Gao, Zhong-Ke; Dang, Wei-Dong; Yang, Yu-Xuan; Cai, Qing
2017-03-01
The exploration of the spatial dynamical flow behaviors of oil-water flows has attracted increasing interests on account of its challenging complexity and great significance. We first technically design a double-layer distributed-sector conductance sensor and systematically carry out oil-water flow experiments to capture the spatial flow information. Based on the well-established recurrence network theory, we develop a novel multiplex multivariate recurrence network (MMRN) to fully and comprehensively fuse our double-layer multi-channel signals. Then we derive the projection networks from the inferred MMRNs and exploit the average clustering coefficient and the spectral radius to quantitatively characterize the nonlinear recurrent behaviors related to the distinct flow patterns. We find that these two network measures are very sensitive to the change of flow states and the distributions of network measures enable to uncover the spatial dynamical flow behaviors underlying different oil-water flow patterns. Our method paves the way for efficiently analyzing multi-channel signals from multi-layer sensor measurement system.
Complex network analysis of phase dynamics underlying oil-water two-phase flows
Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De
2016-01-01
Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101
Gao, Zhong-Ke; Yang, Yu-Xuan; Cai, Qing; Zhang, Shan-Shan; Jin, Ning-De
2016-06-01
Exploring the dynamical behaviors of high water cut and low velocity oil-water flows remains a contemporary and challenging problem of significant importance. This challenge stimulates us to design a high-speed cycle motivation conductance sensor to capture spatial local flow information. We systematically carry out experiments and acquire the multi-channel measurements from different oil-water flow patterns. Then we develop a novel multivariate weighted recurrence network for uncovering the flow behaviors from multi-channel measurements. In particular, we exploit graph energy and weighted clustering coefficient in combination with multivariate time-frequency analysis to characterize the derived complex networks. The results indicate that the network measures are very sensitive to the flow transitions and allow uncovering local dynamical behaviors associated with water cut and flow velocity. These properties render our method particularly useful for quantitatively characterizing dynamical behaviors governing the transition and evolution of different oil-water flow patterns.
Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De
2016-02-02
High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.
Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow.
Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Marwan, Norbert; Kurths, Jürgen
2013-09-01
Characterizing complex patterns arising from horizontal oil-water two-phase flows is a contemporary and challenging problem of paramount importance. We design a new multisector conductance sensor and systematically carry out horizontal oil-water two-phase flow experiments for measuring multivariate signals of different flow patterns. We then infer multivariate recurrence networks from these experimental data and investigate local cross-network properties for each constructed network. Our results demonstrate that a cross-clustering coefficient from a multivariate recurrence network is very sensitive to transitions among different flow patterns and recovers quantitative insights into the flow behavior underlying horizontal oil-water flows. These properties render multivariate recurrence networks particularly powerful for investigating a horizontal oil-water two-phase flow system and its complex interacting components from a network perspective.
Magnitude and sign correlations in conductance fluctuations of horizontal oil water two-phase flow
International Nuclear Information System (INIS)
Zhu, L; Jin, N D; Gao, Z K; Zong, Y B; Zhai, L S; Wang, Z Y
2012-01-01
In experiment we firstly define five typical horizontal oil-water flow patterns. Then we introduce an approach for analyzing signals by decomposing the original signals increment into magnitude and sign series and exploring their scaling properties. We characterize the nonlinear and linear properties of horizontal oil-water two-phase flow, which relate to magnitude and sign series respectively. We find that the joint distribution of different scaling exponents can effectively identify flow patterns, and the detrended fluctuation analysis (DFA) on magnitude and sign series can represent typical horizontal oil-water two-phase flow dynamics characteristics. The results indicate that the magnitude and sign decomposition method can be a helpful tool for characterizing complex dynamics of horizontal oil-water two-phase flow.
In-Line Oil-Water Separation in Swirling Flow (USB stick)
Slot, J.J.; van Campen, L.J.A.M.; Hoeijmakers, Hendrik Willem Marie; Mudde, R.F.; Johansen, S.T.
2011-01-01
An in-line oil-water separator has been designed and is investigated for single- and two-phase flow. Numerical single-phase flow results show an annular reversed flow region. This flow pattern agrees qualitatively with results from measurements. In the two-phase flow simulations two different drag
The flow in an oil/water plate heat exchanger for the automotive industry
Lozano , A.; Barreras , F.; Fueyo , N.; Santodomingo , S.
2008-01-01
The flow in an oil/water plate heat exchanger for the automotive industry correspondence: Corresponding author. Tel.: +34976716463; fax: +34976716456. (Lozano, A.) (Lozano, A.) LITEC/CSIC--> , Mar?'a de Luna 10--> , 50018--> , Zaragoza--> - SPAIN (Lozano, A.) SPAIN (Lozano, A.) LITEC/CSIC--> , Mar?'a de Luna 10--> , 50018--> , Zaragoza--> - S...
An Experimental Study of Oil / Water Flow in Horizontal Pipes
Energy Technology Data Exchange (ETDEWEB)
Elseth, Geir
2001-07-01
The purpose of this thesis is to study the behaviour of the simultaneous flow of oil and water in horizontal pipes. In this connection, two test facilities are used. Both facilities have horizontal test sections with inner pipe diameters equal to 2 inches. The largest facility, called the model oil facility, has reservoirs of 1 m{sub 3} of each medium enabling flow rates as high as 30 m{sub 3}/h, which corresponds to mixture velocities as high as 3.35 m/s. The flow rates of oil and water can be varied individually producing different flow patterns according to variations in mixture velocity and input water cut. Two main classes of flows are seen, stratified and dispersed. In this facility, the main focus has been on stratified flows. Pressure drops and local phase fractions are measured for a large number of flow conditions. Among the instruments used are differential pressure transmitters and a traversing gamma densitometer, respectively. The flow patterns that appear are classified in flow pattern maps as functions of either mixture velocity and water cut or superficial velocities. From these experiments a smaller number of stratified flows are selected for studies of velocity and turbulence. A laser Doppler anemometer (LDA) is applied for these measurements in a transparent part of the test section. To be able to produce accurate measurements a partial refractive index matching procedure is used. The other facility, called the matched refractive index facility, has a 0.2 m{sub 3} reservoir enabling mainly dispersed flows. Mixture velocities range from 0.75 m/s to 3 m/s. The fluids in this facility are carefully selected to match the refractive index of the transparent part of the test section. A full refractive index matching procedure is carried out producing excellent optical conditions for velocity and turbulence studies by LDA. In addition, pressure drops and local phase fractions are measured. (author)
Oil-water flows in wells with powerful fracture reservoirs
Energy Technology Data Exchange (ETDEWEB)
Ivanov, N.P.
1979-01-01
The character of two phase liquid flows from powerful layer fractures to bottom holes in Starogrodnen and Malgobek-Voznesenskiy fields in the Chechen-Ingush ASSR found in the late stage of operation. The studies were done with the electrothermometer TEG-36, the manometer MGN-2, the remote control thermal flow meter T-4, the remote control moisture meter VBST-1, the density meter GGP-1M, whose accuracy class is 1.0 and whose working limits are: temperature, up to 150/sup 0/C and pressure, up to 1000 kGs/cm/sup 2/. The breakdown of the linear filtration law and the gravitational division of the water-oil mixture phase occurred during fieldwork. The oil and water, etc., flow intervals were defined. The data from the moisture meter and the gamma density meter coincided.
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Investigation of the mixture flow rates of oil-water two-phase flow using the turbine flow meter
International Nuclear Information System (INIS)
Li Donghui; Feng Feifei; Wu Yingxiang; Xu Jingyu
2009-01-01
In this work, the mixture flow rate of oil-water flows was studied using the turbine flow-meter. The research emphasis focuses on the effect of oil viscosity and input fluids flow rates on the precision of the meter. Experiments were conducted to measure the in-situ mixture flow rate in a horizontal pipe with 0.05m diameter using seven different viscosities of white oil and tap water as liquid phases. Results showed that both oil viscosity and input oil fraction exert a remarkable effect on measured results, especially when the viscosity of oil phase remained in the area of high value. In addition, for metering mixture flow rate using turbine flow-meter, the results are not sensitive to two-phase flow pattern according to the experimental data.
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow
Directory of Open Access Journals (Sweden)
Weihang Kong
2016-08-01
Full Text Available Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM. Firstly, using the finite element method (FEM, the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.
Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao
2016-08-24
Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan
2015-02-04
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
Determination of flow rates of oil, water and gas in pipelines
Energy Technology Data Exchange (ETDEWEB)
Roach, G J; Watt, J S; Zastawny, H W [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lucas Heights, NSW (Australia). Div. of Mineral Physics
1994-12-31
This paper describes a multiphase flow meter developed by CSIRO for determining of the flow rates of oil, water and gas in high pressure pipelines, and the results of a trial of this flow meter on an offshore oil platform. Two gamma-ray transmission gauges are mounted about a pipeline carrying the full flow of oil, water and gas. The flow rates are determined by combining single energy gamma-ray transmission measurements which determine the mass per unit area of fluids in the gamma-ray beam as a function of time, dual energy gamma-ray transmission (DUET) which determine the approximate mass fraction of oil in the liquids, cross-correlation of gamma-ray transmission measurements, with one gauge upstream of the other, which determines flow velocity, pressure and temperature measurements, and knowledge of the specific gravities of oil and (salt) water, and solubility of the gas in the liquids, all as a function of pressure and temperature. 3 figs.
Determination of flow rates of oil, water and gas in pipelines
Energy Technology Data Exchange (ETDEWEB)
Roach, G.J.; Watt, J.S.; Zastawny, H.W. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lucas Heights, NSW (Australia). Div. of Mineral Physics
1993-12-31
This paper describes a multiphase flow meter developed by CSIRO for determining of the flow rates of oil, water and gas in high pressure pipelines, and the results of a trial of this flow meter on an offshore oil platform. Two gamma-ray transmission gauges are mounted about a pipeline carrying the full flow of oil, water and gas. The flow rates are determined by combining single energy gamma-ray transmission measurements which determine the mass per unit area of fluids in the gamma-ray beam as a function of time, dual energy gamma-ray transmission (DUET) which determine the approximate mass fraction of oil in the liquids, cross-correlation of gamma-ray transmission measurements, with one gauge upstream of the other, which determines flow velocity, pressure and temperature measurements, and knowledge of the specific gravities of oil and (salt) water, and solubility of the gas in the liquids, all as a function of pressure and temperature. 3 figs.
Determination of flow rates of oil, water and gas in pipelines
International Nuclear Information System (INIS)
Roach, G.J.; Watt, J.S.; Zastawny, H.W.
1993-01-01
This paper describes a multiphase flow meter developed by CSIRO for determining of the flow rates of oil, water and gas in high pressure pipelines, and the results of a trial of this flow meter on an offshore oil platform. Two gamma-ray transmission gauges are mounted about a pipeline carrying the full flow of oil, water and gas. The flow rates are determined by combining single energy gamma-ray transmission measurements which determine the mass per unit area of fluids in the gamma-ray beam as a function of time, dual energy gamma-ray transmission (DUET) which determine the approximate mass fraction of oil in the liquids, cross-correlation of gamma-ray transmission measurements, with one gauge upstream of the other, which determines flow velocity, pressure and temperature measurements, and knowledge of the specific gravities of oil and (salt) water, and solubility of the gas in the liquids, all as a function of pressure and temperature. 3 figs
Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks
Gao, Zhong-Ke; Wang, Wen-Xu
2014-01-01
Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...
International Nuclear Information System (INIS)
Qin, M; Chen, D Y; Wang, L L; Yu, X Y
2006-01-01
The subject investigated in this paper is the ECT system of 8-electrode oil-water two-phase flow, and the measuring principle is analysed. In ART image-reconstruction algorithm, an adaptive threshold image reconstruction is presented to improve quality of image reconstruction and calculating accuracy of concentration, and generally the measurement error is about 1%. Such method can well solve many defects that other measurement methods may have, such as slow speed, high cost, and poor security and so on. Therefore, it offers a new method for the concentration measurement of oil-water two-phase flow
CANDU channel flow verification
International Nuclear Information System (INIS)
Mazalu, N.; Negut, Gh.
1997-01-01
The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)
Directory of Open Access Journals (Sweden)
Guangya Jin
2017-01-01
Full Text Available Aqueous crude oil often contains large amounts of produced water and heavy sediment, which seriously threats the safety of crude oil storage and transportation. Therefore, the proper design of crude oil tank drainage device is prerequisite for efficient purification of aqueous crude oil. In this work, the composition and physicochemical properties of crude oil samples were tested under the actual conditions encountered. Based on these data, an appropriate crude oil tank drainage device was developed using the principle of floating ball and multiphase flow. In addition, the flow field characteristics in the device were simulated and the contours and streamtraces of velocity magnitude at different nine moments were obtained. Meanwhile, the improvement of flow field characteristics after the addition of grids in crude oil tank drainage device was validated. These findings provide insights into the development of effective selection methods and serve as important references for oil-water separation process.
Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing
2018-06-01
In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.
Onset of entrainment and degree of dispersion in dual continuous horizontal oil-water flows
Energy Technology Data Exchange (ETDEWEB)
Al-Wahaibi, Talal [Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, P.C. 123 (Oman); Angeli, Panagiota [Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)
2009-04-15
The transition from stratified to dual continuous oil-water flow (where each phase retains its continuity but there is dispersion of one phase into the other) as well as the dispersed phase fractions in the layers of the dual continuous pattern, were studied experimentally. Transition to this pattern from stratified flow occurs when drops of one phase appear into the other (onset of entrainment). The studies were carried out in a 38 mm ID horizontal stainless steel test section using two different inlet geometries, a T- and a Y-junction. The patterns were visualized through a transparent acrylic section located at 7 m from the inlet using a high speed video camera. Phase distribution measurements in a pipe cross section were obtained just before the acrylic section with a local impedance probe and the results were used to calculate the volume fraction of each phase entrained into the other. The onset of entrainment was found to occur at lower superficial water velocities as the oil superficial velocities increased. However, the inlet geometry did not affect significantly the transition line. During dual continuous flow, the dispersion of one phase into the opposite was found to extend further away from the interface with increasing water superficial velocity for a certain oil superficial velocity. An increase in the superficial water velocity increased the entrained fraction of water in oil (E{sub w/o}) but there was no trend with the oil velocity. Similarly, an increase in the superficial oil velocity increased the fraction of oil drops in water (E{sub o/w}) but the water velocity had no clear effect. The entrainment fractions were affected by the inlet geometry, with the T-inlet resulting in higher entrainment than the Y-inlet, perhaps because of the increased mixing induced by the T-inlet. The difference between the two inlets increased as the oil and water velocities increased. (author)
A multiphase flow meter for the on-line determination of the flow rates of oil, water and gas
International Nuclear Information System (INIS)
Roach, G.J.; Watt, J.S.
1997-01-01
Multiphase mixtures of crude oil, formation water and gas are carried in pipelines from oil wells to production facilities. Multiphase flow meters (MFMs) are being developed to determine the flow rates of each component of the heterogeneous mixture in the pipeline. CSIRO Minerals has developed and field tested a gamma-ray MFM for the on-line determination of the flow rates of heterogeneous mixtures of oil, water and gas in pipelines. It consists of two specialised gamma-ray transmission gauges, and pressure and temperature sensors, mounted on the pipeline carrying the full flow of the production stream. The MFM separately measures liquids and gas flow rates, and the volume ratio of water and liquids (water cut). The MFM has been trialled at three offshore production facilities in Australia. In each, the MFM was mounted on the pipeline between the test manifold and the test separator. The multiphase streams from the various wells feeding to the platform were sequentially routed past the MFM. The MFM and test separator outputs were compared using regression analysis. The flow rates of oil, water and gas were each determined to relative errors in the range of 5-10% . The MFM has been in routine use on the West Kingfish platform in the Bass Strait since November 1994. The MFM was recently tested over a wide range of flow conditions at a Texaco flow facility near Houston. Water cut, based on pre-trial calibration, was determined to 2% rms over the range 0-100% water cut. The liquids and gas flow results were interpreted based on slip correlations obtained from comparison of the MFM and Texaco flows. Using these, the relative errors were respectively 6.6% for liquid flow, 6.2% for gas, 8% for oil and 8% for water. The MFM is licensed to Kvaerner FSSL of Aberdeen. Kvaerner will supply the gamma-ray MFM for both platform and subsea use. Technology transfer commenced in December 1996, and Kvaerner completed the manufacture of the first MFM in August 1997
Development of a centrifugal in-line separator for oil-water flows
Slot, J.J.
2013-01-01
The world energy consumption will increase in the next decades. However, many aging oil fields are showing a steady decline in oil production. And they are producing increasing amounts of water, making the separation of the oil from the oil-water mixture an important processing step. In-line
Feng, Xin; Wu, Shi-Xiang; Zhao, Kun; Wang, Wei; Zhan, Hong-Lei; Jiang, Chen; Xiao, Li-Zhi; Chen, Shao-Hua
2015-11-30
The flow-pattern transition has been a challenging problem in two-phase flow system. We propose the terahertz time-domain spectroscopy (THz-TDS) to investigate the behavior underlying oil-water flow in rectangular horizontal pipes. The low water content (0.03-2.3%) in oil-water flow can be measured accurately and reliably from the relationship between THz peak amplitude and water volume fraction. In addition, we obtain the flow pattern transition boundaries in terms of flow rates. The critical flow rate Qc of the flow pattern transitions decreases from 0.32 m3 h to 0.18 m3 h when the corresponding water content increases from 0.03% to 2.3%. These properties render THz-TDS particularly powerful technology for investigating a horizontal oil-water two-phase flow system.
Kumara, W.A.S.; Halvorsen, Britt; Melaaen, Morten Christian
2009-01-01
Oil-water flows in horizontal and slightly inclined pipes are investigated using Particle Image Velocimetry (PIV). PIV offers a powerful non-invasive tool to study such flow fields. The experiments are conducted in a 15 m long, 56 mm diameter, inclinable steel pipe using Exxsol D60 oil (viscosity 1.64 mPa s, density 790 kg/m3) and water (viscosity 1.0 mPa s, density 996 kg/m3) as test fluids. The test pipe inclination is changed in the range from 5° upward to 5° downward. The experiments are ...
Energy Technology Data Exchange (ETDEWEB)
Boyer, Ch.
1996-11-01
We propose a theoretical and experimental study of a three-phase flow metering process for oil-water-gas flows. The selected process is based on a combination of a mixer, a Venturi and ultrasonic methods. To perform an experimental validation of this process an instrumented set-up for three-phase air-oil-water flows has been designed, conceived and adjusted. An original theoretical model have been built to predict three-phase dispersed flows across a contraction. Once validated with two-phase air-water, oil-water and air-oil-water flows data, this model has been used to solve the Venturi metering problems. After a critical review of the available techniques, the ultrasonic propagation velocity has been selected to determine two-phase liquid-liquid flow composition. Two original models have been developed to describe the ultrasonic propagation with the dispersed phase fraction. The comparison with experimental data in oil-water flows show the superiority of one of the two models, the scattering model. For the void fraction determination in air-water flows, the work of Bensler (1990) based on the ultrasonic attenuation measurement has been extended to take into account the multiple scattering effects. Finally these techniques have been combined to determine the different flow rates in air-water, oil-water flows. For two-phase air-water and oil-water flows the problem is solved and the flow rates are measured with a very good accuracy ({+-} 3%). The results quality obtained with three-phase oil-water-gas flows and the secure theoretical bases allowing their interpretation give us the opportunity to strongly recommend the development of an industrial prototype based on the process we studied. (author) 183 refs.
Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan
2017-07-14
Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.
Tanino, Yukie; Zacarias-Hernandez, Xanat; Christensen, Magali
2018-02-01
Optical microscopy was used to measure depth-averaged oil distribution in a quasi-monolayer of crushed marble packed in a microfluidic channel as it was displaced by water. By calibrating the transmitted light intensity to oil thickness, we account for depth variation in the fluid distribution. Experiments reveal that oil saturation at water breakthrough decreases with increasing Darcy velocity, U_{ {w}}, between capillary numbers {Ca} = μ _{ {w}} U_{ {w}}/σ = 9× 10^{-7} and 9× 10^{-6}, where μ _{ {w}} is the dynamic viscosity of water and σ is the oil/water interfacial tension, under the conditions considered presently. In contrast, end-point (long-time) remaining oil saturation depends only weakly on U_{ {w}}. This transient dependence on velocity is attributed to the competition between precursor film flow, which controls early time invasion dynamics but is inefficient at displacing oil, and piston-like displacement, which controls ultimate oil recovery. These results demonstrate that microfluidic experiments using translucent grains and fluids are a convenient tool for quantitative investigation of sub-resolution liquid/liquid displacement in porous media.
Characterization of interfacial waves and pressure drop in horizontal oil-water core-annular flows
Tripathi, Sumit; Tabor, Rico F.; Singh, Ramesh; Bhattacharya, Amitabh
2017-08-01
We study the transportation of highly viscous furnace-oil in a horizontal pipe as core-annular flow (CAF) using experiments. Pressure drop and high-speed images of the fully developed CAF are recorded for a wide range of flow rate combinations. The height profiles (with respect to the centerline of the pipe) of the upper and lower interfaces of the core are obtained using a high-speed camera and image analysis. Time series of the interface height are used to calculate the average holdup of the oil phase, speed of the interface, and the power spectra of the interface profile. We find that the ratio of the effective velocity of the annular fluid to the core velocity, α , shows a large scatter. Using the average value of this ratio (α =0.74 ) yields a good estimate of the measured holdup for the whole range of flow rate ratios, mainly due to the low sensitivity of the holdup ratio to the velocity ratio. Dimensional analysis implies that, if the thickness of the annular fluid is much smaller than the pipe radius, then, for the given range of parameters in our experiments, the non-dimensional interface shape, as well as the non-dimensional wall shear stress, can depend only on the shear Reynolds number and the velocity ratio. Our experimental data show that, for both lower and upper interfaces, the normalized power spectrum of the interface height has a strong dependence on the shear Reynolds number. Specifically, for low shear Reynolds numbers, interfacial modes with large wavelengths dominate, while, for large shear Reynolds numbers, interfacial modes with small wavelengths dominate. Normalized variance of the interface height is higher at lower shear Reynolds numbers and tends to a constant with increasing shear Reynolds number. Surprisingly, our experimental data also show that the effective wall shear stress is, to a large extent, proportional to the square of the core velocity. Using the implied scalings for the holdup ratio and wall shear stress, we can derive
A Fast Algorithm to Simulate Droplet Motions in Oil/Water Two Phase Flow
Zhang, Tao
2017-06-09
To improve the research methods in petroleum industry, we develop a fast algorithm to simulate droplet motions in oil and water two phase flow, using phase field model to describe the phase distribution in the flow process. An efficient partial difference equation solver—Shift-Matrix method is applied here, to speed up the calculation coding in high-level language, i.e. Matlab and R. An analytical solution of order parameter is derived, to define the initial condition of phase distribution. The upwind scheme is applied in our algorithm, to make it energy decay stable, which results in the fast speed of calculation. To make it more clear and understandable, we provide the specific code for forming the coefficient matrix used in Shift-Matrix Method. Our algorithm is compared with other methods in different scales, including Front Tracking and VOSET method in macroscopic and LBM method using RK model in mesoscopic scale. In addition, we compare the result of droplet motion under gravity using our algorithm with the empirical formula common used in industry. The result proves the high efficiency and robustness of our algorithm and it’s then used to simulate the motions of multiple droplets under gravity and cross-direction forces, which is more practical in industry and can be extended to wider application.
A predictor-corrector algorithm to estimate the fractional flow in oil-water models
International Nuclear Information System (INIS)
Savioli, Gabriela B; Berdaguer, Elena M Fernandez
2008-01-01
We introduce a predictor-corrector algorithm to estimate parameters in a nonlinear hyperbolic problem. It can be used to estimate the oil-fractional flow function from the Buckley-Leverett equation. The forward model is non-linear: the sought- for parameter is a function of the solution of the equation. Traditionally, the estimation of functions requires the selection of a fitting parametric model. The algorithm that we develop does not require a predetermined parameter model. Therefore, the estimation problem is carried out over a set of parameters which are functions. The algorithm is based on the linearization of the parameter-to-output mapping. This technique is new in the field of nonlinear estimation. It has the advantage of laying aside parametric models. The algorithm is iterative and is of predictor-corrector type. We present theoretical results on the inverse problem. We use synthetic data to test the new algorithm.
Energy Technology Data Exchange (ETDEWEB)
Shad, S.; Gates, I.D.; Maini, B.B. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)
2008-10-15
An experimental apparatus was used to investigate the flow of water in the presence of heavy oil within a smooth-walled fracture. Different flow patterns were investigated under a variety of flow conditions. Results of the experiments were used to determine the accuracy of VC, Corey, and Shad and Gates models designed to represent the behaviour of oil wet systems. The relative permeability concept was used to describe the behaviour of multiple phases flowing through porous media. A smooth-walled plexiglass Hele-Shaw cell was used to visualize oil and water flow. Changes in flow rates led to different flow regimes. The experiment demonstrated that water flowed co-currently in the form of droplets or slugs. Decreases in the oil flow rate enlarged the size of the water droplets as well as the velocity, until eventually the droplets coalesced and became water slugs. Droplet appearance or disappearance directly impacted the oil and water saturation levels. Changes in fluid saturation altered the pressure gradient. Darcy's law for the 2 liquid phases were used to calculate relative permeability curves. The study showed that at low water saturation, oil relative permeability reached as high as 2.5, while water relative permeability was lower than unity. In the presence of a continuous water channel, water drops formed in oil, and the velocity of the drops was lower than their velocity under a discontinuous water flow regime. It was concluded that the Shad and Gates model overestimated oil relative permeability and underestimated water relative permeability. 38 refs., 2 tabs., 9 figs.
Precipitation patterns during channel flow
Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.
2013-12-01
Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001
Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang
2016-10-14
First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.
Directory of Open Access Journals (Sweden)
Yanjun Wang
2016-10-01
Full Text Available First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.
Energy Technology Data Exchange (ETDEWEB)
Trevisan, Francisco Exaltacao; Bannwart, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil)
2004-07-01
A significant extent of the Brazilian oil reserves consists of heavy oil, and its importance and economic value have been increasing in the last years. However, these oils, besides their elevated densities (API degree lower than 20), have viscosities higher than 100 mPa.s, which make it more difficult their transportation in pipelines. A solution for this problem is the injection of water in the pipe, which causes a reduction of the friction factor and, consequently, of the energy expend for a given oil flow rate. The two-phase flow of heavy oil and water has been the object of a number of recent studies, and concepts such as the core-flow technology can be useful for heavy oil transportation. But in production operations, gas is also present, initially dissolved in the oil phase then leaving the solution to form a free gas phase if the pressure drops below the bubble point pressure, the study of three-phase flow of heavy oil, water and gas is in order. The present paper presents the experimental work developed to evaluate the effect that this third phase causes on the heavy oil-water two-phase flow pattern. Initially two-phase flow of heavy and gas-water was studied to establish the flow rate ranges that cover the main patterns already known. The superficial velocities used varied from 0,04 to 0,5 m/s for water, 0,01 to 22 m/s for gas and 0,02 to 1,2 m/s for oil. After that, three-phase flow patterns were visually determined through a 2,84 cm i.d. plexiglas tube using a high-speed camera. Nine three-phase flow patterns were identified which are presented visually and described. These flow-patterns are also presented in flow maps where the effect of the gas phase can be observed. Water was the continuous phase for all flow patterns observed, ensuring a low pressure drop along the pipe. (author)
Flow and sediment transport across oblique channels
DEFF Research Database (Denmark)
Hjelmager Jensen, Jacob; Madsen, Erik Østergaard; Fredsøe, Jørgen
1998-01-01
A 3D numerical investigation of flow across channels aligned obliquely to the main flow direction has been conducted. The applied numerical model solves the Reynolds-averaged Navier-Stokes equations using the k-ε model for turbulence closure on a curvilinear grid. Three momentum equations...... are solved, but the computational domain is 2D due to a uniformity along the channel alignment. Two important flow features arise when the flow crosses the channel: (i) the flow will be refracted in the direction of the channel alignment. This may be described by a depth-averaged model. (ii) due to shear...
Channelling of flow through fractures in rock
International Nuclear Information System (INIS)
Bourke, P.J.
1987-05-01
A method of mapping the channelling of flow in rock fractures formed by contacts between rock faces and of measuring the effective apertures of channels has been developed. Some typical results are given. (author)
Steady turbulent flow in curved rectangular channels
De Vriend, H.J.
1979-01-01
After the study of fully developed and developing steady laminar flow in curved channels of shallow rectangular wet cross-section (see earlier reports in this series), steady turbulent flow in such channels is investigated as a next step towards a mathematical model of the flow in shallow river
HANARO core channel flow-rate measurement
Energy Technology Data Exchange (ETDEWEB)
Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1996-06-01
HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.
Directory of Open Access Journals (Sweden)
Kanchapogu Suresh
2017-09-01
Full Text Available The main objective of this work is to study the effect of cross flow filtration conditions on the separation of oily wastewater using ceramic support and TiO2 membrane. Firstly, the low cost clay based ceramic membrane support was prepared by uniaxial compaction method using combination of pyrophyllite, quartz, feldspar, kaolin, ball clay and calcium carbonate along with PVA as a binder. Subsequently, TiO2 composite membrane was fabricated via hydrothermal route employing TiO2 sol derived from TiCl4 and NH4OH solution. Cross flow microfiltration investigations were carried out by utilizing oil-water emulsion concentration of 200 mg/L at three distinct applied pressures (69–207 kPa and three cross flow velocities (0.0885, 0.1327, and 0.1769 m/s. Compared to ceramic support, TiO2 composite membrane demonstrates better performance in terms of flux and removal efficiency of oil and also the rate of flux decline during filtration operation is lower due to highly hydrophilic surface of the TiO2 membrane. TiO2 membrane displays the oil removal efficiency of 99% in the entire range of applied pressures investigation, while ceramic support shows 93–96% of oil removal.
Steady flow in shallow channel bends
De Vriend, H.J.
1981-01-01
Making use of a mathematical model solving the complete NavierStokes equations for steady flow in coiled rectangular pipes, fully-developed laminar flow in shallow curved channels is analysed physically and mathematically. Transverse convection of momentum by the secondary flow is shown to cause important deformations of the main velocity distribution. The model is also used to investigate simplified computation methods for shallow channels. The usual 'shallow water approximation' is shown to...
Steady flow in shallow channel bends
De Vriend, H.J.
1981-01-01
Making use of a mathematical model solving the complete NavierStokes equations for steady flow in coiled rectangular pipes, fully-developed laminar flow in shallow curved channels is analysed physically and mathematically. Transverse convection of momentum by the secondary flow is shown to cause
Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E
2017-11-01
The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamical eigenfunction decomposition of turbulent channel flow
Ball, K. S.; Sirovich, L.; Keefe, L. R.
1991-01-01
The results of an analysis of low-Reynolds-number turbulent channel flow based on the Karhunen-Loeve (K-L) expansion are presented. The turbulent flow field is generated by a direct numerical simulation of the Navier-Stokes equations at a Reynolds number Re(tau) = 80 (based on the wall shear velocity and channel half-width). The K-L procedure is then applied to determine the eigenvalues and eigenfunctions for this flow. The random coefficients of the K-L expansion are subsequently found by projecting the numerical flow field onto these eigenfunctions. The resulting expansion captures 90 percent of the turbulent energy with significantly fewer modes than the original trigonometric expansion. The eigenfunctions, which appear either as rolls or shearing motions, possess viscous boundary layers at the walls and are much richer in harmonics than the original basis functions.
HYTRAN: hydraulic transient code for investigating channel flow stability
International Nuclear Information System (INIS)
Kao, H.S.; Cardwell, W.R.; Morgan, C.D.
1976-01-01
HYTRAN is an analytical program used to investigate the possibility of hydraulic oscillations occurring in a reactor flow channel. The single channel studied is ordinarily the hot channel in the reactor core, which is parallel to other channels and is assumed to share a constant pressure drop with other channels. Since the channel of highest thermal state is studied, provision is made for two-phase flow that can cause a flow instability in the channel. HYTRAN uses the CHATA(1) program to establish a steady-state condition. A heat flux perturbation is then imposed on the channel, and the flow transient is calculated as a function of time
Topology optimization of Channel flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.
2005-01-01
function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical......This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low to moderate Reynolds numbers. This makes the flow problem non-linear and hence a non-trivial extension of the work of [Borrvall&Petersson 2002......]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...
Energy Technology Data Exchange (ETDEWEB)
Mariella, Jr., Raymond P.
2018-03-06
An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.
Mathematical model of melt flow channel granulator
Directory of Open Access Journals (Sweden)
A. A. Kiselev
2016-01-01
Full Text Available Granulation of carbohydrate-vitamin-mineral supplements based on molasses is performed at a high humidity (26 %, so for a stable operation of granulator it is necessary to reveal its melt flow pattern. To describe melt non-isothermal flow in the granulator a mathematical model with following initial equations: continuity equation, motion equation and rheological equation – was developed. The following assumptions were adopted: the melt flow in the granulator is a steady laminar flow; inertial and gravity forces can be ignored; melt is an incompressible fluid; velocity gradient in the flow direction is much smaller than in the transverse direction; the pressure gradient over the cross section of the channel is constant; the flow is hydrodynamically fully developed; effects impact on the channel inlet and outlet may be neglected. Due to the assumptions adopted, it can be considered that in this granulator only velocity components in the x-direction are significant and all the members of the equation with the components and their derivatives with respect to the coordinates y and z can be neglected. The resulting solutions were obtained: the equation for the mean velocity, the equation for determining the volume flow, the formula for calculating of mean time of the melt being in the granulator, the equation for determining the shear stress, the equation for determining the shear rate and the equation for determining the pressure loss. The results of calculations of the equations obtained are in complete agreement with the experimental data; deviation range is 16–19 %. The findings about the melt movement pattern in granulator allowed developing a methodology for calculating a rational design of the granulator molding unit.
Directory of Open Access Journals (Sweden)
T Andrade
2016-09-01
Full Text Available In the oil industry the multiphase flow occur throughout the production chain, from reservoir rock until separation units through the production column, risers and pipelines. During the whole process the fluid flows through the horizontal pipes, curves, connections and T joints. Today, technological and economic challenges facing the oil industry is related to heavy oil transportation due to its unfavourable characteristics such as high viscosity and high density that provokes high pressure drop along the flow. The coreflow technique consists in the injection of small amounts of water into the pipe to form a ring of water between the oil and the wall of the pipe which provides the reduction of friction pressure drop along the flow. This paper aim to model and simulate the transient two-phase flow (water-heavy oil in a horizontal pipe and T joint by numerical simulation using the software ANSYS CFX® Release 12.0. Results of pressure and volumetric fraction distribution inside the horizontal pipe and T joint are presented and analysed.
Evaluating oil/water separators
International Nuclear Information System (INIS)
Murdoch, M.A.
1993-01-01
Four commercially available oil/water separators were tested at an oil refinery test facility. The separators were the Alfa-Laval OFPX 413 disk-stack centrifuge, the Conoco Vortoil hydrocyclone system, International Separation Technology's Intr-Septor 250, and a modified Flo Trend gravity separator. Each machine was tested against mixtures of salt water and crude oil, and mixtures of salt water and a water-in-oil emulsion. The impact on separator performance from simulated sea motion, and from the addition of emulsion breakers and debris to the influent, were also evaluated. The test equipment, instrumentation, analysis facilities, test plans, and procedures to conduct the tests are described, but test results are not reported. Recommendations for improved test procedures are included. The inability to accurately monitor flow rates was found to have the greatest negative impact on test performance and results. Aspects of the test program that worked well included the use of flexible and semi-rigid hoses for customizing the test setups, the use of modular and leased tanks, and the sea motion simulator swing table design. 3 refs., 2 tabs
Modelling debris flows down general channels
Directory of Open Access Journals (Sweden)
S. P. Pudasaini
2005-01-01
Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to
Drag reduction statistics in a channel flow
Energy Technology Data Exchange (ETDEWEB)
Jimenez-Bernal, Jose A. [Instituto Politecnico Nacional, LABINTHAP-SEPI-ESIME, Edif. 5, 3er piso Col. Lindavista, Mexico DF 07738 (Mexico); Hassan, Yassin A.; Gutierrez-Torres, Claudia del C. [Nuclear Engineering Department, Texas A and M University, College Station, TX 77843-3123 (United States)
2005-07-01
Full text of publication follows: Methods to reduce the drag have been studied for many years because of the promising payoffs that can be attained. In this investigation, the evaluation of statistics such as skewness, flatness, spectra of the stream-wise velocity fluctuations is performed for single phase flow and for two phase flow. Micro-bubbles with an average diameter of 30 {mu}m and a local void fraction of 4.8 % were produced by electrolysis and injected inside the boundary layer. This value of void fraction produced a 38.45 % decrease of the drag. The experiments were conducted in a channel flow at a Reynolds number Re 5128 (considering half height of the channel, the bulk velocity and the kinematics viscosity of the water). The channel was made of acrylic due to the optical properties of this material; its dimensions are 3.85 m long, 0.206 m wide and 0.056 m high. A pressure transducer that ranges from 0 to 35 Pa is located in the test station to measure the pressure drop in single phase flow; this pressure value is used to calculate the shear wall stress. The shear wall stress of two phase flow was measured from the velocity fields obtained from Particle Image Velocimetry (PIV) technique. PIV was utilized to measure instantaneous velocity fields in the stream-wise-normal (x-y) plane. The use of low-local values of void fraction caused a reduction of undesirable speckles effects and an absence of extreme brightness provoked by high bubble saturation. The measurements were carried out in the upper wall of the channel at 3.15 m downstream the inlet's channel. The PIV system is formed by a CCD camera with a resolution of 1008 x 1018 pixels and a double pulse laser with a maximum power 400 mJ and a wavelength of 532 nm (green light). The laser beam was transformed into a sheet of light by an array of cylindrical lenses. Two hundred frames with an area of 1.28 cm{sup 2} were recorded to obtain one hundred velocity fields. The time separation between
Drag reduction statistics in a channel flow
International Nuclear Information System (INIS)
Jimenez-Bernal, Jose A.; Hassan, Yassin A.; Gutierrez-Torres, Claudia del C.
2005-01-01
Full text of publication follows: Methods to reduce the drag have been studied for many years because of the promising payoffs that can be attained. In this investigation, the evaluation of statistics such as skewness, flatness, spectra of the stream-wise velocity fluctuations is performed for single phase flow and for two phase flow. Micro-bubbles with an average diameter of 30 μm and a local void fraction of 4.8 % were produced by electrolysis and injected inside the boundary layer. This value of void fraction produced a 38.45 % decrease of the drag. The experiments were conducted in a channel flow at a Reynolds number Re 5128 (considering half height of the channel, the bulk velocity and the kinematics viscosity of the water). The channel was made of acrylic due to the optical properties of this material; its dimensions are 3.85 m long, 0.206 m wide and 0.056 m high. A pressure transducer that ranges from 0 to 35 Pa is located in the test station to measure the pressure drop in single phase flow; this pressure value is used to calculate the shear wall stress. The shear wall stress of two phase flow was measured from the velocity fields obtained from Particle Image Velocimetry (PIV) technique. PIV was utilized to measure instantaneous velocity fields in the stream-wise-normal (x-y) plane. The use of low-local values of void fraction caused a reduction of undesirable speckles effects and an absence of extreme brightness provoked by high bubble saturation. The measurements were carried out in the upper wall of the channel at 3.15 m downstream the inlet's channel. The PIV system is formed by a CCD camera with a resolution of 1008 x 1018 pixels and a double pulse laser with a maximum power 400 mJ and a wavelength of 532 nm (green light). The laser beam was transformed into a sheet of light by an array of cylindrical lenses. Two hundred frames with an area of 1.28 cm 2 were recorded to obtain one hundred velocity fields. The time separation between consecutive pulses
Static flow instability in subcooled flow boiling in parallel channels
International Nuclear Information System (INIS)
Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.
1995-01-01
A series of tests for static flow instability or flow excursion (FE) at conditions applicable to the proposed Advanced Neutron Source reactor was completed in parallel rectangular channels configuration with light water flowing vertically upward at very high velocities. True critical heat flux experiments under similar conditions were also conducted. The FE data reported in this study considerably extend the velocity range of data presently available worldwide. Out of the three correlations compared, the Saha and Zuber correlation had the best fit with the data. However, a modification was necessary to take into account the demonstrated dependence of the Stanton (St) and Nusselt (Nu) numbers on subcooling levels, especially in the low subcooling regime
Effects of Parallel Channel Interactions, Steam Flow, Liquid Subcool ...
African Journals Online (AJOL)
Tests were performed to examine the effects of parallel channel interactions, steam flow, liquid subcool and channel heat addition on the delivery of liquid from the upper plenum into the channels and lower plenum of Boiling Water Nuclear Power Reactors during reflood transients. Early liquid delivery into the channels, ...
Upgrade of Dhruva fuel channel flow instrumentation
International Nuclear Information System (INIS)
Gadgil, Kaustubh; Awale, P.K.; Sengupta, C.; Sumanth, P.; Roy, Kallol
2014-01-01
Dhruva, a 100 MW Heavy Water moderated and cooled, vertical tank-type Research Reactor, using metallic natural Uranium fuel has flow instrumentation for all the 144 fuel channels, consisting of venturi and triplicate DP gauges for each fuel channel. These gauges provide contacts for generation of reactor trip on low flow through fuel channel. These DP gauges were facing numerous generic and ageing related failures over the years and was also difficult to maintain owing to obsolescence. While considering an upgrade for these DP gauges, it was also planned to replace the existing Coolant Low Flow Trip (CLFT) system with a computer based Reactor Trip Logic System (RTLS). Being a retrofit job, the existing panels for mounting the gauges, cable layout, impulse tubing layout, etc. were retained, thereby simplifying the site execution, reducing reactor down time and also reducing person-milli-Sievert consumption. A customized Electronic DP Indicating Switch (EDPIS) was conceptualized for achieving these objectives. Such a design, utilizing a standard DP transmitter with customized electronic circuitry, was developed, evaluated and finalized after a series of factory trials, field trials and prototyping. The instrument design included contact input for existing CLFT system and also provision for 4-20 mA current output for the proposed computer based RTLS. The display and form factor of the instrument remained identical to older one and ensures familiarity of O and M personnel. Since EDPIS is classified as Safety Class IA, stringent type tests, hardware FMEA and V and V of the micro-controller software were carried out as per the requirements laid down by relevant standards for qualification of these instruments. Being a customized instrument, the manufacturing process was closely monitored and was followed by stringent QA plan and acceptance tests. A total of 396 gauges were replaced in a phased manner during scheduled fuelling outages and thereby did not affect reactor
Characteristics of two-phase flows in large diameter channels
Energy Technology Data Exchange (ETDEWEB)
Schlegel, J.P., E-mail: schlegelj@mst.edu [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W 14th St., Rolla, MO 65401 (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)
2016-12-15
Two-phase flows in large diameter channels have a great deal of importance in a wide variety of industrial applications. Nuclear systems, petroleum refineries, and chemical processes make extensive use of larger systems. Flows in such channels have very different properties from flows in smaller channels which are typically used in experimental research. In this paper, the various differences between flows in large and small channels are highlighted using the results of previous experimental and analytical research. This review is followed by a review of recent experiments in and model development for flows in large diameter channels performed by the authors. The topics of these research efforts range from void fraction and interfacial area concentration measurement to flow regime identification and modeling, drift-flux modeling for high void fraction conditions, and evaluation of interfacial area transport models for large diameter channels.
Acoustic Imaging of a Turbidity Current Flowing along a Channel
Hughes Clarke, J. E.; Hiroji, A.; Cahill, L.; Fedele, J. J.
2017-12-01
As part of a 3 month sequence of repetitive surveys and ADCP monitoring, more than 30 turbidity currents have been identified modifying a lobe channel in 130 to 190m of water on the Squamish prodelta. For a 6 day period, daily surveys at low tide tried to capture the change resulting from a single flow. On the 8thof June three flows occurred within a half hour. Along channel multibeam images of the seabed and water column were obtained from a moving vessel immediately before, during and after the passage of the third flow. In this manner the spatial extent of the in-channel and overbank flow could be constrained. By following the flow, the spatial pattern of scattering from the flow upper surface could be examined over a 2 km length of the channel. Along channel bands of high scattering appear related to enhanced release of gas along the channel flanks. Notably, no signature of the underlying across-channel bedform modulations were evident, suggesting that the upper surface of the flow does not feel the influence of the channel floor. Overbank spillage of the flow could be detected by perturbation of a plankton scattering layer just above the seabed. Additionally, evidence of enhanced overbank deposition due to flow stripping on the outer corner of a bend was identified from backscatter changes. The specific seabed alteration due to this flow could be identified and compared with the cumulative change over three months in the channel and adjacent channel-lobe transition zone. As the flow passed under the ADCP, it had a peak velocity of over 2 m/s, a thickness of 4-5m and duration of 35 minutes. Based on the timing of the flow head when in view of the surface vessel, it was decelerating as it exited the mouth of the channel.
Study of gas-water flow in horizontal rectangular channels
Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.
2015-09-01
The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.
Computation of gradually varied flow in compound open channel ...
Indian Academy of Sciences (India)
The flow of water in an open channel can be treated as steady, gradually varied flow for ... channel between two nodes is treated as a single reach to calculate the loss ... dition at control points and (iii) critical depth is also required to verify the ...
Technical note: Development of a Linear Flow Channel Reactor for ...
African Journals Online (AJOL)
Technical note: Development of a Linear Flow Channel Reactor for sulphur removal ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... 000 mg∙ℓ-1 Na2SO4 solution) and the Liner Flow Channel Reactors (surface area ...
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
Modeling two-phase flow in PEM fuel cell channels
Energy Technology Data Exchange (ETDEWEB)
Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)
Regimes of Two-Phase Flow in Short Rectangular Channel
Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.
2009-08-01
Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.
Experimental study of natural circulation flow instability in rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.
2017-05-15
Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.
Advanced porous electrodes with flow channels for vanadium redox flow battery
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon
2017-02-01
Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.
Logtenberg, Hella; Lopez-Martinez, Maria J; Feringa, Ben L; Browne, Wesley R; Verpoorte, Elisabeth
2011-06-21
An approach to control two-phase flow systems in a poly(dimethylsiloxane) (PDMS) microfluidic device using spatially selective surface modification is demonstrated. Side-by-side flows of ethanol : water solutions containing different polymers are used to selectively modify both sides of a channel by laminar flow patterning. Introduction of air pockets during modification allows for control over the length of the channel section that is modified. This approach makes it possible to achieve slug flow and side-by-side flow of water : 1-octanol simultaneously within the same PDMS channel, without the need of additional structural elements. A key finding is that conditioning of the PDMS channels with 1-octanol before polymer deposition is crucial to achieving stable side-by-side flows.
Pressure data for various flow channels in proton exchange membrane (PEM) fuel cell
International Nuclear Information System (INIS)
Cho, Son Ah; Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon
2008-01-01
Micro flow channels in flow plates of fuel cells have become much narrower and longer to improve reactant flow distribution leading to increase of pumping power. Therefore it is very important to minimize the pressure drops in the flow channel because increased pumping power reduces overall efficiency. We investigated pressure drops in a micro flow channel at the anode and cathode compared to pressure losses for cold flow in straight, bended and serpentine channels. The results show that friction factors for cold flow channels could be used for parallel and bended flow channel designs for fuel cells. Pressure drop in the serpentine flow channel is the lowest among all flow channels due to bypass flow across the gas diffusion layer under reactive flow condition, although its pressure drop is highest for a cold flow condition. So the effect of bypass flow for serpentine flow channels should be considered when designing flow channels
Some properties of a channeling model of fracture flow
International Nuclear Information System (INIS)
Tsang, Y.W.; Tsang, C.F.; Neretnieks, I.
1986-12-01
The Gamma distribution and the log-normal distribution were used to describe the density distribution of the apertures within a channel. For every set of parameter values (correlation length, and the parameters of the distributions) 95 different statistically equivalent channels were generated. The aperture distribution along the channels are then used to determine the total channel volume, the hydraulic conductivity and the flow rate and residence time for a given gradient. The volumes of the channels were found to vary little whereas the hydraulic conductivity, which is primarily determined by the smallest aperture along the channels, varies considerably. For a wide density distribution the hydraulic conductivity easily spans several orders of magnitude. The flow rate and the velocity variations are primarily influenced by the conductivity variations and are only to a small extent influenced by the volume variations in the channel. The average specific area of the whole channel exhibits small variations. The hydraulic and transport properties of hypothetical fractures containing several channels are investigated by randomly picking several of the generated channels, coupling them in parallel and subjecting them to the same hydraulic head difference. The flow rate and residence time distribution of the coupled channels is used to investigate the dispersion properties of the fracture. It was found that the dispersion expressed as Peclet numbers was on the order of 1 to 4 for most of the distributions used but could attain very large Peclet numbers for (unrealistically) narrow aperture distributions. Simulations of breakthrough curves for tracers in single fracture flow experiments indicate that when few channels participate and the dispersion in the individual channels is small, the breakthrough curve is expected not to be entirely smooth but to contain distinct plateaus. This property has been noted in several experiments. (orig./HP)
Linear predictions of supercritical flow instability in two parallel channels
International Nuclear Information System (INIS)
Shah, M.
2008-01-01
A steady state linear code that can predict thermo-hydraulic instability boundaries in a two parallel channel system under supercritical conditions has been developed. Linear and non-linear solutions of the instability boundary in a two parallel channel system are also compared. The effect of gravity on the instability boundary in a two parallel channel system, by changing the orientation of the system flow from horizontal flow to vertical up-flow and vertical down-flow has been analyzed. Vertical up-flow is found to be more unstable than horizontal flow and vertical down flow is found to be the most unstable configuration. The type of instability present in each flow-orientation of a parallel channel system has been checked and the density wave oscillation type is observed in horizontal flow and vertical up-flow, while the static type of instability is observed in a vertical down-flow for the cases studied here. The parameters affecting the instability boundary, such as the heating power, inlet temperature, inlet and outlet K-factors are varied to assess their effects. This study is important for the design of future Generation IV nuclear reactors in which supercritical light water is proposed as the primary coolant. (author)
Flow boiling in microgap channels experiment, visualization and analysis
Alam, Tamanna; Jin, Li-Wen
2013-01-01
Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Flow and heat transfer in a curved channel
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
Kanchapogu Suresh; G. Pugazhenthi
2017-01-01
The main objective of this work is to study the effect of cross flow filtration conditions on the separation of oily wastewater using ceramic support and TiO2 membrane. Firstly, the low cost clay based ceramic membrane support was prepared by uniaxial compaction method using combination of pyrophyllite, quartz, feldspar, kaolin, ball clay and calcium carbonate along with PVA as a binder. Subsequently, TiO2 composite membrane was fabricated via hydrothermal route employing TiO2 sol derived fro...
Two Phase Flow Split Model for Parallel Channels | Iloeje | Nigerian ...
African Journals Online (AJOL)
The model and code are capable of handling single and two phase flows, steady states and transients, up to ten parallel flow paths, simple and complicated geometries, including the boilers of fossil steam generators and nuclear power plants. A test calculation has been made with a simplified three-channel system ...
Flow field induced particle accumulation inside droplets in rectangular channels.
Hein, Michael; Moskopp, Michael; Seemann, Ralf
2015-07-07
Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.
MHD-flow in slotted channels with conducting walls
International Nuclear Information System (INIS)
Evtushenko, I.A.; Kirillov, I.R.; Reed, C.B.
1994-07-01
A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a open-quotes one-electrode movable probeclose quotes for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data
Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment
Keshock, Edward G.; Lin, Chin S.
1996-01-01
A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.
Helium-air counter flow in rectangular channels
International Nuclear Information System (INIS)
Fumizawa, Motoo; Tanaka, Gaku; Zhao, Hong; Hishida, Makoto; Shiina, Yasuaki
2004-01-01
This paper deals with numerical analysis of helium-air counter flow in a rectangular channel with an aspect ratio of 10. The channel has a cross sectional area of 5-50 mm and a length of 200 mm. The inclination angle was varied from 0 to 90 degree. The velocity profiles and concentration profiles were analyzed with a computer program [FLUENT]. Following main features of the counter flow are discussed based on the calculated results. (1) Time required for establishing a quasi-steady state counter flow. (2) The relationship between the inclination angle and the flow patterns of the counter flow. (3) The developing process of velocity profiles and concentration profiles. (4) The relationship between the inclination angle of the channel and the velocity profiles of upward flow and the downward flow. (5) The relationship between the concentration profile and the inclination angle. (6) The relationship between the net in-flow rate and the inclination angle. We compared the computed velocity profile and the net in-flow rate with experimental data. A good agreement was obtained between the calculation results and the experimental results. (author)
Turbulent flow through channels in a viscously deforming matrix
Meyer, Colin; Hewitt, Ian; Neufeld, Jerome
2017-11-01
Channels of liquid melt form within a surrounding solid matrix in a variety of natural settings, for example, lava tubes and water flow through glaciers. Channels of water on the underside of glaciers, known as Rothlisberger (R-) channels, are essential components of subglacial hydrologic systems and can control the rate of glacier sliding. Water flow through these channels is turbulent, and dissipation melts open the channel while viscous creep of the surrounding closes the channel leading to the possibility of a steady state. Here we present an analogous laboratory experiment for R-channels. We pump warm water from the bottom into a tank of corn syrup and a channel forms. The pressure is lower in the water than in the corn syrup, therefore the syrup creeps inward. At the same time, the water ablates the corn syrup through dissolution and shear erosion, which we measure by determining the change in height of the syrup column over the course of the experiment. We find that the creep closure is much stronger than turbulent ablation which leads to traveling solitary waves along the water-syrup interface. These waves or `magmons' have been previously observed in experiments and theory for laminar magma melt conduits. We compliment our experiments with numerical simulations. David Crighton Fellowship.
Amid, Bahareh Tabatabaee; Mirhosseini, Hamed
2013-03-01
The main objective of the current work was to characterize the shear rheological flow behaviour and emulsifying properties of the natural biopolymer from durian seed. The present study revealed that the extraction condition significantly affected the physical and functional characteristics of the natural biopolymer from durian seed. The dynamic oscillatory test indicated that the biopolymer from durian seed showed more gel (or solid) like behaviour than the viscous (or liquid) like behaviour (G'>G″) at a relatively high concentration (20%) in the fixed frequency (0.1 Hz). This might be explained by the fact that the gum coils disentangle at low frequencies during the long period of oscillation, thus resulting in more gel like behaviour than the viscous like behaviour. The average droplet size of oil in water (O/W) emulsions stabilized by durian seed gum significantly varied from 0.42 to 7.48 μm. The results indicated that O/W emulsions showed significant different stability after 4 months storage. This might be interpreted by the considerable effect of the extraction condition on the chemical and molecular structure of the biopolymer, thus affecting its emulsifying capacity. The biopolymer extracted by using low water to seed (W/S) ratio at the low temperature under the alkaline condition showed a relatively high emulsifying activity in O/W emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.
Couple stress fluid flow in a rotating channel with peristalsis
Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.
2018-04-01
This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.
Micro-channel convective boiling heat transfer with flow instabilities
International Nuclear Information System (INIS)
Consolini, L.; Thome, J.R.
2009-01-01
Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)
Micro-channel convective boiling heat transfer with flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Consolini, L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Transfert de Chaleur et de Masse], e-mail: lorenzo.consolini@epfl.ch, e-mail: john.thome@epfl.ch
2009-07-01
Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 {mu}m circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)
Channel flow structure measurements using particle image velocimetry
International Nuclear Information System (INIS)
Norazizi Mohamed; Noraeini Mokhtar; Aziz Ibrahim; Ramli Abu Hassan
1996-01-01
Two different flow structures in a laboratory channel were examined using a flow visualization technique, known as Particle Image Velocimetry (PIV). The first channel flow structure was that of a steady flow over a horizontal channel bottom. Photographs of particle displacements were taken in the boundary layer in a plane parallel to the flow. These photographs were analyzed to give simultaneous measurements of two components of the velocity at hundreds of points in the plane. Averaging these photographs gave the velocity profile a few millimeters from the bottom of the channel to the water surface. The results gave good agreement with the known boundary layer theory. This technique is extended to the study of the structure under a progressive wave in the channel. A wavelength of the propagating wave is divided into sections by photographing it continously for a number of frames. Each frame is analyzed and a velocity field under this wave at various phase points were produced with their respective directions. The results show that velocity vectors in a plane under the wave could be achieved instantaneously and in good agreement with the small amplitude wave theory
Flow around turbulence promoters in parallel channel, (2)
International Nuclear Information System (INIS)
Shiina, Yasuaki
1983-01-01
Effects of walls on shedding vortex in developed channel flow were investigated putting a cylinder at the center of channels or on a wall for the value of w/d from 2 to 4. Results were compared with the uniform flow result. When a cylinder was put at the center of the channels, non-dimensional frequency plotted against Reynolds number agreed with the uniform flow result at low Reynolds number. However, it increased rapidly with Reynolds number, then it lay considerably above the uniform flow results at high Reynolds number. When a cylinder was put on a wall, non-dimensional frequency was considerably lower than the uniform flow result in the cases of w/d = 3 and 4. In the case of w/d = 2, however, frequency was higher than the uniform flow result at high Reynolds number. In all cases in the present study, the transition Reynolds number increased with decrease in the value of w/d. These results indicate that the increase in shedding frequency was due to the shift in velocity distribution from Poiseuille parabora in the wake region, which obviously increased with Reynolds number and with decrease in channel width. (author)
Numerical solution of incompressible flow through branched channels
Czech Academy of Sciences Publication Activity Database
Louda, Petr; Kozel, K.; Příhoda, Jaromír; Beneš, L.; Kopáček, T.
2011-01-01
Roč. 46, č. 1 (2011), s. 318-324 ISSN 0045-7930 R&D Projects: GA ČR GA103/09/0977; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : channel flow * branched channel * EARSM turbulence model Subject RIV: BK - Fluid Dynamics Impact factor: 1.810, year: 2011 http://www.sciencedirect.com/science/article/pii/S0045793010003506
Complete Flow Blockage of a Fuel Channel for Research Reactor
International Nuclear Information System (INIS)
Lee, Byeonghee; Park, Suki
2015-01-01
The CHF correlation suitable for narrow rectangular channels are implemented in RELAP5/MOD3.3 code for the analyses, and the behavior of fuel temperatures and MCHFR(minimum critical heat flux ratio) are compared between the original and modified codes. The complete flow blockage of fuel channel for research reactor is analyzed using original and modified RELAP5/MOD3.3 and the results are compared each other. The Sudo-Kaminaga CHF correlation is implemented into RELAP5/MOD3.3 for analyzing the behavior of fuel adjacent to the blocked channel. A flow blockage of fuel channels can be postulated by a foreign object blocking cooling channels of fuels. Since a research reactor with plate type fuel has isolated fuel channels, a complete flow blockage of one fuel channel can cause a failure of adjacent fuel plates by the loss of cooling capability. Although research reactor systems are designed to prevent foreign materials from entering into the core, partial flow blockage accidents and following fuel failures are reported in some old research reactors. In this report, an analysis of complete flow blockage accident is presented for a 15MW pool-type research reactor with plate type fuels. The fuel surface experience different heat transfer regime in the results from original and modified RELAP5/MOD3.3. By the discrepancy in heat transfer mode of two cases, a fuel melting is expected by the modified RELAP5/MOD3.3, whereas the fuel integrity is ensured by the original code
Instability of shallow open channel flow with lateral velocity gradients
Energy Technology Data Exchange (ETDEWEB)
Lima, A C; Izumi, N, E-mail: adriano@eng.hokudai.ac.jp, E-mail: nizumi@eng.hokudai.ac.jp [River and Watershed Engineering Laboratory, Hokkaido University, Sapporo, 060-8628 (Japan)
2011-12-22
The turbulent flow in a wide rectangular open channel partially covered with vegetation is studied using linear stability analysis. In the base state normal flow condition, the water depth is constant and the transverse velocity vanishes, while there is a lateral gradient in the streamwise velocity with an inflexion point at the boundary between the vegetated zone and the main channel. The Reynolds stress is expressed by introducing the eddy viscosity, which is obtained from assuming a logarithmic distribution of the velocity near the bed. Perturbation expansions are introduced to the streamwise and transverse velocities, as well as to the water depth. The system of governing equations was solved in order to determine the maximum growth rate of the perturbations as a function of parameters which describe physical characteristics of the channel and the flow.
State space analysis of minimal channel flow
Energy Technology Data Exchange (ETDEWEB)
Neelavara, Shreyas Acharya; Duguet, Yohann; Lusseyran, François, E-mail: acharya@limsi.fr [LIMSI-CNRS, Campus Universitaire d’Orsay, Université Paris-Saclay, F-91405 Orsay (France)
2017-06-15
Turbulence and edge states are investigated numerically in a plane Poiseuille flow driven by a fixed pressure gradient. Simulations are carried out within the minimal flow unit, a concept introduced by Jiménez and Moin (1991 J . Fluid Mech. 225 213–40) to unravel the dynamics of near-wall structures in the absence of outer large-scale motions. For both turbulent and edge regimes the activity appears to be localised near only one wall at a time, and the long term dynamics features abrupt reversals. The dynamics along one reversal is structured around the transient visit to a subspace of symmetric flow fields. An exact travelling wave solution is found to exist very close to this subspace. Additionally the self-similarity of the asymmetric states is addressed. Contrary to most studies focusing on symmetric solutions, the present study suggests that edge states, when localised near one wall, do not scale in outer units. The current study suggests a composite scaling. (paper)
Numerical study on flow rate limitation of open capillary channel flow through a wedge
Directory of Open Access Journals (Sweden)
Ting-Ting Zhang
2016-04-01
Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.
Two-phase flow boiling pressure drop in small channels
International Nuclear Information System (INIS)
Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.
2016-01-01
Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be
International Nuclear Information System (INIS)
Aharon, Y.; Hochbaum, I.; Shai, I.
2002-01-01
The state of knowledge relating to pressure drop in subcooled boiling region is very unsatisfactory. That pressure drop is an important factor in considering the design of nuclear reactors because of the possibility of flow excursion during a two phase flow in the channels. In operational systems with multiple flow channels, an increase in pressure drop in one flow channel, can cause the flow to be diverted to other channels. A burnout can occur in the unstable channel
THREE DIMENSIONAL CFD MODELLING OF FLOW STRUCTURE IN COMPOUND CHANNELS
Directory of Open Access Journals (Sweden)
Usman Ghani
2010-10-01
Full Text Available The computational modeling of three dimensional flows in a meandering compound channel has been performed in this research work. The flow calculations are performed by solving 3D steady state continuity and Reynolds averaged Navier-Stokes equations. The turbulence closure is approximated with standard - turbulence model. The model equations are solved numerically with a general purpose software package. A comprehensive validation of the simulated results against the experimental data and a demonstration that the software used in this study has matured enough for investigating practical engineering problems are the major contributions of this paper. The model was initially validated. This was achieved by computing streamwise point velocities at different depths of various sections and depth averaged velocities at three cross sections along the main channel and comparing these results with experimental data. After the validation of the model, predictions were made for different flow parameters including velocity contours at the surface, pressure distribution, turbulence intensity etc. The results gave an overall understanding of these flow variables in meandering channels. The simulation also established the good prediction capability of the standard - turbulence model for flows in compound channels.
Flow through a very porous obstacle in a shallow channel.
Creed, M J; Draper, S; Nishino, T; Borthwick, A G L
2017-04-01
A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.
Mass transfer in horizontal flow channels with thermal gradients
International Nuclear Information System (INIS)
Bendrich, G.; Shemilt, L.W.
1997-01-01
Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)
Counter-current flow limited CHF in thin rectangular channels
International Nuclear Information System (INIS)
Cheng, L.Y.
1990-01-01
An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs
Natural convection heat transfer between vertical channel with flow resistance at the lower end
International Nuclear Information System (INIS)
Iwamoto, S.; Nishimura, S.; Ishihara, I.
2003-01-01
For natural convection in the geometrically complicated channel, the convection flow is suppressed by flow resistance due to such channel itself and the lopsided flow may take place. This could result in serious influences on the heat transfer in the channel. In order to investigate fundamentally the natural convection flow and heat transfer in such the channel, the vertical channel in which wall was heated with uniform heat flux and the flow resistance was given by small clearance between the lower end of channel and a wide horizontal floor. Flow pattern was observed by illuminating smoke filled in the channel and heat transfer rate was measured. (author)
Mechanics of Bingham Flow in an Open Channel
荻原, 能男; 宮沢, 直季; 三浦, 美香
1988-01-01
In this paper, the velocity distribution on turbulent Bingham flow in an open channel is derived theoretically and the fitness of this distribution is examined by comparing with results of experiment using the fluid of water and bentonite mixture which shows the behavior of Bingham flow. The results show that the theoretical turbulent velocity distribution obtained here conforms to results of experiment in the region of lower bentonite concentration. By experiment, the empirical fomulae to es...
Flow model for open-channel reach or network
Schaffranek, R.W.
1987-01-01
Formulation of a one-dimensional model for simulating unsteady flow in a single open-channel reach or in a network of interconnected channels is presented. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. It is based on a four-point (box), implicit, finite-difference approximation of the governing nonlinear flow equations with user-definable weighting coefficients to permit varying the solution scheme from box-centered to fully forward. Unique transformation equations are formulated that permit correlation of the unknowns at the extremities of the channels, thereby reducing coefficient matrix and execution time requirements. Discharges and water-surface elevations computed at intermediate locations within a channel are determined following solution of the transformation equations. The matrix of transformation and boundary-condition equations is solved by Gauss elimination using maximum pivot strategy. Two diverse applications of the model are presented to illustrate its broad utility. (USGS)
Flow topology of rare back flow events and critical points in turbulent channels and toroidal pipes
Chin, C.; Vinuesa, R.; Örlü, R.; Cardesa, J. I.; Noorani, A.; Schlatter, P.; Chong, M. S.
2018-04-01
A study of the back flow events and critical points in the flow through a toroidal pipe at friction Reynolds number Re τ ≈ 650 is performed and compared with the results in a turbulent channel flow at Re τ ≈ 934. The statistics and topological properties of the back flow events are analysed and discussed. Conditionally-averaged flow fields in the vicinity of the back flow event are obtained, and the results for the torus show a similar streamwise wall-shear stress topology which varies considerably for the spanwise wall-shear stress when compared to the channel flow. The comparison between the toroidal pipe and channel flows also shows fewer back flow events and critical points in the torus. This cannot be solely attributed to differences in Reynolds number, but is a clear effect of the secondary flow present in the toroidal pipe. A possible mechanism is the effect of the secondary flow present in the torus, which convects momentum from the inner to the outer bend through the core of the pipe, and back from the outer to the inner bend through the pipe walls. In the region around the critical points, the skin-friction streamlines and vorticity lines exhibit similar flow characteristics with a node and saddle pair for both flows. These results indicate that back flow events and critical points are genuine features of wall-bounded turbulence, and are not artifacts of specific boundary or inflow conditions in simulations and/or measurement uncertainties in experiments.
Free-Molecular Gas Flow in Narrow (Nanoscale) Channel
Czech Academy of Sciences Publication Activity Database
Levdansky, V.V.; Roldugin, V.I.; Žďanov, V.M.; Ždímal, Vladimír
2014-01-01
Roč. 87, č. 4 (2014), s. 802-814 ISSN 1062-0125 Grant - others:BRFFI(BY) T12P-018; RFBR(RU) 12-08-90009 Institutional support: RVO:67985858 Keywords : narrow channels * free-molecular gas flow * surface diffusion Subject RIV: CF - Physical ; Theoretical Chemistry
Flow Through A Horizontal Porous Channel With A Harmonic ...
African Journals Online (AJOL)
In this research work we provide a finite element solution to the problem of the flow through a horizontal channel with a harmonic pressure gradient. Results obtained shows that the velocity and temperature increases with time and that a turning point occurs in the temperature profile due to the viscous dissipation effect.
Experimental studies on the flow through soft tubes and channels
Indian Academy of Sciences (India)
Experiments conducted in channels/tubes with height/diameter less than. 1 mm with soft walls made ... two types of flows are very similar, the treatment of the surface is very different. The experimen- tal set-up ...... The qualitative features of the ...
Scalar statistics in variable property turbulent channel flows
Patel, A.; Boersma, B.J.; Pecnik, R.
2017-01-01
Direct numerical simulation of fully developed, internally heated channel flows with isothermal walls is performed using the low-Mach-number approximation of Navier-Stokes equation to investigate the influence of temperature-dependent properties on turbulent scalar statistics. Different constitutive
Secondary flow in sharp open-channel bends
Blanckaert, K.; De Vriend, H.J.
2004-01-01
Secondary currents are a characteristic feature of flow in open-channel bends. Besides the classical helical motion (centre-region cell), a weaker and smaller counter-rotating circulation cell (outer-bank cell) is often observed near the outer bank, which is believed to play an important role in
Numerical simulation of particle-laden turbulent channel flow
Li, Y.; McLaughlin, J.B.; Kontomaris, K.; Portela, L.
2001-01-01
This paper presents results for the behavior of particle-laden gases in a small Reynolds number vertical channel down flow. Results will be presented for the effects of particle feedback on the gas-phase turbulence and for the concentration profile of the particles. The effects of density ratio,
Morphology of Cryogenic Flows and Channels on Dwarf Planet Ceres
Krohn, Katrin; Jaumann, Ralf; Otto, Katharina A.; von der Gathen, Isabel; Matz, Klaus-Dieter; Buczkowski, Debra L.; Williams, David A.; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Stephan, Katrin; Wagner, Roland J.; Russell, Christopher T.; Raymond, Carol A.
2016-04-01
Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the
Channel flow analysis. [velocity distribution throughout blade flow field
Katsanis, T.
1973-01-01
The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.
Plane waves and structures in turbulent channel flow
Sirovich, L.; Ball, K. S.; Keefe, L. R.
1990-01-01
A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.
Blood flow analysis with considering nanofluid effects in vertical channel
Noreen, S.; Rashidi, M. M.; Qasim, M.
2017-06-01
Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.
International Nuclear Information System (INIS)
Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng
2011-01-01
A theoretical model was developed to predict the bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel. The model was developed based on the imbalance theory of Helmholtz and some reasonable assumptions. The maximum ideal bubble in narrow rectangular channel and the thermal hydraulics boundary condition leading to bubbly flow to churn flow pattern transition was calculated. The model was validated by experimental data from previous researches. Comparison between predicted result and experimental result shows a reasonable good agreement. (author)
Mathematical model of two-phase flow in accelerator channel
Directory of Open Access Journals (Sweden)
О.Ф. Нікулін
2010-01-01
Full Text Available The problem of two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in counter jet mill accelerator channel design.
Non-Darcy behavior of two-phase channel flow.
Xu, Xianmin; Wang, Xiaoping
2014-08-01
We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.
Biased and flow driven Brownian motion in periodic channels
Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.
2012-02-01
In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.
Evaporation of polydispersed droplets in a highly turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S. [INPT, UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Universite de Toulouse (France)
2009-09-15
A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector. (orig.)
Molecular dynamics simulations of oscillatory flows in microfluidic channels
DEFF Research Database (Denmark)
Hansen, J.S.; Ottesen, Johnny T.
2006-01-01
In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...... density and low temperature. Further simulations for high temperature and low density show that the non-slip boundary condition traditionally used in the macroscopic equation is greatly compromised when the fluid–wall interactions are the same as the fluid–fluid interactions. Simulations of a system...
Effect of Flow Channel Shape on Performance in Reverse Electrodialysis
Energy Technology Data Exchange (ETDEWEB)
Kwon, Kilsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Deok Han; Kim, Daejoong [Sogang Univ., Seoul (Korea, Republic of)
2017-05-15
Reverse electrodialysis (RED), which generates electrical energy from the difference in concentration of two solutions, has been actively studied owing to its high potential and the increased interest in renewable energy resulting from the Paris Agreement on climate change. For RED commercialization, its power density needs to be maximized, and therefore various methods have been discussed. In this paper, the power density was measured using various flow shapes based on the aspect ratio, opening ratio, and number of distribution channels. We found that the power density is enhanced with a decrease in the aspect ratio and an increase in the opening ratio and number of distribution channels.
Energy Technology Data Exchange (ETDEWEB)
Khazaee, I. [Department of Mechanical Engineering, Torbat-e-jam branch, Islamic Azad University, Torbat-e-jam (Iran, Islamic Republic of); Mohammadiun, M. [Department of Mechanical Engineering, Shahrood branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of)
2012-07-01
In this paper a complete three-dimensional and two phase CFD model for flow distribution in an open channel investigated. The finite volume method (FVM) with a dynamic Sub grid-scale was carried out for seven cases of different aspect ratios, different inclination angles or slopes and convergence-divergence condition. The volume of fluid (VOF) method was used to allow the free-surface to deform freely with the underlying turbulence. The discharge through open channel flow is often evaluated by velocity-area integration method from the measurement of velocity at discrete locations in the measuring section. The variation of velocity along horizontal and vertical directions is thus very important to decide the location of the sensors. The aspect ratio of the channel, slope of the channel and divergence- convergence of the channel have investigated and the results show that the depth of water at the end of the channel is higher at AR=0.8 against the AR=0.4 and AR=1.2. Also it is clear that by increasing the inclination angle or slope of the channel in case1, case4 and case5 the depth of the water increases. Also it is clear that the outlet mass flow rate is at a minimum value at a range of inclination angle of the channel.
Modelling of flow and heat transfer in PV cooling channels
Energy Technology Data Exchange (ETDEWEB)
Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering
2005-07-01
Under sunny conditions, the temperature of photovoltaic (PV) modules can be 20 to 30 degrees C above the ambient air temperature. This affects the performance of PV modules, particularly in regions with hot climates. For silicon solar cells, the maximum power decreases between 0.4 and 0.5 per cent for every degree C of temperature increase above a reference value. In an effort to address this issue, this experimental and numerical study examined an active PV panel evaporative cooling scheme that is typically used in hot arid climates. The cooling system circulated cool air behind the PV modules, extracting heat and lowering solar cell temperature. A fluid dynamic and thermal model of the combined system was developed using the EES program in order to study the configuration of the cooling channel and the characteristics of the cooling flow. Heat transfer and flow characteristics in the cooling channel were then calculated along with pressure drop and fan power associated with the air-circulation. The net power output was also calculated. The objective was to design a cost efficient cooling system and to optimize its flow and pressure drop in order to maximize power output. The study demonstrated how the performance of the PV panel is influenced by the geometry of the cooling channel, the inlet air temperature and the air flow rate. 2 refs.
International Nuclear Information System (INIS)
Yan Chaoxing; Yan Changqi; Sun Licheng; Xing Dianchuan; Wang Yang
2013-01-01
On the basis of visual observation, the effects of aspect ratio on relationship between flow resistance and flow regime were investigated experimentally for two-phase flow in three rectangular channels with the same cross-section width of 43 mm and different heights of 1.41, 3 and 10 mm, respectively. According to the criteria in terms of restriction factor C o , the former two channels belong to narrow channel, whereas the last one is conventional channel. The experimental results show that the two-phase pressure drops in rectangular channel with different aspect ratios have different variation trends with the increase of the gas velocity. For the 10 mm channel, the gravitational pressure drop makes the major percentage of total pressure drop at low gas velocity while the frictional pressure drop is dominant for the 1.41 mm and 3 mm channels. With the increase of the gas flow rate, the frictional pressure drop contributes more to total pressure drop. The range of churn flow can be distinguished from its pressure drop characteristic in 10 mm channel. (authors)
Perspectives on continuum flow models for force-driven nano-channel liquid flows
Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper
2017-11-01
A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.
Radu, Andrea I.; Vrouwenvelder, Johannes S.; van Loosdrecht, Mark C.M.; Picioreanu, Cristian
2012-01-01
)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow
Flow analysis of an innovative compact heat exchanger channel geometry
International Nuclear Information System (INIS)
Vitillo, F.; Cachon, L.; Reulet, F.; Millan, P.
2016-01-01
Highlights: • An innovative compact heat transfer technology is proposed. • Experimental measurements are shown to validate the CFD model. • CFD simulations show various flow mechanisms. • Flow analysis is performed to study physical phenomena enhancing heat transfer. - Abstract: In the framework of CEA R&D program to develop an industrial prototype of sodium-cooled fast reactor named ASTRID, the present work aims to propose an innovative compact heat exchanger technology to provide solid technological basis for the utilization of a Brayton gas-power conversion system, in order to avoid the energetic sodium–water interaction if a traditional Rankine cycle was used. The aim of the present work is to propose an innovative compact heat exchanger channel geometry to potentially enhance heat transfer in such components. Hence, before studying the innovative channel performance, a solid experimental and numerical database is necessary to perform a preliminary thermal–hydraulic analysis. To do that, two experimental test sections are used: a Laser Doppler Velocimetry (LDV) test section and a Particle Image Velocimetry (PIV) test section. The acquired experimental database is used to validate the Anisotropic Shear Stress Transport (ASST) turbulence model. Results show a good agreement between LDV, PIV and ASST data for the pure aerodynamic flow. Once validated the numerical model, the innovative channel flow analysis is performed. Principal and secondary flow has been analyzed, showing a high swirling flow in the bend region and demonstrating that mixing actually occurs in the mixing zone. This work has to be considered as a step forward the preposition of a reliable high-performance component for application to ASTRID reactor as well as to any other industrial power plant dealing needing compact heat exchangers.
Measurement channel of neutron flow based on software
International Nuclear Information System (INIS)
Rivero G, T.; Benitez R, J. S.
2008-01-01
The measurement of the thermal power in nuclear reactors is based mainly on the measurement of the neutron flow. The presence of these in the reactor core is associated to neutrons released by the fission reaction of the uranium-235. Once moderate, these neutrons are precursors of new fissions. This process it is known like chain reaction. Thus, the power to which works a nuclear reactor, he is proportional to the number of produced fissions and as these depend on released neutrons, also the power is proportional to the number of present neutrons. The measurement of the thermal power in a reactor is realized with called instruments nuclear channels. To low power (level source), these channels measure the individual counts of detected neutrons, whereas to a medium and high power, they measure the electrical current or fluctuation of the same one that generate the fission neutrons in ionization chambers especially designed to detect neutrons. For the case of TRIGA reactors, the measurement channels of neutron flow use discreet digital electronic technology makes some decades already. Recently new technological tools have arisen that allow developing new versions of nuclear channels of simple form and compacts. The present work consists of the development of a nuclear channel for TRIGA reactors based on the use of the correlated signal of a fission chamber for ample interval. This new measurement channel uses a data acquisition card of high speed and the data processing by software that to the being installed in a computer is created a virtual instrument, with what spreads in real time, in graphic and understandable form for the operator, the power indication to which it operates the nuclear reactor. This system when being based on software, offers a major versatility to realize changes in the signal processing and power monitoring algorithms. The experimental tests of neutronic power measurement show a reliable performance through seven decades of power, with a
Investigation on flow patterns and transition characteristics in a tube-bundle channel
International Nuclear Information System (INIS)
Xiang Wenyuan; Lu Yonghong; Zhao Guisheng
2012-01-01
Tube-bundle channels have been widely used in condenser-evaporator and other industrial heat-exchange equipment. The characteristics of two-phase flow patterns and their transitions for refrigerant R-113 through a vertical tube-bundle channel are experimentally investigated using high-speed camera. Experiments show that there are four main flow patterns in the tube-bundle channel, which are bubbly flow, bubbly-churn flow, churn flow and annular flow. And in the same cross-section of tube- bundle channels, it is shown that there might be different flow patterns in different sub-channels. The flow pattern transitions exhibit unsynchronized in different sub-channels. On the basis of experimental research, the flow pattern map is drawn and analyses are made on the comparison of differences between boiling flow patterns in a circular tube and those in a tube-bundle channel. (authors)
Flow around turbulence promoters in parallel channel, 1
International Nuclear Information System (INIS)
Shiina, Yasuaki; Takizuka, Takakazu; Okamoto, Yoshizo
1982-01-01
Flow characteristics in relation to heat transfer characteristics in parallel channel with turbulence promoters were studied experimentally. Flow visualization experiments were made in paralle channel with one or two turbulence promoters for Reynolds number region of 100 lt = Resub(w) lt = 3,600. The vortex patterns behind one promoter were that a steady vortex was formed for low Reynolds number and vortex was shed for high Reynolds number,. For higher Reynolds number, it was observed that shedding vortex caused other vortices or disappeared itself randomly. The results indicate that the shedding vortices will augment heat transfer, whereas the steady vortex will give rise to deterioration in heat transfer. This inference agrees with the experimental results of Hishida et al. The results of two promoters experiment showed that the maximum performance of promoter would be attained at p/d -- 7. This agrees with the results formerly studied by other investigators. (author)
Annular flow transition model in channels of various shapes
International Nuclear Information System (INIS)
Osakabe, Masahiro; Tasaka, Kanji; Kawasaki, Yuji.
1988-01-01
The annular transition in the rod bundle is interesting because the small gaps between rods exist in the flow area. This is a very important phenomenon in the boiloff accident of nuclear reactor core. As a first attempt, the effect of small gaps in the flow area was studied by using the vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and the transition model was proposed. The model gives a good prediction of the wide range of previous experiments including the data taken in the channels with small gaps. (author)
Annular flow transition model in channels of various shapes
International Nuclear Information System (INIS)
Osakabe, M.; Tasaka, K.; Kawasaki, Y.
1989-01-01
Annular transition in a rod bundle is interesting because small gaps exist between rods in the flow area. This is a very important phenomenon in a boiloff accident of a nuclear reactor core. This paper reports, as a first attempt, the effect of small gaps in the flow area was studied by using vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and a transition model is proposed. The model gives a good prediction for a wide range of previous experiments including the data taken in channels with small gaps
Experimental control of natural perturbations in channel flow
Juillet , Fabien; Mckeon , J.; Schmid , Peter J.
2014-01-01
International audience; A combined approach using system identification and feed-forward control design has been applied to experimental laminar channel flow in an effort to reduce the naturally occurring disturbance level. A simple blowing/suction strategy was capable of reducing the standard deviation of the measured sensor signal by 45 %, which markedly exceeds previously obtained results under comparable conditions. A comparable reduction could be verified over a significant streamwise ex...
Inception of supraglacial channelization under turbulent flow conditions
Mantelli, E.; Camporeale, C.; Ridolfi, L.
2013-12-01
Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers
Polar cap flow channel events: spontaneous and driven responses
Directory of Open Access Journals (Sweden)
P. E. Sandholt
2010-11-01
Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.
Computation of a turbulent channel flow using PDF method
International Nuclear Information System (INIS)
Minier, J.P.; Pozorski, J.
1997-05-01
The purpose of the present paper is to present an analysis of a PDF model (Probability Density Function) and an illustration of the possibilities offered by such a method for a high-Reynolds turbulent channel flow. The first part presents the principles of the PDF approach and the introduction of stochastic processes along with a Lagrangian point of view. The model retained is the one put forward by Pope (1991) and includes evolution equations for location, velocity and dissipation of a large number of particles. Wall boundary conditions are then developed for particles. These conditions allow statistical results of the logarithmic region to be correctly reproduced. Simulation of non-homogeneous flows require a pressure-gradient algorithm which is briefly described. Developments are validated by analysing numerical predictions with respect to Comte Bellot experimental data (1965) on a channel flow. This example illustrates the ability of the approach to simulate wall-bounded flows and to provide detailed information such as skewness and flatness factors. (author)
Numerical study of the bubbly flow regime in micro-channel flow boiling
Bhuvankar, Pramod; Dabiri, Sadegh
2017-11-01
Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.
Numerical simulation of secondary flow in bubbly turbulent flow in sub-channel
International Nuclear Information System (INIS)
Ikeno, Tsutomu; Kataoka, Isao
2009-01-01
Secondary flow in bubbly turbulent flow in sub-channel was simulated by using an algebraic turbulence stress model. The mass, momentum, turbulence energy and bubble diffusion equations were used as fundamental equation. The basis for these equations was the two-fluid model: the equation of liquid phase was picked up from the equation system theoretically derived for the gas-liquid two-fluid turbulent flow. The fundamental equation was transformed onto a generalized coordinate system fitted to the computational domain in sub-channel. It was discretized for the SIMPLE algorism using the finite-volume method. The shape of sub-channel causes a distortion of the computational mesh, and orthogonal nature of the mesh is sometimes broken. An iterative method to satisfy a requirement for the contra-variant velocity was introduced to represent accurate symmetric boundary condition. Two-phase flow at a steady state was simulated for different magnitude of secondary flow and void fraction. The secondary flow enhanced the momentum transport in sub-channel and accelerated the liquid phase in the rod gap. This effect was slightly mitigated when the void fraction increased. The acceleration can contribute to effective cooling in the rod gap. The numerical result implied a phenomenon of industrial interest. This suggested that experimental approach is necessary to validate the numerical model and to identify the phenomenon. (author)
Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels
International Nuclear Information System (INIS)
Liu, Hong; Li, Peiwen
2013-01-01
Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution
Directory of Open Access Journals (Sweden)
Szwast Maciej
2015-06-01
Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.
A review on the analysis and experiment of fluid flow and mixing in micro-channels
International Nuclear Information System (INIS)
Kang, Sang Mo; Suh, Yong Kweon; Jayaraj, Simon
2007-01-01
The studies with respect to micro-channels and micro-mixers are expanding in many dimensions. Most significant area of micro-mixer study is the flow analysis in various micro-channel configurations. The flow phenomena in microchannel devices are quite different from that of the macro-scale devices. An attempt is made here to review the important recent literature available in the area of micro-channel flow analysis and mixing. The topics covered include the physics of flow in micro-channels and integrated simulation of the micro-channel flow. Also, the flow control models and electro-kinetically driven micro-channel flows are dealt in detail. A survey of important numerical methods, which are currently popular for micro-channel flow analysis, is carried out. Different options for mixing in microchannels are provided, in sufficient detail
Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls
International Nuclear Information System (INIS)
Buren, Mandula; Jian, Yongjun; Chang, Long
2014-01-01
In this paper a perturbation method is introduced to study the electromagnetohydrodynamic (EMHD) flow in a microparallel channel with slightly corrugated walls. The corrugations of the two walls are periodic sinusoidal waves of small amplitude either in phase or half-period out of phase, and the perturbation solutions of velocity and volume flow rate are obtained. Using numerical computation the effects of the corrugations on the flow are graphically analysed. The results show that the influence of corrugation on the flow decreases with Hartmann number. The phase difference of wall corrugations becomes unimportant when the wavenumber is greater than 3 or when the Hartmann number is greater than 4. With the increase in wavenumber, the decreasing effects of corrugations on the flow increase. When the wavenumber is smaller than the threshold wavenumber (it is a function of Hartmann number) and the wall corrugations are half-period out of phase, the corrugations can enhance the mean velocity of EMHD flow. However, the mean velocity is always decreased when the corrugations are in phase. (paper)
Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.
2017-11-01
The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.
A Flow-Channel Analysis for the Mars Hopper
Energy Technology Data Exchange (ETDEWEB)
W. Spencer Cooley
2013-02-01
The Mars Hopper is an exploratory vehicle designed to fly on Mars using carbon dioxide from the Martian atmosphere as a rocket propellant. The propellent gasses are thermally heated while traversing a radioisotope ther- mal rocket (RTR) engine’s core. This core is comprised of a radioisotope surrounded by a heat capacitive material interspersed with tubes for the propellant to travel through. These tubes, or flow channels, can be manu- factured in various cross-sectional shapes such as a special four-point star or the traditional circle. Analytical heat transfer and computational fluid dynamics (CFD) anal- yses were performed using flow channels with either a circle or a star cross- sectional shape. The nominal total inlet pressure was specified at 2,805,000 Pa; and the outlet pressure was set to 2,785,000 Pa. The CO2 inlet tem- perature was 300 K; and the channel wall was 1200 K. The steady-state CFD simulations computed the smooth-walled star shape’s outlet temper- ature to be 959 K on the finest mesh. The smooth-walled circle’s outlet temperature was 902 K. A circle with a surface roughness specification at 0.01 mm gave 946 K and at 0.1 mm yielded 989 K. The The effects of a slightly varied inlet pressure were also examined. The analytical calculations were based on the mass flow rates computed in the CFD simulations and provided significantly higher outlet temperature results while displaying the same comparison trends. Research relating to the flow channel heat transfer studies was also done. Mathematical methods to geometrically match the cross-sectional areas of the circle and star, along with a square and equilateral triangle, were derived. A Wolfram Mathematica 8 module was programmed to analyze CFD results using Richardson Extrapolation and calculate the grid convergence index (GCI). A Mathematica notebook, also composed, computes and graphs the bulk mean temperature along a flow channel’s length while the user dynam- ically provides the input
Transitional inertialess instabilities in driven multilayer channel flows
Papaefthymiou, Evangelos; Papageorgiou, Demetrios
2016-11-01
We study the nonlinear stability of viscous, immiscible multilayer flows in channels driven both by a pressure gradient and/or gravity in a slightly inclined channel. Three fluid phases are present with two internal interfaces. Novel weakly nonlinear models of coupled evolution equations are derived and we concentrate on inertialess flows with stably stratified fluids, with and without surface tension. These are 2 × 2 systems of second-order semilinear parabolic PDEs that can exhibit inertialess instabilities due to resonances between the interfaces - mathematically this is manifested by a transition from hyperbolic to elliptic behavior of the nonlinear flux functions. We consider flows that are linearly stable (i.e the nonlinear fluxes are hyperbolic initially) and use the theory of nonlinear systems of conservation laws to obtain a criterion (which can be verified easily) that can predict nonlinear stability or instability (i.e. nonlinear fluxes encounter ellipticity as they evolve spatiotemporally) at large times. In the former case the solution decays asymptotically to its base state, and in the latter nonlinear traveling waves emerge. EPSRC Grant Numbers EP/K041134 and EP/L020564.
Flow discharge prediction in compound channels using linear genetic programming
Azamathulla, H. Md.; Zahiri, A.
2012-08-01
SummaryFlow discharge determination in rivers is one of the key elements in mathematical modelling in the design of river engineering projects. Because of the inundation of floodplains and sudden changes in river geometry, flow resistance equations are not applicable for compound channels. Therefore, many approaches have been developed for modification of flow discharge computations. Most of these methods have satisfactory results only in laboratory flumes. Due to the ability to model complex phenomena, the artificial intelligence methods have recently been employed for wide applications in various fields of water engineering. Linear genetic programming (LGP), a branch of artificial intelligence methods, is able to optimise the model structure and its components and to derive an explicit equation based on the variables of the phenomena. In this paper, a precise dimensionless equation has been derived for prediction of flood discharge using LGP. The proposed model was developed using published data compiled for stage-discharge data sets for 394 laboratories, and field of 30 compound channels. The results indicate that the LGP model has a better performance than the existing models.
Limiting photocurrent analysis of a wide channel photoelectrochemical flow reactor
International Nuclear Information System (INIS)
Davis, Jonathan T; Esposito, Daniel V
2017-01-01
The development of efficient and scalable photoelectrochemical (PEC) reactors is of great importance for the eventual commercialization of solar fuels technology. In this study, we systematically explore the influence of convective mass transport and light intensity on the performance of a 3D-printed PEC flow cell reactor based on a wide channel, parallel plate geometry. Using this design, the limiting current density generated from the hydrogen evolution reaction at a p-Si metal–insulator–semiconductor (MIS) photocathode was investigated under varied reactant concentration, fluid velocity, and light intensity. Additionally, a simple model is introduced to predict the range of operating conditions (reactant concentration, light intensity, fluid velocity) for which the photocurrent generated in a parallel plate PEC flow cell is limited by light absorption or mass transport. This model can serve as a useful guide for the design and operation of wide-channel PEC flow reactors. The results of this study have important implications for PEC reactors operating in electrolytes with dilute reactant concentrations and/or under high light intensities where high fluid velocities are required in order to avoid operation in the mass transport-limited regime. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)
2015-05-15
Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.
Measurements of local two-phase flow parameters in a boiling flow channel
International Nuclear Information System (INIS)
Yun, Byong Jo; Park, Goon-CherI; Chung, Moon Ki; Song, Chul Hwa
1998-01-01
Local two-phase flow parameters were measured lo investigate the internal flow structures of steam-water boiling flow in an annulus channel. Two kinds of measuring methods for local two-phase flow parameters were investigated. These are a two-conductivity probe for local vapor parameters and a Pitot cube for local liquid parameters. Using these probes, the local distribution of phasic velocities, interfacial area concentration (IAC) and void fraction is measured. In this study, the maximum local void fraction in subcooled boiling condition is observed around the heating rod and the local void fraction is smoothly decreased from the surface of a heating rod to the channel center without any wall void peaking, which was observed in air-water experiments. The distributions of local IAC and bubble frequency coincide with those of local void fraction for a given area-averaged void fraction. (author)
The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel
Directory of Open Access Journals (Sweden)
F. Rooniyan
2014-02-01
Full Text Available Flow connection in channels is a phenomenon which frequently happens in rivers, water and drainage channels and urban sewage systems. The phenomenon appears to be more complex in rivers than in channels, especially at the y-junction bed joint that causes erosion and sedimentation at some areas resulting to morphological changes. Flow behavior at the channel junction area depends on variables such as channel geometry, discharge ratio, tributary width and y-junction connection angle of the channel, bed level changes at the bed joint, flow characteristic at the bed joint upstream and flow Froude number in different sections. In this research, fluent numerical model and junction angles of 30o, 45o & 60o are used to analyze and evaluate the effect of channel junction geometry on the flow pattern and the flow separation zone dimensions in different ratios of flow discharge (upstream channel discharge to total discharge of the flow. Results for two ratios of flow discharge are represented. Results are in agreement with earlier studies and it is shown that the change of the channel crossing angle affects the flow pattern in the main channel and also that the dimensions of the created separation zone in the main channel become larger when the crossing angle increases. This phenomenon can also be observed when the flow discharge ratio is lower. Analysis showed that the least dimension of the separation zone will be at the crossing angle of 45o .
Turbulent flow in a ribbed channel: Flow structures in the vicinity of a rib
DEFF Research Database (Denmark)
Wang, Lei; Salewski, Mirko; Sundén, Bengt
2010-01-01
PIV measurements are performed in a channel with periodic ribs on one wall. The emphasis of this study is to investigate the flow structures in the vicinity of a rib in terms of mean velocities, Reynolds stresses, probability density functions (PDF), and two-point correlations. The PDF distribution......-based visualization is applied to the separation bubble upstream of the rib. Salient critical points and limit cycles are extracted, which gives clues to the physical processes occurring in the flow....
Instability of a cantilevered flexible plate in viscous channel flow
Balint, T. S.; Lucey, A. D.
2005-10-01
The stability of a flexible cantilevered plate in viscous channel flow is studied as a representation of the dynamics of the human upper airway. The focus is on instability mechanisms of the soft palate (flexible plate) that cause airway blockage during sleep. We solve the Navier Stokes equations for flow with Reynolds numbers up to 1500 fully coupled with the dynamics of the plate motion solved using finite-differences. The study is 2-D and based upon linearized plate mechanics. When both upper and lower airways are open, the plate is found to lose its stability through a flutter mechanism and a critical Reynolds number exists. When one airway is closed, the plate principally loses its stability through a divergence mechanism and a critical flow speed exists. However, below the divergence-onset flow speed, flutter can exist for low levels of structural damping in the flexible plate. Our results serve to extend understanding of flow-induced instability of cantilevered flexible plates and will ultimately improve the diagnosis and treatment of upper-airway disorders.
Effects of couple stresses in MHD channel flow
International Nuclear Information System (INIS)
Soundalgekar, V.M.; Aranake, R.N.
1977-01-01
An analysis of fully developed MHD channel flow of an electrically conducting incompressible fluid, taking into account the couple stresses, is carried out. Exact solutions are derived for velocity profiles, current density, skin-friction and coefficient of mass flux. They are influenced by the magnetic field, the loading parameter k, and the non-dimensional parameter (a=b 1 /lambda). Their variations with respect to M, k and a are represented graphically, this is followed by a physical discussion. It is observed that the couple stresses are more effective in the presence of a very weak magnetic field. (Auth.)
Flow over back-facing step in a narrow channel
Czech Academy of Sciences Publication Activity Database
Uruba, Václav; Jonáš, Pavel
2012-01-01
Roč. 12, č. 1 (2012), s. 501-502 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /83./. Darmstadt, 26.03.2012-30.03.2012] R&D Projects: GA ČR GAP101/10/1230; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : channel flow * backward facing step * PIV Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1617-7061
Analysis of flow distribution instability in parallel thin rectangular multi-channel system
Energy Technology Data Exchange (ETDEWEB)
Xia, G.L. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Peng, M.J. [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China)
2016-08-15
Highlights: • Flow distribution instability in parallel thin rectangular multi-channel system is studied using RELAP5 codes. • Flow excursion may bring parallel heating channel into the density wave oscillations region. • Flow distribution instability is more likely to happen at low power/flow ratio conditions. • The increase of channel number will not affect the flow distribution instability boundary. • Asymmetry inlet throttling and heating will make system more unstable. - Abstract: The flow distribution instability in parallel thin rectangular multi-channel system has been researched in the present study. The research model of parallel channel system is established by using RELAP5/MOD3.4 codes. The transient process of flow distribution instability is studied at imposed inlet mass flow rate and imposed pressure drop conditions. The influence of heating power, mass flow rate, system pressure and channel number on flow distribution instability are analyzed. Furthermore, the flow distribution instability of parallel two-channel system under asymmetric inlet throttling and heating power is studied. The results show that, if multi-channel system operates at the negative slope region of channel ΔP–G curve, small disturbance in pressure drop will lead to flow redistribution between parallel channels. Flow excursion may bring the operating point of heating channel into the density-wave oscillations region, this will result in out-phase or in-phase flow oscillations. Flow distribution instability is more likely to happen at low power/flow ratio conditions, the stability of parallel channel system increases with system pressure, the channel number has a little effect on system stability, but the asymmetry inlet throttling or heating power will make the system more unstable.
Experimental study on downward two-phase flow in narrow rectangular channel
Energy Technology Data Exchange (ETDEWEB)
Kim, T.H.; Jeong, J.H. [Pusan National Univ., Busan (Korea, Republic of)
2014-07-01
Adiabatic vertical two-phase flow of air and water through narrow rectangular channels was investigated. This study involved the observation of flow using a high speed camera and flow regimes were determined by image processing program using a MATLAB. The flows regimes in channel with downward flow are similar to those found by previous studies with upward flow. The flow regimes in downward flow at low liquid velocity are different from the previous studies in upward flow. The flow regimes can be classified into bubbly, cap-bubbly, slug and churn flow. (author)
Directory of Open Access Journals (Sweden)
Yanzhou Qin
2018-04-01
Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.
Direct numerical simulation of turbulent channel flow with deformed bubbles
International Nuclear Information System (INIS)
Yamamoto, Yoshinobu; Kunugi, Tomoaki
2010-01-01
In this study, the direct numerical simulation of a fully-developed turbulent channel flow with deformed bubbles were conducted by means of the refined MARS method, turbulent Reynolds number 150, and Bubble Reynolds number 120. As the results, large-scale wake motions were observed round the bubbles. At the bubble located region, mean velocity was degreased and turbulent intensities and Reynolds shear stress were increased by the effects of the large-scale wake motions round bubbles. On the other hands, near wall region, bubbles might effect on the flow laminarlize and drag reduction. Two types of drag coefficient of bubble were estimated from the accelerated velocity of bubble and correlation equation as a function of Particle Reynolds number. Empirical correlation equation might be overestimated the drag effects in this Particle Reynolds number range. (author)
Sediment–flow interactions at channel confluences: A flume study
Directory of Open Access Journals (Sweden)
Tonghuan Liu
2015-06-01
Full Text Available Sediment transport and bed morphology at channel confluences with different confluence angles and discharge ratios are analyzed through a series of flume experiments. Bed topography and sediment transport rate are measured and results are compared among different conditions. Sediment transport is intermittent and pulsating as the tributary flow mixes with the mainstream, and the sediment transport rate goes up with the increase in discharge ratio and confluence angle. With no sediment supplied from upstream of the flume, a central scour hole will form along the shear plane and develop toward the right bank, and the depth of the central scour hole increases as the confluence angle and discharge ratio increase. With heavy upstream sediment supplement, deposition will happen in the separation zone and upstream of the confluence area because of the tributary. And the deposition height is related to the discharge ratio and confluence angle. Results indicate the significant impact of confluence geometry, sediment, and flow factors on fluvial processes.
Principles of transverse flow fractionation of microparticles in superhydrophobic channels.
Asmolov, Evgeny S; Dubov, Alexander L; Nizkaya, Tatiana V; Kuehne, Alexander J C; Vinogradova, Olga I
2015-07-07
We propose a concept of fractionation of micron-sized particles in a microfluidic device with a bottom wall decorated by superhydrophobic stripes. The stripes are oriented at an angle α to the direction of a driving force, G, which generally includes an applied pressure gradient and gravity. Separation relies on the initial sedimentation of particles under gravity in the main forward flow, and their subsequent lateral deflection near a superhydrophobic wall due to generation of a secondary flow transverse to G. We provide some theoretical arguments allowing us to quantify the transverse displacement of particles in the microfluidic channel, and confirm the validity of theoretical predictions in test experiments with monodisperse fractions of microparticles. Our results can guide the design of superhydrophobic microfluidic devices for efficient sorting of microparticles with a relatively small difference in size and density.
Development of a flow restrictor for CANDU fuel channels
International Nuclear Information System (INIS)
Schroeter, F.; Antonaccio, C.; Masciotra, H.; Klink, A.
2013-01-01
Due to the creep and neutron growth phenomena experienced by the components inside the reactor during operation of CNE it is expected that both the fuel channels and the Liquid Injection lances increase their permanent deformation. One of the deformation types that these two components experiment is the SAG, which is what happens with any beam supported on their extremes to which a load is applied, except for this case that due to creep and neutronic effect growth, part of the deformation is not elastic and increases with time To solve or avoid this condition, two solutions exist, one is to replace the pressure tubes, forcing the calandria tube to recover to a near to original position or to design a device that permits defueling of the channel without modifying the pressure drop and in this way not to affect the distribution of coolant in the core. In some channels it was decided to replace the pressure tube and in others it was decided to defuel them proposing a design for a flow restrictor. (author
40 CFR 61.347 - Standards: Oil-water separators.
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards: Oil-water separators. 61.347... Waste Operations § 61.347 Standards: Oil-water separators. (a) Except as provided in § 61.352 of this subpart, the owner or operator shall meet the following standards for each oil-water separator in which...
Measurement of turbulent flow in a narrow open channel
Directory of Open Access Journals (Sweden)
Sarkar Sankar
2016-09-01
Full Text Available The paper presents the experimental results of turbulent flow over hydraulically smooth and rough beds. Experiments were conducted in a rectangular flume under the aspect ratio b/h = 2 (b = width of the channel 0.5 m, and h = flow depth 0.25 m for both the bed conditions. For the hydraulically rough bed, the roughness was created by using 3/8″ commercially available angular crushed stone chips; whereas sand of a median diameter d50 = 1.9 mm was used as the bed material for hydraulically smooth bed. The three-dimensional velocity components were captured by using a Vectrino (an acoustic Doppler velocimeter. The study focuses mainly on the turbulent characteristics within the dip that were observed towards the sidewall (corner of the channel where the maximum velocity occurs below the free-surface. It was also observed that the nondimensional Reynolds shear stress changes its sign from positive to negative within the dip. The quadrant plots for the turbulent bursting shows that the signs of all the bursting events change within the dip. Below the dip, the probability of the occurrence of sweeps and ejections are more than that of inward and outward interactions. On the other hand, within the dip, the probability of the occurrence of the outward and inward interactions is more than that of sweeps and ejections.
Turbulent subcooled boiling flow visualization experiments through a rectangular channel
International Nuclear Information System (INIS)
Estrada-Perez, Carlos E.; Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.
2008-01-01
Full text of publication follows: Proper characterization of subcooled boiling flow is of importance in many applications. It is of exceptional significance in the development of empirical models for the design of nuclear reactors, steam generators, and refrigeration systems. Most of these models are based on experimental studies that share the characteristics of utilizing point measurement probes with high temporal resolution, e.g. Hot Film Anemometry (HFA), Laser Doppler Velocimetry (LDV), and Fiber Optic Probes (FOP). However there appears to be a scarcity of experimental studies that can capture instantaneous whole-field measurements with a fast time response. Particle Tracking Velocimetry (PTV) may be used to overcome the limitations associated with point measurement techniques. PTV is a whole-flow-field technique providing instantaneous velocity vectors capable of high spatial and temporal resolution. PTV is also an exceptional tool for the analysis of boiling flow due to its ability to differentiate between the gas and liquid phases and subsequently deliver independent velocity fields associated with each phase. In this work, using PTV, liquid velocity fields of a turbulent subcooled boiling flow in a rectangular channel were successfully obtained. The present results agree with similar studies that used point measurement probes. However, the present study provides additional information; not only averaged profiles of the velocity components were obtained, instantaneous 2-D velocity fields were also readily available with a high temporal and spatial resolution. Analysis of fluctuating velocities, Reynolds stresses, and higher order statistics of the flow are presented. This work is an attempt to enrich the database already collected on turbulent subcooled boiling flow, with the hope that it will be useful in turbulence modeling efforts. (authors)
International Nuclear Information System (INIS)
Zhang Nan; Sun Zhongning; Zhao Zhongnan
2011-01-01
Experiments of visualized two-phase upward flow were conducted in the packed channel, which filled with 3, 5, 8 mm in diameter of glass sphere respectively. The gas superficial velocity ranges from 0.005 to 1.172 m/s. The liquid superficial velocity ranges from 0.004 to 0.093 m/s. Four representative flow patterns were observed as bubbly flow, cluster flow, liquid-pulse flow and churn-pulse flow, and corresponding flow pattern maps were also presented. It is found that the pulse flow region is dominant. The comparisons of flow pattern map between packed channel and non-packed channel show that the bubbly flow region in packed channel is narrower than that of non-packed channel due to the packing. The comparisons of flow pattern maps for three different packing sizes show that the cluster flow region expands with the increase of the packing diameter. In the low liquid superficial velocity, the cluster flow directly changes to churn-pulse flow in the packed channel with 8 mm packing. (authors)
An approach to implement virtual channels for flowing magnetic beads
International Nuclear Information System (INIS)
Tang, Shih-Hao; Chiang, Hung-Wei; Hsieh, Min-Chien; Chang, Yen-Di; Yeh, Po-Fan; Tsai, Jui-che; Shieh, Wung-Yang
2014-01-01
This work demonstrates the feasibility of a novel microfluidic system with virtual channels formed by ‘walls’ of magnetic fields, including collecting channels, transporting channels and function channels. The channels are defined by the nickel patterns. With its own ferromagnetism, nickel can be magnetized using an external magnetic field; the nickel structures then generate magnetic fields that can either guide or trap magnetic beads. A glass substrate is sandwiched between the liquid containing magnetic beads and the chip with nickel structures, preventing the liquid from directly contacting the nickel. In this work, collecting channels, transporting channels and function channels are displayed sequentially. In the collecting channel portion, channels with different shapes are compared. Next, in the transporting channel portion we demonstrate I-, S- and Y-shaped channels can steer magnetic beads smoothly. Finally, in the function channel portion, a switchable trapping channel implemented with a bistable mechanism performs the passing and blocking of a magnetic bead. (paper)
Bedrock erosion by sliding wear in channelized granular flow
Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.
2014-12-01
Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of
Three dimensional computation of turbulent flow in meandering channels
Energy Technology Data Exchange (ETDEWEB)
Van Thinh Nguyen
2000-07-01
In this study a finite element calculation procedure together with two-equation turbulent model k-{epsilon} and mixing length are applied to the problem of simulating 3D turbulent flow in closed and open meandering channels. Near the wall a special approach is applied in order to overcome the weakness of the standard k-{epsilon} in the viscous sub-layer. A specialized shape function is used in the special near wall elements to capture accurately the strong variations of the mean flow variables in the viscosity-affected near wall region. Based on the analogy of water and air flows, a few characteristics of hydraulic problems can be examined in aerodynamic models, respectively. To study the relationships between an aerodynamic and a hydraulic model many experiments have been carried out by Federal Waterway Engineering and Research Institute of Karlsruhe, Germany. In order to test and examine the results of these physical models, an appropriated numerical model is necessary. The numerical mean will capture the limitations of the experimental setup. The similarity and the difference between an aerodynamic and a hydraulic model will be found out by the results of numerical computations and will be depicted in this study. Despite the presence of similarities between the flow in closed channels and the flow in open channels, it should be stated that the presence of a free surface in the open channel introduces serious complications to three dimensional computation. A new unknown, which represents the position of nodes on this free surface, is introduced. A special approach is required for solving this unknown. A procedure surface tracking is applied to the free surface boundary like a moving boundary. Grid nodes on the free surface are free to move in such a way that they belong to the spines, which are the generator lines to define the allowed motion of the nodes on the free surface. (orig.) [German] Die numerische Simulation ist heute ein wichtiges Hilfsmittel fuer die
Direct Numerical Simulations of Particle-Laden Turbulent Channel Flow
Jebakumar, Anand Samuel; Premnath, Kannan; Abraham, John
2017-11-01
In a recent experimental study, Lau and Nathan (2014) reported that the distribution of particles in a turbulent pipe flow is strongly influenced by the Stokes number (St). At St lower than 1, particles migrate toward the wall and at St greater than 10 they tend to migrate toward the axis. It was suggested that this preferential migration of particles is due to two forces, the Saffman lift force and the turbophoretic force. Saffman lift force represents a force acting on the particle as a result of a velocity gradient across the particle when it leads or lags the fluid flow. Turbophoretic force is induced by turbulence which tends to move the particle in the direction of decreasing turbulent kinetic energy. In this study, the Lattice Boltzmann Method (LBM) is employed to simulate a particle-laden turbulent channel flow through Direct Numerical Simulations (DNS). We find that the preferential migration is a function of particle size in addition to the St. We explain the effect of the particle size and St on the Saffman lift force and turbophoresis and present how this affects particle concentration at different conditions.
Unstable fluid flow in a water-cooled heating channel
International Nuclear Information System (INIS)
Delayre, R.; Saunier, J.P.
1961-01-01
Experimental investigations of the instable behavior of a pressurized water flow in forced convection in a heating channel, with subcooled or bulk boiling have been carried. Tests were conducted at 1140, 850 and 570 psi. The test section was 35 in. high, surmounted by a 25.4 in. riser, these sections were by-passed by a pipe where the flow was between 1 and 4 times the flow in the test section. The water velocity (in the test section) was between 1.6 and 6.6 ft/s. Under certain conditions oscillations with a period of several seconds and perfectly stable have been observed. A mathematical model has been defined and a good agreement obtained for the main characteristics of the oscillations. It seems that the dimensions of the riser have a determining effect: the inception of bulk boiling gives an important variation of the driving head which can generate oscillations due to the non-zero delay for the system to reach its equilibrium. (author) [fr
Magnetohydrodynamic duct and channel flows at finite magnetic Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Bandaru, Vinodh Kumar
2015-11-27
Magnetohydrodynamic duct flows have so far been studied only in the limit of negligible magnetic Reynolds numbers (R{sub m}). When R{sub m} is finite, the secondary magnetic field becomes significant, leading to a fully coupled evolution of the magnetic field and the conducting flow. Characterization of such flows is essential in understanding wall-bounded magnetohydrodynamic turbulence at finite R{sub m} as well as in industrial applications like the design of electromagnetic pumps and measurement of transient flows using techniques such as Lorentz force velocimetry. This thesis presents the development of a numerical framework for direct numerical simulations (DNS) of magnetohydrodynamic flows in straight rectangular ducts at finite R{sub m}, which is subsequently used to study three specific problems. The thesis opens with a brief overview of MHD and a review of the existing state of art in duct and channel MHD flows. This is followed by a description of the physical model governing the problem of MHD duct flow with insulating walls and streamwise periodicity. In the main part of the thesis, a hybrid finite difference-boundary element computational procedure is developed that is used to solve the magnetic induction equation with boundary conditions that satisfy interior-exterior matching of the magnetic field at the domain wall boundaries. The numerical procedure is implemented into a code and a detailed verification of the same is performed in the limit of low R{sub m} by comparing with the results obtained using a quasistatic approach that has no coupling with the exterior. Following this, the effect of R{sub m} on the transient response of Lorentz force is studied using the problem of a strongly accelerated solid conducting bar in the presence of an imposed localized magnetic field. The response time of Lorentz force depends linearly on R{sub m} and shows a good agreement with the existing experiments. For sufficiently large values of R{sub m}, the peak
Microfluidic methods to assess demulsification kinetics for oil-water-separation
Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.
2012-01-01
The control of emulsion stability is of crucial importance in the process of crude/oil water separation, which is a key step in industrial oil production. Separation is enhanced if coalescence between droplets takes place, the extent of which will depend on the flow parameters as well as on the
More Than Flow: Revisiting the Theory of Four Channels of Flow
Directory of Open Access Journals (Sweden)
Ching-I Teng
2012-01-01
Full Text Available Flow (FCF theory has received considerable attention in recent decades. In addition to flow, FCF theory proposed three influential factors, that is, boredom, frustration, and apathy. While these factors have received relatively less attention than flow, Internet applications have grown exponentially, warranting a closer reexamination of the applicability of the FCF theory. Thus, this study tested the theory that high/low levels of skill and challenge lead to four channels of flow. The study sample included 253 online gamers who provided valid responses to an online survey. Analytical results support the FCF theory, although a few exceptions were noted. First, skill was insignificantly related to apathy, possibly because low-skill users can realize significant achievements to compensate for their apathy. Moreover, in contrast with the FCF theory, challenge was positively related to boredom, revealing that gamers become bored with difficult yet repetitive challenges. Two important findings suggest new directions for FCF theory.
Directory of Open Access Journals (Sweden)
Da Liu
2017-09-01
Full Text Available Riverbank vegetation is of high importance both for preserving the form (morphology and function (ecology of natural river systems. Revegetation of riverbanks is commonly used as a means of stream rehabilitation and management of bank instability and erosion. In this experimental study, the effect of different riverbank vegetation densities on flow hydrodynamics across the channel, including the riparian zone, are reported and discussed. The configuration of vegetation elements follows either linear or staggered arrangements as vegetation density is progressively increased, within a representative range of vegetation densities found in nature. Hydrodynamic measurements including mean streamwise velocity and turbulent intensity flow profiles are recorded via acoustic Doppler velocimetry (ADV—both at the main channel and within the riverbank. These results show that for the main channel and the toe of riverbank, turbulence intensity for the low densities (λ ≈ 0 to 0.12 m−1 can increase up to 40% compared the case of high densities (λ = 0.94 to 1.9 m−1. Further analysis of these data allowed the estimation of bed-shear stresses, demonstrating 86% and 71% increase at the main channel and near the toe region, for increasing densities (λ = 0 to 1.9 m−1. Quantifying these hydrodynamic effects is important for assessing the contribution of physically representative ranges of riparian vegetation densities on hydrogeomorphologic feedback.
A numerical study of the complex flow structure in a compound meandering channel
Moncho-Esteve, Ignacio J.; García-Villalba, Manuel; Muto, Yasu; Shiono, Koji; Palau-Salvador, Guillermo
2018-06-01
In this study, we report large eddy simulations of turbulent flow in a periodic compound meandering channel for three different depth conditions: one in-bank and two overbank conditions. The flow configuration corresponds to the experiments of Shiono and Muto (1998). The predicted mean streamwise velocities, mean secondary motions, velocity fluctuations, turbulent kinetic energy as well as mean flood flow angle to meandering channel are in good agreement with the experimental measurements. We have analyzed the flow structure as a function of the inundation level, with particular emphasis on the development of the secondary motions due to the interaction between the main channel and the floodplain flow. Bed shear stresses have been also estimated in the simulations. Floodplain flow has a significant impact on the flow structure leading to significantly different bed shear stress patterns within the main meandering channel. The implications of these results for natural compound meandering channels are also discussed.
Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition
International Nuclear Information System (INIS)
Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei
2014-01-01
Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model
International Nuclear Information System (INIS)
Zhang Chunwei; Qiu Suizheng; Yan Mingyu; Wang Bulei; Nie Changhua
2005-01-01
The flow regime transition criteria for the boiling water two-phase flow in horizontal rectangular narrow channels (1 x 20 mm, 2 x 20 mm) were theoretically explored. The discernible flow patterns were bubble, intermittent slug, churn, annular and steam-water separation flow. By using two-fluid model, equations of conservation of momentum were established for the two-phase flow. New flow-regime criteria were obtained and agreed well with the experiment data. (authors)
Dynamic evolution process of turbulent channel flow after opposition control
Energy Technology Data Exchange (ETDEWEB)
Ge, Mingwei; Tian, De; Yongqian, Liu, E-mail: gmwncepu@163.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing102206 (China)
2017-02-15
Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of 〈 v ′ v ′〉 and 〈− u ′ v ′〉 in the viscous sublayer. (paper)
Drag reduction in channel flow using nonlinear control
Keefe, Laurence R.
1993-01-01
Two nonlinear control schemes have been applied to the problem of drag reduction in channel flow. Both schemes have been tested using numerical simulations at a mass flux Reynolds numbers of 4408, utilizing 2D nonlinear neutral modes for goal dynamics. The OGY-method, which requires feedback, reduces drag to 60-80 percent of the turbulent value at the same Reynolds number, and employs forcing only within a thin region near the wall. The H-method, or model-based control, fails to achieve any drag reduction when starting from a fully turbulent initial condition, but shows potential for suppressing or retarding laminar-to-turbulent transition by imposing instead a transition to a low drag, nonlinear traveling wave solution to the Navier-Stokes equation. The drag in this state corresponds to that achieved by the OGY-method. Model-based control requires no feedback, but in experiments to date has required the forcing be imposed within a thicker layer than the OGY-method. Control energy expenditures in both methods are small, representing less than 0.1 percent of the uncontrolled flow's energy.
Lovette, J. P.; Duncan, J. M.; Vimal, S.; Band, L. E.
2015-12-01
Natural riparian areas play numerous roles in the maintenance and improvement of stream water quality. Both restoration of riparian areas and improvement of hydrologic connectivity to the stream are often key goals of river restoration projects. These management actions are designed to improve nutrient removal by slowing and treating overland flow delivered from uplands and by storing, treating, and slowly releasing streamwater from overbank inundation during flood events. A major question is how effective this storage of overbank flow is at treating streamwater based on the cumulative time stream discharge at a downstream location has spent in shallower, slower overbank flow. The North Carolina Floodplain Mapping Program maintains a detailed statewide Flood Risk Information System (FRIS) using HEC-RAS modeling, lidar, and detailed surveyed river cross-sections. FRIS provides extensive information regarding channel geometry on approximately 39,000 stream reaches (a slightly coarser spatial resolution than the NHD+v2 dataset) with tens of cross-sections for each reach. We use this FRIS data to calculate volume and discharge from floodplain riparian areas separately from in-channel flow during overbank events. Preliminary results suggest that a small percentage of total annual discharge interacts with the full floodplain extent along a stream reach due to the infrequency of overbank flow events. However, with the significantly different physical characteristics of the riparian area when compared to the channel itself, this overbank flow can provide unique services to water quality. Our project aims to use this information in conjunction with data from the USGS SPARROW program to target non-point source hotspots of Nitrogen and Phosphorus addition and removal. By better understanding the flow dynamics within riparian areas during high flow events, riparian restoration projects can be carried out with improved efficacy.
Compressible turbulent channel flow with impedance boundary conditions
Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.
2015-03-01
We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with
Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel
McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli
2012-01-01
A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.
Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.
Wang, Jin; Zhang, Cao; Katz, Joseph
2015-11-01
This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.
Modeling on bubbly to churn flow pattern transition in narrow rectangular channel
International Nuclear Information System (INIS)
Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng
2012-01-01
A theoretical model based on some reasonable concepts was developed to predict the bubbly flow to churn flow pattern transition in vertical narrow rectangular channel under flow boiling condition. The maximum size of ideal bubble in narrow rectangular channel was calculated based on previous literature. The thermal hydraulics boundary condition of bubbly to churn flow pattern transition was exported from Helmholtz and maximum size of ideal bubble. The theoretical model was validated by existent experimental data. (authors)
Bowles, C. J.; Lawrence, R. L.; Noll, C.; Hancock, G. S.
2005-12-01
Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that stream incision has lowered floodplain water tables and decreased the overbank flow frequency. The monitored stream is a tributary to the James River draining 1.3 km2 of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one meter high knickpoint at a rate of ~1.5 m/yr, primarily during high flow events. We installed 63 wells in six stream-perpendicular transects as well as a cluster of wells around the knickpoint to assess water table elevations beneath the floodplain adjacent to the incising stream. Two transects are located 30 and 50 m upstream of the knickpoint in the unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream in the incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table changes. Erosion pins were installed and channel cross-sections surveyed to determine streambed stability. Significant differences are observed in bank morphology and groundwater flow above vs. below the knickpoint. Above the knickpoint, the banks are stable, ~3 m wide, and ~0.3 m deep, and widen and deepen slightly toward the knickpoint. The water table is relatively flat and is 0.2-0.4 m below the floodplain surface, and groundwater contours suggest flow is parallel to the stream direction. The water table responds immediately to precipitation events, and rises to the floodplain surface in significant rainfall events. Immediately downstream of the knickpoint, channel width increases by about a meter, and stream depth increases to ~1.5 meters. The water table immediately below the knickpoint possesses a steep gradient, and is up to one meter below the floodplain
Yambe, Kiyoyuki; Saito, Hidetoshi
2017-12-01
When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.
Flow of liquid metals in curved channels under a transversely applied magnetic field, (3)
International Nuclear Information System (INIS)
Arai, Shigeki; Tomita, Yukio; Sudou, Kouzou.
1979-01-01
With the development of electromagnetic pumps in nuclear, metallurgical and casting industries, investigations of not only laminar flow but also transient and turbulent flows in magnetohydrodynamic (MHD) channels are the matters of much concern. However, it is no exaggeration to say that there was no investigation of transient and turbulent flows in curved MHD channels. In this report, the influences of Reynolds number, Hartmann number, radius of curvature and aspect ratio on the coefficient of friction in transient and turbulent flow channels are discussed. In transient flow region, the curve representing the product of the coefficient of channel friction in curved channels and Reynolds number has no clear transition point in the flow of comparatively small Hartmann number. However, as the intensity of magnetic field is increased, the curve transfers to the transition due to the effect of suppressing secondary flow, and if the magnetic field is further increased, it was found that it approached the crisis-free type transition. In turbulent flow region, the coefficient of channel friction can be expressed approximately by the empirical equation given first in this report. Also the effect of magnetic field on the turbulent flow in curved channels can be explained by using Hartmann effect, turbulence suppression effect, and the effect of suppressing secondary flow based on Lorentz's force. (Wakatsuki, Y.)
THERMOSS: a thermohydraulic model of flow stagnation in a horizontal fuel channel
International Nuclear Information System (INIS)
Gulshani, P.; Caplan, M.Z.; Spinks, N.J.
1984-01-01
Following a postulated inlet-side small break in the CANDU reactor, emergency coolant is injected to refull the horizontal fuel channels and remove the decay heat. As part of the accident analysis, the effects of loss of forced circulation during the accident are predicted. A break size exists for which, at the end of pump rundown, the break force balances the natural circulation force and the channel flow is reduced to near zero. The subcooled, stagnant channel condition is referred to as the standing-start condition. Subsequently, the channel coolant boils and stratifies. Eventually the steam flow from the channel heats up the endfitting to the saturation temperature and reaches the vertical feeder. The resulting buoyancy-induced flow then refills the channel. One dimensional, two-fluid conservation equations are solved in closed form to predict the duration of stagnation. In this calculation the channel water level is an important intermediate variable because it determines the amount of steam production
Numerical simulation and structural optimization of the inclined oil/water separator.
Directory of Open Access Journals (Sweden)
Liqiong Chen
Full Text Available Improving the separation efficiency of the inclined oil/water separator, a new type of gravity separation equipment, is of great importance. In order to obtain a comprehensive understanding of the internal flow field of the separation process of oil and water within this separator, a numerical simulation based on Euler multiphase flow analysis and the realizable k-ε two equation turbulence model was executed using Fluent software. The optimal value ranges of the separator's various structural parameters used in the numerical simulation were selected through orthogonal array experiments. A field experiment on the separator was conducted with optimized structural parameters in order to validate the reliability of the numerical simulation results. The research results indicated that the horizontal position of the dispenser, the hole number, and the diameter had significant effects on the oil/water separation efficiency, and that the longitudinal position of the dispenser and the position of the weir plate had insignificant effects on the oil/water separation efficiency. The optimal structural parameters obtained through the orthogonal array experiments resulted in an oil/water separation efficiency of up to 95%, which was 4.996% greater than that realized by the original structural parameters.
The stress generated by non-Brownian fibers in turbulent channel flow simulations
Gillissen, J.J.J.; Boersma, B.J.; Mortensen, P.H.; Andersson, H.I.
2007-01-01
Turbulent fiber suspension channel flow is studied using direct numerical simulation. The effect of the fibers on the fluid mechanics is governed by a stress tensor, involving the distribution of fiber position and orientation. Properties of this function in channel flow are studied by computing the
Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling
Institute of Scientific and Technical Information of China (English)
无
1993-01-01
In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.
Heating limits of boiling downward two-phase flow in parallel channels
International Nuclear Information System (INIS)
Fukuda, Kenji; Kondoh, Tetsuya; Hasegawa, Shu; Sakai, Takaaki.
1989-01-01
Flow characteristics and heating limits of downward two-phase flow in single or parallel multi-channels are investigated experimentally and analytically. The heating section used is made of glass tube, in which the heater tube is inserted, and the flow regime inside it is observed. In single channel experiments with low flow rate conditions, it is found that, initially, gas phase which flows upward against the downward liquid phase flow condenses and diminishes as it flows up being cooled by inflowing liquid. However, as the heating power is increased, some portion of the gas phase reaches the top and accumulates to form an liquid level, which eventually causes the dryout. On the other hand, for high flow rate condition, the flooding at the bottom of the heated section is the cause of the dryout. In parallel multi-channels experiments, reversed (upward) flow which leads to the dryout is observed in some of these channels for low flow rate conditions, while the situation is the same to the single channel case for high flow rate conditions. Analyses are carried out to predict the onset of dryout in single channel using the drift flux model as well as the Wallis' flooding correlation. Above-mentioned two types of the dryout and their boundary are predicted which agree well with the experimental results. (author)
The fluid mechanics of channel fracturing flows: experiment
Rashedi, Ahmadreza; Tucker, Zachery; Ovarlez, Guillaume; Hormozi, Sarah
2017-11-01
We show our preliminary experimental results on the role of fluid mechanics in channel fracturing flows, particularly yield stress fracturing fluids. Recent trends in the oil industry have included the use of cyclic pumping of a proppant slurry interspersed with a yield stress fracturing fluid, which is found to increase wells productivity, if particles disperse in a certain fashion. Our experimental study aims to investigate the physical mechanisms responsible for dispersing the particles (proppant) within a yield stress carrier fluid, and to measure the dispersion of proppant slugs in various fracturing regimes. To this end we have designed and built a unique experimental setup that resembles a fracture configuration coupled with a particle image/tracking velocimetry setup operating at micro to macro dimensions. Moreover, we have designed optically engineered suspensions of complex fluids with tunable yield stress and consistency, well controlled density match-mismatch properties and refractive indices for both X-rays and visible lights. We present our experimental system and preliminary results. NSF (Grant No. CBET-1554044- CAREER), ACS PRF (Grant No. 55661-DNI9).
Analysis Of The Effect Of Flow Channel Width On The Performance Of PEMFC
Directory of Open Access Journals (Sweden)
Elif Eker
2013-08-01
Full Text Available In this work, it was analysed the effect of different channel width on performance of PEM fuel cell. Current density were measured on the single cells of parallel flow fields that has 25 cm² active layer, using three different kinds of channel width. The cell width and the channel height remain constant.The results show that increasing the channel width while the cell width remains constant decreases the current density.
Flow of two stratified fluids in an open channel with addition of fluids along the channel length
International Nuclear Information System (INIS)
Gardner, G.C.
1980-01-01
It is shown that two stably stratified fluids flowing in an open channel have two critical flow conditions. The one at higher flowrates is equivalent to the choked flow condition of a single fluid over a broad-crested weir, when the Froude number is unity. The lower critical condition imposes restrictions, which define the system if fluids are added progressively along the channel length and the flowrates increase from low to high values. However, if the flowrate does not become sufficiently large to pass through the lower critical condition, this condition will then define a form of choking, which again determines the system. It is shown that an important special case, with the proportional flowrates of the two fluids kept constant, has an analytical solution in which the relative depths of the fluids is a constant along the channel. Other systems must be solved numerically. (orig.)
Study of flow instabilities in double-channel natural circulation boiling systems
International Nuclear Information System (INIS)
Durga Prasad, Gonella V.; Pandey, Manmohan; Pradhan, Santosh K.; Gupta, Satish K.
2008-01-01
Natural circulation boiling systems consisting of parallel channels can undergo different types of oscillations (in-phase or out-of-phase) depending on the geometric parameters and operating conditions. Disturbances in one channel affect the flow in other channels, which triggers thermal-hydraulic oscillations. In the present work, the modes of oscillation under different operating conditions and channel-to-channel interaction during power fluctuations and on-power refueling in a double-channel natural circulation boiling system are investigated. The system is modeled using a lumped parameter mathematical model and RELAP5/MOD3.4. Parametric studies are carried out for an equal-power double-channel system, at different operating conditions, with both the models, and the results are compared. Instabilities, non-linear oscillations, and effects of recirculation loop dynamics and geometric parameters on the mode of oscillations, are studied using the lumped model. The two channels oscillate out-of-phase in Type-I region, but in Type-II region, both the modes of oscillation are observed under different conditions. Channel-to-channel interaction and on-power refueling studies are carried out using the RELAP model. At high powers, disturbances in one channel significantly affect the stability of the other channel. During on-power refueling, a near-stagnation condition or low-velocity reverse flow can occur, the possibility of reverse flow being higher at lower pressures
MMOSS-I: a CANDU multiple-channel thermosyphoning flow stability model
Energy Technology Data Exchange (ETDEWEB)
Gulshani, P [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Huynh, H [Hydro-Quebec, Montreal, PQ (Canada)
1996-12-31
This paper presents a multiple-channel flow stability model, dubbed MMOSS, developed to predict the conditions for the onset of flow oscillations in a CANDU-type multiple-channel heat transport system under thermosyphoning conditions. The model generalizes that developed previously to account for the effects of any channel flow reversal. Two-phase thermosyphoning conditions are predicted by thermalhydraulic codes for some postulated accident scenarios in CANDU. Two-phase thermosyphoning experiments in the multiple-channel RD-14M facility have indicated that pass-to-pass out-of-phase oscillations in the loop conditions caused the flow in some of the heated channels to undergo sustained reversal in direction. This channel flow reversal had significant effects on the channel and loop conditions. It is, therefore, important to understand the nature of the oscillations and be able to predict the conditions for the onset of the oscillations or for stable flow in RD-14M and the reactor. For stable flow conditions, oscillation-induced channel flow reversal is not expected. MMOSS was developed for a figure-of-eight system with any number of channels. The system characteristic equation was derived from a linearization of the conservation equations. In this paper, the MMOSS characteristic equation is solved for a system of N identical channel assemblies. The resulting model is called MMOSS-I. This simplification provides valuable physical insight and reasonably accurate results. MMOSS-I and a previously-developed steady-state model THERMOSYPHON are used to predict thermosyphoning flow stability maps for RD-14M and the Gentilly 2 reactor. (author). 11 refs., 7 figs.
Transport coefficients for laminar and turbulent flow through a four-cusp channel
International Nuclear Information System (INIS)
Souza Dutra, A. de; Parise, J.A.R.; Souza Mendes, P.R. de.
1986-01-01
The heat transfer coefficients for laminar and turbulent flow in a four-cusp channel were determined. A numerical solution was developed for laminar flow an and experimental study for turbulent flow was carried out. Systematic variations of the Reynolds number were done in the range 900-30000. The results show that the heat transfer coefficients for the four-cusp channel are much lower than the coefficients for the circular tube. (author) [pt
Flow Reversal of Fully-Developed Mixed MHD Convection in Vertical Channels
International Nuclear Information System (INIS)
Saleh, H.; Hashim, I.
2010-01-01
The present analysis is concerned with flow reversal phenomena of the fully-developed laminar combined free and forced MHD convection in a vertical parallel-plate channel. The effect of viscous dissipation is taken into account. Flow reversal adjacent to the cold (or hot) wall is found to exist within the channel as Gr/Re is above (or below) a threshold value. Parameter zones for the occurrence of reversed flow are presented. (fundamental areas of phenomenology(including applications))
Numerical investigation of flow instability in parallel channels with supercritical water
International Nuclear Information System (INIS)
Shitsi, Edward; Debrah, Seth Kofi; Agbodemegbe, Vincent Yao; Ampomah-Amoako, Emmanuel
2017-01-01
Highlights: •Supercritical flow instability in parallel channels is investigated. •Flow dynamics and heat transfer characteristics are analyzed. •Mass flow rate, pressure, heating power, and axial power shape have significant effects on flow instability. •Numerical results are validated with experimental results. -- Abstract: SCWR is one of the selected Gen IV reactors purposely for electricity generation in the near future. It is a promising technology with higher efficiency compared to current LWRs but without the challenges of heat transfer and its associated flow instability. Supercritical flow instability is mainly caused by sharp change in the coolant properties around the pseudo-critical point of the working fluid and research into this phenomenon is needed to address concerns of flow instability at supercritical pressures. Flow instability in parallel channels at supercritical pressures is investigated in this paper using a three dimensional (3D) numerical tool (STAR-CCM+). The dynamics characteristics such as amplitude and period of out-of-phase inlet mass flow oscillation at the heated channel inlet, and heat transfer characteristic such as maximum outlet temperature of the heated channel outlet temperature oscillation are discussed. Influences of system parameters such as axial power shape, pressure, mass flow rate, and gravity are discussed based on the obtained mass flow and temperature oscillations. The results show that the system parameters have significant effect on the amplitude of the mass flow oscillation and maximum temperature of the heated outlet temperature oscillation but have little effect on the period of the mass flow oscillation. The amplitude of mass flow oscillation and maximum temperature of the heated channel outlet temperature oscillation increase with heating power. The numerical results when compared to experiment data show that the 3D numerical tool (STAR-CCM+) could capture dynamics and heat transfer characteristics of
International Nuclear Information System (INIS)
Wang Xiaodong; Yan Weimon; Duan Yuanyuan; Weng Fangbor; Jung Guobin; Lee Chiyuan
2010-01-01
This work numerically investigates the effect of the channel size on the cell performance of proton exchange membrane (PEM) fuel cells with serpentine flow fields using a three-dimensional, two-phase model. The local current densities in the PEM, oxygen mass flow rates and liquid water concentrations at the interface of the cathode gas diffusion layer and catalyst layer were analyzed to understand the channel size effect. The predictions show that smaller channel sizes enhance liquid water removal and increase oxygen transport to the porous layers, which improve cell performance. Additionally, smaller channel sizes also provide more uniform current density distributions in the cell. However, as the channel size decreases, the total pressure drops across the cell increases, which leads to more pump work. With taking into account the pressure losses, the optimal cell performance occurs for a cell with a flow channel cross-sectional area of 0.535 x 0.535 mm 2 .
Directory of Open Access Journals (Sweden)
A. H. ELBATRAN
2015-07-01
Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.
Noise control of subsonic cavity flows using plasma actuated receptive channels
International Nuclear Information System (INIS)
Gupta, Arnob Das; Roy, Subrata
2014-01-01
We introduce a passive receptive rectangular channel at the trailing edge of an open rectangular cavity to reduce the acoustic tones generated due to coherent shear layer impingement. The channel is numerically tested at Mach 0.3 using an unsteady three-dimensional large eddy simulation. Results show reduction in pressure fluctuations in the cavity due to which sound pressure levels are suppressed. Two linear dielectric barrier discharge plasma actuators are placed inside the channel to enhance the flow through it. Specifically, acoustic suppression of 7 dB was obtained for Mach 0.3 flow with the plasma actuated channel. Also, the drag coefficient for the cavity reduced by over three folds for the channel and over eight folds for the plasma actuated channel. Such a channel can be useful in noise and drag reduction for various applications, including weapons bay, landing gear and branched piping systems. (fast track communication)
Flow rate-pressure drop relation for deformable shallow microfluidic channels
Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.
2018-04-01
Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.
Comparison of superhydrophobic drag reduction between turbulent pipe and channel flows
Im, Hyung Jae; Lee, Jae Hwa
2017-09-01
It has been known over several decades that canonical wall-bounded internal flows of a pipe and channel share flow similarities, in particular, close to the wall due to the negligible curvature effect. In the present study, direct numerical simulations of fully developed turbulent pipe and channel flows are performed to investigate the influence of the superhydrophobic surfaces (SHSs) on the turbulence dynamics and the resultant drag reduction (DR) of the flows under similar conditions. SHSs at the wall are modeled in spanwise-alternating longitudinal regions with a boundary with no-slip and shear-free conditions, and the two parameters of the spanwise periodicity (P/δ) and SHS fraction (GF) within a pitch are considered. It is shown, in agreement with previous investigations in channels, that the turbulent drag for the pipe and channel flows over SHSs is continuously decreased with increases in P/δ and GF. However, the DR rate in the pipe flows is greater than that in the channel flows with an accompanying reduction of the Reynolds stress. The enhanced performance of the DR for the pipe flow is attributed to the increased streamwise slip and weakened Reynolds shear stress contributions. In addition, a mathematical analysis of the spanwise mean vorticity equation suggests that the presence of a strong secondary flow due to the increased spanwise slip of the pipe flows makes a greater negative contribution of advective vorticity transport than the channel flows, resulting in a higher DR value. Finally, an inspection of the origin of the mean secondary flow in turbulent flows over SHSs based on the spatial gradients of the turbulent kinetic energy demonstrates that the secondary flow is both driven and sustained by spatial gradients in the Reynolds stress components, i.e., Prandtl's secondary flow of the second kind.
Mechanics of flow and sediment transport in delta distributary channels
Nelson, Jonathan M.; Kinzel, Paul J.; Duc Toan, Duong; Shimizu, Yasuyuki; McDonald, Richard R.
2011-01-01
Predicting the planform and dimensions of a channel downstream from a confluence of two smaller channels with known sediment and water supplies is a fundamental, well-studied problem in geomorphology and engineering. An analogous but less well understood problem is found
Study on parallel-channel asymmetry in supercritical flow instability experiment
International Nuclear Information System (INIS)
Xiong Ting; Yu Junchong; Yan Xiao; Huang Yanping; Xiao Zejun; Huang Shanfang
2013-01-01
Due to the urgent need for experimental study on supercritical water flow instability, the parallel-channel asymmetry which determines the feasibility of such experiments was studied with the experimental and numerical results in parallel dual channel. The evolution of flow rates in the experiments was analyzed, and the steady-state characteristics as well as transient characteristics of the system were obtained by self-developed numerical code. The results show that the asymmetry of the parallel dual channel would reduce the feasibility of experiments. The asymmetry of flow rates is aroused by geometrical asymmetry. Due to the property variation characteristics of supercritical water, the flow rate asymmetry is enlarged while rising beyond the pseudo critical point. The extent of flow rate asymmetry is affected by the bulk temperature and total flow rate; therefore the experimental feasibility can be enhanced by reducing the total flow rate. (authors)
Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.
Zhou, Zhanru; Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.
The dynamics of a channel-fed lava flow on Pico Partido volcano, Lanzarote
Woodcock, Duncan; Harris, Andrew
2006-09-01
A short length of channel on Pico Partido volcano, Lanzarote, provides us the opportunity to examine the dynamics of lava flowing in a channel that extends over a sudden break in slope. The 1 2-m-wide, 0.5 2-m-deep channel was built during the 1730 1736 eruptions on Lanzarote and exhibits a sinuous, well-formed channel over a steep (11° slope) 100-m-long proximal section. Over-flow units comprising smooth pahoehoe sheet flow, as well as evidence on the inner channel walls for multiple (at least 11) flow levels, attest to unsteady flow in the channel. In addition, superelevation is apparent at each of the six bends along the proximal channel section. Superelevation results from banking of the lava as it moves around the bend thus causing preferential construction of the outer bank. As a result, the channel profile at each bend is asymmetric with an outer bank that is higher than the inner bank. Analysis of superelevation indicates flow velocities of ~8 m s 1. Our analysis of the superelevation features is based on an inertia-gravity balance, which we show is appropriate, even though the down-channel flow is in laminar flow. We use a viscosity-gravity balance model, together with the velocities calculated from superelevation, to obtain viscosities in the range 25 60 Pa s (assuming that the lava behaved as a Newtonian liquid). Estimated volume fluxes are in the range 7 12 m3 s 1. An apparent down-flow increase in derived volume flux may have resulted from variable supply or bulking up of the flow due to vesiculation. Where the channel moves over a sharp break in slope and onto slopes of ~6°, the channel becomes less well defined and widens considerably. At the break of slope, an elongate ridge extends across the channel. We speculate that this ridge was formed as a result of a reduction in velocity immediately below the break of slope to allow deposition of entrained material or accretion of lava to the channel bed as a result of a change in flow regime or depth.
Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With ...
African Journals Online (AJOL)
This paper investigate the effect of slip on the hydromagnetic pulsatile flow through a porous channel filled with saturated porous medium with time dependent boundary condition on the heated wall. Based on the pulsatile flow nature, the dimensionless flow governing equations are resolved to harmonic and non-harmonic ...
Water circulation in non-isothermal droplet-laden turbulent channel flow
Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.; Simos, T.; Psihoyios, G.; Tsitouras, Ch.
2013-01-01
We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared
Flow predictions for MHD channels with an approximation for three-dimensional effects
International Nuclear Information System (INIS)
Blottner, F.G.
1978-01-01
A finite-difference procedure has been formulated for predicting the flow properties across channels. A quasi-two-dimensional approach has been developed which allows the three-dimensional channel effects to be taken into account. Comparison of the numerical solutions with experimental results show that this approach is a reasonable approximation for MHD flow conditions if there is not significant merging of the wall boundary layers. The resulting code provides a technique to obtain the flow details in the symmetry plane of the channel and requires only a small amount of computer time
Simplified numerical model for predicting onset of flow instability in parallel heated channels
International Nuclear Information System (INIS)
Noura Rassoul; El-Khider Si-Ahmed; Tewfik Hamidouche; Anis Bousbia-Salah
2005-01-01
Full text of publication follows: Flow instabilities are undesirable phenomena in heated channels since change in flow rate affects the local heat transfer characteristics and may results in premature burnout. For instance, two-phase flow excursion (Ledinegg) instability in boiling channels is of great concern in the design and operation of numerous practical systems especially the MTR fuel type Research Reactors. For heated parallel channels, the negative-sloped segment of the pressure drop-flow rate characteristics (demand curve) of a boiling channel becomes negative. Such instability can lead to significant reduction in channel flow, thereby causing premature burnout of the heated channel before the CHF point. Furthermore, as a consequence of this flow decrease, different types of flow instabilities that may appear can also induce (density wave) flow oscillations of constant amplitude or diverging amplitude. The present work focuses on a numerical simulation of pressure drop in forced convection boiling in vertical narrow and parallel uniformly heated channels. The objective is to determine the point of Onset of flow instability by varying input flow rate without any consideration to density wave oscillations. By the way, the axial void distribution is provided. The numerical model is based on the finite difference method which transform the partial differential conservation equations of Mass, Momentum and Energy, in algebraic equations. Closure relationships as the drift flux model and other constitutive equations are considered to determine the channel pressure drop under steady state boiling conditions. The model validation is performed by confronting the calculations with the Oak Ridge National Laboratory Thermal Hydraulic Test Loop (THTL) experimental data set. Further verification of this model is performed by code-to code verification using the results of RELAP5/Mod 3.2 code. (authors)
Complete energetic description of hydrokinetic turbine impact on flow channel dynamics
Brasseale, E.; Kawase, M.
2016-02-01
Energy budget analysis on tidal channels quantifies and demarcates the impacts of marine renewables on environmental fluid dynamics. Energy budget analysis assumes the change in total kinetic energy within a volume of fluid can be described by the work done by each force acting on the flow. In a numerically simulated channel, the balance between energy change and work done has been validated up to 5% error.The forces doing work on the flow include pressure, turbulent dissipation, and stress from the estuary floor. If hydrokinetic turbines are installed in an estuarine channel to convert tidal energy into usable power, the dynamics of the channel change. Turbines provide additional pressure work against the flow of the channel which will slow the current and lessen turbulent dissipation and bottom stress. These losses may negatively impact estuarine circulation, seafloor scour, and stratification.The environmental effects of turbine deployment have been quantified using a three dimensional, Reynolds-averaged, Navier-Stokes model of an idealized flow channel situated between the ocean and a large estuarine basin. The channel is five kilometers wide, twenty kilometers long and fifty meters deep, and resolved to a grid size of 10 meters by 10 meters by 1 meter. Tidal currents are simulated by an initial difference in sea surface height across the channel of 160 centimeters from the channel entrance to the channel exit. This creates a pressure gradient which drives flow through the channel. Tidal power turbines are represented as disks that force the channel in proportion to the strength of the current. Three tidal turbines twenty meters in diameters have been included in the model to simulate the impacts of a pilot scale test deployment.This study is the first to appreciate the energetic impact of marine renewables in a three dimensional model through the energy equation's constituent terms. This study provides groundwork for understanding and predicting the
Flow behaviour in a CANDU horizontal fuel channel from stagnant subcooled initial conditions
International Nuclear Information System (INIS)
Caplan, M.Z.; Gulshani, P.; Holmes, R.W.; Wright, A.C.D.
1984-01-01
The flow behaviour in a CANDU primary system with horizontal fuel channels is described following a small inlet header break. With the primary pumps running, emergency coolant injection is in the forward direction so that the channel outlet feeders remain warmer than the inlet thereby promoting forward natural circulation. However, the break force opposes the forward driving force. Should the primary pumps run down after the circuit has refilled, there is a break size for which the natural circulation force is balanced by the break force and channels could, theoretically, stagnate. Result of visualization and of full-size channel tests on channel flow behaviour from an initially stagnant channel condition are discussed. After a channel stagnation, the decay power heats the coolant to saturation. Steam is then formed and the coolant stratifies. The steam expands into the subcooled water in the end fitting in a chugging type of flow regime due to steam condensation. After the end fitting reaches the saturation temperature, steam is able to penetrate into the vertical feeder thereby initiating a large buoyancy induced flow which refills the channel. The duration of stagnation is shown to be sensitive to small asymmetries in the initial conditions. A small initial flow can significantly shorten the occurrence and/or duration of boiling as has been confirmed by reactor experience. (author)
Directory of Open Access Journals (Sweden)
Zengchao You
2017-03-01
Full Text Available The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP using Asymmetrical Flow Field-Flow Fractionation (AF4 was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD and limit of quantification (LOQ obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis.
Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes
Directory of Open Access Journals (Sweden)
Ole M. Aamo
2002-07-01
Full Text Available The field of flow control has picked up pace over the past decade or so, on the promise of real-time distributed control on turbulent scales being realizable in the near future. This promise is due to the micromachining technology that emerged in the 1980s and developed at an amazing speed through the 1990s. In lab experiments, so called micro-electro-mechanical systems (MEMS that incorporate the entire detection-decision-actuation process on a single chip, have been batch processed in large numbers and assembled into flexible skins for gluing onto body-fluid interfaces for drag reduction purposes. Control of fluid flows span a wide variety of specialities. In Part I of this tutorial, we focus on the problem of reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium profile using boundary feedback control. The control strategics used for this problem include classical control, based on the Nyquist criteria, and various optimal control techniques (H2, H-Infinity, as well as applications of Lyapunov stability theory.
Flow Structure and Channel Morphology at a Confluent-Meander Bend
Riley, J. D.; Rhoads, B. L.
2009-12-01
Flow structure and channel morphology in meander bends have been well documented. Channel curvature subjects flow through a bend to centrifugal acceleration, inducing a counterbalancing pressure-gradient force that initiates secondary circulation. Transverse variations in boundary shear stress and bedload transport parallel cross-stream movement of high velocity flow and determine spatial patterns of erosion along the outer bank and deposition along the inner bank. Laboratory experiments and numerical modeling of confluent-meander bends, a junction planform that develops when a tributary joins a meandering river along the outer bank of a bend, suggest that flow and channel morphology in such bends deviate from typical patterns. The purpose of this study is to examine three-dimensional (3-D) flow structure and channel morphology at a natural confluent-meander bend. Field data were collected in southeastern Illinois where Big Muddy Creek joins the Little Wabash River near a local maximum of curvature along an elongated meander loop. Measurements of 3-D velocity components were obtained with an acoustic Doppler current profiler (ADCP) for two flow events with differing momentum ratios. Channel bathymetry was also resolved from the four-beam depths of the ADCP. Analysis of velocity data reveals a distinct shear layer flanked by dual helical cells within the bend immediately downstream of the confluence. Flow from the tributary confines flow from the main channel along the inner part of the channel cross section, displacing the thalweg inward, limiting the downstream extent of the point bar, protecting the outer bank from erosion and enabling bar-building along this bank. Overall, this pattern of flow and channel morphology is quite different from typical patterns in meander bends, but is consistent with a conceptual model derived from laboratory experiments and numerical modeling.
Drag reduction in a turbulent channel flow using a passivity-based approach
Heins, Peter; Jones, Bryn; Sharma, Atul
2013-11-01
A new active feedback control strategy for attenuating perturbation energy in a turbulent channel flow is presented. Using a passivity-based approach, a controller synthesis procedure has been devised which is capable of making the linear dynamics of a channel flow as close to passive as is possible given the limitations on sensing and actuation. A controller that is capable of making the linearized flow passive is guaranteed to globally stabilize the true flow. The resulting controller is capable of greatly restricting the amount of turbulent energy that the nonlinearity can feed back into the flow. DNS testing of a controller using wall-sensing of streamwise and spanwise shear stress and actuation via wall transpiration acting upon channel flows with Reτ = 100 - 250 showed significant reductions in skin-friction drag.
Dynamic self-organization in particle-laden channel flow
Geurts, Bernardus J.; Vreman, A.W.
2006-01-01
We study dynamic flow-structuring and mean-flow properties of turbulent particle-laden riser-flow at significant particle volume fractions of about 1.5%. We include particle–particle as well as particle–fluid interactions through inelastic collisions and drag forces, in a so-called four-way coupled
Extraction of Multithread Channel Networks With a Reduced-Complexity Flow Model
Limaye, Ajay B.
2017-10-01
Quantitative measures of channel network geometry inform diverse applications in hydrology, sediment transport, ecology, hazard assessment, and stratigraphic prediction. These uses require a clear, objectively defined channel network. Automated techniques for extracting channels from topography are well developed for convergent channel networks and identify flow paths based on land-surface gradients. These techniques—even when they allow multiple flow paths—do not consistently capture channel networks with frequent bifurcations (e.g., in rivers, deltas, and alluvial fans). This paper uses multithread rivers as a template to develop a new approach for channel extraction suitable for channel networks with divergences. Multithread channels are commonly mapped using observed inundation extent, and I generalize this approach using a depth-resolving, reduced-complexity flow model to map inundation patterns for fixed topography across an arbitrary range of discharge. A case study for the Platte River, Nebraska, reveals that (1) the number of bars exposed above the water surface, bar area, and the number of wetted channel threads (i.e., braiding index) peak at intermediate discharge; (2) the anisotropic scaling of bar dimensions occurs for a range of discharge; and (3) the maximum braiding index occurs at a corresponding reference discharge that provides an objective basis for comparing the planform geometry of multithread rivers. Mapping by flow depth overestimates braiding index by a factor of 2. The new approach extends channel network extraction from topography to the full spectrum of channel patterns, with the potential for comparing diverse channel patterns at scales from laboratory experiments to natural landscapes.
One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W
2012-07-01
Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.
Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Poster)
DEFF Research Database (Denmark)
Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen
One means of increasing the hydrogen yield to cost ratio of a PEM water electrolyser, is to increase the operating current density. However, at high current densities (higher than 1 A/cm2), management of heat and mass transfer in the anode current collector and channel becomes crucial and can lead...... to hot spots. Management of heat and fluid flow through the micro-channels play a great role in the capability of PEM water electrolysis when working at high current densities. Despite, many studies have been done on gas-liquid flows; still there is a lack of research on gas-liquid flows in micro......-sized channels (hydraulic diameter of 1 mm) of PEM water electrolysis. Precisely controlling all the parameters that affect the gas-liquid flow in a PEM water electrolysis cell is quite challenging, hence a simplified setup is constructed consisting of only a transparent channel with a sheet of titanium felt...
International Nuclear Information System (INIS)
Wang Junfeng; Huang Yanping; Wang Yanlin; Song Mingliang
2012-01-01
Highlights: ► Flow regimes were visually investigated in a heated narrow rectangular channel. ► Bubbly, churn, and annular flow were observed. Slug flow was never observed. ► Flow regime transition boundary could be predicted by existing criteria. ► Churn zone in present flow regime maps were poorly predicted by existing criteria. - Abstract: Flow regimes are very important in understanding two-phase flow resistance and heat transfer characteristics. In present work, two-phase flow regimes for steam–water flows in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, were visually studied at relatively low pressure and low mass flux condition. The flow regimes observed in this experiment could be classified into bubbly, churn and annular flow. Slug flow was never observed at any of the conditions in our experiment. Flow regime maps at the pressure of 0.7 MPa and 1.0 MPa were developed, and then the pressure effect on flow regime transition was analyzed. Based on the experimental results, the comparisons with some existing flow regime maps and transition criteria were conducted. The comparison results show that the bubbly transition boundary and annular formation boundary of heated steam–water flow were consistent with that of adiabatic air–water flow. However, the intermediate flow pattern between bubbly and annular flow was different. Hibiki and Mishima criteria could predict the bubbly transition boundary and annular formation boundary satisfactorily, but it poorly predicted churn zone in present experimental data.
Directory of Open Access Journals (Sweden)
Matteo Pascotto
2013-01-01
Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.
Directory of Open Access Journals (Sweden)
K. Hanegan
2015-03-01
Full Text Available In this study, a Delft3D model of the Wax Lake Delta was developed to simulate flow and sediment flux through delta distributary channels. The model was calibrated for tidal constituents as well as velocity and sediment concentration across channel transects. The calibrated model was then used to simulate full spring–neap tidal cycles under constant low flow upstream boundary conditions, with grain size variation in suspended load represented using two sediment fractions. Flow and sediment flux results through distributary channel cross-sections were examined for spatial and temporal variability with the goal of characterizing the role of tides in sediment reworking and delta development. The Wax Lake Delta has prograded through channel extension, river mouth bar deposition, and channel bifurcation. Here we show that tidal modulation of currents influences suspended sand transport, and spatial acceleration through distributary channels at low tides is sufficient to suspend sand in distal reaches during lower flows. The basinward-increasing transport capacity in distributary channels indicates that erosive channel extension could be an important process, even during non-flood events.
INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS
Directory of Open Access Journals (Sweden)
S. T. Aksentiev
2005-01-01
Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.
A mathematical model of the flow and bed topography in curved channels
Olesen, K.W.
1985-01-01
A two-dimensional horizontal mathematical model of the flow and bed topography in alluvial channel bends is presented. The applicability of the model is restricted to channels of which the width-depth ratio is large, the Froude number is small, bed load is dominant and grain sorting effects are
Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger
Watanabe, Satoshi
2005-11-01
Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.
Burnout and distribution of liquid between the flow core and wall films in narrow slot channels
Boltenko, E. A.; Shpakovskii, A. A.
2010-03-01
Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.
International Nuclear Information System (INIS)
Williams, M.L.; Engle, W.W.
1977-01-01
A method is introduced for determining streaming paths through a non-multiplying medium. The concepts of a ''response continuum'' and a pseudo-particle called a contribution are developed to describe the spatial channels through which response flows from a source to a detector. An example application of channel theory to complex shield analysis is cited
PIV Measurements of Turbulent Flow in a Channel with Solid or Perforated Ribs
DEFF Research Database (Denmark)
Wang, Lei; Salewski, Mirko; Sundén, Bengt
2011-01-01
Particle image velocimetry measurements are performed in a channel with periodic ribs on one wall. We investigate the flow around two different rib configurations: solid and perforated ribs with a slit. The ribs obstruct the channel by 20% of its height and are arranged 10 rib heights apart. For ...
Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell
Energy Technology Data Exchange (ETDEWEB)
Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)
2008-03-15
Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)
VOF modelling of gas–liquid flow in PEM water electrolysis cell micro-channels
DEFF Research Database (Denmark)
Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen
2017-01-01
In this study, the gaseliquid flow through an interdigitated anode flow field of a PEM water electrolysis cell (PEMEC) is analysed using a three-dimensional, transient, computational fluid dynamics (CFD) model. To account for two-phase flow, the volume of fluid (VOF) method in ANSYS Fluent 17...... of the channel. The model is capable of revealing effect of different bubble shapes/lengths in the outgoing channel. Shape and the sequence of the bubbles affect the water flow distribution in the ATL. The model presented in this work is the first step in the development of a comprehensive CFD model...
Flow with boiling in four-cusp channels simulating damaged core in PWR type reactors
International Nuclear Information System (INIS)
Esteves, M.M.
1985-01-01
The study of subcooled nucleate flow boiling in non-circular channels is of great importance to engineering applications in particular to Nuclear Engineering. In the present work, an experimental apparatus, consisting basically of a refrigeration system, running on refrigerant-12, has been developed. Preliminary tests were made with a circular tube. The main objective has been to analyse subcooled flow boiling in four-cusp channels simulating the flow conditions in a PWR core degraded by accident. Correlations were developed for the forced convection film coefficient for both single-phase and subcooled flow boiling. The incipience of boiling in such geometry has also been studied. (author) [pt
Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim
2017-06-01
A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.
International Nuclear Information System (INIS)
Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.
1988-07-01
Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)
Subcooled flow boiling heat transfer from microporous surfaces in a small channel
International Nuclear Information System (INIS)
Yan, Sun; Li, Zhang; Hong, Xu; Xiaocheng, Zhong
2011-01-01
The continuously increasing requirement for high heat transfer rate in a compact space can be met by combining the small channel/microchannel and heat transfer enhancement methods during fluid subcooled flow boiling. In this paper, the sintered microporous coating, as an efficient means of enhancing nucleate boiling, was applied to a horizontal, rectangular small channel. Water flow boiling heat transfer characteristics from the small channel with/without the microporous coating were experimentally investigated. The small channel, even without the coating, presented flow boiling heat transfer enhancement at low vapor quality due to size effects of the channel. This enhancement was also verified by under-predictions from macro-scale correlations. In addition to the enhancement from the channel size, all six microporous coatings with various structural parameters were found to further enhance nucleate boiling significantly. Effects of the coating structural parameters, fluid mass flux and inlet subcooling were also investigated to identify the optimum condition for heat transfer enhancement. Under the optimum condition, the microporous coating could produce the heat transfer coefficients 2.7 times the smooth surface value in subcooled flow boiling and 3 times in saturated flow boiling. The combination of the microporous coating and small channel led to excellent heat transfer performance, and therefore was deemed to have promising application prospects in many areas such as air conditioning, chip cooling, refrigeration systems, and many others involving compact heat exchangers. (authors)
Experimental study of fluid flow in the entrance of a sinusoidal channel
International Nuclear Information System (INIS)
Oviedo-Tolentino, F.; Romero-Mendez, R.; Hernandez-Guerrero, A.; Giron-Palomares, B.
2008-01-01
An experimental flow visualization study of the entrance section of channels formed with sinusoidal plates was made. The experiments were conducted in a water tunnel and a laser illuminated particle tracking was used as the technique of flow visualization. The geometric parameters of the plates were maintained constant while the distance between plates, phase angle, and the Reynolds number were varied during the experiments. The flow regimes that were found in the experiments are steady, unsteady and significantly-mixed flows. Instabilities of the flow first appear near the exit of the channel, and move closer to the inlet waves as the Reynolds number grows, but in the first wave from inlet the flow is always steady. The results show that, for all other parameters fixed, the Reynolds number at which unsteady flow first appears grows with the distance between plates. The phase angle that best promotes unsteady flow depends on the average distance between plates: for certain average distance between plates, there is a phase angle that best disturbs the flow. For the set of parameters used in this experiment, a channel with eight waves is sufficiently long and the flow features presented in the first eight waves of a longer channel will be similar to what was observed here
Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends
Riley, J. D.; Rhoads, B. L.
2007-12-01
The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed
International Nuclear Information System (INIS)
Siddiqui, M.S.
1992-06-01
COFTAN is a computer code for actual estimation of flows and temperatures in the coolant channels of a pressure tube heavy water reactor. The code is being used for Candu type reactor with coolant flowing 208 channels. The simulation model first performs the detailed calculation of flux and power distribution based on two groups diffusion theory treatment on a three dimensional mesh and then channel powers, resulting from the summation of eleven bundle powers in each of the 208 channels, are employed to make actual estimation of coolant flows using channel powers and channel outlet temperature monitored by digital computers. The code by using the design flows in individual channels and applying a correction factor based on control room monitored flows in eight selected channels, can also provide a reserve computational tool of estimating individual channel outlet temperatures, thus providing an alternate arrangements for checking Rads performance. 42 figs. (Orig./A.B.)
Analysis of Two Phase Natural Circulation Flow in the Cooling Channel of the PECS
Energy Technology Data Exchange (ETDEWEB)
Park, R. J; Ha, K. S; Rhee, B. W; Kim, H. Y [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
Decay heat and sensible heat of the relocated and spread corium are removed by the natural circulation flow at the bottom and side wall of the core catcher and the top water cooling of the corium. The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. As shown in Fig. 1, the engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting in the PECS. To maintain the integrity of the ex-vessel core catcher, however, it is necessary that the coolant be sufficiently circulated along the inclined cooling channel to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. For this reason, a verification experiment on the cooling capability of the EU-APR1400 core catcher has been performed in the CE (Cooling Experiment)-PECS facility at KAERI. Preliminary simulations of two-phase natural circulation in the CE-PECS were performed to predict two-phase flow characteristics and to determine the natural circulation mass flow rate in the flow channel. In this study, simulations of two-phase natural circulation in a real core catcher of the PECS have been performed to determine the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code.
Laboratory Modeling of Self-Formed Leveed Channels From Sediment-Laden Flows Entering Still Water
Rowland, J. C.; Dietrich, W. E.
2004-12-01
Self-formed leveed channels constructed by deposition of suspended sediment from sediment-laden flows entering still water are common features in nature. Such channels drive delta progradation, develop at tidal inlets and occur where mainstem river flows empty into oxbows and blocked valley lakes. Presently there is no theory for the formation of such channels. This lack of theory is partly due to a lack of field or laboratory studies that provide insight about the mechanism controlling these self-formed, propagating channels. The creation of such features in the laboratory, have proved illusive to date. Our ongoing experiments aimed at modeling the formation of floodplain tie channels provide insight into the necessary conditions for levee formation and channel growth. Under conditions of steady water discharge, constant sediment feed rate, unimodal sediment distribution and invariant basin stage we are able to create subaqueous lateral bars (submerged levees) along the margins of a sediment laden jet. Our results highlight the sensitivity of channel formation to issues of scaling and experimental design. In the laboratory, levee formation has only been possible with the use of plastic particles (specific gravity ~1.5); complete bed alluviation and dune formation results from the use of particles with specific gravities of ~ 2.65 across a range grain diameters and shapes. We hypothesize this effect is related to high entrainment thresholds relative to suspension thresholds of small (< 100 mm) natural particles under conditions of reduced turbulence in laboratory scaled flows. Additionally, both the width to depth ratio and the form of the outlet channel introducing the sediment laden flow into the experimental basin exert a strong control on sedimentation pattern and levee growth. Continuing experiments are focused on generating emergent channel levees and a basin ward propagation of the channel by adjusting the form of the feed channel, varying basin stage, and
Flow Oriented Channel Assignment for Multi-radio Wireless Mesh Networks
Directory of Open Access Journals (Sweden)
Niu Zhisheng
2010-01-01
Full Text Available We investigate channel assignment for a multichannel wireless mesh network backbone, where each router is equipped with multiple interfaces. Of particular interest is the development of channel assignment heuristics for multiple flows. We present an optimization formulation and then propose two iterative flow oriented heuristics for the conflict-free and interference-aware cases, respectively. To maximize the aggregate useful end-to-end flow rates, both algorithms identify and resolve congestion at instantaneous bottleneck link in each iteration. Then the link rate is optimally allocated among contending flows that share this link by solving a linear programming (LP problem. A thorough performance evaluation is undertaken as a function of the number of channels and interfaces/node and the number of contending flows. The performance of our algorithm is shown to be significantly superior to best known algorithm in its class in multichannel limited radio scenarios.
Nanson, Rachel A.; Nanson, Gerald C.; Huang, He Qing
2010-04-01
At-a-station and bankfull hydraulic geometry analyses of peatland channels at Barrington Tops, New South Wales, Australia, reveal adjustments in self-forming channels in the absence of sediment load. Using Rhodes ternary diagram, comparisons are made with hydraulic geometry data from self-forming channels carrying bedload in alluvial settings elsewhere. Despite constraints on channel depths caused at some locations by the restricted thickness of peat, most stations have cohesive, near-vertical, well-vegetated banks, and width/depth (w/d) ratios of ∼ 2 that are optimal for sediment-free flow. Because banks are strong, resist erosion and can stand nearly vertical, and depth is sometimes constrained, adjustments to discharge are accommodated largely by changes in velocity. These findings are consistent with the model of maximum flow efficiency and the overarching least action principle in open channels. The bankfull depth of freely adjusting laterally active channels in clastic alluvium is well known to be related to the thickness of floodplain alluvium and a similar condition appears to apply to these swamps that grow in situ and are formed almost entirely of organic matter. The thickness of peat in these swamps rarely exceeds that required to form a bankfull channel of optimum w/d ratio for the transport of sediment-free water. Swamp vegetation is highly dependent on proximity to the water table. To maintain a swamp-channel and associated floodplain system, the channels must flow with sufficient water much of the time; they not only offer an efficient morphology for flow but do so in a way that enables bankfull conditions to occur many times a year. They also prevent the swamp from growing above a level linked to the depth of the channel. Once the channel attains the most efficient cross section, further growth of the swamp vertically is restricted by enhanced flow velocities and limited flow depths. This means that the volume of peat in such swamps is determined
Review of Critical Heat Flux Correlations for Upward Flow in a Vertical Thin Rectangular Channel
Energy Technology Data Exchange (ETDEWEB)
Choi, Gil Sik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2014-05-15
From the view point of safety, this type of fuel has higher resistance to earthquake and external impact. The cross section of coolant flow channel in the reactor core composed with the plate fuel is a thin rectangular shape. Thermal-hydraulic characteristics of this thin rectangular channel are different with those of general circular rod fuel bundle flow channel. Accordingly it could be thought that the CHF correlation in a thin rectangular channel is different with that in a circular channel, for which a large number of researches on CHF prediction have been carried out. The objective of this paper is to review previous researches on CHF in a thin rectangular channel, summarize the important conclusion and propose the new simple CHF correlation, which is based on the data set under high pressure and high flow rate condition. The researches on CHF in rectangular channel have been partially carried out according to the pressure, heated surface number, heated surface wettability effect, flow driving force and flow direction conditions. From the literature researches on CHF for upward flow in a vertical thin rectangular channel, some CHF prediction methods were reviewed and compared. There is no universal correlation which can predict CHF at all conditions, but generally, Katto empirical correlation is known to be useful at high pressure and high flow rate. The new simple correlation was developed from the restricted data set, the CHF prediction capacity of which is better than that of Katto. Even though the prediction consistency of the new simple correlation is lower, MAE and RMS error decreased quite. For the more development of the new simple CHF correlation, the more advanced regression analysis method and theoretical analysis should be studied in future.
Review of Critical Heat Flux Correlations for Upward Flow in a Vertical Thin Rectangular Channel
International Nuclear Information System (INIS)
Choi, Gil Sik; Chang, Soon Heung
2014-01-01
From the view point of safety, this type of fuel has higher resistance to earthquake and external impact. The cross section of coolant flow channel in the reactor core composed with the plate fuel is a thin rectangular shape. Thermal-hydraulic characteristics of this thin rectangular channel are different with those of general circular rod fuel bundle flow channel. Accordingly it could be thought that the CHF correlation in a thin rectangular channel is different with that in a circular channel, for which a large number of researches on CHF prediction have been carried out. The objective of this paper is to review previous researches on CHF in a thin rectangular channel, summarize the important conclusion and propose the new simple CHF correlation, which is based on the data set under high pressure and high flow rate condition. The researches on CHF in rectangular channel have been partially carried out according to the pressure, heated surface number, heated surface wettability effect, flow driving force and flow direction conditions. From the literature researches on CHF for upward flow in a vertical thin rectangular channel, some CHF prediction methods were reviewed and compared. There is no universal correlation which can predict CHF at all conditions, but generally, Katto empirical correlation is known to be useful at high pressure and high flow rate. The new simple correlation was developed from the restricted data set, the CHF prediction capacity of which is better than that of Katto. Even though the prediction consistency of the new simple correlation is lower, MAE and RMS error decreased quite. For the more development of the new simple CHF correlation, the more advanced regression analysis method and theoretical analysis should be studied in future
Bucs, Szilard; Valladares Linares, Rodrigo; Marston, Jeremy O.; Radu, Andrea I.; Vrouwenvelder, Johannes S.; Picioreanu, Cristian
2015-01-01
Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water
Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels
International Nuclear Information System (INIS)
Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.
1988-01-01
Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N 2 O 4
Flow dynamics and concentration polarisation in spacer-filled channels
DEFF Research Database (Denmark)
Lipnizki, Jens; Jonsson, Gunnar Eigil
2002-01-01
The key to developing highly efficient spiral-wound modules is the improvement of the mass transfer mechanisms. In this study a study of the mass transfer has been carried out using a flat test cell with six permeate outlets and a rectangular feed channel. Using this experimental set-up, it has b...
International Nuclear Information System (INIS)
Inutake, Masaaki; Ando, Akira
2007-01-01
Fast plasma flow is produced by Magneto-Plasma-Dynamic Arcjet (MPDA). The properties of fast flow and shock wave in various magnetic channels are reported by the experiment results. Fast plasma flow by MPDA, shocked flow in the magnetic channel, supersonic plasma flow in the divergence magnetic nozzle, ion acoustic wave in the mirror field, transonic flow and sonic throat in the magnetic Laval nozzle, fast flow in the helical magnetic channel, and future subjects are reported. Formation of the supersonic plasma flow by the divergence magnetic nozzle and effects of background gas, helical-kink instability in the fast plasma jet, and formation of convergence magnetic nozzle near outlet are described. From the phase difference of azimuthal and axial probe array signals, the plasma has twisted structure and it rotates in the same direction of the twist. Section of MPDA, principle of magnetic acceleration of MPDA, HITOP, relation among velocities, temperature, and Mach number of He ion and atom and the discharge current, distribution of magnetic-flux density in the direction of electromagnetic field, measurement of magnetic field near MPDA exit are illustrated. (S.Y.)
International Nuclear Information System (INIS)
Zehtabiyan-Rezaie, Navid; Arefian, Amir; Kermani, Mohammad J.; Noughabi, Amir Karimi; Abdollahzadeh, M.
2017-01-01
Highlights: • Effect of converging and diverging channels on fuel cell performance. • Over rib flow is observed from converging channels to neighbors. • Proposed flow field enriches oxygen level and current density in catalyst layer. • Net output power is enhanced more than 16% in new flow field. - Abstract: In this study, a novel bipolar flow field design is proposed. This new design consists of placed sequentially converging and diverging channels. Numerical simulation of cathode side is used to investigate the effects of converging and diverging channels on the performance of proton exchange membrane fuel cells. Two models of constant and variable sink/source terms were implemented to consider species consumption and production. The distribution of oxygen mole fraction in gas diffusion and catalyst layers as a result of transverse over rib velocity is monitored. The results indicate that the converging channels feed two diverging neighbors. This phenomenon is a result of the over rib velocity which is caused by the pressure difference between the neighboring channels. The polarization curves show that by applying an angle of 0.3° to the channels, the net electrical output power increases by 16% compared to the base case.
Mechanics of dense suspensions in turbulent channel flows
Picano, F.; Costa, P.; Breugem, W.P.; Brandt, L.
2015-01-01
Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phases modifies the turbulence we know in single-phase
A new scripting library for modeling flow and transport in fractured rock with channel networks
Dessirier, Benoît; Tsang, Chin-Fu; Niemi, Auli
2018-02-01
Deep crystalline bedrock formations are targeted to host spent nuclear fuel owing to their overall low permeability. They are however highly heterogeneous and only a few preferential paths pertaining to a small set of dominant rock fractures usually carry most of the flow or mass fluxes, a behavior known as channeling that needs to be accounted for in the performance assessment of repositories. Channel network models have been developed and used to investigate the effect of channeling. They are usually simpler than discrete fracture networks based on rock fracture mappings and rely on idealized full or sparsely populated lattices of channels. This study reexamines the fundamental parameter structure required to describe a channel network in terms of groundwater flow and solute transport, leading to an extended description suitable for unstructured arbitrary networks of channels. An implementation of this formalism in a Python scripting library is presented and released along with this article. A new algebraic multigrid preconditioner delivers a significant speedup in the flow solution step compared to previous channel network codes. 3D visualization is readily available for verification and interpretation of the results by exporting the results to an open and free dedicated software. The new code is applied to three example cases to verify its results on full uncorrelated lattices of channels, sparsely populated percolation lattices and to exemplify the use of unstructured networks to accommodate knowledge on local rock fractures.
Black, John H.; Woodman, Nicholas D.; Barker, John A.
2017-03-01
Rethinking an old tracer experiment in fractured crystalline rock suggests a concept of groundwater flow in sparse networks of long channels that is supported by results from an innovative lattice network model. The model, HyperConv, can vary the mean length of `strings' of connected bonds, and the gaps between them, using two independent probability functions. It is found that networks of long channels are able to percolate at lower values of (bond) density than networks of short channels. A general relationship between mean channel length, mean gap length and probability of percolation has been developed which incorporates the well-established result for `classical' lattice network models as a special case. Using parameters appropriate to a 4-m diameter drift located 360 m below surface at Stripa Mine Underground Research Laboratory in Sweden, HyperConv is able to reproduce values of apparent positive skin, as observed in the so-called Macropermeability Experiment, but only when mean channel length exceeds 10 m. This implies that such channel systems must cross many fracture intersections without bifurcating. A general relationship in terms of flow dimension is suggested. Some initial investigations using HyperConv show that the commonly observed feature, `compartmentalization', only occurs when channel density is just above the percolation threshold. Such compartments have been observed at Kamaishi Experimental Mine (Japan) implying a sparse flow network. It is suggested that compartments and skin are observable in the field, indicate sparse channel systems, and could form part of site characterization for deep nuclear waste repositories.
Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids
Directory of Open Access Journals (Sweden)
S. Das
2015-06-01
Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.
Investigation on the liquid water droplet instability in a simulated flow channel of PEM fuel cell
International Nuclear Information System (INIS)
Ha, Tae Hun; Kim, Bok Yung; Kim, Han Sang; Min, Kyoung Doug
2008-01-01
To investigate the characteristics of water droplets on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device was used to simulate the growth of a single liquid water droplet and its transport process with various air flow velocity and channel height. Not only dry condition but also fully humidified condition was also simulated by using a water absorbing sponge. The detachment height of the water droplet with dry and wet conditions was measured and analyzed. It was found that the droplet tends towards becoming unstable by decreased channel height, increased flow velocity or making a gas diffusion layer (GDL) dryer. Also, peculiar behavior of the water droplet in the channel was presented like attachment to hydrophilic wall or sudden breaking of droplet in case of fully hydrated condition. The simplified force balance model matches with experimental data as well
Bioinspired Diatomite Membrane with Selective Superwettability for Oil/Water Separation.
Lo, Yu-Hsiang; Yang, Ching-Yu; Chang, Haw-Kai; Hung, Wei-Chen; Chen, Po-Yu
2017-05-03
Membranes with selective superwettability for oil/water separation have received significant attention during the past decades. Hierarchical structures and surface roughness are believed to improve the oil repellency and the stability of Cassie-Baxter state. Diatoms, unicellular photosynthetic algae, possess sophisticated skeletal shells (called frustules) which are made of hydrated silica. Motivated by the hierarchical micro- and nanoscale features of diatom, we fabricate a hierarchical diatomite membrane which consists of aligned micro-sized channels by the freeze casting process. The fine nano-porous structures of frustules are well preserved after the post sintering process. The bioinspired diatomite membrane performs both underwater superoleophobicity and superhydrophobicity under various oils. Additionally, we demonstrate the highly efficient oil/water separation capabililty of the membranes in various harsh environments. The water flux can be further adjusted by tuning the cooling rates. The eco-friendly and robust bioinspired membranes produced by the simple, cost-effective freeze casting method can be potentially applied for large scale and efficient oil/water separation.
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.
2011-01-01
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an
Turbulent oscillating channel flow subjected to a free-surface stress.
Kramer, W.; Clercx, H.J.H.; Armenio, V.
2010-01-01
The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number
Modelling of supercritical turbulent flow over transversal ribs in an open channel
Czech Academy of Sciences Publication Activity Database
Příhoda, Jaromír; Šulc, J.; Sedlář, M.; Zubík, P.
2009-01-01
Roč. 16, č. 1 (2009), s. 65-74 ISSN 1802-1484 R&D Projects: GA ČR GA103/06/0461 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent flow in open channels * flow over obstacles Subject RIV: BK - Fluid Dynamics
Numerical Simulations of Competitive-Consecutive Reactions in Turbulent Channel Flow
Vrieling, A.J.
2003-01-01
This thesis deals with mixing of passive scalars in a turbulent flow. The passive scalars are released in a turbulent plane channel flow and interpreted as either non-reactive components or reactive components that are involved in a competitive-consecutive reaction system. The evolution of these
Mixed convection flow and heat transfer in a vertical wavy channel ...
African Journals Online (AJOL)
Mixed convection flow and heat transfer in a vertical wavy channel filled with porous and fluid layers is studied analytically. The flow in the porous medium is modeled using Darcy-Brinkman equation. The coupled non-linear partial differential equations describing the conservation of mass, momentum and energy are solved ...
A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow
Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati
2010-06-01
The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.
Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua
2018-04-01
A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.
Kinetic studies on purification capability of channel flow type wastewater treatment plant
Energy Technology Data Exchange (ETDEWEB)
Hashimoto, S [Fukui Institute of Technology, Fukui (Japan); Furukawa, K; Kim, J [Osaka Univ., Osaka (Japan). Faculty of Engineering
1990-10-01
In order to develop a wastewater treatment process of secondary effluent and a wastewater treatment process of a farm village, some experiments have been carried out using bench scale and full scale hydroponic type wastewater treatment plant. This wastewater treatment system mainly consists of water channels and hydroponic water tanks. The authors carried out of a kinetic study for purification capability of the water channels while assuring the growth of microorganism in the treatment scheme. It was shown experimentally that the channel flow type wastewater treatment plant had a high TOC removal capability regardless of the kind of contact material and treatment time. Activated sludge microorganism concentration in water channels was obtained by kinetic estimation from the measured effluent suspended solid concentration. Estimated amount of activated sludge in water channels comprised only 11.5-37.4 percent of the measured amounts of withdrawn sludge, indicating high photosynthesis production of algae in water channels. 8 refs., 4 figs., 5 tabs.
Flow Patterns in an Open Channel Confluence with Increasingly Dominant Tributary Inflow
Directory of Open Access Journals (Sweden)
Laurent Schindfessel
2015-08-01
Full Text Available Despite the ratio of incoming discharges being recognized as a key parameter in open-channel confluence hydrodynamics, little is known about the flow patterns when the tributary provides more than 90% of the total discharge. This paper offers a systematic study of flow features when the tributary becomes increasingly dominant in a 90° confluence with a fixed concordant bed. Large-eddy simulations are used to investigate the three-dimensional complex flow patterns for three different discharge ratios. It is found that the tributary flow impinges on the opposing bank when the tributary flow becomes sufficiently dominant, causing a recirculating eddy in the upstream channel of the confluence, which induces significant changes in the incoming velocity distribution. Moreover, it results in stronger helicoidal cells in the downstream channel, along with zones of upwelling flow. In turn, the changed flow patterns also influence the mixing layer and the flow recovery. Finally, intermittent events of stronger upwelling flow are discerned. Improved understanding of flow patterns at confluences where the tributary is dominant is applicable to both engineering and earth sciences.
Stability of fluid flow through deformable tubes and channels: An ...
Indian Academy of Sciences (India)
This was immediately followed by the theoretical studies of ... both phenomenological spring-backed plate models and continuum linear viscoelas .... the stability of flow at high Reynolds number in section 4, where the inviscid instability mecha ...
Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature
Directory of Open Access Journals (Sweden)
Tisovský Tomáš
2017-01-01
Full Text Available Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.
Flow separation on transversal ribs in an open channel
Czech Academy of Sciences Publication Activity Database
Příhoda, Jaromír; Šulc, J.; Sedlář, M.; Zubík, P.
2009-01-01
Roč. 13, - (2009), s. 218-220 ISSN 1335-2938. [Stretnutie katedier mechaniky tekutín a termomechaniky. Jasná, Demanovská dolina, 24.06.2009-26.06.2009] R&D Projects: GA ČR GA103/09/0977 Institutional research plan: CEZ:AV0Z20760514 Keywords : free-surface flow * supercritical flow over ribs * numerical and experimental modelling Subject RIV: BK - Fluid Dynamics
Olson, C. J.; Reichhardt, C.; Nori, F.
1997-03-01
Vortices moving in dirty superconductors can form intricate flow patterns, resembling fluid rivers, as they interact with the pinning landscape (F. Nori, Science 271), 1373 (1996).. Weaker pinning produces relatively straight nori>vortex channels, while stronger pinning results in the formation of one or more winding channels that carry all flow. This corresponds to a crossover from elastic flow to plastic flow as the pinning strength is increased. For several pinning parameters, we find the fractal dimension of the channels that form, the vortex trail density, the distance travelled by vortices as they pass through the sample, the branching ratio, the sinuosity, and the size distribution of the rivers, and we compare our rivers with physical rivers that follow Horton's laws.
Simulation of the solidification in a channel of a water-cooled glass flow
Directory of Open Access Journals (Sweden)
G. E. Ovando Chacon
2014-12-01
Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.
Investigating flow patterns in a channel with complex obstacles using the lattice Boltzmann method
Energy Technology Data Exchange (ETDEWEB)
Yojina, Jiraporn; Ngamsaad, Waipot; Nuttavut, Narin; Triampo, Darapond; Lenbury, Yongwimon; Sriyab, Somchai; Triampo, Wannapong [Faculty of Science, Mahidol University, Bangkok (Thailand); Kanthang, Paisan [Rajamangala University of Technology, Bangkok (Thailand)
2010-10-15
In this work, mesoscopic modeling via a computational lattice Boltzmann method (LBM) is used to investigate the flow pattern phenomena and the physical properties of the flow field around one and two square obstacles inside a two-dimensional channel with a fixed blockage ratio,{beta} =14 , centered inside a 2D channel, for a range of Reynolds numbers (Re) from 1 to 300. The simulation results show that flow patterns can initially exhibit laminar flow at low Re and then make a transition to periodic, unsteady, and, finally, turbulent flow as the Re get higher. Streamlines and velocity profiles and a vortex shedding pattern are observed. The Strouhal numbers are calculated to characterize the shedding frequency and flow dynamics. The effect of the layouts or configurations of the obstacles are also investigated, and the possible connection between the mixing process and the appropriate design of a chemical mixing system is discussed
Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study
Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur
2018-04-01
This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself
International Nuclear Information System (INIS)
Nor Azizi Mohamed
2000-01-01
The high resolution velocity profiles of a uniform steady channel flow and a flow beneath waves were obtained using the particle image velocimetry (PIV) technique. The velocity profiles for each flow were calculated for both components. It is shown that the profiles obtained are very precise, displaying the point velocities from a few millimeters from the bottom of the channel up to the water surface across the water depth. In the case of the wave-induced flow, the profiles are shown under the respective wave phases and given in a plane representation. High resolution measurement of point velocities in a flow is achievable using PIV and invaluable when applied to a complex flow. (Author)
A nonlinear model of flow in meandering submarine and subaerial channels
Imran, Jasim; Parker, Gary; Pirmez, Carlos
1999-12-01
A generalized model of flow in meandering subaqueous and subaerial channels is developed. The conservation equations of mass and momentum are depth/layer integrated, normalized, and represented as deviations from a straight base state. This allows the determination of integrable forms which can be solved at both linear and nonlinear levels. The effects of various flow and geometric parameters on the flow dynamics are studied. Although the model is not limited to any specific planform, this study focuses on sine-generated curves. In analysing the flow patterns, the turbidity current of the subaqueous case is simplified to a conservative density flow with water entrainment from above neglected. The subaqueous model thus formally corresponds to a subcritical or only mildly supercritical mud-rich turbidity current. By extension, however the analysis can be applied to a depositional or erosional current carrying sand that is changing only slowly in the streamwise direction. By bringing the subaqueous and subaerial cases into a common form, flow behaviour in the two environments can be compared under similar geometric and boundary conditions. A major difference between the two cases is the degree of superelevation of channel flow around bends, which is modest in the subaerial case but substantial in the subaqueous case. Another difference concerns Coriolis effects: some of the largest subaqueous meandering systems are so large that Coriolis effects can become important. The model is applied to meander bends on the youngest channel in the mid-fan region of the Amazon Fan and a mildly sinuous bend of the North-West Atlantic Mid-Ocean Channel. In the absence of specific data on the turbid flows that created the channel, the model can be used to make inferences about the flow, and in particular the range of values of flow velocity and sediment concentration that would allow the growth and downfan migration of meander bends.
Two-phase fluid flow measurements in small diameter channels using real-time neutron radiography
International Nuclear Information System (INIS)
Carlisle, B.S.; Johns, R.C.; Hassan, Y.A.
2004-01-01
A series of real-time, neutron radiography, experiments are ongoing at the Texas A and M Nuclear Science Center Reactor (NSCR). These tests determine the resolving capabilities for radiographic imaging of two phase water and air flow regimes through small diameter flow channels. Though both film and video radiographic imaging is available, the real-time video imaging was selected to capture the dynamic flow patterns with results that continue to improve. (author)
Trade flows as a channel for the transmission of business cycles
J.M. BERK
1997-01-01
The interdependence between business cycles of different countries has grown in recent decades. Many factors act as conductors of cyclical fluctuations between countries. In this context, the influence of trade flows in the global transmission of business cycles is examined. The author aims to identify empirically the line of causality of international cyclical movements as suggested by trade flows, presenting an estimate of the quantitive importance of trade flows as transmission channel.
Dynamics of flow behind backward-facing step in a narrow channel
Directory of Open Access Journals (Sweden)
Uruba V.
2013-04-01
Full Text Available The results and their analysis from experiments obtained by TR-PIV are presented on the model of backward-facing step in a narrow channel. The recirculation zone is studied in details. Mean structures are evaluated from fluctuating velocity fields. Then dynamics of the flow is characterized with help of POD (BOD technique. Substantial differences in high energy dynamical structures behaviour within the back-flow region and further downstream behind the flow reattachment have been found.
International Nuclear Information System (INIS)
Mahmood, A.; Rohde, M.; Hagen, T.H.J.J. van der; Mudde, R.F.
2009-01-01
Single phase cross flow through a gap region joining two vertical channels has been investigated experimentally for Reynolds numbers, based on the channels hydraulic diameter, ranging from 850 to 21000. The flow field in the gap region is investigated by 2D-PIV and the inter channel mass transfer is quantified by the tracer injection method. Experiments carried out for variable gap heights and shape show the existence of a street of large-scale counter rotating vortices on either side of the channel-gap interface, resulting from the mean velocity gradient in the gap and the main channel region. The appearance of the coherent vortices is subject to a threshold associated with the difference between the maximum and the minimum average stream wise velocities in the channel and the gap region, respectively. The auto power spectral density of the cross velocity component in the gap region exhibits a slope of -3 in the inertial range, indicating the 2D nature of these vortices. The presence of the large-scale vortices enhances the mass transfer through the gap region by approximately 63% of the mass transferred by turbulent mixing alone. The inter-channel mass transfer, due to cross flow, is found to be dependent not only on the large-scale vortices characteristics, but also on the gap geometry. (author)
Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.
2007-08-01
Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first
Molten Fuel Mass Assessment for Channel Flow Blockage Event in CANDU6
International Nuclear Information System (INIS)
Lee, Kwang Ho; Kim, Yong Bae; Choi, Hoon; Park, Dong Hwan
2011-01-01
In CANDU6, a fuel channel flow blockage causes a sudden reduction of flow through the blocked channel. Depending on the severity of the blockage, the reduced flow through the channel can result in severe heat up of the fuel, hence possibly leading to pressure tube and calandria tube failure. If the calandria tube does not fail the fuel and sheath would continue to heat up, and ultimately melting could occur. Eventually, molten material runs down onto the pressure tube. Even a thin layer of molten material in contact with the pressure tube causes the pressure tube and calandreia tube to heat up rapidly. The thermal transient is so rapid that failure temperatures are reached quickly. After channel failure, the contents of the channel, consisting of superheated coolant, fission products and possibly overheated of molten fuel, are rapidly discharged into the moderator. Fuel discharged into the moderator is quenched and cooled. The rapid discharge of hot fuel and coolant into the calandria causes the moderator pressure and temperature to increase, which may cause damage to some in-core components. Thus, the assessment results of molten fuel mass are inputs to the in-core damage analysis. In this paper, the analysis methodology and results of molten fuel mass assessment for the channel flow blockage event are presented
International Nuclear Information System (INIS)
Marchitto, A.; Fossa, M.; Guglielmini, G.
2012-01-01
Uniform fluid distribution is essential for efficient operation of chemical-processing equipment such as contactors, reactors, mixers, burners and in most refrigeration equipment, where two phases are acting together. To obtain optimum distribution, proper consideration must be given to flow behaviour in the distributor, flow conditions upstream and downstream of the distributor, and the distribution requirements (fluid or phase) of the equipment. Even though the principles of single phase distribution have been well developed for more than three decades, they are frequently not taken in the right account by equipment designers when a mixture is present, and a significant fraction of process equipment consequently suffers from maldistribution. The experimental investigation presented in this paper is aimed at understanding the main mechanisms which drive the flow distribution inside a two-phase horizontal header in order to design improved distributors and to optimise the flow distribution inside compact heat exchanger. Experimentation was devoted to establish the influence of the inlet conditions and of the channel/distributor geometry on the phase/mass distribution into parallel vertical channels. The study is carried out with air–water mixtures and it is based on the measurement of component flow rates in individual channels and on pressure drops across the distributor. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2–1.2 and 1.5–16.5 m/s, respectively. In order to control the main flow direction inside the header, different fitting devices were tested; the insertion of a co-axial, multi-hole distributor inside the header has confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of
Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows
International Nuclear Information System (INIS)
He, Qingyun; Feng, Jingchao; Chen, Hongli
2016-01-01
Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.
Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows
Energy Technology Data Exchange (ETDEWEB)
He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn
2016-02-15
Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.
International Nuclear Information System (INIS)
Seo, Dae Cheol; Ahn, Bong Young; Cho, Seung Hyun; Siddique, A. K. M. Ariful Haque; Kim, Cheol Gi
2013-01-01
Many studies have been conducted on the filtration of microparticles using the acoustic radiation force of ultrasonic standing wave. The present work concerns a flow-through particle filtration method by utilizing frequency varying ultrasound. The periodical frequency sweep of the ultrasonic standing wave translocates particles across a microchannel, where particles in fluid flow are filtrated without barriers. The present filtration technique in a microfluidic channel was proposed conceptually in the 1990s. However, its experimental realization on actual particles in a microfluidic channel has not been carried out in a notable way. Several sizes of polystyrene microspheres (10 µm to 90 µm) and silicon carbide (SiC) particles (37 µm) suspended in water were applied as a test sample. For filtration of those particles, a Y-branched microfluidic channel with one inlet and two outlets was made out of steel and acrylic as a form of modulized device. Ultrasound of a few MHz in band frequency (1.75 MHz to 3.05 MHz) was transmitted into one side of the channel wall to generate a standing wave field in fluid flow. The periodical frequency sweep operation showed successful filtration performance, whereby particles in water flowed into one outlet and purified water flowed into the other outlet of the Y branch of the channel.
Water droplet condensation and evaporation in turbulent channel flow
Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.
We propose a point-particle model for two-way coupling of water droplets dispersed in the turbulent flow of a carrier gas consisting of air and water vapour. We adopt an Euler–Lagrangian formulation based on conservation laws for the mass, momentum and energy of the continuous phase and on empirical
Entrainment at a sediment concentration interface in turbulent channel flow
Salinas, Jorge; Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.
2016-11-01
In this work we address the role of turbulence on entrainment at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the bottom sediment-laden flow, or alternatively, as the entrainment of sediment into the top sediment-free flow. We have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. The analysis performed shows that the ability of the flow to pick up a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are entrained across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the center of mass of the sediment-laden layer. With the support of ExxonMobil, NSF, ANPCyT, CONICET.
Mathematical Flow Determination in Open Channel by Method of ...
African Journals Online (AJOL)
In this paper grid method of continues forward characteristics and rectangular grid broken backward characteristics is presented, for the solution of saint Venant equations for free surface flow. The method yield depth and velocity hydrographs at predetermined distances from which depths and velocity are obtained.
Symmetry-preserving discretization of turbulent channel flow
Verstappen, RWCP; Veldman, AEP; Breuer, M; Durst, F; Zenger, C
2002-01-01
We propose to perform turbulent flow simulations in such manner that the difference operators do have the same symmetry properties as the underlying differential operators, i.e. the convective operator is represented by a skew-symmetric matrix and the diffusive operator is approximated by a
Unsteady hydromagnetic Couette flow within a porous channel with ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. ... long parallel porous plates, taking Hall current into account, in the presence of a transverse ..... modified Hartmann boundary layer and the decaying oscillations excited by the ...... On flow of electrically conducting fluid over a flat plate in the presence of a ...
International Nuclear Information System (INIS)
Yu Zhiting; Tan Sichao; Yuan Hongsheng; Zhuang Nailiang; Chen Hanying
2015-01-01
An experimental study was conducted to investigate the flow instability in a vertical mini-rectangular channel with distilled water as the working fluid. The rotational speed of the primary pump is gradually reduced to lower the inlet flow rate until the flow becomes unstable, while maintaining all other thermal parameters unchanged. Three types of instability, characterized by large amplitude oscillation, small amplitude oscillation and flow excursion, were identified from the experimental data. A stability map for the vertical mini-rectangular channel under forced circulation was established based on the Subcooling number and Phase Change number. The oscillation periods were correlated with the fluid transit time and the boiling delay time. A flow pattern map for vertical upward flow in a mini-rectangular channel was applied to confirm the flow patterns during the oscillation. The mechanisms of the three types of instability were obtained by considering several types of flow instabilities and comparing them with the oscillations observed in this work. (author)
Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium
International Nuclear Information System (INIS)
Tsang, Y.W.; Tsang, C.F.
1990-01-01
Recent interest in the evaluation of contaminant transport in bedrock aquifers and in the performance assessment of geologic nuclear waste repositories has motivated many studies of fluid flow and tracer transport in fractured rocks. Until recently, numerical modeling of fluid flow in the fractured medium commonly makes the assumption that each fracture may be idealized as a pair of parallel plates separated by a constant distance which represents the aperture of the fracture. More recent theoretical work has taken into account that the aperture in a real rock fracture in fact takes on a range of values. Evidence that flow in fractures tends to coalesce in preferred paths has been found in the field. Current studies of flow channeling in a fracture as a result of the variable apertures may also be applicable to flow and transport in a strongly heterogenous porous medium. This report includes the methodology used to study the flow channelling and tracer transport in a single fracture consisting of variable apertures. Relevant parameters that control flow channeling are then identified and the relationship of results to the general problem of flow in a heterogenous porous medium are discussed
Wellmeyer, Jessica L.; Slattery, Michael C.; Phillips, Jonathan D.
2005-07-01
As human population worldwide has grown, so has interest in harnessing and manipulating the flow of water for the benefit of humans. The Trinity River of eastern Texas is one such watershed greatly impacted by engineering and urbanization. Draining the Dallas-Fort Worth metroplex, just under 30 reservoirs are in operation in the basin, regulating flow while containing public supplies, supporting recreation, and providing flood control. Lake Livingston is the lowest, as well as largest, reservoir in the basin, a mere 95 km above the Trinity's outlet near Galveston Bay. This study seeks to describe and quantify channel activity and flow regime, identifying effects of the 1968 closure of Livingston dam. Using historic daily and peak discharge data from USGS gauging stations, flow duration curves are constructed, identifying pre- and post-dam flow conditions. A digital historic photo archive was also constructed using six sets of aerial photographs spanning from 1938 to 1995, and three measures of channel activity applied using a GIS. Results show no changes in high flow conditions following impoundment, while low flows are elevated. However, the entire post-dam period is characterized by significantly higher rainfall, which may be obscuring the full impact of flow regulation. Channel activity rates do not indicate a more stabilized planform following dam closure; rather they suggest that the Trinity River is adjusting itself to the stress of Livingston dam in a slow, gradual process that may not be apparent in a modern time scale.
Centrifugal Pump Effect on Average Particle Diameter of Oil-Water Emulsion
Morozova, A.; Eskin, A.
2017-11-01
In this paper we review the process of oil-water emulsion particles fragmentation in a turbulent flow created by a centrifugal pump. We examined the influence of time necessary for oil-water emulsion preparation on the particle size of oil products and the dependence of a centrifugal pump emulsifying capacity on the initial emulsion dispersion. The investigated emulsion contained the brand fuel oil M-100 and tap water; it was sprayed with a nozzle in a gas-water flare. After preparation of the emulsion, the centrifugal pump was turned on and the emulsion samples were taken before and after the pump passing in 15, 30 and 45 minutes of spraying. To determine the effect the centrifugal pump has on the dispersion of the oil-water emulsion, the mean particle diameter of the emulsion particles was determined by the optical and microscopic method before and after the pump passing. A dispersion analysis of the particles contained in the emulsion was carried out by a laser diffraction analyzer. By analyzing the pictures of the emulsion samples, it was determined that after the centrifugal pump operation a particle size of oil products decreases. This result is also confirmed by the distribution of the obtained analyzer where the content of fine particles with a diameter less than 10 μm increased from 12% to 23%. In case of increasing emulsion preparation time, a particle size of petroleum products also decreases.
International Nuclear Information System (INIS)
Armellini, A.; Casarsa, L.; Mucignat, C.
2011-01-01
The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Russo, E; Kuerten, J G M; Geld, C W M van der [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Geurts, B J, E-mail: e.russo@tue.nl [Faculty EEMCS, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)
2011-12-22
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Eulerian-Lagrangian approach. The two-way coupling is investigated in terms of the effects of mass and heat transfer on the droplets distributions along the channel wall-normal direction and by comparison of the droplet temperature statistics with respect to the case without evaporation and condensation. A remarkable conclusion is that the presence of evaporating and condensing droplets results in an increase in the non-dimensional heat transfer coefficient of the channel flow represented by the Nusselt number.
Laser--Doppler anemometry technique applied to two-phase dispersed flows in a rectangular channel
International Nuclear Information System (INIS)
Lee, S.L.; Srinivasan, J.
1979-01-01
A new optical technique using Laser--Doppler anemometry has been applied to the local measurement of turbulent upward flow of a dilute water droplet--air two-phase dispersion in a vertical rectangular channel. Individually examined were over 20,000 droplet signals coming from each of a total of ten transversely placed measuring points, the closest of which to the channel wall was 250 μ away from the wall. Two flows of different patterns due to different imposed flow conditions were investigated, one with and the other without a liquid film formed on the channel wall. Reported are the size and number density distribution and the axial and lateral velocity distributions for the droplets as well as the axial and lateral velocity distributions for the air
Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels
Kosaraju, Srinivas
2017-11-01
The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.
Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels
DEFF Research Database (Denmark)
Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen
2016-01-01
and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat and mass transfer in the anode current collector and channel becomes crucial. This entails that further...... understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....
Dynamics of nuclear fuel assemblies in vertical flow channels
International Nuclear Information System (INIS)
Mason, V.A.
1988-01-01
DYNMOD is a computer program designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow. The calculations performed by DYNMOD and the input data required by the program are described in this report. Examples of DYNMOD usage and a brief assessment of the accuracy of the dynamic model are also presented. It is intended that the report will be used as a reference manual by users of DYNMOD
Effect of the Aligned Flow Obstacles on Downward-Facing CHF in an Inclined Rectangular Channel
Energy Technology Data Exchange (ETDEWEB)
Jeong, Ui ju; Son, Hong Hyun; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [Hanyang, Seoul (Korea, Republic of)
2016-05-15
The cooling channel consists of the inclined (10 .deg. ) portion of the downward facing heating channel and vertical portion of the heating channel. Features unique to flow boiling with the downward-facing heater surface in the inclined cooling channel where the studs are installed have drawn a considerable attention. That's because prior studies on boiling crisis indicate the orientation of the heated wall can exert substantial influence on CHF. Especially, the concentration of the vapor near the downward facing heater surface makes this region susceptible to premature boiling crisis when compared to vertical or upward-facing heated wall. Also, the installed studs could cause a partial flow blockage, and distort the flow streamline. Due to the distortion, stagnation points may occur in the cooling channel, promoting the concentration of the vapor near the heated wall. Then, the locally degraded heat transfer around the points may result in the formation of vapor pocket. The primary objective of this study is to make available experimental data on the CHF values varying the shape of studs and to improve understanding of the mechanism of flow boiling crisis associated with the aligned flow obstructions by means of visual experimental study. This study presents experimental data for subcooled flow boiling of water at atmospheric pressure and low mass flux conditions. The major outcomes from this investigation can be summarized as follows: (1) The CHF value from bare test section is -320kW/m{sup 2} , significantly lower than the values from the existing correlations even considering the uncertainty in the experiments. (2) The CHF value is remarkably decreased as columnar structures are installed in the channel. It is confirmed that formation and extinction of local dryout occurs repeatedly just behind the first stud at heat flux of -160 kW/m{sup 2}.
The transverse dynamics of flow in a tidal channel within a greater strait
Khosravi, Maziar; Siadatmousavi, Seyed Mostafa; Vennell, Ross; Chegini, Vahid
2018-02-01
Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45' N), where the highest tidal velocities in spring tides were 1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.
Analysis of the Onset of Flow Instability in rectangular heated channel using drift flux model
International Nuclear Information System (INIS)
El-Hadjen, H.; Balistrou, M.; Hamidouche, T.; Bousbia-Salah, A.
2005-01-01
Two-phase flow excursion (Ledinegg) instability in boiling channels is of great concern in the design and operation of numerous practical systems especially in Research Reactors. Such instability can lead to significant reduction in channel flow, thereby causing premature burnout of the heated channel before the CHF point. The present work focuses on a simulation of pressure drop in forced convection boiling in vertical narrow and parallel uniformly heated channels. The objective is to determine the point of Onset of Flow Instability (OFI) by varying input flow rate. The axial void distribution is also provided. The numerical model is based on the finite difference method which transforms the partial differential conservation equation of mass, momentum and energy, in algebraic equations. Closure relationships based upon the drift flux model and other constitutive equations are considered to determine the channel pressure drop under steady state boiling conditions. The model validation is performed by confronting the calculations with the Oak Ridge National Laboratory thermal Hydraulic Test Loop (THTL) experimental data set. Further verification of this model is performed by code- to code verification using the results of RELAP5/Mod 3.2 code. (author)
An experimental study of two-phase flow instability on two parallel channel with low steam quality
International Nuclear Information System (INIS)
Jiang Shengyao; Wu shaorong; Bo Jinhai; Yao Meisheng; Han Bing; Zhang Youjie
1988-01-01
An experimental result of two-phase flow instability on two parallel channel natural circulation with low steam quality is presented. The comparison of instability in the single channel and that in parallel channel is given. The effect of unequal inlet resistance coefficient and unequal power on the parallel channel instability is described and the behaviour of instability with equal exit steam quality in the two channel is investigated
Large Eddy Simulation of turbulent flows in compound channels with a finite element code
International Nuclear Information System (INIS)
Xavier, C.M.; Petry, A.P.; Moeller, S.V.
2011-01-01
This paper presents the numerical investigation of the developing flow in a compound channel formed by a rectangular main channel and a gap in one of the sidewalls. A three dimensional Large Eddy Simulation computational code with the classic Smagorinsky model is introduced, where the transient flow is modeled through the conservation equations of mass and momentum of a quasi-incompressible, isothermal continuous medium. Finite Element Method, Taylor-Galerkin scheme and linear hexahedrical elements are applied. Numerical results of velocity profile show the development of a shear layer in agreement with experimental results obtained with Pitot tube and hot wires. (author)
International Nuclear Information System (INIS)
Goetzbach, G.
1977-10-01
For the simulation of non stationary, three-dimensional, turbulent flow- and temperature-fields in channel flows with constant properties a method is presented which is based on a finite difference scheme of the complete conservation equations for mass, momentum and enthalpie. The fluxes of momentum and heat within the grid cells are described by sub-grid scale models. The sub-grid scale model for momentum introduced here is for the first time applicable to small Reynolds-numbers, rather coarse grids, and channels with space dependent roughness distributions. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Xi, Xi; Xiao, Zejun, E-mail: fabulous_2012@sina.com; Yan, Xiao; Li, Yongliang; Huang, Yanping
2014-10-15
Highlights: • Flow instability experiment between two heated channels with supercritical water is carried out. • Two kinds of out of phase flow instability are found and instability boundaries under different working conditions are obtained. • Dynamics characteristics of flow instability are analyzed. - Abstract: Super critical water reactor (SCWR) is the generation IV nuclear reactor in the world. Under normal operation, water enters SCWR from cold leg with a temperature of 280 °C and then leaves the core with a temperature of 500 °C. Due to the sharp change of temperature, there is a huge density change in the core, which could result in potential flow instability and the safety of reactor would be threatened consequently. So it is necessary to carry out relevant investigation in this field. An experimental investigation which concerns with out of phase flow instability between two heated parallel channels with supercritical water has been carried out in this paper. Due to two INCONEL 625 pipes with a thickness of 6.5 mm are adopted, more experimental results are attained. To find out the influence of axial power shape on the onset of flow instability, each heated channel is divided into two sections and the heating power of each section can be controlled separately. Finally the instability boundaries are obtained under different inlet temperatures, axial power shapes, total inlet mass flow rates and system pressures. The dynamics characteristics of out of phase oscillation are also analyzed.
Study on cocurrent downtake gas-liquid flow in a vertical channel
International Nuclear Information System (INIS)
Lozovetskij, V.V.
1978-01-01
Hydraulic resistance and liquid stall from the film surface at cocurrent film and gas downflow in vertical channel in measurement range of reynolds number from 100 to 1260 for the film and from 1.2x10 4 to 10 5 for gas are studied. For downflow two regimes are characteristic: purely annular, that is separate phase flow regime, and the regime of stall and carrying liquid droplets from the film surface, that is annular dispersed flow regime. The existence boundaries of both regimes are determined and criterial equations for pressure drop calculation are obtained. It is established experimentally that at sufficient range from the liquid input place on the working zone the established two-phase flow takes place. In their nucleus two areas can be singled out, which differ by the flow density values of stalled liquid: central, having the permanent flow density value and area adjacent to the film surface, the liquid in the combs of waves making a significant contribution to the flow density value. At equal flooding density with the relative gas speed increase, the flow density value of stalled liquid in the channel central part increase. A similar result also takes place at flooding density increase at permanent relative speed. Flooding density and relative speed increase leads to levelling stalled liquid distribution about the channel cross section
Counter-current gas-liquid two-phase flow in a narrow rectangular channel
International Nuclear Information System (INIS)
Sohn, Byung Hu; Kim, Byong Joo
2000-01-01
A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)
Three-dimensional investigations of the threading regime in a microfluidic flow-focusing channel
Gowda, Krishne; Brouzet, Christophe; Lefranc, Thibault; Soderberg, L. Daniel; Lundell, Fredrik
2017-11-01
We study the flow dynamics of the threading regime in a microfluidic flow-focusing channel through 3D numerical simulations and experiments. Making strong filaments from cellulose nano-fibrils (CNF) could potentially steer to new high-performance bio-based composites competing with conventional glass fibre composites. CNF filaments can be obtained through hydrodynamic alignment of dispersed CNF by using the concept of flow-focusing. The aligned structure is locked by diffusion of ions resulting in a dispersion-gel transition. Flow-focusing typically refers to a microfluidic channel system where the core fluid is focused by the two sheath fluids, thereby creating an extensional flow at the intersection. In this study, threading regime corresponds to an extensional flow field generated by the water sheath fluid stretching the dispersed CNF core fluid and leading to formation of long threads. The experimental measurements are performed using optical coherence tomography (OCT) and 3D numerical simulations with OpenFOAM. The prime focus is laid on the 3D characteristics of thread formation such as wetting length of core fluid, shape, aspect ratio of the thread and velocity flow-field in the microfluidic channel.
Premature and stable critical heat flux for downward flow in a narrow rectangular channel
International Nuclear Information System (INIS)
Lee, Juhyung; Chang, Soon Heung; Jeong, Yong Hoon; Jo, Daeseong
2014-01-01
It has been recommended that RRs and MTRs be designed to have sufficient margins for CHF and the onset of FI as well, since unstable flow could leads to premature CHF under very low wall heat flux in comparison to stable CHF. Even the fact and previous studies, however, the understanding of relationship among FI, premature CHF and stable CHF is not sufficient to date. In this regards, subcooled flow boiling in a vertical rectangular channel was experimentally investigated to enhance the understanding of the CHF and the effect of the two-phase flow instability on it under low pressure conditions, especially for downward flow which was adopted for Jordan Research and Training Reactor (JRTR) and Kijang research reactor (KJRR) to achieve easier fuel and irradiation rig loading. In this study, CHF for downward flow of water under low pressure in narrow rectangular channel was experimentally investigated. For conditions such as downward flow, narrow rectangular channel and low pressure, it has been deduced from literature that flow instability could largely influence on triggering CHF at lower heat flux, i. e. premature CHF. Total 54 CHF data, which includes premature and stable data was obtained for various fluid conditions and system configurations including inlet stiffness. The upper and lower boundaries of CHF were newly proposed based on the experiment
Asymptotic analysis of the average, steady, isotherml flow in coupled, parallel channels
International Nuclear Information System (INIS)
Lund, K.O.
1976-01-01
The conservation equations of mass and momentum are derived for the average flow of gases in coupled, parallel channels, or rod bundles. In the case of gas-cooled rod bundles the pitch of the rods is relatively large so the flows in the channels are strongly coupled. From this observation a perturbation parameter is derived and the descriptive equations are scaled using this parameter, which represents the ratio of the axial flow area to the transverse flow area, and which is of the order of 10 -3 in current gas-cooled fast breeder reactor designs. By expanding the velocities into perturbation series the equations for two channels are solved as an initial value problem, and the results compared to a finite difference solution of the same problem. The N-channel problem is solved to the lowest order as a two-point boundary value problem with the pressures specified at the inlet and the outlet. It is concluded from the study that asymptotic methods are effective in solving the flow problems of rod bundles; however, further work is required to evaluate the possible computational advantages of the methods
Mechanism of falling water limitation in two-phase counter flow through single hole vertical channel
International Nuclear Information System (INIS)
Sudo, Yukio; Ohnuki, Akira
1983-01-01
In the safety evaluation at the time of loss coolant accident, which is a credible accident in LWRs, recently main effort has been concentrated to the optimum evaluation calculation, and the grasp of vapor-liquid two-phase flow phenomena has become important. As one of the important phenomena, there is the limitation of falling water in two-phase counter flow through a vertical channel. This phenomenon is divided into the limitation of falling water stored in an upper plenum to a core through an upper core-supporting plate and a tie plate at the time of reflooding, and the limitation of falling emergency core-cooling water in downcomer channels at the time of reflooding in PWRs, under the presence of rising steam flow. In both cases, the evaluation of the quantity of falling water is important, because it contributes directly to core cooling. In this research, in order to clarify the mechanism of limitation of falling water in two-phase vertical counter flow, first, two-phase flow of air-water system through a single-hole vertical channel was taken up, and the effect of main parameters was experimentally studied. At the same time, the theoretical investigation was performed, and the comparison with the experimental results obtained so far was carried out. The different mechanisms for short and long channels gave the good results. (Kako, I.)
International Nuclear Information System (INIS)
Wang Xiaodong; Huang Yuxian; Cheng, C.-H.; Jang, J.-Y.; Lee, D.-J.; Yan, W.-M.; Su Ay
2009-01-01
The optimal cathode flow field design of a single serpentine proton exchange membrane fuel cell is obtained by adopting a combined optimization procedure including a simplified conjugate-gradient method (SCGM) and a completely three-dimensional, two-phase, non-isothermal fuel cell model. The cell output power density P cell is the objective function to be maximized with channel heights, H 1 -H 5 , and channel widths, W 2 -W 5 as search variables. The optimal design has tapered channels 1, 3 and 4, and diverging channels 2 and 5, producing 22.51% increment compared with the basic design with all heights and widths setting as 1 mm. Reduced channel heights of channels 2-4 significantly enhance sub-rib convection to effectively transport oxygen to and liquid water out of diffusion layer. The final diverging channel prevents significant leakage of fuel to outlet via sub-rib convection from channel 4. Near-optimal design without huge loss in cell performance but is easily manufactured is discussed.
Mandal, Sandip; Khakhar, D. V.
2017-11-01
We report a transition from a disordered state to an ordered state in the flow of nearly monodisperse granular matter flowing in an inclined channel with planar slide walls and a bumpy base, using discrete element method simulations. For low particle-sidewall friction coefficients, the flowing particles are disordered, however, for high sidewall friction, an ordered state is obtained, characterized by a layering of the particles and hexagonal packing of the particles in each layer. The extent of ordering, quantified by the local bond-orientational order parameter, varies in the cross section of the channel, with the highest ordering near the sidewalls. The flow transition significantly affects the local rheology—the effective friction coefficient is lower, and the packing fraction is higher, in the ordered state compared to the disordered state. A simple model, incorporating the extent of local ordering, is shown to describe the rheology of the system.
Heat Transfer Characteristics of the Supercritical CO{sub 2} Flowing in a Vertical Annular Channel
Energy Technology Data Exchange (ETDEWEB)
Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-05-15
Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO{sub 2} flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI
The influence of flow obstructions on flooding phenomena in vertical channels
International Nuclear Information System (INIS)
Celata, G.P.; Cumo, M.; Farello, G.E.; Setaro, T.
1988-01-01
Flooding phenomenon limits the stability of a liquid film falling downwards along the walls of a channel inside which an upwards gas flow takes place. As known, this entrainment effect can completely prevent the liquid fall from its natural flow. A local reduction of the flow channel cross section, due for instance to an obstruction, will affect the flooding parameters, depending on the position at which the obstruction is located and on the obstruction flow cross section. The present work deals with an air-water experiment carried out with a transparent circular duct test section, inside which it is possible to insert orifices having several diameters, to test the influence of the obstruction on flooding parameters. Predictions by the correlations available in literature are compared and a method to evaluate the influence of the obstruction is proposed
Directory of Open Access Journals (Sweden)
Masaaki Motozawa
2011-01-01
Full Text Available The spatial structure of a drag-reducing channel flow with surfactant additives in a two-dimensional channel was investigated experimentally. We carried out detailed measurements of the instantaneous velocity in the streamwise wall-normal plane and streamwise spanwise plane by using particle image velocimetry (PIV. The surfactant used in this experiment is a kind of cationic surfactant CTAC. The weight concentrations of the CTAC solution were 25 and 40 ppm on the flow. We considered the effects of Reynolds number ranging from 10000 to 25000 and the weight concentration of CTAC. The results of this paper showed that in the drag-reducing flow, there appeared an area where the root mean square of streamwise velocity fluctuation and the vorticity fluctuation sharply decreased. This indicated that two layers with different turbulent structure coexisted on the boundary of this area. Moreover, these layers had characteristic flow structures, as confirmed by observation of the instantaneous vorticity fluctuation map.
Heat Transfer Characteristics of the Supercritical CO2 Flowing in a Vertical Annular Channel
International Nuclear Information System (INIS)
Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol
2010-01-01
Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO 2 at several test sections with a different geometry. The loop uses CO 2 because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO 2 in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO 2 flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI
Mandal, Sandip; Khakhar, D V
2017-11-01
We report a transition from a disordered state to an ordered state in the flow of nearly monodisperse granular matter flowing in an inclined channel with planar slide walls and a bumpy base, using discrete element method simulations. For low particle-sidewall friction coefficients, the flowing particles are disordered, however, for high sidewall friction, an ordered state is obtained, characterized by a layering of the particles and hexagonal packing of the particles in each layer. The extent of ordering, quantified by the local bond-orientational order parameter, varies in the cross section of the channel, with the highest ordering near the sidewalls. The flow transition significantly affects the local rheology-the effective friction coefficient is lower, and the packing fraction is higher, in the ordered state compared to the disordered state. A simple model, incorporating the extent of local ordering, is shown to describe the rheology of the system.
Pressure drop of magnetohydrodynamic two-phase annular flow in rectangular channel
International Nuclear Information System (INIS)
Kumamaru, Hiroshige; Fujiwara, Yoshiki; Ogita, Kenji
1999-01-01
Numerical calculations have been performed on magnetohydrodynamic (MHD) two-phase annular flow in a rectangular channel with a small aspect ratio, i.e.a small ratio of the channel side perpendicular to the applied magnetic field and the side parallel to the field. Results of the present calculation agree nearly with Inoue et al.'s experimental results in the region of large liquid Reynolds numbers and large Hartmann numbers. Calculation results also show that the pressure drop ratio, i.e. the ratio of pressure drop of two-phase flow to that of single-phase flow under the same liquid flow rate and applied magnetic field, becomes lower than ∼0.02 for conditions of a fusion reactor plant. (author)
Multi-scale viscosity model of turbulence for fully-developed channel flows
International Nuclear Information System (INIS)
Kriventsev, V.; Yamaguchi, A.; Ninokata, H.
2001-01-01
The full text follows. Multi-Scale Viscosity (MSV) model is proposed for estimation of the Reynolds stresses in turbulent fully-developed flow in a straight channel of an arbitrary shape. We assume that flow in an ''ideal'' channel is always stable, i.e. laminar, but turbulence is developing process of external perturbations cased by wall roughness and other factors. We also assume that real flows are always affected by perturbations of every scale lower than the size of the channel. And the turbulence is generated in form of internal, or ''turbulent'' viscosity increase to preserve stability of ''disturbed'' flow. The main idea of MSV can be expressed in the following phenomenological rule: A local deformation of axial velocity can generate the turbulence with the intensity that keeps the value of local turbulent Reynolds number below some critical value. Here, the local turbulent Reynolds number is defined as a product of value of axial velocity deformation for a given scale and generic length of this scale divided by accumulated value of laminar and turbulent viscosity of lower scales. In MSV, the only empirical parameter is the critical Reynolds number that is estimated to be around 100. It corresponds for the largest scale which is hydraulic diameter of the channel and, therefore represents the regular Reynolds number. Thus, the value Re=100 corresponds to conditions when turbulent flow can appear in case of ''significant'' (comparable with size of channel) velocity disturbance in boundary and/or initial conditions for velocity. Of course, most of real flows in channels with relatively smooth walls remain laminar for this small Reynolds number because of absence of such ''significant'' perturbations. MSV model has been applied to the fully-developed turbulent flows in straight channels such as a circular tube and annular channel. Friction factor and velocity profiles predicted with MSV are in a very good agreement with numerous experimental data. Position of
Wall roughness effects on flow and scouring in curved channels with gravel bed
Hersberger, Daniel S.
2002-01-01
Wall roughness effects on flow and scouring in curved channels with gravel bed In the narrow valleys in Alpine regions, rivers frequently flow across constructed zones, passing through villages and cities. Due to limited space, the protection from high floods often needs to be ensured by protection walls. During floods, these protection walls may be endangered by scour phenomena, especially if they are located in bends. In the past, the potential danger of underscoured structures was reduced ...
Bistability of heat transfer of a viscous liquid under conditions of flow channel
International Nuclear Information System (INIS)
Melkikh, A.V.; Seleznev, V.D.
2001-01-01
The heat exchange model for a viscous liquid flowing under the pressure drop effect in a tube, surrounded by the medium with a lower temperature, is considered. It is shown that the system bistable behavior is possible by availability of the liquid viscosity exponential dependence on the temperature and by negligible dissipative heat release. The transitions between cold and hot flows in this case should proceed by a jump. The liquid and channel parameters, whereby the bistability may be observed, are determined [ru
Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels
International Nuclear Information System (INIS)
Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young
2001-01-01
A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant
Analysis of Hydrodynamic Mechanism on Particles Focusing in Micro-Channel Flows
Directory of Open Access Journals (Sweden)
Qikun Wang
2017-06-01
Full Text Available In this paper, the hydrodynamic mechanism of moving particles in laminar micro-channel flows was numerically investigated. A hydrodynamic criterion was proposed to determine whether particles in channel flows can form a focusing pattern or not. A simple formula was derived to demonstrate how the focusing position varies with Reynolds number and particle size. Based on this proposed criterion, a possible hydrodynamic mechanism was discussed as to why the particles would not be focused if their sizes were too small or the channel Reynolds number was too low. The Re-λ curve (Re, λ respectively represents the channel-based Reynolds number and the particle’s diameter scaled by the channel was obtained using the data fitting with a least square method so as to obtain a parameter range of the focusing pattern. In addition, the importance of the particle rotation to the numerical modeling for the focusing of particles was discussed in view of the hydrodynamics. This research is expected to deepen the understanding of the particle transport phenomena in bounded flow, either in micro or macro fluidic scope.
International Nuclear Information System (INIS)
Ishitsuka, Shota; Motozawa, Masaaki; Kawaguchi, Yasuo; Iwamoto, Kaoru; Ando, Hirotomo; Senda, Tetsuya
2011-01-01
Coherent vortex structure in turbulent drag-reducing channel flow with blown polymer solution from the wall was investigated. As a statistical analysis, we carried out Galilean decomposition, swirling strength and linear stochastic estimation of the PIV data obtained by the PIV measurement in x – y plane. Reynolds number based on bulk velocity and channel height was set to 40000. As a result, the angle of shear layer that cleared up by using Galilean decomposition becomes small in the drag-reducing flow. Q3 events were observed near the shear layer. In addition, as a result of linear stochastic estimation (LSE) based on swirling strength, we confirmed that the velocity under the vortex core is strong in the water flow. This result shows Q2 (ejection) are dominant in the water flow. However, in the drag-reducing flow with blown polymer solution, the velocity above the vortex core become strong, that is, Q4 (sweep) events are relatively strong around the vortex core. This is the result of Q4 events to come from the channel center region because the polymer solution does not exist in this region. The typical structure like this was observed in the drag -reducing flow with blown polymer solution from the wall.
Flow and heat transfer in parallel channel attached with equally-spaced ribs, 2
International Nuclear Information System (INIS)
Kunugi, Tomoaki; Takizuka, Takakazu
1980-09-01
Using a computer code for the analysis of the flow and heat transfer in a parallel channel attached with equally-spaced ribs, calculations are performed when a pitch to rib-width ratio is 7 : 1, a rib-width to rib-height ratio is 2 : 1 and a channel-height to rib-height is 3 : 1. Assuming that the fluid properties and the heat-flux at the wall of this channel are constant, characteristics of the flow and heat transfer are analyzed in the range of Reynolds number from 10 to 250. The following results are obtained: (1) The separation region behind a rib grows downstream with the increase of Reynolds number. (2) The pressure drop of ribbed channel is greater than that of the smooth channel, and increases as Reynolds number increases. (3) The mean Nusselt number of ribbed channel is about 10 - 11 at the upper wall and about 7.5 at the lower wall in the range of Reynolds number from 10 to 250. (author)
Effects of T-type Channel on Natural Convection Flows in Airflow-Path of Concrete Storage Cask
Energy Technology Data Exchange (ETDEWEB)
Kang, Gyeong Uk; Kim, Hyoung Jin; Cho, Chun Hyung [KORAD, Daejeon (Korea, Republic of)
2016-05-15
The natural convection flows occurring in airflow-path are not simple due to complex flow-path configurations such as horizontal ducts, bent tube and annular flow-path. In addition, 16 T type channels acting as the shroud are attached vertically and 16 channel supporting the canister are attached horizontally on the inner surface of over-pack. The existence and nonexistence of T type channels have influences on the flow fields in airflow- path. The concrete storage cask has to satisfy the requirements to secure the thermal integrity under the normal, off-normal, and accident conditions. The present work is aiming at investigating the effects of T type channels on the flows in airflow-path under the normal conditions using the FLUENT 16.1 code. In order to focus on the flows in airflow-path, fuel regions in the canister are regarded as a single cylinder with heat sources and other components are fully modeled. This study investigated the flow fields in airflow-path of concrete storage cask, numerically. It was found that excepting for the fuel regions, maximum temperatures on other components were evaluated below allowable values. The location of maximum velocities depended on support channels, T type channels and flow area. The flows through air inlets developed along annular flow- path with forming the hot plumes. According to the existence and nonexistence of T type channel, the plume behavior showed the different flow patterns.
Critical heat flux of forced flow boiling in a narrow one-side heated rectangular flow channel
Energy Technology Data Exchange (ETDEWEB)
Limin, Zheng [Shanghai Nuclear Engineering Research and Design Inst., SH (China); Iguchi, Tadashi; Kureta, Masatoshi; Akimoto, Hajime
1997-08-01
The present work deals with the critical heat flux (CHF) under subcooled flow boiling in a narrow one-side uniformly heated rectangular flow channel. The range of interest of parameters such as pressure, flow velocity and subcooling is around 0.1 MPa, 5-15 ms{sup -1} and 50degC, respectively. The rectangular flow channel used is 50 mm long, 12 mm in width and 0.2 to 3 mm in height. Test conditions were selected by combination of the following parameters: Gap=0.2-3.0 mm (D{sub hy}=0.3934-4.8 mm); flow length, 50.0 mm; water mass flux, 4.94-14.82 Mgm{sup -2}s{sup -1} (water flow velocity, 5-15 ms{sup -1}); exit pressure, 0.1 MPa; inlet temperature, 50degC, inlet coolant subcooling, 50degC. Over 40 CHF stable data points were obtained. CHF increased with the gap and flow velocity in a non-linear fashion. HTC increased with flow velocity and decreasing gap. Based on the experimental results, an empirical correlation was developed, indicating the dependence of CHF on the gap and flow velocity. All of data points predicted within {+-}18% error band for the present experimental data. On the other hand, another similitude-based correlation was also developed, indicating the dependence of Boiling number (Bo) on Reynolds number (Re) and the variable of Gap/La, where La is a characteristic length known as Laplace capillary constant. For the limited present experimental data, all of data points were predicted within {+-}16%. (author)
Critical heat flux of forced flow boiling in a narrow one-side heated rectangular flow channel
International Nuclear Information System (INIS)
Zheng Limin; Iguchi, Tadashi; Kureta, Masatoshi; Akimoto, Hajime.
1997-08-01
The present work deals with the critical heat flux (CHF) under subcooled flow boiling in a narrow one-side uniformly heated rectangular flow channel. The range of interest of parameters such as pressure, flow velocity and subcooling is around 0.1 MPa, 5-15 ms -1 and 50degC, respectively. The rectangular flow channel used is 50 mm long, 12 mm in width and 0.2 to 3 mm in height. Test conditions were selected by combination of the following parameters: Gap=0.2-3.0 mm (D hy =0.3934-4.8 mm); flow length, 50.0 mm; water mass flux, 4.94-14.82 Mgm -2 s -1 (water flow velocity, 5-15 ms -1 ); exit pressure, 0.1 MPa; inlet temperature, 50degC, inlet coolant subcooling, 50degC. Over 40 CHF stable data points were obtained. CHF increased with the gap and flow velocity in a non-linear fashion. HTC increased with flow velocity and decreasing gap. Based on the experimental results, an empirical correlation was developed, indicating the dependence of CHF on the gap and flow velocity. All of data points predicted within ±18% error band for the present experimental data. On the other hand, another similitude-based correlation was also developed, indicating the dependence of Boiling number (Bo) on Reynolds number (Re) and the variable of Gap/La, where La is a characteristic length known as Laplace capillary constant. For the limited present experimental data, all of data points were predicted within ±16%. (author)
Volume fraction calculation in multiphase system such as oil-water-gas using neutron
Energy Technology Data Exchange (ETDEWEB)
Ramos, Robson; Brandao, Luis E.B.; Salgado, Cesar Marques; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: robson@ien.gov.br; brandao@ien.gov.br; otero@ien.gov.br; cmnap@ien.gov.br; Schirru, Roberto; Silva, Ademir Xavier da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mails: schirru@lmp.ufrj.br; ademir@con.ufrj.br
2007-07-01
Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic {sup 241}Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity. (author)
Volume fraction calculation in multiphase system such as oil-water-gas using neutron
International Nuclear Information System (INIS)
Ramos, Robson; Brandao, Luis E.B.; Salgado, Cesar Marques; Pereira, Claudio M.N.A.; Schirru, Roberto; Silva, Ademir Xavier da
2007-01-01
Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic 241 Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity. (author)
Modified distribution parameter for churn-turbulent flows in large diameter channels
International Nuclear Information System (INIS)
Schlegel, J.P.; Macke, C.J.; Hibiki, T.; Ishii, M.
2013-01-01
Highlights: • Void fraction data collected in pipe sizes up to 0.304 m using impedance void meters. • Flow conditions extend to transition between churn-turbulent and annular flow. • Flow regime identification results agree with previous studies. • A new model for the distribution parameter in churn-turbulent flow is proposed. -- Abstract: Two phase flows in large diameter channels are important in a wide range of industrial applications, but especially in analysis of nuclear reactor safety for the prediction of BWR behavior and safety analysis in PWRs. To remedy an inability of current drift-flux models to accurately predict the void fraction in churn-turbulent flows in large diameter pipes, extensive experiments have been performed in pipes with diameters of 0.152 m, 0.203 m and 0.304 m to collect area-averaged void fraction data using electrical impedance void meters. The standard deviation and skewness of the impedance meter signal have been used to characterize the flow regime and confirm previous flow regime transition results. By treating churn-turbulent flow as a transition between cap-bubbly dispersed flow and annular separated flow and using a linear ramp, the distribution parameter has been modified for churn-turbulent flow. The modified distribution parameter has been evaluated through comparison of the void fraction predicted by the drift-flux model and the measured void fraction
Modified distribution parameter for churn-turbulent flows in large diameter channels
Energy Technology Data Exchange (ETDEWEB)
Schlegel, J.P., E-mail: jschlege@purdue.edu; Macke, C.J.; Hibiki, T.; Ishii, M.
2013-10-15
Highlights: • Void fraction data collected in pipe sizes up to 0.304 m using impedance void meters. • Flow conditions extend to transition between churn-turbulent and annular flow. • Flow regime identification results agree with previous studies. • A new model for the distribution parameter in churn-turbulent flow is proposed. -- Abstract: Two phase flows in large diameter channels are important in a wide range of industrial applications, but especially in analysis of nuclear reactor safety for the prediction of BWR behavior and safety analysis in PWRs. To remedy an inability of current drift-flux models to accurately predict the void fraction in churn-turbulent flows in large diameter pipes, extensive experiments have been performed in pipes with diameters of 0.152 m, 0.203 m and 0.304 m to collect area-averaged void fraction data using electrical impedance void meters. The standard deviation and skewness of the impedance meter signal have been used to characterize the flow regime and confirm previous flow regime transition results. By treating churn-turbulent flow as a transition between cap-bubbly dispersed flow and annular separated flow and using a linear ramp, the distribution parameter has been modified for churn-turbulent flow. The modified distribution parameter has been evaluated through comparison of the void fraction predicted by the drift-flux model and the measured void fraction.
DEFF Research Database (Denmark)
Olesen, Anders Christian; Kær, Søren Knudsen
2014-01-01
of liquid water towards the catalytic layer of the electrode. As opposed to the more common serpentine and parallel channels, interdigitated channels force liquid water through the porous gas diffusion layer (GDL) of the electrode. This improves the supply of water, however it increases pressure losses......-circular cell design on the distribution of water in the anode. In the electrolysis of water using PEMEC the anode is fed by demineralized water. Throughout the anode, oxygen is produced and a two-phase flow develops. Interdigitated channels assist in avoiding that gaseous oxygen obstructs the transport......: water stoichiometry, temperature, GDL permeability and thickness. In conclusion, it is found that the interdigitated flow field results in an uneven distribution across the cell and that the extent depends strongly on the permeability and weaker on the remaining parameters....
International Nuclear Information System (INIS)
Jovic, V.; Afgan, N.; Jovic, L.; Spasojevic, D.
1993-01-01
The paper presents results of the experimental and theoretical analyses of linear and nonlinear characteristics of adiabatic two-phase water-air flow in vertical parallel channels. Regime character changes and linear to nonlinear dynamic characteristics transfer conditions were defined. (author)
MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing
International Nuclear Information System (INIS)
Bhattacharyya, Krishnendu; Layek, G. C.
2011-01-01
An analysis is carried out to study a steady magnetohydrodynamic (MHD) boundary layer flow of an electrically conducting incompressible power-law non-Newtonian fluid through a divergent channel. The channel walls are porous and subjected to either suction or blowing of equal magnitude of the same kind of fluid on both walls. The fluid is permeated by a magnetic field produced by electric current along the line of intersection of the channel walls. The governing partial differential equation is transformed into a self-similar nonlinear ordinary differential equation using similarity transformations. The possibility of boundary layer flow in a divergent channel is analyzed with the power-law fluid model. The analysis reveals that the boundary layer flow (without separation) is possible for the case of the dilatant fluid model subjected to suitable suction velocity applied through its porous walls, even in the absence of a magnetic field. Further, it is found that the boundary layer flow is possible even in the presence of blowing for a suitable value of the magnetic parameter. It is found that the velocity increases with increasing values of the power-law index for the case of dilatant fluid. The effects of suction/blowing and magnetic field on the velocity are shown graphically and discussed physically. (fundamental areas of phenomenology(including applications))
Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...
Indian Academy of Sciences (India)
In this paper, we examine the combined effects of thermal radiation, buoyancy force and magnetic field on oscillatory flow of a conducting optically thin dusty fluid through a vertical channel filled with a saturated porous medium. The governing partial differential equations are obtained and solved analytically by variable ...
Comparison of direct numerical simulation databases of turbulent channel flow at $Re_{\\tau}$ = 180
Vreman, A.W.; Kuerten, Johannes G.M.
2014-01-01
Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at $Re_{\\tau}$ = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations
Comparison of direct numerical simulation databases of turbulent channel flow at Re = 180
Vreman, A.W.; Kuerten, J.G.M.
2014-01-01
Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at Re t = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations below 0.2%
Laboratorial studies on the seepage impact in open-channel flow turbulence
Energy Technology Data Exchange (ETDEWEB)
Herrera Granados, Oscar; Kostecki, Stanislaw, E-mail: Oscar.Herrera-Granados@pwr.wroc.pi [Institute of Geotechnics and Hydro-engineering (I-10), Wroclaw University of Technology. Plac Grunwaldzki 9 D-2 p.112. 50-377 Wroclaw (Poland)
2011-12-22
In natural streams, the interaction between water in motion and movable beds derives in transport of material. This is a fact that causes several problems for river regulation, above all in streams which were heavily modified by human interferences. Therefore, to find solutions or at least to alleviate the negative effects that sediment transport can bring with is a topic to be researched. The impact of seepage on river sedimentation processes and open-channel flow is important for environmental issues but it is commonly neglected by water specialists. The present contribution presents the output of a series of experimental works where the influence of seepage on the open channel turbulence is analyzed at the laboratory scale. Even though that the magnitude of the groundwater flow is significantly smaller than the magnitude of the open channel flow; the output of the experiments demonstrates that seepage not only modifies the water-sediment interaction as demonstrated Herrera Granados (2008; 2010); but also is affecting the velocity field and turbulence dynamics of the open-channel flow.
DNS of Turbulent Flow and Heat Transfer in a Channel with Surface Mounted Cubes
Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.
2000-01-01
The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence
DNS of turbulent flow and heat transfer in a channel with surface mounted cubes
Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.
2000-01-01
The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence
Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks
Directory of Open Access Journals (Sweden)
Wei Zhang
2014-01-01
Full Text Available Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.
Series solution for flow of a second-grade fluid in a divergent-convergent channel
International Nuclear Information System (INIS)
Hayat, T.; Nawaz, M.; Asghar, S.; Hendi, A.A.
2010-01-01
This study explores the flow of a second-grade fluid in divergent-convergent channel. The problem formulation is first developed, and then the corresponding nonlinear problem is solved by homotopy analysis method (HAM). The effects of different physical parameters on the velocity profile are shown. The numerical values of the skin friction coefficient for different values of parameters are tabulated. (author)
Effects of Parallel Channel Interactions on Two-Phase Flow Split in ...
African Journals Online (AJOL)
The tests would aid the development of a realistic transient computer model for tracking the distribution of two-phase flows into the multiple parallel channels of a Nuclear Reactor, during Loss of Coolant Accidents (LOCA), and were performed at the General Electric Nuclear Energy Division Laboratory, California. The test ...
Laboratorial studies on the seepage impact in open-channel flow turbulence
International Nuclear Information System (INIS)
Herrera Granados, Oscar; Kostecki, Stanislaw
2011-01-01
In natural streams, the interaction between water in motion and movable beds derives in transport of material. This is a fact that causes several problems for river regulation, above all in streams which were heavily modified by human interferences. Therefore, to find solutions or at least to alleviate the negative effects that sediment transport can bring with is a topic to be researched. The impact of seepage on river sedimentation processes and open-channel flow is important for environmental issues but it is commonly neglected by water specialists. The present contribution presents the output of a series of experimental works where the influence of seepage on the open channel turbulence is analyzed at the laboratory scale. Even though that the magnitude of the groundwater flow is significantly smaller than the magnitude of the open channel flow; the output of the experiments demonstrates that seepage not only modifies the water-sediment interaction as demonstrated Herrera Granados (2008; 2010); but also is affecting the velocity field and turbulence dynamics of the open-channel flow.
Boundary Layer Fluid Flow in a Channel with Heat Source, Soret ...
African Journals Online (AJOL)
The boundary layer fluid flow in a channel with heat source, soret effects and slip condition was studied. The governing equations were solved using perturbation technique. The effects of different parameters such Prandtl number Pr , Hartmann number M, Schmidt number Sc, suction parameter ƒÜ , soret number Sr and the ...
Semi-local scaling and turbulence modulation in variable property turbulent channel flows
Patel, A.; Peeters, J.W.R.; Boersma, B.J.; Pecnik, R.
2015-01-01
We theoretically and numerically investigate the effect of temperature dependent density and viscosity on turbulence in channel flows. First, a mathematical framework is developed to support the validity of the semi-local scaling as proposed based on heuristic arguments by Huang, Coleman, and
Directory of Open Access Journals (Sweden)
Hanafi Abdalla S.
2008-01-01
Full Text Available This paper presents experimental and numerical studies for the case of turbulent forced and mixed convection flow of water through narrow vertical rectangular channel. The channel is composed of two parallel plates which are heated at a uniform heat flux, whereas, the other two sides of the channel are thermally insulated. The plates are of 64 mm in width, 800 mm in height, and separated from each other at a narrow gap of 2.7 mm. The Nusselt number distribution along the flow direction normalized by the Nusselt number for the case of turbulent forced convection flow is obtained experimentally with a comparison with the numerical results obtained from a commercial computer code. The quantitative determination of the nor- malized Nusselt number with respect to the dimension-less number Z = (Gr/Re21/8Pr0.5 is presented with a comparison with previous experimental results. Qualitative results are presented for the normalized temperature and velocity profiles in the transverse direction with a comparison between the forced and mixed convection flow for both the cases of upward and downward flow directions. The effect of the axial locations and the parameter Gr/Re on the variation of the normalized temperature profiles in the transverse direction for both the regions of forced and mixed convection and for both of the upward and downward flow directions are obtained. The normalized velocity profiles in the transverse directions are also determined at different inlet velocity and heat fluxes for the previous cases. It is found that the normalized Nusselt number is greater than one in the mixed convection region for both the cases of upward and downward flow and correlated well with the dimension-less parameter Z for both of the forced and mixed convection regions. The temperature profiles increase with increasing the axial location along the flow direction or the parameter Gr/Re for both of the forced and mixed convection regions, but this increase is
Studies on diversion cross-flow between two parallel channels communicating by a lateral slot. II
International Nuclear Information System (INIS)
Tapucu, A.; Merilo, M.
1977-01-01
The axial pressure variations of two parallel channels with single phase flows communicating by a long lateral slot have been studied experimentally. Using mass and momentum conservation principles, the axial pressure variations have been derived in terms of two parameters ksub(d) and ksub(r), for donor and recipient channels, respectively. These parameters include the combined effect of fluid transferred from donor to recipient channel, and drag force brought on by the connection gap, and are functions of the velocities and slot geometry parameters. A pressure difference oscillation between channels along the slot has been detected which is sinusoidal with wave lengths which seem to be a function of the gap clearance. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Sotela Avila, Gilberto [Universidad Nacional Autonoma de Mexico (Mexico)
2001-03-01
The author shows that the computation of gradually-varied-flow profiles in prismatic compound channels involves the solution of the dynamic equation, but using the compound channel Froude number defined by Blalock and Sturm. The same equation is used for non-prismatic channels by dividing the channel into short reaches and carrying the computation step by step through an iterative process. [Spanish] El autor demuestra que los perfiles del flujo gradualmente variado en canales prismaticos de seccion compuesta se pueden determinar mediante la integracion de la llamada ecuacion dinamica, pero usando el numero de Froude definido por Blalock y Sturm para este tipo de canales. Cuando no son prismaticos, tambien se aplica la ecuacion de la energia por tramos y el calculo sigue un proceso iterativo una vez definidos los tirantes criticos multiples y la zona en que se desarrolla el perfil.
Experimental investigation of turbulent flow in a channel with the backward-facing inclined step
Directory of Open Access Journals (Sweden)
Uruba Václav
2012-04-01
Full Text Available The work deals with the experimental investigation of turbulent flow in a closed channel with the backward-facing inclined step. Experiments were carried by means of the PIV optical measuring method in the channel of the rectangular cross-section in the inlet part and with inclined steps of the constant height H mm and various inclination angles for a wide range of the Reynolds number. The attention was paid especially to the separation region behind the step and to the relaxation of the shear layer after the reattachment in the outlet part of the channel. The dependence of the length of the separation region on the Reynolds number was obtained for various step angles. Optical measurements were completed by the measurement of static pressure distribution in the inlet and outlet part of the channel to estimate energy losses.
Bucs, Szilard
2015-09-25
Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m∙s-1) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m∙s-1) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m∙s-1, thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems.
Bucs, Szilard S; Linares, Rodrigo Valladares; Marston, Jeremy O; Radu, Andrea I; Vrouwenvelder, Johannes S; Picioreanu, Cristian
2015-12-15
Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of ribbed and smooth coolant cross-flow channel on film cooling
International Nuclear Information System (INIS)
Peng, Wei; Sun, Xiaokai; Jiang, Peixue; Wang, Jie
2017-01-01
Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.
Effect of ribbed and smooth coolant cross-flow channel on film cooling
Energy Technology Data Exchange (ETDEWEB)
Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)
2017-05-15
Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.
Numerical simulation of turbulent buoyant flows in horizontal channels
International Nuclear Information System (INIS)
Seiter, C.
1995-09-01
A numerical method is presented, to calculate the three-dimensional, time-dependent large scale structure of turbulent buoyant flows. The subject of the study is the Rayleigh-Benard-convection with air (Pr=0.71, Ra=2.5 10 6 , 10 7 ) and sodium (Pr=0.006, Ra=8.4 10 4 , 2.5 10 5 , 10 6 , 10 7 ) and a fluid layer with water and an internal heat source (Pr=7.0, Ra I =1.5 10 10 ) at moderate and high Rayleigh-numbers. The goal of the work is both, the analysis of structures of instantaneous as well as the statistical analysis of spatially and/or time averaged data, to give a contribution to the investigation of the characteristics of turbulent natural convection mainly in fluids with small Prandtl-numbers. The large eddy simulation of natural convection requires the development of appropriate momentum and heat subgrid scale models and the formulation of new boundary conditions. The used energy-length-models in the computer code TURBIT are extended methodically by modification of the characteristic length scales of the sub scale turbulence. The reduction or the increase of the sub scale turbulence correlations, caused by the influence of solid boundaries or the stratification, is considered. In the same way the new boundary conditions for the diffusive terms of the conservation equations are seen to be necessary, when the thermal or in the case of liquid metals the more critical hydrodynamic boundary layer is resolved insufficiently or not at all. The extended and new methods, models and boundary conditions, which enabled the realization of the planned simulations, are presented. (orig.)
Directory of Open Access Journals (Sweden)
Jasikova D.
2015-01-01
Full Text Available Here we present the results of measurement in micro-channel with the Y-junction and narrow structure for various flow rates. There was used BSG micro-channel with trapezoidal cross-section. The parameters of the channel are described in the paper. The flow in the micro-channel was invested with micro-PIV technique and various flow rates were set on each inlet. The resulting flow rate in the steady area follows the laminar flow with very low Re 30. Here we are focused on the flow characteristic in the Y-junction and in selected narrow structure. The fluid flow is evaluated with vector and scalar maps and the profile plots that were taken in the point of interest.
Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.
Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan
2012-09-04
Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.
CFD analysis of supercritical water flow and heat transfer in single channel with mixing vane
International Nuclear Information System (INIS)
Zuo Guoping; Xie Hongyan; Yu Tao
2012-01-01
Three-dimensional rectangular channel with the mixing wane in supercritical water reactor is investigated with CFX. The mixing vane elevation influenced on temperature distribution and flow field are simulated in the model. The results showed the mixing vane cause fluid circumferential flow, making flow hot and cold fluids mixed and fluid temperature uniform distribution, effectively improve the fuel rod surface temperature distribution and reduced hot temperature. Among the mixing wing elevation of 15, 30, 45, 50, 60 and 70 angle, the 30 angle is the best case in improving temperature distribution. (authors)
Hermite-Pade approximation approach to hydromagnetic flows in convergent-divergent channels
International Nuclear Information System (INIS)
Makinde, O.D.
2005-10-01
The problem of two-dimensional, steady, nonlinear flow of an incompressible conducting viscous fluid in convergent-divergent channels under the influence of an externally applied homogeneous magnetic field is studied using a special type of Hermite-Pade approximation approach. This semi-numerical scheme offers some advantages over solutions obtained by using traditional methods such as finite differences, spectral method, shooting method, etc. It reveals the analytical structure of the solution function and the important properties of overall flow structure including velocity field, flow reversal control and bifurcations are discussed. (author)
Effect of Water Flows on Ship Traffic in Narrow Water Channels Based on Cellular Automata
Directory of Open Access Journals (Sweden)
Hu Hongtao
2017-11-01
Full Text Available In narrow water channels, ship traffic may be affected by water flows and ship interactions. Studying their effects can help maritime authorities to establish appropriate management strategies. In this study, a two-lane cellular automation model is proposed. Further, the behavior of ship traffic is analyzed by setting different water flow velocities and considering ship interactions. Numerical experiment results show that the ship traffic density-flux relation is significantly different from the results obtained by classical models. Furthermore, due to ship interactions, the ship lane-change rate is influenced by the water flow to a certain degree.
Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity
Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui
Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in
Numerical analysis of steady state fluid flow in a two-dimensional wavy channel
International Nuclear Information System (INIS)
Gorji, M.; Hosseinzadeh, E.
2007-01-01
A simple geometry of the flow passage that may be used to enhance the heat transfer rate is called wavy and periodic channel. Wavy channel can provide significant heat transfer augmentation and was always important for heat transfer engineering and so far many researches have been done in this field. In this paper, the effects of channel geometry and Reynolds number on the heat transfer coefficient, heat flux and pressure drop for the laminar fully developed flow in a two dimensional channel whereas the walls are considered fix temperature is numerically investigated. The problem is solved for channel with one and two wavy walls and comparisons with the straight channel, in the same flow rate, have been performed. Results indicate that, by decreasing the channel wave length and the distance between the channel walls the pressure drop, heat flux and heat transfer coefficient increase. Results and Conclusions: The following conclusion may be drawn: 1. In a specified channel, for the fluid flow with the constant Reynolds number, by decreasing the wave length from 0.2 m to 0.1 m, the pressure drop, heat flux and heat transfer coefficient increase by 37% , 54% and 29% respectively, whereas by decreasing the wave length from the same value the above mentioned parameters decrease to 108% , 143% and 47% respectively. 2. In a specified wave length, where the amplitude and the Reynolds number is constant, by increasing the distance between the walls from 0.15 m to 0.25 m, the pressure drop, heat flux and heat transfer coefficient decrease by 41% ,8% and 7.8% respectively. References [1] J.C. Burns, T. Parks, J. Fluid Mesh, 29(1967), 405-416. [2] J.L. Goldestein, E.M. Sparrow, ASME J. Heat Transfer, 99 (1977), 187. [3] J.E.O. Brain, E.M. Sparrow, ASME J. Heat Transfer, 104 (1982), 410 [4] N. Sanie, S. Dini, ASME J. Heat Transfer, 115 (1993), 788. [5] G. Wang, P. Vanka, Int. J. Heat Mass Transfer, 38 (17) (1995), 3219. [6] T.A. Rush, T.A. Newell, A.M. Jacobi, Int, J. Heat Mass
Directory of Open Access Journals (Sweden)
M. R. Rastan
2018-03-01
Full Text Available In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method in simulation of flow adjacent to hydrophobic surfaces, turbulent flow is simulated in simple channel and the results are compared with the literature. Finally, two dimensional half-corrugated channel flow at Reynolds number of 104 is simulated again in vicinity of hydrophobic surfaces for varoius slip lengths. The results show that this method is capable of drag reduction in such a way that an increase of 200 μm in slip length leads to a massive drag reduction up to 38%. In addition, to access a significant drag reduction in turbulent flows, the non-dimensionalized slip length should be larger than the minimum.
Textural and rheological evolution of basalt flowing down a lava channel
Robert, Bénédicte; Harris, Andrew; Gurioli, Lucia; Médard, Etienne; Sehlke, Alexander; Whittington, Alan
2014-06-01
The Muliwai a Pele lava channel was emplaced during the final stage of Mauna Ulu's 1969-1974 eruption (Kilauea, Hawaii). The event was fountain-fed and lasted for around 50 h, during which time a channelized flow system developed, in which a 6-km channel fed a zone of dispersed flow that extended a further 2.6 km. The channel was surrounded by initial rubble levees of 'a'a, capped by overflow units of limited extent. We sampled the uppermost overflow unit every 250 m down the entire channel length, collecting, and analyzing 27 air-quenched samples. Bulk chemistry, density and textural analyses were carried out on the sample interior, and glass chemistry and microlite crystallization analyses were completed on the quenched crust. Thermal and rheological parameters (cooling, crystallization rate, viscosity, and yield strength) were also calculated. Results show that all parameters experience a change around 4.5 km from the vent. At this point, there is a lava surface transition from pahoehoe to 'a'a. Lava density, microlite content, viscosity, and yield strength all increase down channel, but vesicle content and lava temperature decrease. Cooling rates were 6.7 °C/km, with crystallization rates increasing from 0.03 Фc/km proximally, to 0.14 Фc/km distally. Modeling of the channel was carried out using the FLOWGO thermo-rheological model and allowed fits for temperature, microlite content, and channel width when run using a three-phase viscosity model based on a temperature-dependent viscosity relation derived for this lava. The down flow velocity profile suggests an initial velocity of 27 m/s, declining to 1 m/s at the end of the channel. Down-channel, lava underwent cooling that induced crystallization, causing both the lava viscosity and yield strength to increase. Moreover, lava underwent degassing and a subsequent vesicularity decrease. This aided in increasing viscosity, with the subsequent increase in shearing promoting a transition to 'a'a.
SGS Modeling of the Internal Energy Equation in LES of Supersonic Channel Flow
Raghunath, Sriram; Brereton, Giles
2011-11-01
DNS of fully-developed turbulent supersonic channel flows (Reτ = 190) at up to Mach 3 indicate that the turbulent heat fluxes depend only weakly on Mach number, while the viscous dissipation and pressure dilatation do so strongly. Moreover, pressure dilatation makes a significant contribution to the internal energy budget at Mach 3 and higher. The balance between these terms is critical to determining the temperature (and so molecular viscosity) from the internal energy equation and so, in LES of these flows, it is essential to use accurate SGS models for the viscous dissipation and the pressure dilatation. In this talk, we present LES results for supersonic channel flow, using SGS models for these terms that are based on the resolved-scale dilatation, an inverse timescale, and SGS momentum fluxes, which intrinsically represent this Mach number effect.
Robust boundary treatment for open-channel flows in divergence-free incompressible SPH
Pahar, Gourabananda; Dhar, Anirban
2017-03-01
A robust Incompressible Smoothed Particle Hydrodynamics (ISPH) framework is developed to simulate specified inflow and outflow boundary conditions for open-channel flow. Being purely divergence-free, the framework offers smoothed and structured pressure distribution. An implicit treatment of Pressure Poison Equation and Dirichlet boundary condition is applied on free-surface to minimize error in velocity-divergence. Beyond inflow and outflow threshold, multiple layers of dummy particles are created according to specified boundary condition. Inflow boundary acts as a soluble wave-maker. Fluid particles beyond outflow threshold are removed and replaced with dummy particles with specified boundary velocity. The framework is validated against different cases of open channel flow with different boundary conditions. The model can efficiently capture flow evolution and vortex generation for random geometry and variable boundary conditions.
International Nuclear Information System (INIS)
Yasuda, K; Sogo, M; Iwamoto, Y
2013-01-01
The present note describes a method for use in conjunction with a scanning electron microscope (SEM) that has been developed to visualize a liquid flow under a high-level vacuum and to measure a velocity field in a small-scale flow through an open channel. In general, liquid cannot be observed via a SEM, because liquid evaporates under the high-vacuum environment of the SEM. As such, ionic liquid and room temperature molten salt having a vapor pressure of nearly zero is used in the present study. We use ionic liquid containing Au-coated tracer particles to visualize a small-scale flow under a SEM. Furthermore, the velocity distribution in the open channel is obtained by particle tracking velocimetry measurement and a parabolic profile is confirmed. (technical design note)
Daniele Tonina; John M. Buffington
2011-01-01
Hyporheic flow results from the interaction between streamflow and channel morphology and is an important component of stream ecosystems because it enhances water and solute exchange between the river and its bed. Hyporheic flow in pool-riffle channels is particularly complex because of three-dimensional topography that spans a range of partially to fully submerged...
Critical heat flux for flow boiling of water in mini-channels
International Nuclear Information System (INIS)
Zhang, Weizhong; Mishima, Kaichiro; Hibiki, Takashi
2007-01-01
Critical heat flux (CHF) is a limiting factor when flow boiling is applied to dissipate high heat flux in mini-channels. In view of practical importance of critical heat flux correlations in engineering design and prediction, this study presents an evaluation of existing CHF correlations for flow boiling of water with available databases taken from small-diameter tubes, and then develops a new, simple CHF correlation for flow boiling in mini-channel. Three correlations by Bowring, Katto and Shah are evaluated with available CHF data in the literature for saturated flow boiling, and three correlations by Inasaka-Nariai, Celata et al. and Hall-Mudawar evaluated with the CHF data for subcooled flow boiling. The Hall-Mudawar correlation and the Shah correlation appear to be the most reliable tools for CHF prediction in the subcooled and saturated flow boiling regions, respectively. In order to avoid the defect of predictive discontinuities often encountered when applying previous correlations, a simple, nondimensional, inlet conditions dependent CHF correlation for saturated flow boiling has been formulated. Its functional form is determined by application of the artificial neural network and parametric trend analyses to the collected database. Superiority of this new correlation has been verified by the collected database. It has a mean deviation of 16.8% for this collected databank, smallest among all tested correlations. Compared to many inordinately complex correlations, this new correlation consists only of one single equation. (author)
Strong Flows of Bottom Water in Abyssal Channels of the Atlantic
Morozov, E. G.
Analysis of bottom water transport through the abyssal channels of the Atlantic Ocean is presented. The study is based on recent observations in the Russian expeditions and historical data. A strong flow of Antarctic Bottom Water from the Argentine Basin to the Brazil Basin through the Vema Channel is observed on the basis of lowered profilers and anchored buoys with current meters. The further flow of bottom water in the Brazil Basin splits in the northern part of the basin. Part of the bottom water flows to the East Atlantic through the Romanche and Chain fracture zones. The other part follows the bottom topography and flows to the northwester into the North American Basin. Part of the northwesterly flow propagates through the Vema Fracture Zone into the Northeastern Atlantic. This flow generally fills the bottom layer in the Northeastern Atlantic basins. The flows of bottom waters through the Romanche and Chain fracture zones do not spread to the Northeast Atlantic due to strong mixing in the equatorial zone and enhanced transformation of bottom water properties.
Analysis of two-phase flow and boiling heat transfer in inclined channel of core-catcher
International Nuclear Information System (INIS)
Tahara, M.; Suzuki, Y.; Abe, N.; Kurita, T.; Hamazaki, R.; Kojima, Y.
2008-01-01
Passive Corium Cooling System (CCS) provides a function of ex-vessel debris cooling and molten core stabilization during a severe accident. CCS features inclined cooling channels arranged axi-symmetrically below the core-catcher basin. In order to estimate the coolability of the inclined cooling channel, it is indispensable to identify the flow pattern of the two-phase flow in the cooling channel. Several former studies for the two-phase flow pattern in the inclined channel are referred. Taitel and Dukler (1976) developed a prediction method of the flow pattern transition in horizontal and near horizontal tubes. Barnea et al. (1980) showed the flow pattern map of upward flow with 10 degrees inclination. Sakaguti et al. (1996) observed the two-phase flow patterns in the horizontal pipe connected with slightly upward pipe, in which the flow pattern in the pipe with a bending part was expressed by the combination of a basic flow pattern and some auxiliary flow patterns. Then we investigated these studies In order to identify the flow patterns observed in the inclined cooling channel of CCS. Furthermore we experimentally observed the flow patterns in the inclined cooling channel with various inlet conditions. As a result of the investigation and observation, typical flow patterns in the inclined cooling channel were identified. Two typical flow patterns were observed depending on the steam flow rate, one of which is 'elongated bubble 'flow, and the other is 'churn with collapsing backward and upward slug 'flow The flow and heat transfer in the inclined channel of CCS is analyzed by using a two-phase analysis code employing two-fluid model in which the constitutive equations for the two-phase flow in inclined channels are incorporated. That is, drift flux parameter for each of the elongated bubble flow, and the churn with collapsing backward and upward slug flow are incorporated to the two-phase analysis code, which are based on the rising velocity of the long bubble in
Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.
Kollarigowda, Ravichandran H; Abraham, Sinoj; Montemagno, Carlo D
2017-09-06
Oil/water separation has been of great interest worldwide because of the increasingly serious environmental pollution caused by the abundant discharge of industrial wastewater, oil spill accidents, and odors. Here, we describe simple and economical superhydrophobic hybrid membranes for effective oil/water separation. Eco-friendly, antifouling membranes were fabricated for oil/water separation, waste particle filtration, the blocking of thiol-based odor materials, etc., by using a cellulose membrane (CM) filter. The CM was modified from its original superhydrophilic nature into a superhydrophobic surface via a reversible addition-fragmentation chain transfer technique. The block copolymer poly{[3-(trimethoxysilyl)propyl acrylate]-block-myrcene} was synthesized using a "grafting-from" approach on the CM. The surface contact angle that we obtained was >160°, and absorption tests of several organic contaminants (oils and solvents) exhibited superior levels of extractive activity and excellent reusability. These properties rendered this membrane a promising surface for oil/water separation. Interestingly, myrcene blocks thiol (through "-ene-" chemistry) contaminants, thereby bestowing a pleasant odor to polluted water by acting as an antifouling material. We exploited the structural properties of cellulose networks and simple chemical manipulations to fabricate an original material that proved to be effective in separating water from organic and nano/microparticulate contaminants. These characteristics allowed our material to effectively separate water from oily/particulate phases as well as embed antifouling materials for water purification, thus making it an appropriate absorber for chemical processes and environmental protection.
Buoyancy-driven mean flow in a long channel with a hydraulically constrained exit condition
Grimm, Th.; Maxworthy, T.
1999-11-01
Convection plays a major role in a variety of natural hydrodynamic systems. Those in which convection drives exchange flows through a lateral contraction and/or over a sill form a special class with typical examples being the Red and Mediterranean Seas, the Persian Gulf, and the fjords that indent many coastlines. The present work focuses on the spatial distribution and scaling of the density difference between the inflowing and outflowing fluid layers. Using a long water-filled channel, fitted with buoyancy sources at its upper surface, experiments were conducted to investigate the influence of the geometry of the strait and the channel as well as the magnitude of the buoyancy flux. Two different scaling laws, one by Phillips (1966), and one by Maxworthy (1994, 1997) were compared with the experimental results. It has been shown that a scaling law for which g[prime prime or minute] = kB02/3x/h4/3 best describes the distribution of the observed density difference along the channel, where B0 is the buoyancy flux, x the distance from the closed end of the channel, h its height at the open end (sill) and k a constant that depends on the details of the channel geometry and flow conditions. This result holds for the experimental results and appears to be valid for a number of natural systems as well.
Rarefied gas flows through a curved channel: Application of a diffusion-type equation
Aoki, Kazuo; Takata, Shigeru; Tatsumi, Eri; Yoshida, Hiroaki
2010-11-01
Rarefied gas flows through a curved two-dimensional channel, caused by a pressure or a temperature gradient, are investigated numerically by using a macroscopic equation of convection-diffusion type. The equation, which was derived systematically from the Bhatnagar-Gross-Krook model of the Boltzmann equation and diffuse-reflection boundary condition in a previous paper [K. Aoki et al., "A diffusion model for rarefied flows in curved channels," Multiscale Model. Simul. 6, 1281 (2008)], is valid irrespective of the degree of gas rarefaction when the channel width is much shorter than the scale of variations of physical quantities and curvature along the channel. Attention is also paid to a variant of the Knudsen compressor that can produce a pressure raise by the effect of the change of channel curvature and periodic temperature distributions without any help of moving parts. In the process of analysis, the macroscopic equation is (partially) extended to the case of the ellipsoidal-statistical model of the Boltzmann equation.
Analytical study of narrow channel flow for a spallation target system design
Energy Technology Data Exchange (ETDEWEB)
Islam, Md. Shafiqul; Monde, Masanori [Saga Univ., Saga (Japan); Terada, Atsuhiko; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-07-01
Heat transfer and pressure drop characteristics under fully developed turbulent water flow condition were analyzed over a two-dimensional narrow rectangular channel whose height is H=1.2 mm. The channel configuration and water flow condition simulate forced convection cooling of a spallation target system components design such as a solid target and a proton beam window. The high-Reynolds number form of the standard k - {epsilon} and RNG k - {epsilon} models employing wall functions for the Reynolds number (Re) range of 7,000 to 22,000 were used in the analyses. As for heat transfer characteristics of a smooth channel, the Nusselt number obtained by the standard k - {epsilon} model agreed very well with the Dittus-Boelter correlation. No significant differences in friction factors for the smooth channel were observed for these two models, which agreed well with the Blasius correlation. However, the standard k - {epsilon} model could not predict friction factors well for the rib-roughened channel. (author)
Analytical study of narrow channel flow for a spallation target system design
International Nuclear Information System (INIS)
Islam, Md. Shafiqul; Monde, Masanori; Terada, Atsuhiko; Kinoshita, Hidetaka; Hino, Ryutaro
2001-07-01
Heat transfer and pressure drop characteristics under fully developed turbulent water flow condition were analyzed over a two-dimensional narrow rectangular channel whose height is H=1.2 mm. The channel configuration and water flow condition simulate forced convection cooling of a spallation target system components design such as a solid target and a proton beam window. The high-Reynolds number form of the standard k - ε and RNG k - ε models employing wall functions for the Reynolds number (Re) range of 7,000 to 22,000 were used in the analyses. As for heat transfer characteristics of a smooth channel, the Nusselt number obtained by the standard k - ε model agreed very well with the Dittus-Boelter correlation. No significant differences in friction factors for the smooth channel were observed for these two models, which agreed well with the Blasius correlation. However, the standard k - ε model could not predict friction factors well for the rib-roughened channel. (author)
Transport of sediment through a channel network during a post-fire debris flow
Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.
2017-12-01
Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So
Directory of Open Access Journals (Sweden)
Xuan Wu
2013-01-01
Full Text Available Direct numerical simulation has been performed to study a polymer drag-reducing channel flow by using a discrete-element model. And then, wavelet analyses are employed to investigate the multiresolution characteristics of velocity components based on DNS data. Wavelet decomposition is applied to decompose velocity fluctuation time series into ten different frequency components including approximate component and detailed components, which show more regular intermittency and burst events in drag-reducing flow. The energy contribution, intermittent factor, and intermittent energy are calculated to investigate characteristics of different frequency components. The results indicate that energy contributions of different frequency components are redistributed by polymer additives. The energy contribution of streamwise approximate component in drag-reducing flow is up to 82%, much more than 25% in the Newtonian flow. Feature of turbulent multiscale structures is shown intuitively by continuous wavelet transform, verifying that turbulent structures become much more regular in drag-reducing flow.
Enhanced heat transfer with corrugated flow channel in anode side of direct methanol fuel cells
International Nuclear Information System (INIS)
Heidary, H.; Abbassi, A.; Kermani, M.J.
2013-01-01
Highlights: • Effect of corrugated flow channel on the heat exchange of DMFC is studied. • Corrugated boundary (except rectangular type) increase heat transfer up to 90%. • Average heat transfer in rectangular-corrugated boundary is less than straight one. • In Re > 60, wavy shape boundary has highest heat transfer. • In Re < 60, triangular shape boundary has highest heat transfer. - Abstract: In this paper, heat transfer and flow field analysis in anode side of direct methanol fuel cells (DMFCs) is numerically studied. To enhance the heat exchange between bottom cold wall and core flow, bottom wall of fluid delivery channel is considered as corrugated boundary instead of straight (flat) one. Four different shapes of corrugated boundary are recommended here: rectangular shape, trapezoidal shape, triangular shape and wavy (sinusoidal) shape. The top wall of the channel (catalyst layer boundary) is taken as hot boundary, because reaction occurs in catalyst layer and the bottom wall of the channel is considered as cold boundary due to coolant existence. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique (1972). A wide spectrum of numerical studies is performed over a range of various shape boundaries, Reynolds number, triangle block number, and the triangle block amplitude. The performed parametric studies show that corrugated channel with trapezoidal, triangular and wavy shape enhances the heat exchange up to 90%. With these boundaries, cooling purpose of reacting flow in anode side of DMFCs would be better than straight one. Also, from the analogy between the heat and mass transfer problems, it is expected that the consumption of reacting species within the catalyst layer of DMFCs enhance. The present work provides helpful guidelines to the bipolar plate manufacturers of DMFCs to considerably enhance heat transfer and performance of the anode side of DMFC
Experimental study on dryout point of flow boiling in bilaterally heated narrow annular channel
International Nuclear Information System (INIS)
Wu Geping; Wu Aimin; Tian Wenxi; Li Hao; Jia Dounan; Su Guanghui; Qiu Suizheng
2003-01-01
This paper presents and experimental study of the dryout point of flow boiling in bilaterally heated narrow annular channel with 1.5 mm and 2 mm annular gap, respectively. The range of pressure is 2.0-4.0 MPa and that of mass flux is 40-80 kg/m 2 ·s. Kutajilagi equation which is adaptable to tubes is used to deal with the experimental data and an empirical equation is obtained. Again this empirical equation is amended, then an empirical equation of the dryout point suitable for narrow annular channel is obtained
Outer region scaling using the freestream velocity for nonuniform open channel flow over gravel
Stewart, Robert L.; Fox, James F.
2017-06-01
The theoretical basis for outer region scaling using the freestream velocity for nonuniform open channel flows over gravel is derived and tested for the first time. Owing to the gradual expansion of the flow within the nonuniform case presented, it is hypothesized that the flow can be defined as an equilibrium turbulent boundary layer using the asymptotic invariance principle. The hypothesis is supported using similarity analysis to derive a solution, followed by further testing with experimental datasets. For the latter, 38 newly collected experimental velocity profiles across three nonuniform flows over gravel in a hydraulic flume are tested as are 43 velocity profiles previously published in seven peer-reviewed journal papers that focused on fluid mechanics of nonuniform open channel over gravel. The findings support the nonuniform flows as equilibrium defined by the asymptotic invariance principle, which is reflective of the consistency of the turbulent structure's form and function within the expanding flow. However, roughness impacts the flow structure when comparing across the published experimental datasets. As a secondary objective, we show how previously published mixed scales can be used to assist with freestream velocity scaling of the velocity deficit and thus empirically account for the roughness effects that extend into the outer region of the flow. One broader finding of this study is providing the theoretical context to relax the use of the elusive friction velocity when scaling nonuniform flows in gravel bed rivers; and instead to apply the freestream velocity. A second broader finding highlighted by our results is that scaling of nonuniform flow in gravel bed rivers is still not fully resolved theoretically since mixed scaling relies to some degree on empiricism. As researchers resolve the form and function of macroturbulence in the outer region, we hope to see the closing of this research gap.
Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel
Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence
2016-01-01
The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630
International Nuclear Information System (INIS)
Mishra, A.M.; Paul, S.; Singh, S.; Panday, V.
2015-01-01
In this paper the two-phase flow instability analysis of multiple heated channels with various inclinations is studied. In addition, the bifurcation analysis is also carried out to capture the nonlinear dynamics of the system and to identify the regions in parameter space for which subcritical and supercritical bifurcations exist. In order to carry out the analysis, the system is mathematically represented by nonlinear Partial Differential Equation (PDE) for mass, momentum and energy in single as well as two-phase region. Then converted into Ordinary Differential Equation (ODE) using weighted residual method. Also, coupling equation is being used under the assumption that pressure drop in each channel is the same and the total mass flow rate is equal to sum of the individual mass flow rates. The homogeneous equilibrium model is used for the analysis. Stability Map is obtained in terms of phase change number (Npch) and Subcooling Number (Nsb) by solving a set of nonlinear, coupled algebraic equations obtained at equilibrium using Newton Raphson Method. MATLAB Code is verified by comparing it with results obtained by Matcont (Open source software) under same parametric values. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter space to obtain the actual damped and growing oscillations in the channel inlet flow velocity which confirms the stability region across the stability map. Generalized Hopf (GH) points are observed for different inclinations, they are also points for subcritical and supercritical bifurcations. (authors)
Sahu, M. K.; Pandey, K. M.; Chatterjee, S.
2018-05-01
In this two dimensional numerical investigation, small rectangular channel with right angled triangular protrusions in the bottom wall of test section is considered. A slot nozzle is placed at the middle of top wall of channel which impinges air normal to the protruded surface. A duct flow and nozzle flow combined to form cross flow which is investigated for heat transfer enhancement of protruded channel. The governing equations for continuity, momentum, energy along with SST k-ω turbulence model are solved with finite volume based Computational fluid dynamics code ANSYS FLUENT 14.0. The range of duct Reynolds number considered for this analysis is 8357 to 51760. The ratios of pitch of protrusion to height of duct considered are 0.5, 0.64 and 0.82. The ratios of height of protrusion to height of duct considered are 0.14, 0.23 and 0.29. The effect of duct Reynolds number, pitch and height of protrusion on thermal-hydraulic performance is studied under cross flow condition. It is found that heat transfer rate is more at relatively larger pitch and small pressure drop is found in case of low height of protrusion.
A study on heat transfer enhancement using flow channel inserts for thermoelectric power generation
International Nuclear Information System (INIS)
Lesage, Frédéric J.; Sempels, Éric V.; Lalande-Bertrand, Nathaniel
2013-01-01
Highlights: • Thermal enhancement in a thermoelectric liquid generator is tested. • Thermal enhancement is brought upon by flow impeding inserts. • CFD simulations attribute thermal enhancement to velocity field alterations. • Thermoelectric power enhancement is measured and discussed. • Power enhancement relative to adverse pressure drop is investigated. - Abstract: Thermoelectric power production has many potential applications that range from microelectronics heat management to large scale industrial waste-heat recovery. A low thermoelectric conversion efficiency of the current state of the art prevents wide spread use of thermoelectric modules. The difficulties lie in material conversion efficiency, module design, and thermal system management. The present study investigates thermoelectric power improvement due to heat transfer enhancement at the channel walls of a liquid-to-liquid thermoelectric generator brought upon by flow turbulating inserts. Care is taken to measure the adverse pressure drop due to the presence of flow impeding obstacles in order to measure the net thermoelectric power enhancement relative to an absence of inserts. The results illustrate the power enhancement performance of three different geometric forms fitted into the channels of a thermoelectric generator. Spiral inserts are shown to offer a minimal improvement in thermoelectric power production whereas inserts with protruding panels are shown to be the most effective. Measurements of the thermal enhancement factor which represents the ratio of heat flux into heat flux out of a channel and numerical simulations of the internal flow velocity field attribute the thermal enhancement resulting in the thermoelectric power improvement to thermal and velocity field synergy
The development of radiotracer methods for laminar flow measurements in small channels
International Nuclear Information System (INIS)
Gardner, R.P.; Dunn, T.S.
1977-01-01
A general tracer principle is identified for the determination of laminar flow rate in channels of constant cross section. It is based on the development of a mathematical model that relates the detector response to the tracer initial condition and the pertinent flow parameters in the channel. The flow rate and other flow parameters of interest are obtained by fitting the model predictions to the experimental responses obtained. The principle is generally applied by: (1) injecting the tracer in a reproducible way so that a known initial condition is obtained, (2) monitoring the resulting tracer concentration at a suitable downstream point, and (3) obtaining the flow rate and other flow parameters of interest by a nonlinear search for the minimum reduced chi 2 value obtained from model predictions and experimental responses. Considerations pertinent to the principle and general method are discussed in this present part while two specific methods are treated in Parts II and III. (Int. J. Appl. Radiat. Isot.; 28: p355 and p369). (author)
A Preliminary Experimental Study on Flow Boiling CHF Characteristics of Ballooned Channel
International Nuclear Information System (INIS)
Kim, Yong Jin; Song, Sub Lee; Chang, Soon Heung; Moon, Sang Ki
2013-01-01
The purpose of this research is to measure heat transfer characteristics experimentally and to develop correlation based on experimental data. Experiments are in progress. The result of preliminary experimental test of ballooned channel was reported. The trends of CHF value for deformed channel is not usual as normal smooth tube. The spot of CHF was moved by changing different experimental cases. The transition of flow pattern at neck of deformation is considered as main factor of changing CHF trends. More cases are under operation and analysis based on flow dynamics are developing. Cladding is one of the most important parts in nuclear power plant because it is second barrier of radiation leakage from nuclear fuel. Originally, cladding keeps its integrity in 1200 .deg. C and 150bar, which is normal operation state of nuclear power plant. However, integrity of cladding can be deformed by more severe conditions caused by accident. In case of LOCA, high temperature, oxidation and thermal shock induced by safety injection can deform cladding. Main problem of deformed cladding is blockage of cooled to prevent core melt accident. Change of flow path by blockage affects flow of safety coolant, heat transfer coefficient and critical heat flux of rod bundles. Until now, there are insufficient heat transfer data for deformed flow path compared to normal flow path. In order to enhance safety of nuclear power plant after accident, it should be clarified that how deformed cladding affects heat transfer
International Nuclear Information System (INIS)
Xu Jianjun; Chen Bingde; Wang Xiaojun
2008-01-01
Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)
Croze, Ottavio A; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A; Brandt, Luca
2013-04-06
Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.
Deviations of Atmospheric Coastal Flow from the Open-channel Hydraulics Analogy
Rahn, D. A.; Parish, T. R.; Juliano, T. W.
2017-12-01
Low-level atmospheric flow along the coast of California bears resemblance to open-channel engineering applications referred to as hydraulic flow. During the warm season, strong equatorward wind is common near the surface. A marked temperature inversion separates the cool, moist marine air and the warm, dry free troposphere aloft. The low-level flow is bounded laterally by the coastal topography. Given the high wind speed in the shallow marine layer, the flow is often supercritical (Fr > 1). Features resembling oblique compression jumps and expansion fans occur near concave and convex bends in the coastline and impact wind energy production, wind stress on the ocean surface, and propagation of electromagnetic waves by modifying the vertical refractivity gradient. An aircraft collected fine-scale measurements offshore of southern California to test how well the observed features conform to the single-layer hydraulic approximation. Although the open-channel framework captures major features of the flow as indicated by prior work, the detailed measurements reveal when the analogy breaks down. The assumption of a passive upper layer can be violated due to mesoscale pressure gradients aloft and lee troughing associated with offshore flow, which can enhance the thinning of the marine layer associated with the expansion fan. The sharp interface between layers can be eroded when Ri becomes low, Kelvin-Helmholtz instability develops, and the structure of the lower atmosphere is drastically altered. This is poorly simulated in operational weather forecast models due to their relatively coarse grid spacing. The layer associated with the expansion fan rarely keeps its identity into the Santa Barbara Channel. An increase of surface heat flux and vertical mixing as the flow moves over warmer sea surface temperatures in the channel rapidly erodes the layer. Only one flight captured a hydraulic jump between the supercritical flow in the expansion fan and the subcritical flow
Steady state flow analysis of two-phase natural circulation in multiple parallel channel loop
International Nuclear Information System (INIS)
Bhusare, V.H.; Bagul, R.K.; Joshi, J.B.; Nayak, A.K.; Kannan, Umasankari; Pilkhwal, D.S.; Vijayan, P.K.
2016-01-01
Highlights: • Liquid circulation velocity increases with increasing superficial gas velocity. • Total two-phase pressure drop decreases with increasing superficial gas velocity. • Channels with larger driving force have maximum circulation velocities. • Good agreement between experimental and model predictions. - Abstract: In this work, steady state flow analysis has been carried out experimentally in order to estimate the liquid circulation velocities and two-phase pressure drop in air–water multichannel circulating loop. Experiments were performed in 15 channel circulating loop. Single phase and two-phase pressure drops in the channels have been measured experimentally and have been compared with theoretical model of Joshi et al. (1990). Experimental measurements show good agreement with model.
Critical heat flux of subcooled flow boiling in narrow rectangular channels
International Nuclear Information System (INIS)
Kureta, Masatoshi; Akimoto, Hajime
1999-01-01
In relation to the high-heat-load devices such as a solid-target cooling channel of a high-intensity neutron source, burnout experiments were performed to obtain critical heat flux (CHF) data systematically for vertical upward flow in one-side heated rectangular channels. One of the objectives of this study was to study an extensibility of existing CHF correlations and models, which were proposed for a round tube, to rectangular channels for design calculation. Existing correlations and models were reviewed and compared with obtained data. Sudo's thin liquid layer dryout model, Griffel correlation and Bernath correlation were in good agreement with the experimental data for short-heated-length and low inlet water temperature conditions. (author)
A three-dimensional model of PEM fuel cells with serpentine flow channels
International Nuclear Information System (INIS)
Nguyen, P.T.; Berning, T.; Bang, M.; Djilali, N.
2003-01-01
A three-dimensional computational model of PEM fuel cell with serpentine flow field channels is presented in this paper. This model presents a comprehensive account for all important transport phenomena in fuel cell such as heat transfer, mass transfer, electrode kinetics, and potential fields in the membrane and gas diffusion layers. A new approach of solving for the potential losses across the cell was also developed in this model. The dependency of local current density on oxygen concentration and activation overpotential is fully addressed in this model. The computational domain consists of serpentine gas flow channels, porous gas diffusion layers, catalyst layers, and a membrane. Results obtained from this model are in good agreement with experimental results. (author)
Scrutiny of underdeveloped nanofluid MHD flow and heat conduction in a channel with porous walls
Directory of Open Access Journals (Sweden)
M. Fakour
2014-11-01
Full Text Available In this paper, laminar fluid flow and heat transfer in channel with permeable walls in the presence of a transverse magnetic field is investigated. Least square method (LSM for computing approximate solutions of nonlinear differential equations governing the problem. We have tried to show reliability and performance of the present method compared with the numerical method (Runge–Kutta fourth-rate to solve this problem. The influence of the four dimensionless numbers: the Hartmann number, Reynolds number, Prandtl number and Eckert number on non-dimensional velocity and temperature profiles are considered. The results show analytical present method is very close to numerically method. In general, increasing the Reynolds and Hartman number is reduces the nanofluid flow velocity in the channel and the maximum amount of temperature increase and increasing the Prandtl and Eckert number will increase the maximum amount of theta.
International Nuclear Information System (INIS)
Danilov, V.V.; Filippov, Yu.P.; Mamedov, I.S.
1989-01-01
The methods of optimizing the transducers designed for measurements of the void fraction of two-phase flows in the channels of round and annular cross section are presented. On the basis of the analysis performed concrete solution of relatively high technical characteristics are proposed. Rated and actual characteristics of signal ranges and measurement errors are given for both sensors. Influence of the mass velocity on the void fraction of adiabatic two-phase flows is theoretically analyzed. Effects of friction and of liquid-into-vapour entrainment are shown. Calculation results are compared with the obtained experimental data for helium. Special attention is given to the specific features of the processes in channels with different cross section. 17 refs.; 5 figs.; 1 tab
Effect of Local Junction Losses in the Optimization of T-shaped Flow Channels
Kosaraju, Srinivas
2015-11-01
T-shaped channels are extensively used in flow distribution applications such as irrigation, chemical dispersion, gas pipelines and space heating and cooling. The geometry of T-shaped channels can be optimized to reduce the overall pressure drop in stem and branch sections. Results of such optimizations are in the form of geometric parameters such as the length and diameter ratios of the stem and branch sections. The traditional approach of this optimization accounts for the pressure drop across the stem and branch sections, however, ignores the pressure drop in the T-junction. In this paper, we conduct geometry optimization while including the effect of local junction losses in laminar flows. From the results, we are able to identify a non-dimensional parameter that can be used to predict the optimal geometric configurations. This parameter can also be used to identify the conditions in which the local junction losses can be ignored during the optimization.
Energy Technology Data Exchange (ETDEWEB)
Liu, Chun-Ho [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Building and Real Estate; Leung, Dennis Y.C. [The University of Hong Kong (Hong Kong). Department of Mechanical Engineering
2006-11-15
This study employs a direct numerical simulation (DNS) technique to study the flow, turbulence structure, and passive scalar plume transport behind line sources in an unstably stratified open channel flow. The scalar transport behaviors for five emission heights (z{sub s}=0, 0.25H, 0.5H, 0.75H, and H, where H is the channel height) at a Reynolds number of 3000, a Prandtl number and a Schmidt number of 0.72, and a Richardson number of -0.2 are investigated. The vertically meandering mean plume heights and dispersion coefficients calculated by the current DNS model agree well with laboratory results and field measurements in literature. It is found that the plume meandering is due to the movement of the positive and negative vertical turbulent scalar fluxes above and below the mean plume heights, respectively. These findings help explaining the plume meandering mechanism in the unstably stratified atmospheric boundary layer. (author)
Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer
Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr
2017-12-01
This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.
New Love wave liquid sensor operating at 2 GHz using an integrated micro-flow channel
International Nuclear Information System (INIS)
Assouar, M B; Kirsch, P; Alnot, P
2009-01-01
Surface acoustic wave (SAW) devices based on waveguide modes with shear-horizontal polarization (Love modes) are very promising for sensor applications, especially in liquid media. We present here the realization of a 2 GHz operating frequency sensor based on the SiO 2 /36YX LiTaO 3 structure with an integrated PDMS micro-flow channel and using electron beam lithography to realize the submicronic interdigital transducers. Using our developed sensor operating at 2 GHz, we carried out alternate cycles of nitrogen and water circulating in the PDMS micro-flow channel. We measured an absolute sensitivity of −19 001 Hz mm 2 ng −1 due to the interaction of the sensor with water. This sensitivity is higher than that of other devices operating at lower frequencies. The detection mechanism, including gravimetric and permittivity effects at high frequency, will be discussed
Salama, Amgad; El-Amin, Mohamed; Sun, Shuyu
2014-01-01
Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.
Salama, Amgad
2014-08-25
Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.
40 CFR 60.692-3 - Standards: Oil-water separators.
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Oil-water separators. 60.692... Emissions From Petroleum Refinery Wastewater Systems § 60.692-3 Standards: Oil-water separators. (a) Each oil-water separator tank, slop oil tank, storage vessel, or other auxiliary equipment subject to the...
40 CFR 63.686 - Standards: Oil-water and organic-water separators.
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...
Fluid-structure-interaction of a flag in a channel flow
Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe
2017-11-01
The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.
Temperature fluctuations in fully-developed turbulent channel flow with heated upper wall
Bahri, Carla; Mueller, Michael; Hultmark, Marcus
2013-11-01
The interactions and scaling differences between the velocity field and temperature field in a wall-bounded turbulent flow are investigated. In particular, a fully developed turbulent channel flow perturbed by a step change in the wall temperature is considered with a focus on the details of the developing thermal boundary layer. For this specific study, temperature acts as a passive scalar, having no dynamical effect on the flow. A combination of experimental investigation and direct numerical simulation (DNS) is presented. Velocity and temperature data are acquired with high accuracy where, the flow is allowed to reach a fully-developed state before encountering a heated upper wall at constant temperature. The experimental data is compared with DNS data where simulations of the same configuration are conducted.
Experimental study on transition characteristics of pulsating flow in narrow rectangular channel
International Nuclear Information System (INIS)
Zhang Chuan; Tan Sichao; Liu Yusheng; Gao Puzhen; Zhao Jianing; Zhang Hong
2013-01-01
Experimental study of flow characteristic in smooth narrow rectangular channel under harmonic pulsating flow which covers laminar to turbulent flow (Reynolds number 7504-450) was carried out. The experimental results show that the frictional factors in acceleration phase of pulsating flow are higher than that in steady state, but lower than that in deceleration phase. Womersley parameter has a significant influence on the critical Reynolds number. The critical Reynolds number decreases with the increase of Womersley parameter in acceleration phase and it is opposite in deceleration phase. An empirical correlation was developed to predict the critical Reynolds number based on the experimental data, and the correlation can fit with critical Reynolds number in steady state. (authors)
The impact of channel path length on PEMFC flow-field design
Energy Technology Data Exchange (ETDEWEB)
Shimpalee, S.; Greenway, S.; Van Zee, J.W. [Chemical Engineering Department, University of South Carolina, Columbia, SC 29208 (United States)
2006-09-29
Distributions in reactant species concentration in a PEMFC due to local consumption of fuel and local transport of water through the membrane cause distributions in current density, temperature, and water concentration in three dimensions in a PEMFC. These distributions can lead to flooding or drying of the membrane that may shorten the life of an MEA. Changing the cell's flow-field pattern to distribute the gas more evenly is one method of minimizing these stresses. This paper investigates how 200cm{sup 2} serpentine flow-fields with different number of gas paths, and thus different gas path lengths, affect performance and species distribution. The results show how the local temperature, water content, and current density distributions become more uniform for serpentine flow-field designs with shorter path lengths or larger number of channels. These results may be used to develop universal heuristics and dimensionless number correlations in the design of flow-fields and stacks. (author)
Interfacial friction factors for air-water co-current stratified flow in inclined channels
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)
Radu, Andrea I.
2012-04-01
A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow rate, biomass accumulation in the channel reached a steady state. Replicate simulation runs prove that the stochastic biomass attachment model does not affect the stationary biomass level achieved and has only a slight influence on the dynamics of biomass accumulation. Biofilm removal strategies based on velocity variations are evaluated. Numerical results indicate that sudden velocity increase could lead to biomass sloughing, followed however by biomass re-growth when returning to initial operating conditions. Simulations show particularities of substrate availability in membrane devices used for water treatment, e.g., the accumulation of rejected substrates at the membrane surface due to concentration polarization. Interestingly, with an increased biofilm thickness, the overall substrate consumption rate dominates over accumulation due to substrate concentration polarization, eventually leading to decreased substrate concentrations in the biofilm compared to bulk liquid. © 2012 Elsevier B.V.
Interfacial friction factors for air-water co-current stratified flow in inclined channels
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)
Keslerová, Radka; Trdlička, David
2015-09-01
This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.
International Nuclear Information System (INIS)
Leontidis, V; Baldas, L; Colin, S; Brandner, J J
2012-01-01
The possibility to generate a gas flow inside a channel just by imposing a tangential temperature gradient along the walls without the existence of an initial pressure difference is well known. The gas must be under rarefied conditions, meaning that the system must operate between the slip and the free molecular flow regimes, either at low pressure or/and at micro/nano-scale dimensions. This phenomenon is at the basis of the operation principle of Knudsen pumps, which are actually compressors without any moving parts. Nowadays, gas flows in the slip flow regime through microchannels can be modeled using commercial Computational Fluid Dynamics softwares, because in this regime the compressible Navier-Stokes equations with appropriate boundary conditions are still valid. A simulation procedure has been developed for the modeling of thermal creep flow using ANSYS Fluent®. The implementation of the boundary conditions is achieved by developing User Defined Functions (UDFs) by means of C++ routines. The complete first order velocity slip boundary condition, including the thermal creep effects due to the axial temperature gradient and the effect of the wall curvature, and the temperature jump boundary condition are applied. The developed simulation tool is used for the preliminary design of Knudsen micropumps consisting of a sequence of curved and straight channels.
Secondary flows in the cooling channels of the high-performance light-water reactor
Energy Technology Data Exchange (ETDEWEB)
Laurien, E.; Wintterle, Th. [Stuttgart Univ., Institute for Nuclear Technolgy and Energy Systems (IKE) (Germany)
2007-07-01
The new design of a High-Performance Light-Water Reactor (HPLWR) involves a three-pass core with an evaporator region, where the compressed water is heated above the pseudo-critical temperature, and two superheater regions. Due to the strong dependency of the supercritical water density on the temperature significant mass transfer between neighboring cooling channels is expected if the temperature is unevenly distributed across the fuel element. An inter-channel flow is then superimposed to the secondary flow vortices induced by the non-isotropy of turbulence. In order to gain insight into the resulting flow patterns as well as into temperature and density distributions within the various subchannels of the fuel element CFD (Computational Fluid Dynamics) calculations for the 1/8 fuel element are performed. For simplicity adiabatic boundary conditions at the moderator box and the fuel element box are assumed. Our investigation confirms earlier results obtained by subchannel analysis that the axial mass flux is significantly reduced in the corner subchannel of this fuel element resulting in a net mass flux towards the neighboring subchannels. Our results provide a first estimation of the magnitude of the secondary flows in the pseudo-critical region of a supercritical light-water reactor. Furthermore, it is demonstrated that CFD is an efficient tool for investigations of flow patterns within nuclear reactor fuel elements. (authors)
Direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface
Chang, Jaehee; Jung, Taeyong; Choi, Haecheon; Kim, John
2016-11-01
Recently a superhydrophobic surface has drawn much attention as a passive device to achieve high drag reduction. Despite the high performance promised at ideal conditions, maintaining the interface in real flow conditions is an intractable problem. A non-wetting surface, known as the slippery liquid-infused porous surface (SLIPS) or the lubricant-impregnated surface (LIS), has shown a potential for drag reduction, as the working fluid slips at the interface but cannot penetrate into the lubricant layer. In the present study, we perform direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface to investigate the effects of this surface on the interfacial slip and drag reduction. The flow rate of water is maintained constant corresponding to Reτ 180 in a fully developed turbulent channel flow, and the lubricant layer is shear-driven by the turbulent water flow. The lubricant layer is also simulated with the assumption that the interface is flat (i.e. the surface tension effect is neglected). The solid substrate in which the lubricant is infused is modelled as straight ridges using an immersed boundary method. DNS results show that drag reduction by the liquid-infused surface is highly dependent on the viscosity of the lubricant.
Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.
Gillespie, Dirk; Pennathur, Sumita
2013-03-05
Separation of ionic species with the same electrophoretic mobility but different valence in electrolyte systems can occur within nanometer-scale channels with finite electrical double layers (EDLs). This is because EDL thicknesses are a significant fraction of slit height in such channels and can create transverse analyte concentration profiles that allow for unique separation modalities when combined with axial fluid flow. Previous work has shown such separation to occur using either pressure-driven flow or electro-osmotic flow separately. Here, we develop a Poisson-Boltzmann model to compare the separation of such ions using the combination of both pressure-driven and electro-osmotic flow. Applying a pressure gradient in the opposite direction of electro-osmotic flow can allow for zero or infinite retention of analyte species, which we investigate using three different wall boundary conditions. Furthermore, we determine conditions in fused silica nanochannels with which to generate optimal separation between two analytes of different charge but the same mobility. We also give simple rules of thumb to achieve the best separation efficacy in nanochannel systems.
Heat transfer in initial region of a plane channel at different turbulence levels of inlet flow
International Nuclear Information System (INIS)
Sukomel, A.S.; Gutsev, D.F.; Velichko, V.I.
1976-01-01
Local heat transfer has been experimentally studied on the initial portion of the flat channel in the turbulent air flow. The channel measures 37.5 mm in height and 212.5 mm in width. The heat transfer measurements have been taken at inlet flow turbulence of epsilon 0 =0.7-0.8%. The charts are plotted showing variation of trannser with inlet and additional agitation of the flow. Critical values are found of the Reynolds number which are characteristic of the zones with various types of flow (laminar, transient and turbulent) at epsilon 0 =0.7-0.8%: Resub(crit 1) = 9.3x10sup(4), Resub(crit 2) = 2.9x10sup(5). With the increase of epsilon 0 up to 5% and above, the flow in the boundary layer becomes turbulent practically from the very beginning of the experimental portion. Considerable increase has been revealed of the heat transfer in this group of the experiments. At epsilon (>=) 5% the heat transfer grows up regularly
Effect of Inhibitors on Weld Corrosion under Sweet Conditions Using Flow Channel
Khaled Alawadhi; Abdulkareem Aloraier; Suraj Joshi; Jalal Alsarraf
2014-01-01
The aim of this paper is to compare the effectiveness and electrochemical behavior of typical oilfield corrosion inhibitors with previous oilfield corrosion inhibitors under the same electrochemical techniques to control preferential weld corrosion of X65 pipeline steel in artificial seawater saturated with carbon dioxide at a pressure of one bar. A secondary aim is to investigate the conditions under which current reversal takes place. A flow channel apparatus was used in the laboratory to s...
Spinning and tumbling of micron-sized triangles in a micro-channel shear flow
Fries, J.; Kumar, M. Vijay; Mihiretie, B. Mekonnen; Hanstorp, D.; Mehlig, B.
2018-03-01
We report on measurements of the angular dynamics of micron-sized equilaterally triangular platelets suspended in a micro-channel shear flow. Our measurements confirm that such particles spin and tumble like a spheroid in a simple shear. Since the triangle has corners, we can observe the spinning directly. In general, the spinning frequency is different from the tumbling frequency and the spinning is affected by tumbling. This gives rise to doubly periodic angular dynamics.
A model for the two-point velocity correlation function in turbulent channel flow
International Nuclear Information System (INIS)
Sahay, A.; Sreenivasan, K.R.
1996-01-01
A relatively simple analytical expression is presented to approximate the equal-time, two-point, double-velocity correlation function in turbulent channel flow. To assess the accuracy of the model, we perform the spectral decomposition of the integral operator having the model correlation function as its kernel. Comparisons of the empirical eigenvalues and eigenfunctions with those constructed from direct numerical simulations data show good agreement. copyright 1996 American Institute of Physics
Establishment of DNS database in a turbulent channel flow by large-scale simulations
Abe, Hiroyuki; Kawamura, Hiroshi; 阿部 浩幸; 河村 洋
2008-01-01
In the present study, we establish statistical DNS (Direct Numerical Simulation) database in a turbulent channel flow with passive scalar transport at high Reynolds numbers and make the data available at our web site (http://murasun.me.noda.tus.ac.jp/turbulence/). The established database is reported together with the implementation of large-scale simulations, representative DNS results and results on turbulence model testing using the DNS data.
DNS of turbulent channel flow at ReΤ=395, 590 AND Pr=0.01
Energy Technology Data Exchange (ETDEWEB)
Tiselj, I. [Jozef Stefan Inst., Ljubljana (Slovenia)
2011-07-01
The paper presents results of the Direct Numerical Simulation of turbulent channel flow at friction Reynolds numbers 395 and 590 with passive scalar at Prandtl number 0.01, which corresponds to the Prandtl number of liquid sodium. Fluctuating and non-fluctuating temperature boundary conditions are analyzed and compared. Results clearly describe the minor role of the turbulent Prandtl number in the integral wall-to-fluid heat transfer. (author)
PLUGM: a coupled thermal-hydraulic computer model for freezing melt flow in a channel
International Nuclear Information System (INIS)
Pilch, M.
1982-01-01
PLUGM is a coupled thermal-hydraulic computer model for freezing liquid flow and plugging in a cold channel. PLUGM is being developed at Sandia National Laboratories for applications in Sandia's ex-vessel Core Retention Concept Assessment Program and in Sandia's LMFBR Transition Phase Program. The purpose of this paper is to introduce PLUGM and demonstrate how it can be used in the analysis of two of the core retention concepts under investigation at Sandia: refractory brick crucibles and particle beds
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2010-01-01
Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth & Pope with Durbin's method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous ...
On the influence of plasma DBD actuator on the flow in a rectangular channel
Czech Academy of Sciences Publication Activity Database
Procházka, Pavel P.; Uruba, Václav
2014-01-01
Roč. 14, č. 1 (2014), s. 727-728 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /85./. Erlangen, 10.03.2014-14.03.2014] R&D Projects: GA ČR(CZ) GP14-25354P Institutional support: RVO:61388998 Keywords : plasma DBD * boundary layer * channel flow Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201410346/abstract
Transient analysis of air-water two-phase flow in channels and bends
International Nuclear Information System (INIS)
Khan, H.J.; Ye, W.; Pertmer, G.A.
1992-01-01
The algorithm used in this paper is the Newton Block Gauss Seidel method, which has been applied to both simple and complex flow conditions in two-phase flow. This paper contains a description of difference techniques and an iterative solution algorithm that is used to solve the field and constitutive equations of the two-fluid model. In practice, this solution procedure has been proven to be stable and capable of generating solutions in problems where other schemes have failed. The method converges rapidly for reasonable error tolerances and is easily extended to three-dimensional geometries. Using air-water as the two-phase medium, transient flow behavior in several geometries of interest are shown. Flow through a vertical channel with flow obstruction, large U bends, and 90-deg bends are being demonstrated with variation of inlet void fraction and slip ratio. Significant changes in the velocity and void distribution profiles have been observed. Various regions of flow recirculation are obtained in the flow domain for each phase. The phasic velocity and void distributions are dominated by gravity-induced phase separation causing air to accumulate in the upper region. The influence of inlet slip ratio and interfacial momentum transfer on the transient flow profile has been demonstrated in detail
A Numerical Study of Non-hydrostatic Shallow Flows in Open Channels
Zerihun, Yebegaeshet T.
2017-06-01
The flow field of many practical open channel flow problems, e.g. flow over natural bed forms or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic pressure distribution. The essential vertical details of such a flow field need to be accounted for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal slope and negligible vertical acceleration, are inappropriate to analyse these types of problems. Besides, most of the current Boussinesq-type models do not consider the effects of turbulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes terms accounting for the effective stresses arising from the turbulent characteristics of the flow. The feasibility of the proposed model is examined by simulating flow situations that involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational results for free-surface and bed pressure profiles exhibit good correlations with experimental data, demonstrating that the present model is capable of simulating the salient features of free-surface flows over sharply-curved overflow structures and rigid-bed dunes.
Directory of Open Access Journals (Sweden)
Islam S.M. Khalil
2016-06-01
Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr−1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr−1 and 30 ml.hr−1 are calculated to be 45 μm.s−1 and 15 μm.s−1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.
Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi
2016-10-01
Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.
Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel
Budiman, Alexander Christantho
2014-12-04
Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.
DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01
Energy Technology Data Exchange (ETDEWEB)
Tiselj, Iztok, E-mail: iztok.tiselj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon, E-mail: leon.cizelj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)
2012-12-15
Highlights: Black-Right-Pointing-Pointer DNS database for turbulent channel flow at Prandtl number 0.01 and various Re{sub {tau}}. Black-Right-Pointing-Pointer Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. Black-Right-Pointing-Pointer DNS database with conjugate heat transfer for liquid sodium-steel contact. Black-Right-Pointing-Pointer Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium-steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.
DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01
International Nuclear Information System (INIS)
Tiselj, Iztok; Cizelj, Leon
2012-01-01
Highlights: ► DNS database for turbulent channel flow at Prandtl number 0.01 and various Re τ . ► Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. ► DNS database with conjugate heat transfer for liquid sodium–steel contact. ► Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium–steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.
Suppression of the secondary flow in a suction channel of a large centrifugal pump
International Nuclear Information System (INIS)
Torii, D; Nagahara, T; Okihara, T
2013-01-01
The suction channel configuration of a large centrifugal pump with a 90-degree bend was studied in detail to suppress the secondary flow at the impeller inlet for improving suction performance. Design of experiments (DOE) and computational fluid dynamics (CFD) were used to evaluate the sensitivity of several primary design parameters of the suction channel. A DOE is a powerful tool to clarify the sensitivity of objective functions to design parameters with a minimum of trials. An L9 orthogonal array was adopted in this study and nine suction channels were designed, through which the flow was predicted by steady state calculation. The results indicate that a smaller bend radius with a longer straight nozzle, distributed between the bend and the impeller, suppresses the secondary flow at the impeller inlet. An optimum ratio of the cross sectional areas at the bend inlet and outlet was also confirmed in relationship to the contraction rate of the downstream straight nozzle. These findings were obtained by CFD and verified by experiments. The results will aid the design of large centrifugal pumps with better suction performance and higher reliability
Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele
2016-02-01
An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.
DEFF Research Database (Denmark)
Hilgers, Rob H P; Janssen, Ger M J; Fazzi, Gregorio E
2010-01-01
We tested the hypothesis that changes in arterial blood flow modify the function of endothelial Ca2+-activated K+ channels [calcium-activated K+ channel (K(Ca)), small-conductance calcium-activated K+ channel (SK3), and intermediate calcium-activated K+ channel (IK1)] before arterial structural...... remodeling. In rats, mesenteric arteries were exposed to increased [+90%, high flow (HF)] or reduced blood flow [-90%, low flow (LF)] and analyzed 24 h later. There were no detectable changes in arterial structure or in expression level of endothelial nitric-oxide synthase, SK3, or IK1. Arterial relaxing...... arteries, the balance between the NO/prostanoid versus EDHF response was unaltered. However, the contribution of IK1 to the EDHF response was enhanced, as indicated by a larger effect of TRAM-34 and a larger residual NS309-induced relaxation in the presence of UCL 1684. Reduction of blood flow selectively...
Hong, Bong Hwan; Jung, In Su
2017-07-01
A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Luangdilok, W.; Todreas, N.E.
1989-01-01
This work investigated the structure of penetrative flow recirculation and associated flow conditions in a multi-rod channel induced by interassembly heat transfer that causes cooling through channel walls. Three investigation approaches, experimental, numerical, and analytical were employed in a complimentary fashion. Physical experiments involved water flow visualization and temperature measurement in a 4x4 rod square channel. Numerical experiments involved 3-dimensional simulations of water and sodium flow in a 2x2-rod channels. An approximate reverse flow model including Prandtl number effect was developed. A correlating equation based on the model and experiments was verified for water to correctly predict the trend of the 4x4-rod experimental penetration depth data. (orig.)
A new submarine oil-water separation system
Cai, Wen-Bin; Liu, Bo-Hong
2017-12-01
In order to solve the oil field losses of environmental problems and economic benefit caused by the separation of lifting production liquid to offshore platforms in the current offshore oil production, from the most basic separation principle, a new oil-water separation system has been processed of adsorption and desorption on related materials, achieving high efficiency and separation of oil and water phases. And the submarine oil-water separation device has been designed. The main structure of the device consists of gas-solid phase separation device, period separating device and adsorption device that completed high efficiency separation of oil, gas and water under the adsorption and desorption principle, and the processing capacity of the device is calculated.
International Nuclear Information System (INIS)
Zuev, B.K.; Yagov, V.V.; Grachev, A.S.
2006-01-01
Discharge on boiling in a channel was studied as a new atomization and excitation source for spectrochemical analysis in a flow of electrolyte solutions. The discharge arises between the liquid walls of a vapor lock formed in the channel of a dielectric membrane because of the rapid Joule heating of the liquid in the channel. The effect of channel geometry on the reproducibility of the integrated light intensity was studied. The background radiation spectrum was measured over the range 220-900 nm, and the possibility of determining alkali and alkaline earth metals in a flow was studied. The parameters of linear calibration equations and the detection limits for these metals are given [ru
Kinematics and statistics of dense, slow granular flow through vertical channels
Ananda, K. S.; Moka, Sudheshna; Nott, Prabhu R.
We have investigated the flow of dry granular materials through vertical channels in the regime of dense slow flow using video imaging of the particles adjacent to a transparent wall. Using an image processing technique based on particle tracking velocimetry, the video movies were analysed to obtain the velocities of individual particles. Experiments were conducted in two- and three-dimensional channels. In the latter, glass beads and mustard seeds were used as model granular materials, and their translational velocities were measured. In the former, aluminium disks with a dark diametral stripe were used and their translational velocities and spin were measured. Experiments in the three-dimensional channels were conducted for a range of the channel width W, and for smooth and rough sidewalls. As in earlier studies, we find that shearing takes place predominantly in thin layers adjacent to the walls, while the rest of the material appears to move as a plug. However, there are large velocity fluctuations even in the plug, where the macroscopic deformation rate is negligibly small. The thickness of the shear layer, scaled by the particle diameter dp, increases weakly with W/dp. The experimental data for the velocity field are in good agreement with the Cosserat plasticity model proposed recently. We also measured the mean spin of the particles in the two-dimensional channel, and its deviation from half the vorticity. There is a clear, measurable deviation, which too is in qualitative agreement with the Cosserat plasticity model. The statistics of particle velocity and spin fluctuations in the two-dimensional channel were analysed by determining their probability distribution function, and their spatial and temporal correlation. They were all found to be broadly similar to previous observations for three-dimensional channels, but some differences are evident. The spatial correlation of the velocity fluctuations are much stronger in the two-dimensional channel, implying
Directory of Open Access Journals (Sweden)
Yasuhisa Shinmoto
2017-11-01
Full Text Available The use of immiscible liquids for cooling of surfaces with high heat generation density is proposed based on the experimental verification of its superior cooling characteristics in fundamental systems of pool boiling and flow boiling in a tube. For the purpose of practical applications, however, heat transfer characteristics due to flow boiling in narrow rectangular channels with different small gap sizes need to be investigated. The immiscible liquids employed here are FC72 and water, and the gap size is varied as 2, 1, and 0.5 mm between parallel rectangular plates of 30 mm × 175 mm, where one plate is heated. To evaluate the effect of gap size, the heat transfer characteristics are compared at the same inlet velocity. The generation of large flattened bubbles in a narrow gap results in two opposite trends of the heat transfer enhancement due to thin liquid film evaporation and of the deterioration due to the extension of dry patch in the liquid film. The situation is the same as that observed for pure liquids. The latter negative effect is emphasized for extremely small gap sizes if the flow rate ratio of more-volatile liquid to the total is not reduced. The addition of small flow rate of less-volatile liquid can increase the critical heat flux (CHF of pure more-volatile liquid, while the surface temperature increases at the same time and assume the values between those for more-volatile and less-volatile liquids. By the selection of small flow rate ratio of more-volatile liquid, the surface temperature of pure less-volatile liquid can be decreased without reducing high CHF inherent in the less-volatile liquid employed. The trend of heat transfer characteristics for flow boiling of immiscible mixtures in narrow channels is more sensitive to the composition compared to the flow boiling in a round tube.
Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel
Energy Technology Data Exchange (ETDEWEB)
Lim, C. P.; Lam, Y. C., E-mail: myclam@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 (Singapore); BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Han, J. [BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2015-07-15
Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D{sub 2}) and the largest Lyapunov exponent (λ{sub 1}), with D{sub 2} being fractional and λ{sub 1} being positive. Contour maps of D{sub 2} and λ{sub 1} of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D{sub 2} and λ{sub 1} maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.
Nano-and microstructure of air/oil/water interfaces
International Nuclear Information System (INIS)
McGillivray, D.; Mata, J.; White, J.; Zank, J.
2009-01-01
Full text: We report the creation of air/oil/water interfaces with variable thickness oil films, using polyisobutylen based (PIB) surfactants co-spread with long-chain paraffinic alkanes on clean water surfaces. The resultant stable oil layers are readily measurable with simple surface techniques, exhibit physical densities the same as expected for bulk oils, and are up to - 1 00 A thick above the water surface as determined using x-ray reflectometry. This provides a ready system for studying the competition of surfactants at the oil/water interface. Results from the competition of a non-ionic polyamide surfactant or an anionic sodium dodecyl sulfate with the PIB surfactant are reported. However, this smooth oil layer does not account for the total volume of spread oil, nor is the increase in thickness proportional to the film compression. Brewster angle microscopy (BAM) reveals surfactant and oil structures on the scale of 1 to 10μm at the interface. At low surface pressure (π m Nm-1) large, -10μm inhomogeneities are observed. Beyond a phase transition observed at ∼ 24 m Nm-1 a structure with a spongy appearance and a micron-scale texture develops. These structures have implications for understanding the microstructure at the oil/water interface in emulsions.
Enhanced stability of steep channel beds to mass failure and debris flow initiation
Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.
2015-12-01
Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.
Modification of Turbulence Structures in a Channel Flow by Uniform Magnetic Fluxes
Lee, D.; Choi, H.; Kim, J.
1997-11-01
Effects of electromagnetic forcing on the near-wall turbulence are investigated by applying a uniform magnetic flux in a turbulent channel flow in the streamwise and spanwise directions, respectively. The base flow is a fully developed turbulent channel flow and the direct numerical simulation technique is used. The electromagnetic force induced from the magnetic fluxes reduces the intensity of the wall-layer structures and thus drag is significantly reduced. The wall-normal and spanwise velocity fluctuations and the Reynolds shear stress decrease with the increased magnetic flux in both directions. The streamwise velocity fluctuations increase with the streamwise magnetic flux, whereas they decrease with the spanwise magnetic flux. It is also shown that the spanwise magnetic flux is much more effective than the streamwise magnetic flux in reducing the skin-friction drag. Instantaneous Lorentz force vectors show that the flow motions by the near-wall vortices are directly inhibited by the spanwise magnetic flux, while they are less effectively inhibited by the streamwise magnetic flux. Other turbulence statistics that reveal the effects of the applied magnetic forcing will be presented. ^* Supported by KOSEF Contract No. 965-1008-003-2 and ONR Grant No. N00014-95-1-0352.
Effects of elevated line sources on turbulent mixing in channel flow
Nguyen, Quoc; Papavassiliou, Dimitrios
2016-11-01
Fluids mixing in turbulent flows has been studied extensively, due to the importance of this phenomena in nature and engineering. Convection effects along with motion of three-dimensional coherent structures in turbulent flow disperse a substance more efficiently than molecular diffusion does on its own. We present here, however, a study that explores the conditions under which turbulent mixing does not happen, when different substances are released into the flow field from different vertical locations. The study uses a method which combines Direct Numerical Simulation (DNS) with Lagrangian Scalar Tracking (LST) to simulate a turbulent channel flow and track the motion of passive scalars with different Schmidt numbers (Sc). The particles are released from several instantaneous line sources, ranging from the wall to the center region of the channel. The combined effects of mean velocity difference, molecular diffusion and near-wall coherent structures lead to the observation of different concentrations of particles downstream from the source. We then explore in details the conditions under which particles mixing would not happen. Results from numerical simulation at friction Reynolds number of 300 and 600 will be discussed and for Sc ranging from 0.1 to 2,400.
Multiphysical model of heterogenous flow moving along а channel of variable cross-section
Directory of Open Access Journals (Sweden)
М. А. Васильева
2017-10-01
Full Text Available The article deals with the problem aimed at solving the fundamental problems of developing effective methods and tools for designing, controlling and managing the stream of fluid flowing in variable-section pipelines intended for the production of pumping equipment, medical devices and used in such areas of industry as mining, chemical, food production, etc. Execution of simulation modelling of flow motion according to the scheme of twisted paddle static mixer allows to estimate the efficiency of mixing by calculating the trajectory and velocities of the suspended particles going through the mixer, and also to estimate the pressure drop on the hydraulic flow resistance. The model examines the mixing of solids dissolved in a liquid at room temperature. To visualize the process of distributing the mixture particles over the cross-section and analyzing the mixing efficiency, the Poincaréplot module of the COMSOL Multiphysics software environment was used. For the first time, a multi-physical stream of heterogeneous flow model has been developed that describes in detail the physical state of the fluid at all points of the considered section at the initial time, takes into account the design parameters of the channel (orientation, dimensions, material, etc., specifies the laws of variation of the parameters at the boundaries of the calculated section in conditions of the wave change in the internal section of the working chamber-channel of the inductive peristaltic pumping unit under the influence of the energy of the magnetic field.
DNS of multifluid flows in a vertical channel undergoing topology changes
Lu, Jiacai; Tryggvason, Gretar
2017-11-01
Multifluid flows in a vertical channel are examined by direct numerical simulations, for situations where the topology of the interface separating the different fluids changes. Several bubbles are initially placed in a turbulent channel flow at a sufficiently high void fraction so that the bubbles collide and the liquid film between them becomes very thin. This film is ruptured at a predetermined thickness and the bubbles are allowed to coalesce. For low Weber numbers the bubbles continue to coalesce, eventually forming one large bubble. At high Weber numbers, on the other hand, the large bubbles break up again, sometimes undergoing repeated coalescence and breakup. The evolution of various integral quantities, such as the average flow rate, wall-shear, and interface area are monitored and compared for different governing parameters. Various averages of the flow field and the phase distribution, over planes parallel to the walls, are examined and compared, and the microstructure of bubbles, at statistically steady state, is examined using low order probability functions. Supported by the Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725.
Energy Technology Data Exchange (ETDEWEB)
Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)
2017-02-15
Highlights: • Buoyancy may greatly redistribute the flow in a non-uniform channel. • Flow structures in the narrow gap are greatly changed when buoyancy is strong. • Large flow structures exist in wider gap, which is enhanced when heat is strong. • Buoyancy reduces mixing factor caused by large flow structures in narrow gap. - Abstract: It has been a long time since the ‘abnormal’ turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Strouhal number of the flow structure in the isothermal flow is dependent on the size of the narrow gap, not the Reynolds number once it is sufficiently large. This paper reports a numerical investigation on the effect of buoyancy on the large flow structures. A buoyancy-aided flow in a tightly-packed rod-bundle-like channel is modelled using large eddy simulation (LES) together with the Boussinesq approximation. The behaviour of the large flow structures in the gaps of the flow passage are studied using instantaneous flow fields, spectrum analysis and correlation analysis. It is found that the non-uniform buoyancy force in the cross section of the flow channel may greatly redistribute the velocity field once the overall buoyancy force is sufficiently strong, and consequently modify the large flow structures. The temporal and axial spatial scales of the large flow structures are influenced by buoyancy in a way similar to that turbulence is influenced. These scales reduce when the flow is laminarised, but start increasing in the turbulence regeneration region. The spanwise scale of the flow structures in the narrow gap remains more or
International Nuclear Information System (INIS)
Wang Junfeng; Huang Yanping; Wang Yanlin
2011-01-01
Highlights: → Specific points on the demand curve and flow patterns are visually studied. → Bubbly, churn, and annular flows were observed. → Onset of flow instability and bubbly-churn transition occurs at the same time. → The evolution of specific points and flow pattern transitions were examined. - Abstract: A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy's correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly-churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.
Study on characteristics of vapor-liquid two-phase flow in mini-channels
International Nuclear Information System (INIS)
Guo Lei; Zhang Shusheng; Cheng Lin
2011-01-01
Highlights: → I- and Z-shaped mini-channels are studied with water and ethanol respectively. → The smaller the wall contact angles are, the less time the bubbles take to depart. → Bubble bottom micro-layer can enhance heat transfer. → Z-shaped channels show a higher heat transfer coefficient but a larger pressure drop. → Water reflects a higher heat transfer coefficient than ethanol in the same channels. - Abstract: To explore the mechanism of boiling bubble dynamics in narrow channels, two types of channels are investigated which have I- and Z-shaped with width of 2 mm. Using VOF model and self-programming, the whole flow field is simulated with two different kinds of media, namely, water and ethanol. The influence of wall contact angle on the process of bubble generating and growth is studied, and the relationship between different channel shapes and the pressure drop is also investigated taking into account the effects of gravity, viscosity, surface tension and wall adhesion. The bubble generation, growth and departure processes are analyzed through numerical simulation and self-programming, and the influence of interface movements and changes on internal pressure difference and average surface heat transfer coefficient is investigated by using geometry reconstruction and interface tracking. It is found that wall contact angle has a great influence on the morphology of bubble. The smaller the wall contact angles are, the more round the bubbles are, and the less time the bubbles take to depart from the wall. The variation of contact angle also has effect upon the heat transfer coefficient. The greater the wall contact angle is, the larger the bubble-covered area is, thus the wall thermal resistance gets higher, and bubble nucleation is suppressed, and the heat transfer coefficient becomes lower. The role of surface tension in the process of boiling heat transfer is much more important than the gravity in narrow channels. The generation of bubbles
International Nuclear Information System (INIS)
Jiao, Kui; Zhou, Yibo; Du, Qing; Yin, Yan; Yu, Shuhai; Li, Xianguo
2013-01-01
Highlights: ► Simulations of CO poisoning in HT-PEMFC with different flow channels are conducted. ► Parallel and serpentine designs result in least and most CO effects, respectively. ► General CO distributions in CLs are similar with different flow channel designs. - Abstract: The performance of high temperature proton exchange membrane fuel cell (HT-PEMFC) is significantly affected by the carbon monoxide (CO) in hydrogen fuel, and the flow channel design may influence the CO poisoning characteristics by changing the reactant flow. In this study, three-dimensional non-isothermal simulations are carried out to investigate the comprehensive flow channel design and CO poisoning effects on the performance of HT-PEMFCs. The numerical results show that when pure hydrogen is supplied, the interdigitated design produces the highest power output, the power output with serpentine design is higher than the two parallel designs, and the parallel-Z and parallel-U designs have similar power outputs. The performance degradation caused by CO poisoning is the least significant with parallel flow channel design, but the most significant with serpentine and interdigitated designs because the cross flow through the electrode is stronger. At low cell voltages (high current densities), the highest power outputs are with interdigitated and parallel flow channel designs at low and high CO fractions in the supplied hydrogen, respectively. The general distributions of absorbed hydrogen and CO coverage fractions in anode catalyst layer (CL) are similar for the different flow channel designs. The hydrogen coverage fraction is higher under the channel than under the land, and is also higher on the gas diffusion layer (GDL) side than on the membrane side; and the CO coverage distribution is opposite to the hydrogen coverage distribution
Drag-reducing performance of obliquely aligned superhydrophobic surface in turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Sho; Fukagata, Koji [Department of Mechanical Engineering, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Mamori, Hiroya, E-mail: fukagata@mech.keio.ac.jp [Department of Mechanical Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan)
2017-04-15
Friction drag reduction effect by superhydrophobic surfaces in a turbulent channel flow is investigated by means of direct numerical simulation. The simulations are performed under a constant pressure gradient at the friction Reynolds number of 180. A special focus is laid upon the influence of the angle of microridge structure to flow direction, while the gas area fraction on the surface is kept at 50% and the groove width is kept constant at 33.75 wall units. Larger drag reduction effect is observed for a smaller angle: the bulk-mean velocity is increased about 15% when the microridge is parallel to the flow. The drag reduction effect is found to deteriorate rapidly with the microridge angle due to a decrease in the slip velocity. The Reynolds stress budgets show that the modification in each physical effect is qualitatively similar but more pronounced when the microridge is aligned with the stream. (paper)
Numerical simulation of MHD pulsatile flow of a biofluid in a channel
Directory of Open Access Journals (Sweden)
Kashif Ali
2015-08-01
Full Text Available The purpose of this paper is to numerically study the interaction of an external magnetic field with the flow of a biofluid through a Darcy-Forchhmeir porous channel, due to an oscillatory pressure gradient, in the presence of wall transpiration as well as chemical reaction considerations. We have noticed that if the Reynolds number of the wall transpiration flow is increased, the average (or maximum velocity of the main flow direction is raised. Similar effect has also been observed for the rheological parameter and the Darcy parameter, whereas an opposite trend has been noted for both the Forchheimer quadratic drag parameter and the magnetic parameter. Further, an increase in the Reynolds number results in straightening the concentration profile, thus making it an almost linear function of the dimensionless spatial variable.
Directory of Open Access Journals (Sweden)
Fengming Wang
2012-12-01
Full Text Available The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated. Several differently shaped pin fins (i.e., circular, elliptical, and drop-shaped with the same cross-sectional areas were compared in a staggered arrangement. The Reynolds number based on the obstructed section hydraulic diameter (defined as the ratio of the total wetted surface area to the open duct volume available for flow was varied from 4800 to 8200. The more streamlined drop-shaped pin fins were better at delaying or suppressing separation of the flow passing through them, which decreased the aerodynamic penalty compared to circular pin fins. The heat transfer enhancement of the drop-shaped pin fins was less than that of the circular pin fins. In terms of specific performance parameters, drop-shaped pin fins are a promising alternative configuration to circular pin fins.
Second law analysis for hydromagnetic couple stress fluid flow through a porous channel
Directory of Open Access Journals (Sweden)
S.O. Kareem
2016-06-01
Full Text Available In this work, the combined effects of magnetic field and ohmic heating on the entropy generation rate in the flow of couple stress fluid through a porous channel are investigated. The equations governing the fluid flow are formulated, non-dimensionalised and solved using a rapidly convergent semi-analytical Adomian decomposition method (ADM. The result of the computation shows a significant dependence of fluid’s thermophysical parameters on Joule’s dissipation as well as decline in the rate of change of fluid momentum due to the interplay between Lorentz and viscous forces. Moreover, the rate of entropy generation in the flow system drops as the magnitude of the magnetic field increases.
Three-dimensional numerical simulations of turbulent cavitating flow in a rectangular channel
Iben, Uwe; Makhnov, Andrei; Schmidt, Alexander
2018-05-01
Cavitation is a phenomenon of formation of bubbles (cavities) in liquid as a result of pressure drop. Cavitation plays an important role in a wide range of applications. For example, cavitation is one of the key problems of design and manufacturing of pumps, hydraulic turbines, ship's propellers, etc. Special attention is paid to cavitation erosion and to performance degradation of hydraulic devices (noise, fluctuations of the mass flow rate, etc.) caused by the formation of a two-phase system with an increased compressibility. Therefore, development of a model to predict cavitation inception and collapse of cavities in high-speed turbulent flows is an important fundamental and applied task. To test the algorithm three-dimensional simulations of turbulent flow of a cavitating liquid in a rectangular channel have been conducted. The obtained results demonstrate the efficiency and robustness of the formulated model and the algorithm.
Unsteady MHD blood flow through porous medium in a parallel plate channel
Latha, R.; Rushi Kumar, B.
2017-11-01
In this study, we have analyzed heat and mass transfer effects on unsteady blood flow through parallel plate channel in a saturated porous medium in the presence of a transverse magnetic field with thermal radiation. The governing higher order nonlinear PDE’S are converted to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using boundary conditions by choosing the axial flow transport and the fields of concentration and temperature apart from the normal velocity as a function of y and t. The effects of different pertinent parameters appeared in this model viz thermal radiation, Prandtl number, Heat source parameter, Hartmann number, Permeability parameter, Decay parameter on axial flow transport and the normal velocity are analyzed in detail.
Interplay between inertial and non-Newtonian effects on the flow in weakly modulated channel
International Nuclear Information System (INIS)
Abu-Ramadan, E.; Khayat, R.E.
2002-01-01
The flow inside a spatially modulated channel is examined for shear-thinning and shear-thickening fluids. The modulation amplitude is assumed to be small. A regular perturbation expansion of the flow field is used, coupled to a variable-step finite-difference scheme, to solve the problem. Since this method is intended to provide a fast and accurate alternative to conventional methods in the limit of small modulation amplitude, establishing the accuracy of the solution is critical. Numerical accuracy and convergence will be assessed, therefore. The influence of the wall geometry, inertia and non-Newtonian effects are investigated systematically. In particular, the influence of the flow and fluid parameters is examined on the conditions for the onset of separation. (author)
Heat-and-mass transfer during a laminar dissociating gas flow in eccentric annular channels
International Nuclear Information System (INIS)
Besedina, T.V.; Udot, A.V.; Yakushev, A.P.
1987-01-01
An algorithm to calculate heat-and-mass transfer processes during dissociating gas laminar flow in an eccentric annular channels is considered. Analytical solutions of the heat transfer equations for a rod clodding and gap with boundary conditions of conjugation of temperatures and heat fluxes have been used to determine temperature field. This has made it possible to proceed from slution of the conjugate problem to solution of the equation of energy only for the coolant. The results of calculation of temperature distribution along the cladding for different values of its eccentricity and thermal conductivity coefficient both for the case of frozen flow and in the presence of chemical reactions in the flow are given. When calculating temperatures with conjugation boundary conditions temperature gradients in azimuthal direction are far less and heat transfer in concentration diffusion is carried out mainly in radial direction
Directory of Open Access Journals (Sweden)
Lyapin Anton
2018-01-01
Full Text Available The influence of non-uniformity on mass transfer processes in open channels have been investigated under the action of urbanization factors. The study is related to the urgent problem of environmental degradation of water objects in urbanized areas. It is known that the water quality in the water objects depends on the manner in which the contaminants spread how they mix with the river water and diluted by it. The main results of the study consist of recommendations to incorporate non-uniformity factor to the calculation of diffusion dilution of wastewater and prediction of river processes. So the effect of the flow non-uniformity on the diffusion model of pollutants dilution and diffusion coefficient have been investigated. Formulas for the concentration profiles calculating and the average concentration of fine particulate matter in nonuniform gradually varied flow were presented. The deposition length of suspended contaminants were received, based on the hydraulic resistance laws of nonuniform gradually varied flow.
Geometric effects of spacer grid in an annulus flow channel during reflooding period
International Nuclear Information System (INIS)
Cho, S.; Chun, S. Y.; Kim, B. D.; Park, J. K.; Yun, Y. J.; Baek, W. P.
2004-01-01
A number of studies on the reflooding phase were actively carried out from the early 70's due to its importance for the safety of the nuclear reactor. (Martini et al., 1973; Henry, 1974; Chung, 1978;) However, few studies have presented the spacer grid effect during the reflooding period. Since the grid is an obstruction in the flow passage, it causes an increased pressure drop due to form and skin friction losses. On the other hand, the spacer grid tends to increase the local wall heat transfer. The present work has been performed in a vertical annulus flow channel with various flow conditions. The objective of this paper is to evaluate the effects of a swirl-vane spacer grid on the rewetting phenomena during the reflooding phase
ITER FW cooling by a flat channel, adapted to low flow rate and high pressure drop
International Nuclear Information System (INIS)
Ovchinnikov, I.B.; Bondarchuk, D.E.; Gervash, A.A.; Glazunov, D.A.; Komarov, A.O.; Kuznetsov, V.E.; Mazul, I.V.; Rulev, R.V.; Yablokov, N.A.
2011-01-01
Highlights: ► ITER FW cooling: pressure drop quotation must be assigned according to thermal load. ► Flat channel solutions with wide range (1:500) of hydraulic resistivity are presented. ► Simulations in Ansys CFX were carried out for presented designs. ► Usage of pressure drop quotation significantly reduces surface temperature. ► Experiments in TSEFEY-M facility confirm simulations. - Abstract: Application of hypervapotron (HV) to cool in-vessel components of ITER – divertor and first wall (FW) – is characterized by the same design load (5 MW/m 2 ) but water flow rate for FW is 8–9 times (almost by order!) less for parallel feeding elements so it seems it would be better to use other design. Several variants of a flat channel design different from HV are suggested that enable to adapt a channel to pressure quota up to 1 MPa and higher. A main feature of the suggested variants is a spiral or multi-spiral stream (flat multi spiral––FMS) that improves heat rejection and can be obtained both by exciting of such mode and forced by channel geometry. Comparison of the variants was carried out in simulations (Ansys CFX) as well as in experiments on the TSEFEY-M facility with electron-beam gun. It is shown that excitation of a spiral stream in a channel significantly reduces a temperature of a loaded surface of a channel. Miniature thermocouples were used to measure temperature near the surface.
Experimental study of static flow instability in subcooled flow boiling in parallel channels
International Nuclear Information System (INIS)
Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L.
1995-01-01
Experimental data for static flow instability or flow excursion (FE) at conditions applicable to the Advanced Neutron Source Reactor are very limited. A series of FE tests with light water flowing vertically upward was completed covering a local exit heat flux range of 0.7--18 MW/m 2 , exit velocity range of 2.8--28.4 m/s, exit pressure range of 0.117--1.7 MPa, and inlet temperature range of 40-- 50 degrees C. Most of the tests were performed in a ''stiff'' (constant flow) system where the instability threshold was detected through the minimum of the pressure-drop curve. A few tests were also conducted using as ''soft'' (constant pressure drop) a system as possible to secure a true FE phenomenon (actual secondary burnout). True critical heat flux experiments under similar conditions were also conducted using a stiff system. The FE data reported in this study considerably extend the velocity range of data presently available worldwide, most of which were obtained at velocities below 10 m/s. The Saha and Zuber correlation had the best fit with the data out of the three correlations compared. However, a modification was necessary to take into account the demonstrated dependence of the St and Nu numbers on subcooling levels, especially in the low subcooling regime. Comparison of Thermal Hydraulic Test Loop (THTL) data, as well as extensive data from other investigators, led to a proposed modification to the Saha and Zuber correlation for onset of significant void, applied to FE prediction. The mean and standard deviation of the THTL data were 0.95 and 15%, respectively, when comparing the THTL data with the original Saha and Zuber correlation, and 0.93 and 10% when comparing them with the modification. Comparison with the worldwide database showed a mean and standard deviation of 1.37 and 53%, respectively, for the original Saha and Zuber correlation and 1.0 and 27% for the modification
Flow visualization around cylinders in a channel flow using particle image velocimetry
International Nuclear Information System (INIS)
Hassan, Y.A.; Martinez, R.S.; Schmidl, W.D.; Philip, O.G.
2004-01-01
One of the major concerns with power plant steam generators is tube vibration caused by turbulent flow buffeting. The vibration can cause wear of the tubes at the tube supports and at tube joints that eventually leads to leaks and rupture. When the cumulative leaks affect the steam generator performance, the plant is shut down and the leaking tubes are either repaired or plugged. Not only is the repair procedure very costly in terms of the repair costs themselves and loss of income due to the plant outage, but it is also costly in the sense that the steam generator design has been altered or has been totally replaced. This normally leads to more repairs in the future. To better understand this behavior of turbulent flow buffeting (the cause of many tube problems), it was felt that quantitative experimental data is needed to test the empirical correlations that predict the behavior of turbulent flow around cylinders. Perhaps this quantitative data could lead to a better understanding of this particular fluid behavior and motion and this understanding would hopefully then lead to design solutions that can be implemented to avoid the problem. (author)
Numerical Study of Water Control with Downhole Oil-Water Separation Technology
Directory of Open Access Journals (Sweden)
Yin Khor Yin
2014-07-01
Full Text Available The maturing oil fields with increasing water production can pose a challenging produced water handling and disposal issues. This paper presents a numerical study of a motorless hydrocyclone to enhance understanding of the downhole oil-water separation. The turbulence of fluid flow is obtained using K-ε Realizable Turbulence model for complex swirl dominated flow, while the interface between hydrocarbon and water is described using the Discrete Phase model. In this approach, factors which contribute to the hydrocyclone separation instability were discussed. Discussion is then extended to the relationship of residence time with pressure difference between overflow and underflow. These pressure differences are able to relate to pressure condition for high water cut well which require downhole separation.
Directory of Open Access Journals (Sweden)
Taymaz Imdat
2015-01-01
Full Text Available The Lattice Boltzmann Method is applied to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a two-dimensional channel with a built-in bluff body. In this study, a triangular prism is taken as the bluff body. Not only the momentum transport, but also the energy transport is modeled by the Lattice Boltzmann Method. A uniform lattice structure with a single time relaxation rule is used. For obtaining a higher flexibility on the computational grid, interpolation methods are applied, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is investigated for different Reynolds numbers, while keeping the Prandtl number at the constant value of 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an assessment of the accuracy of the developed Lattice Boltzmann code, the results are compared with those obtained by a commercial Computational Fluid Dynamics code. It is observed that the present Lattice Boltzmann code delivers results that are of similar accuracy to the well-established Computational Fluid Dynamics code, with much smaller computational time for the prediction of the unsteady phenomena.
Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study
Eshghinejadfard, Amir; Hosseini, Seyed Ali; Thévenin, Dominique
2017-09-01
Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ =2 or 4) or spherical (λ =1 ). Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM) is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM). In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling). Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.
Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study
Directory of Open Access Journals (Sweden)
Amir Eshghinejadfard
2017-09-01
Full Text Available Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ=2 or 4 or spherical (λ=1. Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM. In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling. Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.
Effects of flow depth and wall roughness on turbulence in compound channels
International Nuclear Information System (INIS)
Prinos, P.; Townsend, R.; Tavoularis, S.
1985-01-01
Current methods for estimating discharge in compound channels often lead to large errors. The error is largely due to momentum transfer mechanism (MTM) generated in the junction regions of the flow field (between adjacent deep and shallow zones). The MTM adversely affects system conveyance, particularly when the velocity differential between the deep and shallow zones is large. Improved prediction methods, therefore, will necessarily reflect the MTM's presence and its effect on the compound flow field. The mechanism's influence on system hydraulics is best examined by analysing the related turbulence characteristics in the junction zones of the compound section. Townsend reported increased turbulence levels in the junction region between a main channel and its shallower flood plain zone and Elsawy, McKee and McKeogh found that observed normal turbulent stresses in a similar region were of the same order of magnitude as the apparent shear stress on the junction's vertical interface plane. The objective of the present study is to measure turbulent stresses in the junction region of a symmetrical compound open channel and examine their dependence on relative depth and relative boundary roughness. Further details of this phase of the larger study are presented elsewhere. (author)
Dynamics of superfluid helium-3 in flow channels with restricted geometries
International Nuclear Information System (INIS)
Kopnin, N.B.
1986-01-01
The dynamics of superfluid helium-3 in flow channels with transverse sizes smaller than the mean free path of quasiparticles with respect to collisions with each other is considered, taking into account the diffusive reflection of quasiparticles from the walls. For quasiclassical Green functions the boundary conditions obtained by Ovchinnikov for the similar problem in superconductors have been used. Equations are derived defining the behavior of the difference between chemical potentials of normal and superfluid components of helium-3. These equations describe a phenomenon similar to the branch imbalance (or charge imbalance) in superconductors, and determine the relaxation depth of the pressure gradient in superfluid helium-3. The time-dependent GinzburgLandau equations are also obtained for the order parameter in the case when the transverse size of the channel is close to the critical value when the superfluid transition temperature goes to zero. The approach makes it possible to study theoretically effects related to the overcritical flows of superfluid helium-3 through narrow channels under pressure
Gothic simulation of single-channel fuel heatup following a loss of forced flow
Energy Technology Data Exchange (ETDEWEB)
Chen, X-Q; Tahir, A. [NSS, Dept. of Thermal Hydraulics Analysis, Toronto, Ontario (Canada); Parlatan, Y. [Ontario Power Generation, NSATD, Pickering, Ontario (Canada); Kwee, M. [Bruce Power, NSASD, Toronto, Ontario (Canada)
2011-07-01
GOTHIC v7.2 was used to develop a computer model for the simulation of 28- and 37-element fuel heat-up at a loss of forced flow. The model has accounted for the non-uniformity of both axial and radial power distributions along the fuel channel for a typical CANDU reactor. In addition, the model has also accounted for the fuel rods, end-fittings, feeders and headers. Experimental test conditions for both 28- and 37-element bundles at either low or high powers were used for model validation. GOTHIC predictions of the rod and/or pressure-tube temperatures at a variety of test locations were compared with the corresponding experimental measurements. It is found that the numerical results agree well with the experimental measurements for most of the test locations. Results have also shown that the channel venting time is sensitive to the initial temperature distribution in the feeders and headers. An imposed temperature asymmetry at the beginning will cause the channel flow to vent earlier. (author)
Effect of the configuration of the corner in a narrow rectangular channel on flow and heat transfer
International Nuclear Information System (INIS)
Xu Jianjun; Chen Bingde; Wang Xiaojun
2009-01-01
In order to further understand the effect of the configuration of the corner in a narrow rectangular channel on flow and heat transfer, flow field and temperature field in a narrow rectangular channel were numerical simulated by using CFD code CFX10.0. The results show under the condition of equal quantity of heat of solid which is obtained by decreasing the solid of the corner, the distributions of inside wall temperature for the orthogonal and circular type configurations of the corner are almost the same as that of the archetypal configuration, and those can simulate heat transfer of the archetypal con- figuration. Under the condition of equal Re, secondary flow and friction pressure of the orthogonal type configuration are almost the same as those of the circular type configuration, which shows that the circular type configuration of the corner in a narrow channel can substituted for the archetypal configuration to simulate flow and heat transfer in a narrow rectangular channel. (authors)
Fedoseev, V. N.; Pisarevsky, M. I.; Balberkina, Y. N.
2018-01-01
This paper presents interconnection of dynamic and average flow rates of the coolant in a channel of complex geometry that is a basis for a generalization model of experimental data on heat transfer in various porous structures. Formulas for calculation of heat transfer of fuel rods in transversal fluid flow are acquired with the use of the abovementioned model. It is shown that the model describes a marginal case of separated flows in twisting channels where coolant constantly changes its flow direction and mixes in the communicating channels with large intensity. Dynamic speed is suggested to be identified by power for pumping. The coefficient of proportionality in general case depends on the geometry of the channel and the Reynolds number (Re). A calculation formula of the coefficient of proportionality for the narrow line rod packages is provided. The paper presents a comparison of experimental data and calculated values, which shows usability of the suggested models and calculation formulas.
International Nuclear Information System (INIS)
Billaux, D.; Long, J.C.S.; Peterson, J.E. Jr.
1990-03-01
A model for channelized flow in three-dimensional, random networks of fractures has been developed. In this model, the fractures are disc-shaped discontinuities in an impermeable matrix. Within each fracture, flow occurs only in a network of random channels. The channels in each fracture can be generated independently with random distributions of length, conductivity, and orientation in the fracture plane. Boundary conditions are specified on the sides of a ''flow region,'' and at the intersections of the channels with interior ''holes'' specified by the user to simulate boreholes or drifts. This code is part of a set of programs used to generate two-dimensional or three-dimensional random fracture networks, plot them, compute flow through them and analyze the results. 8 refs., 13 figs
Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows
Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel
2017-11-01
We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.
Experimental study of transition from laminar to turbulent flow in vertical narrow channel
International Nuclear Information System (INIS)
Wang Chang; Gao Puzhen; Wang Zhanwei; Tan Sichao
2012-01-01
Highlights: ► The effect of wall heating on the laminar to turbulent transition is experimentally studied. ► The flow characteristic demonstrates that heating leads to the delay of transition from laminar to turbulent regimes. ► The heat transfer characteristics also indicates that heating leads to the delay of flow regime transition. - Abstract: Experimental investigation of flow and heat transfer characteristics of a vertical narrow channel with uniform heat flux condition are conducted to analysis the effect of wall heating on the laminar to turbulent transition. The friction factor in the heating condition is compared with that in the adiabatic condition and the results show that wall heating leads to the delay of laminar to turbulent transition. In addition, the heat transfer characteristic indicates that the critical Reynolds number at the point of laminar flow breakdown increases with the increase of fluid temperature difference, and the local Nusselt number at the point of laminar breakdown increases with the increase of the inlet Reynolds number. The analyses of the flow and heat transfer characteristics both indicate that the heating has a stabilizing effect on the water flow at present experimental scale.
A heat transfer model for evaporating micro-channel coalescing bubble flow
International Nuclear Information System (INIS)
Consolini, L.; Thome, J.R.
2009-01-01
The current study presents a one-dimensional model of confined coalescing bubble flow for the prediction of micro-channel convective boiling heat transfer. Coalescing bubble flow has recently been identified as one of the characteristic flow patterns to be found in micro-scale systems, occurring at intermediate vapor qualities between the isolated bubble and the fully annular regimes. As two or more bubbles bond under the action of inertia and surface tension, the passage frequency of the bubble liquid slug pair declines, with a redistribution of liquid among the remaining flow structures. Assuming heat transfer to occur only by conduction through the thin evaporating liquid film surrounding individual bubbles, the present model includes a simplified description of the dynamics of the thin film evaporation process that takes into account the added mass transfer by breakup of the bridging liquid slugs. The new model has been confronted against experimental data taken within the coalescing bubble flow mode that have been identified by a diabatic micro-scale flow pattern map. The comparisons for three different fluids (R-134a, R-236fa and R-245fa) gave encouraging results with 83% of the database predicted within a ± 30% error band. (author)
Oscillating flow and heat transfer in a channel with sudden cross section change
Ibrahim, Mounir; Hashim, Waqar
1993-01-01
We have computationally examined oscillating flow (zero mean) between two parallel plates with a sudden change in cross section. The flow was assumed to be laminar incompressible with the inflow velocity uniform over the channel cross section but varying sinusoidally with time. The cases studied cover wide ranges of Re(sub max) (from 187.5 to 2000), Va (from 1 to 10.66), the expansion ratio (1:2 and 1:4) and A(sub r) (2 and 4). Also, three different geometric cases were discussed: (1) asymmetric expansion/contraction; (2) symmetric expansion/contraction; and (3) symmetric blunt body. For these oscillating flow conditions, the fluid undergoes sudden expansion in one-half of the cycle and sudden contraction inthe other half. The instantaneous friction factor, for some ranges of Re(sub max) and Va, deviated substantially from the steady-state friction factor for the same flow parameters. A region has been identified below which the flow is laminar quasi-steady. A videotape showing computer simulations of the oscillating flow demonstrates the usefulness of the current analyses in providing information on the transient hydraulic phenomena.
International Nuclear Information System (INIS)
Chu, In-Cheol; Lee, Seung Jun; Youn, Young Jung; Park, Jong Kuk; Choi, Hae Seob; Euh, Dong Jin
2015-01-01
CMFD (Computation Multi-Fluid Dynamics) tools have been being developed to simulate two-phase flow safety problems in nuclear reactor, including the precise prediction of local bubble parameters in subcooled boiling flow. However, a lot of complicated phenomena are encountered in the subcooled boiling flow such as bubble nucleation and departure, interfacial drag of bubbles, lateral migration of bubbles, bubble coalescence and break-up, and condensation of bubbles, and the constitutive models for these phenomena are not yet complete. As a result, it is a difficult task to predict the radial profile of bubble parameters and its propagation along the flow direction. Several experiments were performed to measure the local bubble parameters for the validation of the CMFD code analysis and improvement of the constitutive models of the subcooled boiling flow, and to enhance the fundamental understanding on the subcooled boiling flow. The information on the propagation of the local flow parameters along the flow direction was not provided because the measurements were conducted at the fixed elevation. In SUBO experiments, the radial profiles of local bubble parameters, liquid velocity and temperature were obtained for steam-water subcooled boiling flow in a vertical annulus. The local flow parameters were measured at six elevations along the flow direction. The pressure was in the range of 0.15 to 0.2 MPa. We have launched an experimental program to investigate quantify the local subcooled boiling flow structure under elevated pressure condition in order to provide high precision experimental data for thorough validation of up-to-date CMFD codes. In the present study, the first set of experimental data on the propagation of the radial profile of the bubble parameters was obtained for the subcooled boiling flow of R-134a in a pressurized vertical annulus channel. An experimental program was launched for an in-depth investigation of a subcooled boiling flow in an elevated
Large-eddy simulation of open channel flow with surface cooling
International Nuclear Information System (INIS)
Walker, R.; Tejada-Martínez, A.E.; Martinat, G.; Grosch, C.E.
2014-01-01
Highlights: • Open channel flow comparable to a shallow tidal ocean flow is simulated using LES. • Unstable stratification is imposed by a constant surface cooling flux. • Full-depth, convection-driven, rotating supercells develop when cooling is applied. • Strengthening of cells occurs corresponding to an increasing of the Rayleigh number. - Abstract: Results are presented from large-eddy simulations of an unstably stratified open channel flow, driven by a uniform pressure gradient and with zero surface shear stress and a no-slip lower boundary. The unstable stratification is applied by a constant cooling flux at the surface and an adiabatic bottom wall, with a constant source term present to ensure the temperature reaches a statistically steady state. The structure of the turbulence and the turbulence statistics are analyzed with respect to the Rayleigh number (Ra τ ) representative of the surface buoyancy relative to shear. The impact of the surface cooling-induced buoyancy on mean and root mean square of velocity and temperature, budgets of turbulent kinetic energy (and components), Reynolds shear stress and vertical turbulent heat flux will be investigated. Additionally, colormaps of velocity fluctuations will aid the visualization of turbulent structures on both vertical and horizontal planes in the flow. Under neutrally stratified conditions the flow is characterized by weak, full-depth, streamwise cells similar to but less coherent than Couette cells in plane Couette flow. Increased Ra τ and thus increased buoyancy effects due to surface cooling lead to full-depth convection cells of significantly greater spanwise size and coherence, thus termed convective supercells. Full-depth convective cell structures of this magnitude are seen for the first time in this open channel domain, and may have important implications for turbulence analysis in a comparable tidally-driven ocean boundary layer. As such, these results motivate further study of the
Zhang, J.; Revil, A.
2015-04-01
The early detection of the oil-water encroachment front is of prime interest during the water flooding of an oil reservoir to maximize the production of oil and to avoid the oil-water encroachment front to come too close to production wells. We propose a new 4-D inversion approach based on the Gauss-Newton approach to invert cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods.
2017-12-29
AFRL-AFOSR-JP-TR-2018-0009 Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during...SUBTITLE Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during geomagnetic storms 5a...Experiment) and GOCE (Gravity field and steady- state Ocean Circulation Explorer) satellite data. We also created a series of computer algorithms to
Entropy generation in Poiseuille flow through a channel partially filled with a porous material
Directory of Open Access Journals (Sweden)
Kumar Vikas
2015-01-01
Full Text Available In the present paper, a theoretical analysis of entropy generation due to fully developed flow and heat transfer through a parallel plate channel partially filled with a porous medium under the effect of transverse magnetic field and radiation is presented. Both horizontal plates of the channel are kept at constant and equal temperature. An exact solution of governing equation for both porous and clear fluid regions has been obtained in closed form. The entropy generation number and the Bejan number are also calculated. The effects of various parameters such as magnetic field parameter, radiation parameter, Brinkman number, permeability parameter, ratios of viscosities and thermal conductivities are examined on velocity, temperature, entropy generation rate.
Accretion torques due to three-dimensional channelled flows in magnetic cataclysmic variables
International Nuclear Information System (INIS)
Campbell, C.G.
1986-01-01
Angular momentum transfer due to three-dimensional magnetically channelled accretion flows in cataclysmic binaries is considered. The white dwarf experiences a torque due to the twist in that part of its magnetic field which interacts with the accretion stream. The channelling process can also enhance angular momentum exchange between the stream and the orbit by increasing the gravitational torques. The components of the accretion torque are calculated for an arbitrary static magnetic orientation of the white dwarf, and their variation with orientation is presented. For high inclinations of the accreting pole to the orbital plane the component of the accretion torque parallel to this plane can be comparable to its perpendicular component. It is shown that the parallel component of the torque is still significant relative to the perpendicular component if material links to the white dwarf's magnetic field well away from the L 1 region. (author)
A new method of simulating fiber suspensions and applications to channel Flows
Yang, Wei
2012-06-01
A successive iteration method is proposed to numerically simulate fiber suspensions. The computational field is discretized with the collocated finite volume method, and an ergodic hypothesis is adopted to greatly accelerate the solution to the Fokker - Planck equation. The method is employed in channel flows with different fiber volume fractions and aspect ratios, and its effectiveness is proved. The numerical results show that the existence of fibers significantly changes the pressure distribution, and the fiber aspect ratio has a greater effect on the velocity profile than on the volume faction. At the center of the channel, the velocity increases along the streamwise direction, while the velocity near the wall decreases slightly. The uncoupling and coupling solutions of the additional stress of the fiber suspensions are quite different. © 2012 Chinese Physical Society and IOP Publishing Ltd.
International Nuclear Information System (INIS)
Yan Changqi; Jin Guangyuan; Sun Licheng; Wang Yang
2015-01-01
Characteristics of local parameters of bubbly flow were investigated in rectangular channel (40 mm × 3 mm) under inclined and rolling conditions. Under vertical condition, the distribution type 'wall peak' and 'core peak' are observed, and 'core peak' exists when the liquid superficial velocity is low and the gas superficial velocity is high. Under inclined condition, the peaks of two distribution types get strengthened at the top of the channel, and weakened at the bottom. Under rolling condition, the peaks of two distribution types get strengthened compared with the same angle under inclined condition when the angle is getting larger. The influence from rolling motion gets stronger on the peak of two distribution types when the rolling movement is more violent. (authors)
International Nuclear Information System (INIS)
Kozma, R.; van Dam, H.; Hoogenboom, J.E.
1992-01-01
The primary objective of this paper is to introduce results of coolant boiling experiments in a simulated materials test reactor-type fuel assembly with plate fuel in an actual reactor environment. The experiments have been performed in the Hoger Onderwijs Reactor (HOR) research reactor at the Interfaculty Reactor Institute, Delft, The Netherlands. In the analysis, noise signals of self-powered neutron detectors located in the neighborhood of the boiling region and thermocouple in the channel wall and in the coolant are used. Flow patterns in the boiling coolant have been identified by means of analysis of probability density functions and power spectral densities of neutron noise. It is shown that boiling has an oscillating character due to partial channel blockage caused by steam slugs generated periodically between the plates. The observed phenomenon can serve as a basis for a boiling detection method in reactors with plate-type fuels
Numerical studies of the polymer melt flow in the extruder screw channel and the forming tool
Ershov, S. V.; Trufanova, N. M.
2017-06-01
To date, polymer compositions based on polyethylene or PVC is widely used as insulating materials. These materials processing conjugate with a number of problems during selection of the rational extrusion regimes. To minimize the time and cost when determining the technological regime uses mathematical modeling techniques. The paper discusses heat and mass transfer processes in the extruder screw channel, output adapter and the cable head. During the study were determined coefficients for three rheological models based on obtained viscosity vs. shear rate experimental data. Also a comparative analysis of this viscosimetric laws application possibility for studying polymer melt flow during its processing on the extrusion equipment was held. As a result of numerical study the temperature, viscosity and shear rate fields in the extruder screw channel and forming tool were obtained.
Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux
Directory of Open Access Journals (Sweden)
Nirmal C. Sacheti
2014-01-01
Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.
A new method of simulating fiber suspensions and applications to channel Flows
Yang, Wei; Zhou, Kun
2012-01-01
A successive iteration method is proposed to numerically simulate fiber suspensions. The computational field is discretized with the collocated finite volume method, and an ergodic hypothesis is adopted to greatly accelerate the solution to the Fokker - Planck equation. The method is employed in channel flows with different fiber volume fractions and aspect ratios, and its effectiveness is proved. The numerical results show that the existence of fibers significantly changes the pressure distribution, and the fiber aspect ratio has a greater effect on the velocity profile than on the volume faction. At the center of the channel, the velocity increases along the streamwise direction, while the velocity near the wall decreases slightly. The uncoupling and coupling solutions of the additional stress of the fiber suspensions are quite different. © 2012 Chinese Physical Society and IOP Publishing Ltd.
Flow and heat transfer characteristics in a channel having furrowed wall based on sinusoidal wave
Energy Technology Data Exchange (ETDEWEB)
Wang, Jiansheng; Gao, Xiaoming; Li, Weiyi [Tianjin University, Tianjin (Switzerland)
2015-11-15
The effect of wall geometry on the flow and heat transfer in a channel with one lower furrowed and an upper flat wall kept at a uniform temperature is investigated by large eddy simulation. Three channels, one with sinusoidal wavy surface having the ratio (amplitude to wavelength) α/λ=0.05 and the other two with furrowed surface derived from the sinusoidal curve, are considered. The numerical results show that the streamwise vortices center is located near the lower wall and vary along the streamwise on various furrow surfaces. The furrow geometry increases the pressure drag and decreases the friction drag of the furrowed surface compared with that of the smooth surface; consequently, the total drag is increased for the augment of pressure drag. As expected, the heat transfer performance has been improved. Finally, a thermal performance factor is defined to evaluate the performance of the furrowed wall.
Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.
2017-07-01
In this paper, the problem of the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field is investigated numerically. Using a Berman's similarity transformation, the two-dimensional momentum conservation partial differential equations can be written as a system of nonlinear ordinary differential equations incorporating Lorentizian magneto-hydrodynamic body force terms. A new computational method based on the operational matrix of derivative of orthonormal Bernstein polynomials for solving the resulting differential systems is introduced. Moreover, by using the residual correction process, two types of error estimates are provided and reported to show the strength of the proposed method. Graphical and tabular results are presented to investigate the influence of the Hartmann number ( Ha) and the transpiration Reynolds number ( Re on velocity profiles in the channel. The results are compared with those obtained by previous works to confirm the accuracy and efficiency of the proposed scheme.
Modeling and simulation of PEM fuel cell's flow channels using CFD techniques
International Nuclear Information System (INIS)
Cunha, Edgar F.; Andrade, Alexandre B.; Robalinho, Eric; Bejarano, Martha L.M.; Linardi, Marcelo; Cekinski, Efraim
2007-01-01
Fuel cells are one of the most important devices to obtain electrical energy from hydrogen. The Proton Exchange Membrane Fuel Cell (PEMFC) consists of two important parts: the Membrane Electrode Assembly (MEA), where the reactions occur, and the flow field plates. The plates have many functions in a fuel cell: distribute reactant gases (hydrogen and air or oxygen), conduct electrical current, remove heat and water from the electrodes and make the cell robust. The cost of the bipolar plates corresponds up to 45% of the total stack costs. The Computational Fluid Dynamic (CFD) is a very useful tool to simulate hydrogen and oxygen gases flow channels, to reduce the costs of bipolar plates production and to optimize mass transport. Two types of flow channels were studied. The first type was a commercial plate by ELECTROCELL and the other was entirely projected at Programa de Celula a Combustivel (IPEN/CNEN-SP) and the experimental data were compared with modelling results. Optimum values for each set of variables were obtained and the models verification was carried out in order to show the feasibility of this technique to improve fuel cell efficiency. (author)