1 DSM 29616 in shake flasks resulted in the accumulation of 8.5 g L -1 lipids inside the cells after 36 h at 30 °C. Triglycerides of C16:C18 saturated and unsaturated fatty acids showed a similar pattern to tripalmitin or triolein; deduced from gas chromatography (GC), thin layer chromatography (TLC), and Matrix-assisted laser desorption/ionization time-of-flight-mass spectra analysis (MALDI-TOF-MS) analyses. Batch cultivation 2.5 L in a laboratory scale fermenter led to 13.8 g L -1 accumulated lipids after 34 h at 30 °C. Present data would underpin the potential of Sphingomonas sp. EGY1 DSM 29616 as a novel renewable cell factory for biosynthesis of biodiesel.

  4. Dual Functions of Lip6 and Its Regulation of Lipid Metabolism in the Oleaginous Fungus Mucor circinelloides.

    Science.gov (United States)

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Song, Yuanda

    2018-03-21

    Although multiple roles of lipases have been reported in yeasts and microalgae, the functions of lipases have not been studied in oleaginous filamentous fungi. Lipase Lip6 has been reported in the oleaginous filamentous fungus Mucor circinelloides with the consensus lipase motif GXSXG and the typical acyltransferase motif of H-(X) 4 -D. To demonstrate that Lip6 might play dual roles as a lipase and an acyltransferase, we performed site-directed mutagenesis in the lipase motif and the acyltransferase motif of Lip6. Mutation in the lipase motif increased cell biomass by 12%-18% and promoted lipid accumulation by 9%-24%, while mutation in the acyltransferase motif induced lipid degradation. In vitro, purified Lip6 had a slight lipase activity but had a stronger phospholipid:DAG acyltransferase activity. Enzyme activity assays in vivo and phospholipid synthesis pathway analysis suggested that phosphatidyl serine and phosphatidyl ethanolamine can be the supplier of a fatty acyl moiety to form TAG in M. circinelloides.

  5. Effect of seed treatments on the chemical composition of two amaranth species: oil, sugars, fibres, minerals and vitamins

    NARCIS (Netherlands)

    Gamel, T.H.; Linssen, J.P.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.

    2006-01-01

    The effects of seed treatments, including cooking, popping, germination and flour air classification on several components of Amaranthus caudatus and A. cruentus seeds, including oil, sugars, fibre, minerals and vitamins were studied. The lipid, crude and dietary fibre, ash, and sugar contents were

  6. Chemical composition and antimicrobial activity of the essential oils of some species of Anthemis sect. Anthemis (Asteraceae) from Sicily.

    Science.gov (United States)

    Riccobono, Luana; Maggio, Antonella; Bruno, Maurizio; Spadaro, Vivienne; Raimondo, Francesco Maria

    2017-12-01

    The chemical composition of the essential oils isolated from the aerial parts of Anthemis arvensis L. subsp. arvensis, Anthemis cretica subsp. messanensis (Brullo) Giardina & Raimondo and from flowers and leaves of Anthemis cretica subsp. columnae (Ten.) Frezén were determinated by GC-FID and GC-MS analyses. Torreyol (85.4%) was recognised as the main constituent of the Anthemis arvensis subsp. arvensis essential oil, while in the essential oils of Anthemis cretica subsp. messanensis, collected on the rock and cultivated in Hortus Botanicus Panormitanus, (E)-chrysanthenyl acetate (28.8 and 24.2% resp.), 14-hydroxy-α-humulene (8.1 and 5.3% resp.), santolina triene (8 and 5.8% resp.) and α-pinene (6.7 and 5.4% resp.) prevailed. 18-cineole (13.3 and 12.2% resp.), was the main component of both flower and leaf oils of Anthemis cretica subsp. columnae together with δ-cadinene (9.0 and 8.2% resp.) and (E)-caryophyllene (8.3 and 5.6% resp.).

  7. Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (D.C. ex Nees) Stapf. essential oil.

    Science.gov (United States)

    Lima Oliveira, Priscila Dinah; de Oliveira, Kataryne Árabe Rimá; Vieira, Willie Anderson Dos Santos; Câmara, Marcos Paz Saraiva; de Souza, Evandro Leite

    2018-02-02

    This study assessed the efficacy of chitosan (Chi) and Cymbopogon citratus (D.C. ex Nees) Stapf. essential oil (CCEO) combinations to control the mycelial growth of five pathogenic Colletotrichum species (C. asianum, C. siamense, C. fructicola, C. tropicale and C. karstii) in vitro, as well as the anthracnose development in guava (Psidium guajava L.) cv. Paluma, mango (Mangifera indica L.) cv. Tommy Atkins and papaya (Carica papaya L.) cv. Papaya artificially inoculated with these species. Combinations of Chi (2.5, 5 or 7.5mg/mL) and CCEO (0.15, 0.3, 0.6 or 1.25μL/mL) inhibited the mycelial growth of all tested fungal species in vitro. Examined Chi-CCEO combinations showed additive or synergistic interactions to inhibit the target Colletotrichum species based on the Abbott index. Coatings formed by synergistic Chi (5mg/mL) and CCEO (0.15, 0.3 or 0.6μL/mL) combinations decreased anthracnose lesion development in guava, mango and papaya inoculated with any of the tested Colleotrichum species during storage. Overall, anthracnose lesion development inhibition in fruit coated with synergistic Chi-CCEO combinations was higher than that observed in fruit treated with synthetic fungicides. These results show that the application of coatings formed by Chi-CCEO synergistic combinations could be effective to control postharvest anthracnose development in fruit. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluation of Physico-Chemical and Fungal Species Associated with Oil Contaminated Soil from Selected Automobile Garage in Sokoto Metropolis

    Directory of Open Access Journals (Sweden)

    Hassan Muhammad Maishanu

    2018-03-01

    Full Text Available This study was conducted with a view to evaluating the physicochemical and mycological properties of different oil contaminated soils collected from three different automobile garages in Sokoto Metropolis, and uncontaminated soil from the temporary site, Usmanu Danfodiyo University, Sokoto (UDUS was used as the control. The pH was determined using pH meter model Hanna (H1991301, quantity of mineral elements was evaluated in accordance with Murphy and Fungi were isolated from the three oil contaminated samples (A, B. and C and the uncontaminated (sample D as control, this was done by standard procedure using the method of P. Ren, T. Jankun & B. Leaderer. The physical, chemical, and mineral elements from the oil-contaminated soils of the three automobile garages and control. The results of particle soil analysis revealed the high content of sandy soil (96.2 to 87.3 and silt is the lowest with (2.5–0.6. Magnesium had the highest concentration of studied minerals, ranging from 193 to 649.2 mg/kg. while PH result revealed that the soil samples were pH value ranged from (16.85–16.20 in oil Contaminated samples, while the control had 15.90, and electrical conductivity ranged from 12.8–13.8 % and 28 % in control, four fungal isolates Aspergillus sp., Penicillum sp., Mucor sp. and Sporobolomyces sp. were identified based on colonial, sexual and morphological characteristics. These fungal strains can be used in bioremediation process and oil pollution reduction in aquatic ecosystems.

  9. Olive anthracnose: a yield- and oil quality-degrading disease caused by several species of Colletotrichum that differ in virulence, host preference and geographical distribution.

    Science.gov (United States)

    Talhinhas, Pedro; Loureiro, Andreia; Oliveira, Helena

    2018-03-08

    Olive anthracnose causes fruit rot leading to its drop or mummification, resulting in yield losses and the degradation of oil quality. The disease is caused by diverse species of Colletotrichum, mostly clustering in the C. acutatum species complex. Colletotrichum nymphaeae and C. godetiae are the prevalent species in the Northern Hemisphere, whereas C. acutatum sensu stricto is the most frequent species in the Southern Hemisphere, although it is recently and quickly emerging in the Northern Hemisphere. The disease has been reported from all continents, but it attains higher incidence and severity in the west of the Mediterranean Basin, where it is endemic in traditional orchards of susceptible cultivars. The pathogens are able to survive on vegetative organs. On the fruit surface, infections remain quiescent until fruit maturity, when typical anthracnose symptoms develop. Under severe epidemics, defoliation and death of branches can also occur. Pathogen species differ in virulence, although this depends on the cultivar. The selection of resistant cultivars depends strongly on pathogen diversity and environmental conditions, posing added difficulties to breeding efforts. Chemical disease control is normally achieved with copper-based fungicides, although this may be insufficient under highly favourable disease conditions and causes concern because of the presence of fungicide residues in the oil. In areas in which the incidence is high, farmers tend to anticipate harvest, with consequences in yield and oil characteristics. Olive production systems, harvest and post-harvest processing have experienced profound changes in recent years, namely new training systems using specific cultivars, new harvest and processing techniques and new organoleptic market requests. Changes are also occurring in both the geographical distribution of pathogen populations and the taxonomic framework. In addition, stricter rules concerning pesticide use are likely to have a strong impact

  10. Evaluation of the potential effects of major oil spills on Grand Banks commercial fish species as a result of impacts on eggs and larvae

    International Nuclear Information System (INIS)

    Hurlbut, S.E.; French, D.P.; Taylor, B.J.

    1991-01-01

    The Natural Resource Damage Assessment Model for Coastal and Marine Environments (NRDAM/CME) developed by the US Department of the Interior was applied to determine potential catch losses of two commercially important species in the event of an oil spill on the Grand Banks of Newfoundland. The model is made of a generalized physical fates model and a biological effects model; a fisheries component of the model estimates the ultimate impact on future adult fish populations and their harvesting. Inputs to the model include numbers of eggs and larvae, volume and nature of spill, chemical characteristics of the crude oil, and oceanographic and meteorological information specific to the spill location. To assess the sensitivity of the model predictions, different simulations each representing a specific combination of biological and physical conditions were carried out. In each case, the number of eggs and larvae killed and subsequent total lost catch as predicted by the model were directly proportional to the assumed egg and larval abundance. The impact on cod was three times that on plaice. In a worst-case situation involving a 90-d summer blowout at the maximum daily flow rate, the totals in lost catch of cod and plaice would be 21 and 7 tonnes respectively. These represent only 0.02% of the total annual Grand Banks catch for both species. 35 refs., 18 figs., 161 tabs

  11. ANTIBIOFILM EFFECTS of Citrus limonum and Zingiber officinale Oils on BIOFILM FORMATION of Klebsiella ornithinolytica, Klebsiella oxytoca and Klebsiella terrigena SPECIES.

    Science.gov (United States)

    Avcioglu, Nermin Hande; Sahal, Gulcan; Bilkay, Isil Seyis

    2016-01-01

    Microbial cells growing in biofilms, play a huge role in the spread of antimicrobial resistance. In this study, biofilm formation of Klebsiella strains belonging to 3 different Klebsiella species ( K. ornithinolytica , K. oxytoca and K. terrigena ), cooccurences' effect on biofilm formation amount and anti-biofilm effects of Citrus limon and Zingiber officinale essential oils on biofilm formations of highest biofilm forming K. ornithinolytica , K. oxytoca and K. terrigena strains were determined. Anti-biofilm effects of Citrus limon and Zingiber officinale essential oils on biofilm formations of highest biofilm forming K. ornithinolytica , K. oxytoca and K. terrigena strains were investigated. 57% of K. ornithinolytica strains and 50% of K. oxytoca strains were found as Strong Biofilm Forming (SBF), there wasn't any SBF strain in K. terrigena species. In addition to this, clinical materials of urine and sperm were found as the most frequent clinical materials for strong biofilm forming K. ornithinolytica and K. oxytoca isolations respectively (63%; 100%) Secondly, all K. ornithinolytica strains isolated from surgical intensive care unit and all K. oxytoca strains isolated from service units of urology were found as SBF. Apart from these, although the amount of biofilm, formed by co-occurence of K. ornithinolytica - K. oxytoca and K. oxytoca - K. terrigena were more than the amount ofbiofilm formed by themselves separately, biofilm formation amount of co-occurrence of K. ornitholytica - K. terrigena strains was lower than biofilm formation amount of K. ornithinolytica but higher than biofilm formation amount of K. terrigena . The antibiofilm effects of Citrus limonum and Zingiber officinale essential oils could be used against biofilm Klebsiella aquired infections.

  12. Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska.

    Directory of Open Access Journals (Sweden)

    Eric J Ward

    Full Text Available The Exxon Valdez oil spill occurred in March 1989 in Prince William Sound, Alaska, and was one of the worst environmental disasters on record in the United States. Despite long-term data collection over the nearly three decades since the spill, tremendous uncertainty remains as to how significantly the spill affected fishery resources. Pacific herring (Clupea pallasii and some wild Pacific salmon populations (Oncorhynchus spp. in Prince William Sound declined in the early 1990s, and have not returned to the population sizes observed in the 1980s. Discerning if, or how much of, this decline resulted from the oil spill has been difficult because a number of other physical and ecological drivers are confounded temporally with the spill; some of these drivers include environmental variability or changing climate regimes, increased production of hatchery salmon in the region, and increases in populations of potential predators. Using data pre- and post-spill, we applied time-series methods to evaluate support for whether and how herring and salmon productivity has been affected by each of five drivers: (1 density dependence, (2 the EVOS event, (3 changing environmental conditions, (4 interspecific competition on juvenile fish, and (5 predation and competition from adult fish or, in the case of herring, humpback whales. Our results showed support for intraspecific density-dependent effects in herring, sockeye, and Chinook salmon, with little overall support for an oil spill effect. Of the salmon species, the largest driver was the negative impact of adult pink salmon returns on sockeye salmon productivity. Herring productivity was most strongly affected by changing environmental conditions; specifically, freshwater discharge into the Gulf of Alaska was linked to a series of recruitment failures-before, during, and after EVOS. These results highlight the need to better understand long terms impacts of pink salmon on food webs, as well as the

  13. Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils.

    Science.gov (United States)

    Salem, Mohamed Z M; Ashmawy, Nader A; Elansary, Hosam O; El-Settawy, Ahmed A

    2015-01-01

    The chemical composition of the essential oil from the leaves of Eucalyptus camaldulensis, Eucalyptus camaldulensis var. obtusa and Eucalyptus gomphocephala grown in northern Egypt was analysed by using GC-FID and GC-MS techniques. The antibacterial (agar disc diffusion and minimum inhibitory concentration methods) and antioxidant activities (2,2'-diphenypicrylhydrazyl) were examined. The main oils constituents were 1,8-cineole (21.75%), β-pinene (20.51%) and methyleugenol (6.10%) in E. camaldulensis; spathulenol (37.46%), p-cymene (17.20%) and crypton (8.88%) in E. gomphocephala; spathulenol (18.37%), p-cymene (19.38%) and crypton (16.91%) in E. camaldulensis var. obtusa. The essential oils from the leaves of Eucalyptus spp. exhibited considerable antibacterial activity against Gram-positive and Gram-negative bacteria. The values of total antioxidant activity were 70 ± 3.13%, 50 ± 3.34% and 84 ± 4.64% for E. camaldulensis, E. camaldulensis var. obtusa and E. gomphocephala, respectively. The highest antioxidant activity value of 84 ± 4.64% could be attributed to the high amount of spathulenol (37.46%).

  14. Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis.

    Science.gov (United States)

    Yousuf, Abu; Khan, Maksudur Rahman; Islam, M Amirul; Wahid, Zularisam Ab; Pirozzi, Domenico

    2017-01-01

    Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.

  15. Estimation of vanadium water quality benchmarks for the protection of aquatic life with relevance to the Athabasca Oil Sands region using species sensitivity distributions.

    Science.gov (United States)

    Schiffer, Stephanie; Liber, Karsten

    2017-11-01

    Elevated vanadium (V) concentrations in oil sands coke, which is produced and stored on site of some major Athabasca Oil Sands companies, could pose a risk to aquatic ecosystems in northern Alberta, Canada, depending on its future storage and utilization. In the present study, V toxicity was determined in reconstituted Athabasca River water to various freshwater organisms, including 2 midge species (Chironomus dilutus and Chironomus riparius; 4-d and 30-d to 40-d exposures) and 2 freshwater fish species (Oncorhynchus mykiss and Pimephales promelas; 4-d and 28-d exposures) to facilitate estimation of water quality benchmarks. The acute toxicity of V was 52.0 and 63.2 mg/L for C. dilutus and C. riparius, respectively, and 4.0 and 14.8 mg V/L for P. promelas and O. mykiss, respectively. Vanadium exposure significantly impaired adult emergence of C. dilutus and C. riparius at concentrations ≥16.7 (31.6% reduction) and 8.3 (18.0% reduction) mg/L, respectively. Chronic toxicity in fish presented as lethality, with chronic 28-d LC50s of 0.5 and 4.3 mg/L for P. promelas and O. mykiss, respectively. These data were combined with data from the peer-reviewed literature, and separate acute and chronic species sensitivity distributions (SSDs) were constructed. The acute and chronic hazardous concentrations endangering only 5% of species (HC5) were estimated as 0.64 and 0.05 mg V/L, respectively. These new data for V toxicity to aquatic organisms ensure that there are now adequate data available for regulatory agencies to develop appropriate water quality guidelines for use in the Athabasca Oil Sands region and elsewhere. Until then, the HC5 values presented in the present study could serve as interim benchmarks for the protection of aquatic life from exposure to hazardous levels of V in local aquatic environments. Environ Toxicol Chem 2017;36:3034-3044. © 2017 SETAC. © 2017 SETAC.

  16. The in vitro effect of selected essential oils on the growth and mycotoxin production of Aspergillus species.

    Science.gov (United States)

    Císarová, Miroslava; Tančinová, Dana; Medo, Juraj; Kačániová, Miroslava

    2016-10-02

    The aim of the present study was to assess the antifungal and anti-toxinogenic activity of 15 essential oils (EOs) against three fungi of the genus Aspergillus (A. parasiticus KMi-227-LR, A. parasiticus KMi-220-LR and A. flavus KMi-202-LR). The minimum inhibitory doses (MIDs) of the tested essential oils and their antifungal activity were determined using the micro-atmosphere method. The original commercial essential oil samples of Jasminum officinale L., Thymus vulgaris L., Syzygium aromaticum (L.) Merrill & Perry, Rosmarinus officinalis L., Ocimum basilicum L., Eucalyptus globulus Labill., Salvia officinalis L., Citrus limon (L.) Burm, Origanum vulgare L., Lavandula angustifolia Mill., Carum carvi L., Citrus sinensis (L.) Osbeck., Zingiber officinalis Rosc., Mentha piperita L. and Cinnamomum zeylanicum Nees. (C. verum J.S.Presl.) were produced in Slovakia (Calendula a.s., Nová Ľubovňa, Slovakia). All essential oils exhibited activity against all tested strains of fungi. After 14 days of incubation, A. flavus (KMi-202-LR) showed the highest susceptibility with a growth inhibition percentage (GIP) of 18.70% to C. limon and 5.92% to C. sinensis, while A. parasiticus (KMi-220-LR) exhibited a GIP of 20.56% to J. officinale. The minimum inhibitory doses (MIDs) of EOs with the most significant activity were recorded. The best antifungal activity, using the micro-atmosphere method was found in S. aromaticum with an MID of 62.5 μL L -1 air, T. vulgaris (MID of 62.5 μL L -1 air) and O. vulgare (MID of 31.5 μL L -1 air) against all tested strains. Mycotoxin production of the tested strains was evaluated by the thin layer chromatography (TLC) method. Mycotoxin production of AFB 1 and AFG 1 was inhibited following all treatments with C. carvi, R. officinale and S. officinale, Eucalyptus globulus L. and O. basilicum L. Essential oils exhibited a potential inhibition activity against toxic fungi, although, these affected only the production of AFB 1 .

  17. Simultaneous Production of Triacylglycerol and High-Value Carotenoids by the Astaxanthin-Producing Oleaginous Green Microalga Chlorella zofingiensis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T.

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89 mg g-1 dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3 mg L-1 day-1, respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga.

  18. Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production.

    Directory of Open Access Journals (Sweden)

    Hui Wei

    Full Text Available Lipid production by oleaginous microorganisms is a promising route to produce raw material for the production of biodiesel. However, most of these organisms must be grown on sugars and agro-industrial wastes because they cannot directly utilize lignocellulosic substrates. We report the first comprehensive investigation of Mucor circinelloides, one of a few oleaginous fungi for which genome sequences are available, for its potential to assimilate cellulose and produce lipids. Our genomic analysis revealed the existence of genes encoding 13 endoglucanases (7 of them secretory, 3 β-D-glucosidases (2 of them secretory and 243 other glycoside hydrolase (GH proteins, but not genes for exoglucanases such as cellobiohydrolases (CBH that are required for breakdown of cellulose to cellobiose. Analysis of the major PAGE gel bands of secretome proteins confirmed expression of two secretory endoglucanases and one β-D-glucosidase, along with a set of accessory cell wall-degrading enzymes and 11 proteins of unknown function. We found that M. circinelloides can grow on CMC (carboxymethyl cellulose and cellobiose, confirming the enzymatic activities of endoglucanases and β-D-glucosidases, respectively. The data suggested that M. circinelloides could be made usable as a consolidated bioprocessing (CBP strain by introducing a CBH (e.g. CBHI into the microorganism. This proposal was validated by our demonstration that M. circinelloides growing on Avicel supplemented with CBHI produced about 33% of the lipid that was generated in glucose medium. Furthermore, fatty acid methyl ester (FAME analysis showed that when growing on pre-saccharified Avicel substrates, it produced a higher proportion of C14 fatty acids, which has an interesting implication in that shorter fatty acid chains have characteristics that are ideal for use in jet fuel. This substrate-specific shift in FAME profile warrants further investigation.

  19. Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production.

    Science.gov (United States)

    Wei, Hui; Wang, Wei; Yarbrough, John M; Baker, John O; Laurens, Lieve; Van Wychen, Stefanie; Chen, Xiaowen; Taylor, Larry E; Xu, Qi; Himmel, Michael E; Zhang, Min

    2013-01-01

    Lipid production by oleaginous microorganisms is a promising route to produce raw material for the production of biodiesel. However, most of these organisms must be grown on sugars and agro-industrial wastes because they cannot directly utilize lignocellulosic substrates. We report the first comprehensive investigation of Mucor circinelloides, one of a few oleaginous fungi for which genome sequences are available, for its potential to assimilate cellulose and produce lipids. Our genomic analysis revealed the existence of genes encoding 13 endoglucanases (7 of them secretory), 3 β-D-glucosidases (2 of them secretory) and 243 other glycoside hydrolase (GH) proteins, but not genes for exoglucanases such as cellobiohydrolases (CBH) that are required for breakdown of cellulose to cellobiose. Analysis of the major PAGE gel bands of secretome proteins confirmed expression of two secretory endoglucanases and one β-D-glucosidase, along with a set of accessory cell wall-degrading enzymes and 11 proteins of unknown function. We found that M. circinelloides can grow on CMC (carboxymethyl cellulose) and cellobiose, confirming the enzymatic activities of endoglucanases and β-D-glucosidases, respectively. The data suggested that M. circinelloides could be made usable as a consolidated bioprocessing (CBP) strain by introducing a CBH (e.g. CBHI) into the microorganism. This proposal was validated by our demonstration that M. circinelloides growing on Avicel supplemented with CBHI produced about 33% of the lipid that was generated in glucose medium. Furthermore, fatty acid methyl ester (FAME) analysis showed that when growing on pre-saccharified Avicel substrates, it produced a higher proportion of C14 fatty acids, which has an interesting implication in that shorter fatty acid chains have characteristics that are ideal for use in jet fuel. This substrate-specific shift in FAME profile warrants further investigation.

  20. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    Science.gov (United States)

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  1. Transfer factors of 226Ra, 210Pb and 210Po from NORM-contaminated oil field soil to some Atriplex species, Alfalfa and Bermuda grass

    International Nuclear Information System (INIS)

    Al-Masria, M.S.; Mukalallati, H.; Al-Hamwi, A.

    2014-01-01

    Transfer factors of 226 Ra, 210 Pb and 210 Po from soil contaminated with naturally occurring radioactive materials (NORM) in oil fields to some grazing plants were determined using pot experiments. Contaminated soil was collected from a dry surface evaporation pit from a Syrian oil field in the Der Ezzor area. Five types of plants (Atriplex halimus L., Atriplex canescens, Atriplex Leucoclada Bioss, Alfalfa and Bermuda grass) were grown and harvested three times over two years. The results show that the mean transfer factors of 226 Ra from the contaminated soil to the studied plant species were 1.6 x 10 -3 for Atriplex halimus L., 2.1 x 10 -3 for Atriplex canescens, 2.5 x 10 -3 for Atriplex Leucoclada Bioss, 8.2 x 10 -3 for Bermuda grass, and the highest value was 1.7 x 10 -2 for Alfalfa. Transfer factors of 210 Pb and 210 Po were higher than 226 Ra TFs by one order of magnitude and reached 7 x 10 -3 , 1.1 x 10 -2 , 1.2 x 10 -2 , 3.2 x 10 -2 and 2.5 x 10 -2 for Atriplex halimus, Atriplex canescens, Atriplex Leucoclada Bioss, Bermuda grass and Alfalfa, respectively. The results can be considered as base values for transfer factors of 226 Ra, 210 Pb and 210 Po in semiarid regions. (authors)

  2. Using fitness parameters to evaluate three oilseed Brassicaceae species as potential oil crops in two contrasting environments

    Science.gov (United States)

    Thlaspi arvense and Camelina sativa have gained considerable attention as biofuel crops. But in some areas, these species, including C. microcarpa, are becoming rare weeds because of agriculture intensification. Including them as crops could guarantee their conservation in agricultural systems. The ...

  3. Selection of forest species for the rehabilitation of disturbed soils in oil fields in the Ecuadorian Amazon

    NARCIS (Netherlands)

    Villacís, Jaime; Casanoves, Fernando; Hang, Susana; Keesstra, Saskia; Armas, Cristina

    2016-01-01

    Soils in the Amazon Basin disturbed by petroleum extraction activities need to be restored to allow for the rehabilitation of these areas and the restoration of the ecosystemservices that these areas can provide. This study explores the performance of saplings of 20 species transplanted to four

  4. Analysis of molecular species of triacylglycerols from vegetable oils containing fatty acids with non-methylene-interrupted double bonds, by HPLC in the silver-ion mode

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Y.; Kim, S. [Dong A Univ., Pusan (Korea, Republic of)

    1998-10-20

    The possibilities for application of silver ion HPLC to analysis of the triacylglycerols containing conjugate trienoic acids and {Delta}{sup 5}-polymethylene-interrupted acids and proportions of triacylglycerol fractions obtained by silver-ion HPLC from the seed oil of Momordica charantia double bonds were examined, respectively. The triacylglycerols of seed oils containing conjugate trienoic acids such as {alpha}-eleostearic acid (C{sub 18:3 9c,11t,13t}) and punicic acid (C{sub 18:3} {sub 9c,11t,13c}) were resolved by silver-ion HPLC. Fractions were fractionated on the basis of the number and configuration of double bonds in the species, and the elution profile is quite different from that of the species comprising exclusively saturated and unsaturated fatty acids with methylene-interrupted double bonds ; for instance, the species (DT(c2)) composed of one dienoic acid and two conjugate trienoic acids eluted much earlier than the species (D{sub 2}T{sub c}) composed of two dienoic acids and one conjugate trienoic acid, in spite of having larger number of double bonds. This means that the interaction of conjugate double bonds with silver ions is weaker than that of methylene-interrupted double bonds, presumably because of the delocalization of {pi}-electrons in conjugate double bonds. In this instance, the strength of interaction of a conjugate trienoic double bond system with silver ions seemed to be between that of methylene-interrupted dienoic and monoenoic double bond systems. Triacylglycerols of the seeds of Ginkgo biloba have been resolved by HPLC in the silver-ion mode according to the number and position of double bonds. In this instance, the strength of interaction between the {pi}-electrons of double bonds in the fatty acyl residues and silver ions is in the order; C{sub 18:3{omega}3}>C(20:3){Delta}{sup 5,11,14}C{sub 18:3}{Delta}{sup 5,9,12}>= C{sub 18:2{omega}6}>C{sub 18:2}{Delta}{sup 5,9}>C{sub 18:1{omega}9}>C{sub 18:1ome= ga7}. 49 refs., 2 figs., 2 tabs.

  5. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231).

    Science.gov (United States)

    Xia, Ling; Huang, Rong; Li, Yinta; Song, Shaoxian

    2017-01-01

    The effects of growth phase on the lipid content and surface properties of oleaginous microalgae Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231 were investigated in this study. The results showed that throughout the growth phases, the lipid content of microalgae increased. The surface properties like particle size, the degree of hydrophobicity, and the total concentration of functional groups increased while net surface zeta potential decreased. The results suggested that the growth stage had significant influence not only on the lipid content but also on the surface characteristics. Moreover, the lipid content was significantly positively related to the concentration of hydroxyl functional groups in spite of algal strains or growth phases. These results provided a basis for further studies on the refinery process using oleaginous microalgae for biofuel production.

  6. Selection and identification of oleaginous yeast isolated from soil, animal feed and ruminal fluid for use as feed supplement in dairy cattle.

    Science.gov (United States)

    Paserakung, A; Pattarajinda, V; Vichitphan, K; Froetschel, M A

    2015-10-01

    The purpose of this study was to select oleaginous yeast for microbial lipid production. Sixty-four yeast isolates were obtained from soil (GSY1-12), animal feeds (FDY1-21), and ruminal fluid (RMY1-31) using yeast extract peptone dextrose (YPD) agar. The cultivation of these isolates on nitrogen limited-medium revealed that GSY2 to GSY6, GSY10, FDY2, FDY12 and FDY14 accumulated lipid over 20% of dry biomass. Therefore, they were preliminarily classified as oleaginous yeast. In subsequent experiment, an 8 × 3 factorial in completely randomized design was conducted to examine the effect of eight oleaginous yeast strains and three nitrogen sources (peptone, (NH4 )2 SO4 , urea) on lipid accumulation when using molasses as substrate. The result illustrated that only GSY3 and GSY10 accumulated lipid over 20% of biomass when using peptone or (NH4 )2 SO4 but urea did not. However, GSY10 gave higher biomass and lipid yield than GSY3 (P yeast for microbial lipid production from molasses. This study illustrated the ability of T. asahii GSY10 to utilize molasses and (NH4 )2 SO4 for synthesizing and accumulating cellular lipid of which oleic acid (C18:1 ) was predominant. This yeast would be used for microbial lipid production used as feed supplement in dairy cattle. © 2015 The Society for Applied Microbiology.

  7. Use of an environmental specimen bank for evaluating the impact of the Prestige oil spill on the levels of trace elements in two species of Fucus on the coast of Galicia (NW Spain)

    International Nuclear Information System (INIS)

    Villares, Ruben; Real, Carlos; Fernandez, Jose Angel; Aboal, Jesus; Carballeira, Alejo

    2007-01-01

    In the present study we investigated possible contamination by trace elements due to the oil slick caused by the shipwreck of the Prestige oil tanker, in two species of brown macroalgae (Fucus vesiculosus and Fucus ceranoides) collected from the coastal area most severely affected by the spill (Galicia, NW Spain). The oil slick apparently did not cause significant increases in the concentrations of the trace elements studied, except vanadium. It appears that the magnitude of terrestrial inputs to coastal waters is sufficiently high to mask the inputs of trace elements from the fuel. The observed exception of V suggests that bioaccumulation of this element by the two species of Fucus may be used to indicate exposure to petrochemical products similar to the Prestige fuel. The findings of the study are another example of the importance of the existence of Environmental Specimen Banks for studies of this type

  8. Use of an environmental specimen bank for evaluating the impact of the Prestige oil spill on the levels of trace elements in two species of Fucus on the coast of Galicia (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Villares, Ruben; Real, Carlos [Area de Ecologia, Escuela Politecnica Superior, Universidad de Santiago de Compostela, 27002 Lugo (Spain); Fernandez, Jose Angel; Aboal, Jesus; Carballeira, Alejo [Area de Ecologia, Facultad de Biologia, Universidad de Santiago de Compostela, 15706 Santiago de Compostela (Spain)

    2007-03-15

    In the present study we investigated possible contamination by trace elements due to the oil slick caused by the shipwreck of the Prestige oil tanker, in two species of brown macroalgae (Fucus vesiculosus and Fucus ceranoides) collected from the coastal area most severely affected by the spill (Galicia, NW Spain). The oil slick apparently did not cause significant increases in the concentrations of the trace elements studied, except vanadium. It appears that the magnitude of terrestrial inputs to coastal waters is sufficiently high to mask the inputs of trace elements from the fuel. The observed exception of V suggests that bioaccumulation of this element by the two species of Fucus may be used to indicate exposure to petrochemical products similar to the Prestige fuel. The findings of the study are another example of the importance of the existence of Environmental Specimen Banks for studies of this type. (author)

  9. Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species

    Directory of Open Access Journals (Sweden)

    Abdul Ghaffar

    2015-11-01

    Full Text Available Eucalyptus is well reputed for its use as medicinal plant around the globe. The present study was planned to evaluate chemical composition, antimicrobial and antioxidant activity of the essential oils (EOs extracted from seven Eucalyptus species frequently found in South East Asia (Pakistan. EOs from Eucalyptus citriodora, Eucalyptus melanophloia, Eucalyptus crebra, Eucalyptus tereticornis, Eucalyptus globulus, Eucalyptus camaldulensis and Eucalyptus microtheca were extracted from leaves through hydrodistillation. The chemical composition of the EOs was determined through GC-MS-FID analysis. The study revealed presence of 31 compounds in E. citriodora and E. melanophloia, 27 compounds in E. crebra, 24 compounds in E. tereticornis, 10 compounds in E. globulus, 13 compounds in E. camaldulensis and 12 compounds in E. microtheca. 1,8-Cineole (56.5%, α-pinene (31.4%, citrinyl acetate (13.3%, eugenol (11.8% and terpenene-4-ol (10.2% were the highest principal components in these EOs. E. citriodora exhibited the highest antimicrobial activity against the five microbial species tested (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Aspergillus niger and Rhizopus solani. Gram positive bacteria were found more sensitive than Gram negative bacteria to all EOs. The diphenyl-1-picrylhydazyl (DPPH radical scavenging activity and percentage inhibition of linoleic acid oxidation were highest in E. citriodora (82.1% and 83.8%, respectively followed by E. camaldulensis (81.9% and 83.3%, respectively. The great variation in chemical composition of EOs from Eucalyptus, highlight its potential for medicinal and nutraceutical applications.

  10. Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species.

    Science.gov (United States)

    Ghaffar, Abdul; Yameen, Muhammad; Kiran, Shumaila; Kamal, Shagufta; Jalal, Fatima; Munir, Bushra; Saleem, Sadaf; Rafiq, Naila; Ahmad, Aftab; Saba, Iram; Jabbar, Abdul

    2015-11-18

    Eucalyptus is well reputed for its use as medicinal plant around the globe. The present study was planned to evaluate chemical composition, antimicrobial and antioxidant activity of the essential oils (EOs) extracted from seven Eucalyptus species frequently found in South East Asia (Pakistan). EOs from Eucalyptus citriodora, Eucalyptus melanophloia, Eucalyptus crebra, Eucalyptus tereticornis, Eucalyptus globulus, Eucalyptus camaldulensis and Eucalyptus microtheca were extracted from leaves through hydrodistillation. The chemical composition of the EOs was determined through GC-MS-FID analysis. The study revealed presence of 31 compounds in E. citriodora and E. melanophloia, 27 compounds in E. crebra, 24 compounds in E. tereticornis, 10 compounds in E. globulus, 13 compounds in E. camaldulensis and 12 compounds in E. microtheca. 1,8-Cineole (56.5%), α-pinene (31.4%), citrinyl acetate (13.3%), eugenol (11.8%) and terpenene-4-ol (10.2%) were the highest principal components in these EOs. E. citriodora exhibited the highest antimicrobial activity against the five microbial species tested (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Aspergillus niger and Rhizopus solani). Gram positive bacteria were found more sensitive than Gram negative bacteria to all EOs. The diphenyl-1-picrylhydazyl (DPPH) radical scavenging activity and percentage inhibition of linoleic acid oxidation were highest in E. citriodora (82.1% and 83.8%, respectively) followed by E. camaldulensis (81.9% and 83.3%, respectively). The great variation in chemical composition of EOs from Eucalyptus, highlight its potential for medicinal and nutraceutical applications.

  11. Production of Palmitoleic and Linoleic Acid in Oleaginous and Nonoleaginous Yeast Biomass

    Czech Academy of Sciences Publication Activity Database

    Kolouchová, I.; Maťáková, O.; Sigler, Karel; Masák, J.; Řezanka, Tomáš

    2016-01-01

    Roč. 2016, č. 2016 (2016), s. 7583684 ISSN 1687-8760 R&D Projects: GA ČR GA14-00227S Institutional support: RVO:61388971 Keywords : CELL OIL PRODUCTION * LIPID PRODUCTION * BIODIESEL PRODUCTION Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.901, year: 2016

  12. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.

    Science.gov (United States)

    Diwan, Batul; Parkhey, Piyush; Gupta, Pratima

    2018-04-23

    The reserves of fossil-based fuels, which currently seem sufficient to meet the global demands, is inevitably on the verge of exhaustion. Contemporary raw material for alternate fuel like biodiesel is usually edible plant commodity oils, whose increasing public consumption rate raises the need of finding a non-edible and fungible alternate oil source. In this quest, single cell oils (SCO) from oleaginous yeasts and fungi can provide a sustainable alternate of not only functional but also valuable (polyunsaturated fatty acids (PUFA)-rich) lipids. Researches are been increasingly driven towards increasing the SCO yield in order to realize its commercial importance. However, bulk requirement of expensive synthetic carbon substrate, which inflates the overall SCO production cost, is the major limitation towards complete acceptance of this technology. Even though substrate cost minimization could make the SCO production profitable is uncertain, it is still essential to identify suitable cheap and abundant substrates in an attempt to potentially reduce the overall process economy. One of the most sought-after in-expensive carbon reservoirs, agro-industrial wastes, can be an attractive replacement to expensive synthetic carbon substrates in this regard. The present review assess these possibilities referring to the current experimental investigations on oleaginous yeasts, and fungi reported for conversion of agro-industrial feedstocks into triacylglycerols (TAGs) and PUFA-rich lipids. Multiple associated factors regulating lipid accumulation utilizing such substrates and impeding challenges has been analyzed. The review infers that production of bulk oil in combination to high-value fatty acids, co-production strategies for SCO and different microbial metabolites, and reutilization and value addition to spent wastes could possibly leverage the high operating costs and help in commencing a successful biorefinery. Rigorous research is nevertheless required whether it is

  13. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

    Science.gov (United States)

    Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel

  14. Local Productive Arrangements for Biodiesel Production in Brazil – Environmental Assessment of Small-holder’s Integrated Oleaginous Crops Management

    Directory of Open Access Journals (Sweden)

    Geraldo Stachetti Rodrigues

    2009-04-01

    Full Text Available Sustainability assessments were carried out in small-holders’ farms in four territories where productive arrangements have been organized for production of minor oleaginous crops under the Brazilian biodiesel program. The study aimed at checking local impacts of the biodiesel productive chains at the rural establishment scale, and promoting the environmental performance of the selected farms, henceforth proposed as sustainable management demonstration units. Assessments were carried out with the APOIA-NovoRural system, which integrates 62 objective and quantitative indicators related to five sustainability dimensions: i Landscape Ecology, ii Environmental Quality (Atmosphere, Water and Soil, iii Socio-cultural Values, iv Economic Values and v Management and Administration. The main results point out that, in general, the ecological dimensions of sustainability, that is, the Landscape Ecology and Atmosphere, Water, and Soil quality indicators, show adequate field conditions, seemingly not yet negatively affected by increases in chemical inputs and natural resources use predicted as important potential impacts of the agro-energy sector. The Economic Values indicators have been favorably influenced in the studied farms, due to a steadier demand and improved prices for the oleaginous crops. On the other hand, valuable positive consequences expected for favoring farmers’ market insertion, such as improved Socio-cultural Values and Management & Administration indicators, are still opportunities to be materialized. The Environmental Management Reports issued to the farmers, based on the presented sustainability assessment procedures, offer valuable documentation and communication means for consolidating the organizational influence of the local productive arrangements studied. These productive arrangements were shown to be determinant for the selection of crop associations and diversification, as well as for the provision of technical assistance

  15. Essential Oils Extracted Using Microwave-Assisted Hydrodistillation from Aerial Parts of Eleven Artemisia Species: Chemical Compositions and Diversities in Different Geographical Regions of Iran

    Directory of Open Access Journals (Sweden)

    Majid Mohammadhosseini

    2017-03-01

    Full Text Available This study aimed to assess the chemical compositions of essential oils (EOs extracted through microwave-assisted hydrodistillation from aerial parts of 11 Artemisia species growing wild in different regions in Northern, Eastern, Western, and Central parts of Iran. The EOs were subsequently analyzed via GC and GC-MS. The percentage yields of the EOs varied over the range of 0.21-0.50 (w/w%. On the basis of these characterizations and spectral assignments, natural compounds including camphor, 1,8-cineole, camphene, α-pinene, β-pinene, β-thujone, and sabinene were the most abundant and frequent constituents among all studied chemical profiles. Accordingly, oxygenated monoterpenes, monoterpene hydrocarbons, and non-terpene hydrocarbons were the dominant groups of natural compounds in the chemical profiles of 13, 4, and 2 samples, respectively. Moreover, five chemotypes were identified using statistical analyses: camphene, α-pinene and β-pinene; 1,8-cineole; camphore and 1,8-cineole; camphore and camphore and β-thujone.

  16. Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production.

    Science.gov (United States)

    Praveenkumar, Ramasamy; Kim, Bohwa; Choi, Eunji; Lee, Kyubock; Cho, Sunja; Hyun, Ju-Soo; Park, Ji-Yeon; Lee, Young-Chul; Lee, Hyun Uk; Lee, Jin-Suk; Oh, You-Kwan

    2014-10-01

    Flue gases mainly consist of CO2 that can be utilized to facilitate microalgal culture for bioenergy production. In the present study, to evaluate the feasibility of the utilization of flue gas from a coal-burning power plant, an indigenous and high-CO2-tolerant oleaginous microalga, Chlorella sp. KR-1, was cultivated under mixotrophic conditions, and the results were evaluated. When the culture was mediated by flue gas, highest biomass (0.8 g cells/L·d) and FAME (fatty acid methyl esters) productivity (121 mg/L·d) were achieved in the mixotrophic mode with 5 g/L glucose, 5 mM nitrate, and a flow rate of 0.2 vvm. By contrast, the photoautotrophic cultivation resulted in a lower biomass (0.45 g cells/L·d) and a lower FAME productivity (60.2 mg/L·d). In general, the fatty acid profiles of Chlorella sp. KR-1 revealed meaningful contents (>40 % of saturated and mono-unsaturated fatty acids) under the mixotrophic condition, which enables the obtainment of a better quality of biodiesel than is possible under the autotrophic condition. Conclusively then, it was established that a microalgal culture mediated by flue gas can be improved by adoption of mixotrophic cultivation systems.

  17. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    Science.gov (United States)

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Reactive oxygen species produced by NADPH oxidase and mitochondrial dysfunction in lung after an acute exposure to Residual Oil Fly Ashes

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Natalia D.; Marchini, Timoteo; Vanasco, Virginia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Tasat, Deborah R. [CESyMA, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); Alvarez, Silvia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Evelson, Pablo, E-mail: pevelson@ffyb.uba.ar [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina)

    2013-07-01

    Reactive O{sub 2} species production triggered by particulate matter (PM) exposure is able to initiate oxidative damage mechanisms, which are postulated as responsible for increased morbidity along with the aggravation of respiratory diseases. The aim of this work was to quantitatively analyse the major sources of reactive O{sub 2} species involved in lung O{sub 2} metabolism after an acute exposure to Residual Oil Fly Ashes (ROFAs). Mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight), and lung samples were analysed 1 h after instillation. Tissue O{sub 2} consumption and NADPH oxidase (Nox) activity were evaluated in tissue homogenates. Mitochondrial respiration, respiratory chain complexes activity, H{sub 2}O{sub 2} and ATP production rates, mitochondrial membrane potential and oxidative damage markers were assessed in isolated mitochondria. ROFA exposure was found to be associated with 61% increased tissue O{sub 2} consumption, a 30% increase in Nox activity, a 33% increased state 3 mitochondrial O{sub 2} consumption and a mitochondrial complex II activity increased by 25%. During mitochondrial active respiration, mitochondrial depolarization and a 53% decreased ATP production rate were observed. Neither changes in H{sub 2}O{sub 2} production rate, nor oxidative damage in isolated mitochondria were observed after the instillation. After an acute ROFA exposure, increased tissue O{sub 2} consumption may account for an augmented Nox activity, causing an increased O{sub 2}{sup ·−} production. The mitochondrial function modifications found may prevent oxidative damage within the organelle. These findings provide new insights to the understanding of the mechanisms involving reactive O{sub 2} species production in the lung triggered by ROFA exposure. - Highlights: • Exposure to ROFA alters the oxidative metabolism in mice lung. • The augmented Nox activity contributes to the high tissue O{sub 2} consumption. • Exposure to ROFA

  19. Determination of the growth rate and volume of lipid produced by ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... generally been preferred over bacteria and algae as sources of oil because of the higher yield obtainable with some species, the quality of the oil produced, .... oleaginous organism is edible, can be used as fuel oil additive and for other industrial purposes. With further investigations, the oil produced by the ...

  20. Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid.

    Science.gov (United States)

    Lowrey, Joshua; Brooks, Marianne S; Armenta, Roberto E

    2016-05-01

    Improving the economics of microalgae production for the recovery of microbial oil requires a comprehensive exploration of the measures needed to improve productivity as well as to reduce the overall processing costs. One avenue for cost reduction involves recycling the effluent waste water remaining after lipid extraction. This study investigates the feasibility of recycling those wastes for growing thraustochytrid biomass, a heterotrophic microalgae, where wastes were generated from the enzymatic extraction of the lipids from the cell biomass. It was demonstrated that secondary cultures of the tested thraustochytrid grown in the recycled wastes performed favorably in terms of cell and oil production (20.48 g cells L(-1) and 40.9 % (w/w) lipid) compared to the control (13.63 g cells L(-1) and 56.8 % (w/w) lipid). Further, the significant uptake of solubilized cell material (in the form of amino acids) demonstrated that the recycled waste has the potential for offsetting the need for fresh medium components. These results indicate that the implementation of a nutrient recycling strategy for industrial microalgae production could be possible, with significant added benefits such as conserving water resources, improving production efficiency, and decreasing material inputs.

  1. Essential oil composition and biological activity from Artemisia caerulescens subsp. densiflora (Viv.) Gamisans ex Kerguélen & Lambinon (Asteraceae), an endemic species in the habitat of La Maddalena Archipelago.

    Science.gov (United States)

    Ornano, Luigi; Venditti, Alessandro; Ballero, Mauro; Sanna, Cinzia; Donno, Yuri; Quassinti, Luana; Bramucci, Massimo; Vitali, Luca A; Petrelli, Dezemona; Tirillini, Bruno; Papa, Fabrizio; Maggi, Filippo; Bianco, Armanodoriano

    2016-08-01

    The purpose of this study was to investigate the composition of the essential oil obtained from a population of Artemisia caerulescens subsp. densiflora growing in Razzoli, an island in the La Maddalena Archipelago (Sardinia, Italy). A. caerulescens sups. densiflora Viv. (Asteraceae), a wild herb, seldom studied in the Mediterranean, represents one of the many rare endemic species growing in North Sardinia. The essential oil composition was analysed by means of GC/MS analysis, which showed davana ethers as the major volatile components, accounting together for 17.5%, followed by (E)-nerolidol (4.5%), β-oplopenone (3.3%), cis-sabinene hydrate (5.2%) and terpinen-4-ol (4.7%). The oil was tested for antioxidant activity by means of DPPH test, inhibition of lipid oxidation test and hypochlorous acid test, which showed a quite interesting scavenger capacity. For the first time, we reported the cytotoxic activity of the essential oil of A. caerulescens subsp. densiflora, against three human tumour cell lines (A375, MDA-MB231 and HCT116), with IC50 values in the range 5.20-7.61 μg/mL, which deserved further studies to support its use as chemopreventive agent. Finally, the antimicrobial activity of the essential oil, displayed on a panel of human pathogens, was very low.

  2. Measurement of fine particulate matter water-soluble inorganic species and precursor gases in the Alberta Oil Sands Region using an improved semicontinuous monitor.

    Science.gov (United States)

    Hsu, Yu-Mei; Clair, Thomas A

    2015-04-01

    The ambient ion monitor-ion chromatography (AIM-IC) system, which provides hourly measurements of the main chemical components of PM2.5 (particulate matter with an aerodynamic diametergases, was evaluated and deployed from May to July 2011 and April to December 2013 in the Athabasca Oil Sands Region (AOSR) of northeastern Alberta, Canada. The collection efficiencies for the gas-phase SO2 and HNO3 using the cellulose membrane were 96% and 100%, respectively, and the collection efficiency of NH3 using the nylon membrane was 100%. The AIM-IC was compared with a collocated annular denuder sampling system (ADSS) and a Federal Reference Method (FRM) Partisol PM2.5 sampler. The correlation coefficients of SO4(2-) concentrations between the AIM-IC and ADSS and between the AIM-IC and the Partisol PM2.5 sampler were 0.98 and 0.95, respectively. The comparisons also showed no statistically significant difference between the measurement sets, suggesting that the AIM-IC measurements of the PM2.5 chemical composition are comparable to the ADSS and Partisol PM2.5 methods. NH3 concentration in the summer (mean±standard deviation, 1.9±0.7 µg m(-3)) was higher than in the winter (1.3±0.9 µg m(-3)). HNO3 and NO3- concentrations were generally low in the AOSR, and especially in the winter months. NH4+ (0.94±0.96 µg m(-3)) and SO4(2-) (0.58±0.93 µg m(-3)) were the major ionic species of PM2.5. Direct SO2 emissions from oil sands processing operations influenced ambient particulate NH4+ and SO4(2-) values, with hourly concentrations of NH4+ and SO4(2-) measured downwind (~30 km away from the stack) at 10 and 28 µg m(-3). During the regional forest fire event in 2011, high concentrations of NO3-, NH4+, HNO3, NH3, and PM2.5 were observed and the corresponding maximum hourly concentrations were 31, 15, 9.6, 89, and >450 (the upper limit of PM2.5 measurement) µg m(-3), suggesting the formation of NH4NO3. The AOSR in Canada is one of the most scrutinized industrial regions in the

  3. Potential of eleven Eucalyptus species for the production of essential oils Potencial de onze espécies de eucalipto para a produção de óleos essenciais

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Müller da Silva

    2006-02-01

    Full Text Available Most Eucalyptus plantations in Brazil aim the production of paper and charcoal, but the use of the species for lumbering, construction and extraction of essential oil has increased. Eleven species of Eucalyptus were assessed in regard to their essential oil production potential, nine never used before for commercial, essential oil extraction. Assessements were compared with Eucalyptus citriodora and Eucalyptus globulus, already explored in oil production for perfume and medical purposes, aiming to increase the availability of commercial species and the relationship between oil production and climatic conditions. Eucalyptus leaves were seasonally sampled (three months interval for distillation and determination of productivity and chemical composition of oil - contents of oils main components. Eucalyptus viminalis showed the highest potential for cineol, and standed out among the species not yet used commercially. Influenced by soil moisture contents and air temperature, the lowest and the highest oil production happened respectively in Spring and Summer. Water deficiency in Spring caused the lowest oil production. In the Summer, on the other hand, the highest oil production was observed when temperatures were higher and no water deficiency registered. There was no climatic influence on the main oil chemical component.A maioria das plantações de Eucalyptus brasileiras tem como objetivo a produção de papel e carvão, mas o uso das espécies para madeira, construção e extração de óleo essencial tem aumentado. Neste trabalho foram estudadas onze espécies de eucalipto quanto ao potencial para a obtenção de óleo essencial. Entre as espécies estudadas, nove não têm sido utilizadas na obtenção comercial de óleo. Para efeito comparativo, avaliou-se também duas outras espécies, o Eucalyptus citriodora e o Eucalyptus globulus, as quais são amplamente utilizadas, respectivamente, para a obtenção de óleo aromatizante e óleo para

  4. Krill oil: new nutraceuticals

    Directory of Open Access Journals (Sweden)

    Beuy Joob

    2015-08-01

    Full Text Available Krill oil is a new available health product which is produced from deep marine species. Its property is to promote good health. The good lipid composition and antioxidant enrichment make krill oil a new nutraceutical for reducing health problems.

  5. Study on the potential of water/oil of tubular alumina ceramics through flux and turbidity analysis; Estudo do potencial de separacao agua/oleo de membranas ceramicas tubulares de alumina atraves da analise das medidas de fluxo e turbidez

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A; Melo, K.S. [Universidade Federal, Campina Grande, PB (Brazil)]. E-mail: adrianasilva_cg@yahoo.com.br; Maia, J.B.N.; Franca, R.V.; Silva, R.A.V.; Lira, H.L.; Carvalho, L.H. [Universidade Federal, Campina Grande, PB (Brazil). Dept. de Engenharia de Materiais]. E-mail: helio@dema.ufpb.br; Franca, K.B.; Rodrigues, M.G.F [Universidade Federal, Campina Grande, PB (Brazil). Dept. de Engenharia Quimica]. E-mail: kepler@labdes.ufpb.br

    2003-07-01

    In the last years, a considerable attention was given to the effluents composed by contaminated water with oil and the impact on the environment . The water pollution by oleaginous hydrocarbon is specially harmful to the aquatic life, decreasing the transmission of light and disturb the normal mechanism of oxygen transfer. So, to remove oil from water is an important aspect to control the pollution from several industries. The ceramic membranes act as a barrier for the emulsified oil. It has been studied enough as a medium to separate oil/ water from stable emulsions. The objective of this work is to present an evaluation of the separation potential of a tubular alumina ceramic membrane made in laboratory from Materials Engineering Department, Federal University of Campina Grande (UFCG). It was done test of flux and concentration of oil the permeate. The results showed that the membranes can be satisfactorily used in the oil/water separation. (author)

  6. Biotechnological processes for biodiesel production using alternative oils

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Laura; Ciudad, Gustavo [La Frontera Univ., Temuco (Chile). Nucleo Cietifico Tecnologico en Biorrecursos; Heipieper, Hermann J. [Helmholtz Centre for Environmental Research-UFZ, Leipzig (Germany). Dept. of Environmental Biotechnology; Navia, Rodrigo [La Frontera Univ., Temuco (Chile). Nucleo Cietifico Tecnologico en Biorrecursos; La Frontera Univ., Temuco (Chile). Dept. de Ingenieria Quimica

    2010-10-15

    As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts. (orig.)

  7. Palm Oil

    Science.gov (United States)

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  8. Diesel oil

    Science.gov (United States)

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  9. Oil spills

    International Nuclear Information System (INIS)

    Katsouros, M.H.

    1992-01-01

    The world annually transports 1.7 billion tons of oil by sea, and oil spills, often highly concentrated discharges, are increasing from a variety of sources. The author discusses sources of oils spills: natural; marine transportation; offshore oil production; atmospheric sources; municipal industrial wastes and runoff. Other topics include: the fate of the spilled oil; the effects of the oil; the response to oil spills; and prevention of oil spills. 30 refs., 1 fig., 4 tabs

  10. Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1

    DEFF Research Database (Denmark)

    Lee, Young-Chul; Lee, Kyubock; Hwang, Yuhoon

    2014-01-01

    Synthesis of aminoclay-templated nanoscale zero-valent iron (nZVI) for efficient harvesting of oleaginous microalgae was demonstrated. According to various aminoclay loadings (0, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 aminoclay/nZVI ratios), the stability of nZVI was investigated as a function......ZVI composite (ratio 1.0) exhibited a highly positively charged surface (~+40 mV) and a ferromagnetic property (~30 emu/g). On the basis of these characteristics, oleaginous Chlorella sp. KR-1 was harvested within 3 min at a > 20 g/L loading under a magnetic field. In a scaled-up (24L) microalga harvesting...... process using magnetic rods, microalgae were successfully collected by attachment to the magnetic rods or by precipitation. It is believed that this approach, thanks to the recyclability of aminoclay-nZVI composites, can be applied in a continuous harvesting mode....

  11. Sustainable Management of Oleaginous Trees as a Source for Renewable Energy Supply and Climate Change Mitigation: A Case Study in China

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2018-05-01

    Full Text Available Forests provide a range of ecosystem services, including bioenergy supply and carbon sequestration, both contributing to significant climate change mitigation. Oleaginous trees have potential to provide bioenergy supplies through biodiesel-producing seed yield as well as contributing to carbon sequestration. This paper aims to show the provisions of bioenergy and carbon savings through forest rotation management and it will investigate the potential of oleaginous forest management in China. We use the land expectation value (LEV model to calculate the optimal joint values of timber, seed and total carbon savings, including carbon sequestration from forest and carbon reductions through energy substitutions. The results indicate that combining both values of seeds and carbon savings increase the LEV and rotation age (167,611 Yuan/ha, 78 years compared to sole timber value (26,053 Yuan/ha, 55 years. The optimization of the LEVs and the resulting optimal rotation ages are significantly sensitive to the discounting rate. Annual biodiesel potential production from Pistacia chinensis can take up 1.7% of the national diesel consumption in China. We conclude that China can use improved forest rotation management as an effective means for achieving goals in its low-carbon energy strategy.

  12. Oil Spills

    Science.gov (United States)

    ... up. How Oil Harms Animals and Plants in Marine Environments In general, oil spills can affect animals and plants in two ways: from the oil ... up. How Oil Harms Animals and Plants in Marine Environments In general, oil spills can affect animals and plants in two ways: from the oil ...

  13. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils.

    Science.gov (United States)

    Khoury, Madona; Stien, Didier; Eparvier, Véronique; Ouaini, Naïm; El Beyrouthy, Marc

    2016-01-01

    Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata , Origanum syriacum L., Rosmarinus officinalis , Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs). Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum . Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine.

  14. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils

    Science.gov (United States)

    Khoury, Madona; Eparvier, Véronique; Ouaini, Naïm

    2016-01-01

    Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata, Origanum syriacum L., Rosmarinus officinalis, Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs). Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum. Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine. PMID:28053641

  15. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils

    Directory of Open Access Journals (Sweden)

    Madona Khoury

    2016-01-01

    Full Text Available Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata, Origanum syriacum L., Rosmarinus officinalis, Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs. Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum. Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine.

  16. Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    2016-08-01

    Full Text Available Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG biosynthesis pathway in Trichoderma reesei. We then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. While the overall fatty acid methyl ester (FAME profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion on

  17. Comparative study of two coniferous species (Pinus pinaster Aiton and Cupressus sempervirens L. var. dupreziana [A. Camus] Silba) essential oils: chemical composition and biological activity

    OpenAIRE

    Amri, Ismail; Hanana, Mohsen; Gargouri, Samia; Jamoussi, Bassem; Hamrouni, Lamia

    2013-01-01

    Maritime pine (Pinus pinaster Aiton) and Saharan cypress (Cupressus sempervirens L. var. dupreziana [A. Camus] Silba) are two cone-bearing seed coniferous woody plants. The chemical composition of their essential oils, isolated from needles and leaves by hydrodistillation, was analyzed with gas chromatography (GC) and gas chromatography mass spectrometry (GC/MS). A total of 66 and 28 compounds were identified, which represented 99.5% and 98.9% of total pine and cypress oils, respectively. Pin...

  18. Streptomyces jeddahensis sp. nov., an oleaginous bacterium isolated from desert soil.

    Science.gov (United States)

    Röttig, Annika; Atasayar, Ewelina; Meier-Kolthoff, Jan Philipp; Spröer, Cathrin; Schumann, Peter; Schauer, Jennifer; Steinbüchel, Alexander

    2017-06-01

    A novel strain, G25T, was isolated from desert soil collected near Jeddah in Saudi Arabia. The strain could accumulate nearly 65 % of its cell dry weight as fatty acids, grow on a broad range of carbon sources and tolerate temperatures of up to 50 °C. With respect to to its 16S rRNA gene sequence, G25T is most closely related to Streptomyces massasporeus DSM 40035T, Streptomyces hawaiiensis DSM 40042T, Streptomyces indiaensis DSM 43803T, Streptomyces luteogriseus DSM 40483T and Streptomyces purpurascens DSM 40310T. Conventional DNA-DNA hybridization (DDH) values ranged from 18.7 to 46.9 % when G25T was compared with these reference strains. Furthermore, digital DDH values between the draft genome sequence of G25T and the genome sequences of other species of the genus Streptomyces were also significantly below the threshold of 70 %. The DNA G+C content of the draft genome sequence, consisting of 8.46 Mbp, was 70.3 %. The prevalent cellular fatty acids of G25T comprised anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The polar lipids profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and phosphatidylinositol mannosides as well as unidentified phospholipids and phosphoaminolipids. The cell wall contained ll-diaminopimelic acid. Whole-cell sugars were predominantly glucose with small traces of ribose and mannose. The results of the polyphasic approach confirmed that this isolate represents a novel species of the genus Streptomyces, for which the name Streptomyces jeddahensis sp. nov. is proposed. The type strain of this species is G25T (=DSM 101878T =LMG 29545T =NCCB 100603T).

  19. Chemical and Biological Evaluation of Essential Oils from Two Species of Myrtaceae — Eugenia uniflora L. and Plinia trunciflora (O. Berg Kausel

    Directory of Open Access Journals (Sweden)

    Marisi G. Soares

    2011-11-01

    Full Text Available The chemical composition and antimicrobial activity of essential oils obtained from leaves of two Myrtaceae species–Eugenia uniflora L. and Plinia trunciflora (O. Berg Kausel–were determined. Analysis by GC/MS as well as determination of Kovatz indexes indicated atractylone (26.78% and curzerene (17.96% as major constituents of E. uniflora oil and α-cadinol (19.15%, apiole (11.15% and cubenol (5.43% as main components in P. trunciflora oil. Both essential oils were tested for antimicrobial activity against yeasts and bacteria. E. uniflora and P. trunciflora essential oils were active towards two Gram-positive bacteria, Streptococcus equi and Staphylococcus epidermis. In addition, biological activity of both essential oils was detected for pathogenic yeasts of the genus Candida and Cryptococcus. E. uniflora was active towards all yeast tested and exhibited interesting minimal inhibitory concentrations (0.11 to 3.75 mg/mL across a broad spectrum of activity.

  20. Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins.

    Science.gov (United States)

    de Oliveira, Kataryne Árabe Rimá; Berger, Lúcia Raquel Ramos; de Araújo, Samara Amorim; Câmara, Marcos Paz Saraiva; de Souza, Evandro Leite

    2017-09-01

    This study assessed the efficacy of chitosan (CHI) and Mentha piperita L. essential oil (MPEO) alone or in combination to control the mycelial growth of five different Colletotrichum species, C. asianum, C. dianesei, C. fructicola, C. tropicale and C. karstii, identified as potential anthracnose-causing agents in mango (Mangifera indica L.). The efficacy of coatings of CHI and MPEO mixtures in controlling the development of anthracnose in mango cultivar Tommy Atkins was evaluated. CHI (2.5, 5, 7.5 and 10 mg/mL) and MPEO (0.3, 0.6, 1.25, 2.5 and 5 μL/mL) alone effectively inhibited mycelial growth of all tested Colletotrichum strains in synthetic media. Mixtures of CHI (5 or 7.5 mg/mL) and MPEO (0.3, 0.6 or 1.25 μL/mL) strongly inhibited mycelial growth and showed additive or synergistic inhibitory effects on the tested Colletotrichum strains based on the Abbott index. The application of coatings of CHI (5 or 7.5 mg/mL) and MPEO (0.6 or 1.25 μL/mL) mixtures that presented synergistic interactions decreased anthracnose lesion severity in mango artificially contaminated with either of the tested Colletotrichum strains over 15 days of storage at 25 °C. The anthracnose lesion severity in mango coated with the mixtures of CHI and MPEO was similar or lower than those observed in mango treated with the synthetic fungicides thiophanate-methyl (10 μg a.i./mL) and difenoconazole (0.5 μg a.i./mL). The application of coatings containing low doses of CHI and MPEO may be an effective alternative for controlling the postharvest development of anthracnose in mango cultivar Tommy Atkins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum species.

    Science.gov (United States)

    Tabanca, Nurhayat; Gao, Zengping; Demirci, Betul; Techen, Natascha; Wedge, David E; Ali, Abbas; Sampson, Blair J; Werle, Chris; Bernier, Ulrich R; Khan, Ikhlas A; Baser, Kemal Husnu Can

    2014-09-03

    In this study, Angelica dahurica and Angelica pubescentis root essential oils were investigated as pest management perspectives, and root samples were also analyzed genetically using the nuclear ribosomal internal transcribed spacer (ITS) region as a DNA barcode marker. A. pubescentis root essential oil demonstrated weak antifungal activity against Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides, whereas A. dahurica root essential oil did not show antifungal activity. Conversely, A. dahurica root essential oil demonstrated better biting deterrent and insecticidal activity against yellow fever mosquito, Aedes aegypti, and azalea lace bugs, Stephanitis pyrioides, than A. pubescentis root oil. The major compounds in the A. dahurica oil were found as α-pinene (46.3%), sabinene (9.3%), myrcene (5.5%), 1-dodecanol (5.2%), and terpinen-4-ol (4.9%). α-Pinene (37.6%), p-cymene (11.6%), limonene (8.7%), and cryptone (6.7%) were the major compounds found in the A. pubescentis oil. In mosquito bioassays, 1-dodecanol and 1-tridecanol showed antibiting deterrent activity similar to the positive control DEET (N,N-diethyl-3-methylbenzamide) at 25 nmol/cm(2) against Ae. aegypti, whereas only 1-tridecanol showed repellent activity in human-based cloth patch bioassay with minimum effective dosages (MED) of 0.086 ± 0.089 mg/cm(2) (DEET = 0.007 ± 0.003 mg/cm(2)). In larval bioassays, 1-tridecanol was more toxic with an LC50 value of 2.1 ppm than 1-dodecanol having an LC50 value of 5.2 ppm against 1-day-old Ae. aegypti larvae. 1-Dodecanol and 1-tridecanol could be useful for the natural mosquito control agents.

  2. Óleos voláteis de espécies de Myrcia nativas do Rio Grande do Sul Essential oils from Myrcia species native to Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Renata P. Limberger

    2004-12-01

    Full Text Available Essential oils from M. richardiana, M. arborescens, M. selloi, M. oligantha, M. rostrata, M. lajeana, M. obtecta, M. pubipetala and M. hatschbachii were obtained by hydrodistillation and analyzed by GC and GC/MS. Sixty-seven compounds have been identified ranging from 90-99% of the oil contents. All analyzed species were rich in cyclic sesquiterpenes (66-99%, mainly those from the cadinane, caryophyllane and germacrane cyclization pathway, among them b-caryophyllene, germacrene D, bicyclogermacrene, d-cadinene, spathulenol, caryophyllene oxide, globulol and a-cadinol. The acyclic sesquiterpene series was well represented by M. lajeana (32.1%, with 25,3% of (E-nerolidyl acetate.

  3. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.

    Science.gov (United States)

    Radakovits, Randor; Jinkerson, Robert E; Fuerstenberg, Susan I; Tae, Hongseok; Settlage, Robert E; Boore, Jeffrey L; Posewitz, Matthew C

    2012-02-21

    The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga.

  4. Unlocking nature’s treasure-chest: screening for oleaginous algae

    Science.gov (United States)

    Slocombe, Stephen P.; Zhang, QianYi; Ross, Michael; Anderson, Avril; Thomas, Naomi J.; Lapresa, Ángela; Rad-Menéndez, Cecilia; Campbell, Christine N.; Black, Kenneth D.; Stanley, Michele S.; Day, John G.

    2015-01-01

    Micro-algae synthesize high levels of lipids, carbohydrates and proteins photoautotrophically, thus attracting considerable interest for the biotechnological production of fuels, environmental remediation, functional foods and nutraceuticals. Currently, only a few micro-algae species are grown commercially at large-scale, primarily for “health-foods” and pigments. For a range of potential products (fuel to pharma), high lipid productivity strains are required to mitigate the economic costs of mass culture. Here we present a screen concentrating on marine micro-algal strains, which if suitable for scale-up would minimise competition with agriculture for water. Mass-Spectrophotometric analysis (MS) of nitrogen (N) and carbon (C) was subsequently validated by measurement of total fatty acids (TFA) by Gas-Chromatography (GC). This identified a rapid and accurate screening strategy based on elemental analysis. The screen identified Nannochloropsis oceanica CCAP 849/10 and a marine isolate of Chlorella vulgaris CCAP 211/21A as the best lipid producers. Analysis of C, N, protein, carbohydrate and Fatty Acid (FA) composition identified a suite of strains for further biotechnological applications e.g. Dunaliella polymorpha CCAP 19/14, significantly the most productive for carbohydrates, and Cyclotella cryptica CCAP 1070/2, with utility for EPA production and N-assimilation. PMID:26202369

  5. Evaluation of the seed oil of three citrus species, for the control of the bean beetle, callosobruchus maculatus (F) (coleoptera: bruchidae)

    International Nuclear Information System (INIS)

    Ogunleye, R.F.

    2009-01-01

    On application of the seed oil of ripe and unripe fruits of Citrus sinensis, C. paradisi and C. aurantifolia to the cowpea bruchid, Callosobruchus maculatus (F) for three days, a dose of 0.5 ml of C. sinensis gave, significantly, high mortality rate upto 85%. In case of C. aurantifolia, mortality ranged from 75% to 100%. Same least dosage of seed oil of ripe C. paradissi produced 58.8% to 100% mortality, whereas, except the dose of 0.5 ml, all the other treatments of unripe C. paradissi resulted in 100% mortality after 24 h. (author)

  6. Investigating oiled birds from oil field waste pits

    International Nuclear Information System (INIS)

    Gregory, D.G.; Edwards, W.C.

    1991-01-01

    Procedures and results of investigations concerning the oiling of inland raptors, migratory water-fowl and other birds are presented. Freon washings from the oiled birds and oil from the pits were analyzed by gas chromatography. In most instances the source of the oil could be established by chromatographic procedures. The numbers of birds involved (including many on the endangered species list) suggested the need for netting or closing oil field waste pits and mud disposal pits. Maintaining a proper chain of custody was important

  7. Combined "de novo" and "ex novo" lipid fermentation in a mix-medium of corncob acid hydrolysate and soybean oil by Trichosporon dermatis.

    Science.gov (United States)

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Qi, Gao-Xiang; Xiong, Lian; Lin, Xiao-Qing; Wang, Can; Li, Hai-Long; Chen, Xin-De

    2017-01-01

    Microbial oil is one important bio-product for its important function in energy, chemical, and food industry. Finding suitable substrates is one key issue for its industrial application. Both hydrophilic and hydrophobic substrates can be utilized by oleaginous microorganisms with two different bio-pathways (" de novo " lipid fermentation and " ex novo " lipid fermentation). To date, most of the research on lipid fermentation has focused mainly on only one fermentation pathway and little work was carried out on both " de novo " and " ex novo " lipid fermentation simultaneously; thus, the advantages of both lipid fermentation cannot be fulfilled comprehensively. In this study, corncob acid hydrolysate with soybean oil was used as a mix-medium for combined " de novo " and " ex novo " lipid fermentation by oleaginous yeast Trichosporon dermatis . Both hydrophilic and hydrophobic substrates (sugars and soybean oil) in the medium can be utilized simultaneously and efficiently by T. dermatis . Different fermentation modes were compared and the batch mode was the most suitable for the combined fermentation. The influence of soybean oil concentration, inoculum size, and initial pH on the lipid fermentation was evaluated and 20 g/L soybean oil, 5% inoculum size, and initial pH 6.0 were suitable for this bioprocess. By this technology, the lipid composition of extracellular hydrophobic substrate (soybean oil) can be modified. Although adding emulsifier showed little beneficial effect on lipid production, it can modify the intracellular lipid composition of T. dermatis . The present study proves the potential and possibility of combined " de novo " and " ex novo " lipid fermentation. This technology can use hydrophilic and hydrophobic sustainable bio-resources to generate lipid feedstock for the production of biodiesel or other lipid-based chemical compounds and to treat some special wastes such as oil-containing wastewater.

  8. Essential oils of indigenous plants protect livestock from infestations of Rhipicephalus appendiculatus and other tick species in herds grazing in natural pastures in western Kenya

    NARCIS (Netherlands)

    Wanzala, Wycliffe; Hassanali, Ahmed; Mukabana, Wolfgang Richard; Takken, Willem

    2018-01-01

    The effects of formulated essential oils of Tagetes minuta and Tithonia diversifolia on Rhipicephalus appendiculatus infesting livestock were evaluated in semi-field experiments. Forty-five zebu cattle naturally infested with ticks were randomly selected from 15 herds, three animals from each. Of

  9. Phytochemical Profile and Evaluation of the Biological Activities of Essential Oils Derived from the Greek Aromatic Plant Species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita

    Directory of Open Access Journals (Sweden)

    Eleni Fitsiou

    2016-08-01

    Full Text Available Natural products, known for their medicinal properties since antiquity, are continuously being studied for their biological properties. In the present study, we analyzed the composition of the volatile preparations of essential oils of the Greek plants Ocimum basilicum (sweet basil, Mentha spicata (spearmint, Pimpinella anisum (anise and Fortunella margarita (kumquat. GC/MS analyses revealed that the major components in the essential oil fractions, were carvone (85.4% in spearmint, methyl chavicol (74.9% in sweet basil, trans-anethole (88.1% in anise, and limonene (93.8% in kumquat. We further explored their biological potential by studying their antimicrobial, antioxidant and antiproliferative activities. Only the essential oils from spearmint and sweet basil demonstrated cytotoxicity against common foodborne bacteria, while all preparations were active against the fungi Saccharomyces cerevisiae and Aspergillus niger. Antioxidant evaluation by DPPH and ABTS radical scavenging activity assays revealed a variable degree of antioxidant potency. Finally, their antiproliferative potential was tested against a panel of human cancer cell lines and evaluated by using the sulforhodamine B (SRB assay. All essential oil preparations exhibited a variable degree of antiproliferative activity, depending on the cancer model used, with the most potent one being sweet basil against an in vitro model of human colon carcinoma.

  10. Phytochemical Profile and Evaluation of the Biological Activities of Essential Oils Derived from the Greek Aromatic Plant Species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita.

    Science.gov (United States)

    Fitsiou, Eleni; Mitropoulou, Gregoria; Spyridopoulou, Katerina; Tiptiri-Kourpeti, Angeliki; Vamvakias, Manolis; Bardouki, Haido; Panayiotidis, Mihalis Ι; Galanis, Alex; Kourkoutas, Yiannis; Chlichlia, Katerina; Pappa, Aglaia

    2016-08-16

    Natural products, known for their medicinal properties since antiquity, are continuously being studied for their biological properties. In the present study, we analyzed the composition of the volatile preparations of essential oils of the Greek plants Ocimum basilicum (sweet basil), Mentha spicata (spearmint), Pimpinella anisum (anise) and Fortunella margarita (kumquat). GC/MS analyses revealed that the major components in the essential oil fractions, were carvone (85.4%) in spearmint, methyl chavicol (74.9%) in sweet basil, trans-anethole (88.1%) in anise, and limonene (93.8%) in kumquat. We further explored their biological potential by studying their antimicrobial, antioxidant and antiproliferative activities. Only the essential oils from spearmint and sweet basil demonstrated cytotoxicity against common foodborne bacteria, while all preparations were active against the fungi Saccharomyces cerevisiae and Aspergillus niger. Antioxidant evaluation by DPPH and ABTS radical scavenging activity assays revealed a variable degree of antioxidant potency. Finally, their antiproliferative potential was tested against a panel of human cancer cell lines and evaluated by using the sulforhodamine B (SRB) assay. All essential oil preparations exhibited a variable degree of antiproliferative activity, depending on the cancer model used, with the most potent one being sweet basil against an in vitro model of human colon carcinoma.

  11. Effects of fluorine on the germination of some species of seeds

    Energy Technology Data Exchange (ETDEWEB)

    Navara, J; Holub, Z; Bedatsova, L

    1966-01-01

    The various degrees of tolerance of the seeds of some species of plants towards fluorine and their ability to accumulate fluorine under experimental conditions are presented. The effects of fluorine on the germination of seeds manifests itself in various ways. The studied species have been divided into four groups according to their natural tolerance: (1) very sensitive: pea, soya, vetch and cabbage; (2) sensitive: radish, barley, cole; (3) less sensitive: maize, cauliflower, alfalfa, mustard, oats, clover kohlrabi; and (4) tolerant: poppy, carrot, tomato. Highly tolerant species are capable of accumulating considerable amounts of fluorine when compared with the more sensitive species. A more intensive accumulation of fluorine has been noticed in the oleaginous species, viz. mustard and poppy. A correlation was found to exist between the ash contents (especially of calcium) and the ability of a greater accumulation of fluorine. 23 references, 6 figures, 2 tables.

  12. Oil Spills

    Science.gov (United States)

    Oil spills often happen because of accidents, when people make mistakes or equipment breaks down. Other causes include natural disasters or deliberate acts. Oil spills have major environmental and economic effects. Oil ...

  13. Oil content and physicochemical characteristics of some wild oilseed ...

    African Journals Online (AJOL)

    The plant seed oils content reported in this study are comparatively higher than some food crop plants such as soybean and olive. Five of these oils have oil melting range as that of edible oils. C. grandiflora, C. halicacabum, M. eminii and the two species of Myrianthus are in the range of common cooking oils by their ...

  14. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.

    Science.gov (United States)

    Brandão, Luiz Filipe Paiva; Braga, Jez Willian Batista; Suarez, Paulo Anselmo Ziani

    2012-02-17

    The current legislation requires the mandatory addition of biodiesel to all Brazilian road diesel oil A (pure diesel) marketed in the country and bans the addition of vegetable oils for this type of diesel. However, cases of irregular addition of vegetable oils directly to the diesel oil may occur, mainly due to the lower cost of these raw materials compared to the final product, biodiesel. In Brazil, the situation is even more critical once the country is one of the largest producers of oleaginous products in the world, especially soybean, and also it has an extensive road network dependent on diesel. Therefore, alternatives to control the quality of diesel have become increasingly necessary. This study proposes an analytical methodology for quality control of diesel with intention to identify and determine adulterations of oils and even fats of vegetable origin. This methodology is based on detection, identification and quantification of triacylglycerols on diesel (main constituents of vegetable oils and fats) by high performance liquid chromatography in reversed phase with UV detection at 205nm associated with multivariate methods. Six different types of oils and fats were studied (soybean, frying oil, corn, cotton, palm oil and babassu) and two methods were developed for data analysis. The first one, based on principal component analysis (PCA), nearest neighbor classification (KNN) and univariate regression, was used for samples adulterated with a single type of oil or fat. In the second method, partial least square regression (PLS) was used for the cases where the adulterants were mixtures of up to three types of oils or fats. In the first method, the techniques of PCA and KNN were correctly classified as 17 out of 18 validation samples on the type of oil or fat present. The concentrations estimated for adulterants showed good agreement with the reference values, with mean errors of prediction (RMSEP) ranging between 0.10 and 0.22% (v/v). The PLS method was

  15. Avaliação sazonal do rendimento de óleo essencial em espécies de menta Seasonal evaluation of essential oil yield of mint species

    Directory of Open Access Journals (Sweden)

    Cícero Deschamps

    2008-06-01

    Full Text Available O gênero Mentha compreende diversas espécies de interesse econômico por causa da produção de óleos essenciais. Recentemente, foram introduzidos no Brasil novos materiais genéticos para avaliação da adaptação em relação ao potencial de rendimento e composição do óleo essencial. No presente trabalho, foram comparadas essas características em cultivares das espécies Mentha x piperita L. (cv. Grapefruit Mint e cv. Persian Mint Field, M. suaveolens Ehrh. (cv. Hillarys Sweet Lemon Mint, M. spicata L. (cv. Mentol Mint, M. aquatica L. (cv. Common Mint e M. arvensis L. (cv. Banana Mint, durante o verão e inverno em Curitiba (PR. O rendimento médio das cultivares no verão foi aproximadamente o dobro do rendimento observado no inverno. Duas cultivares de Mentha x piperita L. (cv. Persina Mint Field e cv. Grapefruit Mint apresentaram maior rendimento de óleo essencial no verão e inverno, sendo que as demais não diferiram entre si. A análise da composição do óleo essencial indicou grande variação nessas cultivares, sendo observada a presença de linalol, como constituinte majoritário na cv. Grapefruit Mint e a-felandren-8-ol e cis-ocimeno na cv. Persian Mint Field.The genus Mentha includes many species of economic interest due the essential oil production. Recently new genetic materials were introduced in Brazil to evaluate the adaptation related to essential oil yield and composition. In the present work, these characteristics were compared in six cultivars of the species Mentha x piperita L. (cv. Grapefruit Mint e cv. Persian Mint Field, M. suaveolens Ehrh (cv. Hillarys Sweet Lemon Mint, M. spicata L. (cv. Mentol Mint, M. aquatica L. (cv. Common Mint and M. arvensis L. (cv. Banana Mint during summer and winter in Curitiba (PR. The average of essential oil yield obtained from samples collected during the summer was approximately two fold the observed during the winter. Two cultivars of Mentha piperita (cv. Persian Mint Field

  16. Oil troubles waters

    International Nuclear Information System (INIS)

    Bravo, E.

    1998-01-01

    The sea provides a vast array of natural resources for thousands of local communities in the tropics. But the presence of the oil industry has significant social and environmental impacts, both from accidents and from routine activities like seismic exploration, drilling and the generation of polluting wastes. When accidents occur, sessile life (species attached to surface such as rocks or the seabed) is the first to be affected; its mortality increases as oil accumulates, although certain organisms, like gastropods, tolerate it better

  17. Purification and protein composition of oil bodies from Brassica napus seeds

    Directory of Open Access Journals (Sweden)

    Jolivet Pascale

    2006-11-01

    Full Text Available Seed oil bodies are intracellular particles to store lipids as food reserves in oleaginous plants. Description of oil body-associated proteins of Arabidopsis thaliana has been recently reported whereas only few data are available in the case of rapeseed. Oil bodies have been prepared from two double-low varieties of Brassica napus seeds, a standard variety (Explus and an oleic variety (Cabriolet. Oil bodies have been purified using floatation technique in the successive presence of high salt concentration, detergent or urea in order to remove non-specifically trapped proteins. The integrity of the oil bodies has been verified and their size estimated. Their protein and fatty acid contents have been determined. The proteins composing these organelles were extracted, separated by denaturing gel electrophoresis, digested by trypsin and their peptides were subsequently analyzed by liquid chromatography-tandem mass spectrometry. Protein identification was performed using Arabidopsis thaliana protein sequence database and a collection of Expressed Sequence Tag (EST of Brassica napus generated from the framework of the French plant genomics programme “Genoplante”. This led to the identification of a limited number of proteins: eight oleosins showing a high similarity each other and representing up to 75% of oil body proteins, a 11 β hydroxysteroid dehydrogenase-like protein highly homologous to the same protein from A. thaliana, and only few contaminating proteins associated with myrosinase activity.

  18. Oil spill clean up

    International Nuclear Information System (INIS)

    Claxton, L.D.; Houk, V.S.; Williams, R.; Kremer, F.

    1991-01-01

    Due to the consideration of bioremediation for oil spills, it is important to understand the ecological and human health implications of bioremediation efforts. During biodegradation, the toxicity of the polluting material may actually increase upon the conversion of non-toxic constituents to toxic species. Also, toxic compounds refractory to biological degradation may compromise the effectiveness of the treatment technique. In the study, the Salmonella mutagenicity assay showed that both the Prudhoe Bay crude oil and its weathered counterpart collected from oil-impacted water were weakly mutagenic. Results also showed that the mutagenic components were depleted at a faster rate than the overall content of organic material

  19. Chitosan encapsulation of essential oil "cocktails" with well-defined binary Zn(II)-Schiff base species targeting antibacterial medicinal nanotechnology.

    Science.gov (United States)

    Halevas, Eleftherios; Nday, Christiane M; Chatzigeorgiou, Evanthia; Varsamis, Vasileios; Eleftheriadou, Despoina; Jackson, Graham E; Litsardakis, Georgios; Lazari, Diamanto; Ypsilantis, Konstantinos; Salifoglou, Athanasios

    2017-11-01

    The advent of biodegradable nanomaterials with enhanced antibacterial activity stands as a challenge to the global research community. In an attempt to pursue the development of novel antibacterial medicinal nanotechnology, we herein a) synthesized ionic-gelated chitosan nanoparticles, b) compared and evaluated the antibacterial activity of essential oils extracted from nine different herbs (Greek origin) and their combinations with a well-defined antibacterial Zn(II)-Schiff base compound, and c) encapsulated the most effective hybrid combination of Zn(II)-essential oils inside the chitosan matrix, thereby targeting well-formulated nanoparticles of distinct biological impact. The empty and loaded chitosan nanoparticles were physicochemically characterized by FT-IR, Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), with the entrapment and drug release studies being conducted through UV-Visible and atomic absorption techniques. The antimicrobial properties of the novel hybrid materials were demonstrated against Gram positive (S. aureus, B. subtilis, and B. cereus) and Gram negative (E. coli and X. campestris) bacteria using modified agar diffusion methods. The collective physicochemical profile of the hybrid Zn(II)-essential oil cocktails, formulated so as to achieve optimal activity when loaded to chitosan nanoparticles, signifies the importance of design in the development of efficient nanomedicinal pharmaceuticals a) based on both natural products and biogenic metal ionic cofactors, and b) targeting bacterial infections and drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Chlorides retention of barium and chromium in two mangrove species Avicennia germinans and Rhizophora mangrove, developed in waters of the oil industry production, by means of the technique of hydroponics cultivation

    International Nuclear Information System (INIS)

    Grosso, J L; Sanchez L E; Avendano D; Restrepo, R

    2000-01-01

    The objective of the present study was to determine the phytoremediation mechanism (phytoextraction y/o rhizofiltration) given by the mangroves Rhizophora mangle and Avicennia germinans, when exposed to waters from an oil production field applying the hidroponia technique like system for growing the species. Determination of chlorides, barium and chromium bioaccumulation in tissues of mangrove species under study was compared with content of these elements in an inert substrate without mangroves. Bioaccumulation of the targeted elements was measured after 308 days exposure of the mangroves to production waters with initial barium and chromium contents of 1.25 g.m -3 and 0.002 g.m -3 respectively, and salinity in the range of 2,000 to 3,000 mg.kg -1 . Bioaccumulation of the studied elements (chlorides, barium and chromium) in tissues of both species was correlated to the increment in biomass of each species, as well as to the general physical condition of the plants. Survival rates higher than 95% of the exposed plants to production water during the time of study, increment in biomass of up to 5.88 g.day -1 , and concentrations of chlorides in tissues in the 0 - 170,000 mg.kg -1 during the considered period were observed. No significant difference between the two mangrove species was obtained. Bioaccumulation in tissues does not cause symptoms of deficiency in growing rates in the studied plants compared to natural rate indexes. Similarly, the analyses of inert substrate around the mangrove roots showed chloride and barium concentrations, contrary to the results of the targeted elements in the inert substrate when mangroves are not present. Both phytoremediation mechanisms were observed for the two mangrove species

  1. Nutritional quality of the seed oil in thirteen Asphodeline species (Xanthorrhoeaceae) from Turkey; Calidad nutricional del aceite de semilla de trece especies Asphodeline (Xanthorrhoeaceae) procedentes de Turquía

    Energy Technology Data Exchange (ETDEWEB)

    Zengin, G.; Aktumsek, A.; Giron-Calle, J.; Vioque, J.; Megias, C.

    2016-07-01

    The fatty acid composition of the seed oil from 13 Turkish Asphodeline species was analyzed. The seed oil content ranged between 0.9% and 4.6%, and included 26 different fatty acids from C12:0 to C22:5. The most abundant saturated, monounsaturated, and polyunsaturated fatty acids were C16:0 (5.7% to 23.7% of their total fatty acid content), C18:1ω9 (11.3% to 30.3%), and C18:2ω6 (49.2% to 66.1%). A. tenuior subsp. tenuiflora, which had the highest content of unsaturated fatty acids, also had the best fatty acid profile from a nutritional point of view. Asphodeline seed oil composition was similar to that of local, related vegetables such as onion seeds. Asphodeline species, which are most frequently grown to use the leaves in salads, may also be a good source of seed oil with good nutritional properties. Results of a cluster analysis using data on the fatty acid composition are consistent with the taxonomic classification of genus Asphodeline. [Spanish] Se ha analizado la composición en ácidos grasos del aceite de las semillas de 13 especies deAsphodeline de Turquía. El contenido en aceite de las semillas osciló entre el 0.9% y el 4.6% e incluyó 26 ácidos grasos distintos entre C12:0 y C22:5. Los ácidos grasos saturados, monoinsaturados y poliinsaturados más abundantes fueron C16:0 (5.7% a 23.7%), C18:1ω9 (11.3% a 30.3%) y C18:2ω6 (49.2% a 66.1%). A. tenuior subsp. tenuiflora, que presentó el contenido más alto en ácidos grasos insaturados, también enía el mejor perfil en ácidos grasos desde un punto de vista nutricional. La composición del aceite de las semillas de Asphodeline fue similar a la de vegetales relacionados como la cebolla. Asphodeline, cuyas hojas son consumidas en ensaladas, puede representar también una buena fuente de aceite de las semillas con buenas propiedades nutricionales. Los resultados del análisis de grupos usando los datos de la composición en ácidos grasos son consistentes con la clasificación taxonómica del g

  2. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Oil risk in oil stocks

    NARCIS (Netherlands)

    Scholtens, Bert; Wang, L

    2008-01-01

    We assess the oil price sensitivities and oil risk premiums of NYSE listed oil & gas firms' returns by using a two-step regression analysis under two different arbitrage pricing models. Thus, we apply the Fama and French (1992) factor returns in a study of oil stocks. In all, we find that the return

  4. Oil spill response plan

    International Nuclear Information System (INIS)

    1999-08-01

    The plan outlined in this document specifies the actions that the Canadian Wildlife Service Atlantic Region is mandated to take in the event of an oil spill, or on discovering oiled migratory birds in terrestrial, fresh water, marine and inter-tidal habitats. In addition to describing the role and responsibilities of the Canadian Wildlife Service, the document also describes response plans of other agencies for dealing with all wildlife species affected by oil spills. Reporting paths, the lead agency concept, shared responsibilities with other Canadian Wildlife Service regional offices, provincial agencies, Heritage Canada, non-government wildlife response agencies, oil spill response organizations, and international organizations are outlined. An overview of the reporting and communications process is also provided

  5. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia.

    Science.gov (United States)

    Ibrahim, Mohamed M; Al-Turki, Ameena; Al-Sewedi, Dona; Arif, Ibrahim A; El-Gaaly, Gehan A

    2015-09-01

    Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum.

  6. Lavender oil

    Science.gov (United States)

    Lavender oil is an oil made from the flowers of lavender plants. Lavender poisoning can occur when ... further instructions. This is a free and confidential service. All local poison control centers in the United ...

  7. Petroleum Oils

    Science.gov (United States)

    Different types of crude oil and refined product, of all different chemical compositions, have distinct physical properties. These properties affect the way oil spreads and breaks down, its hazard to marine and human life, and the likelihood of threat.

  8. Identificación de ácidos grasos contenidos en los aceites extraídos a partir de semillas de tres diferentes especies de frutas Identification of fatty acids contained in the oils extracted from seeds of three different species of fruit

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Cerón

    2012-04-01

    Full Text Available En este estudio se midió el rendimiento de aceite y la composición de ácidos grasos presentes en semillas de las frutas andinas tropicales: lulo de la variedad castilla (Solanum quitoense, mora de la variedad castilla (Rubus glaucus y maracuyá (Passiflora edulis. La extracción se hizo con solventes en un extractor Soxhlet utilizando éter etílico al 99.8% de pureza y punto de ebullición 40 - 60 °C. Para identificar los ácidos grasos se empleó cromatografía de gases con detector FID (GC-FID. Los rendimientos en aceite fueron de 8.5% para lulo, 12.2% para mora y 21.2% para maracuyá. Los ácidos grasos encontrados en semillas de lulo fueron palmítico (15.6% y linoléico (58.1%; en semillas de mora linoléico (50.1% y linolénico (25.1% y en las de maracuyá palmítico (15.44%, oleico (15.47% y linoléico (63.1%. El contenido graso de las semillas evaluadas evidenció su potencial como materia prima oleaginosa y por sus contenidos de ácidos grasos se pueden considerar una fuente importante de componentes para las industrias alimentaria, farmacéutica y cosmética.The objective of the study was to determine yield in oil and composition in the fatty acids present in three different seeds from Andean fruits: Lulo castilla variety (Solanum quitoense; blackberry castilla variety (Rubus glaucus, and the passion fruit or maracuya (Passiflora edulis. The extraction was carried out by solvent extraction method with a Soxhlet extractor using ethyl ether as solvent at 99.8% to purity and boiling point of 40 - 60 ° C. To identify the fatty acids gas chromatography with FID detector (GC-FID was used. Oil yields were obtained from 8.5% for lulo, 12.2% for blackberry and 21.2% for maracuya. The fatty acids found were the follow: In seeds of lulo were found palmitic acid 15.6% and linoleic acid 58.1%; in seeds of blackberry 50.1% of linoleic acid and linolenic acid 25.1%; in seeds of maracuya, palmitic acid 15.44%, oleic acid 15.47% and linoleic 63

  9. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams.

    Science.gov (United States)

    Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2017-12-01

    The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Valorization of By-Products from Palm Oil Mills for the Production of Generic Fermentation Media for Microbial Oil Synthesis.

    Science.gov (United States)

    Tsouko, Erminda; Kachrimanidou, Vasiliki; Dos Santos, Anderson Fragoso; do Nascimento Vitorino Lima, Maria Eduarda; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise Maria Guimarães; Koutinas, Apostolis A

    2017-04-01

    This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.

  11. Oil biodegradation

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Langenhoff, Alette A.M.; Smit, Martijn P.J.; Eenennaam, van Justine S.; Murk, Tinka; Rijnaarts, Huub H.M.

    2017-01-01

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study

  12. Biodiesel production and Environmental CO2 cleanup using Oleaginous Microorganisms from Al-Hassa area in Saudi Arabia

    Science.gov (United States)

    El-Sinawi, Abdulaziz; Shathele, Mohammad

    2014-12-01

    Biodiesel production is rapidly moving towards the mainstream as an alternative source of energy. Algae oil is one of the viable feed stocks among others to produce Biodiesel. However the difficulties in efficient biodiesel production from algae lie not in the extraction of the oil, but in finding an algal strain with a high lipid content and fast growth rate. This paper presents an experimental work performed to study the production of biodiesel from local algae strains in Al-Hassa territory of the eastern province in Saudi Arabia which was found to contain high lipid contents and show rapid growth. The collected results predict that those types of desert algae are promising and are considered to be a potential feedstock for biofuels.

  13. Oil goldenberry (Physalis peruviana L.).

    Science.gov (United States)

    Ramadan, Mohamed F; Mörsel, Jörg-T

    2003-02-12

    Whole berries, seeds, and pulp/peel of goldenberry (Physalis peruviana L.) were compared in terms of fatty acids, lipid classes, triacylglyerols, phytosterols, fat-soluble vitamins, and beta-carotene. The total lipid contents in the whole berries, seeds, and seedless parts were 2.0, 1.8, and 0.2% (on a fresh weight basis), respectively. Linoleic acid was the dominating fatty acid followed by oleic acid as the second major fatty acid. Palmitic and stearic acids were the major saturates. In pulp/peel oil, the fatty acid profile was characterized by higher amounts of saturates, monoenes, and trienes than in whole berry and seed oils. Neutral lipids comprised >95% of total lipids in whole berry oil and seed oil, while neutral lipids separated in lower level in pulp/peel oil. Triacylglycerols were the predominant neutral lipid subclass and constituted ca. 81.6, 86.6, and 65.1% of total neutral lipids in whole berry, seed, and pulp/peel oils, respectively. Nine triacylglycerol molecular species were detected, wherein three species, C54:3, C52:2, and C54:6, were presented to the extent of approximately 91% or above. The highest level of phytosterols was estimated in pulp/peel oil that contained the highest level of unsaponifiables. In both whole berry and seed oils, campesterol and beta-sitosterol were the sterol markers, whereas Delta5-avenasterol and campesterol were the main 4-desmethylsterols in pulp/peel oil. The tocopherols level was much higher in pulp/peel oil than in whole berry and seed oils. beta- and gamma-tocopherols were the major components in whole berry and seed oils, whereas gamma- and alpha-tocopherols were the main constituents in pulp/peel oil. beta-Carotene and vitamin K(1) were also measured in markedly high levels in pulp/peel oil followed by whole berry oil and seed oil, respectively. Information provided by the present work is of importance for further chemical investigation of goldenberry oil and industrial utilization of the berries as a raw

  14. Bioremediation of offshore oil spills

    International Nuclear Information System (INIS)

    Goldman, E.; Tedaldi, D.J.

    1994-01-01

    This research program was directed towards the enhancement of insitu biorestoration of open sea oil spills. Bacteria possessing petroleum degrading enzymes are capable of splitting even thick, viscous oils and tars into lighter fractions. This process will occur at the oil/bacterial interface and depends upon viscosity of the oil, bacterial species, availability of ancillary nutrients, residence times and extent of mixing/oxygenation. Through the enzymatic metabolism of bacteria, a wide range of petroleum oils can be converted almost completely into CO 2 , water, cell mass and harmless biological waste products, usually within 60 to 90 days under favorable conditions. Specifically, this research work focused on the selection and examination of a floating medium which enhances the biodegradation process through improvement of conditions necessary for the process to occur. An additional effort was made to update previous citations of the order of magnitude of oil biodegradation rates and to compare laboratory measurements of biodegradation rates with field or mesocosm measurements

  15. Biodegradability of northern crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Cook, F D; Westlake, D W.S.

    1976-01-01

    Field studies on the microbiological degradation of crude oils encompassed the placing of oil-soaked plots in two areas in the Northwest Territories and Alberta. Replicate plots received amendments of fertilizer, oil-utilizing bacteria, fertilizer plus bacteria or were untreated except for the oil. Changes in microbial numbers and chemical composition of recovered oil were determined periodically. The initial stimulatory effect on bacterial numbers brought about by the addition of fertilizers to oil-soaked plots diminished two years after the application to a point where the differences were no longer significant. Experiments carried out in the Norman Wells area to determine the effect of the amount of fertilizer applied on oil degradation have yielded inconclusive results. The data suggest that at least 2.7 kg of urea-phosphate fertilizer per kl of oil is required to maintain a reasonable oil degradation rate. Preliminary studies on the use of fertilizer coated with chemicals to increase its hydrophobic character indicate that they could be useful in treating wet-land oil spills. Soils from the McKenzie River drainage basin indicate that bacteria are present which can use oil under mesophilic conditions. However, the ability to use the same oil under psychrophilic conditions is more restricted. At least one bacterial species from each mixed population studied was capable of bringing about chemical changes in oil similar to those observed for the original mixed culture. The potential hazards and uses of the seeding of oil spills is discussed relative to the environmental conditions found in the northern part of Canada. 35 refs., 2 figs., 15 tabs.

  16. Evaluation of bread crumbs as a potential carbon source for the growth of thraustochytrid species for oil and omega-3 production.

    Science.gov (United States)

    Thyagarajan, Tamilselvi; Puri, Munish; Vongsvivut, Jitraporn; Barrow, Colin J

    2014-05-23

    The utilization of food waste by microorganisms to produce omega-3 fatty acids or biofuel is a potentially low cost method with positive environmental benefits. In the present study, the marine microorganisms Thraustochytrium sp. AH-2 and Schizochytrium sp. SR21 were used to evaluate the potential of breadcrumbs as an alternate carbon source for the production of lipids under static fermentation conditions. For the Thraustochytrium sp. AH-2, submerged liquid fermentation with 3% glucose produced 4.3 g/L of biomass and 44.16 mg/g of saturated fatty acids after seven days. Static fermentation with 0.5% and 1% breadcrumbs resulted in 2.5 and 4.7 g/L of biomass, and 42.4 and 33.6 mg/g of saturated fatty acids, respectively. Scanning electron microscopic (SEM) studies confirmed the growth of both strains on breadcrumbs. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy for both strains were consistent with the utilization of breadcrumbs for the production of unsaturated lipids, albeit at relatively low levels. The total lipid yield for static fermentation with bread crumbs was marginally lower than that of fermentation with glucose media, while the yield of unsaturated fatty acids was considerably lower, indicating that static fermentation may be more appropriate for the production of biodiesel than for the production of omega-3 rich oils in these strains.

  17. Evaluation of Bread Crumbs as a Potential Carbon Source for the Growth of Thraustochytrid Species for Oil and Omega-3 Production

    Directory of Open Access Journals (Sweden)

    Tamilselvi Thyagarajan

    2014-05-01

    Full Text Available The utilization of food waste by microorganisms to produce omega-3 fatty acids or biofuel is a potentially low cost method with positive environmental benefits. In the present study, the marine microorganisms Thraustochytrium sp. AH-2 and Schizochytrium sp. SR21 were used to evaluate the potential of breadcrumbs as an alternate carbon source for the production of lipids under static fermentation conditions. For the Thraustochytrium sp. AH-2, submerged liquid fermentation with 3% glucose produced 4.3 g/L of biomass and 44.16 mg/g of saturated fatty acids after seven days. Static fermentation with 0.5% and 1% breadcrumbs resulted in 2.5 and 4.7 g/L of biomass, and 42.4 and 33.6 mg/g of saturated fatty acids, respectively. Scanning electron microscopic (SEM studies confirmed the growth of both strains on breadcrumbs. Attenuated total reflection Fourier transform infrared (ATR-FTIR spectroscopy for both strains were consistent with the utilization of breadcrumbs for the production of unsaturated lipids, albeit at relatively low levels. The total lipid yield for static fermentation with bread crumbs was marginally lower than that of fermentation with glucose media, while the yield of unsaturated fatty acids was considerably lower, indicating that static fermentation may be more appropriate for the production of biodiesel than for the production of omega-3 rich oils in these strains.

  18. Degradation of Palm Oil Induced By Ionizing Radiation | Egbe | West ...

    African Journals Online (AJOL)

    X-irradiated Palm Oil of the Elaeis guineensis specie was studied by assessing the effect of the radiation on the Peroxide, Iodine and Fatty acid values of the oil. These were compared with values of fresh and thermoxidized palm oil. Results showed a rise in the peroxide value by as much as 52.5% for thermoxidized oil and ...

  19. Rate of biodegradation of crude oil by microorganisms isolated from ...

    African Journals Online (AJOL)

    The rate of biodegradation of crude oil by micro-organisms isolated from crude oil sludge environment in Eket, Akwa Ibom State of Nigeria was studied. Mineral salt medium supplemented with crude oil was used and three most abundant species isolated from a crude oil sludged soil - Micrococcus varians, Bacillus subtilis ...

  20. Fuel vegetable oils under some economic considerations; Oleos vegetais combustiveis sob algumas consideracoes economicas

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna Lucia [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia]|[Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil)). Centro de Tecnologia de Embalagem]. E-mail: anna@ital.sp.gov.br

    2006-07-01

    The introduction of bio diesel in the Brazilian energy matrix has been mainly motivated by the governmental actions, which foresees social and economical development to the country in a program that allows the use of different oil seed crops as raw materials for bio fuel production. Cost estimates considering the average price received by the farmer and the oil content of each vegetable shows that the minimum cost of bio fuel was about 1.1(castor bean); 1.8(peanut); 2.0(soy beans); 3.3(corn) higher than the average cost of fossil diesel from 1975 to 2004. Among the evaluated raw materials, only the palm oil had inferior cost compared to the petroleum diesel (0.6%). The oleaginous plants that have a higher oil content and smaller agricultural production cost to produce bio fuels are economically most feasible and they should be prioritized in the Government Program so that it may become economically sustainable along the years, as well as generate adequate profit to the farmers of each culture. (author)

  1. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources

    Science.gov (United States)

    Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua, Debaryomyces hansenii, Kluyveromyces marxianus, Kazachstania unispora, and Zygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1. Kazachstania unispora was able to accumulate the high amount of palmitoleic acid. PMID:29098157

  2. Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies.

    Science.gov (United States)

    Thawechai, Tipawan; Cheirsilp, Benjamas; Louhasakul, Yasmi; Boonsawang, Piyarat; Prasertsan, Poonsuk

    2016-11-01

    Oleaginous microalgae Nannochloropsis sp. was selected as potential strain for CO2 mitigation into lipids and pigments. The synergistic effects of light intensity and photoperiod were evaluated to provide the adequate light energy for this strain. The saturation light intensity was 60μmol·photon·m(-2)s(-1). With full illumination, the biomass obtained was 0.850±0.16g·L(-1) with a lipid content of 44.7±1.2%. The pigments content increased with increasing light energy supply. Three main operating factors including initial cell concentration, CO2 content and gas flow rate were optimized through Response Surface Methodology. The feedings with low CO2 content at high gas flow rate gave the maximum biomass but with low lipid content. After optimization, the biomass and lipid production were increased up to 1.30±0.103g·L(-1) and 0.515±0.010g·L(-1), respectively. The CO2 fixation rate was as high as 0.729±0.04g·L(-1)d(-1). The fatty acids of Nannochloropsis sp. lipids were mainly C16-C18 indicating its potential use as biodiesel feedstocks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    Iwona Gientka

    2017-01-01

    Full Text Available The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua, Debaryomyces hansenii, Kluyveromyces marxianus, Kazachstania unispora, and Zygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1. Kazachstania unispora was able to accumulate the high amount of palmitoleic acid.

  4. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources.

    Science.gov (United States)

    Gientka, Iwona; Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua , Debaryomyces hansenii , Kluyveromyces marxianus , Kazachstania unispora , and Zygotorulaspora florentina . We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L -1 . Kazachstania unispora was able to accumulate the high amount of palmitoleic acid.

  5. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.

    Science.gov (United States)

    Yen, Hong-Wei; Chang, Jung-Tzu

    2015-05-01

    The conversion of abundant lignocellulosic biomass (LCB) to valuable compounds has become a very attractive idea recently. This study successfully used LCB (rice straw) hydrolysate as a carbon source for the cultivation of oleaginous yeast-Rhodotorula glutinis in an airlift bioreactor. The lipid content of 34.3 ± 0.6% was obtained in an airlift batch with 60 g reducing sugars/L of LCB hydrolysate at a 2 vvm aeration rate. While using LCB hydrolysate as the carbon source, oleic acid (C18:1) and linoleic acid (C18:2) were the predominant fatty acids of the microbial lipids. Using LCB hydrolysate in the airlift bioreactor at 2 vvm achieved the highest cell mass growth as compared to the agitation tank. Despite the low lipid content of the batch using LCB hydrolysate, this low cost feedstock has the potential of being adopted for the production of β-carotene instead of lipid accumulation in the airlift bioreactor for the cultivation of R. glutinis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation.

    Science.gov (United States)

    Yen, Hong-Wei; Chen, Pin-Wen; Chen, Li-Juan

    2015-05-01

    In this co-culture of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus, microalgae potentially acts as an oxygen generator for the growth of aerobic yeast while the yeast mutually provides CO2 to the microalgae as both carry out the production of lipids. To explore the synergistic effects of co-cultivation on the cells growth and total lipids accumulation, several co-culture process parameters including the carbon source concentration, temperature and dissolved oxygen level would be firstly investigated in the flask trials. The results of co-culture in a 5L photobioreactor revealed that about 40-50% of biomass increased and 60-70% of total lipid increased was observed as compared to the single culture batches. Besides the synergistic effects of gas utilization, the providing of trace elements to each other after the natural cells lysis was believed to be another benefit to the growth of the overall co-culture system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11.

    Directory of Open Access Journals (Sweden)

    Xin Tang

    Full Text Available The oleaginous fungus, Mucor circinelloides, is one of few fungi that produce high amounts of γ-linolenic acid (GLA; however, it usually only produces <25% lipid. Nevertheless, a new strain (WJ11 isolated in this laboratory can produce lipid up to 36% (w/w cell dry weight (CDW. We have investigated the potential mechanism of high lipid accumulation in M. circinelloides WJ11 by comparative biochemical analysis with a low lipid-producing strain, M. circinelloides CBS 277.49, which accumulates less than 15% (w/w lipid. M. circinelloides WJ11 produced more cell mass than that of strain CBS 277.49, although with slower glucose consumption. In the lipid accumulation phase, activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in strain WJ11 were greater than in CBS 277.49 by 46% and 17%, respectively, and therefore may provide more NADPH for fatty acid biosynthesis. The activities of NAD+:isocitrate dehydrogenase and NADP+:isocitrate dehydrogenase, however, were 43% and 54%, respectively, lower in WJ11 than in CBS 277.49 and may retard the tricarboxylic acid cycle and thereby provide more substrate for ATP:citrate lyase (ACL to produce acetyl-CoA. Also, the activities of ACL and fatty acid synthase in the high lipid-producing strain, WJ11, were 25% and 56%, respectively, greater than in strain CBS 277.49. These enzymes may therefore cooperatively regulate the fatty acid biosynthesis in these two strains.

  8. Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11.

    Science.gov (United States)

    Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2015-01-01

    The oleaginous fungus, Mucor circinelloides, is one of few fungi that produce high amounts of γ-linolenic acid (GLA); however, it usually only produces <25% lipid. Nevertheless, a new strain (WJ11) isolated in this laboratory can produce lipid up to 36% (w/w) cell dry weight (CDW). We have investigated the potential mechanism of high lipid accumulation in M. circinelloides WJ11 by comparative biochemical analysis with a low lipid-producing strain, M. circinelloides CBS 277.49, which accumulates less than 15% (w/w) lipid. M. circinelloides WJ11 produced more cell mass than that of strain CBS 277.49, although with slower glucose consumption. In the lipid accumulation phase, activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in strain WJ11 were greater than in CBS 277.49 by 46% and 17%, respectively, and therefore may provide more NADPH for fatty acid biosynthesis. The activities of NAD+:isocitrate dehydrogenase and NADP+:isocitrate dehydrogenase, however, were 43% and 54%, respectively, lower in WJ11 than in CBS 277.49 and may retard the tricarboxylic acid cycle and thereby provide more substrate for ATP:citrate lyase (ACL) to produce acetyl-CoA. Also, the activities of ACL and fatty acid synthase in the high lipid-producing strain, WJ11, were 25% and 56%, respectively, greater than in strain CBS 277.49. These enzymes may therefore cooperatively regulate the fatty acid biosynthesis in these two strains.

  9. Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth.

    Science.gov (United States)

    Ballester-Costa, Carmen; Sendra, Esther; Fernández-López, Juana; Pérez-Álvarez, Jose A; Viuda-Martos, Manuel

    2017-07-28

    In the organic food industry, no chemical additives can be used to prevent microbial spoilage. As a consequence, the essential oils (EOs) obtained from organic aromatic herbs and spices are gaining interest for their potential as preservatives. The organic Thymus zygis , Thymus mastichina , Thymus capitatus and Thymus vulgaris EOs, which are common in Spain and widely used in the meat industry, could be used as antibacterial agents in food preservation. The aims of this study were to determine (i) the antibacterial activity using, as culture medium, extracts from meat homogenates (minced beef, cooked ham or dry-cured sausage); and (ii) the antioxidant properties of organic EOs obtained from T. zygis , T. mastichina , T. capitatus and T. vulgaris . The antioxidant activity was determined using different methodologies, such as Ferrous ion-chelating ability assay, Ferric reducing antioxidant power, ABTS radical cation (ABTS • +) scavenging activity assay and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method; while the antibacterial activity was determined against 10 bacteria using the agar diffusion method in different meat model media. All EOs analyzed, at all concentrations, showed antioxidant activity. T. capitatus and T. zygis EOs were the most active. The IC 50 values, for DPPH, ABTS and FIC assays were 0.60, 1.41 and 4.44 mg/mL, respectively, for T. capitatus whilst for T. zygis were 0.90, 2.07 and 4.95 mg/mL, respectively. Regarding antibacterial activity, T. zygis and T. capitatus EOs, in all culture media, had the highest inhibition halos against all tested bacteria. In general terms, the antibacterial activity of all EOs assayed was higher in the medium made with minced beef than with the medium elaborated with cooked ham or dry-cured sausage.

  10. A survey of yeast from the Yarrowia clade for lipid production in dilute-acid pretreated lignocellulosic biomass hydrolysate

    Science.gov (United States)

    Yarrowia lipolytica is an oleaginous yeast species that has attracted attention as a model organism for synthesis of single cell oil. Among over 50 isolates of Y. lipolytica identified, only a few of the strains have been studied extensively. Furthermore, 12 other yeast species were recently assigne...

  11. Economic and technical considerations on the use of vegetable oils as fuel substitute for diesel oil; Consideracoes economicas e tecnicas sobre o uso de oleos vegetais combustiveis como substituto de oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna Lucia [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], Email: anna@ital.sp.gov.br

    2006-07-01

    The introduction of bio diesel in the Brazilian energy matrix has been mainly motivated by the governmental actions, which foresees social and economical development to the country in a program that allows the use of different oil seed crops as raw materials for biofuels production. Cost estimates considering the average price received by the farmer and the oil content of each vegetable shows that the minimum cost of bio fuel was about 1,1(castor bean); 1,8(peanut); 2,0(soy beans); 3,3(corn) higher than the average cost of fossil diesel from 1975 to 2004. Among the evaluated raw materials, only the palm oil had inferior cost compared to the petroleum diesel (0.6%). The oleaginous plants that have a higher oil content and smaller agricultural production cost to produce bio fuels are economically most feasible and they should be prioritized in the government program so that it may become economically sustainable along the years, as well as generate adequate profit to the farmers of each culture. The feasibility of National Program for Biofuels Use and Production and both economical and environmental aspects should also consider the destination of the main by-products of the biofuel productive chain such as the left over cakes after extraction of the oil and glycerine produced during the transesterification process. (author)

  12. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  13. Oil crises

    International Nuclear Information System (INIS)

    Linderoth, H.

    1992-01-01

    The author's aim was to give very precise information on the many causes and effects of the oil crises that have occurred since 1900, and at the same time offer the reader the possibility to build up a basic knowledge of the oil industry and market, as he feels that the public is often subjected to misleading information. Political and economical aspects are elaborated. First-hand sources such as statistics and investigations have been used as far as possible to give information on the oil market. An oil crisis is defined by the author as a significant change in the price of oil compared to prices of other goods. Changes can be in the form of either rising or falling prices. A special chapter concentrates on Denmark in relation to the oil crises. (AB) (165 refs.)

  14. Economic analysis of incentive mechanisms for the production of oil palm for biodiesel in Brazil and Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Ariel Augusto Amaya [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia

    2008-07-01

    This article is a synthetic approach of the biodiesel programs characteristics implemented in Brazil and Colombia, using as raw oil palm material under the being oleaginous premise with higher income, to obtain biodiesel of great quality and great characteristics of soil adaptability and climate. It tries to determine the potential of the raw material from the economic mechanisms created by the government and describe the methods of financing, factors which are crucial to the success of the program in each country, searching the normativities existing and reports generated by the two countries and companies related to the industry. Within the results obtained is evidence that in spite of having a regulatory structure solid at the agricultural, difficultly are used by farmers due to the lows appeals and to the inevitable initial investment, besides the almost nonexistent financial support to the industry for new ventures. (author)

  15. Oil pollution

    International Nuclear Information System (INIS)

    Mankabady, Samir.

    1994-08-01

    Oil enters the marine environment when it is discharged, or has escaped, during transport, drilling, shipping, accidents, dumping and offshore operations. This book serves as a reference both on the various complex international operational and legal matters of oil pollution using examples such as the Exxon Valdez, the Braer and Lord Donaldson's report. The chapters include the development of international rules on the marine environment, the prevention of marine pollution from shipping activities, liability for oil pollution damage, the conflict of the 1990 Oil Pollution Act and the 1992 protocols and finally the cooperation and response to pollution incidents. (UK)

  16. Susceptibility of four tick species, Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Rhipicephalus sanguineus (Acari: Ixodidae), to nootkatone from essential oil of grapefruit.

    Science.gov (United States)

    Flor-Weiler, Lina B; Behle, Robert W; Stafford, Kirby C

    2011-03-01

    Toxicity of nootkatone was determined in laboratory assays against unfed nymphs of Amblyomma americanum L., Dermacentor variabilis (Say), Ixodes scapularis Say, and Rhipicephalus sanguineus Latreille. We determined the 50% lethal concentration (LC50) and 90% lethal concentration (LC90) of nootkatone by recording tick mortality 24 h after exposure in treated glass vials. Nymphs were susceptible to nootkatone with LC50 values of 0.352, 0.233, 0.169, and 0.197 microg/cm2, and LC90 values of 1.001, 0.644, 0.549, and 0.485 microg/cm2 for A. americanum, D. variabilis, I. scapularis, and R. sanguineus, respectively. The LC50 value for R. sanquineus was not significantly different from D. variabilis or I. scapularis. Other LC50 comparisons were significantly different. The LC90 for A. americanum was higher when compared with the three other tick species, which were not significantly different. Because nootkatone is volatile, we measured the amount of nootkatone recovered from duplicate-treated vials before tick exposure and from vials after tick exposure. Nootkatone recovered from vials before exposure ranged from 82 to 112% of the expected amounts. The nootkatone recovered after the 24-h exposure period ranged from 89% from vials coated with higher concentrations of nootkatone, down to 29% from vials coated with low nootkatone concentrations. Determination of the nootkatone residue after vial coating demonstrated loss of the active compound while verifying the levels of tick exposure. Toxicity of low concentrations of nootkatone to the active questing stage of ticks reported in this study provides a reference point for future formulation research to exploit nootkatone as a safe and environment-friendly tick control.

  17. The Fatty Acid Profile Analysis of Cyperus laxus Used for Phytoremediation of Soils from Aged Oil Spill-Impacted Sites Revealed That This Is a C18:3 Plant Species.

    Directory of Open Access Journals (Sweden)

    Noemí Araceli Rivera Casado

    Full Text Available The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16, octadecanoic acid (C18:0, unsaturated oleic acids (C18:1-C18:3, and unsaturated eichosanoic (C20:2-C20:3 acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3; this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23 and uncommon unsaturated chains (C20:3n6 and C20:4 were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process.

  18. The Fatty Acid Profile Analysis of Cyperus laxus Used for Phytoremediation of Soils from Aged Oil Spill-Impacted Sites Revealed That This Is a C18:3 Plant Species

    Science.gov (United States)

    Montes Horcasitas, María del Carmen; Rodríguez Vázquez, Refugio; Esparza García, Fernando José; Pérez Vargas, Josefina; Ariza Castolo, Armando; Ferrera-Cerrato, Ronald; Gómez Guzmán, Octavio

    2015-01-01

    The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC) was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16), octadecanoic acid (C18:0), unsaturated oleic acids (C18:1-C18:3), and unsaturated eichosanoic (C20:2-C20:3) acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3); this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23) and uncommon unsaturated chains (C20:3n6 and C20:4) were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process. PMID:26473488

  19. The Fatty Acid Profile Analysis of Cyperus laxus Used for Phytoremediation of Soils from Aged Oil Spill-Impacted Sites Revealed That This Is a C18:3 Plant Species.

    Science.gov (United States)

    Rivera Casado, Noemí Araceli; Montes Horcasitas, María del Carmen; Rodríguez Vázquez, Refugio; Esparza García, Fernando José; Pérez Vargas, Josefina; Ariza Castolo, Armando; Ferrera-Cerrato, Ronald; Gómez Guzmán, Octavio; Calva Calva, Graciano

    2015-01-01

    The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC) was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16), octadecanoic acid (C18:0), unsaturated oleic acids (C18:1-C18:3), and unsaturated eichosanoic (C20:2-C20:3) acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3); this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23) and uncommon unsaturated chains (C20:3n6 and C20:4) were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process.

  20. Amoco Cadiz oil spill

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, A J

    1978-05-01

    This report gives a preliminary account of the events surrounding the wreck of the Amoco Cadiz on the Brittany coast in March, which caused the most massive oil pollution on record. The sequence of events is outlined. Also reported are details of clean-up of beaches as well as appearance and biological effects of oil. Further studies which will continue for years include: population dynamics (species of Littorina); feeding, reproduction, settlement of Spirorbis sp; surveillance of echinoderm and crustacean populations; changes in growth and development of species of red algae; changes in concentrations of bacteria, meiofauna, chlorophyll and organic material. There are indications of problems likely to arise in: sheltered areas (sediments, salt marsh vegetation); sandy shores; upper shore vegetation (higher plants, lichens); algae (temporary loss of algal cover); intertidal macrofauna; seabirds (mortality); economy (fishing, tourism, seaweed used for fertilizer).

  1. seed oil

    African Journals Online (AJOL)

    Wara

    Neem seed oil from the neem tree (Azadiracta indica) finds wide usage one of which is its utilization for cosmetics particularly .... obtained which is higher than that of olive oil 17. mgKOH/g (Davine ... The skin tolerance of shea fat employed as ...

  2. Development of a cultivation process for the enhancement of human interferon alpha 2b production in the oleaginous yeast, Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Gasmi Najla

    2011-11-01

    Full Text Available Abstract Background As an oleaginous yeast, Yarrowia lipolytica is able to assimilate hydrophobic substrates. This led to the isolation of several promoters of key enzymes of this catabolic pathway. Less is known about the behavior of Y. lipolytica in large bioreactors using these substrates. There is therefore a lack of established know-how concerning high cell density culture protocols of this yeast. Consequently, the establishment of suitable induction conditions is required, to maximize recombinant protein production under the control of these promoters. Results Human interferon α2b (huIFN α2b production in Yarrowia lipolytica was used as a model for the enhancement of recombinant protein production under the control of the oleic acid (OA-inducible promoter POX2. Cell viability and heterologous protein production were enhanced by exponential glucose feeding, to generate biomass before OA induction. The optimal biomass level before induction was determined (73 g L-1, and glucose was added with oleic acid during the induction phase. Several oleic acid feeding strategies were assessed. Continuous feeding with OA at a ratio of 0.02 g OA per g dry cell weight increased huIFNα2b production by a factor of 1.88 (425 mg L-1 and decreased the induction time (by a factor of 2.6, 21 h. huIFN α2b degradation by an aspartic protease secreted by Y. lipolytica was prevented by adding pepstatin (10 μM, leading to produce a 19-fold more active huIFN α2b (26.2 × 107 IU mg-1. Conclusion Y. lipolytica, a generally regarded as safe (GRAS microorganism is one of the most promising non conventional yeasts for the production of biologically active therapeutic proteins under the control of hydrophobic substrate-inducible promoter.

  3. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    Science.gov (United States)

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  4. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    Directory of Open Access Journals (Sweden)

    Elia Judith Martínez

    2015-04-01

    Full Text Available Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2 and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  5. New biofuel alternatives: integrating waste management and single cell oil production.

    Science.gov (United States)

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-04-24

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  6. Soybean (Glycine max) oil bodies and their associated phytochemicals.

    Science.gov (United States)

    Fisk, Ian D; Gray, David A

    2011-01-01

    Soybean oil bodies were isolated from 3 cultivars (Ustie, K98, and Elena) and the occurrence of 2 classes of phytochemicals (tocopherol isoforms and isoflavones) and strength of their association with isolated oil bodies was evaluated. Tocopherol is shown to be closely associated with soybean oil bodies; δ-tocopherol demonstrated a significantly greater association with oil bodies over other tocopherol isoforms. Isoflavones do not show a significant physical association with oil bodies, although there is some indication of a passive association of the more hydrophobic aglycones during oil body isolation. Oil bodies are small droplets of oil that are stored as energy reserves in the seeds of oil seeds, and have the potential to be used as future food ingredients. If oil body suspensions are commercialized on a large scale, knowledge of the association of phytochemicals with oil bodies will be valuable in deciding species of preference and predicting shelf life and nutritional value. © 2011 Institute of Food Technologists®

  7. Do oil dispersants make spilled oil more toxic to fish?

    International Nuclear Information System (INIS)

    Hodson, P.

    2010-01-01

    The Deepwater Horizon blowout in the Gulf of Mexico was the world's largest oil spill in terms of duration and volume spilled. Clean-up operations, which involved the continuous and wide-spread use of oil dispersant at the surface and at the seabed discharge point at 1500 metres depth, gave rise to public concern about dispersant toxicity. Reports from the United States Environmental Protection Agency (EPA) claimed little difference in acute toxicity to marine fish and invertebrate species among commonly available dispersants and between dispersed and non-dispersed Louisiana Sweet Crude. Technically, the toxicity of waterborne hydrocarbons does not vary with chemical dispersion. However, the EPA omitted any consideration of loading, and misled the public about the risks of dispersant use in oil clean-up. This study examined the chronic toxicity of dispersed oil to fish embryos. The study revealed that toxicity expressed as oil loading increases by a factor of 10 to 1000 times with dispersion, largely because 10 to 1000 times more oil enters the water column. Since the action of dispersant is on the exposure component of the risk equation, not on the potency of the toxic components of oil, then the risk of oil toxicity to fish increases an equivalent amount.

  8. Vegetable oil as fuel for electric power generation at Rondonia, BR, small agglomerate as way of revenue generation; Oleo vegetal como combustivel para energia eletrica em pequenos aglomerados de Rondonia como forma de geracao de renda

    Energy Technology Data Exchange (ETDEWEB)

    Moret, Artur de Souza [Fundacao Universidade Federal de Rondonia (UNIR), Porto Velho, RO (Brazil)]. E-mail: amoret@unir.br

    2006-07-01

    This text approaches the question energy having as based alternative combustible reference in vegetal oils and the Decentralized Generation of Energy, for attendance of isolated systems and with small load, having as conceptual base the partner-economic-ambient sustain ability, being the economic chain of the entailed and conditional energy to the ambient, social aspects, technician, politicians, financiers and economics. This text intends to demonstrate to the mechanisms used in a research and development project (P and D) for the determination and domain of energy generation, electricity and power, from vegetal oils of suitable oleaginous to the State of Rondonia for a Extractive Reserve. Having as reference the contribution for the local and sustainable development of isolated localities, for the generation of job and income, for the energy self-sufficiency of isolated localities and to make available alternative to the companies of the electric sector of energy availability of isolated communities. (author)

  9. Oils; gas

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T

    1922-09-18

    Oils and gas are obtained from shale or oil-bearing sand by immersing the shale in and passing it through a bath of liquid oil, cracking the oil-soaked shale, and condensing the vapor and using the condensate to replenish the bath, preferably by passing the gases and vapors direct into the oil-bath container. Shale is fed continuously from a hopper to a bath of oil in an inclined chamber, is carried to the outlet by a conveyer, and through cracking tubes to an outlet pipe by conveyers. The gases and vapors escape by the pipe, a part condensing in the chamber and a run-back pipe and replenishing the bath, and the remainder passing through a condensing tower and condenser connected to reservoirs; the gas is further passed through a scrubber and a pipe to the burner of the retort. The oil condensed in the chamber overflows to the reservoir through a pipe provided with an open pipe to prevent siphoning. The conveyers and a valve on the pipe are operated by gearing. The operation may be conducted at reduced, normal, or increased pressure, e.g., 70 lbs. The temperature of the retort should be about 900 to 1400/sup 0/F, that of the inside of the tubes about 550 to 700/sup 0/F, and that of the chamber about 300/sup 0/F. The chamber and pipe may be insulated or artificially cooled.

  10. Effects of oils on plants

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J M

    1970-01-01

    Oils vary in their toxicity according to the content of low-boiling compounds, unsaturated compounds, aromatics, and acids. The higher the concentration of these constituents, the more toxic the oil. After penetrating into a plant, the oil may travel in the intercellular spaces and possibly also in the vascular system. Cell membranes are damaged by penetration of hydrocarbon molecules, leading to leakage of cell contents, and oil may enter the cells. Oils reduce the transpiration rate, probably by blocking the stomata and intercellular spaces. This may also be the reason for the reduction of the photosynthesis which occurs, though there are other possible explanations of this - such as disruption of chloroplast membranes and inhibition caused by accumulation of end-products. The effects of oils on respiration are variable, but an increase of respiration rate often occurs, possibly due to mitochondrial damage resulting in an uncoupling effect. Oils inhibit translocation probably by physical interference. The severity of the above effects depends on the constituents and amount of the oil, on the environmental conditions, and on the species of plant involved. 88 references, 3 tables.

  11. Continuous transesterification of biodiesel in a helicoidal reactor using recycled oil

    International Nuclear Information System (INIS)

    Avellaneda, Fredy; Salvado, Joan

    2011-01-01

    The main problem with biodiesel is the high cost of oils made from oleaginous crops. For this reason, various raw materials have been analysed with a view to reducing production costs and obtaining a product that can compete with the price of petrodiesel. Recycled oil is one of the most promising alternatives in the production of biodiesel because not only is the cheapest raw material but it also avoids the expense of treating the oil as a residue. Another way to reduce costs is to make the process more economical. Conventional technology uses sodium hydroxide as the basic catalyst and large-scale batch reactors, whose mechanical agitation requires high energy consumption due to residence times of at least 60 min and temperatures of 60 C. In this paper we use a recycled pretreated oil to compare conventional transesterification with continuous transesterification in a tubular reactor. In this reactor the reactants (oil, methanol and sodium hydroxide) flow through a helicoidal tube submerged in a heating bath at 60 C. The reactor has five outlets distributed non-uniformly to enable samples to be taken at different reaction times. This is to reduce the reaction time and avoid the need for mechanical agitation. With the aim of improving the quality of the biodiesel obtained, we varied the helicoidal system by incorporating a static micromixer and supplying energy in the form of ultrasound from the heating bath. This reactor produced biodiesel and glycerine at compositions roughly equal to those obtained in the batch process (89% FAME content at 75 min) but did so continuously (2.5 mL/min) and just 13 min after the reactants were integrated in a single line using a T device. Both the oil and the biodiesel were characterized and analysed in accordance with European standard UNE EN14214 for biodiesel. (author)

  12. Oil refineries

    International Nuclear Information System (INIS)

    Boehmer, S.; Winter, B.

    2001-01-01

    In refineries in particular attention is paid to the minimization of the generation of waste. Therefor catalysts in many processes are regenerated, absorbents are recycled and oily by-products are re-refined or used as fuels. This study discusses the origin and utilization of by-products from the oil industry. The processing of crude oils causes by-products and waste resulting from the crude oil itself or from cleaning measures for water pre-treatment, effluent treatment and flue gas treatment. (author)

  13. Peppermint Oil

    Science.gov (United States)

    ... T U V W X Y Z Peppermint Oil Share: On This Page Background How Much Do ... sheet provides basic information about peppermint and peppermint oil—common names, usefulness and safety, and resources for ...

  14. OIL BOND®

    Science.gov (United States)

    Technical product bulletin: this miscellaneous oil spill control agent is a solidifier used in cleanups. It absorbs and solidifies hydrocarbon spills on freshwater and saltwater or land applications. Ring spill with booms or pillows before treatment.

  15. Mineral oil

    International Nuclear Information System (INIS)

    Schult-Bornemann, Karl-Heinz

    2015-01-01

    The dominant theme in the world energy market was the fall in oil prices in 2014. From 115 US-$/bbl in June it dropped to below 50 US-$/bbl in January 2015. Thereby the shale oil revolution has had the strong impact on the global energy situation, to this point has been predicted for three years. Although no one could predict the exact height of the fall in oil prices, but with oil as a reserve currency for all other fuels, it has not only had an impact on the gas and coal prices, but other commodities, such as copper, have also yielded. About cause and effect, there is a lot of speculation - not all of which are supported by wisdom. [de

  16. Oil vaporizer

    Energy Technology Data Exchange (ETDEWEB)

    Dumontier, F

    1904-03-31

    An oil burner particularly applicable to heavy oils, composed essentially of one or more gasification chambers, heated by the flame from the burners, to which the combustible gases are fed by the collectors suitably fixed on the chambers, all parts of the apparatus and especially the gasification chambers being easily demountable to permit cleaning, and all arranged in such a manner as to avoid fouling by reducing or localizing the deposition of solid deposits in the coking chamber.

  17. Oil on seawater

    International Nuclear Information System (INIS)

    Boerresen, J.A.

    1993-01-01

    The present book discusses the effects of oil spills at sea. Topics covered are as follow: Petroleum properties; oil spills at sea; harmfulness of oil spills; effects from acute oil spills; experience of oil spills; oil spill contingency planning in Norway; oil spill protecting equipment and methods; emergency of unloading equipment. 252 refs., 86 figs., 54 tabs

  18. Oils and rubber from arid land plants

    Science.gov (United States)

    Johnson, J. D.; Hinman, C. W.

    1980-05-01

    In this article the economic development potentials of Cucurbita species (buffalo gourd and others), Simmondsia chinensis (jojoba), Euphorbia lathyris (gopher plant), and Parthenium argentatum (guayule) are discussed. All of these plants may become important sources of oils or rubber.

  19. Repellent activity of herbal essential oils against Aedes aegypti (Linn. and Culex quinquefasciatus (Say.

    Directory of Open Access Journals (Sweden)

    Duangkamon Sritabutra

    2013-08-01

    Full Text Available Objective: To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus. Methods: On a volunteer’s forearm, 0.1 mL of each essential oil was applied to 3 cm伊10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min. Results: Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively. Conclusions: The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.

  20. Physicochemical Evaluation of Seeds and Oil of Nontraditional Oil Seeds

    Directory of Open Access Journals (Sweden)

    Adam Ismail Ahmed

    2015-08-01

    Full Text Available The present work was conducted in the Laboratory of Biochemistry and Food science department, Faculty of Natural Resources and Environmental Studies, University of Kordofan, in order to evaluate some nontraditional oil seeds these are i.e. Marula (Sclerocarya birrea, Roselle (Hibiscus sabdariffa L. seeds and Christ’s thorn (Zizyphus spina-christi seeds. The seeds of the roselle and Christ’s thorn fruits were procured from Elobeid local market, North Kordofan State, while marula fruits were obtained from Elnuhod, West Kordofan State. The proximate composition of the seeds, cake and christ’s thorn pulp was done. Some chemical and physical properties were performed for the extracted oil. The results revealed that proximate composition of the seeds and cake differ statistically among the studied materials. Significant differences were observed among the oil extracted from these species; moreover, these oils differ significantly in color and viscosity only.

  1. ESSENTIAL OIL COMPOSITION OF FOUR ARTEMISIA SPECIES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ... Department of Plant Biology & Biodiversity Management, College of ... places in Ethiopia (Addis Ababa and Butajira) was also analyzed for comparison. ..... Project, Department of Chemistry, Addis Ababa University, Ethiopia, 2007. 19. Nibret ...

  2. Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor.

    Science.gov (United States)

    Manowattana, Atchara; Techapun, Charin; Watanabe, Masanori; Chaiyaso, Thanongsak

    2018-01-01

    Here we tested the bioconversion of biodiesel-derived crude glycerol by the oleaginous red yeast Sporidiobolus pararoseus KM281507 in two bioreactors types (stirred-tank and airlift). High production yields (biomass, 10.62 ± 0.21 g/L; lipids, 3.26 ± 0.13 g/L; β-carotene, 30.64 ± 0.05 mg/L; total carotenoids, 46.59 ± 0.07 mg/L) were achieved in a 3.0 L airlift bioreactor under uncontrolled pH regimes (initial pH 5.63). Under optimized conditions (6.0 vvm aeration rate; 60 ± 5% constant dissolved oxygen [DO] maintained by flushing pure oxygen [O 2 ] into the vessel; 10,000 Lux light irradiation) volumetric production in the airlift bioreactor was further increased (biomass, 19.30 ± 1.07 g/L; lipids, 6.61 ± 0.04 g/L, β-carotene, 109.75 ± 0.21 mg/L; total carotenoids 151.00 ± 2.71 mg/L). Production was also recorded at a S. pararoseus KM281507 growth rate of 0.16 ± 0.00 h -1 (lipids, 0.94 ± 0.04 g/L/d; β-carotene, 15.68 ± 0.40 mg/L/d; total carotenoids, 21.56 ± 0.20 mg/L/d). Lipids from S. pararoseus KM281507 had a high unsaturated fatty acid content, with oleic acid (C18:1) accounting for 80% of all fatty acids. This high oleic acid content makes S. pararoseus KM281507 well-suited as a third generation biodiesel feedstock. Our findings show that airlift bioreactors are suitable for bioconversion of crude glycerol into lipids and carotenoids using S. pararoseus KM281507. This approach is advantageous because of its ease of operation, cost efficiency, and low energy consumption. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. The antibacterial and antifungal activity of essential oils extracted from Guatemalan medicinal plants.

    Science.gov (United States)

    Miller, Andrew B; Cates, Rex G; Lawrence, Michael; Soria, J Alfonso Fuentes; Espinoza, Luis V; Martinez, Jose Vicente; Arbizú, Dany A

    2015-04-01

    Essential oils are prevalent in many medicinal plants used for oral hygiene and treatment of diseases. Medicinal plant species were extracted to determine the essential oil content. Those producing sufficient oil were screened for activity against Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Plant samples were collected, frozen, and essential oils were extracted by steam distillation. Minimum inhibitory concentrations (MIC) were determined using a tube dilution assay for those species yielding sufficient oil. Fifty-nine of the 141 plant species produced sufficient oil for collection and 12 species not previously reported to produce essential oils were identified. Essential oil extracts from 32 species exhibited activity against one or more microbes. Oils from eight species were highly inhibitory to S. mutans, four species were highly inhibitory to C. albicans, and 19 species yielded MIC values less than the reference drugs. RESULTS suggest that 11 species were highly inhibitory to the microbes tested and merit further investigation. Oils from Cinnamomum zeylanicum Blume (Lauraceae), Citrus aurantiifolia (Christm.) Swingle (Rutaceae), Lippia graveolens Kunth (Verbenaceae), and Origanum vulgare L. (Lamiaceae) yielded highly significant or moderate activity against all microbes and have potential as antimicrobial agents. Teas prepared by decoction or infusion are known methods for extracting essential oils. Oils from 11 species were highly active against the microbes tested and merit investigation as to their potential for addressing health-related issues and in oral hygiene.

  4. EVALUATION OF GROWTH OF SOME FUNGI IN CRUDE OIL ...

    African Journals Online (AJOL)

    The two species of Aspergillus A. niger and flavus used in the study appreciably tolerated the oil though the growth of A. flavus was retarded as the concentration of oil increased. Botrytis cinerea, Curvularia lunata and Colletotrichum sp. could not grow beyond the concentration of 1ml/10mls of oil Potato Dextrose Dextrose ...

  5. Oil spillage and its impact on the edible mangrove periwinkle ...

    African Journals Online (AJOL)

    Oil spills are a regular occurrence in the oil industry in Nigeria, a process that results in the release of excess hydrocarbons into the environment, negatively impacting plant and animal species. Laboratory and field experiments were conducted on refined oil impacted and fire ravaged mangrove ecosystem to determine the ...

  6. Endangered Species

    Science.gov (United States)

    EPA's Endangered Species Protection Program helps promote recovery of listed species. The ESPP determines if pesticide use in a geographic area may affect any listed species. Find needed limits on pesticide use in Endangered Species Protection Bulletins.

  7. Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with open raceway pond.

    Science.gov (United States)

    He, Qiaoning; Yang, Haijian; Hu, Chunxiang

    2016-10-01

    Cultivation modes of autotrophic microalgae for biodiesel production utilizing open raceway pond were analyzed in this study. Five before screened good microalgae were tested their lipid productivity and biodiesel quality again in outdoor 1000L ORP. Then, Chlorella sp. L1 and Monoraphidium dybowskii Y2 were selected due to their stronger environmental adaptability, higher lipid productivity and better biodiesel properties. Further scale up cultivation for two species with batch and semi-continuous culture was conducted. In 40,000L ORP, higher lipid productivity (5.15 versus 4.06gm(-2)d(-1) for Chlorella sp. L1, 5.35 versus 3.00gm(-2)d(-1) for M. dybowskii Y2) was achieved in semi-continuous mode. Moreover, the financial costs of 14.18$gal(-1) and 13.31$gal(-1) for crude biodiesel in two microalgae with semi-continuous mode were more economically feasible for commercial production on large scale outdoors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. How much crude oil can zooplankton ingest? Estimating the quantity of dispersed crude oil defecated by planktonic copepods

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.

    2016-01-01

    % of the analyzed fecal pellets from three species of copepods and a natural copepod assemblage exposed for 48 h to physically or chemically dispersed light crude oil contained crude oil droplets. Crude oil droplets inside fecal pellets were smaller (median diameter: 2.4-3.5 mu m) than droplets in the physically...

  9. Birds oiled during the Amoco Cadiz incident: an interim report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.H.; Monnat, J.Y.; Cadbury, C.J.; Stowe, T.J.

    1978-11-01

    More than 4500 oiled birds were collected from beaches in Northwest France and the Channel Islands following the oil spillage from the super tanker Amoco Cadiz in March 1978. Some 33 bird species were recorded oiled. A notable feature of the incident was the high proportion of puffins among the birds known to have been oiled. In normal years, puffins are considered to be relatively uncommon off Brittany in spring, and so the high proportion of this species among the casualties was unexpected. A relatively large number of shags and divers were also oiled. (1 map, 8 references, 2 tables)

  10. Myristica oil poisoning

    Science.gov (United States)

    Nutmeg oil; Myristicin ... Myristica oil ( Myristica fragrans ) can be harmful. It comes from the seed of a nutmeg. ... Myristica oil is found in: Aromatherapy products Mace Nutmeg Other products may also contain myristica oil.

  11. Purifying oils

    Energy Technology Data Exchange (ETDEWEB)

    1930-04-15

    Gasoline, lamp oils, and lubricating or other mineral or shale oils are refined by contacting the vapor with a hot aqueous solution of salts of zinc, cadmium, or mercury, or mixtures thereof which may contain 0-5-3-0 percent of oxide or hydroxide in solution or suspension. Chlorides, bromides, iodides, sulfates, nitrates, and sulfonates of benzol, toluol, xylol, and petroleum are specified. Washing with a solution of sodium or potassium hydroxide or carbonate of calcium hydroxide may follow. The oil may first be purified by sulfuric acid or other known agent, or afterwards caustic alkali and sulfuric acid. The Specification as open to inspection under Sect. 91 (3) (a) describes also the use of salts of copper, iron, chromium, manganese, aluminum, nickel, or cobalt, with or without their oxides or hydroxides. This subject-matter does not appear in the Specification as accepted.

  12. Distilling oils

    Energy Technology Data Exchange (ETDEWEB)

    Leffer, L G

    1912-01-29

    In a process for converting heavy hydrocarbons, such as petroleum or shale oil, into light hydrocarbons by distilling under the pressure of an inert gas, the operation is conducted at a temperature not exceeding 410/sup 0/C and under an accurately regulated pressure, the gas being circulated through the still and the condenser by means of a pump. The oil in the still may be agitated by stirring vanes or by blowing the gas through it. Hydrogen, nitrogen, carbon dioxide, methane, or gases generated in the distillation may be used as pressure media; the gas is heated before its admission to the still. A pressure of from 11 to 12 atmospheres is used in treating gas oil. Specification 10,277/89 is referred to.

  13. Use of sloops distilleries for oils production: an alternative source for biodiesel production

    International Nuclear Information System (INIS)

    Faife, Evelyn; Otero, Miguel A.; Alvarez, Amaury; Penna, Miguel A.; Mtnez, Aidin; Melfi, Mariel; Matos, Maria L.; Kozlowski, Alejandro M.

    2011-01-01

    This study report an evaluation of different yeast strains screened from molasses and soils, on media based mainly in distilleries sloops to produces oils which could be further transformed into biodiesel. Among 9 screened yeast strains 6 was selected and identified previously as oleaginous by other authors. The lipid content of this yeast strains was determinate by Bligh y Dyer modified method. The strain identified as Yarrovia lipolytic a reached 24,8 g/L of biomass concentration in a sloop distillery/crude glycerol mix adjusted to 75 g/L of total DQO and 70:30 ratio and produce lipids around 20 % in fed-batch mode. Different results was obtained with the supplement of others nutrients and elements and from the use of different sloop distillery/glycerol DQO ratio. Chemical characterization of biodiesel obtained by transesterification of Y. lipolytic a lipids when cells were grown on sloops/molasses and sloops/glycerol mixture are mainly C14-C18 and indicated that possessed similar composition to that from vegetable oils, one of the widely used feedstock for biodiesel, although it is not similar on both media. The sum of fatty acids range C14-C18 obtained in slops/glycerol medium was superior about 10 % respect to the value obtained in sloops/molasses. (author)

  14. Oil integration

    International Nuclear Information System (INIS)

    Carta Petrolera

    1997-01-01

    Colombia, Mexico and Venezuela agree in to have a bigger exchange of information, technology and experiences in areas of mutual interest that allow in the future, combined developments of the hydrocarbons industry. In such a sense, ECOPETROL narrowed its relationships with the two powerful Latin American oil enterprises, when suiting in Bogota agreements of mutual collaboration with representatives of the respective state companies. To begin, the company signed a cooperation agreement with Petroleos de Venezuela S.A (PDVSA), with the purpose of to narrow the relationships between the two companies and to undertake combined actions in those matters of the oil and petrochemical industry of mutual interest

  15. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25

    Science.gov (United States)

    Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf

    2016-01-01

    ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected

  16. Nonradiative state in essential oils from aromatic plants

    International Nuclear Information System (INIS)

    Rai, A.K.

    1992-10-01

    Emission and absorption spectra of oils (Mint species and Cymbopogan species) have been recorded in the visible and ultraviolet region using JY3CS spectrofluoremeter and Backman DU-70 spectrophotometer respectively. Our results show the presence of strong nonradiative state in the ultraviolet region. It is also found that the fluorescence intensity of these oils are comparable to that of Rh 6G dye in methanol solution. The main spectral features in the absorption spectra of mint species are found to be due to the absorption of menthol and menthone. Spearmint oil shows an extra absorption band which is not present in Japanese and Peppermint oils. (author). 7 refs, 2 figs

  17. The oil industry in 2007

    International Nuclear Information System (INIS)

    2008-01-01

    The various contributions present and comment many data about the evolutions of different parts of the oil industry until 2007: world oil and gas markets, worldwide oil exploration and production, oil exploration and production in France, oil and oil-related industry in France, hydrocarbon supplies, oil refining in France, fuel quality, substitution fuels, inner transportation of oil products, storage of oil products, consumption of oil products, taxing of oils products, price of oil products, distribution of oil products

  18. The oil industry in 2006

    International Nuclear Information System (INIS)

    2007-01-01

    The various contributions present and comment many data about the evolutions of different parts of the oil industry until 2006: world oil and gas markets, worldwide oil exploration and production, oil exploration and production in France, oil and oil-related industry in France, hydrocarbon supplies, oil refining in France, fuel quality, substitution fuels, inner transportation of oil products, storage of oil products, consumption of oil products, taxing of oils products, price of oil products, distribution of oil products

  19. The use of Design of Experiments and Response Surface Methodology to optimize biomass and lipid production by the oleaginous marine green alga, Nannochloropsis gaditana in response to light intensity, inoculum size and CO2.

    Science.gov (United States)

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2015-05-01

    Biodiesel produced from microalgal lipids is being considered as a potential source of renewable energy. However, a number of hurdles will have to be overcome if such a process is to become practical. One important factor is the volumetric production of biomass and lipid that can be achieved. The marine alga Nannochloropsis gaditana is under study since it is known to be highly oleaginous and has a number of other attractive properties. Factors that might be important in biomass and lipid production by this alga are light intensity, inoculum size and CO2. Here we have carried out for the first time a RSM-DOE study of the influence of these important culture variables and define conditions that maximize biomass production, lipid content (BODIPY® fluorescence) and total lipid production. Moreover, flow cytometry allowed the examination on a cellular level of changes that occur in cellular populations as they age and accumulate lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Oil spills

    International Nuclear Information System (INIS)

    Spaulding, M.L.; Reed, M.

    1990-01-01

    Public awareness and concern for the potential short and long term impacts of oil spills on the marine environment has generally been high, particularly for regions of special ecological importance or where significant numbers of marine mammals and birds are present. This awareness was further heightened by the extraordinary number of recent large spills in coastal U.S. water: Exxon Valdez, Alaska; World Prodigy, Rhode Island; Presidente Rivera, Delaware; Rachel-B, Texas and American Trader, California. The occurrence of so many spills in a one year period is unprecedented in U.S. spill history. The legislative response to these spills has been immediate. New legislative initiative are rapidly being developed. Improved ways to organize spill response efforts are being devised and implemented. Funds are being allocated to further develop and improve spill response equipment and damage assessment methodologies. These spill events will have a significant impact in both the short and long term on oil exploration, development and transport in marine waters. They will result in major changes in management and operation of oil exploration and development. The purpose of this conference was to provide a forum for discussion of the changes which are currently taking place in oil spill legislation, management, and response strategies

  1. Coconut Oil

    Science.gov (United States)

    ... known as "medium chain triglycerides." Some of these fats work differently than other types of saturated fat in the body. When applied ... in food amounts. But coconut oil contains a type of fat that can increase cholesterol levels. So people should ...

  2. LINNAEUS OIL

    African Journals Online (AJOL)

    eobe

    Crude jatropha oil; Heterogeneous catalyst; Transesterification ... mmage for alternative fuel ... be designed to give higher activity and lifetimes [13]. So, the need for a cheap catalyst for biodiesel synthesis from no ... methanol (High Performance Liquid Chromatography ... ratio and were then charged into the glass reactor.

  3. Recovery studies for plutonium machining oil coolant

    International Nuclear Information System (INIS)

    Navratil, J.D.; Baldwin, C.E.

    1977-01-01

    Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tetrachloride. Appropriate methods then could be developed to remove the plutonium and to recycle the oil and carbon tetrachloride. Studies showed that the mixtures of spent oil and carbon tetrachloride contained particulate plutonium and plutonium species that are soluble in water or in oil and carbon tetrachloride. The particulate plutonium was removed by filtration; the nonfilterable plutonium was removed by adsorption on various materials. Laboratory-scale tests indicated the lathe-coolant oil mixture could be separated by distilling the carbon tetrachloride to yield recyclable products

  4. Evaluation of two okra species [Abelmoschusesculentus (L ...

    African Journals Online (AJOL)

    DizMat_Ogwu

    2014-02-26

    Feb 26, 2014 ... African Journal of Biotechnology. Full Length Research Paper. Evaluation of two okra species ..... Amakiri JO, Onofeghara FA (1984). Effect of crude oil pollution on the growth of Zea mays, Abelmoschusesculentusand capsicum frutescans. Oil Pet. Pollut. 1:199-206. Ariyo OJ (1993). Genetic diversity in west ...

  5. Screening of some Malay medicated oils for antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Khalid Khalisanni

    2010-01-01

    Full Text Available Oils from six Malay medicated oils, used traditionally in the treatment of infectious and septic diseases in humans, were tested for their antimicrobial property. The aim was to evaluate the antimicrobial properties of six Malay medicated oils against certain microbial isolates. Locally available Malay medicated oils were checked for their antimicrobial activities using six species of bacteria: E. coli, Salmonella spp., Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus, Bacillus subtilis and 2 fungi with 1 yeast (Aspergillus niger, Penicillum spp. and Candida albicans. Clove oil showed the highest antibacterial activity followed, respectively, by 'bunga merah', cajaput, nutmeg, lemon grass and 'gamat' oil. Clove oil and lemon grass showed anticandidal activity. The Malay medicated oil studies did not show any antifungal activity. The study shows that Malay medicated oils, like antibiotics, have antimicrobial activities against some microorganisms.

  6. EXTRACTION AND ANTIOXIDANT ACTIVITIES OF TWO SPECIES ...

    African Journals Online (AJOL)

    2013-06-30

    Jun 30, 2013 ... Origanum vulgare were investigated and also the total phenolic and ... species majorana, and vulgare respectively; also the DPPH of essential oil of Origanum ... inflammatory, antimicrobial and antioxidant activities[10] .

  7. Evaluation of bird impacts on historical oil spill cases using the SIMAP oil spill model

    International Nuclear Information System (INIS)

    French McCay, D.; Rowe, J.J.

    2004-01-01

    The impact of an oil spill on bird and other wildlife species can be estimated using the Spill Impact Model Application Package (SIMAP). SIMAP estimates exposure and impact on bird species and their habitat based on physical fate and biological effects models under a broad range of environmental conditions. This paper presented the evaluations of 14 spill case studies which compared model predictions of biological impacts with field observations after a spill. Most of the observational data on the biological impacts of spills was for oiled birds and other wildlife. The impact of an oil spill on fish and invertebrates was examined in one case study. Error analysis was not performed on the field-base estimates of impact. Biological abundances and impacts are highly variable in time and space and very difficult to measure and quantify. Model-predicted and field-based estimates of oiled wildlife were compared. Uncertainty in the model-predicted number of oil wildlife was most related to mapping of biological distributions, behaviour of individuals, and local population density at the time of spill. The greatest uncertainty was the pre-spill abundance. The number of animals oils was found to be directly proportional to the pre-spill abundance assumed in the model inputs. Relative impact can be inferred from the percentage of population oiled. The total number oiled by a spill can be extrapolated using trajectories of oiled birds and counts of oiled animals collected in the field. 54 refs., 16 tabs., 12 figs

  8. Main crops used to obtain fuel from vegetable oils in Brazil; Principais culturas para obtencao de oleos vegetais combustiveis no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna Lucia [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], Email: anna@ital.sp.gov.br

    2006-07-01

    This paper tries to identify how the National Program of Production and Use of Biodiesel may unfold itself in different geographical areas starting from the specific characteristics for each cultivation and volume production of each plant at present. By combining the production of palm, peanut, corn, soy beans, coconut, cotton, castor beans, sunflower and canola, of each geographical area, with the average oil yield as compared with the production of 2004, it has been calculated that the potential of oil production from areas in the South (32,9%) and Middle west (40,8%), having a high per capita income, are much higher than the areas the North (3,4%) and Northeast (10,1%), mainly due to the high soy bean and corn production. Considering the participation of all these oleaginous raw materials, it has been considered that it would be necessary to increase about 5% of the actual production of these plants for a later transformation in fuel to supply the bio diesel demand. This modest growth estimate requires caution on the part of the farmers and oil crushers and converters for they must project their investments correctly, so that their production can be absorbed by the market. The oil