WorldWideScience

Sample records for oil-encapsulating glassy food

  1. Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods.

    Science.gov (United States)

    Ruiz Ruiz, Jorge Carlos; Ortiz Vazquez, Elizabeth De La Luz; Segura Campos, Maira Rubi

    2017-05-03

    Polyunsaturated omega-3 fatty acids (PUFAs), a functional component present in vegetable oils, are generally recognized as being beneficial to health. Omega-3 PUFAs are rich in double bonds and unsaturated in nature; this attribute makes them highly susceptible to lipid oxidation and unfit for incorporation into long shelf life foods. The microencapsulation of oils in a polymeric matrix (mainly polysaccharides) offers the possibility of controlled release of the lipophilic functional ingredient and can be useful for the supplementation of foods with PUFAs. The present paper provides a literature review of different vegetable sources of omega-3 fatty acids, the functional effects of omega-3 fatty acids, different microencapsulation methods that can possibly be used for the encapsulation of oils, the properties of vegetable oil microcapsules, the effect of encapsulation on oxidation stability and fatty acid composition of vegetable oils, and the incorporation of long-chain omega-3 polyunsaturated fatty acids in foods.

  2. Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility.

    Science.gov (United States)

    Wani, Touseef Ahmed; Shah, Adil Gani; Wani, Sajad Mohd; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad; Nissar, Nazia; Shagoo, Mudasir Ahmad

    2016-11-17

    Functional foods find a very important place in the modern era, where different types of cancer, diabetes, cardiovascular diseases, etc. are on a high. Irrespective of the abundance of bioactive components in different fruits and vegetables, their low solubility in aqueous solution, vulnerability to destruction in different environmental and gastrointestinal conditions and a low intestinal absorption becomes a concern. Because it is quite difficult to commercialize non food materials for the food encapsulation purposes due to their safety concerns in the human body, scientists in the recent times have come up with the idea of encapsulating the different bioactive components in different food grade materials that are able to safeguard these bioactive components against the different environmental and gastrointestinal conditions and ensure their safe and targeted delivery at their absorption sites. Different food grade encapsulation materials including various oligosaccharides, polysaccharides (starch, cyclodextrins, alginates, chitosan, gum arabic, and carboxymethyl cellulose) and proteins and their suitability for encapsulating various bioactive components like flavonoids (catechins, rutin, curcumin, hesperetin, and vanillin), nonflavonoids (resveratrol), carotenoids (β-carotene, lycopene, and lutein), and fatty acids (fish oil, flaxseed oil, and olive oil) of high medical and nutritional value are reviewed here.

  3. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt.

    Science.gov (United States)

    Ghorbanzade, Tahere; Jafari, Seid Mahdi; Akhavan, Sahar; Hadavi, Roxana

    2017-02-01

    Fish oils have many dietary benefits, but due to their strong odors and rapid deterioration, their application in food formulations is limited. For these reasons, nano-liposome was used to nano-encapsulate fish oil in this study and encapsulated fish oil was utilized in fortifying yogurt. Physicochemical properties of produced yogurt including pH, acidity, syneresis, fatty acid composition, peroxide value as well as sensory tests were investigated during three weeks storage at 4°C. Nano-liposome encapsulation resulted in a significant reduction in acidity, syneresis and peroxide value. The results of gas chromatography analyses revealed that after 21days storage, yogurt fortified with nano-encapsulated fish oil had a higher DHA and EPA contents than yogurt containing free fish oil. Overall, the results of this study indicates that adding nano-encapsulated fish oil into yogurt gave closer characteristics to control sample in terms of sensory characteristics than yogurt fortified with free fish oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    Science.gov (United States)

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  5. Drying/encapsulation of red wine to produce ingredients for healthy foods

    Directory of Open Access Journals (Sweden)

    Izmari Jasel Alvarez Gaona

    2018-03-01

    Full Text Available Epidemiological evidence indicates that moderate consumption of red wine reduces the incidence of coronary disease, atherosclerosis, and platelet aggregation. Wine is very rich in antioxidant compounds because of their phenolic components. However, many people for ethnic, social or religious reasons do not consume wine. Drying/encapsulation of red wine in the presence of adequate carbohydrates leads to water and more than 99% of alcohol removal; a glassy amorphous microstructure is obtained in which the wine’s phenolic compounds are entrapped. The resulting product is a free flowing powder which could be used for the polyphenol enrichment of healthy foods and/or drink powders, as well as in the pharmaceutical industry. The wine industry may take advantage of the dried/encapsulated red wine using as a raw material red wines which have little commercial value for different reasons; i.e. poor quality due to raw material, unfavourable climatic conditions, or wines that suffered some alteration during the wine making process. Dry encapsulated wine may be a new alternative to red wines that cannot be sold as such for different reasons, and open new opportunities to diversify wine products.

  6. Multilayer emulsions as a strategy for linseed oil and α-lipoic acid micro-encapsulation: study on preparation and in vitro characterization.

    Science.gov (United States)

    Huang, Juan; Wang, Qiang; Li, Tong; Xia, Nan; Xia, Qiang

    2018-01-04

    Linseed oil and α-lipoic acid are bioactive ingredients, which play an important role in human nutrition and health. However, their application in functional foods is limited because of their instabilities and poor solubilities in hydrophilic matrices. Multilayer emulsions are particularly useful to protect encapsulated bioactive ingredients. The aim of this study was to fabricate multilayer emulsions by a high-pressure homogenization method to encapsulate linseed oil and α-lipoic acid simultaneously. Tween 20 and lecithin were used as surfactants to stabilize the oil droplets of primary emulsions. Multilayer emulsions were produced by using an electrostatic layer-by-layer deposition process of lecithin-chitosan membranes. Thermal treatment exhibited that chitosan encapsulation could improve the thermal stability of primary emulsions. During in vitro digestion, it was found that chitosan encapsulation had little effect on the lipolysis of linseed oil and bioaccessibility of α-lipoic acid. The oxidation stability of linseed oil in multilayer emulsions was improved effectively by chitosan encapsulation and α-lipoic acid. Chitosan encapsulation could inhibit the degradation of α-lipoic acid. A physical stability study indicated that multilayer emulsions had good centrifugal, dilution and storage stabilities. Multilayer emulsion is an effective delivery system to incorporate linseed oil and α-lipoic acid into functional foods and beverages. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage

    DEFF Research Database (Denmark)

    Baranauskiene, R.; Bylaite, Egle; Zukauskaite, J.

    2007-01-01

    The effect of different commercial modified food starch carrier materials on the flavor retention of the essential oil (EO) of peppermint (Mentha piperita L.) during spray drying and storage was evaluated. The obtained results revealed that the emulsification and encapsulation efficiencies...... individual compounds were observed. Larger differences in the compositions of surface oils from various encapsulation products were obtained. Flavor components were released at different rates by each of the encapsulated products. The aroma binding capacity of different modified starch matrices to lock EO...... droplets depends on the water activity, and the leakage of aromas from encapsulated powder products during storage increased with increasing water activity....

  8. Micro-encapsulation of refined olive oil: influence of capsule wall components and the addition of antioxidant additives on the shelf life and chemical alteration.

    Science.gov (United States)

    Calvo, Patricia; Castaño, Angel Luís; Lozano, Mercedes; González-Gómez, David

    2012-10-01

    Although refined olive oils (ROOs) exhibit lower quality and less stability toward thermal stress than extra-virgin olive oils, these types of oil are gaining importance in the food industry. The inclusion of ROOs in processed food may alter the oxidative stability of the manufactured products, and therefore having technological alternatives to increase oil stability will be an important achievement. For this reason the main goal of this study was to assess the influence of the micro-encapsulation process on the ROO chemical composition and its oxidative stability. Factors such as microcapsule wall constituents and the addition of the antioxidant butyl hydroxytoluene were investigated in order to establish the most appropriate conditions to ensure no alteration of the refined olive oil chemical characteristics. The optimised methodology exhibited high encapsulation yield (>98%), with micro-encapsulation efficiency ranging from 35 to 69% according to the nature of the wall components. The encapsulation process slightly altered the chemical composition of the olive oil and protected the oxidative stability for at least 11 months when protein components were included as wall components. It was concluded that the presence of proteins constituents in the microcapsule wall material extended the shelf life of the micro-encapsulated olive oil regardless the use of antioxidant additives. Copyright © 2012 Society of Chemical Industry.

  9. Encapsulation of carotenoids extracted from halophilic Archaea in oil-in-water (O/W) micro- and nano-emulsions.

    Science.gov (United States)

    Chaari, Marwa; Theochari, Ioanna; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Ammar, Emna

    2018-01-01

    Carotenoids extracted from halophilc Archaea have potential health benefits. Their poor water-solubility and low bioavailability is a challenge to their incorporation into foods. The aim of this work was the carotenoids encapsulation into two oil-in-water (O/W) dispersions, to increase their use as functional food applications. A nanoemulsion produced by high pressure homogenization and a spontaneously formed microemulsion were conceived. The limonene was the dispersed oil phase, and mixtures of Triton X-100/Tween-80 (3:1) as emulsifiers and of water/glycerol (2:1) as the continuous aqueous phase. The microemulsion monophasic area was determined through the pseudo-ternary phase diagram. Dynamic Light Scattering was used for the structural characterization of the nano- and micro-emulsions in the presence of the carotenoids. Moreover, the radical scavenging activity of the encapsulated carotenoids was examined by Electron Paramagnetic Resonance spectroscopy. The results confirmed the delivery systems design effectiveness to encapsulate and stabilize the carotenoids for food applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Encapsulation in the food industry: a review.

    Science.gov (United States)

    Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N

    1999-05-01

    Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  11. Nutritional value of micro-encapsulated fish oils in rats

    DEFF Research Database (Denmark)

    Rosenquist, Annemette; Hølmer, Gunhild Kofoed

    1996-01-01

    The nutritional value of a micro-encapsulated fish oil product has been investigated. Three groups of 10 male Wistar rats each were fed dietscontaining 20% (w/w) of fat, and only the type and form of the fat added was different. In the test groups 5% (w/w) of fish oil either as such or in amicro......-encapsulated form was incorporated in the diets. The remaining fat was lard supplemented with corn oil to a dietary content of linoleic acid at10% (w/w). The control group received lard and corn oil only. A mixture similar to the dry matter in the micro-encapsulated product was alsoadded to the diets not containing...... this product. The uptake of marine (n-3) polyunsaturated fatty acids (PUFA) from both types of fish oil supplementwas reflected in the fatty acid profiles of liver phosphatidyl cholines (PC), phosphatidyl ethanolamines (PE), triglycerides (TG) and cardiolipin (CL).A suppression of the elongation of linoleic...

  12. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies.

    Science.gov (United States)

    Chang, Ming-Tsung; Tsai, Tong-Rong; Lee, Chun-Yann; Wei, Yu-Sheng; Chen, Ying-Jie; Chen, Chun-Ren; Tzen, Jason T C

    2013-10-09

    Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.

  13. Encapsulation and delivery of food ingredients using starch based systems.

    Science.gov (United States)

    Zhu, Fan

    2017-08-15

    Functional ingredients can be encapsulated by various wall materials for controlled release in food and digestion systems. Starch, as one of the most abundant natural carbohydrate polymers, is non-allergenic, GRAS, and cheap. There has been increasing interest of using starch in native and modified forms to encapsulate food ingredients such as flavours, lipids, polyphenols, carotenoids, vitamins, enzymes, and probiotics. Starches from various botanical sources in granular or amorphous forms are modified by chemical, physical, and/or enzymatic means to obtain the desired properties for targeted encapsulation. Other wall materials are also employed in combination with starch to facilitate some types of encapsulation. Various methods of crafting the starch-based encapsulation such as electrospinning, spray drying, antisolvent, amylose inclusion complexation, and nano-emulsification are introduced in this mini-review. The physicochemical and structural properties of the particles are described. The encapsulation systems can positively influence the controlled release of food ingredients in food and nutritional applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Properties of probiotics and encapsulated probiotics in food.

    Science.gov (United States)

    Ozyurt, V Hazal; Ötles, Semih

    2014-01-01

    Probiotics are microorganisms which confer health benefits upon application in sufficiently-high viable cell amounts. Probiotics are typically members of Lactobacillus and Bifidobacterium species commonly associated with human gastrointestinal tracts. In the recent past, there has been a rising interest in producing functional foods containing encapsulated probiotic bacteria. Recent studies have been reported using dairy products like cheese, yogurt and ice cream as food carrier, and non-dairy products like meat, fruits, cereals, chocolate, etc. However, the industrial sector contains only few encapsulated probiotic products. Probiotics have been developed by several companies in a capsule or a tablet form. The review compiles probiotics, encapsulation technology and cell life in the food matrices.

  15. Insect-resistant food packaging film development using cinnamon oil and microencapsulation technologies.

    Science.gov (United States)

    Kim, In-Hah; Han, Jaejoon; Na, Ja Hyun; Chang, Pahn-Sik; Chung, Myung Sub; Park, Ki Hwan; Min, Sea C

    2013-02-01

    Insect-resistant films containing a microencapsulated insect-repelling agent were developed to protect food products from the Indian meal moth (Plodia interpunctella). Cinnamon oil (CO), an insect repelling agent, was encapsulated with gum arabic, whey protein isolate (WPI)/maltodextrin (MD), or poly(vinyl alcohol) (PVA). A low-density polyethylene (LDPE) film was coated with an ink or a polypropylene (PP) solution that incorporated the microcapsules. The encapsulation efficiency values obtained with gum arabic, WPI/MD, and PVA were 90.4%, 94.6%, and 80.7%, respectively. The films containing a microcapsule emulsion of PVA and CO or incorporating a microcapsule powder of WPI/MD and CO were the most effective (P packaging for food products. The insect-repelling effect of cinnamon oil incorporated into LDPE films was more effective with microencapsulation. The system developed in this research with LDPE film may also be extended to other food-packaging films where the same coating platform can be used. This platform is interchangeable and easy to use for the delivery of insect-repelling agents. The films can protect a wide variety of food products from invasion by the Indian meal moth. © 2013 Institute of Food Technologists®

  16. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil.

    Science.gov (United States)

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation.

  17. ENCAPSULATION OF HYPERICUM PERFORATUM L., JOJOBA OIL AND JASMINE OIL BY SPRAY DRYING AND THEIR APPLICATIONS IN TEXTILES

    Directory of Open Access Journals (Sweden)

    ÖGE Arzu

    2017-05-01

    Full Text Available Microencapsulation is a technique that allows liquid or solid agents, such as pharmaceutical agents, pesticides, insect repellent agents, dyes, cosmetics and fragrances, to be encapsulated by a suitable barrier wall. Liquid or solid agents that are encapsulated are called core material. The importance of functional finishes have been increasing rapidly in the World. Microencapsulation is an alternative way to achieve the functional finishes because of their unique properties, such as controlled release, protection against to hazardous and destructive media, and providing higher surface area. In this study, jojoba, jasmine and St. John's Wort oils, were encapsulated according to spray drying method. St. John's Wort and jojoba oils were used at 1:1 ratio as fixed oil. Jasmine essential oil was added to fixed oil mixture at two different ratios. After preparing the core mixture, encapsulation studies were performed three different core : wall ratios. Morphological analyses of microcapsules were carried out using SEM (Scanning Electron Microscope. FTIR spectroscopy spectrums of microcapsules were determined (Fourier Transform Infrared. Particle size distribution microcapsules were analyzed by laser scattering measurement method. DSC (Differential Scanning Calorimetry thermographs of microcapsules were obtained. All microcapsules were applied to 100% cotton knitted fabrics. Strength to washing of fabrics were observed by SEM micrographs.

  18. Thyme Oil Encapsulated in Halloysite Nanotubes for Antimicrobial Packaging System.

    Science.gov (United States)

    Lee, Min Hyeock; Seo, Hyun-Sun; Park, Hyun Jin

    2017-04-01

    An antimicrobial capsule releasing thyme oil was developed using modified halloysite nanotubes (HNTs). In order to increase the pore volume, HNTs were treated with 5.0 mol/L NaOH solution, which resulted in the encapsulation of more thyme oil molecules inside the HNTs. The morphology of the raw HNTs and NaOH-treated HNTs (N-HNTs) was characterized using transmission electron microscopy and nitrogen adsorption-desorption analysis. The loading capacity increased from 180.7 ± 12.7 to 256.4 ± 16.7 mg thyme oil/g HNT after the NaOH treatment. The aerial release characteristics of thyme oil from both the HNT capsules were investigated in a closed-package atmosphere system at 4, 25, and 40 °C. The antimicrobial activity of the capsule against Escherichia coli O157:H7 was determined using the vapor phase assay. Moreover, the antimicrobial effects of the capsule against E. coli O157:H7, total mesophilic aerobic bacteria (MAB), and molds and yeasts (MY) on the surfaces of cherry tomatoes were investigated at 4 and 25 °C for 5 d. When the cherry tomatoes were exposed to the thyme oil-loaded N-HNT capsule, the number of E. coli O157:H7, MAB, and MY significantly reduced during storage. © 2017 Institute of Food Technologists®.

  19. Nano- and micro-structured assemblies for encapsulation of food ingredients.

    Science.gov (United States)

    Augustin, Mary Ann; Hemar, Yacine

    2009-04-01

    This tutorial review provides an overview of the science of food materials and encapsulation techniques that underpin the development of delivery vehicles for functional food components, nutrients and bioactives. Examples of how the choice of materials, formulation and process affect the structure of micro- and nano-encapsulated ingredients and the release of the core are provided. The review is of relevance to chemists, material scientists, food scientists, engineers and nutritionists who are interested in addressing delivery challenges in the food and health industries.

  20. Oxidation of free and encapsulated oil fractions in dried microencapsulated fish oils

    Directory of Open Access Journals (Sweden)

    Márquez-Ruiz, G.

    2000-12-01

    Full Text Available The objective of this work was to evaluate oxidation of dried microencapsulated fish oils (DMFO during storage at ambient temperature, and to examine the influence of oils distribution (free vs. encapsulated oil in these complex lipidic systems. DMF0 were prepared by freeze-drying emulsions containing sodium caseinate, lactose and fish oil, with and without adding the antioxidant mixture ALT (ascorbic acid, lecithin and tocopherol. Samples were stored at 25 or 30ºC either in the dark or light with limited, accesible air or under vacuum. The progress of oxidation was followed through quantitation of triglyceride polymers, and oxidation levels of free and encapsulated oil fractions were differentiated. Results showed that oxidation was very rapid both in free and encapsulated oil fractions in all DMFOs exposed to light. In the dark, oxidation was triggered first in the free oil fraction of samples not protected with ALT but, in contrast, samples with ALT showed significantly higher oxidation levels in encapsulated than in free oil fractions, regardless of the limited or free availability of air. These results indicated that addition of the antioxidant system ALT was more effective in the free oil fraction, thus reflecting the great influence of partitioning and/or orientation of antioxidants on their efficacy in complex lipid systems.El objetivo de este trabajo es la evaluación de la oxidación de aceites de pescado microencapsulados en matriz seca (DMFO durante su almacenamiento a temperatura ambiente, y examinar la influencia de la distribución del aceite (aceite libre frente a aceite encapsulado en estos sistemas lipídicos complejos. Las muestras se prepararon mediante liofilización de emulsiones constituidas por caseinato sódico, lactosa y aceite de pescado, con o sin la mezcla antioxidante ALT (ácido ascórbico, lecitina y tocoferol; y se almacenaron a 25 o 30ºC a la luz o a la oscuridad, con aire limitado, accesible o al vac

  1. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang; Zhang, Mengying; Chen, Shuyu; Wang, Limu; Chang, Donald Choy; Wen, Weijia

    2010-01-01

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang

    2010-08-27

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil.

    Science.gov (United States)

    Encina, Cristian; Márquez-Ruiz, Gloria; Holgado, Francisca; Giménez, Begoña; Vergara, Cristina; Robert, Paz

    2018-10-15

    Fish-oil (FO) was encapsulated with hydroxypropylcelullose (HPC) by conventional spray-drying with water (FO-water) and solvent spray-drying with ethanol (FO-EtOH), methanol (FO-MeOH) and acetone (FO-Acet) in order to study the effect of the solvent on the encapsulation efficiency (EE), microparticle properties and stability of FO during storage at 40 °C. Results showed that FO-Acet presented the highest EE of FO (92.0%), followed by FO-EtOH (80.4%), FO-MeOH (75.0%) and FO-water (71.1%). A decrease of the dielectric constant increased the EE of FO, promoting triglyceride-polymer interactions instead of oil-in-water emulsion retention. FO release profile in aqueous model was similar for all FO-microparticles, releasing only the surface FO, according to Higuchi model. Oxidative stability of FO significantly improved by spray-drying with MeOH, both in surface and encapsulated oil fractions. In conclusion, encapsulation of FO by solvent spray-drying can be proposed as an alternative technology for encapsulation of hydrophobic molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Thermally Induced Encapsulation of Food Nutrients into Phytoferritin through the Flexible Channels without Additives.

    Science.gov (United States)

    Yang, Rui; Tian, Jing; Liu, Yuqian; Yang, Zhiying; Wu, Dandan; Zhou, Zhongkai

    2017-11-22

    The cavity of phytoferritin provides a nanospace to encapsulate and deliver food nutrient molecules. However, tranditional methods to prepare the ferritin-nutrient complexes must undergo acid/alkaline conditions or apply additives. In this work, we provide a novel guideline that thermal treatment at 60 °C can expand ferritin channels by uncoiling the surrounding α-helix. Upon reduction of the temperature to 20 °C, food nutrient rutin can be encapsulated in apo-soybean seed ferritin (apoSSF) at pH 7.0 through channels without disassembly of the protein cage and with no addition of additives. Results indicated that one apoSSF could encapsulate about 10.5 molecules of rutin, with an encapsulation ratio of 8.08% (w/w). In addition, the resulting rutin-loaded SSF complexes were monodispersed in a size of 12 nm in aqueous solution. This work provides a novel pathway for the encapsulation of food nutrient molecules into the nanocavity of ferritin under a neutral pH condition induced by thermal treatment.

  5. Oxidative stability of pullulan nanofibers loaded with fish oil: effect of oil content and antioxidants addition

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Damberg, C.; Stephansen, K.

    Electrospinning processing is a promising technique for the encapsulation of thermolabile bioactive compounds (e.g. fish oil) since it does not require the use of heat. Furthermore, the nano-microfibers (NMF) obtained present a reduced size, which makes them easier to disperse in food matrices...... compared to traditional encapsulates (e.g. microcapsules produced by spray-drying). Biopolymers such as proteins and polysaccharides are required for the production of food-grade NMF. In this sense, pullulan, which is a food-approved polysaccharide, is an interesting encapsulating material due to its high...... electrospinnability and low oxygen permeability. In light of the above, the aim of this work was to investigate the oxidative stability of omega-3 enriched pullulan NMF. First, the influence of fish oil content (10-20-30 %) on the properties of the electrospinning solutions (e.g. viscosity, conductivity and surface...

  6. Alginate edible films containing microencapsulated lemongrass oil or citral: effect of encapsulating agent and storage time on physical and antimicrobial properties.

    Science.gov (United States)

    Alarcón-Moyano, Jessica K; Bustos, Rubén O; Herrera, María Lidia; Matiacevich, Silvia B

    2017-08-01

    Active edible films have been proposed as an alternative to extend shelf life of fresh foods. Most essential oils have antimicrobial properties; however, storage conditions could reduce their activity. To avoid this effect the essential oil (EO) can be microencapsulated prior to film casting. The aim of this study was to determine the effects of the type of encapsulating agent (EA), type of EO and storage time on physical properties and antimicrobial activity of alginate-based films against Escherichia coli ATCC 25922. Trehalose (TH), Capsul ® (CAP) and Tween 20 (Tw20) were used as EA. Lemongrass essential oil (LMO) and citral were used as active agents. The results showed that the type of EA affected the stability of the film forming-emulsions as well as the changes in opacity and colour of the films during storage but not the antimicrobial activity of them. Both microencapsulated EOs showed a prolonged release from the alginate films during the 28 days of storage. Trehalose was selected to encapsulate both active compounds because the films made with this microencapsulated EA showed the greatest physical stability and the lowest color variation among all the films studied.

  7. Oil encapsulation in core-shell alginate capsules by inverse gelation II: comparison between dripping techniques using W/O or O/W emulsions.

    Science.gov (United States)

    Martins, Evandro; Poncelet, Denis; Rodrigues, Ramila Cristiane; Renard, Denis

    2017-09-01

    In the first part of this article, it was described an innovative method of oil encapsulation from dripping-inverse gelation using water-in-oil (W/O) emulsions. It was noticed that the method of oil encapsulation was quite different depending on the emulsion type (W/O or oil-in-water (O/W)) used and that the emulsion structure (W/O or O/W) had a high impact on the dripping technique and the capsules characteristics. The objective of this article was to elucidate the differences between the dripping techniques using both emulsions and compare the capsule properties (mechanical resistance and release of actives). The oil encapsulation using O/W emulsions was easier to perform and did not require the use of emulsion destabilisers. However, capsules produced from W/O emulsions were more resistant to compression and showed the slower release of actives over time. The findings detailed here widened the knowledge of the inverse gelation and gave opportunities to develop new techniques of oil encapsulation.

  8. Encapsulation of Volatile Citronella Essential Oil by Coacervation: Efficiency and Release Study

    Science.gov (United States)

    Manaf, M. A.; Subuki, I.; Jai, J.; Raslan, R.; Mustapa, A. N.

    2018-05-01

    The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using Arabic gum and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph obtained with R2 of 0.9523 was used for the accurate determination of encapsulation efficiency and release study. The release kinetic was analysed based on Fick"s law of diffusion for polymeric system and linear graph of Log fraction release over Log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The produced capsules for both coacervation processes were discussed based on the capsules morphology and release kinetic mechanisms.

  9. Oxidative stability of pullulan electrospun fibers containing fish oil

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Damberg, Cecilie; Chronakis, Ioannis S.

    2017-01-01

    The effect of oil content and addition of natural antioxidants on the morphology and oxidative stability of pullulan ultra-thin fibers loaded with fish oil and obtained by electrospinning was investigated. Pullulan sub-micron fibers containing 10 and 30wt% fish oil were prepared and both presented...... into food matrices. These results show the feasibility to encapsulate fish oil in pullulan ultra-thin fibers and to improve their oxidative stability by adding natural antioxidants such as δ-tocopherol and rosemary extract. Therefore, this study might open up new opportunities for further technological...... development in the production of omega-3 nanodelivery systems, which have potential applications in different types of fortified foods. Encapsulation of fish oil in electrospun pullulan fibers stabilized by natural antioxidants....

  10. Encapsulated Essential Oils as an Alternative to Insecticides in Funnel Traps.

    Science.gov (United States)

    Pascual-Villalobos, M J; López, M D; Castañé, C; Soler, A; Riudavets, J

    2015-08-01

    Pheromone-lured funnel traps are widely used for pest monitoring and mass trapping in agricultural fields and stores. DDVP vapona (dichlorvos), the insecticide of choice as a killing agent inside traps, has been banned, and research on new products is being pursued. Essential oils (EO) could be an alternative if properly formulated. To test their potential, beads of encapsulated coriander and basil EO were tested in funnel traps in stores of almonds and pet foods during 2 mo. The number of adult moth (Plodia interpunctella (Hübner) and Ephestia kuehniella Zeller) dead captures was similar with either coriander or basil EO beads and with vapona tablets while there were more insects alive in the control. These preliminary results indicate a good potential for the development of such natural products as an alternative to synthetic insecticides to include them inside funnel traps. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  12. A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads.

    Science.gov (United States)

    Lu, Xiaocun; Katz, Joshua S; Schmitt, Adam K; Moore, Jeffrey S

    2018-03-14

    Compartmentalized structures widely exist in cellular systems (organelles) and perform essential functions in smart composite materials (microcapsules, vasculatures, and micelles) to provide localized functionality and enhance materials' compatibility. An entirely water-free compartmentalization system is of significant value to the materials community as nonaqueous conditions are critical to packaging microcapsules with water-free hydrophilic payloads while avoiding energy-intensive drying steps. Few nonaqueous encapsulation techniques are known, especially when considering just the scalable processes that operate in batch mode. Herein, we report a robust oil-in-oil Pickering emulsion system that is compatible with nonaqueous interfacial reactions as required for encapsulation of hydrophilic payloads. A major conceptual advance of this work is the notion of the partitioning inhibitor-a chemical agent that greatly reduces the payload's distribution between the emulsion's two phases, thus providing appropriate conditions for emulsion-templated interfacial polymerization. As a specific example, an immiscible hydrocarbon-amine pair of liquids is emulsified by the incorporation of guanidinium chloride (GuHCl) as a partitioning inhibitor into the dispersed phase. Polyisobutylene (PIB) is added into the continuous phase as a viscosity modifier for suitable modification of interfacial polymerization kinetics. The combination of GuHCl and PIB is necessary to yield a robust emulsion with stable morphology for 3 weeks. Shell wall formation was accomplished by interfacial polymerization of isocyanates delivered through the continuous phase and polyamines from the droplet core. Diethylenetriamine (DETA)-loaded microcapsules were isolated in good yield, exhibiting high thermal and chemical stabilities with extended shelf-lives even when dispersed into a reactive epoxy resin. The polyamine phase is compatible with a variety of basic and hydrophilic actives, suggesting that this

  13. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; García Moreno, Pedro Jesús; Mendes, Ana Carina Loureiro

    2018-01-01

    or in the gastrointestinal tract. For that purpose, efficient encapsulation of the compounds may be required. Spray drying is one of the most commonly used encapsulation techniques in the food industry, but it uses high temperature, which can lead to decomposition of the bioactive compounds. Recently, alternative...

  14. Micro-emulsification/encapsulation of krill oil by complex coacervation with krill protein isolated using isoelectric solubilization/precipitation.

    Science.gov (United States)

    Shi, Liu; Beamer, Sarah K; Yang, Hong; Jaczynski, Jacek

    2018-04-01

    This study determined feasibility of krill protein isolated with isoelectric solubilization/precipitation (ISP) as wall material to microencapsulate krill oil by freeze-drying. Effects of krill oil/krill protein ratio on properties of microcapsules were investigated. With increased ratio, crude protein of microcapsules decreased, while total lipid increased. Although microcapsule oil loading capacity increased, loading and encapsulation efficiencies decreased. Thin layer chromatography (TLC) confirmed abundance of phospholipids, which are amphiphilic; and thus, resulted in stable emulsion (emulsion stability index). Microcapsules contained ω-3 polyunsaturated fatty acids (PUFAs) at 43-60, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at 28-41 and 9-11 g/100g of total FAs, respectively. SDS-PAGE electrophoresis revealed proteolysis of ISP krill protein, probably causing reduced loading and encapsulation efficiencies. SEM showed that krill oil/krill protein ratio affected surface microstructure. ISP krill protein showed potential as a wall material to microencapsulate krill oil; and thus, expand application of krill oil/protein for human consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Elevating bioavailability of cyclosporine a via encapsulation in artificial oil bodies stabilized by caleosin.

    Science.gov (United States)

    Chen, Miles C M; Wang, Jui-Ling; Tzen, Jason T C

    2005-01-01

    To elevate its bioavailability via oral administration, cyclosporine A (CsA), a hydrophobic drug, was either incorporated into olive oil directly or encapsulated in artificial oil bodies (AOBs) constituted with olive oil and phospholipid in the presence or absence of recombinant caleosin purified from Escherichia coli. The bioavailabilities of CsA in these formulations were assessed in Wistar rats in comparison with the commercial formulation, Sandimmun Neoral. Among these tests, CsA-loaded AOBs stabilized by the recombinant caleosin exhibited better bioavailability than the commercial formulation and possessed the highest maximum whole blood concentration (C(max)), 1247.4 +/- 106.8 ng/mL, in the experimental animals 4.3 +/- 0.7 h (t(max)) after oral administration. C(max) and the area under the plasma concentration-time curve (AUC(0-24)) were individually increased by 50.8% and 71.3% in the rats fed with caleosin-stabilized AOBs when compared with those fed with the reference Sandimmun Neoral. The results suggest that constitution of AOBs stabilized by caleosin may be a suitable technique to encapsulate hydrophobic drugs for oral administration.

  16. Quality characteristics of Dutch-style fermented sausages manufactured with partial replacement of pork back-fat with pure, pre-emulsified or encapsulated fish oil

    NARCIS (Netherlands)

    Josquin, N.M.; Linssen, J.P.H.; Houben, J.H.

    2012-01-01

    Dutch-style fermented sausages were manufactured with 15% and 30% pork back-fat substitution by pure or commercial encapsulated fish oil, either added as such or as pre-emulsified mixture with soy protein isolate. Adding commercial encapsulated fish oil was the most important factor influencing the

  17. Formulation of vitamin D encapsulated cinnamon oil nanoemulsion: Its potential anti-cancerous activity in human alveolar carcinoma cells.

    Science.gov (United States)

    Meghani, Nikita; Patel, Pal; Kansara, Krupa; Ranjan, Shivendu; Dasgupta, Nandita; Ramalingam, Chidambaram; Kumar, Ashutosh

    2018-06-01

    Cinnamon oil is used for medicinal purpose since ancient time because of its antioxidant activity. Oil-in-water nanoemulsion (NE) of cinnamon oil was formulated using cinnamon oil, nonionic surfactant Tween 80 and water by ultrasonication technique. Phase diagram was constructed to investigate the influence of oil, water and surfactant concentration. Vitamin D encapsulated cinnamon oil NE was fabricated by wash out method followed by ultrasonication in similar fashion. The hydrodynamic size of cinnamon oil NE and vitamin D encapsulated cinnamon oil NE was observed as 40.52 and 48.96 nm in complete DMEM F12 media respectively. We focused on the cytotoxic and genotoxic responses of NEs in A549 cells in concentration dependent manner. We observed that both NEs induce DNA damage along with corresponding increase in micronucleus frequency that is evident from the comet and CBMN assay. Both the NEs arrested the cell cycle progression in G0/G1 phase, showed increased expression of Bax, capase-3 and caspase-9 and decrease expression of BcL2 proteins along with significant (p oil as carrier for lipophilic nutraceutical like vitamin D. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Peak Oil, Food Systems, and Public Health

    Science.gov (United States)

    Parker, Cindy L.; Kirschenmann, Frederick L.; Tinch, Jennifer; Lawrence, Robert S.

    2011-01-01

    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all. PMID:21778492

  19. Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Boutrup Stephansen, Karen; van derKruijs, Jules

    2016-01-01

    The encapsulation of fish oil in poly(vinyl alcohol) (PVA) nanofibers by emulsion electrospinning was investigated. Independently of the emulsifier used, whey protein isolate (WPI) or fish protein hydrolysate (FPH), PVA concentration had a high influence on fiber morphology. Fibers without bead d...

  20. Do food and oil prices co-move?

    International Nuclear Information System (INIS)

    Reboredo, Juan C.

    2012-01-01

    This paper studies co-movements between world oil prices and global prices for corn, soybean and wheat using copulas. Several copula models with different conditional dependence structures and time-varying dependence parameters were considered. Empirical results for weekly data from January 1998 to April 2011 showed weak oil-food dependence and no extreme market dependence between oil and food prices. These results support the neutrality of agricultural commodity markets to the effects of changes in oil prices and non-contagion between the crude oil and agricultural markets. However, dependence increased significantly in the last three years of the sampling period, even though upper tail dependence remained insignificant, indicating that food price spikes are not caused by positive extreme oil price changes. These results have implications for policy design, risk management and hedging strategies. - Highlights: ► We study co-movement between food and oil markets through copulas. ► Food prices are neutral to the effects of changes in oil prices. ► Oil price spikes had no causal effect on agricultural price spikes. ► Oil–corn and oil–soybean dependence increased in recent years. ► Food subsidy policies and price controls are unnecessary to avoid extreme oil prices.

  1. Essential Oils: Sources of Antimicrobials and Food Preservatives

    Science.gov (United States)

    Pandey, Abhay K.; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N.; Bajpai, Vivek K.

    2017-01-01

    Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future. PMID:28138324

  2. Oil price, biofuels and food supply

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Mevel, Simon; Shrestha, Ashish

    2011-01-01

    The price of oil could play a significant role in influencing the expansion of biofuels, but this issue has yet to be fully investigated in the literature. Using a global computable general equilibrium (CGE) model, this study analyzes the impact of oil price on biofuel expansion, and subsequently, on food supply. The study shows that a 65% increase in oil price in 2020 from the 2009 level would increase the global biofuel penetration to 5.4% in 2020 from 2.4% in 2009. If oil prices rise 150% from their 2009 levels by 2020, the resulting penetration of biofuels would be 9%, which is higher than that would be caused by current mandates and targets introduced in more than forty countries around the world. The study also shows that aggregate agricultural output drops due to an oil price increase, but the drop is small in major biofuel producing countries as the expansion of biofuels would partially offset the negative impacts of the oil price increase on agricultural outputs. An increase in oil price would reduce global food supply through direct impacts as well as through the diversion of food commodities and cropland towards the production of biofuels. - Highlights: ► A global CGE model to analyze impacts of oil price on biofuels and food supply. ► Global biofuel penetration increases from 2.4% (2009) to 5.4% (2020) in baseline. ► A 150% rise of oil price boosts biofuels more than current mandates and targets do. ► Biofuels partially offset drops in agricultural outputs caused by oil price rise. ► Biofuels as well as oil price rise negatively affect global food supply.

  3. Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric.

    Science.gov (United States)

    Özyildiz, F; Karagönlü, S; Basal, G; Uzel, A; Bayraktar, O

    2013-03-01

    In recent years, functional fabrics possessing antimicrobial activity have drawn significant interest because antibiotic resistance is becoming widespread among pathogenic micro-organisms. The aim of this study was to produce microcapsules incorporating ozonated red pepper seed oil (ORPSO) with antimicrobial properties and apply them to nonwoven fabrics to prepare functional textiles. Red pepper seed oil (RPSO) was ozonated and micro-encapsulated via a complex coacervation method using gelatin (GE) and gum arabic (GA) as wall materials. While micro-encapsulation yield and oil loading decreased with increases in the amount of surfactant, the mean particle size increased. The antimicrobial activity of the oil was tested via the disc diffusion method. The microcapsules were also tested using the agar well method. While RPSO had no effect on the test micro-organisms, the ORPSO and microcapsules containing ORPSO were found to be active against the test micro-organisms. The microcapsules were then applied to nonwoven fabric using the padding method to produce a disposable functional textile. The microcapsule-impregnated functional fabrics provided a 5 log decrease in 1 h. It is therefore possible to functionalize nonwoven fabrics to have antimicrobial activity against antibiotic-resistant micro-organisms, using microcapsules containing ORPSO. This is the first report on the antimicrobial action of RPSO after ozonation process. These findings suggest that ozonated red pepper seed oil (ORPSO) may be a useful and effective antimicrobial agent against the micro-organisms with antibiotic resistance. Therefore, as a natural product, RPSO represents a sustainable alternative to the use of synthetic antimicrobial agents. To our knowledge, this is also the first time that ORPSO has been micro-encapsulated for the preparation of functional textile material with significant antimicrobial activity. © 2012 The Society for Applied Microbiology.

  4. Encapsulation of fish oil into hollow solid lipid micro- and nanoparticles using carbon dioxide.

    Science.gov (United States)

    Yang, Junsi; Ciftci, Ozan Nazim

    2017-09-15

    Fish oil was encapsulated in hollow solid lipid micro- and nanoparticles formed from fully hydrogenated soybean oil (FHSO) using a novel green method based on atomization of supercritical carbon dioxide (SC-CO 2 )-expanded lipid. The highest fish oil loading efficiency (97.5%, w/w) was achieved at 50%, w/w, initial fish oil concentration. All particles were spherical and in the dry free-flowing form; however, less smooth surface with wrinkles was observed when the initial fish oil concentration was increased up to 50%. With increasing initial fish oil concentration, melting point of the fish oil-loaded particles shifted to lower onset melting temperatures, and major polymorphic form transformed from α to β and/or β'. Oxidative stability of the loaded fish oil was significantly increased compared to the free fish oil (p<0.05). This innovative method forms free-flowing powder products that are easy-to-use solid fish oil formulation, which makes the handling and storage feasible and convenient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. KARAKTERISTIK MIKROKAPSUL MINYAK ATSIRI LENGKUAS DENGAN MALTODEKSTRIN SEBAGAI ENKAPSULAN [Characteristics of Galangal Essential Oil Microencapsulation Using Maltodextrin Encapsulant

    Directory of Open Access Journals (Sweden)

    Supriyadi*

    2013-12-01

    Full Text Available Research on encapsulation of galangal (Alpinia galanga essential oil using maltodextrin as a coating substance was aimed to determine the ideal proportion between the essential oil and coating material to produce microcapsules, and to determine its characteristics.The ratio of galangal essential oil and maltodextrin studied were 1:8, 1:10, and 1:12. Emulsification was performed using Turrax homogenizer at 11.500 rpm for 2 min. Microencapculation was performed by spray drying at inlet and outlet temperatures of 120 and 80°C, respectively, and feed flow rate of 15 mL/min. The optimum conditions for microcapsules were determined based on the water content, aw value, surface- and entrapped-oil, and volatile compounds profile (total volatile and volatile composition of the microcapsules. Microcapsules prepared by essential oil and maltodextrin at a ratio of 1:10 was found to have better characteristics. The microcapsules had a moisture content of 6.27%, aw of 0.49, surface oil of 1.22 and total volatile of 42.22%. Methyl cinnamate, 1.8-cineole, -pinene and -pinene were found as the main volatile constituents in both of essential oil and microcapsules. Methyl cinnamate was more stable than the other volatile compounds, even after encapsulation process.

  6. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.

    Science.gov (United States)

    Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda

    2015-10-20

    Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. New method for fabrication of loaded micro- and nanocontainers: emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core.

    Science.gov (United States)

    Grigoriev, D O; Bukreeva, T; Möhwald, H; Shchukin, D G

    2008-02-05

    A novel approach to the emulsion encapsulation was developed by combining the advantages of direct encapsulation of a liquid colloidal core with the accuracy and multifunctionality of layer-by-layer polyelectrolyte deposition. Experimental data obtained for the model oil-in-water emulsion confirm unambiguously the alternating PE assembly in the capsule shell as well as the maintenance of the liquid colloidal core. Two different mechanisms of capsule destruction upon interaction with the solid substrate were observed and qualitatively explained. The proposed method can be easily generalized to the preparation of oil-filled capsules in various oil/water/polyelectrolyte systems important in the field of pharmacy, medicine, and food industry.

  8. Microencapsulation of soybean oil by spray drying using oleosomes

    Science.gov (United States)

    Maurer, S.; Ghebremedhin, M.; Zielbauer, B. I.; Knorr, D.; Vilgis, T. A.

    2016-02-01

    The food industry has discovered that oleosomes are beneficial as carriers of bioactive ingredients. Oleosomes are subcellular oil droplets typically found in plant seeds. Within seeds, they exist as pre-emulsified oil high in unsaturated fatty acids, stabilised by a monolayer of phospholipids and proteins, called oleosins. Oleosins are anchored into the oil core with a hydrophobic domain, while the hydrophilic domains remain on the oleosome surface. To preserve the nutritional value of the oil and the function of oleosomes, microencapsulation by means of spray drying is a promising technique. For the microencapsulation of oleosomes, maltodextrin was used. To achieve a high oil encapsulation efficiency, optimal process parameters needed to be established. In order to better understand the mechanisms of drying behind powder formation and the associated powder properties, the findings obtained using different microscopic and spectroscopic measurements were correlated with each other. By doing this, it was found that spray drying of pure oleosome emulsions resulted in excessive component segregation and thus in a poor encapsulation efficiency. With the addition of maltodextrin, the oil encapsulation efficiency was significantly improved.

  9. Utilization of Microcapsule Technology in Foods.

    Science.gov (United States)

    Zhang, Chuanxiang; Li, Xiaolong; Liu, You-Nian; Zhang, Fengqin

    2015-12-01

    Microencapsulation technology has greatly accelerated the development of food industry and has a bright future for further applications. In this review paper, we introduce the current researches, latest advances and trends of core materials, wall materials, microencapsulation technology, as well as the encapsulation of food additives, bioactive substance, esculent oils, probiotics and other substances, and their application in food industry.

  10. Microcapsules with a pH responsive polymer: influence of the encapsulated oil on the capsule morphology.

    Science.gov (United States)

    Wagdare, Nagesh A; Marcelis, Antonius T M; Boom, Remko M; van Rijn, Cees J M

    2011-11-01

    Microcapsules were prepared by microsieve membrane cross flow emulsification of Eudragit FS 30D/dichloromethane/edible oil mixtures in water, and subsequent phase separation induced by extraction of the dichloromethane through an aqueous phase. For long-chain triglycerides and jojoba oil, core-shell particles were obtained with the oil as core, surrounded by a shell of Eudragit. Medium chain triglyceride (MCT oil) was encapsulated as relatively small droplets in the Eudragit matrix. The morphology of the formed capsules was investigated with optical and SEM microscopy. Extraction of the oil from the core-shell capsules with hexane resulted in hollow Eudragit capsules with porous shells. It was shown that the differences are related to the compatibility of the oils with the shell-forming Eudragit. An oil with poor compatibility yields microcapsules with a dense Eudragit shell on a single oil droplet as the core; oils having better compatibility yield porous Eudragit spheres with several oil droplets trapped inside. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Optimization of Microencapsulation of Fish Oil with Gum Arabic/Casein/Beta-Cyclodextrin Mixtures by Spray Drying.

    Science.gov (United States)

    Li, Junjie; Xiong, Shanbai; Wang, Fang; Regenstein, Joe M; Liu, Ru

    2015-07-01

    Fish oil was encapsulated with gum arabic/casein/beta-cyclodextrin mixtures using spray drying. The processing parameters (solids concentration of the barrier solutions, ratio of oil to barrier materials, emulsifying temperature, and air inlet temperature) were optimized based on emulsion viscosity, emulsion stability, encapsulation efficiency, and yield. A suitable viscosity and high emulsion stability could increase encapsulation efficiency and yield. Encapsulation efficiency and yield were significantly affected by all the 4 parameters. Based on the results of orthogonal experiments, encapsulation efficiency and yield reached a maximum of 79.6% and 55.6%, respectively, at the optimal condition: solids concentration of 35%, ratios of oil to barrier materials of 3:7, emulsifying temperature of 55 °C, and air inlet temperature of 220 °C. Scanning electron microscopy analysis showed that fish oil microcapsules were nearly spherical with a smooth surface with droplet size ranging from 1 to 10 μm. © 2015 Institute of Food Technologists®

  12. Oxidative Stability and Shelf Life of Foods Containing Oils and Fats

    DEFF Research Database (Denmark)

    and oils and fats-containing foods in the food and pet food industries. Discusses oxidative stability and shelf life of low-moisture (dry) food, including dry pet food. Discusses lipid co-oxidation with protein because a number of food products contain both lipids and proteins. Directed mainly toward......Oxidative Stability and Shelf Life of Foods Containing Oils and Fats focuses on food stability and shelf life, both important factors in the improvement and development of food products. This book, relevant for professionals in the food and pet food industries, presents an evaluation of methods...... for studies on the oxidative stability and shelf life of bulk oils/fats, fried oils and foods, food emulsions, dried foods, meat and meat products, and seafood in food and pet food. Focuses on the application of various evaluation methods to studies of oxidative stability and shelf life in oils and fats...

  13. An oil spill-food chain interaction model for coastal waters

    International Nuclear Information System (INIS)

    Yew Hoong Gin, K.; Huda, Md. K.; Tkalich, P.

    2001-01-01

    An oil spill-food chain interaction model, composed of a multiphase oil spill model (MOSM) and a food chain model, has been developed to assess the probable impacts of oil spills on several key marine organisms (phytoplankton, zooplankton, small fish, large fish and benthic invertebrates). The MOSM predicts oil slick thickness on the water surface; dissolved, emulsified and particulate oil concentrations in the water column; and dissolved and particulate oil concentrations in bed sediments. This model is used to predict the fate of oil spills and transport with respect to specific organic compounds, while the food chain model addresses the uptake of toxicant by marine organisms. The oil spill-food chain interaction model can be used to assess the environmental impacts of oil spills in marine ecosystems. The model is applied to the recent Evoikos-Orapin Global oil spill that occurred in the Singapore Strait. (author)

  14. Essential oils as natural food antimicrobial agents: a review.

    Science.gov (United States)

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.

  15. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line.

    Science.gov (United States)

    Lin, Chuan-Chuan; Lin, Hung-Yin; Chi, Ming-Hung; Shen, Chin-Min; Chen, Hwan-Wen; Yang, Wen-Jen; Lee, Mei-Hwa

    2014-07-01

    The choice of surfactants and cosurfactants for preparation of oral formulation in microemulsions is limited. In this report, a curcumin-encapsulated phospholipids-based microemulsion (ME) using food-grade ingredients soybean oil and soybean lecithin to replace ethyl oleate and purified lecithin from our previous study was established and compared. The results indicated soybean oil is superior to ethyl oleate as the oil phase in curcumin microemulsion, as proven by the broadened microemulsion region with increasing range of surfactant/soybean oil ratio (approx. 1:1-12:1). Further preparation of two formula with different particle sizes of formula A (30nm) and B (80nm) exhibited differential effects on the cytotoxicity of hepatocellular HepG2 cell lines. At 15μM of concentration, curcumin-ME in formula A with smaller particle size resulted in the lowest viability (approx. 5%), which might be explained by increasing intake of curcumin, as observed by fluorescence microscopy. In addition, the cytotoxic effect of curcumin-ME is exclusively prominent on HepG2, not on HEK293, which showed over 80% of viability at 15μM. The results from this study might provide an innovative applied technique in the area of nutraceuticals and functional foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characteristics and oxidative stability of bread fortified with encapsulated shrimp oil

    Directory of Open Access Journals (Sweden)

    Sirima Takeungwongtrakul

    2015-12-01

    Full Text Available Characteristics and oxidative stability of bread fortified with micro-encapsulated shrimp oil (MSO were determined. The addition of MSO could improve the loaf volume of bread. Chewiness,gumminess and resilience of resulting bread were decreased. Bread crust and crumb showed higher redness and yellowness when MSO was incorporated (P<0.05. Microstructure study revealed that MSO remained intact with bread crumbs. The addition of MSO up to 3% had no adverse effect on bread quality and sensory acceptability. Oxidation took place in bread fortified with 5%MSO to a higher extent, compared with those with 1 or 3% MSO. Therefore, the bread could be fortified with MSO up to 3%.

  17. Encapsulation of resveratrol in spherical particles of food grade hydrogels

    Directory of Open Access Journals (Sweden)

    Balanč Bojana D.

    2017-01-01

    Full Text Available The paper reports about the preparation and characterization of hydrogel particles containing liposomes loaded with resveratrol as an active compound. The materials used for preparation of the particles were chosen to be suitable for food industry. Different polymer concentrations affect particles shape, size, size distribution, as well as the release kinetics of resveratrol. The diameter of particles varied from 360 to 754 μm, while the narrow size distribution was observed for all types of particles. Release studies were performed in Franz diffusion cell and the results showed the prolonged release of resveratrol from all samples, but the sample with the highest content of polymer (2.5% w/w in particular stood out. The research provides useful information about liposomes containing active compound encapsulated in hydrogel matrices and offers the basis for its application in the food industry.

  18. Effects on bread and oil quality after functionalization with microencapsulated chia oil.

    Science.gov (United States)

    González, Agustín; Martínez, Marcela L; León, Alberto E; Ribotta, Pablo D

    2018-03-23

    Omega-3 and omega-6 fatty acids-rich oils suffer oxidation reactions that alter their chemical and organoleptic quality. Microencapsulation can be a powerful tool for protection against ambient conditions. In the present study, the addition of microencapsulated chia oil as an ingredient in bread preparations and its effect on the technological and chemical quality of breads was investigated. Microencapsulation of chia oil was carried out by freeze-drying with soy proteins as wall material and oil release was determined under in vitro gastric and intestinal conditions. Encapsulated oil-containing bread showed no differences in specific volume, average cell area, firmness and chewiness with respect to control bread. Unencapsulated oil-containing bread showed a marked increase in hydroperoxide values respect to control, whereas encapsulated oil-containing bread values were not affected by baking and bread storage. The fatty acid profiles showed a decrease of 13% and 16%, respectively, in α-linolenic acid in the encapsulated and unencapsulated oils with respect to bulk chia oil. Sensory analysis showed no significant differences between bread samples. The addition of encapsulated chia oil did not alter the technological quality of breads and prevented the formation of hydroperoxide radicals. A ration of encapsulated oil-containing bread contributes 60% of the recommended dietary intake of omega-3 fatty acids. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. Deterioration of edible oils during food processing by ultrasound.

    Science.gov (United States)

    Chemat, F; Grondin, I; Shum Cheong Sing, A; Smadja, J

    2004-01-01

    During food emulsification and processing of sunflower oil (most used edible oil), a metallic and rancid odour has been detected only for insonated oil and foods. Some off-flavour compounds (hexanal and hept-2-enal) resulting from the sono-degradation of sunflower oil have been identified. A wide variety of analytical techniques (GC determination of fatty acids, UV spectroscopy, free fatty acids and GC/MS) were used to follow the quality of insonated sunflower oil and emulsion. Different edible oils (olive, sunflower, soybean, em leader ) show significant changes in their composition (chemical and flavour) due to ultrasound treatment.

  20. Microencapsulation: concepts, mechanisms, methods and some applications in food technology

    Directory of Open Access Journals (Sweden)

    Pablo Teixeira da Silva

    2014-07-01

    Full Text Available Microencapsulation is a process in which active substances are coated by extremely small capsules. It is a new technology that has been used in the cosmetics industry as well as in the pharmaceutical, agrochemical and food industries, being used in flavors, acids, oils, vitamins, microorganisms, among others. The success of this technology is due to the correct choice of the wall material, the core release form and the encapsulation method. Therefore, in this review, some relevant microencapsulation aspects, such as the capsule, wall material, core release forms, encapsulation methods and their use in food technology will be briefly discussed.

  1. Oil price and food price volatility dynamics: The case of Nigeria

    Directory of Open Access Journals (Sweden)

    Ijeoma C. Nwoko

    2016-12-01

    Full Text Available This study examines the long and short run relationships between oil price and food price volatility as well as the causal link between them. The study used annual food price volatility index from FAO from 2000 to 2013 and crude oil price from U.S. Energy Information and Administration (EIA from 2000 to 2013. The Johansen and Jesulius co-integration test revealed that there is a long run relationship between oil price and domestic food price volatility. The vector error correction model indicated a positive and significant short run relationship between oil price and food price volatility. The Granger causality test revealed a unidirectional causality with causality running from oil price to food price volatility but not vice versa. It is recommended that policies and interventions that will help reduce uncertainty about food prices such as improved market information, trade policies and investment in research and development among others should be encouraged. Also to reduce the effect of oil price shock, it is recommended that government should subsidise pump price of refined oil, seek alternative sources of energy and there should be less dependence on oil for fertilizer production.

  2. Stability of lime essential oil microparticles produced with protein-carbohydrate blends.

    Science.gov (United States)

    Campelo, Pedro Henrique; Sanches, Edgar Aparecido; Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Borges, Soraia Vilela

    2018-03-01

    The objective of this work was to analyze the influence of maltodextrin equivalent dextrose on the lime essential oil reconstitution, storage, release and protection properties. Four treatments were evaluated: whey protein concentrate (WPC), and blends of maltodextrin with dextrose equivalents of 5 (WM5), 10 (WM10) and 20 (WM20). The reconstitution and storage properties of the microparticles (solubility, wettability and density), water kinetics adsorption, sorption isotherms, thermogravimetric properties, controlled release and degradation kinetics of encapsulated lime essential oil were studied to measure the quality of the encapsulated materials. The results of the study indicated that the DE degree influences the characteristics of reconstitution, storage, controlled release and degradation characteristics of encapsulated bioactive compounds. The increase in dextrose equivalent improves microparticle solubility, wettability and density, mainly due to the size of the maltodextrin molecules. The adsorption kinetics and sorption isotherm curves confirmed the increase in the hygroscopicity of maltodextrins with higher degrees of polymerization. The size of the maltodextrin chains influenced the release and protection of the encapsulated lime essential oil. Finally, the maltodextrin polymerization degree can be considered a parameter that will influence the physicochemical properties of microencapsulated food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: Combined use of whey protein and carbohydrates as wall materials

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Pelayo, Andres; Yu, Sen

    2018-01-01

    The encapsulation of fish oil in electrosprayed capsules using whey protein and carbohydrates (pullulan and dextran or glucose syrup) mixtures as glassy wall materials was studied. Capsules with fish oil emulsified by using only a rotor-stator emulsification exhibited higher oxidative stability...... than capsules where the oil was emulsified by high-pressure homogenization. Moreover, glucose syrup capsules (with a peroxide value, PV, of 19.7 ± 4.4 meq/kg oil and a content of 1-penten-3-ol of 751.0 ± 69.8 ng/g oil) were less oxidized than dextran capsules after 21 days of storage at 20 °C (PV of 24.......9 ± 0.4 meq/kg oil and 1-penten-3-ol of 1161.0 ± 222.0 ng/g oil). This finding may be attributed to differences in oxygen permeability between both types of capsules. These results indicated the potential of both combinations of whey protein, pullulan, and dextran or glucose syrup as shell materials...

  4. Effect of different dextrose equivalents of maltodextrin on oxidation stability in encapsulated fish oil by spray drying.

    Science.gov (United States)

    Abd Ghani, Asmaliza; Adachi, Sae; Shiga, Hirokazu; Neoh, Tze Loon; Adachi, Shuji; Yoshii, Hidefumi

    2017-04-01

    Encapsulating fish oil by spray drying with an adequate wall material was investigated to determine if stable powders containing emulsified fish-oil-droplets can be formed. In particular, the dextrose equivalent (DE) of maltodextrin (MD) affects the powder structure, surface-oil ratio, and oxidative stability of fish oil. The carrier solution was prepared using MD with different DEs (DE = 11, 19, and 25) and sodium caseinate as the wall material and the emulsifier, respectively. The percentage of microcapsules having a vacuole was 73, 39, and 38% for MD with DE = 11, 19, and 25, respectively. Peroxide values (PVs) were measured for the microcapsules incubated at 60 °C. The microcapsules prepared with MD of DE = 25 and 19 had lower PVs than those prepared with MD of DE = 11. The difference in PV can be ascribed to the difference in the surface-oil ratio of the spray-dried microcapsules.

  5. Encapsulation of health-promoting ingredients: applications in foodstuffs.

    Science.gov (United States)

    Tolve, Roberta; Galgano, Fernanda; Caruso, Marisa Carmela; Tchuenbou-Magaia, Fideline Laure; Condelli, Nicola; Favati, Fabio; Zhang, Zhibing

    2016-12-01

    Many nutritional experts and food scientists are interested in developing functional foods containing bioactive agents and many of these health-promoting ingredients may benefit from nano/micro-encapsulation technology. Encapsulation has been proven useful to improve the physical and the chemical stability of bioactive agents, as well as their bioavailability and efficacy, enabling their incorporation into a wide range of formulations aimed to functional food production. There are several reviews concerning nano/micro-encapsulation techniques, but none are focused on the incorporation of the bioactive agents into food matrices. The aim of this paper was to investigate the development of microencapsulated food, taking into account the different bioactive ingredients, the variety of processes, techniques and coating materials that can be used for this purpose.

  6. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.

    Science.gov (United States)

    Peng, Chiung-Yu; Lan, Cheng-Hang; Lin, Pei-Chen; Kuo, Yi-Chun

    2017-02-15

    Cooking oil fumes (COFs) contain a mixture of chemicals. Of all chemicals, aldehydes draw a great attention since several of them are considered carcinogenic and formation of long-chain aldehydes is related to fatty acids in cooking oils. The objectives of this research were to compare aldehyde compositions and concentrations in COFs produced by different cooking oils, cooking methods, and food types and to suggest better cooking practices. This study compared aldehydes in COFs produced using four cooking oils (palm oil, rapeseed oil, sunflower oil, and soybean oil), three cooking methods (stir frying, pan frying, and deep frying), and two foods (potato and pork loin) in a typical kitchen. Results showed the highest total aldehyde emissions in cooking methods were produced by deep frying, followed by pan frying then by stir frying. Sunflower oil had the highest emissions of total aldehydes, regardless of cooking method and food type whereas rapeseed oil and palm oil had relatively lower emissions. This study suggests that using gentle cooking methods (e.g., stir frying) and using oils low in unsaturated fatty acids (e.g., palm oil or rapeseed oil) can reduce the production of aldehydes in COFs, especially long-chain aldehydes such as hexanal and t,t-2,4-DDE. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications.

    Science.gov (United States)

    Edris, Amr E; Kalemba, Danuta; Adamiec, Janusz; Piątkowski, Marcin

    2016-08-01

    Oleoresin of Nigella sativa L. (Black cumin) was obtained from the seeds using hexane extraction at room temperature. The oleoresin was emulsified in an aqueous solution containing gum Arabic/maltodextrin (1:1 w/w) and then encapsulated in powder form by spray drying. The characteristics of the obtained powder including moisture content, bulk density, wettability, morphology, encapsulation efficiency were evaluated. The effect of the spray drying on the chemical composition of the volatile oil fraction of N. sativa oleoresin was also evaluated using gas chromatographic-mass spectroscopic analysis. Results indicated that the encapsulation efficiency of the whole oleoresin in the powder can range from 84.2±1.5% to 96.2±0.2% depending on the conditions of extracting the surface oil from the powder. On the other hand the encapsulation efficiency of the volatile oil fraction was 86.2% ±4.7. The formulated N. sativa L. oleoresin powder can be used in the fortification of processed food and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Essential oils: extraction, bioactivities, and their uses for food preservation.

    Science.gov (United States)

    Tongnuanchan, Phakawat; Benjakul, Soottawat

    2014-07-01

    Essential oils are concentrated liquids of complex mixtures of volatile compounds and can be extracted from several plant organs. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties. In addition, some essential oils have been used as medicine. Furthermore, the uses of essential oils have received increasing attention as the natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Essential oils can be incorporated into packaging, in which they can provide multifunctions termed "active or smart packaging." Those essential oils are able to modify the matrix of packaging materials, thereby rendering the improved properties. This review covers up-to-date literatures on essential oils including sources, chemical composition, extraction methods, bioactivities, and their applications, particularly with the emphasis on preservation and the shelf-life extension of food products. © 2014 Institute of Food Technologists®

  9. Production of oxidatively stable fish oil enriched food emulsions

    DEFF Research Database (Denmark)

    Bruni Let, Mette

    Purpose: The objective of the project is to determine how a number of selected fish oil enriched foods can be protected against oxidation by the right choice of antioxidants, emulsifiers and optimal process conditions. Furthermore the influence of antioxidant addition to the fish oil it...... have many other health benefiting properties such as preventing heart diseases. Addition of fish oils to foods is therefore of interest. The many double bonds in the fatty acids are however susceptible to oxidation. Collaboration partners: The project is a collaborative project between DFU-FF, Bio......-self on the effect of antioxidants added to the foods will also be investigated. Background: Fish oils are rich sources of the long-chain polyunsaturated fatty acids EPA and DHA of which DHA is a vital component of the phospholipids of human cellular membranes, especially those in the brain and retina. Fish oils...

  10. Bioactive Encapsulation for Military Food Applications: Request for Enhanced Nano and Micro Particle Fabrication and Characterization Facilities

    Science.gov (United States)

    2016-01-25

    light exposure, while also enhancing the bioaccessibility of the microen- capsulated nutraceutical after they are dispersed in foods and beverages ...2013 21-Jul-2014 Approved for Public Release; Distribution Unlimited Final Report: Bioactive Encapsulation for Military Food Applications: Request for...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Massachusetts

  11. Strain screening, fermentation, separation, and encapsulation for production of nattokinase functional food.

    Science.gov (United States)

    Wei, Xuetuan; Luo, Mingfang; Xie, Yuchun; Yang, Liangrong; Li, Haojian; Xu, Lin; Liu, Huizhou

    2012-12-01

    This study presents a novel and integrated preparation technology for nattokinase functional food, including strain screening, fermentation, separation, and encapsulation. To rapidly screen a nattokinase-productive strain, PCR-based screening method was combined with fibrinolytic activity-based method, and a high productive strain, Bacillus subtilis LSSE-22, was isolated from Chinese soybean paste. Reduction of poly-γ-glutamic acid (γ-PGA) concentration may contribute to separation of nattokinase and reduction of late-onset anaphylaxis risk. Chickpeas were confirmed as the favorable substrate for enhancement of nattokinase production and reduction of γ-PGA yield. Using cracked chickpeas, the nattokinase activity reached 356.25 ± 17.18 FU/g (dry weight), which is much higher than previous reports. To further reduce γ-PGA concentration, ethanol fractional extraction and precipitation were applied for separation of nattokinase. By extraction with 50 % and precipitation with 75 % ethanol solution, 4,000.58 ± 192.98 FU/g of nattokinase powders were obtained, and the activity recovery reached 89 ± 1 %, while γ-PGA recovery was reduced to 21 ± 2 %. To improve the nattokinase stability at acidic pH condition, the nattokinase powders were encapsulated, and then coated with methacrylic acid-ethyl acrylate copolymer. After encapsulation, the nattokinase was protected from being denatured under various acid conditions, and pH-responsible controlled release at simulated intestinal fluid was realized.

  12. Food and biomass production in small oil expression facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kato, H.; Kanai, G.; Yakushido, K. [National Agricultural Research Center, Tsukuba (Japan). Biomass Production and Processing Research Team

    2010-07-01

    This paper reported on a study in which rapeseeds were separated into high quality seed for food oil and low quality seed for biofuels. A laboratory-scale oilseed screw press was then used to examine the effects of choke opening and seed preheating on the rapeseed pressing performance and the quality of food oil and biofuels oil. Oil recovery and chlorophyll content was found to increase as maximum pressure increased. In terms of pressing performance, the rapeseed heated by microwaves yielded more oil and chlorophyll than without heating. The NEB ratio of microwave heating press with an 8.0 mm choke opening was advantageous. Rapeseed oil extracted from low quality seeds was found to have a high acid value. The quality of oil extracted by oilseed screw press was found to be good and met the requirements of the Codex Alimentarius for edible oils.

  13. Encapsulated specialty oils commercialized in São Paulo state, Brazil: evaluation of identity (fatty acid profile and compliance of fatty acids and Vitamin E contents with nutrition labeling

    Directory of Open Access Journals (Sweden)

    Karen Hirashima

    2013-03-01

    Full Text Available Encapsulated specialty oils commercialized in São Paulo state, Brazil, were evaluated for their identity (fatty acids profile and compliance with nutrition labeling (fatty acids and Vitamin E (alpha tocopherol contents. Twenty one samples [flaxseed oil (6, evening primrose (5, safflower (8, borage (1, and black currant (1] purchased from local markets or collected by the health surveillance agency were analyzed. The fatty acids and vitamin E contents were analyzed by gas chromatography with flame ionization detector and liquid chromatography with UV detector, respectively. Nine samples were adulterated (5 samples of safflower oil, 3 of flaxseed oil, and one of evening primrose. Among them, 3 flaxseed and 2 safflower oil samples were probably adulterated by the addition of soybean oil. Conjugated linoleic acid (CLA was found in two safflower oils samples although the sale of oils with conjugated linoleic acid (CLA is not permitted by the National Health Surveillance Agency in Brazil (ANVISA. Only two samples presented all values in compliance with nutrition labeling (one safflower oil sample and one borage oil sample. The results show that a continuous monitoring of encapsulated specialty oils commercialized in Brazil is necessary including a greater number of samples and sanitary surveillance.

  14. Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples

    International Nuclear Information System (INIS)

    Lin, Xiaoyun; Ni, Yongnian; Kokot, Serge

    2014-01-01

    Graphical abstract: A simple one-step electrodeposition method was used to fabricate a Cu doped gold nanoparticles modified glassy carbon electrode. An electrochemical reaction mechanism for o-methoxy phenols was suggested. In addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples. - Highlights: • One-step construction of the Cu@AuNPs/GCE electrode. • The modified electrode showed high sensitivity for the analysis of eugenol. • Electrochemical mechanism of eugenol by use of Cu@AuNPs/GCE was inferred. • The novel method was successfully employed for analysis of eugenol in food samples. - Abstract: A simple one-step electrodeposition method was used to construct a glassy carbon electrode (GCE), which has been modified with Cu doped gold nanoparticles (GNPs), i.e. a Cu@AuNPs/GCE. This electrode was characterized with the use of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The eugenol was electrocatalytically oxidized at the Cu@AuNPs/GCE. At this electrode, in comparison with the behavior at the GCE alone, the corresponding oxidation peak current was enhanced and the shift of the oxidation potentials to lower values was observed. Electrochemical behavior of eugenol at the Cu@AuNPs/GCE was investigated with the use of the cyclic voltammetry (CV) technique, and additionally, in order to confirm the electrochemical reaction mechanism for o-methoxy phenols, CVs for catechol, guaiacol and vanillin were investigated consecutively. Based on this work, an electrochemical reaction mechanism for o-methoxy phenols was suggested, and in addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples

  15. Lipophilized phenolics as antioxidants in fish oil enriched food systems

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Nielsen, Nina Skall; Jacobsen, Charlotte

    Food products containing long chain omega-3 PUFA are highly susceptible to oxidation, which causes undesirable flavors and loss of health beneficial fatty acids. Many omega-3 enriched food products on the market are oil-in-water emulsions. According to the so called “polar paradox”, polar compounds...... hypothesis is that lipophilization of such polar phenolic compounds may improve their efficacy in fish oil enriched food systems. Our study aimed at evaluating rutin and dihydrocaffeic acid and their esters as antioxidants in o/w emulsion model system and milk enriched with fish oil. Moreover, the effect...

  16. Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: A review.

    Science.gov (United States)

    Corstens, Meinou N; Berton-Carabin, Claire C; de Vries, Renko; Troost, Freddy J; Masclee, Ad A M; Schroën, Karin

    2017-07-03

    The increasing prevalence of overweight and obesity requires new, effective prevention and treatment strategies. One approach to reduce energy intake is by developing novel foods with increased satiating properties, which may be accomplished by slowing down lipolysis to deliver substrates to the ileum, thereby enhancing natural gut-brain signaling pathways of satiety that are normally induced by meal intake. To develop slow release food additives, their processing in the gastrointestinal tract has to be understood; therefore, we start from a general description of the digestive system and relate that to in vitro modeling, satiety, and lipolytic mechanisms. The effects of physicochemical lipid composition, encapsulation matrix, and interfacial structure on lipolysis are emphasized. We give an overview of techniques and materials used, and discuss partitioning, which may be a key factor for encapsulation performance. Targeted release capsules that delay lipolysis form a real challenge because of the high efficiency of the digestive system; hardly any proof was found that intact orally ingested lipids can be released in the ileum and thereby induce satiety. We expect that this challenge could be tackled with structured o/w-emulsion-based systems that have some protection against lipase, e.g., by hindering bile salt adsorption and/or delaying lipase diffusion.

  17. Development of a Lipid Particle for β-Carotene Encapsulation Using a Blend of Tristearin and Sunflower Oil: Choice of Lipid Matrix and Evaluation of Shelf Life of Dispersions

    Directory of Open Access Journals (Sweden)

    Graziela V. L. Gomes

    2013-01-01

    Full Text Available Solid lipid particles are colloidal carriers that have been studied for almost 20 years in the pharmaceutical field and recently have been investigated by food researchers due to their capacity to enhance the incorporation of lipophilic bioactives and their bioavailability in aqueous formulations. The aims of this study are to choose a suitable lipid matrix to produce solid lipid particles, which would be used to encapsulate β-carotene, and to evaluate the capacity of dispersions to protect the incorporated carotenoid. Bulk lipid mixtures of tristearin and sunflower oil were analysed by differential scanning calorimetry and wide angle X-ray diffraction, and the mixture with the highest degree of structural disorganisation was chosen. β-Carotene was then encapsulated in solid lipid particles produced with this mixture, composed of 70 % tristearin and 30 % sunflower oil (6 % total lipid and stabilised with hydrogenated soy lecithin and Tween 80 (3 % total surfactant by hot pressure homogenisation. Two types of particles were produced, using one or two passages in the homogenisation step. Average particle size, zeta potential, thermal behaviour, crystallinity and β-carotene concentration were monitored over 4 months of storage (under refrigerated conditions. The results showed minor differences between the systems in terms of size distribution, although the particles produced with one passage through the homogeniser were slightly more efficient at protecting the β-carotene from degradation and also suffered few microstructural alterations after 4 months.

  18. Antimicrobial activity of coriander oil and its effectiveness as food preservative.

    Science.gov (United States)

    Silva, Filomena; Domingues, Fernanda C

    2017-01-02

    ABTRACT Foodborne illness represents a major economic burden worldwide and a serious public health threat, with around 48 million people affected and 3,000 death each year only in the USA. One of the possible strategies to reduce foodborne infections is the development of effective preservation strategies capable of eradicating microbial contamination of foods. Over the last years, new challenges for the food industry have arisen such as the increase of antimicrobial resistance of foodborne pathogens to common preservatives and consumers demand for naturally based products. In order to overcome this, new approaches using natural or bio-based products as food preservatives need to be investigated. Coriander (Coriandrum sativum L.) is a well-known herb widely used as spice, or in folk medicine, and in the pharmacy and food industries. Coriander seed oil is the world's second most relevant essential oil, exhibiting antimicrobial activity against Gram-positive and Gram-negative bacteria, some yeasts, dermatophytes and filamentous fungi. This review highlights coriander oil antimicrobial activity and possible mechanisms of action in microbial cells and discusses the ability of coriander oil usage as a food preservative, pointing out possible paths for the successful evolution for these strategies towards a successful development of a food preservation strategy using coriander oil.

  19. KIT RELIABILITY FOR CONTROLLING THE QUALITY OF OILS IN FOOD FRYING

    Directory of Open Access Journals (Sweden)

    Simeon Oloni Kotchoni

    2012-08-01

    Full Text Available In Benin, West Africa, frying is one of the major ways of cooking. However, the chemical composition of the oil used in the food frying process contains unsaturated fatty acids and other by-products that compromise the oil quality making it toxic and often carcinogenic. The aim of this study was to check the reliability of kits in controlling three frying yams oil quality. The food frying was performed using oil in a discontinuous heating period of 15 min followed by three hours of cooling period for two experimental days. The temperature, and the oil chemical samplings were assessed with the kit every thirty minutes. In addition, selected oil chemical characteristics were determined to quantitatively and qualitatively appreciate the chemical modifications during the fast food versus the rapid food processing methods. Our findings indicate that water and volatile chemical compounds vary significantly for the first day of analysis from 0.18% to 1.6% for groundnut oil; from 0.14% to 1.4% for palm oil and from 0.17% to 1.6% for cotton oils. We detected a decrease of iodine index to 25%; 35.31% and 27.78% for groundnut, palm and cotton oils respectively. However, the peroxide index increases to 55.33%; 61.90% and 57.78% for groundnut, palm and cotton oils respectively. The increases of acid and saponification indices were also observed. Under conjugated effect of water temperature contained in the yam and air contact, the chemical characteristics of oil vary with the frying time. Our results reveal concordance consistent data with both the rapid methods and laboratory data set analysis.

  20. Palm oil - towards a sustainable future? : Challanges and opportunites for the Swedish food industry

    OpenAIRE

    Nilsson, Sara

    2013-01-01

    The food industry faces problems relating to the sustainability of palm oil as a food commodity. These problem areas include social, environmental, economic and health issues. The food industry also competes with increasing palm oil demands from the energy sector. This case study identifies and analyzes different perspectives regarding sustainable palm oil as a food commodity in Sweden through interviews with palm oil experts in different businesses and organizations. This study focuses on ho...

  1. Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation.

    Science.gov (United States)

    Wang, Bo; Adhikari, Benu; Barrow, Colin J

    2014-09-01

    The microencapsulation of tuna oil in gelatin-sodium hexametaphosphate (SHMP) using complex coacervation was optimised for the stabilisation of omega-3 oils, for use as a functional food ingredient. Firstly, oil stability was optimised by comparing the accelerated stability of tuna oil in the presence of various commercial antioxidants, using a Rancimat™. Then zeta-potential (mV), turbidity and coacervate yield (%) were measured and optimised for complex coacervation. The highest yield of complex coacervate was obtained at pH 4.7 and at a gelatin to SHMP ratio of 15:1. Multi-core microcapsules were formed when the mixed microencapsulation system was cooled to 5 °C at a rate of 12 °C/h. Crosslinking with transglutaminase followed by freeze drying resulted in a dried powder with an encapsulation efficiency of 99.82% and a payload of 52.56%. Some 98.56% of the oil was successfully microencapsulated and accelerated stability using a Rancimat™ showed stability more than double that of non-encapsulated oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Fatty acids profile of chia oil-loaded lipid microparticles

    Directory of Open Access Journals (Sweden)

    M. F. Souza

    Full Text Available ABSTRACT Encapsulation of poly-unsaturated fatty acid (PUFAis an alternative to increase its stability during processing and storage. Chia (Salvia hispanica L. oil is a reliable source of both omega-3 and omega-6 and its encapsulation must be better evaluated as an effort to increase the number of foodstuffs containing PUFAs to consumers. In this work chia oil was extracted and encapsulated in stearic acid microparticles by the hot homogenization technique. UV-Vis spectroscopy coupled with Multivariate Curve Resolution with Alternating Least-Squares methodology demonstrated that no oil degradation or tocopherol loss occurred during heating. After lyophilization, the fatty acids profile of the oil-loaded microparticles was determined by gas chromatography and compared to in natura oil. Both omega-3 and omega-6 were effectively encapsulated, keeping the same omega-3:omega-6 ratio presented in the in natura oil. Calorimetric analysis confirmed that encapsulation improved the thermal stability of the chia oil.

  3. The Performance Of Oil Palm And Different Food Crop ...

    African Journals Online (AJOL)

    The experiment was carried out between 1996 and 2004 to determine the productivity and economic returns to the resource base of farmers practicing different oil palm/food crop intercropping in an intensive four-year sequential cropping using the standard oil palm density. Oil palm was intercropped for four years, ...

  4. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria

    Science.gov (United States)

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-01-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products. PMID:25473498

  5. Biscuits fortified with micro-encapsulated shrimp oil: characteristics and storage stability.

    Science.gov (United States)

    Takeungwongtrakul, Sirima; Benjakul, Soottawat

    2017-04-01

    Characteristics and storage stability of biscuits fortified with micro-encapsulated shrimp oil (MSO) were determined. The addition of MSO increased spread ratio, whilst decreased the thickness of biscuit. The highest hardness of biscuit was obtained with addition of 9 or 12% MSO. Biscuit surface showed higher redness and yellowness when MSO was incorporated ( p  < 0.05). The addition of MSO up to 6% had no adverse effect on biscuit quality and acceptability. When biscuits added with 6% MSO were stored under different illumination conditions (light and dark), lipid oxidation in all samples increased throughout the storage of 12 days. Light accelerated lipid oxidation of biscuits as evidenced by the increases in both peroxide values and abundance of volatile compounds. No marked change in EPA, DHA and astaxanthin contents were noticeable in biscuit fortified with MSO after 12 days of storage. Therefore, the biscuit could be fortified with MSO up to 6% and must be stored in dark to assure its oxidative stability.

  6. Encapsulation of lemongrass oil with cyclodextrins by spray drying and its controlled release characteristics.

    Science.gov (United States)

    Phunpee, Sarunya; Ruktanonchai, Uracha Rangsadthong; Yoshii, Hidefumi; Assabumrungrat, Suttichai; Soottitantawat, Apinan

    2017-04-01

    Inclusion of the two isomers of citral (E-citral and Z-citral), components of lemongrass oil, was investigated within the confines of various cyclodextrin (α-CD, β-CD and γ-CD) host molecules. Aqueous complex formation constants for E-citral with α-CD, β-CD and γ-CD were determined to be 123, 185, and 204 L/mol, respectively, whereas Z-citral exhibited stronger affinities (157, 206, and 253 L/mol, respectively). The binding trend γ-CD > β-CD > α-CD is a reflection of the more favorable geometrical accommodation of the citral isomers with increasing cavity size. Encapsulation of lemongrass oil within CDs was undertaken through shaking citral:CD (1:1, 1.5:1, and 2:1 molar ratio) mixtures followed by spray drying. Maximum citral retention occurred at a 1:1 molar ratio with β-CD and α-CD demonstrating the highest levels of total E-citral and Z-citral retention, respectively. Furthermore, the β-CD complex demonstrated the slowest release rate of all inclusion complex powders.

  7. Effect of Type of Food on the Trans Fatty Acids Formation and Characteristic of Oil during Frying Process

    International Nuclear Information System (INIS)

    Atta, N.M.M.; Esmail, A.E.; Shams El Din, N.M.M.

    2010-01-01

    This study was carried out to investigate the physical and chemical changes which take place in blended oil (sunflower oil: soy bean oil 75: 25 w/w), therefore frying different types of food, such as fresh foods (potatoes, falafel, fish, meat and chicken) and semi-fried Foods (chicken bites koki (nuggets), shish pan koki and farm frites potato) during frying process for 20, 40 and 60 minutes at (180±5 degree C), also studying the effect of different types of food on the oil uptake and formation of trans fatty acids in oils during frying process. The obtained results as follows: the color (red unit), viscosity, acidity and peroxide value of investigated oils were increased during frying all foods (fresh and semi-fried foods), but the increase was more pronounced in case of frying semi-fried foods, while the refractive index of frying oil of semi-fried foods was decreased compared with control oil and frying oils of fresh food. The results indicated that a considerable range of oil uptake quantities during frying as a result of variation type of foods, among all food, finger potato extensive absorption of the frying oil during frying process compared with the other fresh foods, as a results the semi-fried foods will contain a higher percent of oil included the oil of its formation, that during its frying, it was absorbed a few amount of oil. These results indicated that, the percentage of formation trans fatty acid (eliadic acid) in frying oils after 20 and 60 minutes during frying semi-fried foods was more that than frying fresh foods. Also, the results observed that, the percentage of eliadic acid in frying oil of fresh potato was lower than the other frying oils of fresh food, additionally the quality of frying oil of fresh potato finger was the best compared to frying oil of the other food material

  8. Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M.

    2011-01-01

    A highly sensitive and mercury-free method for determination of bisphenol A (BPA) was established using a glassy carbon electrode that was modified with carboxylated multi-walled carbon nanotubes. A sensitive oxidation peak is found at 550 mV in linear sweep voltammograms at pH 7. Based on this finding, trace levels of bisphenol A can be determined over a concentration range that is linear from 10 nM to 104 nM, the correlation coefficient being 0.9983, and the detection limit (S/N = 3) being 5.0 nM. The method was successfully applied to the determination of BPA in food package. (author)

  9. Transesterification of babassu oil catalyzed by Burkholderia cepacia encapsulated in sol-gel matrix employing protic ionic liquid as an additive

    Directory of Open Access Journals (Sweden)

    Maria Vanessa Souza Oliveira

    2014-02-01

    Full Text Available Enzymatic transesterification from non-edible vegetable oil (babassu oil and ethanol is provided. A set of seven experiments featuring a full 22 factorial design with three central points and different combinations of molar ratio and temperature as independent variables was employed. Transesterification reactions were catalyzed by Burkholderia cepacia lipase encapsulated in a hydrophobic matrix obtained by the sol-gel technique using protic ionic liquid (N-methylmonoethanolamine pentanoate as additive and with conventional heating (40 – 56°C. Ethyl esters highest yield (51.90% was obtained by experimental design with 1:7 molar ratio (oil:alcohol and temperature at 40°C during 48h reaction. The process with a 5-fold increase of enzymatic load provided 98.69% ethyl esters yield with 4.29 mm2 s-1 viscosity

  10. Introduction to the Special Issue: Application of Essential Oils in Food Systems.

    Science.gov (United States)

    Fernández-López, Juana; Viuda-Martos, Manuel

    2018-04-05

    Essential oils have received increasing attention as natural additives for the shelf-life extension of food products due to the risk in using synthetic preservatives. Synthetic additives can reduce food spoilage, but the present generation is very health conscious and believes in natural products rather than synthetic ones due to their potential toxicity and other concerns. Therefore, one of the major emerging technologies is the extraction of essential oils from several plant organs and their application to foods. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties, so their use can be very useful to extend shelf-life in food products. Although essential oils have been shown to be promising alternative to chemical preservatives, they present special limitations that must be solved before their application in food systems. Low water solubility, high volatility, and strong odor are the main properties that make it difficult for food applications. Recent advances that refer to new forms of application to avoid these problems are currently under study. Their application into packaging materials and coated films but also directly into the food matrix as emulsions, nanoemulsions, and coating are some of their new applications among others.

  11. Dissolution of Lipid-Based Matrices in Simulated Gastrointestinal Solutions to Evaluate Their Potential for the Encapsulation of Bioactive Ingredients for Foods.

    Science.gov (United States)

    Raymond, Yves; Champagne, Claude P

    2014-01-01

    The goal of the study was to compare the dissolution of chocolate to other lipid-based matrices suitable for the microencapsulation of bioactive ingredients in simulated gastrointestinal solutions. Particles having approximately 750 μm or 2.5 mm were prepared from the following lipid-based matrices: cocoa butter, fractionated palm kernel oil (FPKO), chocolate, beeswax, carnauba wax, and paraffin. They were added to solutions designed to simulate gastric secretions (GS) or duodenum secretions (DS) at 37°C. Paraffin, carnauba wax, and bees wax did not dissolve in either the GS or DS media. Cocoa butter, FPKO, and chocolate dissolved in the DS medium. Cocoa butter, and to a lesser extent chocolate, also dissolved in the GS medium. With chocolate, dissolution was twice as fast as that with small particles (750 μm) as compared to the larger (2.5 mm) ones. With 750 μm particle sizes, 90% dissolution of chocolate beads was attained after only 60 minutes in the DS medium, while it took 120 minutes for 70% of FPKO beads to dissolve in the same conditions. The data are discussed from the perspective of controlled release in the gastrointestinal tract of encapsulated ingredients (minerals, oils, probiotic bacteria, enzymes, vitamins, and peptides) used in the development of functional foods.

  12. Dissolution of Lipid-Based Matrices in Simulated Gastrointestinal Solutions to Evaluate Their Potential for the Encapsulation of Bioactive Ingredients for Foods

    Directory of Open Access Journals (Sweden)

    Yves Raymond

    2014-01-01

    Full Text Available The goal of the study was to compare the dissolution of chocolate to other lipid-based matrices suitable for the microencapsulation of bioactive ingredients in simulated gastrointestinal solutions. Particles having approximately 750 μm or 2.5 mm were prepared from the following lipid-based matrices: cocoa butter, fractionated palm kernel oil (FPKO, chocolate, beeswax, carnauba wax, and paraffin. They were added to solutions designed to simulate gastric secretions (GS or duodenum secretions (DS at 37°C. Paraffin, carnauba wax, and bees wax did not dissolve in either the GS or DS media. Cocoa butter, FPKO, and chocolate dissolved in the DS medium. Cocoa butter, and to a lesser extent chocolate, also dissolved in the GS medium. With chocolate, dissolution was twice as fast as that with small particles (750 μm as compared to the larger (2.5 mm ones. With 750 μm particle sizes, 90% dissolution of chocolate beads was attained after only 60 minutes in the DS medium, while it took 120 minutes for 70% of FPKO beads to dissolve in the same conditions. The data are discussed from the perspective of controlled release in the gastrointestinal tract of encapsulated ingredients (minerals, oils, probiotic bacteria, enzymes, vitamins, and peptides used in the development of functional foods.

  13. Unilever food safety assurance system for refined vegetable oils and fats

    Directory of Open Access Journals (Sweden)

    van Duijn Gerrit

    2010-03-01

    Full Text Available The Unilever Food Safety Assurance system for refined oils and fats is based on risk assessments for the presence of contaminants or pesticide residues in crude oils, and refining process studies to validate the removal of these components. Crude oil risk assessments were carried out by combining supply chain visits, and analyses of the contaminant and pesticide residue levels in a large number of crude oil samples. Contaminants like poly-aromatic hydrocarbons and hydrocarbons of mineral origin, and pesticide residues can largely be removed by refining. For many years, this Food Safety Assurance System has proven to be effective in controlling contaminant levels in refined vegetable oils and fats.

  14. Encapsulation with structured triglycerides

    Science.gov (United States)

    Lipids provide excellent materials to encapsulate bioactive compounds for food and pharmaceutical applications. Lipids are renewable, biodegradable, and easily modified to provide additional chemical functionality. The use of structured lipids that have been modified with photoactive properties are ...

  15. KARAKTERISTIK MIKROKAPSUL MINYAK KAYA ASAM LEMAK OMEGA-3 DARI HASIL SAMPING PENEPUNGAN LEMURU [Characteristics of Microcapsule of omega-3 Fatty Acids Enriched Oil from Lemuru Meal Processing

    Directory of Open Access Journals (Sweden)

    Teti Estiasih 1

    2008-12-01

    Full Text Available Omega-3 fatty acids enriched fish oil from lemuru fishmeal processing met the quality standard of food grade fish oil, but it was susceptible to oxidation. Microencapsulation by spray drying was one method that could protect this oil against oxidation and the microcapsule could be applied more widely and easier to handle. The important factor that affected microencapsulation process by spray drying method was encapsulant to core ratio. The objective of research was to elucidate the effect of encapsulant to core ratio (2:1; 3:1; 4:1; 5:1; and 6:1 (w/w on characteristics of omega-3 fatty acids enriched fish oil microcapsule. The increase of microencapsulation efficiency and the decrease of surface oil proportion were related to better emulsion stability prior to spray drying and film forming ability around oil globule as the sodium caseinate proportion increased. Emulsification and heating during spray drying could induce hydrolysis of triglycerides in fish oil. Therefore, the quantity of free fatty acids relatively unchanged although the proportion of encapsulated oil decreased. The decrease of oxidation degree is caused by better protective effect of sodium caseinate during emulsification and spray drying due to better film forming ability as proportion of encapsulant increased. However, it was followed by the decrease of omega-3 fatty acids content that related to decreasing proportion of fish oil. This phenomenon was supported by unchanging omega-3 fatty acids retention that showed protective effect of sodium caseinate on oxidation during microencapsulation. Different encapsulant to core ratio did not change yield of microcapsule. Different proportion of surface oil did not affect microcapsule recovery.

  16. ANTIBACTERIAL ACTIVITY OF GINGER OIL AGAINST FOOD BORN PATHOGENS

    International Nuclear Information System (INIS)

    TAHA, S.M.A.

    2008-01-01

    This study was carried out to investigate the antibacterial activity of ginger oil against Food Born pathogens and the effect of heating, microwave heating and gamma irradiation on microbiological quality and antibacterial activity of ginger oil. Growth and survival of A. hydrophila and L. monocytogenes in broth media and carrot juice with different concentrations of ginger oil was also studied. Gram-negative bacteria were more resistant than gram-positive bacteria. Heating at 80 0 C for 10 min did not change the antibacterial activity of ginger oil, whereas heating at 100 0 C for 5 min and autoclaving at 121 0 C for 15 min caused slight reduction in antibacterial activity in most microorganisms tested. Heating by microwave of ginger oil destroyed its antibacterial activity against B. cereus although it still works against other microorganisms tested. The dose 6 kGy caused slight reduction in antibacterial activity of ginger oil, whereas the dose 10 kGy caused markedly reduction in antibacterial activity of ginger oil against most microorganisms tested. Ginger oil was more effective on L. monocytogenes as compared with its effect on A. hydrophila in tryptone soya broth at 4 0 C or 25 0 C. Supplementation of ginger oil with carrot juice was more effective on A. hydrophila and L. monocytogenes than in tryptone soya broth and this effect was increased with increasing the time of incubation and the concentration of ginger oil. These results support the notion that plant essential oils may have an important role as pharmaceuticals and food preservatives

  17. Gas chromatographic/mass spectrometric determination of aniline in foods oils associated with the Spanish toxic oil syndrome

    International Nuclear Information System (INIS)

    Hill, R.H. Jr.; Todd, G.D.; Kilbourne, E.M.; Cline, R.E.; McCraw, J.; Orti, D.L.; Bailey, S.L.; Needham, L.L.

    1987-01-01

    In 1981, a new disease, known today as the toxic oil syndrome (TOS), descended upon the people of Spin. A strong association between TOS and contaminated food oil was established early. Subsequent investigations implicated food oils containing rapeseed oil denatured with aniline. However, little aniline was found in the oils; some other etiologic agent in the oil had apparently produced the illness. Many researchers have investigated these oils, but the specific etiologic agent has not been identified. Significant progress in this research has been hampered by the difficulty in identifying the specific oil samples that produced illness in specific TOS cases. In 1984, the Spanish Government invited the Centers for Disease Control (CDC) to participate in its research efforts to study the TOS problem. One of the authors was detailed to Spain to assist in the study of the illness. Part of their work in this area has been an attempt in their laboratories to classify a group of blind-coded case and control oils according to selected chemical measurements. They report here a newly developed method for determining aniline in these oils and the results of these analyses

  18. Effect of oil price on Nigeria’s food price volatility

    Directory of Open Access Journals (Sweden)

    Ijeoma C. Nwoko

    2016-12-01

    Full Text Available This study examines the effect of oil price on the volatility of food price in Nigeria. It specifically considers the long-run, short-run, and causal relationship between these variables. Annual data on oil price and individual prices of maize, rice, sorghum, soya beans, and wheat spanning from 2000 to 2013 were used. The price volatility for each crop was obtained using Generalized Autoregressive Conditional Heteroskedascity (GARCH (1, 1 model. Our measure of oil price is the Refiner acquisition cost of imported crude oil. The Augmented Dickey–Fuller and Phillip–Perron unit root tests show that all the variables are integrated of order one, I (1. Therefore, we use the Johansen co-integration test to examine the long-run relationship. Our results show that there is no long-run relationship between oil price and any of the individual food price volatility. Thus, we implement a VAR instead of a VECM to investigate the short-run relationship. The VAR model result revealed a positive and significant short-run relationship between oil price and each of the selected food price volatility with exception of that of rice and wheat price volatility. These results were further confirmed by the impulse response functions. The Granger causality test result indicates a unidirectional causality from oil price to maize, soya bean, and sorghum price volatilities but does not show such relationship for rice and wheat price volatilities. We draw some policy implications of these findings.

  19. The "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology.

    Science.gov (United States)

    Slade, Louise; Levine, Harry

    2018-04-13

    This article reviews the application of the "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. The areas of patents and patented technologies reviewed here include: (a) soft-from-the-freezer ice creams and freezer-storage-stable frozen bread dough products, based on "cryostabilization technology" of frozen foods, utilizing commercial starch hydrolysis products (SHPs); (b) glassy-matrix encapsulation technology for flavors and other volatiles, based on structure-function relationships for commercial SHPs; (c) production of stabilized whole-grain wheat flours for biscuit products, based on the application of "solvent retention capacity" technology to develop flours with reduced damaged starch; (d) production of improved-quality, low-moisture cookies and crackers, based on pentosanase enzyme technology; (e) production of "baked-not-fried," chip-like, starch-based snack products, based on the use of commercial modified-starch ingredients with selected functionality; (f) accelerated staling of a starch-based food product from baked bread crumb, based on the kinetics of starch retrogradation, treated as a crystallization process for a partially crystalline glassy polymer system; and (g) a process for producing an enzyme-resistant starch, for use as a reduced-calorie flour replacer in a wide range of grain-based food products, including cookies, extruded expanded snacks, and breakfast cereals.

  20. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  1. Assessing the effect of oil price on world food prices: Application of principal component analysis

    International Nuclear Information System (INIS)

    Esmaeili, Abdoulkarim; Shokoohi, Zainab

    2011-01-01

    The objective of this paper is to investigate the co-movement of food prices and the macroeconomic index, especially the oil price, by principal component analysis to further understand the influence of the macroeconomic index on food prices. We examined the food prices of seven major products: eggs, meat, milk, oilseeds, rice, sugar and wheat. The macroeconomic variables studied were crude oil prices, consumer price indexes, food production indexes and GDP around the world between 1961 and 2005. We use the Scree test and the proportion of variance method for determining the optimal number of common factors. The correlation coefficient between the extracted principal component and the macroeconomic index varies between 0.87 for the world GDP and 0.36 for the consumer price index. We find the food production index has the greatest influence on the macroeconomic index and that the oil price index has an influence on the food production index. Consequently, crude oil prices have an indirect effect on food prices. - Research Highlights: →We investigate the co-movement of food prices and the macroeconomic index. →The crude oil price has indirect effect on the world GDP via its impacts on food production index. →The food production index is the source of causation for CPI and GDP is affected by CPI. →The results confirm an indirect effect among oil price, food price principal component.

  2. Essential Oil of Common Thyme as a Natural Antimicrobial Food Additive

    Directory of Open Access Journals (Sweden)

    Jasna Dolenc Koce

    2014-01-01

    Full Text Available Antimicrobial activities of thyme essential oil against selected microorganisms, including Fusarium sp., Armillaria mellea, Bacillus cereus, Staphylococcus aureus, Buttiauxella sp., Klebsiella pneumoniae, Escherichia coli K-12, AmpC-producing E. coli Z, ESBL-producing E. coli strain of KM clonal group ST131, and E. coli 1138 were evaluated. The antimicrobial efficacy of thyme essential oil was determined using agar well diffusion assays. The growth of all tested bacteria was inhibited at thyme essential oil fractions higher than 1 %, while a fraction of 10 % was needed to inhibit the growth of fungi. We demonstrate that thyme essential oil has a promising activity against food spoilage bacteria, and also against multiresistant AmpC-producing and ESBL-producing bacterial strains isolated from food, which have recently been recognised as public health concerns. On the basis of our data, the thyme essential oil has a potential for use as a growth inhibitor of multidrug-resistant bacteria, and food spoilage and pathogenic bacteria and fungi, to replace commonly used semi-synthetic antimicrobial products.

  3. Encapsulation of Satureja khuzestanica Essential Oil in Chitosan Nanoparticles with Enhanced Antifungal Activity

    OpenAIRE

    Amir Amiri; Naghmeh Morakabati

    2017-01-01

    During the recent years the six-fold growth of cancer in Iran has led the production of healthy products to become a challenge in the food industry. Due to the young population in the country, the consumption of fast foods is growing. The chemical cancer-causing preservatives are used to produce these products more than the standard; so using an appropriate alternative seems to be important. On the one hand, the plant essential oils show the high antimicrobial potential against pathogenic and...

  4. Health Food Supplements (Health Food Highly Nutritious From Chlorella And Oil Catfish (Pangasius hypopthalmus

    Directory of Open Access Journals (Sweden)

    Syahrul Syahrul

    2017-02-01

    Full Text Available AbstractThe utilization of microalgae as a food ingredient considered effective, because in addition to alternative food sources also contains nutrients chlorella microalgae in particular is very good for health. This microalgae rich in protein (60.5%, fat (11%, carbohydrates (20.1%, water, dietary fiber, vitamins and minerals Besides these microalgae contain pigments (chlorophyll, tocopherol and the active component (antimicrobial and antioxidants. This is what underlies microalgae is very useful to be used as a source of raw materials of health food supplements. Currently the health food supplements have become a necessity for people to maintain their health in order to remain vibrant. This study aims to produce high nutritious health food supplements from raw material chlorella enriched with fish protein concentrate and oil catfish. The method used in the manufacture of high nutritious health food supplement is a method of microencapsulation with different formulations. The results showed that the best formulations based on the profile of amino acids, fatty acids and standards AAE per day especially essential fatty acids oleic and linoleic is formulation B (chlorella 2%, 1% fish oil and fish protein concentrate 1%.

  5. Gravity-induced encapsulation of liquids by destabilization of granular rafts

    Science.gov (United States)

    Abkarian, Manouk; Protière, Suzie; Aristoff, Jeffrey M.; Stone, Howard A.

    2013-05-01

    Droplets and bubbles coated by a protective armour of particles find numerous applications in encapsulation, stabilization of emulsions and foams, and flotation techniques. Here we study the role of a body force, such as in flotation, as a means of continuous encapsulation by particles. We use dense particles, which self-assemble into rafts, at oil-water interfaces. We show that these rafts can be spontaneously or controllably destabilized into armoured oil-in-water droplets, which highlights a possible role for common granular materials in environmental remediation. We further present a method for continuous production and discuss the generalization of our approach towards colloidal scales.

  6. Antibacterial activity of essential oils: potential applications in food

    NARCIS (Netherlands)

    Burt, S.A.

    2007-01-01

    Due to its antibacterial activity, oregano oil has lately become interesting as a potential 'natural' food preservative. Oregano oil was found to be a fast acting and effective inhibitor of a strain of Escherichia coli O157:H7, the causative agent of a serious gastro-enteritis, and was lethal to

  7. Olive oil in food spreads

    Directory of Open Access Journals (Sweden)

    Blanco Muñoz, Miguel A.

    2004-03-01

    Full Text Available Chemical hydrogenation of unsaturated fatty acids is a commonly applied reaction to food industries. The process may imply the movement of double bonds in their positions on the fatty acid carbon chain, producing positional and geometrical isomers ( trans fatty acids. Through hydrogenation, unsaturated oils are converted to margarines and vegetable shortenings. The presence of trans fatty acids in foods is undesirable, as trans fatty acids raise the plasma levels of total and low-density lipoproteins (LDL, while decrease the plasma level of high-density lipoproteins (HDL, among other effects. The use of olive oil to prepare fat spread opens new insights into the commercial development of healthy novel foods with a positive image in terms of consumer appeal.La hidrogenación química de los ácidos grasos insaturados es una reacción que se utiliza con frecuencia en la industria alimentaria. El proceso implica el movimiento de los dobles enlaces en la cadena hidrocarbonada de los ácidos grasos, y la aparición de isómeros posicionales y geométricos (ácidos grasos trans . La ingesta inadecuada de alimentos que pueden contener cantidades significativas de ácidos grasos trans se asocia con el aumento en sangre de colesterol total y LDL, y la disminución de HDL, entre otros efectos. Por lo tanto, el uso de aceite de oliva en la preparación de grasas para untar constituye un importante avance en el desarrollo comercial de nuevos alimentos saludables con una imagen positiva para el consumidor.

  8. Mineral oil barrier sequential polymer treatment for recycled paper products in food packaging

    Science.gov (United States)

    Paul, Uttam C.; Fragouli, Despina; Bayer, Ilker S.; Mele, Elisa; Conchione, Chiara; Cingolani, Roberto; Moret, Sabrina; Athanassiou, Athanassia

    2017-01-01

    Recycled cellulosic paperboards may include mineral oils after the recycle process, which together with their poor water resistance limit their use as food packaging materials. In this work, we demonstrate that a proper functionalization of the recycled paper with two successive polymer treatments, imposes a mineral oil migration barrier and simultaneously renders it waterproof and grease resistant, making it an ideal material for food contact. The first poly (methyl methacrylate) treatment penetrates the paper network and creates a protective layer around every fiber, permitting thus the transformation of the paperboard to a hydrophobic material throughout its thickness, reducing at the same time the mineral oil migration. Subsequently, the second layer with a cyclic olefin copolymer fills the open pores of the surface, and reduces the mineral oil hydrocarbons migration at levels below those proposed by the BMEL. Online liquid chromatography-gas chromatography coupled with flame ionization detection quantitatively demonstrate that this dual functional treatment prevents the migration of both saturated (mineral oil saturated hydrocarbons) and aromatic hydrocarbon (mineral oil aromatic hydrocarbons) mineral oils from the recycled paperboard to a dry food simulant.

  9. Applicability of SCAR markers to food genomics: olive oil traceability.

    Science.gov (United States)

    Pafundo, Simona; Agrimonti, Caterina; Maestri, Elena; Marmiroli, Nelson

    2007-07-25

    DNA analysis with molecular markers has opened a shortcut toward a genomic comprehension of complex organisms. The availability of micro-DNA extraction methods, coupled with selective amplification of the smallest extracted fragments with molecular markers, could equally bring a breakthrough in food genomics: the identification of original components in food. Amplified fragment length polymorphisms (AFLPs) have been instrumental in plant genomics because they may allow rapid and reliable analysis of multiple and potentially polymorphic sites. Nevertheless, their direct application to the analysis of DNA extracted from food matrixes is complicated by the low quality of DNA extracted: its high degradation and the presence of inhibitors of enzymatic reactions. The conversion of an AFLP fragment to a robust and specific single-locus PCR-based marker, therefore, could extend the use of molecular markers to large-scale analysis of complex agro-food matrixes. In the present study is reported the development of sequence characterized amplified regions (SCARs) starting from AFLP profiles of monovarietal olive oils analyzed on agarose gel; one of these was used to identify differences among 56 olive cultivars. All the developed markers were purposefully amplified in olive oils to apply them to olive oil traceability.

  10. Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food.

    Science.gov (United States)

    Rutz, Josiane K; Borges, Caroline D; Zambiazi, Rui C; da Rosa, Cleonice G; da Silva, Médelin M

    2016-07-01

    Carotenoids are susceptible to isomerization and oxidation upon exposure to oxygen, light and heat, which can result in loss of color, antioxidant activity, and vitamin activity. Microencapsulation helps retain carotenoid stability and promotes their release under specific conditions. Thus, the aim of the study was to encapsulate palm oil and β-carotene with chitosan/sodium tripolyphosphate or chitosan/carboxymethylcellulose and to assess the performance of these microparticles in food systems by analyzing their release profile under simulated gastric and intestinal conditions. Encapsulation efficiency was greater than 95%, and the yield of microparticles coated with chitosan/sodium tripolyphosphate was approximately 55%, while that of microparticles coated with chitosan/carboxymethylcellulose was 87%. Particles encapsulated with chitosan/carboxymethylcellulose exhibited ideal release behavior in water and gastric fluid, but showed low release in the intestinal fluid. However, when applied to food systems these particles showed enhanced carotenoid release but showed low release of carotenoids upon storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Interdependence between crude oil and world food prices: A detrended cross correlation analysis

    Science.gov (United States)

    Pal, Debdatta; Mitra, Subrata K.

    2018-02-01

    This article explores the changing interdependence between crude oil and world food prices at varying time scales using detrended cross correlation analysis that would answer whether the interdependence (if any) differed significantly between pre and post-crisis period. Unlike the previous studies that exogenously imposed break dates for dividing the time series into sub-samples, we tested whether the mean of the crude oil price changed over time to find evidence for structural changes in the crude oil price series and endogenously determine three break dates with minimum Bayesian information criterion scores. Accordingly, we divided the entire study period in four sample periods - January 1990 to October 1999, November 1999 to February 2005, March 2005 to September 2010, and October 2010 to July 2016, where the third sample period coincided with the period of food crisis and enabled us to compare the fuel-food interdependence across pre-crisis, during the crisis, and post-crisis periods. The results of the detrended cross correlation analysis extended corroborative evidence for increasing positive interdependence between the crude oil price and world food price index along with its sub-categories, namely dairy, cereals, vegetable oil, and sugar. The article ends with the implications of these results in the domain of food policy and the financial sector.

  12. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  13. Glassy carbon coated graphite for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Delpeux, S.; Cacciaguerra, T.; Duclaux, L. [Orleans Univ., CRMD, CNRS, 45 (France)

    2005-07-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF{sub 2}, ThF{sub 4}, and UF{sub 4}) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin [1,2] or polyvinyl chloride [3] precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm{sup 3} and closed pores with nano-metric size ({approx} 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons (Fig 1), in good agreement with the proposed texture model for glassy carbon (Fig 2) [4]. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry

  14. Thermodynamic picture of the glassy state

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.

    2000-01-01

    A picture for the thermodynamics of the glassy state is introduced. It assumes that one extra parameter, the effective temperature, is needed to describe the glassy state. This explains the classical paradoxes concerning the Ehrenfest relations and the Prigogine-Defay ratio. As a second feature, the

  15. High throughput single-cell and multiple-cell micro-encapsulation.

    Science.gov (United States)

    Lagus, Todd P; Edd, Jon F

    2012-06-15

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of controlled sizes. By combining drop generation techniques with cell and particle ordering, we demonstrate controlled encapsulation of cell-sized particles for efficient, continuous encapsulation. Using an aqueous particle suspension and immiscible fluorocarbon oil, we generate aqueous drops in oil with a flow focusing nozzle. The aqueous flow rate is sufficiently high to create ordering of particles which reach the nozzle at integer multiple frequencies of the drop generation frequency, encapsulating a controlled number of cells in each drop. For representative results, 9.9 μm polystyrene particles are used as cell surrogates. This study shows a single-particle encapsulation efficiency P(k=1) of 83.7% and a double-particle encapsulation efficiency P(k=2) of 79.5% as compared to their respective Poisson efficiencies of 39.3% and 33.3%, respectively. The effect of consistent cell and particle concentration is demonstrated to be of major importance for efficient encapsulation, and dripping to jetting transitions are also addressed. Continuous media aqueous cell suspensions share a common fluid environment which allows cells to interact in parallel and also homogenizes the effects of specific cells in measurements from the media. High-throughput encapsulation of cells into picoliter-scale drops confines the samples to protect drops from cross-contamination, enable a measure of cellular diversity within samples, prevent dilution of reagents and expressed biomarkers, and amplify

  16. Use of Cymbopogon citratus essential oil in food preservation: Recent advances and future perspectives.

    Science.gov (United States)

    Ekpenyong, Christopher E; Akpan, Ernest E

    2017-08-13

    The economic burdens and health implications of food spoilage are increasing. Contamination of food sources by fungi, bacteria, yeast, nematodes, insects, and rodents remains a major public health concern. Research has focused on developing safer natural products and innovations to meet consumers' acceptance as alternatives to synthetic food preservatives. Many recent novel preservative techniques and applications of both natural and synthetic origin continue to proliferate in food and chemical industries. In particular, some essential oils of plant origin are potent food preservatives and are thus attractive alternatives to synthetic preservatives. This paper provides an overview of recent advances and future prospects in assessing the efficacy of the use of Cymbopogon citratus (lemongrass) essential oil in food preservation. The possible mechanisms of action and toxicological profile as well as evidence for or against the use of this essential oil as an alternative to synthetic food preservatives in domestic and industrial applications are discussed.

  17. Fish oil in infancy protects against food allergy in Iceland-Results from a birth cohort study.

    Science.gov (United States)

    Clausen, M; Jonasson, K; Keil, T; Beyer, K; Sigurdardottir, S T

    2018-01-10

    Consumption of oily fish or fish oil during pregnancy, lactation and infancy has been linked to a reduction in the development of allergic diseases in childhood. In an observational study, Icelandic children (n = 1304) were prospectively followed from birth to 2.5 years with detailed questionnaires administered at birth and at 1 and 2 years of age, including questions about fish oil supplementation. Children with suspected food allergy were invited for physical examinations, allergic sensitization tests, and a double-blind, placebo-controlled food challenge if the allergy testing or clinical history indicated food allergy. The study investigated the development of sensitization to food and confirmed food allergy according to age and frequency of postnatal fish oil supplementation using proportional hazards modelling. The incidence of diagnosed food sensitization was significantly lower in children who received regular fish oil supplementation (relative risk: 0.51, 95% confidence interval: 0.32-0.82). The incidence of challenge-confirmed food allergy was also reduced, although not statistically significant (0.57, 0.30-1.12). Children who began to receive fish oil in their first half year of life were significantly more protected than those who began later (P = .045 for sensitization, P = .018 for allergy). Indicators of allergy severity decreased with increased fish oil consumption (P = .013). Adjusting for parent education and allergic family history did not change the results. Postnatal fish oil consumption is associated with decreased food sensitization and food allergies in infants and may provide an intervention strategy for allergy prevention. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  18. Optimization of Conditions for Obtaining Alginate/Olive Oil Capsules for Application in Dairy Industry

    Directory of Open Access Journals (Sweden)

    Poirieux Magalie

    2017-06-01

    Full Text Available Encapsulation is a process of incorporation of bioactive substances in a specific matrix. It results in increasing and/or maintaining of the biological agent concentration in the food matrix or the fermentation system. The encapsulation process is influenced by various factors. The aim of the present work was to investigate the influence of alginate type and concentration, homogenization rate and the oil phase amount in the preparation of capsules rich in olive oil. It has been found that emulsions obtained with medium viscosity alginate were characterized by better stability. To establish the joint influence of the factors was used screening design experiment, the optimization features selected being temperature, centrifugal and microscopic stability. The optimal levels of the factors were established and they we applied for capsule preparation. The obtained capsules showed maximum stability and possibility to be used in dairy product manufacture.

  19. Enhancement of survival of alginate-encapsulated Lactobacillus casei NCDC 298.

    Science.gov (United States)

    Mandal, Surajit; Hati, Subrota; Puniya, Anil Kumar; Khamrui, Kaushik; Singh, Kishan

    2014-08-01

    Micro-encapsulation of hydrocolloids improves the survival of sensitive probiotic bacteria in the harsh conditions that prevail in foods and during gastrointestinal passage by segregating them from environments. Incorporation of additives in encapsulating hydrocolloids and coatings of microcapsules further improves the survival of the probiotics. In this study, the effect of incorporation of resistant-maize starch in alginate for micro-encapsulation and coating of microcapsules with poly-l-lysine, stearic acid and bees wax on the survival of encapsulated Lactobacillus casei NCDC 298 at pH 1.5, 2% high bile salt, 65 °C for 20 min and release of viable lactobacilli cells from the capsule matrix in simulated aqueous solutions of colonic pH were assessed. Addition of resistant maize starch (2%) improved the survival of encapsulated L. casei NCDC 298. Coating of microcapsules with poly-L-lysine did not further improve the protection of encapsulated cells from the harsh conditions; however, bees wax and stearic acid (2%) improved the survival under similar conditions. Incorporation of maize starch (2%) in alginate followed by coating of beads with stearic acid (2%) led to better protection and complete release of entrapped lactobacilli in simulated colonic pH solution was observed. Additional treatments improve the survival of alginate-encapsulated lactobacilli cells without hindering the release of active cells from the capsule matrix and hence, the resulting encapsulated probiotics can be exploited in the development of probiotic functional foods with better survival of sensitive probiotic organisms. © 2013 Society of Chemical Industry.

  20. First stage of bio-jet fuel production: non-food sunflower oil extraction using cold press method

    Directory of Open Access Journals (Sweden)

    Xianhui Zhao

    2014-06-01

    Full Text Available As a result of concerning petroleum price increasing and environmental impact, more attention is attracted to renewable resources for transportation fuels. Because not conflict with human and animal food resources, non-food vegetable oils are promising sources for developing bio-jet fuels. Extracting vegetable oil from oilseeds is the first critical step in the pathway of bio-jet fuel production. When sunflower seeds are de-hulled, there are always about 5%–15% broken seed kernels (fine meat particles left over as residual wastes with oil content up to 48%. However, the oil extracted from these sunflower seed residues is non-edible due to its quality not meeting food standards. Genetically modified sunflower grown on margin lands has been identified one of sustainable biofuel sources since it doesn't compete to arable land uses. Sunflower oils extraction from non-food sunflower seeds, sunflower meats, and fine sunflower meats (seed de-hulling residue was carried out using a cold press method in this study. Characterization of the sunflower oils produced was performed. The effect of cold press rotary frequency on oil recovery and quality was discussed. The results show that higher oil recovery was obtained at lower rotary frequencies. The highest oil recovery for sunflower seeds, sunflower meats, and fine sunflower meats in the tests were 75.67%, 89.74% and 83.19% respectively. The cold press operating conditions had minor influence on the sunflower oil quality. Sunflower meat oils produced at 15 Hz were preliminarily upgraded and distilled. The properties of the upgraded sunflower oils were improved. Though further study is needed for the improvement of processing cost and oil recovery, cold press has shown promising to extract oil from non-food sunflower seeds for future bio-jet fuel production.

  1. Characteristics of polycyclic aromatic hydrocarbons in food oils in Beijing catering services.

    Science.gov (United States)

    Hao, Xuewei; Yin, Yong; Feng, Sijie; Du, Xu; Yu, Jingyi; Yao, Zhiliang

    2016-12-01

    The concentrations and characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in 48 oil samples randomly collected from 30 catering services that employ six cooking methods were quantified via high-performance liquid chromatography (HPLC). These 16 PAHs were detected in almost all of the samples. The levels of Σ16PAHs, Σ4PAHs, benzo[a]pyrene (BaP), and total BaP equivalents (ΣBaP eq ) for the six cooking methods exceeded the legal limit. The concentrations of Σ4PAHs were approximately 9.5 to 16.4 times the legal limit proposed by the European Commission (Off J Eur Union 215:4-8, 2011), and the level of BaP exceeded the national standard in China by 4.7- to 10.6-fold, particularly in oil from fried foods. Low molecular weight PAHs (LMW PAHs) were predominant in fried food oil from different catering services and accounted for 94.8 % of these oils, and the ΣBaP eq of the high molecular weight PAHs (HMW PAHs) was 11.5-fold higher than that of the LMW PAHs. The concentrations of Σ16PAHs (3751.9-7585.8 μg/kg), Σ4PAHs (144.6-195.7 μg/kg), BaP (79.7-135.8 μg/kg), and ΣBaP eq (231.0-265.4 μg/kg) were highest in the samples from fast food restaurants/buffets (FB), followed by those from fried food stalls (FS) and then cooking restaurants/cafeterias (RC). The results of this study suggest that the government should strengthen control and supervision of PAH contamination in food and edible oils.

  2. Effect of sucrose and safflower oil preloads on short term appetite and food intake of young men.

    Science.gov (United States)

    Woodend, D M; Anderson, G H

    2001-12-01

    The effects of carbohydrate and fat on satiety have been examined primarily through meal composition studies. The purpose of this study was to compare the effects of pure sucrose and safflower oil, isovolumetric beverage preloads, on appetite (measured every 15 minutes by visual analogue scales) and food intake 60 minutes later. Young men consumed 0, 418, 836 and 1254 kJ of sucrose in the first two experiments and these same doses of safflower oil in the third. Finally, the largest doses of sucrose and safflower oil were compared. Sucrose, but not safflower oil, suppressed average appetite compared with control. In experiment 2, food intake was reduced (psafflower oil significantly suppressed food intake by 480 kJ in the third experiment. When the 1254 kJ doses were compared directly, sucrose suppressed food intake by 653 kJ compared with control where as safflower oil did not. It is concluded that, in the short-term, sucrose produces a dose dependent reduction in appetite and food intake that is greater than that produced by safflower oil.

  3. Reactants encapsulation and Maillard Reaction

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, V.

    2013-01-01

    In the last decades many efforts have been addressed to the control of Maillard Reaction products in different foods with the aim to promote the formation of compounds having the desired color and flavor and to reduce the concentration of several potential toxic molecules. Encapsulation, already

  4. Microencapsulation of pequi pulp oil by complex coacervation

    Directory of Open Access Journals (Sweden)

    Priscilla Narciso Justi

    2018-04-01

    Full Text Available Abstract Pequi pulp oil, Caryocar brasiliense, is rich in carotenoids, antioxidant compound easily oxidized by the presence of heat, light and oxygen. In order to improve its stability, pequi oil was microencapsulated by complex coacervation using gelatin and Arabic gum as encapsulating agents. Twenty formulations were prepared using a 23 central composite rotational design. The influence of temperature, stirring velocity and core material in the oil coacervation were evaluated, aiming to preserve carotenoids present in the oil. The best yield values and carotenoids content were obtained at the midpoint of the design (7.5g core, 15.000rpm and 50°C. Particles showed asymmetric distribution, with diameter ranging from 15 to 145 µm and the efficiency of the encapsulation process, obtained by the retention of oil in the microcapsule, ranged from 66.58 to 96.50%, thus demonstrating the encapsulation efficiency of this method.

  5. A review on using essential oil of Labiatae species in food products

    Directory of Open Access Journals (Sweden)

    M. Kazeminia

    2017-04-01

    Full Text Available Background: Medicinal herbs have been widely used due to antimicrobial, antioxidant properties and less harmful than of chemical composition. The carcinogenic effects of chemical compounds has increased the use of medicinal plants. Also proven carcinogenic chemical composition, the importance of the use of medicinal plants has increased. Objective: This study was performed on the application of the Lamiaceae family plants in the food industry. Methods: In this study, a review of 428 studies about functional properties essential oil of Lamiaceae family plants in the food industry from 2006 to 2016 (a decade, were studied. The information was collected with referred to databases Pub Med, Science Direct, Elsevier, SID, MagIran, Civilica, the World Health Organization, Food and Agriculture Organization of the United Nations based on keywords essential oil, Lamiaceae species, antioxidant activity and antimicrobial effect. Findings: In the past, Lamiaciae family herbs just used as flavoring agents in some dairy products (yogurt drink and yogurt. With the passage of time and advancement of science, the importance of protecting this species was appeared as far as antimicrobial and antioxidant prevailed on the taste and smell of this species. Conclusion: According to the previous studies, Lamiaceae family essential oil can be applied as an antimicrobial and antioxidant agent in food or packing material. It seems Lamiaceae family essential oil and extracts can reduce and prevent the growth of pathogenic microbes in food, but further studies are recommended.

  6. Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food?

    Directory of Open Access Journals (Sweden)

    Gwendoline Christophe

    2012-02-01

    Full Text Available Since centuries vegetable oils are consumed as human food but it also finds applications in biodiesel production which is attracting more attention. But due to being in competition with food it could not be sustainable and leads the need to search for alternative. Nowdays microbes-derived oils (single cell oils seem to be alternatives for biodiesel production due to their similar composition to that of vegetable oils. However, the cold flow properties of the biodiesel produced from microbial oils are unacceptable and have to be modified by an efficient transesterification. Glycerol which is by product of transesterification can be valorised into some more useful products so that it can also be utilised along with biodiesel to simplify the downstream processing. The review paper discusses about various potent microorganisms for biodiesel production, enzymes involved in the lipid accumulation, lipid quantification methods, catalysts used in transesterification (including enzymatic catalyst and valorisation of glycerol.

  7. Assessing food allergy risks from residual peanut protein in highly refined vegetable oil

    NARCIS (Netherlands)

    Blom, W.M.; Kruizinga, A.G.; Rubingh, C.M.; Remington, B.C.; Crevel, R.W.R.; Houben, G.F.

    2017-01-01

    Refined vegetable oils including refined peanut oil are widely used in foods. Due to shared production processes, refined non-peanut vegetable oils can contain residual peanut proteins. We estimated the predicted number of allergic reactions to residual peanut proteins using probabilistic risk

  8. SENSITIVITY OF MOLDS ISOLATED FROM WAREHOUSES OF FOOD PRODUCTION FACILITY ON SELECTED ESSENTIAL OILS

    Directory of Open Access Journals (Sweden)

    Łukasz Kręcidło

    2015-07-01

    Full Text Available Storage of raw materials is one of steps in food production chain. The aim of this study was to estimate the influence of selected essential oils on the growth of four fungal strains: Trichoderma viride, Rhizomucor miehei, Penicillium chrysogenum, Penicillium janthinellum. Strains were isolated from warehouses of the food production facility. Selected essential oils: thyme oil, rosewood oil and rosemary oil were used to assess antifungal activity. Chemical composition of essential oils was determined by Gas Chromatography-Mass Spectroscopy (GC-MS. Antifungal activity of essential oils was estimated in relative to peracetic acid (PAA and sterile water with Tween 80 (0,5%. The influence of essential oils on fungal growth was carried by medium poisoning method. Increment of fungal mycelium was measured every day by 10 days. The thyme essential oils totally inhibited fungal growth in the lowest concentration of 1 mm3·cm-3. The most resistant strain was Penicillium janthinellum.

  9. Mineral oil hydrocarbons in food - a review.

    Science.gov (United States)

    Grob, Koni

    2018-06-12

    Work on mineral oil hydrocarbons (MOH) contaminating food is reviewed up to about 2010, when the subject received broad publicity. It covers the period of the main discoveries and elimination or reduction of the dominant sources: release agents used in industrial bakeries, spraying of rice, additions to animal feed, contamination of edible oils from various sources and migration from paperboard packaging. In most cases highly refined ("white") oils were involved, but also technical oils, e.g. from the environment, and more or less crude oil fractions from jute and sisal bags. There were numerous unexpected sources, and there might still be more of those. The exposure of the consumers to MOH must have been markedly reduced in the meantime. Environmental influx may have become dominant, particularly when taking into account that these MOH go through several degradation processes which might enrich the species resisting metabolic elimination. Major gaps are in the systematic investigation of sources and the largely unavoidable levels from environmental contamination, but also in the toxicological evaluation of the various types of hydrocarbons. A regulation is overdue that avoids the present discrepancy between the low tolerance to MOH perceived as contaminants and the very high legal limits for some applications - the MOH are largely the same.

  10. Novel nanoliposomal encapsulated omega-3 fatty acids and their applications in food.

    Science.gov (United States)

    Rasti, Babak; Erfanian, Arezoo; Selamat, Jinap

    2017-09-01

    The aim of the present research was to evaluate the application, stability and suitability of ω3 polyunsaturated fatty acids (PUFAs) incorporated nanoliposomes in food enrichment. Nanoliposomal ω3 PUFAs was prepared by Mozafari method, and their application in bread and milk was compared with unencapsulated (fish oil) and microencapsulated ω3 PUFAs. Sensory evaluation was conducted to determine the perceptible sensory difference/similarity between control, unencapsulated, microencapsulated, and nanoliposomal ω3 PUFAs enriched foods. Results showed no significant (p=0.11) detectable difference between control and nanoliposomal ω3 PUFAs enriched samples while, samples enriched with unencapsulated or microencapsulated ω3 PUFAs showed significant (p=0.02) fishy flavor. Moreover, significantly (pfood system was developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future

    International Nuclear Information System (INIS)

    Lam, Man Kee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2009-01-01

    For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

  12. Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Man Kee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2009-08-15

    For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

  13. Effect of encapsulation of selected probiotic cell on survival in simulated gastrointestinal tract condition

    Directory of Open Access Journals (Sweden)

    Hasiah Ayama

    2014-06-01

    Full Text Available The health benefits of probiotic bacteria have been led to their increasing use in foods. Encapsulation has been investigated to improve their survival. In this study, the selection, encapsulation and viability of lactic acid bacteria (LAB with probiotic properties in simulated gastrointestinal tract (GIT condition were investigated. One hundred and fifty isolates of LAB were obtained from 30 samples of raw cow and goat milk and some fermented foods. Nine isolates could survive under GIT condition and only 3 isolates exhibited an antimicrobial activity against all food-borne pathogenic bacteria. Among them, 2 isolates (CM21 and CM53 exhibited bile salt hydrolase activity on glycocholate and glycodeoxycholate agar plates and were identified as Lactobacillus plantarum. CM53 was selected for encapsulation using 1-3% alginate and 2% Hi-maize resistant starch by emulsion system. Viability and releasing ability of encapsulated CM53 in simulated GIT condition was increased in accordance to the alginate concentration and incubation time, respectively.

  14. Development of Poly(lactic acid)/Chitosan Fibers Loaded with Essential Oil for Antimicrobial Applications

    Science.gov (United States)

    Liu, Yaowen; Wang, Shuyao; Zhang, Rong; Lan, Wenting; Qin, Wen

    2017-01-01

    Cinnamon essential oil (CEO) was successfully encapsulated into chitosan (CS) nanoparticles at different loading amounts (1%, 1.5%, 2%, and 2.5% v/v) using oil-in-water (o/w) emulsion and ionic-gelation methods. In order to form active packaging, poly(lactic acid) (PLA) was used to fabricate PLA/CS-CEO composite fibers using a simple electrospinning method. The shape, size, zeta potential, and encapsulation efficacy of the CS-CEO nanoparticles were investigated. The composition, morphology, and release behavior of the composite fibers were investigated. PLA/CS-CEO-1.5 showed good stability and favorable sustained release of CEO, resulting in improved antimicrobial activity compared to the other blends. The PLA/CS-CEO fibers showed high long-term inactivation rates against Escherichia coli and Staphylococcus aureus due to the sustained release of CEO, indicating that the developed PLA/CS-CEO fibers have great potential for active food packaging applications. PMID:28737719

  15. Antibacterial Activity of Fructus forsythia Essential Oil and the Application of EO-Loaded Nanoparticles to Food-Borne Pathogens

    Directory of Open Access Journals (Sweden)

    Na Guo

    2016-10-01

    Full Text Available Fructus forsythia essential oil (FEO with excellent antibacterial activity was rarely reported. The objective of the present study was to investigate the antibacterial activity and the antibacterial mechanism of FEO against two food-borne pathogenic bacteria, Escherichia coli (E. coli and Staphylococcus aureus (S. aureus in vitro. When treated FEO, the zones of inhibition (ZOI of E. coli (20.5 ± 0.25 mm and S. aureus (24.3 ± 0.21 mm were much larger than control (p < 0.05. The minimum inhibitory concentrations (MICs of FEO were 3.13 mg/mL and 1.56 mg/mL for E. coli and S. aureus, respectively. The antibacterial mechanism of FEO against E. coil was due to the changes in permeability and integrity of cell membrane leading to the leakage of nucleic acids and proteins. With the superior antibacterial activity of FEO, the nano-encapsulation method has been applied in FEO. When compared to FEO and blank chitosan nanoparticles, FEO-loaded nanoparticles (chitosan to FEO of 1:1 can effectively inhibit the growth of E. coil above 90% at room temperature. It is necessary to consider that FEO and FEO-loaded nanoparticles will become promising antibacterial additives for food preservative, cosmetic, and pharmaceutical applications.

  16. Eucalyptus essential oil as a natural food preservative: in vivo and in vitro antiyeast potential.

    Science.gov (United States)

    Tyagi, Amit Kumar; Bukvicki, Danka; Gottardi, Davide; Tabanelli, Giulia; Montanari, Chiara; Malik, Anushree; Guerzoni, Maria Elisabetta

    2014-01-01

    In this study, the application of eucalyptus essential oil/vapour as beverages preservative is reported. The chemical composition of eucalyptus oil was determined by gas chromatography-mass spectrometry (GC-MS) and solid phase microextraction GC-MS (SPME/GC-MS) analyses. GC-MS revealed that the major constituents were 1,8-cineole (80.5%), limonene (6.5%), α-pinene (5%), and γ-terpinene (2.9%) while SPME/GC-MS showed a relative reduction of 1,8-cineole (63.9%) and an increase of limonene (13.8%), α-pinene (8.87%), and γ-terpinene (3.98%). Antimicrobial potential of essential oil was initially determined in vitro against 8 different food spoilage yeasts by disc diffusion, disc volatilization, and microdilution method. The activity of eucalyptus vapours was significantly higher than the eucalyptus oil. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) varied from 0.56 to 4.50 mg/mL and from 1.13 to 9 mg/mL, respectively. Subsequently, the combined efficacy of essential oil and thermal treatment were used to evaluate the preservation of a mixed fruit juice in a time-dependent manner. These results suggest eucalyptus oil as a potent inhibitor of food spoilage yeasts not only in vitro but also in a real food system. Currently, this is the first report that uses eucalyptus essential oil for fruit juice preservation against food spoiling yeast.

  17. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Science.gov (United States)

    2010-04-01

    ... kernel oil, or both oils. 172.861 Section 172.861 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...

  18. Effect of layer-by-layer coatings and localization of antioxidant on oxidative stability of a model encapsulated bioactive compound in oil-in-water emulsions.

    Science.gov (United States)

    Pan, Yuanjie; Nitin, N

    2015-11-01

    Oxidation of encapsulated bioactives in emulsions is one of the key challenges that limit shelf-life of many emulsion containing products. This study seeks to quantify the role of layer-by-layer coatings and localization of antioxidant molecules at the emulsion interface in influencing oxidation of the encapsulated bioactives. Oxidative barrier properties of the emulsions were simulated by measuring the rate of reaction of peroxyl radicals generated in the aqueous phase with the encapsulated radical sensitive dye in the lipid core of the emulsions. The results of peroxyl radical permeation were compared to the stability of encapsulated retinol (model bioactive) in emulsions. To evaluate the role of layer-by-layer coatings in influencing oxidative barrier properties, radical permeation rates and retinol stability were evaluated in emulsion formulations of SDS emulsion and SDS emulsion with one or two layers of polymers (ϵ-polylysine and dextran sulfate) coated at the interface. To localize antioxidant molecules to the interface, gallic acid (GA) was chemically conjugated with ϵ-polylysine and subsequently deposited on SDS emulsion based on electrostatic interactions. Emulsion formulations with localized GA molecules at the interface were compared with SDS emulsion with GA molecules in the bulk aqueous phase. The results of this study demonstrate the advantage of localization of antioxidant at the interface and the limited impact of short chain polymer coatings at the interface of emulsions in reducing permeation of radicals and oxidation of a model encapsulated bioactive in oil-in-water emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Evaluation of novel micronized encapsulated essential oil-containing phosphate and lactate blends for growth inhibition of Listeria monocytogenes and Salmonella on poultry bologna, pork ham, and roast beef ready-to-eat deli loaves.

    Science.gov (United States)

    Casco, G; Taylor, T M; Alvarado, C

    2015-04-01

    Essential oils and their constituents are reported to possess potent antimicrobial activity, but their use in food processing is limited because of low solubility in aqueous systems and volatilization during processing. Two proprietary noncommercial essential oil-containing phosphate blends were evaluated for antimicrobial activity against Salmonella enterica cocktail (SC)-and Listeria monocytogenes (Lm)-inoculated deli meat products made from pork, poultry, or beef. Four treatments were tested on restructured cured pork ham, emulsified chicken bologna, and restructured beef loaf: nonencapsulated essential oil with phosphate version 1 at 0.45% of final batch (EOV145; chicken and pork, or EEOV245 beef), micronized encapsulated essential oil with phosphate version 2 at 0.60% of final batch (EEOV260), a 2.0% potassium lactate (PL) control, and a negative control (CN) with no applied antimicrobial agent. Compared with the CN, none of the antimicrobial agents (EEOV260, EOV145, PL) successfully limited Lm or SC growth to deli loaves, the EEOV260 inhibited growth of SC at days 21 and 28 to the same level of efficacy as PL (0.5 log cycle). In roast beef samples, on day 35, the SC growth was inhibited ca. 0.5 log CFU/g by EEOV260 when compared with the CN. In conclusion the EEOV260 can function to replace PL to limit Salmonella and Lm growth in ready-to-eat deli products. Further testing is needed to ensure consumer acceptability.

  20. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    Science.gov (United States)

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus. © 2013 Institute of Food Technologists®

  1. A formulation to encapsulate nootkatone for tick control.

    Science.gov (United States)

    Behle, Robert W; Flor-Weiler, Lina B; Bharadwaj, Anuja; Stafford, Kirby C

    2011-11-01

    Nootkatone is a component of grapefruit oil that is toxic to the disease-vectoring tick, Ixodes scapularis Say, but unfortunately causes phytotoxicity to treated plants and has a short residual activity due to volatility. We prepared a lignin-encapsulated nootkatone formulation to compare with a previously used emulsifiable formulation for volatility, plant phytotoxicity, and toxicity to unfed nymphs of I. scapularis. Volatility of nootkatone was measured directly by trapping nootkatone vapor in a closed system and indirectly by measuring nootkatone residue on treated filter paper after exposure to simulated sunlight (Xenon). After 24 h in the closed system, traps collected only 15% of the nootkatone applied as the encapsulated formulation compared with 40% applied as the emulsifiable formulation. After a 1-h light exposure, the encapsulated formulation retained 92% of the nootkatone concentration compared with only 26% retained by the emulsifiable formulation. For plant phytotoxicity, cabbage, Brassica oleracea L., leaves treated with the encapsulated formulation expressed less necrosis, retaining greater leaf weight compared with leaves treated with the emusifiable formulation. The nootkatone in the emulsifiable formulation was absorbed by cabbage and oat, Avena sativa L., plants (41 and 60% recovered 2 h after application, respectively), as opposed to 100% recovery from the plants treated with encapsulated nootkatone. Using a treated vial technique, encapsulated nootkatone was significantly more toxic to I. scapularis nymphs (LC50 = 20 ng/cm2) compared with toxicity of the emulsifiable formulation (LC50 = 35 ng/cm2). Thus, the encapsulation of nootkatone improved toxicity for tick control, reduced nootkatone volatility, and reduced plant phytotoxicity.

  2. Numerical analysis of slowest heating or cooling point in a canned food in oil

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, T.; Wang, Q.; Suzuki, M.; Sakai, N. [Tokyo Univ. of Fisheries (Japan)

    1998-06-01

    In the sterilizing process of canned food in oil for a fish meat such as tunny, the slowest heating or cooling point is very important for the thermal process determination of the can. To obtain the slowest point, the temperature profiles in solid food are estimated by numerical calculation from the fundamental equations at unsteady state in consideration of a free convection in the space occupied by the oil. The positions of the slowest heating or cooling point in the canned food in oil are obtained accurately, and a correlative equation for the position is obtained numerically under various operating conditions. The calculated temperature profiles and the position of both slowest points are in sufficiently good approximation to the experimental ones. 4 refs., 9 figs.

  3. The effect of food type (fish nuggets or French fries) on oil blend degradation during repeated frying.

    Science.gov (United States)

    Flores-Álvarez, María Del Carmen; Molina-Hernández, Erika F; Hernández-Raya, José Concepción; Sosa-Morales, María Elena

    2012-11-01

    Oil that is reused multiple times for deep frying goes through changes in chemical composition and physical characteristics, affecting the quality of the fried foods. In this study, the effect of the food type (fish nuggets or French fries) on the degradation of an oil blend during the deep-fat frying of each food at 180°C during 12 days was determined, and the characteristics of the fried products were evaluated. The degradation of oil during repeated use was relatively faster when fish nuggets were fried than when French fries were fried, as higher values of total polar compounds were obtained. The results are useful for producers of French fries and fish nuggets, such as restaurants or fast foods sellers, providing them with practical guidelines within the permitted values established by the regulatory authorities. The studied foods have high economic importance and are different in their composition. Under the studied conditions, the tested oil blend may be used during 4 d (4 h per day) with a daily replenishment, without discarding the oil when frying fish nuggets, and must be discarded after 8 d when French fries are processed. This suggestion allows preparing safe fried foods for consumers. © 2012 Institute of Food Technologists®

  4. Eucalyptus Essential Oil as a Natural Food Preservative: In Vivo and In Vitro Antiyeast Potential

    Science.gov (United States)

    Bukvicki, Danka; Gottardi, Davide; Malik, Anushree; Guerzoni, Maria Elisabetta

    2014-01-01

    In this study, the application of eucalyptus essential oil/vapour as beverages preservative is reported. The chemical composition of eucalyptus oil was determined by gas chromatography-mass spectrometry (GC-MS) and solid phase microextraction GC-MS (SPME/GC-MS) analyses. GC-MS revealed that the major constituents were 1,8-cineole (80.5%), limonene (6.5%), α-pinene (5%), and γ-terpinene (2.9%) while SPME/GC-MS showed a relative reduction of 1,8-cineole (63.9%) and an increase of limonene (13.8%), α-pinene (8.87%), and γ-terpinene (3.98%). Antimicrobial potential of essential oil was initially determined in vitro against 8 different food spoilage yeasts by disc diffusion, disc volatilization, and microdilution method. The activity of eucalyptus vapours was significantly higher than the eucalyptus oil. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) varied from 0.56 to 4.50 mg/mL and from 1.13 to 9 mg/mL, respectively. Subsequently, the combined efficacy of essential oil and thermal treatment were used to evaluate the preservation of a mixed fruit juice in a time-dependent manner. These results suggest eucalyptus oil as a potent inhibitor of food spoilage yeasts not only in vitro but also in a real food system. Currently, this is the first report that uses eucalyptus essential oil for fruit juice preservation against food spoiling yeast. PMID:25177704

  5. Eucalyptus Essential Oil as a Natural Food Preservative: In Vivo and In Vitro Antiyeast Potential

    Directory of Open Access Journals (Sweden)

    Amit Kumar Tyagi

    2014-01-01

    Full Text Available In this study, the application of eucalyptus essential oil/vapour as beverages preservative is reported. The chemical composition of eucalyptus oil was determined by gas chromatography-mass spectrometry (GC-MS and solid phase microextraction GC-MS (SPME/GC-MS analyses. GC-MS revealed that the major constituents were 1,8-cineole (80.5%, limonene (6.5%, α-pinene (5%, and γ-terpinene (2.9% while SPME/GC-MS showed a relative reduction of 1,8-cineole (63.9% and an increase of limonene (13.8%, α-pinene (8.87%, and γ-terpinene (3.98%. Antimicrobial potential of essential oil was initially determined in vitro against 8 different food spoilage yeasts by disc diffusion, disc volatilization, and microdilution method. The activity of eucalyptus vapours was significantly higher than the eucalyptus oil. Minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC varied from 0.56 to 4.50 mg/mL and from 1.13 to 9 mg/mL, respectively. Subsequently, the combined efficacy of essential oil and thermal treatment were used to evaluate the preservation of a mixed fruit juice in a time-dependent manner. These results suggest eucalyptus oil as a potent inhibitor of food spoilage yeasts not only in vitro but also in a real food system. Currently, this is the first report that uses eucalyptus essential oil for fruit juice preservation against food spoiling yeast.

  6. Low temperature thermal conductivities of glassy carbons

    International Nuclear Information System (INIS)

    Anderson, A.C.

    1979-01-01

    The thermal conductivity of glassy carbon in the temperature range 0.1 to 100 0 K appears to depend only on the temperature at which the material was pyrolyzed. The thermal conductivity can be related to the microscopic structure of glassy carbon. The reticulated structure is especially useful for thermal isolation at cryogenic temperatures

  7. Food Insecurity, Malnutrition and Crude Oil Spillage in a Rural ...

    African Journals Online (AJOL)

    , external control group study design, with a semi-structured questionnaire and anthropometry as the study tools. The study ... Keywords: Pipeline oil spill, household food security, malnutrition, rural community, Nigeria. Nigerian Journal of ...

  8. Effects of storage and yogurt matrix on the stability of tocotrienols encapsulated in chitosan-alginate microcapsules.

    Science.gov (United States)

    Tan, Phui Yee; Tan, Tai Boon; Chang, Hon Weng; Tey, Beng Ti; Chan, Eng Seng; Lai, Oi Ming; Baharin, Badlishah Sham; Nehdi, Imededdine Arbi; Tan, Chin Ping

    2018-02-15

    Tocotrienol microcapsules (TM) were formed by firstly preparing Pickering emulsion containing tocotrienols, which was then gelled into microcapsules using alginate and chitosan. In this study, we examined the stability of TM during storage and when applied into a model food system, i.e. yogurt. During storage at 40°C, TM displayed remarkably lower tocotrienols loss (50.8%) as compared to non-encapsulated tocotrienols in bulk oil (87.5%). When the tocotrienols were incorporated into yogurt, the TM and bulk oil forms showed a loss of 23.5% and 81.0%, respectively. Generally, the tocotrienols were stable in the TM form and showed highest stability when these TM were added into yogurt. δ-Tocotrienol was the most stable isomer in both forms during storage and when incorporated into yogurt. The addition of TM into yogurt caused minimal changes in the yogurt's color and texture but slightly altered the yogurt's viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Research regarding the antimicrobial activity of essential oils against food borne bacteria and toxigenic fungi

    Directory of Open Access Journals (Sweden)

    ALINA A. DOBRE

    2011-12-01

    Full Text Available The aim of this research was to evaluate the in vitro antimicrobial activity of seven essential oils against four different bacterial and five fungal strains that are involved in food poisoning and/or food decay: Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella enteritidis, Fusarium graminearum, Fusarium culmorum, Aspergillus flavus, Aspergillus oryzae and Aspergillus brasiliensis, using two methods: agar disc diffusion method and disc volatilization method. The majority of the selected essential oils presented inhibitory activity against all the microorganisms tested but essential oils of oregano, thyme and clove proved to develop the best antibacterial and antifungal activity both in direct contact and volatilization method and could be used for further investigation in active packaging of food.

  10. Treatment of early glassy cell carcinoma of uterine cervix

    International Nuclear Information System (INIS)

    Kim, Ok Bae; Kim, Jin Hee; Choi, Tae Jin

    2006-01-01

    The purpose of this study was to investigate the clinical findings, treatment, and outcome of patients with glassy cell carcinoma of cervix. We reviewed all cases of glassy cell carcinoma of the uterine cervix confirmed and treated at the Dongsan Medical Center, Keimyung University, between January 1993 and December 2005. There were 7 cases with histopathologically confirmed gassy cell carcinoma. A tumor was diagnosed as glassy cell carcinoma if over 50% of the tumor cell type displayed glassy cell features. Six patients with stage IB had radical hysterectomy and bilateral pelvic node dissection, and 2 of them received adjuvant external pelvic irradiation with concurrent chemotherapy. Remaining one patient with stage IIA had curative concurrent chemoradiotherapy with external pelvic irradiation and brachytherapy. There were 7 patients diagnosed as glassy cell carcinoma among the 3,745 (0.2%) patients of carcinoma of uterine cervix. The mean age of 7 patients was 44 years with range of 35 to 53 years of age. The most frequent symptom was vaginal bleeding (86%). By the punch biopsy undertaken before treatment of 7 cases, 2 only cases could diagnose as glassy cell carcinoma of uterine cervix, but remaining of them confirmed by surgical pathological examination. The mean follow up duration was 73 months with range of 13 to 150 months. All 7 patients were alive without disease after treatment. Glassy cell carcinoma of the uterine cervix is a distinct clinicopathologic entity that demonstrates an aggressive biologic behavior. However for early-stage disease, we may have more favorable clinical outcome with radical surgery followed by chemoradiotherapy

  11. EDTA modified glassy carbon electrode: Preparation and characterization

    International Nuclear Information System (INIS)

    Ustuendag, Zafer; Solak, Ali Osman

    2009-01-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){2-[bis(carboxymethyl)amino]-ethyl}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb 2+ ions was investigated if this electrode could be used as a metal sensor.

  12. Antimicrobial activity of basil (Ocimum basilicum) oil against Salmonella enteritidis in vitro and in food.

    Science.gov (United States)

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2010-01-01

    Nine essential oils were examined for antimicrobial activity against reference and clinical strains of Salmonella Enteritidis. Based on the size of the inhibition zone and the minimal inhibitory concentration, basil oil had the strongest antimicrobial activity against all the tested bacteria, and S. Enteritidis SE3 was the most sensitive strain to all the tested oils. Gas chromatography/mass spectrometry analysis revealed that the major constituents of the oil were linalool (64.35%), 1,8-cineole (12.28%), eugenol (3.21%), germacrene D (2.07%), alpha-terpineol (1.64%), and rho-cymene (1.03%). When applied in nham, a fermented pork sausage, experimentally inoculated with S. Enteritidis SE3 and stored at 4 degrees C, basil oil inhibited the bacterium in a dose-dependent fashion. Basil oil at a concentration of 50 ppm reduced the number of bacteria in the food from 5 to 2log cfu/g after storage for 3 d. An unmeasurable level of the bacterium in the food was observed at days 2 and 3 of storage when 100 and 150 ppm of basil oil was used, respectively. Sensory evaluation suggested that the addition of 100 but not of 150 ppm to nham would be acceptable to consumers. The results from this study confirm the potential use of basil oil as an antimicrobial agent to control S. Enteritidis in food.

  13. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  14. COMPARISON OF THE QUALITY OF VEGETABLE OILS DESIGNED FOR THE FRYING FOOD

    Directory of Open Access Journals (Sweden)

    Ladislav Mura

    2012-12-01

    Full Text Available The object of the research was to investigate the quality of vegetable oils for cooking food. The analysis used two types of oils - oil Fritol and Promienna. Both oils were purchased commercially. Oil changes were observed at frying French fries. At the same changes were observed oil stored at room temperature and the temperature in the refrigerator. The determined parameters included the measurement of polar materials in oil with electronic device Testo 265 for measuring the quality of cooking oil. Determination of change in the texture of oil during the oil deterioration by device Texturometer TA.XT Plus and determination the peroxide value by STN EN ISO 3960:2007. The work is also evaluating the results of the studied parameters. In all compared cases based on the content of the TPM showed higher heat resistance oil Fritol and sample of oil stored in the refrigerator.doi:10.5219/210

  15. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.

    Science.gov (United States)

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2017-12-01

    Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Temperature-triggered release of a liquid cross-linker micro-encapsulated in a glassy polymer for low temperature curing

    NARCIS (Netherlands)

    Senatore, D.; Cate, ten A.T.; Laven, J.; Benthem, van R.A.T.M.; With, de G.

    2013-01-01

    In order to prevent a liquid epoxy cross-linker from premature, Arrhenius-law predicted, reaction with an acid-functional polyester resin, the liquid cross-linker has been physically separated from the resin by encapsulation while release is only possible by a temperature-controlled trigger. The

  17. Gas-shell-encapsulation of activated carbon to reduce fouling and increase the efficacy of volatile organic compound removal

    NARCIS (Netherlands)

    Poortinga, A.T.; van Rijn, C.J.M.

    2017-01-01

    A method to encapsulate activated carbon particles is presented that reduces fouling of these particles with Natural Organic Matter (NOM) to preserve their adsorption capacity for Volatile Organic Compounds (VOCs) from water in the presence of NOM. The encapsulation method uses an oil-in-water

  18. EDTA modified glassy carbon electrode: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kuetahya (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, Degol Street, Tandogan, 06100 Ankara (Turkey)], E-mail: osolak@science.ankara.edu.tr

    2009-11-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){l_brace}2-[bis(carboxymethyl)amino]-ethyl{r_brace}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb{sup 2+} ions was investigated if this electrode could be used as a metal sensor.

  19. Characteristic fly-ash particles from oil-shale combustion found in lake sediments

    International Nuclear Information System (INIS)

    Alliksaar, T.; Hoerstedt, P.; Renberg, I.

    1998-01-01

    Fly-ash particles accumulate in sediments and can be used to assess spatial distribution and temporal trends of atmospheric deposition of pollutants derived from high temperature combustion of fossil fuels. Previous work has concerned fly-ash derived from oil and coal. Oil-shale is the main fossil fuel used in Estonia and a major source of atmospheric pollution in the Baltic states. To assess if oil-shale power plants produce specific fly-ash particles scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to compare fly-ash particles from oil-shale combustion with particles from oil and coal combustion. Two types were analysed, large black (10-30μm) and small glassy (< 5 μm) spheroidal particles. Although article morphology to some extent is indicative of the fuel burnt, morphological characters are not sufficient to differentiate between particles of different origin. However, the results indicate that with EDX analysis the fly-ash from oil-shale can be distinguished form oil and coal derived particles in environmental samples. Concentrations of large black and small glassy spheroidal fly-ash particles in a sediment core from an Estonian lake showed similar trends to oil-shale combustion statistics from Estonian power plants. 27 refs., 6 figs., 2 tabs

  20. Food restriction but not fish oil increases fertility in hens: role of RARRES2?

    Science.gov (United States)

    Mellouk, Namya; Ramé, Christelle; Delaveau, Joël; Rat, Christophe; Marchand, Maxime; Mercerand, Frédéric; Travel, Angélique; Brionne, Aurélien; Chartrin, Pascal; Ma, Linlin; Froment, Pascal; Dupont, Joëlle

    2018-04-01

    Overfed hens selected for their rapid growth become fatter and develop reproductive disorders. Herein, we aimed to demonstrate that food restriction leading to a weight reduction and/or a supplementation with fish oil may be effective in preventing reproductive disorders through the regulation of adipokine expression in broiler hens. This study included four groups of food restricted (Rt) or ad libitum hens (Ad, feeding at a rate 1.7 times greater than Rt hens) supplemented or unsupplemented with fish oil (1%). The Rt diet significantly increased plasma chemerin (RARRES2) levels during the laying period, delayed sexual maturity by one week and improved egg quality and fertility. These effects were associated with higher progesterone production in response to IGF1 (or LH) in cultured granulosa cells and in vivo egg yolk, as compared with Ad hens. Fish oil supplementation had similar effects to the Rt diet on progesterone ( P  food restriction but not fish oil supplementation improved fertility, and this was associated with variations in RARRES2 plasma and ovarian expression in hens. © 2018 Society for Reproduction and Fertility.

  1. A membrane film sensor with encapsulated fluorescent dyes towards express freshness monitoring of packaged food.

    Science.gov (United States)

    Kiryukhin, Maxim V; Lau, Hooi Hong; Goh, Seok Hong; Teh, Cathleen; Korzh, Vladimir; Sadovoy, Anton

    2018-05-15

    A new Membrane Film Sensor (MFS) has been developed to measure pH of fluids. MFS comprises a polyelectrolyte multilayer film with uniformly distributed compartments (microchambers) where a fluorescent sensing dye is encapsulated. Fabricated film is sealed onto a polyethylene film for a future use. MFS was applied to report changes in golden pomfret fillet upon its storage at 5 °C. MFS pH readings were correlated to bacteriological analysis of fish samples. A hike in pH of fish juices happens after 10 days of storage signaling bacterial spoilage of fish. The design of developed MFS allows easy integration with transparent packaging materials for future development of "SMART" packaging sensing food freshness. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Gas-shell-encapsulation of Activated Carbon to Reduce Fouling and Increase the Efficacy of Volatile Organic Compound Removal

    NARCIS (Netherlands)

    Poortinga, Albert T.; Rijn, van Cees J.M.

    2017-01-01

    A method to encapsulate activated carbon particles is presented that reduces fouling of these particles with Natural Organic Matter (NOM) to preserve their adsorption capacity for Volatile Organic Compounds (VOCs) from water in the presence of NOM. The encapsulation method uses an oil-in-water

  3. Study on dose calculation method for operational intervention Level. Evaluation of the intake of foods and drinks for OIL6

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Takahashi, Shunsuke

    2017-01-01

    In the guideline for nuclear disaster countermeasures, the operational intervention level (OIL) is an index for decision making of protective measures to be applied in an urgent protective action planning zone (UPZ) and in the zone immediately outside it, for the period starting several hours after a general emergency is declared to within a week after this. In this guideline, the initialization value of OIL6 is set as the protective measure index for intake of foods and drinks. OIL is observed by using actual measurement values in a nuclear emergency, and OIL6 is the measured activity concentration of radioactive materials (Bq/kg) in foods and drinks. On the other hand, the IAEA sets the generic criteria for protective measures from the viewpoint of the radiation effects to the human body. Therefore, it has been necessary to prepare an expression for the OIL6 dose and a dose conversion factor in order to confirm whether the dose does not exceed the generic criteria from the annual intake data of foods and drinks in Japan when contaminated foods and drinks are consumed continuously for 1 year. In this work, we examined the problem about the uncertainty of the annual intake data of foods and drinks. We took the annual intake data of foods and drinks for OIL6 based on the national health and nutrition survey results by the Ministry of Health, Labor and Welfare and we calculated a OIL6 dose when foods and drinks were contaminated at the same level as the initialization value of the restricted consumption of foods and drinks, taking into account the influences for age, gender and local area. As a result, we found the 95% upper limit value of the intake data of foods and drinks for OIL6 obtained by this study could be used. The OIL6 intake data of foods and drinks prepared by previous studies were underestimating vegetables and cereals, etc. The OIL6 dose was sufficiently below IAEA generic criteria, and the intake data of foods and drinks between the local areas had no

  4. Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme

    Directory of Open Access Journals (Sweden)

    Petra Matouskova

    2016-01-01

    Full Text Available Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch. Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus and two Gram-negative (Escherichia coli and Serratia marcescens bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries.

  5. Consumer Acceptance of Bars and Gummies with Unencapsulated and Encapsulated Resveratrol.

    Science.gov (United States)

    Koga, Clarissa C; Lee, Soo-Yeun; Lee, Youngsoo

    2016-05-01

    The addition of resveratrol, a polyphenol found in red wine and peanuts, to food products would help to provide the health benefits associated with the compound to the consumer in a wide array of food matrices. The bitterness of resveratrol and instability of its bioactive form in light are 2 major challenges with the incorporation of the compound into food products. Microencapsulation in a sodium caseinate matrix was utilized as a strategy to overcome these challenges. The objective of this research was to show the application of the resveratrol microcapsules in easy-to-consume foods. Consumer acceptance was evaluated for gummies and bars with encapsulated resveratrol in comparison to the controls. Four different controls were used: 1) without any resveratrol OR protein (Plain), 2) unencapsulated resveratrol (Resv), 3) sodium caseinate and unencapsulated resveratrol just mixed without encapsulation (P + R), and 4) sodium caseinate only (PRO). Two concentrations of resveratrol that have been shown to offer therapeutic effects in humans were tested (10 and 40 mg/d). The overall liking, evaluated using a 9-point scale, of bars with 10 mg of encapsulated resveratrol did not differ significantly from the control without any added resveratrol and protein (Plain) or from the controls with equivalent protein and/or resveratrol concentrations. For gummies, the samples with the resveratrol microcapsules had a significantly lower overall liking than the controls with the same protein and/or resveratrol content. This research demonstrated application of resveratrol microcapsules into easy-to-consume food products in order to deliver the health benefits to the consumer. © 2016 Institute of Food Technologists®

  6. Allanblackia Oil: Phytochemistry and Use as a Functional Food

    Directory of Open Access Journals (Sweden)

    Sara L. Crockett

    2015-09-01

    Full Text Available The consumption and commercial exploitation of Allanblackia (Clusiaceae seed oils is of current interest. The favorable physicochemical characteristics of Allanblackia oil (solid at room temperature; high stearic acid content lend food products that contain it (i.e., vegetable-based dairy products, ice cream, spreads health advantages over others that contain higher levels of lauric, myristic, and/or palmitic acids, which can increase blood cholesterol levels. Such considerations are important for individuals prone to cardiovascular disease or with hypercholesterolemia. Domestication projects of several Allanblackia species in tropical Africa are underway, but wildcrafting of fruits to meet the seed demand still occurs. Proper species authentication is important, since only authenticated oil can be deemed safe for human consumption. The chemical constituency of Allanblackia seed oils, and potential roles of these phytochemicals in preventive strategies (e.g., as part of a healthy diet and as pharmacological agents used to treat chronic disease were examined in this review. The primary and secondary metabolite constituency of the seed oils of nearly all Allanblackia species is still poorly known. The presence, identity, and quantity of potentially bioactive secondary metabolites in the seed oils, and pharmacological testing of isolated compounds were identified as important directions for future research.

  7. Methods for reducing lipid oxidation in fish-oil-enriched energy bars

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Jacobsen, Charlotte

    2009-01-01

    P>Fish oil (FO) enrichment of foods is relevant owing to the beneficial effects of omega-3 polyunsaturated fatty acids on human health. However, the susceptibility of FO to oxidation necessitates careful control to avoid this oxidation. In this study, energy bars were successfully supplemented...... similar protection towards oxidation as packaging the energy bars in modified atmosphere. These protection methods were although not as efficient as addition of FO as micro-encapsulated powder. Addition of the metal chelator ethylene diamine tetra-acetic acid (EDTA) (100-2000 ppm) to emulsified FO...

  8. Chitosan encapsulation of essential oil "cocktails" with well-defined binary Zn(II)-Schiff base species targeting antibacterial medicinal nanotechnology.

    Science.gov (United States)

    Halevas, Eleftherios; Nday, Christiane M; Chatzigeorgiou, Evanthia; Varsamis, Vasileios; Eleftheriadou, Despoina; Jackson, Graham E; Litsardakis, Georgios; Lazari, Diamanto; Ypsilantis, Konstantinos; Salifoglou, Athanasios

    2017-11-01

    The advent of biodegradable nanomaterials with enhanced antibacterial activity stands as a challenge to the global research community. In an attempt to pursue the development of novel antibacterial medicinal nanotechnology, we herein a) synthesized ionic-gelated chitosan nanoparticles, b) compared and evaluated the antibacterial activity of essential oils extracted from nine different herbs (Greek origin) and their combinations with a well-defined antibacterial Zn(II)-Schiff base compound, and c) encapsulated the most effective hybrid combination of Zn(II)-essential oils inside the chitosan matrix, thereby targeting well-formulated nanoparticles of distinct biological impact. The empty and loaded chitosan nanoparticles were physicochemically characterized by FT-IR, Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), with the entrapment and drug release studies being conducted through UV-Visible and atomic absorption techniques. The antimicrobial properties of the novel hybrid materials were demonstrated against Gram positive (S. aureus, B. subtilis, and B. cereus) and Gram negative (E. coli and X. campestris) bacteria using modified agar diffusion methods. The collective physicochemical profile of the hybrid Zn(II)-essential oil cocktails, formulated so as to achieve optimal activity when loaded to chitosan nanoparticles, signifies the importance of design in the development of efficient nanomedicinal pharmaceuticals a) based on both natural products and biogenic metal ionic cofactors, and b) targeting bacterial infections and drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Relationship between growth and total nucleic acids in juvenile pink salmon, Oncorhynchus gorbuscha, fed crude oil contaminated food

    International Nuclear Information System (INIS)

    Wang Shiao, Y.; Lum, J.L.; Carls, M.G.; Rice, S.D.

    1993-01-01

    Total nucleic acids of junvenile pink salmon fed crude oil contaminated food were analyzed to deteremine if nucleic acid measurements can be used to evaluate growth of fish collected at oil spill sites. In general, the nucleic acid concentration (μg per mg dry weight) of salmon fry fed food contaminated with either 0.37 or 2.78 mg crude oil/g food was not significantly affected. However, RNA concentration of fry fed food contaminated with 34.83 mg/g was reduced whereas DNA concentration increased. Results over 8 weeks indicate decreased protein synthesis and cell content but maintenance of cell integrity in these fish. Growth was inversely related to the level of crude oil contamination in the food. The significant correlations between measured growth and RNA/DNA ratios and RNA contents (mg RNA per mm fork length) suggest that nucleic acid measurement can be used to compare growth of fish collected from the field. 23 refs., 4 figs

  10. New model system in radiation cryochemistry:. hyperquenched glassy water

    Science.gov (United States)

    Bednarek, Janusz; Plonka, Andrzej; Hallbrucker, Andreas; Mayer, Erwin

    1999-08-01

    Radicals generated by high-energy irradiation of liquid water, short-lived at ambient temperature, can be studied at cryogenic temperatures after irradiating water and dilute aqueous solutions in their glassy states which can be obtained by so-called hyperquenching of the liquids at cooling rates of ˜10 6-10 7 K s -1. In the glassy states of hyperquenched dilute aqueous solutions there is no problem with phase separation and radiolysis of glassy water is quite distinct from radiolysis of polycrystalline ice obtained from liquid water on slow-cooling in liquid nitrogen.

  11. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M; Braun, A; Koetz, R; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  12. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion.

    Directory of Open Access Journals (Sweden)

    Lingli Deng

    Full Text Available Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.. The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase ( 45% water along the dilution line.

  13. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media

    Science.gov (United States)

    Guo, Hailing; Youliwasi, Nuerguli; Zhao, Lei; Chai, Yongming; Liu, Chenguang

    2018-03-01

    This paper addresses a new post-treatment strategy for the formation of carbon-encapsulated nickel-cobalt alloys nanoparticles, which is easily controlled the performance of target products via changing precursor composition, calcination conditions (e.g., temperature and atmosphere) and post-treatment condition. Glassy carbon electrode (GCE) modified by the as-obtained carbon-encapsulated mono- and bi-transition metal nanoparticles exhibit excellent electro-catalytic activity for hydrogen production in alkaline water electrolysis. Especially, Ni0.4Co0.6@N-Cs800-b catalyst prepared at 800 °C under an argon flow exhibited the best electrocatalytic performance towards HER. The high HER activity of the Ni0.4Co0.6@N-Cs800-b modified electrode is related to the appropriate nickel-cobalt metal ratio with high crystallinity, complete and homogeneous carbon layers outside of the nickel-cobalt with high conductivity and the synergistic effect of nickel-cobalt alloys that also accelerate electron transfer process.

  14. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    OpenAIRE

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 ?m. Chemical characterization by H-NMR spectroscopy revealed that the algi...

  15. Stable isotope analysis of a newly established macrofaunal food web 1.5 years after the Hebei Spirit oil spill

    International Nuclear Information System (INIS)

    Han, Eunah; Park, Hyun Je; Bergamino, Leandro; Choi, Kwang-Sik; Choy, Eun Jung; Yu, Ok Hwan; Lee, Tae Won; Park, Heung-Sik; Shim, Won Joon; Kang, Chang-Keun

    2015-01-01

    Highlights: • We examined trophic structure in a newly established community after an oil spill. • This is the most extensive in situ isotopic analysis on an oiled benthic community. • Consumer-food source δ 13 C and δ 15 N rejected influx of petroleum into the community. • A novel circular statistics rejected trophic niche change of major feeding guilds. • Prevalence of omnivory and trophic plasticity may promote the recovery process. - Abstract: We examined trophic relationships in a newly established community 1.5 years after the Hebei Spirit oil spill on the west coast of Korea. Carbon and nitrogen stable isotope ratios in consumers and their potential food sources were compared between the oil-spill site and reference site, located 13.5 km from the oil-spill spot. The isotopic mixing model and a novel circular statistics rejected the influx of petrogenic carbon into the community and identified spatial consistencies such as the high contributions of microphytobenthos, food-chain length, and the isotopic niche of each feeding guild between sites. We suggested that high level of trophic plasticity and the prevalence of omnivory of consumers may promote the robustness of food web against the oil contamination. Furthermore, we highlighted the need of holistic approaches including different functional groups to quantify changes in the food web structure and assess the influence of different perturbations including oil spill

  16. Formation of a glassy phase in ceramic-like coatings

    International Nuclear Information System (INIS)

    Sazonova, M.V.; Gorbatova, G.N.

    1986-01-01

    The authors investigate the synthesis directly in coatings of a borosilicate melt that could fill the role of glassy matrix, thereby avoiding fusion and processing of the glassy material. The effect of added boron on the formation of coatings based on molybdenum disilicide and tungsten disilicide in air at 900 degrees C is presented. Without an additive no coating forms; there is no adhesion to the graphite and a continuous film does not form. As a result of boron oxidation an easily fused glassy matrix forms, which bonds the molybdenum disilicide or tungsten disilicide particles together and ensures adhesion to the graphite

  17. Sensitivity of spoiling and pathogen food-related bacteria to Origanum vulgare L. (Lamiaceae) essential oil

    OpenAIRE

    Souza,Evandro Leite de; Stamford,Tânia Lúcia Montenegro; Lima,Edeltrudes de Oliveira

    2006-01-01

    Origanum vulgare L. (oregano), Lamiaceae, has been known as plant specie with prominent biological properties for a long time. This study aimed to evaluate the antibacterial activity of Origanum vulgare essential oil on various Gram-positive and Gram-negative spoiling and/or pathogen food-related bacteria, as well as to observe its antimicrobial effectiveness in a food conservation micromodel. The results showed a strong antibacterial activity of the assayed essential oil noted by large growt...

  18. Dispersed oil disrupts microbial pathways in pelagic food webs.

    Science.gov (United States)

    Ortmann, Alice C; Anders, Jennifer; Shelton, Naomi; Gong, Limin; Moss, Anthony G; Condon, Robert H

    2012-01-01

    Most of the studies of microbial processes in response to the Deepwater Horizon oil spill focused on the deep water plume, and not on the surface communities. The effects of the crude oil and the application of dispersants on the coastal microbial food web in the northern Gulf of Mexico have not been well characterized even though these regions support much of the fisheries production in the Gulf. A mesocosm experiment was carried out to determine how the microbial community off the coast of Alabama may have responded to the influx of surface oil and dispersants. While the addition of glucose or oil alone resulted in an increase in the biomass of ciliates, suggesting transfer of carbon to higher trophic levels was likely; a different effect was seen in the presence of dispersant. The addition of dispersant or dispersed oil resulted in an increase in the biomass of heterotrophic prokaryotes, but a significant inhibition of ciliates, suggesting a reduction in grazing and decrease in transfer of carbon to higher trophic levels. Similar patterns were observed in two separate experiments with different starting nutrient regimes and microbial communities suggesting that the addition of dispersant and dispersed oil to the northern Gulf of Mexico waters in 2010 may have reduced the flow of carbon to higher trophic levels, leading to a decrease in the production of zooplankton and fish on the Alabama shelf.

  19. The sorption induced glass transition in amorphous glassy polymers

    NARCIS (Netherlands)

    van der Vegt, N.F.A.; Wessling, Matthias; Strathmann, H.; Briels, Willem J.

    1999-01-01

    Sorption of CO2 in both the glassy and the rubbery state of an amorphous polyethylenelike polymer was investigated using molecular dynamics simulations. The temperature was chosen such that the system was in its glassy state at low solute concentrations and its rubbery state at large solute

  20. Technological properties of amazonian oils and fats and their applications in the food industry.

    Science.gov (United States)

    Bezerra, Carolina Vieira; Rodrigues, Antonio Manoel da Cruz; de Oliveira, Pedro Danilo; da Silva, Dayala Albuquerque; da Silva, Luiza Helena Meller

    2017-04-15

    The application of lipids to food production is dependent on their physical, chemical, and nutritional properties. In this study, pracaxi oil, passion fruit oil, cupuassu fat, and palm stearin underwent physicochemical analyses and were combined at ratios of 40:60, 50:50, 60:40, and 70:30 to assess their potential applications in the food industry. Pracaxi oil, passion fruit oil, and cupuassu fat had interesting fatty acid profiles from a nutritional standpoint, displaying the lowest atherogenicity and thrombogenicity indices (0.02 and 0.14; 0.12 and 0.34; 0.16 and 0.65), respectively. Palm stearin had high thermal stability (7.23h). The primary applications of the blends obtained in this study are in table and functional margarine, particularly the pracaxi-stearin and passion fruit-stearin 40:60 and 50:50, pracaxi-cupuassu 60:40 and 70:30, and passion fruit-cupuassu 40:60 blends. The results suggest new industrial applications, especially for pracaxi and passion fruit oils, which are commonly applied in the cosmetic industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Effect of Emulation Formulation to Encapsulation of Fe3O4 Magnetic nanoparticle with Poly (Lactic Acid)

    International Nuclear Information System (INIS)

    Evi Yuliyanti; Sudaryanto; Mujamilah; Yoki Yulizar

    2008-01-01

    The research to study the effect of emulsion formulation to encapsulation Fe 3 O 4 magnetic nanoparticle with Poly(Lactic Acid) (PLA) has been done. Microemulsion by ultrasonic probe is used in encapsulation process and continued by solvent evaporation. Emulsion formulation has been varied by changing oil phase volume in the oil in water (o/w) emulsion system from 6 mL, 8 mL, 10 mL, 12 mL and 14 mL, whereas water phase volume is constant (55 mL). Sample characterization is carried on by Scanning Electron Microscope (SEM) to know the morphology and sample size. X-Ray Diffractometer (XRD) is used to identify the phase, Vibrating Sample Magnetometer (VSM) is used to measure magnetic saturation while Neutron Activation Analysis (NAA) is used to measure encapsulation percentage of Fe 3 O 4 with PLA. The smallest nanosphere is resulted by emulsion formulation (o/w) of 14/55 with the main sample size 382 nm. The maximum magnetic saturation of Fe 3 O 4 + PLA nanosphere is 2.556 emu/g and encapsulation percentage is 24.94 %. (author)

  2. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams.

    Science.gov (United States)

    Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2017-12-01

    The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Innovation on Street Food Products (Instant Porridge and Cookies Based on Fortified Patin Fish Protein Concentrate with Red Palm Oil and Encaptulated Oil Fish

    Directory of Open Access Journals (Sweden)

    Dewita Dewita

    2015-02-01

    Full Text Available This research aimed to establish innovation on street food (instant porridge and cookiesfrom Patin Fish Protein Concentrate fortified by blending red palm oil and encaptulated patinfish’s oil. The Encaptulation was conducted by blending of red palm oil and patin fish’s oil usingspray dryer. The blending was consisted of three combinations namely 50 : 50 (A1, 40 : 60 (A2and 60 : 40 (A3 for ratio between red palm oil and patin fish’s oil. The best combination’s resultswas fortified into street food (instant porridge and cookies. The blending was tested by measureyield, fat and fatty acid profile. Moreover, organoleptics and proximate tests were carrie out for thebest treatment of blending in instant porridge and cookies. The results show that encaptulatedyield reached 55 % that rise from A1 treatment as the best treatment with fat content of 17.26%.Profile of unsaturated fatty acid especially fatty acid omega 9 from blending fish oil and palm oilwas 59.29%. The number of fatty acid omega 9 was higher than saturated fatty acid which was18.56%. Furthermore, based on organoleptic tests of instant porridge and cookies using under fiveyear children respondents, it was proven that 93% of children was like the products. Proximate analysis of instant porridge revealed that protein content was 11.04 %, water content was 5.03%,fat content was 1.92 % and ash was 0.64 %. However, proximate analysis showed that cookiesowned protein of 9.11%, fat of 17.03% , water content was 3.93% and ash of 1.38%.Keywords : Encaptulated fish, street food, patin fish protein concentrate, palm oil

  4. Understanding the contamination of food with mineral oil: the need for a confirmatory analytical and procedural approach.

    Science.gov (United States)

    Spack, Lionel W; Leszczyk, Gabriela; Varela, Jesus; Simian, Hervé; Gude, Thomas; Stadler, Richard H

    2017-06-01

    The contamination of food by mineral oil hydrocarbons (MOHs) found in packaging is a long-running concern. A main source of MOHs in foods is the migration of mineral oil from recycled board into the packed food products. Consequently, the majority of food manufacturers have taken protective measures, e.g., by using virgin board instead of recycled fibres and, where feasible, introducing functional barriers to mitigate migration. Despite these protective measures, MOHs may still be observed in low amounts in certain food products, albeit due to different entry points across the food supply chain. In this study, we successfully apply gas chromatography coupled to mass spectrometry (GC-MS) to demonstrate, through marker compounds and the profile of the hydrocarbon response, the possible source of contamination using mainly chocolate and cereals as food matrices. The conventional liquid chromatography-one-dimensional GC coupled to a flame ionisation detector (LC-GC-FID) is a useful screening method, but in cases of positive samples it must be complemented by a confirmatory method such as, for example, GC-MS, allowing a verification of mineral oil contamination. The procedural approach proposed in this study entails profile analysis, marker identification, and interpretation and final quantification.

  5. Did Iraq Cheat the United Nations? Underpricing, Bribes, and the Oil for Food Program

    OpenAIRE

    Chang-Tai Hsieh; Enrico Moretti

    2005-01-01

    From 1997 through early 2003, the United Nations Oil for Food Program allowed Iraq to export oil in exchange for humanitarian supplies. We measure the extent to which this program was corrupted by Iraq's attempts to deliberately set the price of its oil below market prices in an effort to solicit bribes, both in the form of direct cash bribes and in the form of political favors, from the buyers of the underpriced oil. We infer the magnitude of the potential bribe by comparing the gap between ...

  6. Encapsulation of protease from Aspergillus oryzae and lipase from Thermomyces lanuginoseus using alginate and different copolymer types

    Directory of Open Access Journals (Sweden)

    Truong Thi Mong Thu

    2016-05-01

    Full Text Available Although the application of enzymes in food as a food processing aid and enzyme supplement is of interest and widely used, the enzymes can be easily deactivated or lose their activity due to many causes such as pH and moisture as well as through the introduction of incompatible ingredients during food processing and storage. These problems can be solved by the encapsulation technique, especially in a gel matrix. The influences were studied of the alginate concentration, types of copolymer and their concentrations on the bead size, encapsulation yield (EY, encapsulation efficiency (EE, leakage and the retention of enzyme activity during storage period of encapsulated protease from Aspergillus oryzae and lipase from Thermomyces lanuginosus beads. A solution of purified protease or lipase was encapsulated in calcium alginate-chitosan beads (CACB, calcium alginate-xanthan gum beads (CAXB and calcium alginate-maltodextrin beads (CAMB using the extrusion method. Increasing the alginate and copolymer concentrations in the solution increased the bead size, EY, EE and the retention of enzyme activity during the storage period and reduced leakage of both the encapsulated protease and lipase. In addition, different types of copolymer significantly (p ≤ 0.05 affected these properties of both encapsulated enzymes. Furthermore, protease encapsulated using 2.0% alginate and 0.2% chitosan provided the highest EY (81.7% and EE (77.2% with a bead size of 1.85 mm and 8.1% leakage. The retention of encapsulated protease activity and the shelf-life of encapsulated enzyme which was expressed as half-life, the time required for the enzyme activity to decrease by half (thalf life were 75.8% and 27.2 wk, respectively after storage at 4 °C for 10 wk. For lipase, encapsulation using 2.0% alginate and 0.4% xanthan gum provided the highest EY (42.5% and EE (43.9% and the bead size and leakage were 1.81 mm and 6.2%, respectively. The retention of encapsulated

  7. Safety Evaluation of Oil Samples Collected from Different Food Points of Multan City of Pakistan

    Directory of Open Access Journals (Sweden)

    Saeed Akhtar

    2018-05-01

    Full Text Available Cooking oil has become a part and parcel of modern food system and therefore its safety is of prime significance for health agencies around the globe to ensure good health among the community. Current study was designed to investigate the physicochemical properties including free fatty acids, peroxide value and conjugated dienes; minerals (nickel & cobalt and heavy metals (lead and cadmium in oil samples collected from different areas of Multan city of Pakistan. The findings of this study revealed that free fatty acid percentages, conjugated dienes, cobalt and nickel concentrations were in normal ranges while the peroxide values, lead and cadmium concentrations were recorded above the norms. Strict regulatory measures need to be adopted to ensure good quality oil supply and to protect the people from health implications of physicochemical and metallic hazards prevailing in fried oils and fried foods.

  8. Matrix Effect on the Spray Drying Nanoencapsulation of Lippia sidoides Essential Oil in Chitosan-Native Gum Blends.

    Science.gov (United States)

    Paula, Haroldo C B; Oliveira, Erick F; Carneiro, Maria J M; de Paula, Regina C M

    2017-03-01

    Essential oils have many applications in the pharmaceutical, chemical, and food fields, however, their use is limited to the fact that they are very labile, requiring their a priori encapsulation, aiming to preserve their properties.This work reports on the preparation of chitosan-gum nanoparticles loaded with thymol containing Lippia sidoides essential oil, using exudates of Anacardium Occidentale (cashew gum), Sterculia striata (chichá gum), and Anadenanthera macrocarpa trees (angico gum). Nanoparticles were produced by spray drying an emulsion of L. sidoides essential oil and aqueous solution of gums with different chitosan : gum ratios. Samples were characterized by FTIR and UV/VIS spectroscopy, particle size, volume distribution, and zeta potential. The FTIR spectrum showed the main signals of chitosan and the gums. Data obtained revealed that the samples had sizes in the nano range, varying from 17 nm to 800 nm. The zeta potential varied from + 30 mV to - 40 mV. Nanoparticle loading values varied from 6.7 % to 15.6 %, with an average encapsulating efficiency of 62 %, where the samples with high ratios of cashew gum and chichá gum presented high oil loading values. The data revealed that both the chitosan : gum ratio and polysaccharide characteristics play major roles in nanoencapsulation processes. Georg Thieme Verlag KG Stuttgart · New York.

  9. Dispersed oil disrupts microbial pathways in pelagic food webs.

    Directory of Open Access Journals (Sweden)

    Alice C Ortmann

    Full Text Available Most of the studies of microbial processes in response to the Deepwater Horizon oil spill focused on the deep water plume, and not on the surface communities. The effects of the crude oil and the application of dispersants on the coastal microbial food web in the northern Gulf of Mexico have not been well characterized even though these regions support much of the fisheries production in the Gulf. A mesocosm experiment was carried out to determine how the microbial community off the coast of Alabama may have responded to the influx of surface oil and dispersants. While the addition of glucose or oil alone resulted in an increase in the biomass of ciliates, suggesting transfer of carbon to higher trophic levels was likely; a different effect was seen in the presence of dispersant. The addition of dispersant or dispersed oil resulted in an increase in the biomass of heterotrophic prokaryotes, but a significant inhibition of ciliates, suggesting a reduction in grazing and decrease in transfer of carbon to higher trophic levels. Similar patterns were observed in two separate experiments with different starting nutrient regimes and microbial communities suggesting that the addition of dispersant and dispersed oil to the northern Gulf of Mexico waters in 2010 may have reduced the flow of carbon to higher trophic levels, leading to a decrease in the production of zooplankton and fish on the Alabama shelf.

  10. Parylene-on-oil packaging for long-term implantable pressure sensors.

    Science.gov (United States)

    Shapero, Aubrey M; Liu, Yang; Tai, Yu-Chong

    2016-08-01

    This paper reports and analyzes the feasibility study of a parylene-on-oil encapsulation packaging method of pressure sensors targeted for long-term implantation. Commercial barometric digital-output pressure sensors are enclosed in silicone oil and then encapsulated in situ with parylene-C or -D (PA-C, PA-D) chemical vapor deposition. Experimentally, sensors encapsulated with 30,000 cSt silicone oil and 27 μm PA-D show good performance for 6 weeks in 77 °C saline with >99 % of original sensitivity, corresponding to an extrapolated lifetime of around 21 months in 37 °C saline. This work shows that, with proper designs, such a packaging method can preserve the original pressure sensor sensitivity without offset, validated throughout accelerated lifetime tests. In experiments, wires on the prototypes are used for external electronics but it is found that they contributed to early failures, which would be absent in real wireless versions, indicating a potential for even longer lifetimes. Finally, a verified model is presented to predict the pressure sensor sensitivity of parylene-on-oil packaging with and without the presence of a bubble in the oil.

  11. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    Science.gov (United States)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  12. Dual-coating of liposomes as encapsulating matrix of antimicrobial peptides: Development and characterization

    Science.gov (United States)

    Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel

    2017-11-01

    Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome

  13. Migration of Epoxidized Soybean Oil (ESBO) and Phthalates From Twist Closures into Food and Enforcement of the Overall Migration Limit

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Jensen, Lisbeth Krüger; Fankhauser, A.

    2008-01-01

    Nineteen samples of food in glass jars with twist closures were collected by the national food inspectors at Danish food producers and a few importers, focusing on fatty food, such as vegetables in oil, herring in dressing or pickle, soft spreadable cheese, cream, dressings, peanut butter, sauces...... and infant food. The composition of the plasticizers in the gaskets was analysed by gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Epoxidized soybean oil (ESBO) and phthalates were determined in the homogenized food samples. ESBO...... was the principal plasticizer in five of the gaskets; in 14 it was phthalates. ESBO was found in seven of the food samples at concentrations from 6 to 100 mg kg(-1). The highest levels (91-100 mg kg(-1)) were in oily foods such as garlic, chilli or olives in oil. Phthalates, i.e. di-iso-decylphthalate (DIDP) and di...

  14. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability.

    Science.gov (United States)

    Chen, Lingli; Bai, Guangling; Yang, Rui; Zang, Jiachen; Zhou, Ting; Zhao, Guanghua

    2014-04-15

    Carotenoids may play a number of potential health benefits for human. However, their use in food industry is limited mostly because of their poor water-solubility and low thermal stability. Ferritins are widely distributed in nature with a shell-like structure which offers a great opportunity to improve the water-solubility and thermal stability of the carotenoids by encapsulation. In this work, recombinant human H-chain ferritin (rHuHF) was prepared and used to encapsulate β-carotene, a typical compound among carotenoids, by taking advantage of the reversible dissociation and reassembly characteristic of apoferritin in different pH environments. Results from high-performance liquid chromatography (HPLC), UV/Vis spectroscopy and transmission electron microscope (TEM) indicated that β-carotene molecules were successfully encapsulated within protein cages with a β-carotene/protein molar ratio of 12.4-1. Upon such encapsulation, these β-carotene-containing apoferritin nanocomposites were water-soluble. Interestingly, the thermal stability of the β-carotene encapsulated within apoferritin nanocages was markedly improved as compared to free β-carotene. These new properties might be favourable to the utilisation of β-carotene in food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of Origanum heracleoticum L. essential oil on food-borne Penicillium aurantiogriseum and Penicilium chrysogenum isolates

    Directory of Open Access Journals (Sweden)

    Čabarkapa Ivana S.

    2011-01-01

    Full Text Available Molds are ubiquitously distributed in nature and their spores can be found in the atmosphere even at high altitudes. The difficulty of controlling these undesirable molds, as well as the growing interest of the consumers in natural products, have been forcing the industry to find new alternatives for food preservation. The modern trends in nutrition suggest the limitation of synthetic food additives or substitution with natural ones. Aromatic herbs are probably the most important source of natural antimicrobial agents. Origanum heracleoticum L. essential oil has been known as an interesting source of antimicrobial compounds to be applied in food preservation. In the this work, we have investigated the effect of essential oil obtained from O. heracleoticum on growth of six isolates of Penicillium aurantiogriseum and four isolates of Penicillium chrysogenum isolated from meat plant for traditional Petrovacka sausage (Petrovská klobása production. The findings reveal that the essential oil of O. heracleoticum provides inhibition of all of fungal isolates tested. O. heracleoticum L. essential oil exhibited higher antifungal activity against the isolates of P. chrysogenum than the isolates of P. aurantiogriseum. O. heracleoticum essential oil showed a MIC value ranging from 25 to 100 μL/mL. The fungi cultivated in the medium with higher concentration of essential oil showed certain morphological changes. The alterations included lack of sporulation and loss of pigmentation.

  16. Thermodynamic behavior of glassy state of structurally related compounds.

    Science.gov (United States)

    Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-08-01

    Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.

  17. Preparation and characterization of clove essential oil-loaded liposomes.

    Science.gov (United States)

    Sebaaly, Carine; Jraij, Alia; Fessi, Hatem; Charcosset, Catherine; Greige-Gerges, Hélène

    2015-07-01

    In this study, suitable formulations of natural soybean phospholipid vesicles were developed to improve the stability of clove essential oil and its main component, eugenol. Using an ethanol injection method, saturated (Phospholipon 80H, Phospholipon 90H) and unsaturated soybean (Lipoid S100) phospholipids, in combination with cholesterol, were used to prepare liposomes at various eugenol and clove essential oil concentrations. Liposomal batches were characterized and compared for their size, polydispersity index, Zeta potential, loading rate, encapsulation efficiency and morphology. The liposomes were tested for their stability after storing them for 2 months at 4°C by monitoring changes in their mean size, polydispersity index and encapsulation efficiency (EE) values. It was found that liposomes exhibited nanometric oligolamellar and spherical shaped vesicles and protected eugenol from degradation induced by UV exposure; they also maintained the DPPH-scavenging activity of free eugenol. Liposomes constitute a suitable system for encapsulation of volatile unstable essential oil constituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Measurement of used oil rancidity indexes in the confectioneries and food shops

    Directory of Open Access Journals (Sweden)

    Hossein Farrokhzadeh

    2013-01-01

    Conclusion: The acid and peroxide numbers was in acceptable range, however, the rancidity or oil chemicals corruption caused by inappropriate conservation conditions. This type of fast food, have adverse effects on consumers′ health.

  19. Glassy Dynamics

    DEFF Research Database (Denmark)

    Jensen, Henrik J.; Sibani, Paolo

    2007-01-01

    The term glassy dynamics is often used to refer to the extremely slow relaxation observed in several types of many component systems. The time span needed to reach a steady, time independent, state will typically be far beyond experimentally accessible time scales. When melted alloys are cooled...... down they typically do not enter a crystalline ordered state. Instead the atoms retain the amorphous arrangement characteristic of the liquid high temperature phase while the mobility of the molecules decreases very many orders of magnitude. This colossal change in the characteristic dynamical time...

  20. Use of Red Cactus Pear (Opuntia ficus-indica Encapsulated Powder to Pigment Extruded Cereal

    Directory of Open Access Journals (Sweden)

    Martha G. Ruiz-Gutiérrez

    2017-01-01

    Full Text Available Encapsulated powder of the red cactus pear is a potential natural dye for the food industry and a known antioxidant. Although the use of this powder is possible, it is not clear how it alters food properties, thus ensuing commercial acceptability. The aim of this study was to evaluate the effect of encapsulated powder of the red cactus pear on the physicochemical properties of extruded cereals. The powder was mixed (2.5, 5.0, and 7.5% w/w with maize grits and extruded (mix moisture 22%, temperature 100°C, and screw speed 325 rpm. The physical, chemical, and sensory characteristics of the extruded cereal were evaluated; extruded cereal without encapsulated powder was used as a control. All cereal extrudates pigmented with the encapsulated powder showed statistically significant differences (P<0.05 in expansion, water absorption, color, density, and texture compared to the control. The encapsulated powder had a positive effect on expansion and water absorption indices, as well as color parameters, but a negative effect on density and texture. Extruded cereal properties were significantly (P<0.05 correlated. Sensorially, consumers accepted the extruded cereal with a lower red cactus pear powder content (2.5% w/w, because this presented characteristics similar to extruded cereal lacking pigment.

  1. STRUCTURAL BREAKS, COINTEGRATION, AND CAUSALITY BY VECM ANALYSIS OF CRUDE OIL AND FOOD PRICE

    Directory of Open Access Journals (Sweden)

    Aynur Pala

    2013-01-01

    Full Text Available This papers investigated form of the linkage beetwen crude oil price index and food price index, using Johansen Cointegration test, and Granger Causality by VECM. Empirical results for monthly data from 1990:01 to 2011:08 indicated that evidence for breaks after 2008:08 and 2008:11. We find a clear long-run relationship between these series for the full and sub sample. Cointegration regression coefficient is negative at the 1990:01-2008:08 time period, but adversely positive at the 2008:11-2011:08 time period. This results represent that relation between crude oil and food price chanced.

  2. Self-Nanoemulsifying Drug Delivery Systems Based on Melon Oil ...

    African Journals Online (AJOL)

    Method: Melon oil and cow fat were extracted by standard methods and used in the formulation of SNEDDS based on either melon oil alone, or its admixture with cow fat by utilizing varying ratios of oil(s), surfactants and co-surfactants, with or without carbosil, a glidant. The formulations were encapsulated in hard gelatin ...

  3. New process encapsulates

    International Nuclear Information System (INIS)

    Mueller, J.J.

    1982-01-01

    The results of the various aspects of this study indicate that the encapsulation process is not only capable of reducing the percent of Radon-222 emanation but also reduces the possibility of the leaching of toxic elements. Radon-222 emanation after solidification showed a 93.51% reduction from the slurry. The Gamma Spectral Analyses of short-lived Radon daughters supported the above findings. Leach studies on solidified refinery waste and transformer oils indicate there is a significant reduction in the possibility of toxic substances leaching out of the solidified samples. Further studies are needed to confirm the results of this investigation; however, the present findings indicate that the process could substantially reduce Radon-222 exhalation into the environment from uranium tailings ponds and reduce toxic leachates from hazardous waste materials

  4. Bioremediation of oil-contaminated soil using Candida catenulata and food waste

    International Nuclear Information System (INIS)

    Joo, Hung-Soo; Ndegwa, Pius M.; Shoda, Makoto; Phae, Chae-Gun

    2008-01-01

    Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes. - Enhancement on degradation ability of petroleum hydrocarbon by the microbial strain in the composting process with food waste

  5. Encapsulates for Food Bioconversions and Metabolite Production

    Science.gov (United States)

    Breguet, Véronique; Vojinovic, Vojislav; Marison, Ian W.

    The control of production costs in the food industry must be very strict as a result of the relatively low added value of food products. Since a wide variety of enzymes and/or cells are employed in the food industry for starch processing, cheese making, food preservation, lipid hydrolysis and other applications, immobilization of the cells and/or enzymes has been recognized as an attractive approach to improving food processes while minimizing costs. This is due to the fact that biocatalyst immobilization allows for easier separation/purification of the product and reutilization of the biocatalyst. The advantages of the use of immobilized systems are many, and they have a special relevance in the area of food technology, especially because industrial processes using immobilized biosystems are usually characterized by lower capital/energy costs and better logistics. The main applications of immobilization, related to the major processes of food bioconversions and metabolite production, will be described and discussed in this chapter.

  6. Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production:a potential source of botanical food preservative

    Institute of Scientific and Technical Information of China (English)

    Negero Gemeda; Yimtubezinash Woldeamanuel; Daniel Asrat; Asfaw Debella

    2014-01-01

    Objective: To investigate effect of essential oils on Aspergillus spore germination, growth and mycotoxin production.Method: In vitro antifungal and antiaflatoxigenic activity of essential oils was carried out using poisoned food techniques, spore germination assay, agar dilution assay, and aflatoxin arresting assay on toxigenic strains of Aspergillus species.Results: Cymbopogon martinii, Foeniculum vulgare and Trachyspermum ammi (T. ammi) essential oils were tested against toxicogenic isolates of Aspergillus species. T. ammi oil showed highest antifungal activity. Absolute mycelial inhibition was recorded at 1 µl/mL by essential oils of T. ammi. The oil also showed, complete inhibition of spore germination at a concentration of 2 µl/mL. In addition, T. ammi oil showed significant antiaflatoxigenic potency by totally inhibiting aflatoxin production from Aspergillus niger and Aspergillus flavus at 0.5 and 0.75 µl/mL, respectively. Cymbopogon martinii, Foeniculum vulgare and T. ammi oils as antifungal were found superior over synthetic preservative. Moreover, a concentration of 5 336.297 µl/kg body weight was recorded for LC50 on mice indicating the low mammalian toxicity and strengthening its traditional reputations.Conclusions:In conclusion, the essential oils from T. ammi can be a potential source of safe natural food preservative for food commodities contamination by storage fungi.

  7. Effect of mode of addition of flaxseed oil on the quality characteristics of chicken sausage containing vitamin E and omega 3 fatty acids at levels to support a health claim.

    Science.gov (United States)

    Bolger, Zara; Brunton, Nigel P; Monahan, Frank J

    2017-10-18

    Vitamin E and omega-3 fatty acids can be incorporated into meat products at levels supporting health claims of "protecting against oxidative stress" and "maintaining normal blood cholesterol levels", respectively. Chicken sausages were formulated to contain vitamin E (12 mg per 100 g) and flaxseed oil (2 g per 100 g) using different oil incorporation methods. The formulations were: (1) control (no oil); (2) oil; (3) emulsified oil; (4) freeze-dried encapsulated oil; (5) freeze-dried encapsulated oil with cross-linker genipin; (6) spray-dried encapsulated oil. α-Linolenic acid and α-tocopherol were retained in all fortified formulations at levels to meet nutrient and health claims but emulsification or encapsulation had no additional benefit in retention following cooking or on product quality as measured by proximate composition, lipid oxidation, colour, microbial analysis, cook loss and texture profile analysis. While the addition of flaxseed oil had a negative effect on consumer acceptance of flavour (although not when emulsified), overall acceptance of the chicken sausages was only reduced significantly (p ≤ 0.05) when oil was encapsulated.

  8. Preparation of liquid-core nanocapsules from poly[(ethylene oxide)-co-glycidol] with multiple hydrophobic linoleates at an oil-water interface and its encapsulation of pyrene.

    Science.gov (United States)

    Ren, Yong; Wang, Guowei; Huang, Junlian

    2007-06-01

    A convenient approach is provided to prepare liquid-core nanocapsules by cross-linking an amphiphilic copolymer at an oil-water interface. The hydrophilic copolymer poly[(ethylene oxide)-co-glycidol] was prepared by anionic polymerization of ethylene oxide and ethoxyethyl glycidyl ether first, then the hydroxyl groups on the backbone were recovered after hydrolysis and partly modified by hydrophobic conjugated linoleic acid. The copolymer with multiple linoleate pendants was absorbed at an oil-water interface and then cross-linked to form stable nanocapsules. The mean diameter of the nanocapsule was below 350 nm, and the size distribution was relatively narrow (<0.2) at low concentrations of oil in acetone (<10 mg/mL). The particle size could be tuned easily by variation of the emulsification conditions. The nanocapsule was stable in water for at least 5 months, and the shell maintained its integrity after removal of the oily core by solvent. Pyrene was encapsulated in these nanocapsules, and a loading efficiency as high as 94% was measured by UV spectroscopy.

  9. Encapsulating probiotics with an interpolymer complex in supercritical carbon dioxide

    CSIR Research Space (South Africa)

    Moolman, FS

    2006-01-01

    Full Text Available Traditional encapsulation methods in fortified foods and drug delivery applications present difficulties for ‘actives’, such as probiotics, sensitive to exposure to water, solvents, heat or oxygen, where ‘active’ refers to a material, chemical...

  10. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne

    2007-01-01

    density increased with the plasma treatments. Adhesion test of the treated glassy carbon covered with cured epoxy showed cohesive failure, indicating strong bonding after the treatments. This is in contrast to the adhesion tests of untreated samples where the epoxy readily peeled off the glassy carbon....

  11. Encapsulating contact allergens in liposomes, ethosomes, and polycaprolactone may affect their sensitizing properties

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Vogel, Stefan; Johansen, Jeanne Duus

    2011-01-01

    Attempts to improve formulation of topical products are a continuing process and the development of micro- and nanovesicular systems as well as polymeric microparticles has led to marketing of topical drugs and cosmetics using these technologies. Encapsulation of some well-known contact allergens...... in ethanolic liposomes have been reported to enhance allergenicity compared with the allergens in similar vehicles without liposomes. The present report includes data on more sensitization studies using the mouse local lymph node assay with three contact allergens encapsulated in different dermal drug...... dichromate compared with control solutions. However, encapsulating the lipophilic contact allergen dinitrochlorobenzene (DNCB) in polycaprolactone reduced the sensitizing capacity to 1211 ± 449 compared with liposomes (7602 ± 2658) and in acetone:olive oil (4:1) (5633 ± 666). The same trend was observed...

  12. Immobilization Technologies in Probiotic Food Production

    Directory of Open Access Journals (Sweden)

    Gregoria Mitropoulou

    2013-01-01

    Full Text Available Various supports and immobilization/encapsulation techniques have been proposed and tested for application in functional food production. In the present review, the use of probiotic microorganisms for the production of novel foods is discussed, while the benefits and criteria of using probiotic cultures are analyzed. Subsequently, immobilization/encapsulation applications in the food industry aiming at the prolongation of cell viability are described together with an evaluation of their potential future impact, which is also highlighted and assessed.

  13. Food grade microemulsion systems: canola oil/lecithin:n-propanol/water.

    Science.gov (United States)

    Abbasi, Soleiman; Radi, Mohsen

    2016-03-01

    In this study, the capability of a natural surfactant, lecithin, and the influence of ionic strength, pH, and temperature on some properties of a food grade microemulsion system were evaluated. For this purpose, the pseudoternary phase diagrams of canola oil/lecithin:n-propanol/water microemulsions in the presence of different salts (NaCl and CaCl2), ionic strengths, pHs, and temperatures were constructed. Our findings showed that the presence of salts slightly increased the W/O areas on the phase diagrams, whereas pH variation was not effective on the microemulsion formation. The expansion of microemulsion areas with temperature indicated the greater triglycerides solubilization capacity of lecithin based microemulsions at higher temperatures. These findings revealed the efficiency of lecithin-based microemulsion system for solubilization of triglycerides which can potentially be used for extraction of edible vegetable oils particularly canola oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Coconut oil has less satiating properties than medium chain triglyceride oil.

    Science.gov (United States)

    Kinsella, R; Maher, T; Clegg, M E

    2017-10-01

    It is well established that the consumption of medium-chain triglycerides (MCT) can increase satiety and reduce food intake. Many media articles promote the use of coconut oil for weight loss advocating similar health benefits to that of MCT. The aim of this study was to examine the effect of MCT oil compared to coconut oil and control oil on food intake and satiety. Following an overnight fast, participants consumed a test breakfast smoothie containing 205kcal of either (i) MCT oil (ii) coconut oil or (iii) vegetable oil (control) on three separate test days. Participants recorded appetite ratings on visual analogue scales and were presented with an ad libitum lunch meal of preselected sandwiches 180min after consumption of the breakfast. The results showed a significant difference in energy and macronutrient intakes at the ad libitum meal between the three oils with the MCT oil reducing food intake compared to the coconut and control oil. Differences in food intake throughout the day were found for energy and fat, with the control having increased food intake compared to the MCT and coconut. The MCT also increased fullness over the three hours after breakfast compared to the control and coconut oils. The coconut oil was also reported as being less palatable than the MCT oil. The results of this study confirm the differences that exist between MCT and coconut oil such that coconut oil cannot be promoted as having similar effects to MCT oil on food intake and satiety. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    Science.gov (United States)

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.

  16. Business opportunities and food safety of the Myanmar edible oil sector

    NARCIS (Netherlands)

    Wijnands, J.H.M.; Biersteker, J.; Hagedoorn, L.F.; Louisse, J.

    2014-01-01

    This report analyses the business opportunities of the oilseed and edible oil sector in Myanmar as well as the food safety control system. Myanmar is a significant producer of oilseed specialities. It is world’s largest producer of sesame seeds, ranks on the sixth position for groundnut production

  17. Quasi-equilibrium in glassy dynamics: an algebraic view

    International Nuclear Information System (INIS)

    Franz, Silvio; Parisi, Giorgio

    2013-01-01

    We study a chain of identical glassy systems in a constrained equilibrium, where each bond of the chain is forced to remain at a preassigned distance to the previous one. We apply this description to mean-field glassy systems in the limit of a long chain where each bond is close to the previous one. We show that this construction defines a pseudo-dynamic process that in specific conditions can formally describe real relaxational dynamics for long times. In particular, in mean-field spin glass models we can recover in this way the equations of Langevin dynamics in the long time limit at the dynamical transition temperature and below. We interpret the formal identity as evidence that in these situations the configuration space is explored in a quasi-equilibrium fashion. Our general formalism, which relates dynamics to equilibrium, puts slow dynamics in a new perspective and opens the way to the computation of new dynamical quantities in glassy systems. (paper)

  18. Application of Electrostatic Extrusion - Flavour Encapsulation and Controlled Release.

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-03-03

    The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginateused in this study had a high content (67 %) of guluronic residues and was rich in GG diadblocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermalbehaviour of alginate beads encapsulating ethyl vanilline was investigated bythermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC)under heating conditions which mimicked usual food processing to provide informationabout thermal decomposition of alginate matrix and kinetics of aroma release. Two wellresolved weight losses were observed. The first one was in the 50-150 °C temperaturerange with the maximum at approx. 112 °C, corresponding to the dehydration of thepolymer network. The second loss in the 220-325 °C temperature range, with a maximumat ~ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to230 °C most of the vanilline remained intacta, while prolonged heating at elevatedtemperatures led to the entire loss of the aroma compound.

  19. Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis.

    Science.gov (United States)

    Mori Cortés, Noelia; Lorenzo, Gabriel; Califano, Alicia N

    2018-05-01

    Microemulsions are thermodynamically stable systems that have attracted considerable attention in the food industry as delivery systems for many hydrophobic nutrients. These spontaneous systems are highly dependent on ingredients and composition. In this work phase diagrams were constructed using two surfactants (Kolliphor RH40 and ELP), water, sunflower oil, and ethanol as cosurfactant, evaluating their physicochemical properties. Stability of the systems was studied at 25 and 60 °C, monitoring turbidity at 550 nm for over a month to identify the microemulsion region. Conductivity was measured to classify between water-in-oil and oil-in-water microemulsions. The phase diagram constructed with Kolliphor RH40 exhibited a larger microemulsion area than that formulated with Kolliphor ELP. All formulations showed a monomodal droplet size distribution with low polydispersity index (<0.30) and a mean droplet size below 20 nm. Systems with higher water content presented a Newtonian behavior; increasing the dispersed phase content produced a weak gel-like structure with pseudoplastic behavior under flow conditions that was satisfactorily modeled to obtain structural parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Food emulsion type oil in water prepared with high-protein from shrimp (Penaeus vannamei heads flour – SHF

    Directory of Open Access Journals (Sweden)

    Yuli Cano

    2017-09-01

    Full Text Available The use of flour from shrimp (Penaeus vannamei heads with a high content of protein (SHF to stabilize food emulsions type oil in water (o/w is an alternative to take advantage of the by-products of the shrimp industry. The aim of this work was to prepare food emulsion type oil in water (o/w using the SHF due to the high percentage in proteins; for this procedure a physicochemical and bromatological characterization of flour of shrimps (Penaeus vannamei heads has been done, in which a percentage of protein 51 %, moisture of 11,82 %, fat 8,52 % and 22,23 % of ash has been obtained. The base emulsions may be used in food products such as salad dressing, mayonnaise, spreads, dressings and other products. The different emulsions with adequate rheological and microstructural characteristics were prepared using different concentrations of palm oil (20, 30 and 40%w/w and different concentrate of SHF (0,5, 1 and 2 % w/w. Therefore, we have obtained a food emulsion stable type oil in water (O/W with 2 % w/w of SHF, which presented a behavior non-Newtonian fluid type shear-thinning and homogeneous distribution of droplets.

  1. Finding the food-fuel balance. Supply and demand dynamics in global vegetable oil markets

    Energy Technology Data Exchange (ETDEWEB)

    Savanti, P.

    2012-10-15

    Demand for vegetable oils for food and biofuel use is expected to increase by an additional 23 million tonnes by 2016; however supply is expected to struggle to keep up with this demand, according to this Rabobank report. Vegetable oil stocks have reached a 38 year low this year due in large part to constraints such as land availability and adverse weather.

  2. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material.

    Science.gov (United States)

    Iamareerat, Butsadee; Singh, Manisha; Sadiq, Muhammad Bilal; Anal, Anil Kumar

    2018-05-01

    Biodegradable packaging in food materials is a green technology based novel approach to replace the synthetic and conventional packaging systems. This study is aimed to formulate the biodegradable cassava starch based films incorporated with cinnamon essential oil and sodium bentonite clay nanoparticles. The films were characterized for their application as a packaging material for meatballs. The cassava starch films incorporated with sodium bentonite and cinnamon oil showed significant antibacterial potential against all test bacteria; Escherichia coli , Salmonella typhimurium and Staphylococcus aureus. Antibacterial effect of films increased significantly when the concentration of cinnamon oil was increased. The cassava starch film incorporated with 0.75% (w/w) sodium bentonite, 2% (w/w) glycerol and 2.5% (w/w) cinnamon oil was selected based on physical, mechanical and antibacterial potential to evaluate shelf life of meatballs. The meatballs stored at ambient temperature in cassava starch film incorporated with cinnamon oil and nanoclay, significantly inhibited the microbial growth till 96 h below the FDA limits (10 6  CFU/g) in foods compared to control films that exceeded above the limit within 48 h. Hence cassava starch based film incorporated with essential oils and clay nanoparticles can be an alternate approach as a packaging material for food industries to prolong the shelf life of products.

  3. Encapsulation layer design and scalability in encapsulated vertical 3D RRAM

    International Nuclear Information System (INIS)

    Yu, Muxi; Fang, Yichen; Wang, Zongwei; Chen, Gong; Pan, Yue; Yang, Xue; Yin, Minghui; Yang, Yuchao; Li, Ming; Cai, Yimao; Huang, Ru

    2016-01-01

    Here we propose a novel encapsulated vertical 3D RRAM structure with each resistive switching cell encapsulated by dielectric layers, contributing to both the reliability improvement of individual cells and thermal disturbance reduction of adjacent cells due to the effective suppression of unwanted oxygen vacancy diffusion. In contrast to the traditional vertical 3D RRAM, encapsulated bar-electrodes are adopted in the proposed structure substituting the previous plane-electrodes, thus encapsulated resistive switching cells can be naturally formed by simply oxidizing the tip of the metal bar-electrodes. In this work, TaO x -based 3D RRAM devices with SiO 2 and Si 3 N 4 as encapsulation layers are demonstrated, both showing significant advantages over traditional unencapsulated vertical 3D RRAM. Furthermore, it was found thermal conductivity and oxygen blocking ability are two key parameters of the encapsulation layer design influencing the scalability of vertical 3D RRAM. Experimental and simulation data show that oxygen blocking ability is more critical for encapsulation layers in the relatively large scale, while thermal conductivity becomes dominant as the stacking layers scale to the sub-10 nm regime. Finally, based on the notable impacts of the encapsulation layer on 3D RRAM scaling, an encapsulation material with both excellent oxygen blocking ability and high thermal conductivity such as AlN is suggested to be highly desirable to maximize the advantages of the proposed encapsulated structure. The findings in this work could pave the way for reliable ultrahigh-density storage applications in the big data era. (paper)

  4. Influence of Food Characteristics and Food Additives on the Antimicrobial Effect of Garlic and Oregano Essential Oils.

    Science.gov (United States)

    García-Díez, Juan; Alheiro, Joana; Pinto, Ana Luisa; Soares, Luciana; Falco, Virgilio; Fraqueza, Maria João; Patarata, Luis

    2017-06-10

    Utilization of essential oils (EOs) as antimicrobial agents against foodborne disease has gained importance, for their use as natural preservatives. Since potential interactions between EOs and food characteristics may affect their antimicrobial properties, the present work studies the influence of fat, protein, pH, a w and food additives on the antimicrobial effect of oregano and garlic EOs against Salmonella spp. and Listeria monocytogenes. Results showed that protein, pH, a w , presence of beef extract, sodium lactate and nitrates did not influence their antimicrobial effect. In contrast, the presence of pork fat had a negative effect against both EOs associated with their dilution of the lipid content. The addition of food phosphates also exerts a negative effect against EOs probably associated with their emulsification properties as observed with the addition of fat. The results may help the food industry to select more appropriate challenges to guarantee the food safety of foodstuffs.

  5. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  6. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2016-03-01

    Full Text Available Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  7. Characterization of Acanthosicyos horridus and Citrullus lanatus seed oils: two melon seed oils from Namibia used in food and cosmetics applications.

    Science.gov (United States)

    Cheikhyoussef, Natascha; Kandawa-Schulz, Martha; Böck, Ronnie; de Koning, Charles; Cheikhyoussef, Ahmad; Hussein, Ahmed A

    2017-10-01

    The physicochemical characteristics, fatty acid, tocopherol, stigmasterol, β-sitosterol, and 1 H NMR profiles of Citrullus lanatus and Acanthosicyos horridus melon seed oils were determined and compared among different extraction methods (cold pressing, traditional, and Soxhlet). The oil content was 40.2 ± 3.45 and 37.8 ± 7.26% for C. lanatus and A. horridus , respectively. Significant differences ( p  yield, physicochemical characteristics, tocopherol, and fatty acid composition have the potential to replace or improve major commercial vegetable oils and to be used for various applications in the food industry and nutritive medicines.

  8. Partition of selected food preservatives in fish oil-water systems

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan; Leth, Torben

    2010-01-01

    The partition coefficients (Kow) of benzoic acid and sorbic acid in systems of fish oil (sand eel)–water, fish oil–buffer solution, rape oil–water and olive oil–water were experimentally determined in a temperature range from 5 to 43 °C and pH from 4.5 to 6.5 °C. The dimerization of benzoic acid...... in fish oil–water system was observed at 25 °C. Two modifications have been made to the Nordic Food Analysis Standard for the determination of sorbic acid by HPLC. The experimental results show that the Kow of benzoic acid and sorbic acid in fish oil–buffer system is ca. 100 times lower than that in fish...... oil–water system. The Kow values of benzoic acid and sorbic acid in fish oil and water system decrease with increasing system pH values. The partition coefficients of plant origin and fish origin oils are in the same order of magnitude even though their molecular structures are very different....

  9. Encapsulating contact allergens in liposomes, ethosomes, and polycaprolactone may affect their sensitizing properties

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Vogel, Stefan; Johansen, Jeanne Duus

    2011-01-01

    Attempts to improve formulation of topical products are a continuing process and the development of micro- and nanovesicular systems as well as polymeric microparticles has led to marketing of topical drugs and cosmetics using these technologies. Encapsulation of some well-known contact allergens...... in ethanolic liposomes have been reported to enhance allergenicity compared with the allergens in similar vehicles without liposomes. The present report includes data on more sensitization studies using the mouse local lymph node assay with three contact allergens encapsulated in different dermal drug...... dichromate compared with control solutions. However, encapsulating the lipophilic contact allergen dinitrochlorobenzene (DNCB) in polycaprolactone reduced the sensitizing capacity to 1211 ± 449 compared with liposomes (7602 ± 2658) and in acetone:olive oil (4:1) (5633 ± 666). The same trend was observed...

  10. Microencapsulation of borage oil with blends of milk protein, β-glucan and maltodextrin through spray drying: physicochemical characteristics and stability of the microcapsules.

    Science.gov (United States)

    Li, Ru-Yi; Shi, Yan

    2018-02-01

    Borage oil is a rich commercial source of γ-linolenic acid (18:3n-6). However, borage oil is rich in omega-6 polyunsaturated fatty acids and vulnerable to oxidation. Thus, selecting appropriate wall materials is critical to the encapsulation of borage oil. The present study investigated the influence of wall materials on the physicochemical characteristics and stability of microencapsulated borage oil by spray drying. Blends of milk protein [sodium caseinate (CAS) or whey protein concentrate], β-glucan (GLU) and maltodextrin (MD) were used as the wall materials for encapsulating borage oil. The microencapsulation of borage oil with different wall materials attained high encapsulation efficiencies. The microencapsulated borage oil prepared with CAS-MD achieved the optimal encapsulation efficiency of 96.62%. The oxidative stabilities of borage oil and microencapsulated borage oil were measured by accelerated storage test at 45 °C and 33% relative humidity for 30 days. The microencapsulated borage oil presented lower peroxide values than those of borage oil, and the microcapsules prepared with CAS-10GLU-MD (consisting of CAS 50 g kg -1 , GLU 100 g kg -1 and MD 475 g kg -1 of microencapsulation) conferred borage oil with high protection against lipid oxidation. The results of the present study demonstrate that the CAS-GLU-MD blend is appropriate for microencapsulating borage oil. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Diffusion coefficients of tracers in glassy polymer systems prepared by gamma radiolysis

    International Nuclear Information System (INIS)

    Tonge, M.P.; Gilbert, R.G.

    1996-01-01

    Diffusion-controlled reactions are common in free radical polymerisation reactions, especially in glassy polymer matrices. Such reactions commonly have an important influence on the polymerisation process and final polymer properties. For example, the dominant growth-stopping event (bimolecular termination) is generally diffusion-controlled. In glassy polymer systems, where molecular mobility is very low, the chain growth mechanism (propagation) may become diffusion-controlled. At present, the mechanism for propagation in glassy polymers is poorly understood, but it is expected by the Smoluchowski expression applied to propagation to depend strongly on the diffusion coefficient of monomer. The objective of this study is to measure reliable diffusion coefficients of small tracer molecules in glassy polymers, and compare these with propagation rate coefficients in similar systems, by the prediction above. Samples were initially prepared in a sealed sampled cell containing monomer, inert diluent, and tracer dye. After irradiation for several days, complete conversion of monomer to polymer can be obtained. The diffusion coefficients for two tracer dyes have been measured as a function of weight fraction polymer glassy poly(methyl methacrylate) samples

  12. Antioxidant Effects of Quercetin and Catechin Encapsulated into PLGA Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hector Pool

    2012-01-01

    Full Text Available Polymeric nanoparticles (PLGA have been developed for the encapsulation and controlled release of quercetin and catechin. Nanoparticles were fabricated using a solvent displacement method. Physicochemical properties were measured by light scattering, scanning electron microscopy and ζ-potential, X-ray diffraction, infrared spectroscopy and differential scanning calorimetry. Encapsulation efficiency and in vitro release profiles were obtained from differential pulse voltammetry experiments. Antioxidant properties of free and encapsulated flavonoids were determined by TBARS, fluorescence spectroscopy and standard chelating activity methods. Relatively small (d≈ 400 nm polymeric nanoparticles were obtained containing quercetin or catechin in a non-crystalline form (EE ≈ 79% and the main interactions between the polymer and each flavonoid were found to consist of hydrogen bonds. In vitro release profiles were pH-dependant, the more acidic pH, the faster release of each flavonoid from the polymeric nanoparticles. The inhibition of the action of free radicals and chelating properties, were also enhanced when quercetin and catechin were encapsulated within PLGA nanoparticles. The information obtained from this study will facilitate the design and fabrication of polymeric nanoparticles as possible oral delivery systems for encapsulation, protection and controlled release of flavonoids aimed to prevent oxidative stress in human body or food products.

  13. Study of chemical stability of lemon oil components in sodium caseinate-lactose glycoconjugate-stabilized oil-in-water emulsions using solid-phase microextraction-gas chromatography.

    Science.gov (United States)

    Sabik, Hassan; Achouri, Allaoua; Alfaro, Maria; Pelletier, Marylène; Belanger, Denis; Britten, Michel; Fustier, Patrick

    2014-07-25

    A headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC/MS) method was developed to quantify lemon oil components and their degradation products in oil-in-water (O/W) emulsions prepared with sodium caseinate-heated-lactose (NaC-T + Lact) glycoconjugates as wall materials at two pH values (3.0 and 6.8). NaC-T + Lact conjugates had a significantly lower solubility at both pHs. Hydrolysis prior to glycation enhanced the solubility of glycoconjugates. Glycation with lactose did not improve the emulsion activity of NaC, while caseinate glycoconjugates showed much stronger antioxidant activity than the NaC-control sample. This might be due to the presence of melanoidins formed between the sugar and amino acid compounds as supported by the increase in browning intensity. Among the SPME-fibres tested, carboxen/polydimethylsiloxane (CAR/PDMS) provided better results in terms of sensitivity and selectivity for oil lemon components and their degradation products. Storage studies of these emulsions demonstrated that glycated NaC-T + Lact showed protection against peroxidation compared to the control. However, acidic pH conditions altered their stability over storage time. The major off-flavor components (α-terpineol and carvone) were inhibited in emulsions stabilized with glycated NaC, particularly at pH 6.8. The use of NaC-T + Lact conjugates showed improved encapsulation efficiency and stability and could be used as potential food ingredient-emulsifiers for stabilising citrus oils against oxidative degradation in food and beverage applications.

  14. Microencapsulation of fish oil using supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Fahim Tamzeedul Karim

    2017-07-01

    Full Text Available In order to improve the encapsulation process, a newly supercritical antisolvent process was developed to encapsulate fish oil using hydroxypropyl methyl cellulose as a polymer. Three factors, namely, temperature, pressure, and feed emulsion rate were optimized using response surface methodology. The suitability of the model for predicting the optimum response value was evaluated at the conditions of temperature at 60°C, pressure at 150 bar, and feed rate at 1.36 mL/min. At the optimum conditions, particle size of 58.35 μm was obtained. The surface morphology of the micronized fish oil was also evaluated using field emission scanning electron microscopy where it showed that particles formed spherical structures with no internal voids. Moreover, in vitro release of oil showed that there are significant differences of release percentage of oil between the formulations and the results proved that there was a significant decrease in the in vitro release of oil from the powder when the polymer concentration was high.

  15. Microencapsulation of fish oil using supercritical antisolvent process.

    Science.gov (United States)

    Karim, Fahim Tamzeedul; Ghafoor, Kashif; Ferdosh, Sahena; Al-Juhaimi, Fahad; Ali, Eaqub; Yunus, Kamaruzzaman Bin; Hamed, Mir Hoseini; Islam, Ashraful; Asif, Mohammad; Sarker, Mohammed Zaidul Islam

    2017-07-01

    In order to improve the encapsulation process, a newly supercritical antisolvent process was developed to encapsulate fish oil using hydroxypropyl methyl cellulose as a polymer. Three factors, namely, temperature, pressure, and feed emulsion rate were optimized using response surface methodology. The suitability of the model for predicting the optimum response value was evaluated at the conditions of temperature at 60°C, pressure at 150 bar, and feed rate at 1.36 mL/min. At the optimum conditions, particle size of 58.35 μm was obtained. The surface morphology of the micronized fish oil was also evaluated using field emission scanning electron microscopy where it showed that particles formed spherical structures with no internal voids. Moreover, in vitro release of oil showed that there are significant differences of release percentage of oil between the formulations and the results proved that there was a significant decrease in the in vitro release of oil from the powder when the polymer concentration was high. Copyright © 2017. Published by Elsevier B.V.

  16. Indian meal moth (Plodia interpunctella)-resistant food packaging film development using microencapsulated cinnamon oil.

    Science.gov (United States)

    Kim, In-Hah; Song, Ah Young; Han, Jaejoon; Park, Ki Hwan; Min, Sea C

    2014-10-01

    Insect-resistant laminate films containing microencapsulated cinnamon oil (CO) were developed to protect food products from the Indian meal moth (Plodia interpunctella). CO microencapsulated with polyvinyl alcohol was incorporated with a printing ink and the ink mixture was applied to a low-density polyethylene (LDPE) film as an ink coating. The coated LDPE surface was laminated with a polypropylene film. The laminate film impeded the invasion of moth larvae and repelled the larvae. The periods of time during which cinnamaldehyde level in the film remained above a minimum repelling concentration, predicted from the concentration profile, were 21, 21, and 10 d for cookies, chocolate, and caramel, respectively. Coating with microencapsulated ink did not alter the tensile or barrier properties of the laminate film. Microencapsulation effectively prevented volatilization of CO. The laminate film can be produced by modern film manufacturing lines and applied to protect food from Indian meal moth damage. The LDPE-PP laminate film developed using microencapsulated cinnamon oil was effective to protect the model foods from the invasion of Indian meal moth larvae. The microencapsulated ink coating did not significantly change the tensile and barrier properties of the LDPE-PP laminate film, implying that replacement of the uncoated with coated laminate would not be an issue with current packaging equipment. The films showed the potential to be produced in commercial film production lines that usually involve high temperatures because of the improved thermal stability of cinnamon oil due to microencapsulation. The microencapsulated system may be extended to other food-packaging films for which the same ink-printing platform is used. © 2014 Institute of Food Technologists®

  17. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.

    Science.gov (United States)

    Joo, Hung-Soo; Ndegwa, Pius M; Shoda, Makoto; Phae, Chae-Gun

    2008-12-01

    Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes.

  18. Asphaltene-laden interfaces form soft glassy layers in contraction experiments: a mechanism for coalescence blocking.

    Science.gov (United States)

    Pauchard, Vincent; Rane, Jayant P; Banerjee, Sanjoy

    2014-11-04

    In previous studies, the adsorption kinetics of asphaltenes at the water-oil interface were interpreted utilizing a Langmuir equation of state (EOS) based on droplet expansion experiments.1-3 Long-term adsorption kinetics followed random sequential adsorption (RSA) theory predictions, asymptotically reaching ∼85% limiting surface coverage, which is similar to limiting random 2D close packing of disks. To extend this work beyond this slow adsorption process, we performed rapid contractions and contraction-expansions of asphaltene-laden interfaces using the pendant drop experiment to emulate a Langmuir trough. This simulates the rapid increase in interfacial asphaltene concentration that occurs during coalescence events. For the contraction of droplets aged in asphaltene solutions, deviation from the EOS consistently occurs at a surface pressure value ∼21 mN/m corresponding to a surface coverage ∼80%. At this point droplets lose the shape required for validity of the Laplace-Young equation, indicating solidlike surface behavior. On further contraction wrinkles appear, which disappear when the droplet is held at constant volume. Surface pressure also decreases down to an equilibrium value near that measured for slow adsorption experiments. This behavior appears to be due to a transition to a glassy interface on contraction past the packing limit, followed by relaxation toward equilibrium by desorption at constant volume. This hypothesis is supported by cycling experiments around the close-packed limit where the transition to and from a solidlike state appears to be both fast and reversible, with little hysteresis. Also, the soft glass rheology model of Sollich is shown to capture previously reported shear behavior during adsorption. The results suggest that the mechanism by which asphaltenes stabilize water-in-oil emulsions is by blocking coalescence due to rapid formation of a glassy interface, in turn caused by interfacial asphaltenes rapidly increasing in

  19. Pressure-induced transformations in computer simulations of glassy water

    Science.gov (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2013-11-01

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  20. Virgin olive oil and biophenols in oil-in-water food emulsions: stability and interactions in relation to the release of aroma compounds

    OpenAIRE

    Caporaso, Nicola

    2016-01-01

    The use of olive oil in several food products as been increasing in the past few years due to its healthy fatty acid composition, content of phenolic compounds and appreciated flavour. The addition of natural phenolic compounds in foods is also an interesting issue for researchers and food industry, as several challenges have to be addressed, such as lipid oxidation and the effects on the physical stability over storage. Usually, emulsions used as sauce or dressing creams are not formulated w...

  1. Electrochemical and microstructural characterization of platinum supported on glassy carbon

    Directory of Open Access Journals (Sweden)

    Terzić Sanja

    2007-01-01

    Full Text Available The effect of the electrochemical oxidation of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on oxidized glassy carbon were studied for methanol oxidation in H2SO4 solution. Platinum was potentiostatically deposited from H2SO4 + 6mM H2PtCl6 solution. Glassy carbon was anodically polarized in 1 M NaOH at 1.41 V (SCE for 35 and 95 s and in 0.5 M H2SO4 at 2V (SCE for 35; 95 s and 2.25 V for 35 and 95 s. Electrochemical treatment of the GC support leads to a better distribution of platinum on the substrate and has remarkable effect on the activity. The activity of the Pt/GCox electrode for methanol oxidation is larger than that of polycrystalline Pt and by more than one order of magnitude larger than that of a Pt/GC electrode. This increase in activity indicates the pronounced role of the organic residues of the GC support on the properties of Pt particles deposited on glassy carbon.

  2. Assessment of epoxidized soy bean oil (ESBO) migrating into foods: comparison with ESBO-like epoxy fatty acids in our normal diet.

    Science.gov (United States)

    Fankhauser-Noti, Anja; Fiselier, Katell; Biedermann-Brem, Sandra; Grob, Koni

    2006-08-01

    Epoxidized soy bean oil (ESBO) was found to be toxic for rats, but the toxic constituent is unknown. It became an issue as the migration from the gaskets in the lids for jars into oily foods regularly far exceeds the European legal limit (overall migration limit and specific migration limit derived from the tolerable daily intake (TDI)). In the context of risk management it was of interest to determine the epoxidized fatty acids of ESBO in those foods of our normal diet which are expected to contain the highest concentrations, i.e., oxidized edible oils (including degraded frying oils), fried foods, bakery ware and roasted meat. The contribution of epoxy oleic acid from ESBO to our diet turned out to be negligible. If this acid were the toxic component in ESBO, the toxicological assessment would primarily be a warning regarding oxidized fats and oils. The contribution of diepoxy linoleic acid from ESBO might be similar to the exposure from oxidized fats and oils of our diet, whereas the intake of triepoxy linolenic acid from ESBO exceeds that from normal food by around two orders of magnitude. Hence use of an epoxidized edible oil virtually free of linolenic acid would be inconspicuous in our diet.

  3. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design.

    Science.gov (United States)

    Masoumi, Hamid Reza Fard; Basri, Mahiran; Samiun, Wan Sarah; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3-6 wt%), lecithin (2-3 wt%), Tween 80 (0.5-1 wt%), glycerol (1.5-3 wt%), and water (87-93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%.

  4. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    International Nuclear Information System (INIS)

    Wang Xiaoyun; Xu Hui; Zhao Yanqiu; Wang Shaoning; Abe, Hiroya; Naito, Makio; Liu Yanli; Wang Guoqing

    2012-01-01

    Highlights: ► PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). ► Sustained Doxy release without obvious burst was observed. ► Mechanism of the sustained Doxy release was illustrated. ► Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady compared to that of the un-encapsulated microspheres. In conclusion, PLGA encapsulated HAP-MSs may

  5. Application of edible coating with essential oil in food preservation.

    Science.gov (United States)

    Ju, Jian; Xie, Yunfei; Guo, Yahui; Cheng, Yuliang; Qian, He; Yao, Weirong

    2018-03-26

    Compared with other types of packaging, edible coatings are becoming more and more popular because of their more environmentally friendly properties and active ingredients carrying ability. The edible coating can reduce the influence of essential oils (EOs) on the flavor of the product and also can prolong the action time of EOs through the slow-release effect, which effectively promote the application of EOs in food. Understanding the different combinations of edible coatings and EOs as well as their antimicrobial effects on different microorganisms will be more powerful and targeted to promote the application of EOs in real food systems. The review focus on the contribution of the combination of EOs and edible coatings (EO-edible coatings) to prolong the shelf life of food products, (1) specifically addressing the main materials used in the preparation of EO-edible coatings and the application of EO-edible coatings in the product, (2) systematically summarizing the main production method of EO-edible coatings, (3) discussing the antiseptic activity of EO-edible coatings on different microorganisms in food.

  6. Halloysite Nanocapsules Containing Thyme Essential Oil: Preparation, Characterization, and Application in Packaging Materials.

    Science.gov (United States)

    Jang, Si-Hoon; Jang, So-Ri; Lee, Gyeong-Min; Ryu, Jee-Hoon; Park, Su-Il; Park, No-Hyung

    2017-09-01

    Halloysite nanotubes (HNTs), which are natural nanomaterials, have a hollow tubular structure with about 15 nm inner and 50 nm outer diameters. Because of their tubular shape, HNTs loaded with various materials have been investigated as functional nanocapsules. In this study, thyme essential oil (TO) was encapsulated successfully in HNTs using vacuum pulling methods, followed by end-capping or a layer-by-layer surface coating process for complete encapsulation. Nanocapsules loaded with TO were mixed with flexographic ink and coated on a paper for applications as food packaging materials. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the nanocapsules and to confirm the TO loading of the nanocapsules. Fourier transform infrared spectroscopy and thermogravimetric analyses analysis were used to complement the structural information. In addition, the controlled release of TO from the nanocapsules showed sustained release properties over a period of many days. The results reveal that the release properties of TO in these nanocapsules could be controlled by surface modifications such as end-capping and/or surface coating of bare nanocapsules. The packaging paper with TO-loaded HNT capsules was effective in eliminating against Escherichia coli during the first 5 d and showed strong antibacterial activity for about 10 d. © 2017 Institute of Food Technologists®.

  7. Health Food Supplements (“Health Food” Highly Nutritious From Chlorella And Oil Catfish (Pangasius hypopthalmus

    Directory of Open Access Journals (Sweden)

    Syahrul Syahrul

    2016-12-01

    Full Text Available The utilization of microalgae as a food ingredient considered effective, because in addition to alternativefood sources also contains nutrients chlorella microalgae in particular is very good for health. This microalgaerich in protein (60.5%, fat (11%, carbohydrates (20.1%, water, dietary fiber, vitamins and minerals Besidesthese microalgae contain pigments (chlorophyll, tocopherol and the active component (antimicrobial andantioxidants. This is what underlies microalgae is very useful to be used as a source of raw materials ofhealth food supplements. Currently the health food supplements have become a necessity for people tomaintain their health in order to remain vibrant. This study aims to produce high nutritious health foodsupplements from raw material chlorella enriched with fish protein concentrate and oil catfish. The methodused in the manufacture of high nutritious health food supplement is a method of microencapsulation withdifferent formulations. The results showed that the best formulations based on the profile of amino acids,fatty acids and standards AAE per day especially essential fatty acids oleic and linoleic is formulation B(chlorella 2%, 1% fish oil and fish protein concentrate 1%.

  8. Electrical properties of carbon nanotubes modified GaSe glassy system

    Science.gov (United States)

    Khan, Hana; Khan, Zubair M. S. H.; Islam, Shama; Rahman, Raja Saifu; Husain, M.; Zulfequar, M.

    2018-05-01

    In this paper we report the investigation of the effect of Carbon Nanotubes (CNT) addition on the electrical properties of GaSe Glassy system. Dielectric constant and dielectric loss of GaSe glassy system are found to increase on CNT addition. The conductivity of GaSe glasy systems is also found to increase on CNT addition. This behavior is attributed to the excellent conduction properties of Carbon Nanotube.

  9. Innovation on Street Food Products (Instant Porridge and Cookies Based on Fortified Patin Fish Protein Concentrate with Red Palm Oil and Encaptulated Oil Fish

    Directory of Open Access Journals (Sweden)

    Dewita

    2016-02-01

    Full Text Available This research aimed to establish innovation on street food (instant porridge and cookies from Patin Fish Protein Concentrate fortified by blending red palm oil and encaptulated patin fish’s oil. The Encaptulation was conducted by blending of red palm oil and patin fish’s oil using spray dryer. The blending was consisted of three combinations namely 50 : 50 (A1, 40 : 60 (A2 and 60 : 40 (A3 for ratio between red palm oil and patin fish’s oil. The best combination’s results was fortified into street food (instant porridge and cookies. The blending was tested by measure yield, fat and fatty acid profile. Moreover, organoleptics and proximate tests were carrie out for the best treatment of blending in instant porridge and cookies. The results show that encaptulated yield reached 55 % that rise from A1 treatment as the best treatment with fat content of 17.26%. Profile of unsaturated fatty acid especially fatty acid omega 9 from blending fish oil and palm oil was 59.29%. The number of fatty acid omega 9 was higher than saturated fatty acid which was 18.56%. Furthermore, based on organoleptic tests of instant porridge and cookies using under five year children respondents, it was proven that 93% of children was like the products. Proximateanalysis of instant porridge revealed that protein content was 11.04 %, water content was 5.03%, fat content was 1.92 % and ash was 0.64 %. However, proximate analysis showed that cookies owned protein of 9.11%, fat of 17.03% , water content was 3.93% and ash of 1.38%.

  10. Nanotechnology: current uses and future applications in the food industry.

    Science.gov (United States)

    Thiruvengadam, Muthu; Rajakumar, Govindasamy; Chung, Ill-Min

    2018-01-01

    Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.

  11. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    Science.gov (United States)

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Grain-boundary, glassy-phase identification and possible artifacts

    International Nuclear Information System (INIS)

    Simpson, Y.K.; Carter, C.B.; Sklad, P.; Bentley, J.

    1985-01-01

    Specimen artifacts such as grain boundary grooving, surface damage of the specimen, and Si contamination are shown experimentally to arise from the ion milling used in the preparation of transmission electron microscopy specimens. These artifacts in polycrystalline, ceramic specimens can cause clean grain boundaries to appear to contain a glassy phase when the dark-field diffuse scattering technique, the Fresnel fringe technique, and analytical electron microscopy (energy dispersive spectroscopy) are used to identify glassy phases at a grain boundary. The ambiguity in interpreting each of these techniques due to the ion milling artifacts will be discussed from a theoretical view point and compared to experimental results obtained for alumina

  13. Thermonuclear reactor materials composed of glassy carbons

    International Nuclear Information System (INIS)

    Kazumata, Yukio.

    1979-01-01

    Purpose: To improve the durability to plasma radiation by the use of glassy carbon as the structural materials for the first wall and the blanket in thermonuclear devices. Constitution: The glassy carbon (glass-like carbon) is obtained by forming specific organic substances into a predetermined configuration and carbonizing them by heat decomposition under special conditions. They are impermeable carbon material of 1.40 - 1.70 specific gravity, less graphitizable and being almost in isotropic crystal forms in which isotropic structure such as in graphite is scarcely observed. They have an extremely high hardness, are less likely to be damaged when exposed to radiation and have great strength and corrosion resistance. Accordingly, the service life of the reactor walls and the likes can remarkably be increased by using the materials. (Horiuchi, T.)

  14. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  15. In vitro uptake and immune functionality of digested Rosemary extract delivered through food grade vehicles.

    Science.gov (United States)

    Arranz, E; Guri, A; Fornari, T; Mendiola, J A; Reglero, G; Corredig, M

    2017-07-01

    The digestion, absorption, uptake and bioavailability of a rosemary supercritical fluid extract encapsulated in oil in water emulsion were studied. Two emulsions with opposite surface charge were prepared, containing 7% canola oil, and either 2% lactoferrin or whey protein isolate. When absorption and uptake of carnosic acid and carnosol were followed on Caco-2 cell monolayers, there were no differences with protein type. However, when co-cultures of HT-29 MTX were employed, the presence of mucus caused a higher retention of carnosic acid in the apical layer for lactoferrin emulsions. The immune activity of the bioavailable fractions collected from cell absorption experiments was tested ex vivo on murine splenocytes. Although transport through the intestinal barrier models was low, the bioavailable fractions showed a significant effect on splenocytes proliferation. These results demonstrated the potential of using rosemary supercritical extract through protein stabilized oil in water emulsions, as a food with immunomodulatory functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Positron annihilation study of graphite, glassy carbon and C60/C70 fullerene

    International Nuclear Information System (INIS)

    Hasegawa, Masayuki; Kajino, Masahiro; Yamaguchi, Sadae; Iwata, Tadao; Kuramoto, Eiichi; Takenaka, Minoru.

    1992-01-01

    ACAR (Angular Correlation of Annihilation Radiation) and positron lifetime measurements have been made on, HOPG (Highly Oriented Pyrolytic Graphite), isotropic fine-grained graphite, glassy carbons and C 60 /C 70 powder. HOPG showed marked bimodality along the c-axis and anisotropy in ACAR momentum distribution, which stem from characteristic annihilation between 'interlayer' positrons and π-electrons in graphite. ACAR curves of the isotropic graphite and glassy carbons are even narrower than that of HOPG perpendicular to the c-axis. Positron lifetime of 420 and 390 - 480 psec, much longer than that of 221 psec in HOPG, were observed for the isotropic graphite and glassy carbons respectively, which are due to positron trapping in structural voids in them. Positron lifetime and ACAR width (FWHM) can be well correlated to void sizes (1.7 to 5.0 nm) of glassy carbons which have been determined by small angle neutron (SAN) scattering measurements. ACAR curves and positron lifetime of C 60 /C 70 powder agree well with those of glassy carbons. This shows that positron wave functions extend, as in the voids of glassy carbons, much wider than open spaces of the octahedral interstices of the face-centered cubic (FCC) structure of C 60 crystal and strongly suggests positron trapping in the 'soccer ball' vacancy. Possible positron states in the carbon materials are discussed with a simple model of void volume-trapping. Preliminary results on neutron irradiation damage in HOPG are also presented. (author)

  17. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique.

    Science.gov (United States)

    Viswanathan, N B; Thomas, P A; Pandit, J K; Kulkarni, M G; Mashelkar, R A

    1999-03-08

    Emulsification-solvent removal methods have been widely used for encapsulating bioactive macromolecules like proteins and polypeptides in biodegradable polymers. We report, a (water-in-oil)-in-oil emulsion technique wherein proteins and polypeptides differing in molecular weight and shape were encapsulated in polymers of current biomedical interest. When an oil was used as the processing medium in combination with a carefully selected mixed solvent system such that a stable (w/o1/o2 emulsion is formed and solvents are removed by a combination of extraction and evaporation, the entrapment efficiency was high and the product nonporous. The entrapment efficiency of globular proteins exceeded 90% while that of fibrous proteins was around 70%. Fracture studies revealed that the polymer matrix was dense. The mechanism of entrapment involved solvent-induced precipitation of the protein as the microspheres were being formed. The principle of the method will find use in preparation of non-porous polymer microparticles with reduced burst effect.

  18. Consumption estimation of non alcoholic beverages, sodium, food supplements and oil.

    Science.gov (United States)

    López Díaz-Ufano, María Luisa

    2015-02-26

    The interest in the type and quantity of non alcoholic beverage, sodium, food supplements and oil consumption is not new, and numerous approaches have been used to assess beverage intake, but the validity of these approaches has not been well established. The need to intake liquids varies depending on the diet, the physical activity carried out, the environmental temperature, the humidity, etc. The variety of beverages in the diet can contribute to increasing the micro nutrient intake: vitamins, antioxidants, minerals. Risks associated to high sodium consumption are: an increase in high blood pressure, vascular endothelial deterioration, bone demineralisation, kidney disease, stomach cancer. Progress in health, investigation, education, etc. are leading to an increase in food supplement consumption. Olive oil represents one of the basic pillars of the Mediterranean diet and its normal presence in nutrition guarantees an adequate content of some important nutrients; not only oleic acid and linoleic acid but also tocopherols, phytoesterols and phenolic compounds. Biomarkers of intake are able to objectively assess dietary intake/status without the bias of self-reported dietary intake errors and also overcome the problem of intra-individual diet variability. Furthermore, some methods of of measuring dietary intake used biomarkers to validate the data it collects. Biological markers may offer advantages and be able to improve the estimates of dietary intake assessment, which impact into the statistical power of the study. There is a surprising paucity of studies that systematically examine the correlation of beverages intake and hydration biomarker in different populations. There is no standardized questionnaire developed as a research tool for the evaluation of non alcoholic beverages, sodium, food supplements and oil intake in the general population. Sometimes, the information comes from different sources or from different methodological characteristics which raises

  19. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginate used in this study had a high content (67 %) of guluronic residues and was rich in GG diad blocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermal behaviour of alginate beads encapsulating ethyl vanilline was investigated by thermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC) under heating conditions which mimicked usual food processing to provide information about thermal decomposition of alginate matrix and kinetics of aroma release. Two well resolved weight losses were observed. The first one was in the 50-150 °C temperature range with the maximum at approx. 112 °C, corresponding to the dehydration of the polymer network. The second loss in the 220-325 °C temperature range, with a maximum at ∼ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to 230 °C most of the vanilline remained intacta, while prolonged heating at elevated temperatures led to the entire loss of the aroma compound. PMID:27879775

  20. Encapsulation plant at Forsmark

    International Nuclear Information System (INIS)

    Nystroem, Anders

    2007-08-01

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate report

  1. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  2. New trends in encapsulation of liposoluble vitamins.

    Science.gov (United States)

    Gonnet, M; Lethuaut, L; Boury, F

    2010-09-15

    Liposoluble vitamins (A, D, E, and K) and carotenoids have many benefits on health. They are provided mainly by foods. At pharmacological doses, they can also be used to treat skin diseases, several types of cancer or decrease oxidative stress. These molecules are sensitive to oxidation, thus encapsulation might constitute an appropriate mean to preserve their properties during storage and enhance their physiological potencies. Formulation processes have been adapted for sensitive molecule, limiting their exposure to high temperature, light or oxygen. Each administration pathway, oral, systemic, topical, transdermal and local, requires different particle sizes and release profile. Encapsulation can lead to greater efficiency allowing smaller administration doses thus diminishing potential hypervitaminosis syndrome appearance and side effects. Carrier formulation can be based on vitamin dissolution in lipid media and its stabilization by surfactant mixture, on its entrapment in a matrix or molecular system. Suitability of each type of carrier will be discussed for each pathway. 2010 Elsevier B.V. All rights reserved.

  3. Voltammetric quantitation of nitazoxanide by glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2013-12-01

    Full Text Available The present study reports voltammetric reduction of nitazoxanide in Britton–Robinson (B–R buffer by cyclic and square-wave voltammetry at glassy carbon electrode. A versatile fully validated voltammetric method for quantitative determination of nitazoxanide in pharmaceutical formulation has been proposed. A squrewave peak current was linear over the nitazoxanide concentration in the range of 20–140 µg/mL. The limit of detection (LOD and limit of quantification (LOQ was calculated to be 5.23 μg/mL and 17.45 μg/mL, respectively. Keywords: Nitazoxanide, Squarewave voltammetry, Glassy carbon electrode, Pharmaceutical formulation

  4. Active oil-water interfaces: buckling and deformation of oil drops by bacteria

    Science.gov (United States)

    Juarez, Gabriel; Stocker, Roman

    2014-11-01

    Bacteria are unicellular organisms that seek nutrients and energy for growth, division, and self-propulsion. Bacteria are also natural colloidal particles that attach and self-assemble at liquid-liquid interfaces. Here, we present experimental results on active oil-water interfaces that spontaneously form when bacteria accumulate or grow on the interface. Using phase-contrast and fluorescence microscopy, we simultaneously observed the dynamics of adsorbed Alcanivorax bacteria and the oil-water interface within microfluidic devices. We find that, by growing and dividing, adsorbed bacteria form a jammed monolayer of cells that encapsulates the entire oil drop. As bacteria continue to grow at the interface, the drop buckles and the interface undergoes strong deformations. The bacteria act to stabilize non-equilibrium shapes of the oil-phase such wrinkling and tubulation. In addition to presenting a natural example of a living interface, these findings shape our understanding of microbial degradation of oil and may have important repercussions on engineering interventions for oil bioremediation.

  5. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoyun [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Department of Pharmacy, Shandong Drug and Food Vocational College, Science and Technology Town, Hightech Industrial Development Zone, Weihai 264210 (China); Xu Hui; Zhao Yanqiu [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Shaoning, E-mail: wsn-xh@126.com [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Abe, Hiroya; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Liu Yanli [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Guoqing [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). Black-Right-Pointing-Pointer Sustained Doxy release without obvious burst was observed. Black-Right-Pointing-Pointer Mechanism of the sustained Doxy release was illustrated. Black-Right-Pointing-Pointer Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady

  6. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  7. 21 CFR 102.37 - Mixtures of edible fat or oil and olive oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Mixtures of edible fat or oil and olive oil. 102... for Specific Nonstandardized Foods § 102.37 Mixtures of edible fat or oil and olive oil. The common or usual name of a mixture of edible fats and oils containing less than 100 percent and more than 0 percent...

  8. 21 CFR 172.876 - Castor oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Castor oil. 172.876 Section 172.876 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Multipurpose Additives § 172.876 Castor oil. The food additive castor oil may be safely used in accordance with...

  9. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    OpenAIRE

    Branko Bugarski; Viktor Nedovic; Bojana Obradovic; Jasna Djonlagic; Nevenka Rajic; Verica Manojlovic

    2008-01-01

    The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 μm. Chemical characterization by H-NMR spectroscopy revealed that the algina...

  10. Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer

    Directory of Open Access Journals (Sweden)

    G. A. Rivas

    2005-11-01

    Full Text Available In this work we present a critical study of the nucleic acid layer immobilized atglassy carbon electrodes. Different studies were performed in order to assess the nature of theinteraction between DNA and the electrode surface. The adsorption and electrooxidation of DNAdemonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. TheDNA layer immobilized at a freshly polished glassy carbon electrode was very stable even afterapplying highly negative potentials. The electron transfer of potassium ferricyanide, catechol anddopamine at glassy carbon surfaces modified with thin (obtained by adsorption under controlledpotential conditions and thick (obtained by casting the glassy carbon surface with highly concentratedDNA solutions DNA layers was slower than that at the bare glassy carbon electrode, although thiseffect was dependent on the thickness of the layer and was not charge selective. Raman experimentsshowed an important decrease of the vibrational modes assigned to the nucleobases residues,suggesting a strong interaction of these residues with the electrode surface. The hybridization ofoligo(dG21 and oligo(dC21 was evaluated from the guanine oxidation signal and the reduction of theredox indicator Co(phen33+ . In both cases the chronopotentiometric response indicated that thecompromise of the bases in the interaction of DNA with the electrode surface is too strong, preventingfurther hybridization. In summary, glassy carbon is a useful electrode material to detect DNA in adirect and very sensitive way, but not to be used for the preparation of biorecognition layers by directadsorption of the probe sequence on the electrode surface for detecting the hybridization event.

  11. Novel approach on the risk assessment of oxidized fats and oils for perspectives of food safety and quality. I. Oxidized fats and oils induces neurotoxicity relating pica behavior and hypoactivity.

    Science.gov (United States)

    Gotoh, N; Watanabe, H; Osato, R; Inagaki, K; Iwasawa, A; Wada, S

    2006-04-01

    Food poisoning caused by deteriorated fat and oil in instant noodles was first reported in Japan approximately 40 years ago. In these cases, many people developed neurotoxic symptoms such as emesis and discomfort. The degree of oxidation of the fat and oil in the instant noodles that induced food poisoning was at least 100 meq/kg in peroxide value (PV). No general toxicity studies with animals, however, have examined the toxicity of fat and oil oxidized to that extent. In this study, pica behavior, a behavior characterized by eating a nonfood material such as kaolin and that relates to the degree of discomfort in animals, and alterations of locomotor activity of rats eating deteriorated fat and oil were measured. The groups fed fat and oil with at least 138.5 meq/kg PV consumed significantly more kaolin compared to the control group. Furthermore, rats that ate deteriorated fat and oil with at least 107.2 meq/kg PV had significantly decreased locomotor activity compared to control rats. These phenomena suggest that oxidized fat and oil with at least 100 meq/kg PV induce neurotoxicity. The toxicity of oxidized fat and oil has only been addressed using general toxicity tests, but the present results reveal the importance of evaluating toxicity by using other measures.

  12. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  13. Energetic conversion (biogas) of used edible oils by means of co-digestion together with various waste materials from the food industry

    International Nuclear Information System (INIS)

    Membrez, Y.; Fruteau de Laclos, H.

    2002-01-01

    The aim of this project was the valorisation of used edible oils by co-digestion together with agricultural or food waste, without any risk for human and animal health. It included the technical economical aspects. In the bibliographic part a state-of-the-art on fat digestion in Switzerland and Europe was done. The possible co-substrates were examined, under a biological aspect as well as economical and strategic aspects. Food waste from restaurants and canteens, that are used up to now for pig feeding, were retained. The co-digestion gives a new perspective for the valorisation of this kind of waste, whose traditional way of valorisation is compromised by the new EU directives. The experimental part aimed to define the possibilities and limits for the co-digestion of used edible oil with food waste as co-substrate. The study was done in a 690 litres bio-reactor. The results showed that co-digestion of edible oil with food waste is feasible with interesting performances, if oil doesn't account for more than 15% of the mixture (on dry matter). Biogas production amounted to 400-450 litres per kg input COD (chemical oxygen demand), with 60-65% CH 4 . Based on the observed results a tender document was done, in order to consult manufacturers of co-digestion plants. An economical simulation was realised on the basis of the most complete offer. This simulation revealed that a benefit of CHF 3500 per year can be obtained for a plant processing 200 t/y edible oil and 9000 t/y food waste. Co-digestion allows for valorisation of edible oil, together with a co-substrate whose traditional utilisation will not be possible in the future. It leads to the production of renewable energy, with a positive economical balance. (author)

  14. Carbon dynamics, food web structure and reclamation strategies in Athabasca oil sands wetlands (CRFAW)

    International Nuclear Information System (INIS)

    Ciborowski, J.; Dixon, G.; Foote, L.; Liber, K.; Smits, J.

    2010-01-01

    This abstract provided details of the Carbon Dynamics, Food Web Structure and Reclamation Strategies in Athabasca Oil Sands Wetlands (CFRAW) program, a collaboration between oil sands industry partners and university laboratories. CFRAW researchers are investigating the effects of mine tailings and process waters on the development, health, and function of wetland communities in post-mining landscapes. The aim of the program is to accurately predict how quickly the reclaimed wetlands will approach conditions seen in reference wetland systems. The program is also examining the effects of hydrocarbons as a surrogate source of carbon after they are metabolized by bacteria. The biological uptake, pathways, and movement through the food web of materials used by the biota in constructed wetlands are also being studied. Flux estimates will be used to determine if wetlands amended with peat will maintain their productivity. A conceptual model of carbon pathways and budgets is also being developed.

  15. Voltammetric determination of sudan ii in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulfate

    International Nuclear Information System (INIS)

    Ma, X.; Chen, M.; Chao, M.

    2013-01-01

    Summary: Herein, a novel electrochemical method was de veloped for the determination of Sudan II based on the electrochemical catalytic activity of graphene modified glassy carbon electrode (GME) and the enhancement effect of sodium dodecyl sulfate (SDS). In a pH 6.0 phosphate buffer solution, Sudan II exhibited a pair of well-defined quasi reversible redox peaks at the GME in the presence of 5.0x10/sup -5/ mol L/sup 1/ SDS. The oxidation peak current of Sudan II was linearly proportional to its concentration in a range from 4.0x10/sup -8/ to 4.0x10/sup -6/ mol L/sup 1/, with a linear regression equation of ipa (A) = 3.35 c + 5.96 x 10/sup -6/, r = 0.9988 and a detection limit of 8.0x10/sup -9/ mol L/sup 1/. The recoveries from the standards fortified blank samples were in the range of 94.7% to 97.5% with RSD lower than 4.0%. The novel method has been successfully used to determine Sudan II in food products with satisfactory results. (author)

  16. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef.

    Science.gov (United States)

    Cui, Haiying; Yuan, Lu; Lin, Lin

    2017-12-01

    In recent years, phages used for the reduction of pathogenic bacteria have fostered many attentions, but they are liable to lost bioactivity in food due to the presence of acidic compounds, enzymes and evaporite materials. To improve the stability of phages, a chitosan edible film containing liposome-encapsulated phage was engineered in the present study. The characteristics of liposome-encapsulated phage and the chitosan film containing liposome-encapsulated phage were investigated. The encapsulation efficiency of phages in liposome reached 57.66±0.12%. Besides, the desirable physical properties of chitosan film were obtained. The chitosan film embedded with liposome-encapsulated phage exhibited high antibacterial activity against Escherichia coli O157:H7, without the impact on the sensory properties of beef. Hence, chitosan film containing liposome-encapsulated phage could be a promising antibacterial packaging for beef preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Quality preservation of deliberately contaminated milk using thyme free and nanoemulsified essential oils.

    Science.gov (United States)

    Ben Jemaa, Mariem; Falleh, Hanen; Neves, Marcos A; Isoda, Hiroko; Nakajima, Mitsutoshi; Ksouri, Riadh

    2017-02-15

    The objective of this study is to evaluate the effect of either a solution of Thymus capitatus essential oil or its nanoemulsion on the quality of milk contaminated by bacteria. After 24h of S. aureus inoculation, bacterial growth reached 202×10(3)CFU/ml in the presence of the essential oil while it was limited to 132×10(3)CFU/ml when treated with nanoemulsion. The reduction of antioxidant capacity of milk treated with essential oil was higher when treated with nanoemulsion. Moreover, free essential oil was more efficient in protecting proteins from degradation than the nanoemulsion. For instance, after 24h of E. hirae contamination, 26% of the total proteins were consumed in the presence of nano-encapsulated essential oil, while only 14% of the initial content was consumed when free essential oil was added. Concerning milk acidity increase and the inhibition of peroxide production, no statistical differences have been recorded between the use of free essential oil or its nano-emulsion. In conclusion, bulk or nano-encapsulated T. capitatus essential oil preserve milk quality and can extend its shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Spatially heterogeneous ages in glassy dynamics

    International Nuclear Information System (INIS)

    Castillo, Horacio E.; Chamon, Claudio Chamon; Cugliandolo, Leticia F.; Iguain, Jose Luis; Kennett, Malcolm P.

    2003-09-01

    We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems with and without quenched disorder. We study two types of two-time local correlators with the aim of characterizing the heterogeneous evolution in these systems: in one case we average the local correlators over histories of the thermal noise, in the other case we simply coarse-grain the local correlators obtained for a given noise realization. We explain why the noise-averaged correlators describe the fingerprint of quenched disorder when it exists, while the coarse-grained correlators are linked to noise-induced mesoscopic fluctuations. We predict constraints on the distribution of the fluctuations of the coarse-grained quantities. In particular, we show that locally defined correlations and responses are connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. We argue that large size heterogeneities in the age of the system survive in the long-time limit. A symmetry of the underlying theory, namely invariance under reparametrizations of the time coordinates, underlies these results. We establish a connection between the probabilities of spatial distributions of local coarse-grained quantities and the theory of dynamic random manifolds. We define, and discuss the behavior of, a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time local functions. We characterize the fluctuations in the system in terms of their fractal properties. For concreteness, we present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally, we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be either spin models without disorder or atomic and molecular glassy systems. (author)

  19. Estabilidade oxidativa de óleo de peixe encapsulado em diferentes tipos de embalagem em condição ambiente Encapsulated fish oil oxidative stability stored in different types of packing under ambient conditions

    Directory of Open Access Journals (Sweden)

    Selma Guidorizzi Antonio Pacheco

    2009-12-01

    due to oxidation. This research main interest was the stability of encapsulated fish oil stored in different types of packagings. The fish oil used in this experiment was supplied by Cardinal Pharmaceutical Industry in soft gel capsules. After encapsulation, half of the samples were sent to SERPAC Industry LTDA for blistering, where polychlortrifluoroethylene (PCTFE, commercially known as Aclar Rx 160 (15 μ, polyvinyldichloride (PVDC-60 gsm², and polyvinylchoride (PVC-250 μ films were used as treatments. The blisters were packed in carton boxes. The other half of the capsules was packed in amber glass or high density polyethylene (PEAD rigid flasks with and without silica bags. Each treatment contained 60 capsules in triplicate and all packs were stored under ambient conditions for 12 months. Analytical determinations were performed on the oil every 28 days and included acid and peroxide values and absortivities in the ultraviolet region at 232 and 270 nm. The fatty acid composition determinations, specifically EPA and DHA content, were performed during the experiment. The package which presented the largest changes in quality of the oil was the PVC film "blister". The best results were found in the encapsulated oil stored in PEAD flasks with silica bags. EPA and DHA contents were kept constant for all samples.

  20. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    Science.gov (United States)

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Selective encapsulation by Janus particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu [Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Ruth, Donovan; Gunton, James D. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Rickman, Jeffrey M. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  2. Dielectric relaxation in glassy Se75In25− xPbx alloys

    Indian Academy of Sciences (India)

    In this paper we report the effect of Pb incorporation in the dielectric properties of a-Se75In25 glassy alloy. The temperature and frequency dependence of the dielectric constants and the dielectric losses in glassy Se75In25−Pb ( = 0, 5, 10 and 15) alloys in the frequency range (1 kHz–5 MHz) and temperature range ...

  3. Formation and evolution of monoepoxy fatty acids in thermoxidized olive and sunflower oils and quantitation in used frying oils from restaurants and fried-food outlets.

    Science.gov (United States)

    Velasco, Joaquín; Marmesat, Susana; Bordeaux, Olivier; Márquez-Ruiz, Gloria; Dobarganes, Carmen

    2004-07-14

    The formation and evolution of monoepoxy fatty acids, arising from oleic and linoleic acids, were investigated in olive oil and conventional sunflower oil, representatives of monounsaturated and polyunsaturated oils, respectively, during thermoxidation at 180 degrees C for 5, 10, and 15 h. Six monoepoxy fatty acids, cis-9,10- and trans-9,10-epoxystearate, arising from oleic acid, and cis-9,10-, trans-9,10-, cis-12,13-, and trans-12,13-epoxyoleate, arising from linoleic acid, were analyzed by gas chromatography after oil derivatization to fatty acid methyl esters. Considerable amounts, ranging from 4.29 to 14.24 mg/g of oil in olive oil and from 5.10 to 9.44 mg/g of oil in sunflower oil, were found after the heating periods assayed. Results showed that the monoepoxides quantitated constituted a major group among the oxidized fatty acid monomers formed at high temperature. For similar levels of degradation, higher contents of the monoepoxides were found in olive oil than in sunflower oil. Ten used frying oils from restaurants and fried-food outlets in Spain were analyzed to determine the contents of the monoepoxides in real frying oil samples. Levels ranged from 3.37 to 14.42 mg/g of oil. Results show that, for similar degradation levels, the monoepoxides were more abundant in the monounsaturated oils than in the polyunsaturated oils.

  4. 21 CFR 184.1702 - Sheanut oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sheanut oil. 184.1702 Section 184.1702 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1702 Sheanut oil. (a) Sheanut oil is produced from sheanuts derived from...

  5. Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives.

    Science.gov (United States)

    Speranza, Barbara; Petruzzi, Leonardo; Bevilacqua, Antonio; Gallo, Mariangela; Campaniello, Daniela; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-06-01

    The production of value-added and/or functional juices has increased significantly in recent years, following an increased consumer demand to promote health and/or prevent disease through diet and nutrition. Micro and nano-encapsulation are promising technologies to protect and deliver sensitive compounds, allowing a controlled release in the target sites. This paper offers an overview of current applications, limits and challenges of encapsulation technologies in the production of fruit and vegetable juices, with a particular emphasis on products derived from different botanical sources. © 2017 Institute of Food Technologists®.

  6. Recovery of Bio-Oil from Industrial Food Waste by Liquefied Dimethyl Ether for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Kiyoshi Sakuragi

    2016-02-01

    Full Text Available The development of new energy sources has become particularly important from the perspective of energy security and environmental protection. Therefore, the utilization of waste resources such as industrial food wastes (IFWs in energy production is expected. The central research institute of electric power industry (CRIEPI, Tokyo, Japan has recently developed an energy-saving oil-extraction technique involving the use of liquefied dimethyl ether (DME, which is an environmentally friendly solvent. In this study, three common IFWs (spent coffee grounds, soybean, and rapeseed cakes were evaluated with respect to oil yield for biodiesel fuel (BDF production by the DME extraction method. The coffee grounds were found to contain 16.8% bio-oil, whereas the soybean and rapeseed cakes contained only approximately 0.97% and 2.6% bio-oil, respectively. The recovered oils were qualitatively analysed by gas chromatography-mass spectrometry. The properties of fatty acid methyl esters derived from coffee oil, such as kinematic viscosity, pour point, and higher heating value (HHV, were also determined. Coffee grounds had the highest oil content and could be used as biofuel. In addition, the robust oil extraction capability of DME indicates that it may be a favourable alternative to conventional oil extraction solvents.

  7. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  8. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  9. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    International Nuclear Information System (INIS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-01-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction

  10. Sensory and chemical interactions of food pairings (basmati rice, bacon and extra virgin olive oil) with banana

    OpenAIRE

    Traynor, Mark; Burke, Roisin; O'Sullivan, Maurice G; Hannon, John; Barry-Ryan, Catherine

    2013-01-01

    The aim of this study aimed to investigate food pairings as an important sensory phenomenon in order to determine how different components in the selected food pairings affect and interact with other components. Three novel food pairings (banana and bacon, banana and olive oil, and banana and rice) were selected. A conjoint approach utilising qualitative (organic volatile analysis and descriptive sensory analysis) and quantitative (comparable semi quantitative organic volatile analysis and af...

  11. Effect of Emulsification Method and Particle Size on the Rate of in vivo Oral Bioavailability of Kenaf (Hibiscus cannabinus L.) Seed Oil.

    Science.gov (United States)

    Cheong, Ai Mun; Tan, Chin Ping; Nyam, Kar Lin

    2018-05-26

    Kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions stabilized by complexation of beta-cyclodextrin with sodium caseinate and Tween 20 have been shown to have higher bioaccessibility of vitamin E and total phenolic content than nonemulsified kenaf seed oil in the previous in vitro gastrointestinal digestion study. However, its oral bioavailability was unknown. Therefore, the aim of this study was to evaluate the rate of in vivo oral bioavailability of kenaf seed oil-in-water nanoemulsions in comparison with nonemulsified kenaf seed oil and kenaf seed oil macroemulsions during the 180 min of gastrointestinal digestion. Kenaf seed oil macroemulsions were produced by using conventional method. Kenaf seed oil-in-water nanoemulsions had shown improvement in the rate of absorption. At 180 min of digestion time, the total α-tocopherol bioavailability of kenaf seed oil nanoemulsions was increased by 1.7- and 1.4-fold, compared to kenaf seed oil and macroemulsion, respectively. Kenaf seed oil-in-water nanoemulsions were stable in considerably wide range of pH (>5 and oil-in-water nanoemulsions had provided a delivery system to encapsulate the kenaf seed oil, as well as enhanced the bioaccessibility and bioavailability of kenaf seed oil. Therefore, kenaf seed oil-in-water nanoemulsions exhibit a great potential application in nutraceutical fields. © 2018 Institute of Food Technologists®.

  12. Cytokine production induced by non-encapsulated and encapsulated Porphyromonas gingivalis strains

    NARCIS (Netherlands)

    Kunnen, A.; Dekker, D.C.; van Pampus, M.G.; Harmsen, H.J.; Aarnoudse, J.G.; Abbas, F.; Faas, M.M.

    Objective: Although the exact reason is not known, encapsulated gram-negative Porphyromonas gingivalis strains are more virulent than non-encapsulated strains. Since difference in virulence properties may be due to difference in cytokine production following recognition of the bacteria or their

  13. Potentiometric application of boron- and phosphorus-doped glassy carbon electrodes

    Directory of Open Access Journals (Sweden)

    ZORAN V. LAUSEVIC

    2001-03-01

    Full Text Available Acomparative study was carried out of the potentiometric application of boronand phosphorus-doped and undoped glassy carbon samples prepared at the same heat treatment temperature (HTT 1000°C. The electrochemical activities of the obtained electrode materials were investigated on the example of argentometric titrations. It was found that the electrochemical behaviour of the doped glassy carbon samples are very similar to a Sigri (undoped glassy carbon sample (HTT 2400°C. The experiments showed that the potentiometric response depends on the polarization mode, the nature of the sample, the pretreatment of the electrode surface, and the nature of the supporting electrolyte. The amounts of iodide, bromide, and of chloridewere determined to be 1.27 mg, 0.80 mg and 0.54 mg, respectively, with a maximum relative standard deviation of less than 1.1%. The obtained results are in good agreement with the results of comparative potentiometric titrations using a silver indicator electrode. The titrationmethod was applied to the indirect determination of pyridoxine hydrochloride, i.e., vitamin B6.

  14. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders

    Science.gov (United States)

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and...

  15. Liposome Encapsulation of Vitamins to Enhance Storage Properties of Space-Bound Food, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — InnoSense LLC (ISL) proposes to develop a nanoparticle encapsulation systems for water- and fat-soluble vitamins (VitaCap™) to increase shelf life up to five years...

  16. Acaricidal activity of pine essential oils and their main components against Tyrophagus putrescentiae, a stored food mite.

    Science.gov (United States)

    Macchioni, F; Cioni, P L; Flamini, G; Morelli, I; Perrucci, S; Franceschi, A; Macchioni, G; Ceccarini, L

    2002-07-31

    Some essential oils obtained from the branches of four Pinus species (P. pinea L., P. halepensis Mill., P. pinaster Soil in Ait., and P. nigra Arnold) have been evaluated for their acaricidal activity by aerial diffusion against the stored food mite Tyrophagus putrescentiae (L.). All the essential oils showed a good efficacy, but P. pinea oil and its two constituents 1,8-cineole and limonene were the most effective compounds, showing 100% acaricidal activity at 8 microL; 1,8-cineole showed the same activity at 6 microL.

  17. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A poly p-aminosalicylic acid (Poly(p-ASA)) and multiwall carbon nanotubes. (MWCNTs) composite modified glassy carbon (GC) electrode was constructed by casting the MWNTs on the GC electrode surface followed by electropolymerization of the p-ASA on the MWCNTs/GCE. The electrochemical behaviours ...

  18. Pro biotic as Alternative to Antibiotic for Broiler Chicken fed Food Industrial Residual Oil

    International Nuclear Information System (INIS)

    EL-Faramawy, A.A.; El-Maghraby, A.F.; El-Danasoury, M.M.; Hussien, H.A.; Hegazy, E.S.

    2016-01-01

    This study aimed to evaluate the effect of pro biotic (some lactic acid bacteria) with different levels of food industrial residual oil in broiler commercial diets on growth performance, meat yield, internal organs, economical efficiency and performance index. One hundred and eighty one day old Cobb chicks (45 ± 0.4 g) were equally and randomly divided into 6 groups namely; the antibiotic with fresh oil (FO), the antibiotic with mixed oil (MO) [FO+RO ( 1:1 w/w)], the antibiotic with food industrial residual oil (RO), the pro biotic with FO, the pro biotic with MO and the pro biotic with RO. Virginiamycin, Phibro, USA (15 ppm), was the antibiotic, while a mixture of lactic acid bacteria is chosen as pro biotic. Both were added to the water. During the experiment which lasted for 42 days, the body weight, the feed intake and the mortality rate were recorded at 2, 4 and 6 weeks of age then the body weight gain, feed conversion ratio, economical efficiency and performance index were calculated. The results revealed that the average body weight, body weight gain and feed consumption significantly (P 0.05) while liver increased significantly (P<0.05) in pro biotic FO and gizzard in all pro biotic group and antibiotic MO. The highest performance index was observed in groups of birds treated with pro biotic with MO followed by birds treated with pro biotic FO without significant difference. It could be concluded that supplementation of pro biotic in broiler diet containing different levels of RO was economically more beneficial than antibiotic

  19. Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG.

    Science.gov (United States)

    Lu, Min; Compton, Richard G

    2014-09-21

    Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.

  20. Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging.

    Science.gov (United States)

    Vasile, Cornelia; Sivertsvik, Morten; Miteluţ, Amalia Carmen; Brebu, Mihai Adrian; Stoleru, Elena; Rosnes, Jan Thomas; Tănase, Elisabeta Elena; Khan, Waqas; Pamfil, Daniela; Cornea, Călina Petruţa; Irimia, Anamaria; Popa, Mona Elena

    2017-01-07

    The antifungal, antibacterial, and antioxidant activity of four commercial essential oils (EOs) (thyme, clove, rosemary, and tea tree) from Romanian production were studied in order to assess them as bioactive compounds for active food packaging applications. The chemical composition of the oils was determined with the Folin-Ciocâlteu method and gas chromatography coupled with mass spectrometry and flame ionization detectors, and it was found that they respect the AFNOR/ISO standard limits. The EOs were tested against three food spoilage fungi- Fusarium graminearum , Penicillium corylophilum, and Aspergillus brasiliensis -and three potential pathogenic food bacteria- Staphylococcus aureus , Escherichia coli, and Listeria monocytogenes -using the disc diffusion method. It was found that the EOs of thyme, clove, and tea tree can be used as antimicrobial agents against the tested fungi and bacteria, thyme having the highest inhibitory effect. Concerning antioxidant activity determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid (ABTS) methods, it has been established that the clove oil exhibits the highest activity because of its high phenolic content. Promising results were obtained by their incorporation into chitosan emulsions and films, which show potential for food packaging. Therefore, these essential oils could be suitable alternatives to chemical additives, satisfying the consumer demand for naturally preserved food products ensuring its safety.

  1. Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Cornelia Vasile

    2017-01-01

    Full Text Available The antifungal, antibacterial, and antioxidant activity of four commercial essential oils (EOs (thyme, clove, rosemary, and tea tree from Romanian production were studied in order to assess them as bioactive compounds for active food packaging applications. The chemical composition of the oils was determined with the Folin–Ciocâlteu method and gas chromatography coupled with mass spectrometry and flame ionization detectors, and it was found that they respect the AFNOR/ISO standard limits. The EOs were tested against three food spoilage fungi—Fusarium graminearum, Penicillium corylophilum, and Aspergillus brasiliensis—and three potential pathogenic food bacteria—Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes—using the disc diffusion method. It was found that the EOs of thyme, clove, and tea tree can be used as antimicrobial agents against the tested fungi and bacteria, thyme having the highest inhibitory effect. Concerning antioxidant activity determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2’-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid (ABTS methods, it has been established that the clove oil exhibits the highest activity because of its high phenolic content. Promising results were obtained by their incorporation into chitosan emulsions and films, which show potential for food packaging. Therefore, these essential oils could be suitable alternatives to chemical additives, satisfying the consumer demand for naturally preserved food products ensuring its safety.

  2. Encapsulation by Janus spheroids

    OpenAIRE

    Li, Wei; Liu, Ya; Brett, Genevieve; Gunton, James D.

    2011-01-01

    The micro/nano encapsulation technology has acquired considerable attention in the fields of drug delivery, biomaterial engineering, and materials science. Based on recent advances in chemical particle synthesis, we propose a primitive model of an encapsulation system produced by the self-assembly of Janus oblate spheroids, particles with oblate spheroidal bodies and two hemi-surfaces coded with dissimilar chemical properties. Using Monte Carlo simulation, we investigate the encapsulation sys...

  3. Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control

    Directory of Open Access Journals (Sweden)

    Alejandro Lucia

    2017-04-01

    Full Text Available Background Essential oil components (EOCs are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control. Methods Micellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using an ex vivo immersion test. Results The poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%, 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407. These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole, α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%. Discussion Since these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.

  4. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products.

    Science.gov (United States)

    Rodriguez-Garcia, I; Silva-Espinoza, B A; Ortega-Ramirez, L A; Leyva, J M; Siddiqui, M W; Cruz-Valenzuela, M R; Gonzalez-Aguilar, G A; Ayala-Zavala, J F

    2016-07-26

    Food consumers and industries urged the need of natural alternatives to assure food safety and quality. As a response, the use of natural compounds from herbs and spices is an alternative to synthetic additives associated with toxic problems. This review discusses the antimicrobial and antioxidant activity of oregano essential oil (OEO) and its potential as a food additive. Oregano is a plant that has been used as a food seasoning since ancient times. The common name of oregano is given to several species: Origanum (family: Lamiaceae) and Lippia (family: Verbenaceae), amongst others. The main compounds identified in the different OEOs are carvacrol and thymol, which are responsible for the characteristic odor, antimicrobial, and antioxidant activity; however, their content may vary according to the species, harvesting season, and geographical sources. These substances as antibacterial agents make the cell membrane permeable due to its impregnation in the hydrophobic domains, this effect is higher against gram positive bacteria. In addition, the OEO has antioxidant properties effective in retarding the process of lipid peroxidation in fatty foods, and scavenging free radicals. In this perspective, the present review analyzes and discusses the state of the art about the actual and potential uses of OEO as an antimicrobial and antioxidant food additives.

  5. 21 CFR 178.3280 - Castor oil, hydrogenated.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Castor oil, hydrogenated. 178.3280 Section 178.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Certain Adjuvants and Production Aids § 178.3280 Castor oil, hydrogenated. Hydrogenated castor oil may be...

  6. Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes.

    Science.gov (United States)

    Minelli, Matteo; Sarti, Giulio Cesare

    2017-08-19

    Solubility and permeability of gases in glassy polymers have been considered with the aim of illustrating the applicability of thermodynamically-based models for their description and prediction. The solubility isotherms are described by using the nonequilibrium lattice fluid (NELF) (model, already known to be appropriate for nonequilibrium glassy polymers, while the permeability isotherms are described through a general transport model in which diffusivity is the product of a purely kinetic factor, the mobility coefficient, and a thermodynamic factor. The latter is calculated from the NELF model and mobility is considered concentration-dependent through an exponential relationship containing two parameters only. The models are tested explicitly considering solubility and permeability data of various penetrants in three glassy polymers, PSf, PPh and 6FDA-6FpDA, selected as the reference for different behaviors. It is shown that the models are able to calculate the different behaviors observed, and in particular the permeability dependence on upstream pressure, both when it is decreasing as well as when it is increasing, with no need to invoke the onset of additional plasticization phenomena. The correlations found between polymer and penetrant properties with the two parameters of the mobility coefficient also lead to the predictive ability of the transport model.

  7. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.

    Science.gov (United States)

    Yuan, Xiaoda; Carter, Brady P; Schmidt, Shelly J

    2011-01-01

    Similar to an increase in temperature at constant moisture content, water vapor sorption by an amorphous glassy material at constant temperature causes the material to transition into the rubbery state. However, comparatively little research has investigated the measurement of the critical relative humidity (RHc) at which the glass transition occurs at constant temperature. Thus, the central objective of this study was to investigate the relationship between the glass transition temperature (Tg), determined using thermal methods, and the RHc obtained using an automatic water vapor sorption instrument. Dynamic dewpoint isotherms were obtained for amorphous polydextrose from 15 to 40 °C. RHc was determined using an optimized 2nd-derivative method; however, 2 simpler RHc determination methods were also tested as a secondary objective. No statistical difference was found between the 3 RHc methods. Differential scanning calorimetry (DSC) Tg values were determined using polydextrose equilibrated from 11.3% to 57.6% RH. Both standard DSC and modulated DSC (MDSC) methods were employed, since some of the polydextrose thermograms exhibited a physical aging peak. Thus, a tertiary objective was to compare Tg values obtained using 3 different methods (DSC first scan, DSC rescan, and MDSC), to determine which method(s) yielded the most accurate Tg values. In general, onset and midpoint DSC first scan and MDSC Tg values were similar, whereas onset and midpoint DSC rescan values were different. State diagrams of RHc and experimental temperature and Tg and %RH were compared. These state diagrams, though obtained via very different methods, showed relatively good agreement, confirming our hypothesis that water vapor sorption isotherms can be used to directly detect the glassy to rubbery transition. Practical Application: The food polymer science (FPS) approach, pioneered by Slade and Levine, is being successfully applied in the food industry for understanding, improving, and

  8. Investigation of bio-oil produced by hydrothermal liquefaction of food waste using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Vlaskin, Mikhail; Borisova, Ludmila; Zherebker, Alexander; Perminova, Irina; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2018-02-01

    Recent research has revealed that more than 1.3 billion tons of food is wasted globally every year. The disposal of such huge biomass has become a challenge. In the present paper, we report the production of the bio-oil by hydrothermal liquefaction of three classes of food waste: meat, cheese and fruits. The highest yield of the bio-oil was observed for meat (∼60%) and cheese (∼75%), while for fruits, it was considerably low (∼10%). The molecular composition of the obtained bio-oil was investigated using ultrahigh resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry and was found to be similar to that obtained from algae. Several thousand heteroatom compounds (N, N 2 , ON 2 , etc. classes) were reliably identified from each sample. It was found that bio-oils produced from meat and cheese have many compounds (∼90%) with common molecular formulas, while bio-oil produced from fruits differs considerably (∼30% of compounds are unique).

  9. Degradation of edible oil during food processing by ultrasound: electron paramagnetic resonance, physicochemical, and sensory appreciation.

    Science.gov (United States)

    Pingret, Daniella; Durand, Grégory; Fabiano-Tixier, Anne-Sylvie; Rockenbauer, Antal; Ginies, Christian; Chemat, Farid

    2012-08-08

    During ultrasound processing of lipid-containing food, some off-flavors can be detected, which can incite depreciation by consumers. The impacts of ultrasound treatment on sunflower oil using two different ultrasound horns (titanium and pyrex) were evaluated. An electron paramagnetic resonance study was performed to identify and quantify the formed radicals, along with the assessment of classical physicochemical parameters such as peroxide value, acid value, anisidine value, conjugated dienes, polar compounds, water content, polymer quantification, fatty acid composition, and volatiles profile. The study shows an increase of formed radicals in sonicated oils, as well as the modification of physicochemical parameters evidencing an oxidation of treated oils.

  10. Development of Natural Insect-Repellent Loaded Halloysite Nanotubes and their Application to Food Packaging to Prevent Plodia interpunctella Infestation.

    Science.gov (United States)

    Kim, Jungheon; Park, No-Hyung; Na, Ja Hyun; Han, Jaejoon

    2016-08-01

    The aims of this study were to develop insect-proof halloysite nanotubes (HNTs) and apply the HNTs to a low-density polyethylene (LDPE) film that will prevent Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), commonly known as Indian mealmoth, from infesting the food. Clove bud oil (CO), an insect repellent, was encapsulated into HNTs with polyethylenimine (PEI) to bring about controlled release of CO. Chemical composition and insecticidal effect of CO were examined. The Fourier transform infrared (FTIR) spectrum of encapsulated CO was confirmed. The surface charges of uncoated HNTs (HNTs/CO) and coated HNTs with PEI by the layer-by-layer (LBL) method (HNTs/CO/LBL) were determined to be -37.23 and 36.33 mV, respectively. HNTs/CO/LBL showed slow, controlled release of CO compared to HNTs/CO. After 30 d, the residual amounts of CO in HNTs/CO and HNTs/CO/LBL were estimated to be 13.43 and 28.66 mg/g, respectively. HNTs/CO/LBL showed the most sustainable repellent effect. HNTs applied to gravure printing ink solution did not affect mechanical, optical, or thermal properties of the developed film. Gravure-printed LDPE film containing HNTs/CO/LBL displayed the greatest preventive effect on insect penetration, indicating its potential for use as insect-resistant food packaging materials. © 2016 Institute of Food Technologists®

  11. Land use change from rainforests to oil palm plantations and food gardens in Papua New Guinea: Effects on soil properties and S fractions

    Directory of Open Access Journals (Sweden)

    Richard Alepa

    2016-12-01

    Full Text Available Changes in soil sulfur (S fractions were assessed in oil palm and food garden land use systems developed on forest vegetation in humid tropical areas of Popondetta in northern Province. The study tested a hypothesis that S in food gardens are limiting nutrient factor and are significantly lower than in plantations and forests. Subsistence food gardens are under long-term slash and burn practice of cropping and such practice is expected to accelerate loss of biomass S from the ecosystem. From each land use, surface soil (0–15 cm samples were characterised and further pseudocomplete fractionated for S. Conversion of forest to oil palm production decreased (p<0.001 soil pH and electrical conductivity values. The reserve S fraction in soil increased significantly (p<0.05 due to oil palm production (∼ 28 % and food gardening activity (∼ 54 %. However, plant available SO_4^(2--S was below 15 mg kg^(−1 in the food garden soils and foliar samples of sweet potato crop indicating deficiency of plant available S. Soil organic carbon content (OC was positively and significantly correlated to total S content (r=0.533; p<0.001 among the land use systems. Thus, crop management practices that affect OC status of the soils would potentially affect the S availability in soils. The possible changes in the chemical nature of mineralisable organic S compounds leading to enhanced mineralisation and leaching losses could be the reasons for the deficiency of S in the food garden soils. The results of this study conclude that long-term subsistence food gardening activity enriched top soils with reserve S or total S content at the expense of soluble S fraction. The subsistence cropping practices such as biomass burning in food gardens and reduced fallow periods are apparently threatening food security of oil palm households. Improved soil OC management strategies such as avoiding burning of fallow vegetation, improved fallows, mulching with fallow biomass, use of

  12. 21 CFR 184.1472 - Menhaden oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Menhaden oil. 184.1472 Section 184.1472 Food and... Substances Affirmed as GRAS § 184.1472 Menhaden oil. (a) Menhaden oil. (1) Menhaden oil is prepared from fish of the genus Brevoortia, commonly known as menhaden, by cooking and pressing. The resulting crude oil...

  13. Relation between time-temperature transformation and continuous heating transformation diagrams of metallic glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2005-01-01

    The time-temperature transformation (TTT) diagrams for the onset of devitrification of the Ge-Ni-La and Cu-Hf-Ti glassy alloys were calculated from the isothermal differential calorimetry data using an Arrhenius equation. The continuous heating transformation (CHT) diagrams for the onset of devitrification of the glassy alloys were subsequently recalculated from TTT diagrams. The recalculation method used for conversion of the TTT into CHT diagrams produces reasonable results and is not sensitive to the type of the devitrification reaction (polymorphous or primary transformation). The diagrams allow to perform a comparison of the stabilities of glassy alloys on a long-term scale. The relationship between these diagrams is discussed

  14. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review.

    Science.gov (United States)

    Castro-Rosas, Javier; Ferreira-Grosso, Carlos Raimundo; Gómez-Aldapa, Carlos Alberto; Rangel-Vargas, Esmeralda; Rodríguez-Marín, María Luisa; Guzmán-Ortiz, Fabiola Araceli; Falfan-Cortes, Reyna Nallely

    2017-12-01

    Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Nigerian Food Journal - Vol 28, No 1 (2010)

    African Journals Online (AJOL)

    Encapsulation of Essential Oils of Piper Nigrum and Monodora myristica from ... volatiles using gas chromatography · EMAIL FULL TEXT EMAIL FULL TEXT ... Design, fabrication and performance evaluation of a powered soy-gari mixer ...

  16. Playback interference of glassy-winged sharp shooter communication

    Science.gov (United States)

    Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...

  17. Glassy selenium at high pressure: Le Chatelier's principle still works

    Science.gov (United States)

    Brazhkin, V. V.; Tsiok, O. B.

    2017-10-01

    Selenium is the only easily vitrified elementary substance. Numerous experimental studies of glassy Se (g -Se) at high pressures show a large spread in the data on the compressibility and electrical resistivity of g -Se. Furthermore, H. Liu et al. [Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] have arrived at the surprising conclusion that the volume of glass increases during pressure-induced crystallization. We have performed high-precision measurements of the specific volume and electrical resistivity of glassy selenium (g -Se) at high hydrostatic pressures up to 9 GPa. The measured bulk modulus at normal pressure is B =(9.0 5 ±0.15 ) GPa and its pressure derivative is BP'=6.4 ±0.2 . In the pressure range P <3 GPa, glassy selenium has an anomalously large negative second derivative of the bulk modulus. The electrical resistivity of g -Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at a pressure of 8.75 GPa. The inelastic behavior and weak relaxation of the volume for g -Se begin at pressures above 3.5 GPa; the volume and logarithm of the electrical resistivity relax significantly (logarithmically with the time) at pressures above 8 GPa. Bulk measurements certainly indicate that the volume of g -Se glass in the crystallization pressure range is larger than the volumes of both appearing crystalline phases (by 2% and 4%). Therefore, the "volume expansion phenomenon" suggested in [H. Liu et al., Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] is not observed, and the pressure-induced crystallization of glassy selenium is consistent with the laws of thermodynamics.

  18. EROD activity and stable isotopes in seabirds to disentangle marine food web contamination after the Prestige oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Velando, Alberto, E-mail: avelando@uvigo.e [Departamento de Ecoloxia e Bioloxia Animal, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, 36310 Vigo (Spain); Munilla, Ignacio [Departamento de Botanica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Lopez-Alonso, Marta [Departamento de Patoloxia Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo (Spain); Freire, Juan [Grupo de Recursos Marinos y Pesquerias Universidade da Coruna, A Coruna (Spain); Perez, Cristobal [Departamento de Ecoloxia e Bioloxia Animal, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, 36310 Vigo (Spain)

    2010-05-15

    In this study, we measured via surgical sampling hepatic EROD activity in yellow-legged gulls from oiled and unoiled colonies, 17 months after the Prestige oil spill. We also analyzed stable isotope composition in feathers of the biopsied gulls, in an attempt to monitor oil incorporation into marine food web. We found that yellow-legged gulls in oiled colonies were being exposed to remnant oil as shown by hepatic EROD activity levels. EROD activity was related to feeding habits of individual gulls with apparent consequences on delayed lethality. Capture-recapture analysis of biopsied gulls suggests that the surgery technique did not affect gull survival, giving support to this technique as a monitoring tool for oil exposure assessment. Our study highlights the combination of different veterinary, toxicological and ecological methodologies as a useful approach for the monitoring of exposure to remnant oil after a large oil spill. - Two years after Prestige oil spill, seabirds were exposed to remnant oil related to their feeding habits with consequences on delayed lethality.

  19. EROD activity and stable isotopes in seabirds to disentangle marine food web contamination after the Prestige oil spill

    International Nuclear Information System (INIS)

    Velando, Alberto; Munilla, Ignacio; Lopez-Alonso, Marta; Freire, Juan; Perez, Cristobal

    2010-01-01

    In this study, we measured via surgical sampling hepatic EROD activity in yellow-legged gulls from oiled and unoiled colonies, 17 months after the Prestige oil spill. We also analyzed stable isotope composition in feathers of the biopsied gulls, in an attempt to monitor oil incorporation into marine food web. We found that yellow-legged gulls in oiled colonies were being exposed to remnant oil as shown by hepatic EROD activity levels. EROD activity was related to feeding habits of individual gulls with apparent consequences on delayed lethality. Capture-recapture analysis of biopsied gulls suggests that the surgery technique did not affect gull survival, giving support to this technique as a monitoring tool for oil exposure assessment. Our study highlights the combination of different veterinary, toxicological and ecological methodologies as a useful approach for the monitoring of exposure to remnant oil after a large oil spill. - Two years after Prestige oil spill, seabirds were exposed to remnant oil related to their feeding habits with consequences on delayed lethality.

  20. 21 CFR 73.300 - Carrot oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Carrot oil. 73.300 Section 73.300 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.300 Carrot oil. (a) Identity. (1) The color additive carrot oil is the liquid or the solid portion of the mixture or the mixture itself obtained by the hexane...

  1. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde

    Science.gov (United States)

    Al-Ghamdi, Saleh; Kathuria, Ajay; Abiad, Mohamad; Auras, Rafael

    2016-10-01

    Gamma cyclodextrin (γ-CD) metal organic frameworks (CDMOFs) were synthesized by coordinating γ-CDs with potassium hydroxide (KOH), referred hereafter as CDMOF-a, and potassium benzoate (C7H5KO2), denoted as CDMOF-b. The obtained CDMOF structures were characterized using nitrogen sorption isotherm, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). High surface areas were achieved by the γ-CD based MOF structures where the Langmuir specific surface areas (SSA) of CDMOF-a and CDMOF-b were determined as 1376 m2 g-1 and 607 m2 g-1; respectively. The dehydrated CDMOF structures demonstrated good thermal stability up to 250 °C as observed by the TGA studies. XRD results for CDMOF-a and CDMOF-b reveal a body centered-cubic (BCC) and trigonal crystal system; respectively. Due to its accessible porous structure and high surface area, acetaldehyde was successfully encapsulated in CDMOF-b. During the release kinetic studies, we observed peak release of 53 μg of acetaldehyde per g of CDMOF-b, which was 100 times greater than previously reported encapsulation in β-CD. However, aldol condensation reaction occurred during encapsulation of acetaldehyde into CDMOF-a. This research work demonstrates the potential to encapsulate volatile organic compounds in CDMOF-b, and their associated release for applications including food, pharmaceuticals and packaging.

  2. Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2016-10-01

    Full Text Available Phase change materials (PCMs have been identified as potential candidates for building energy optimization by increasing the thermal mass of buildings. The increased thermal mass results in a drop in the cooling/heating loads, thus decreasing the energy demand in buildings. However, direct incorporation of PCMs into building elements undermines their structural performance, thereby posing a challenge for building integrity. In order to retain/improve building structural performance, as well as improving energy performance, micro-encapsulated PCMs are integrated into building materials. The integration of microencapsulation PCMs into building materials solves the PCM leakage problem and assures a good bond with building materials to achieve better structural performance. The aim of this article is to identify the optimum micro-encapsulation methods and materials for improving the energy, structural and safety performance of buildings. The article reviews the characteristics of micro-encapsulated PCMs relevant to building integration, focusing on safety rating, structural implications, and energy performance. The article uncovers the optimum combinations of the shell (encapsulant and core (PCM materials along with encapsulation methods by evaluating their merits and demerits.

  3. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications.

    Science.gov (United States)

    Pehlivanoğlu, Halime; Demirci, Mehmet; Toker, Omer Said; Konar, Nevzat; Karasu, Salih; Sagdic, Osman

    2018-05-24

    Oils and fats are widely used in the food formulations in order to improve nutritional and some quality characteristics of food products. Solid fats produced from oils by hydrogenization, interesterification, and fractionation processes are widely used in different foodstuffs for these aims. In recent years, consumer awareness of relation between diet and health has increased which can cause worry about solid fat including products in terms of their high saturated fatty acid and trans fatty acid contents. Therefore, different attempts have been carried out to find alternative ways to produce solid fat with low saturated fatty acid content. One of the promising ways is using oleogels, structuring oils with oleogelators. In this review, history, raw materials and production methods of the oleogels and their functions in oleogel quality were mentioned. Moreover, studies related with oleogel usage in different products were summarized and positive and negative aspects of oleogel were also mentioned. Considering the results of the related studies, it can be concluded that oleogels can be used in the formulation of bakery products, breakfast spreads, margarines, chocolates and chocolate-derived products and some of the meat products.

  4. Annealing effects on the migration of ion-implanted cadmium in glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hlatshwayo, T.T., E-mail: thulani.hlatshwayo@up.ac.za [Physics Department, University of Pretoria, Pretoria (South Africa); Sebitla, L.D. [Physics Department, University of Pretoria, Pretoria (South Africa); Physics Department, University of Botswana, Gaborone (Botswana); Njoroge, E.G.; Mlambo, M.; Malherbe, J.B. [Physics Department, University of Pretoria, Pretoria (South Africa)

    2017-03-15

    The migration behaviour of cadmium (Cd) implanted into glassy carbon and the effects of annealing on radiation damage introduced by ion implantation were investigated. The glassy carbon substrates were implanted with Cd at a dose of 2 × 10{sup 16} ions/cm{sup 2} and energy of 360 keV. The implantation was performed at room temperature (RT), 430 °C and 600 °C. The RT implanted samples were isochronally annealed in vacuum at 350, 500 and 600 °C for 1 h and isothermally annealed at 350 °C up to 4 h. The as-implanted and annealed samples were characterized by Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Raman results revealed that implantation at room temperature amorphized the glassy carbon structure while high temperature implantations resulted in slightly less radiation damage. Isochronal annealing of the RT implanted samples resulted in some recrystallization as a function of increasing temperature. The original glassy carbon structure was not achieved at the highest annealing temperature of 600 °C. Diffusion of Cd in glassy carbon was already taking place during implantation at 430 °C. This diffusion of Cd was accompanied by significant loss from the surface during implantation at 600 °C. Isochronal annealing of the room temperature implanted samples at 350 °C for 1 h caused Cd to diffuse towards the bulk while isothermal annealing at 500 and 600 °C resulted in the migration of implanted Cd toward the surface accompanied by a loss of Cd from the surface. Isothermal annealing at 350 °C for 1 h caused Cd to diffuse towards the bulk while for annealing time >1 h Cd diffused towards the surface. These results were interpreted in terms of trapping and de-trapping of implanted Cd by radiation damage.

  5. How Glassy States Affect Brown Carbon Production?

    Science.gov (United States)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  6. Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Dozie-Nwachukwu, S.O. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); Danyuo, Y. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete (Nigeria); Obayemi, J.D. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Odusanya, O.S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); Malatesta, K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Soboyejo, W.O., E-mail: soboyejo@princeton.edu [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Princeton Institute of Science and Technology of Materials (PRISM), Bowen Hall, 70 Prospect Street, Princeton, NJ 08544 (United States)

    2017-02-01

    The encapsulation of drugs in polymeric materials has brought opportunities to the targeted delivery of chemotherapeutic agents. These polymeric delivery systems are capable of maximizing the therapeutic activity, as well as reducing the side effects of anti-cancer agents. Prodigiosin, a secondary metabolite extracted from the bacteria, Serratia marcescens, exhibits anti-cancer properties. Prodigiosin-loaded chitosan microspheres were prepared via water-in-oil (w/o) emulsion technique, using glutaraldehyde as a cross-linker. The morphologies of the microspheres were studied using scanning electron microscopy. The average sizes of the microspheres were between 40 μm and 60 μm, while the percentage yields ranged from 42 ± 2% to 55.5 ± 3%. The resulting encapsulation efficiencies were between 66.7 ± 3% and 90 ± 4%. The in-vitro drug release from the microspheres was characterized by zeroth order, first order and Higuchi and Korsmeyer-Peppas models. - Highlights: • Prodigiosin of ~ 92.8% purity was extracted from locally isolated Serratia marcescens. • This approach reduces the cost and ensure availability of drugs for cancer treatment. • High encapsulation efficiency which increased with increasing drug:polymer ratio • The percentage yield was generally poor due to the recovery process. • Prodigiosin greatly reduced the viability of the breast cancer cell line (MDA-MB-231).

  7. Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery

    International Nuclear Information System (INIS)

    Dozie-Nwachukwu, S.O.; Danyuo, Y.; Obayemi, J.D.; Odusanya, O.S.; Malatesta, K.; Soboyejo, W.O.

    2017-01-01

    The encapsulation of drugs in polymeric materials has brought opportunities to the targeted delivery of chemotherapeutic agents. These polymeric delivery systems are capable of maximizing the therapeutic activity, as well as reducing the side effects of anti-cancer agents. Prodigiosin, a secondary metabolite extracted from the bacteria, Serratia marcescens, exhibits anti-cancer properties. Prodigiosin-loaded chitosan microspheres were prepared via water-in-oil (w/o) emulsion technique, using glutaraldehyde as a cross-linker. The morphologies of the microspheres were studied using scanning electron microscopy. The average sizes of the microspheres were between 40 μm and 60 μm, while the percentage yields ranged from 42 ± 2% to 55.5 ± 3%. The resulting encapsulation efficiencies were between 66.7 ± 3% and 90 ± 4%. The in-vitro drug release from the microspheres was characterized by zeroth order, first order and Higuchi and Korsmeyer-Peppas models. - Highlights: • Prodigiosin of ~ 92.8% purity was extracted from locally isolated Serratia marcescens. • This approach reduces the cost and ensure availability of drugs for cancer treatment. • High encapsulation efficiency which increased with increasing drug:polymer ratio • The percentage yield was generally poor due to the recovery process. • Prodigiosin greatly reduced the viability of the breast cancer cell line (MDA-MB-231).

  8. A Comparative Study of the Physicochemical Properties of a Virgin Coconut Oil Emulsion and Commercial Food Supplement Emulsions

    Directory of Open Access Journals (Sweden)

    Yih Phing Khor

    2014-07-01

    Full Text Available Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO. In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4. C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV, which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.

  9. Stability of cardamom (Elettaria cardamomum) essential oil in microcapsules made of whey protein isolate, guar gum, and carrageenan.

    Science.gov (United States)

    Mehyar, Ghadeer F; Al-Ismail, Khalid M; Al-Isamil, Khalid M; Al-Ghizzawi, Hana'a M; Holley, Richard A

    2014-10-01

    The effects of microencapsulating cardamom essential oil (CEO) in whey protein isolate (WPI) alone and combined with guar gum (GG) and carrageen (CG) on microencapsulation efficiency, oil chemical stability, and microcapsule structure were investigated. Freeze-dried microcapsules were prepared from emulsions containing (w/w): 15% and 30% WPI; 0.1% GG, and 0.2% CG as wall materials with CEO (at 10% of polymer concentration) as core material, and physical properties and chemical stability were compared. Bulk density of microcapsules was highest in WPI without GG or CG and in 30% WPI + GG microcapsules, and was more affected by moisture content (r = -0.6) than by mean particle diameter (d43 ; r = -0.2) and span (r = 0.1). Microcapsules containing only WPI had the highest entrapped oil (7.5%) and microencapsulation efficiency (98.5%). The concentrations of 1,8-cineole and d-limonene were used as indicators for microcapsule chemical stability since they were the main components of CEO. Microcapsules retained higher (P ≤ 0.05) concentrations of both components than non-microencapsulated CEO during 16 wk storage at 20 ºC, but higher loss of both components was noted at 35 ºC. Microencapsulated d-limonene was reduced faster than 1,8-cineole regardless of temperature. The 30% WPI and 30% WPI + GG microcapsules retained CEO best throughout storage at both storage temperatures. Scanning electron micrographs revealed that WPI microcapsules had smooth surfaces, were relatively homogenous and regular in shape, whereas GG and CG addition increased visual surface porosity and reduced shape regularity. It was concluded that the best formulation for encapsulating CEO was 30% WPI. Encapsulating cardamom essential oil in whey protein isolate alone or combined with guar gum produced dried powders that effectively retained and chemically stabilized CEO, and therefore enhanced its handling and storability. © 2014 Institute of Food Technologists®

  10. Shear-transformation-zone theory of linear glassy dynamics.

    Science.gov (United States)

    Bouchbinder, Eran; Langer, J S

    2011-06-01

    We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.

  11. 21 CFR 186.1557 - Tall oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tall oil. 186.1557 Section 186.1557 Food and Drugs... Substances Affirmed as GRAS § 186.1557 Tall oil. (a) Tall oil (CAS Reg. No. 8002-26-4) is essentially the sap... consists mainly of tall oil resin acids and tall oil fatty acids. (b) In accordance with § 186.1(b)(1), the...

  12. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system

    Directory of Open Access Journals (Sweden)

    Daniel I. Hădărugă

    2014-11-01

    Full Text Available Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.

  13. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system.

    Science.gov (United States)

    Hădărugă, Daniel I; Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T

    2014-01-01

    Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed-uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC-MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.

  14. 21 CFR 184.1555 - Rapeseed oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Rapeseed oil. 184.1555 Section 184.1555 Food and... Substances Affirmed as GRAS § 184.1555 Rapeseed oil. (a) Fully hydrogenated rapeseed oil. (1) Fully hydrogenated rapeseed oil is a mixture of triglycerides in which the fatty acid composition is a mixture of...

  15. Oil Bodies Extracted from High-Fat and Low-Fat Soybeans: Stability and Composition During Storage.

    Science.gov (United States)

    Wang, Qiu Ling; Li Cui, Chun; Jiang, Lian Zhou; Liu, Yue; Liang, Xin Ting; Hou, Jun Cai

    2017-06-01

    Soybeans contain oil bodies (OBs) that encapsulate triacylglycerols (TAGs) with a phospholipid monolayer carrying scattered proteins. In nature, soybean OBs can form natural emulsions in aqueous media and may serve as natural, minimally processed, stable, and pre-emulsified oil for addition into appropriate food systems. In this study, OBs were obtained by aqueous extraction from the mature seeds of 2 soybean crop cultivars, high-fat soybean and low-fat soybeans. The compositions of the extracted OBs were analyzed during storage at room temperature up to 14 d (pH = 7). The oxidative stability of these OBs, stored at 60 °C, was evaluated by measuring the presence of primary (lipid hydroperoxides) and secondary lipid oxidation products (malondialdehyde) by determining the standard peroxide value (PV) and thiobarbituric acid-reactive substances (TBARS) value. During storage, the contents of unsaturated fatty acids, phospholipids, and tocopherols declined in both OBs, while their mean particle diameters (d 32 ) and ζ-potentials increased. The changes in PV and TBARS values exhibited a similar trend for both OBs, but the OBs from low-fat soybeans had significantly lower PV and higher TBARS values than the OBs from high-fat soybean cultivars (P soybean cultivars had good stability during storage. © 2017 Institute of Food Technologists®.

  16. Electrochemical oxidation of niclosamide at a glassy carbon ...

    African Journals Online (AJOL)

    Cyclic voltammetry, square-wave voltammetry and controlled potential electrolysis have been used to study the electrochemical oxidation behaviour of niclosamide at a glassy carbon electrode. The number of electrons transferred, the wave characteristics, the diffusion coefficient and reversibility of the reactions have been ...

  17. Glassy carbon supercapacitor: 100,000 cycles demonstrated

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M; Braun, A; Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A 5 V glassy carbon capacitor stack was built consisting of four bipolar and two end-plate electrodes. More than 100,000 charging/discharging cycles were applied to test the stability of the double-layer capacitor. Low and high frequency resistances were measured as a function of the number of cycles. (author) 2 figs., 1 ref.

  18. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.

    Science.gov (United States)

    Nakagawa, Kyuya; Tamiya, Shinri; Do, Gabsoo; Kono, Shinji; Ochiai, Takaaki

    2018-06-01

    Glassy phase formation in a frozen product determines various properties of the freeze-dried products. When an aqueous solution is subjected to freezing, a glassy phase forms as a consequence of freeze-concentration. During post-freezing annealing, the relaxation of the glassy phase and the ripening of ice crystals (i.e. Ostwald ripening) spontaneously occur, where the kinetics are controlled by the annealing and glass transition temperatures. This study was motivated to observe the progress of glassy state relaxation separate from ice coarsening during annealing. X-ray computed tomography (CT) was used to observe a frozen and post-freezing annealed solutions by using monochromatized X-ray from the synchrotron radiation. CT images were successfully obtained, and the frozen matrix were analyzed based on the gray level values that were equivalent to the linear X-ray attenuation coefficients of the observed matters. The CT images obtained from rapidly frozen sucrose and dextrin solutions with different concentrations gave clear linear relationships between the linear X-ray attenuation coefficients values and the solute concentrations. It was confirmed that the glassy state relaxation progressed as increasing annealing time, and this trend was larger in the order of the glass transition temperature of the maximally freeze-concentrated phase. The sucrose-water system required nearly 20 h of annealing time at -5 °C for the completion of the glassy phase relaxation, whereas dextrin-water systems required much longer periods because of their higher glass transition temperatures. The trends of ice coarsening, however, did not perfectly correspond to the trends of the relaxation, suggesting that the glassy phase relaxation and Ostwald ripening would jointly control the ice crystal growth/ripening kinetics, and the dominant mechanism differed by the annealing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    Directory of Open Access Journals (Sweden)

    Kuanglin Chao

    2017-03-01

    Full Text Available Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials.

  20. Proteinaceous Resin and Hydrophilic Encapsulation: A Self-Healing-Related Study

    Science.gov (United States)

    Zheng, Ting

    .g. hydrophilic agent encapsulation, was addressed through the development of novel polyurethane-Poly(melamine-formaldehyde) (PU-PMF) dual-component capsules. Remarkably, the external PU insulation layer was fabricated through interfacial polymerization based on a water-in-oil-in-oil (W/O/O) emulsion template. Surface tension was identified as the main driving factor for the formation of the external oil phase. The internal PMF layer was observed to strongly influence the internal morphology of the capsule. A protocol was developed, and a typical capsule with dense and neat shell morphology with a shell/capsule diameter (around 3 %) was fabricated. This study provides solutions for the two aforementioned obstacles related to the development of the healing system for the protein-based materials.

  1. 21 CFR 573.680 - Mineral oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Mineral oil. 573.680 Section 573.680 Food and... Listing § 573.680 Mineral oil. Mineral oil may be safely used in animal feed, subject to the provisions of this section. (a) Mineral oil, for the purpose of this section, is that complying with the definition...

  2. Comparative study of DNA encapsulation into PLGA microparticles using modified double emulsion methods and spray drying techniques.

    Science.gov (United States)

    Oster, C G; Kissel, T

    2005-05-01

    Recently, several research groups have shown the potential of microencapsulated DNA as adjuvant for DNA immunization and in tissue engineering approaches. Among techniques generally used for microencapsulation of hydrophilic drug substances into hydrophobic polymers, modified WOW double emulsion method and spray drying of water-in-oil dispersions take a prominent position. The key parameters for optimized microspheres are particle size, encapsulation efficiency, continuous DNA release and stabilization of DNA against enzymatic and mechanical degradation. This study investigates the possibility to encapsulate DNA avoiding shear forces which readily degrade DNA during this microencapsulation. DNA microparticles were prepared with polyethylenimine (PEI) as a complexation agent for DNA. Polycations are capable of stabilizing DNA against enzymatic, as well as mechanical degradation. Further, complexation was hypothesized to facilitate the encapsulation by reducing the size of the macromolecule. This study additionally evaluated the possibility of encapsulating lyophilized DNA and lyophilized DNA/PEI complexes. For this purpose, the spray drying and double emulsion techniques were compared. The size of the microparticles was characterized by laser diffractometry and the particles were visualized by scanning electron microscopy (SEM). DNA encapsulation efficiencies were investigated photometrically after complete hydrolysis of the particles. Finally, the DNA release characteristics from the particles were studied. Particles with a size of <10 microm which represent the threshold for phagocytic uptake could be prepared with these techniques. The encapsulation efficiency ranged from 100-35% for low theoretical DNA loadings. DNA complexation with PEI 25?kDa prior to the encapsulation process reduced the initial burst release of DNA for all techniques used. Spray-dried particles without PEI exhibited high burst releases, whereas double emulsion techniques showed continuous

  3. Omega-3s in food emulsions

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte

    2008-01-01

    There is an increasing interest in the use of healthy long chain omega-3 oils in foods. Incorporation of omega-3 oils into foods decreases their oxidative stability and therefore precautions need to be taken to avoid lipid oxidation. This review summarises the major factors to take into considera...... into consideration when developing food emulsions enriched with omega-3 oils and examples on how oxidation can be reduced in products such as mayonnaise, spreads, milk, yoghurt are also given.......There is an increasing interest in the use of healthy long chain omega-3 oils in foods. Incorporation of omega-3 oils into foods decreases their oxidative stability and therefore precautions need to be taken to avoid lipid oxidation. This review summarises the major factors to take...

  4. Esferas (beads de alginato como agente encapsulante de óleo de croton zehntneri Pax et Hoffm ALG/Ca beads as an encapsulation agent of croton zehntneri Pax et Hoffm essential oil

    Directory of Open Access Journals (Sweden)

    Haroldo C. B. de Paula

    2010-06-01

    Full Text Available Esferas de alginato (ALG reticuladas com cálcio e revestidas com goma do cajueiro (GC foram preparadas e dopadas com óleo essencial de Croton zehntneri Pax et Hoffm (Cz, visando a seu emprego como larvicida para combate ao vetor da dengue. As esferas foram caracterizadas estruturalmente por espectroscopia de infravermelho, análise térmica, microscopia eletrônica de varredura e em relação aos seus parâmetros de transporte líquido, dopagem, embebição (Q e cinética de liberação in vitro e in vivo. Os resultados revelaram que as esferas possuem morfologia com uma alta regularidade esférica, com superfície porosa. A matriz ALG:Cz =1:1 apresentou maior dopagem e eficiência de encapsulamento e valores de Q entre 10 e 12. O perfil de liberação do óleo encapsulado apresentou-se mais prolongado nas esferas contendo goma do cajueiro, ALG-GC:Cz =1:1. A taxa de mortalidade de larvas de Stegomyia aegypti para teores de 1,81 a 4,25 mg de óleo nas esferas resultou em valores na faixa de 72 a 100%, após 24 h. A matriz polimérica mostrou-se efetiva para proteção do principio ativo até cerca de 70 dias, com perdas da ordem de 35%. A análise térmica revelou que a incorporação de Cz e GC resulta em uma matriz polimérica termicamente mais estável.Alginate beads (ALG crosslinked with calcium and coated with cashew gum (GC were prepared and loaded with an essential oil from Croton zehntneri Pax et Hoffm (Cz. The beads were characterized by FTIR, thermal properties, with respect to their size, shape, larvicide loading, swelling, and in vitro and in vivo release kinetics. Results showed that beads with ALG:Cz =1:1 relative ratio showed higher loading and encapsulation efficiency, although presenting a faster release kinetics. On the other hand, ALG beads coated with GC showed Q values from 10 to 12, representing a significant increase in the hydrophilic character of the matrix. Infrared spectroscopy and thermal analysis confirmed the

  5. SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Rhonda [Naval Research Laboratory, Washington, D.C.; Chisholm, Matthew F [ORNL; Heck, Phillipp [The Field Museum, Chicago, IL; Alexander, Conel [Carnegie Institution of Washington; Nittler, Larry [Carnegie Institution of Washington

    2011-01-01

    Nanodiamond (ND) was the first extrasolar dust phase to be identified in meteorites. However, the 2 nm average size of the NDs precludes isotopic analysis of individual particles, and thus their origin(s) remains controversial. Using electron microscopy with subnanometer resolution, we show that ND separates from the Allende and Murchison meteorites are actually a two-phase mixture of ND and glassy carbon. This phase mixture is likely the product of supernova shock-wave transformation of pre-formed organics in the interstellar medium (ISM). The glassy carbon ND mixture is also a plausible contributor to the 2175 extinction feature in the diffuse ISM.

  6. Microencapsulation of Algal Oil Using Spray Drying Technology

    Directory of Open Access Journals (Sweden)

    Xueshan Pan

    2018-01-01

    Full Text Available This work aims at developing a process of microencapsulation of algal oil containing ≥40 % docosahexaenoic acid (DHA using spray drying technology. Purity Gum® 2000 and Capsul®, both obtained from waxy corn starch, were chosen as the encapsulation materials. The effects of emulsification conditions on the droplet size, stability, viscosity and surface tension, and the effects of spraying conditions on the particle size, moisture content and surface oil content were investigated successively. The morphology of emulsion droplets and the microcapsules was observed by optical microscope and scanning electron micro scopy. The results showed that the produced spherical microcapsules were smooth and free of pores, cracks, and surface indentation when shear velocity was 8.63 m/s in the first step of emulsification, homogenization pressure was 1.75·10˄8 Pa and number of passes through homogenization unit was six for fine emulsification, rotational speed of spray disk was 400 s-1, and air inlet temperature was 170 °C. Therefore, it was concluded that the emulsification and encapsulation of algal oil containing DHA with above process was feasible.

  7. On the effects of world stock market and oil price shocks on food prices: An empirical investigation based on TVP-VAR models with stochastic volatility

    International Nuclear Information System (INIS)

    Jebabli, Ikram; Arouri, Mohamed; Teulon, Frédéric

    2014-01-01

    Transmission of price shocks from one market to another one has long been investigated in the economic literature. However, studies have namely dealt with the relationship between financial and energy markets. With the recent changes in market conditions, investors, policy-makers and interest groups are giving special attention to food market. This paper aims at analyzing shock transmission between international food, energy and financial markets and to provide some insights into the volatility behavior during the past years and discuss its implications for portfolio management. To do this, we present a new time varying parameter VAR (TVP-VAR) model with stochastic volatility approach which provides extreme flexibility with a parsimonious specification. We resort also to a generalized vector autoregressive framework in which forecast-error variance decompositions are invariant to the variable ordering for the assessment of total and directional volatility spillovers. Our main findings suggest that volatility spillovers increase considerably during crisis and, namely after mid-2008, when stock markets become net transmitter of volatility shocks while crude oil becomes a net receiver. Shocks to crude oil or MSCI markets have immediate and short-term impacts on food markets which are emphasized during the financial crisis period. Moreover, we show that augmenting a diversified portfolio of food commodities with crude oil or stocks significantly increases its risk-adjusted performance. - Highlights: • We study shock transmission between food, energy and financial markets. • We use a new time-varying parameter VAR model with stochastic volatility. • There is volatility spillover from oil and stock markets to food. • Volatility spillovers increase considerably during crisis, namely after mid-2008. • Augmenting a portfolio of foods with oil or stocks increases its performance

  8. Quality changes and shelf-life extension of ready-to-eat fish patties by adding encapsulated citric acid.

    Science.gov (United States)

    Bou, Ricard; Claret, Anna; Stamatakis, Antonios; Martínez, Brigitte; Guerrero, Luis

    2017-12-01

    Citric acid is commonly used as a flavoring and preservative in food and beverages. The effect of adding citric acid directly or encapsulated (each at 1 and 2 g kg -1 ) on the quality and shelf-life of ready-to-eat sea bass patties was evaluated during storage at 4 °C in vacuum skin packaging. Microbial growth and total basic volatile nitrogen were maintained at relatively low levels up to 8 weeks of storage. With respect to oxidative stability, the addition of encapsulated citric acid minimized secondary oxidation values more efficiently than its direct addition, regardless of the concentration. This is in agreement with the decreased fishy odor observed in those patties containing encapsulated citric acid. Accordingly, sensory analysis showed that the addition of encapsulated citric acid at 1 g kg -1 resulted in lower scores in fish aroma compared to that of the control. Sourness is dependent on the amount of citric acid added, regardless of the form (direct or encapsulated). The form of citric acid addition, rather than the amount of citric acid added, caused changes in texture. Therefore, the use of encapsulated citric acid represents a suitable strategy that is of great interest in the seafood industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Rapid methodology via mass spectrometry to quantify addition of soybean oil in extra virgin olive oil: A comparison with traditional methods adopted by food industry to identify fraud.

    Science.gov (United States)

    da Silveira, Roberta; Vágula, Julianna Matias; de Lima Figueiredo, Ingrid; Claus, Thiago; Galuch, Marilia Bellanda; Santos Junior, Oscar Oliveira; Visentainer, Jesui Vergilio

    2017-12-01

    Fast and innovative methodology to monitors the addition of soybean oil in extra virgin olive oil was developed employing ESI-MS with ionization operating in positive mode. A certified extra virgin olive oil and refined soybean oil samples were analyzed by direct infusion, the identification of a natural lipid marker present only in soybean oil (m/z 886.68 [TAG+NH 4 ] + ) was possible. The certified extra virgin olive oil was purposely adulterated with soybean oil in different levels (1, 5, 10, 20, 50, 70, 90%) being possible to observe that the new methodology is able to detect even small fraud concentration, such as 1% (v/v). Additionally, commercial samples were analyzed and were observed the addition of soybean oil as a common fraud in this segment. This powerful analytical method proposed could be applied as routine analysis by control organization, as well as food industries, considering its pronounced advantages; simplicity, rapidity, elevated detectability and minor amounts of sample and solvent consumed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Dietary intake of Deepwater Horizon oil-injected live food fish by double-crested cormorants resulted in oxidative stress.

    Science.gov (United States)

    Pritsos, Karen L; Perez, Cristina R; Muthumalage, Thivanka; Dean, Karen M; Cacela, Dave; Hanson-Dorr, Katie; Cunningham, Fred; Bursian, Steven J; Link, Jane E; Shriner, Susan; Horak, Katherine; Pritsos, Chris A

    2017-12-01

    The Deepwater Horizon oil spill released 134 million gallons of crude oil into the Gulf of Mexico making it the largest oil spill in US history and exposing fish, birds, and marine mammals throughout the Gulf of Mexico to its toxicity. Fish eating waterbirds such as the double-crested cormorant (Phalacrocorax auritus) were exposed to the oil both by direct contact with the oil and orally through preening and the ingestion of contaminated fish. This study investigated the effects of orally ingestedMC252 oil-contaminated live fish food by double-crested cormorants on oxidative stress. Total, reduced, and oxidized glutathione levels, superoxide dismutase and glutathione peroxidase activities, total antioxidant capacity and lipid peroxidation were assessed in the liver tissues of control and treated cormorants. The results suggest that ingestion of the oil-contaminated fish resulted in significant increase in oxidative stress in the liver tissues of these birds. The oil-induced increase in oxidative stress could have detrimental impacts on the bird's life-history. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 21 CFR 73.315 - Corn endosperm oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Corn endosperm oil. 73.315 Section 73.315 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.315 Corn endosperm oil. (a) Identity. (1) The color additive corn endosperm oil is a reddish-brown liquid composed chiefly of glycerides, fatty acids, sitosterols...

  12. Solvated electron structure in glassy matrices

    International Nuclear Information System (INIS)

    Kevan, L.

    1981-01-01

    Current knowledge of the detailed geometrical structure of solvated electrons in aqueous and organic media is summarized. The geometry of solvated electrons in glassy methanol, ethanol, and 2-methyltetrahydrofuran is discussed. Advanced electron magnetic resonance methods and development of new methods of analysis of electron spin echo modulation patterns, second moment line shapes, and forbidden photon spin-flip transitions for paramagnetic species in these disordered systems are discussed. 66 references are cited

  13. Nanocarriers from GRAS Zein Proteins to Encapsulate Hydrophobic Actives.

    Science.gov (United States)

    Weissmueller, Nikolas T; Lu, Hoang D; Hurley, Amanda; Prud'homme, Robert K

    2016-11-14

    One factor limiting the expansion of nanomedicines has been the high cost of the materials and processes required for their production. We present a continuous, scalable, low cost nanoencapsulation process, Flash Nanoprecipitation (FNP) that enables the production of nanocarriers (NCs) with a narrow size distribution using zein corn proteins. Zein is a low cost, GRAS protein (having the FDA status of "Generally Regarded as Safe") currently used in food applications, which acts as an effective encapsulant for hydrophobic compounds using FNP. The four-stream FNP configuration allows the encapsulation of very hydrophobic compounds in a way that is not possible with previous precipitation processes. We present the encapsulation of several model active compounds with as high as 45 wt % drug loading with respect to zein concentration into ∼100 nm nanocarriers. Three examples are presented: (1) the pro-drug antioxidant, vitamin E-acetate, (2) an anticholera quorum-sensing modulator CAI-1 ((S)-3-hydroxytridecan-4-one; CAI-1 that reduces Vibrio cholerae virulence by modulating cellular communication), and (3) hydrophobic fluorescent dyes with a range of hydrophobicities. The specific interaction between zein and the milk protein, sodium caseinate, provides stabilization of the NCs in PBS, LB medium, and in pH 2 solutions. The stability and size changes in the three media provide information on the mechanism of assembly of the zein/active/casein NC.

  14. Limiting trans Fats in Foods: Use of Partially Hydrogenated Vegetable Oils in Prepacked Foods in Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Zupanič

    2018-03-01

    Full Text Available Consumption of industrially produced trans-fatty acids (TFAs is a well-established health risk factor that correlates with the increased risk of developing cardiovascular disease. The recommended TFA intake is as low as possible, within the context of a nutritionally adequate diet. Different countries have introduced different measures to minimize the exposure of their population to TFAs. Previous data have shown that TFA content has significantly decreased in Western European countries, while this was not the case in many Central-Eastern European countries, including Slovenia. In the absence of regulatory requirements, a number of awareness campaigns were launched in Slovenia since 2015, with the common goal of lowering the use of partially hydrogenated oils (PHO, which are considered a major source of TFAs. To determine if this goal had been reached, we performed an assessment of the exposure of the population to prepacked foods containing PHOs in years 2015 and 2017. Altogether, data on the composition of 22,629 prepacked foods was collected from food labels, using a specifically developed smartphone application. Furthermore, the food categories with the most frequent use of PHOs were identified. The proportion of PHO-containing products was determined for each specific food category, and adjusted with the market share data. The results showed that in 2015, vegetable cream substitutes, soups, and biscuits were the categories with the highest penetration of declared PHO content. In 2017, the proportion of products with PHO decreased considerably. In vegetable cream substitutes the percentage of PHO containing items dropped from 30 down to 4%, in soups it decreased from 21 to 5%, in biscuits from 17 to 8%, and in crisps and snacks from 10 to 4%. However, PHO content remained notable among cakes, muffins, pastries, and biscuits. We can conclude that the voluntary guidelines and regular public communication of the risks related to the TFA

  15. Limiting trans Fats in Foods: Use of Partially Hydrogenated Vegetable Oils in Prepacked Foods in Slovenia

    Science.gov (United States)

    Hribar, Maša; Pivk Kupirovič, Urška; Žmitek, Katja

    2018-01-01

    Consumption of industrially produced trans-fatty acids (TFAs) is a well-established health risk factor that correlates with the increased risk of developing cardiovascular disease. The recommended TFA intake is as low as possible, within the context of a nutritionally adequate diet. Different countries have introduced different measures to minimize the exposure of their population to TFAs. Previous data have shown that TFA content has significantly decreased in Western European countries, while this was not the case in many Central-Eastern European countries, including Slovenia. In the absence of regulatory requirements, a number of awareness campaigns were launched in Slovenia since 2015, with the common goal of lowering the use of partially hydrogenated oils (PHO), which are considered a major source of TFAs. To determine if this goal had been reached, we performed an assessment of the exposure of the population to prepacked foods containing PHOs in years 2015 and 2017. Altogether, data on the composition of 22,629 prepacked foods was collected from food labels, using a specifically developed smartphone application. Furthermore, the food categories with the most frequent use of PHOs were identified. The proportion of PHO-containing products was determined for each specific food category, and adjusted with the market share data. The results showed that in 2015, vegetable cream substitutes, soups, and biscuits were the categories with the highest penetration of declared PHO content. In 2017, the proportion of products with PHO decreased considerably. In vegetable cream substitutes the percentage of PHO containing items dropped from 30 down to 4%, in soups it decreased from 21 to 5%, in biscuits from 17 to 8%, and in crisps and snacks from 10 to 4%. However, PHO content remained notable among cakes, muffins, pastries, and biscuits. We can conclude that the voluntary guidelines and regular public communication of the risks related to the TFA consumption has had a

  16. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: A magnetic biocatalyst for interesterification of soybean oil.

    Science.gov (United States)

    Xie, Wenlei; Zang, Xuezhen

    2017-07-15

    Hydroxyapatite-encapsulated γ-Fe 2 O 3 nanoparticles were prepared, and lipase from Candida rugosa was then covalently bound onto the magnetic materials via covalent linkages. The magnetic carrier and immobilized lipase were characterized by enzyme activity assays, XRD, FT-IR, TEM, VSM and N 2 adsorption-desorption techniques. Results demonstrated that γ-Fe 2 O 3 nanoparticles were coated with the hydroxyapatite, and the lipase was indeed tethered to the magnetic carriers without damage to their structure. The immobilized lipase showed a strong magnetic responsiveness and displayed high catalytic activities towards the interesterification of soybean oil. The interesterified products were evaluated for their total fatty acid (FA) composition, slip melting point (SMP), iodine value, triacylglycerols (TAGs) profile and FA composition at sn-2 position in TAGs. The FA positional distributions and TAG species significantly changed after the enzymatic interesterification. Besides this, the interesterified products showed an obvious reduction in their SMP in comparison with the physical blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds.

    Science.gov (United States)

    Pan, Yuanjie; Tikekar, Rohan V; Nitin, N

    2013-06-25

    Oxidation of encapsulated bioactive compounds in emulsions is one of the key challenges that limit shelf life of emulsion containing products. Oxidation in these emulsions is triggered by permeation of free radicals generated at the emulsion interface. The objective of this study was to evaluate the role of antioxidant properties of common emulsifiers (lecithin and Tween 20) in reducing permeation of free radicals across the emulsion interface. Radical permeation rates were correlated with oxidative stability of a model bioactive compound (curcumin) encapsulated in these emulsions. Rate of permeation of peroxyl radicals from the aqueous phase to the oil phase of emulsion was inversely proportional to the antioxidant properties of emulsifiers. The rate of radical permeation was significantly higher (plecithin compared to native lecithin that showed higher antioxidant activity. Free radical permeation rate correlated with stability of curcumin in emulsions and was significantly higher (plecithin stabilized emulsions as compared to Tween 20 emulsions. Overall, this study demonstrates that antioxidant activity of emulsifiers significantly influences permeation of free radicals across the emulsion interface and the rate of oxidation of bioactive encapsulant. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Encapsulation of nodal segments of lobelia chinensis

    Directory of Open Access Journals (Sweden)

    Weng Hing Thong

    2015-04-01

    Full Text Available Lobelia chinensis served as an important herb in traditional chinese medicine. It is rare in the field and infected by some pathogens. Therefore, encapsulation of axillary buds has been developed for in vitro propagation of L. chinensis. Nodal explants of L. chinensis were used as inclusion materials for encapsulation. Various combinations of calcium chloride and sodium alginate were tested. Encapsulation beads produced by mixing 50 mM calcium chloride and 3.5% sodium alginate supported the optimal in vitro conversion potential. The number of multiple shoots formed by encapsulated nodal segments was not significantly different from the average of shoots produced by non-encapsulated nodal segments. The encapsulated nodal segments regenerated in vitro on different medium. The optimal germination and regeneration medium was Murashige-Skoog medium. Plantlets regenerated from the encapsulated nodal segments were hardened, acclimatized and established well in the field, showing similar morphology with parent plants. This encapsulation technology would serve as an alternative in vitro regeneration system for L. chinensis.

  19. Prolonged analgesic effect of PLGA-encapsulated bee venom on formalin-induced pain in rats.

    Science.gov (United States)

    Jeong, Injae; Kim, Beom-Soo; Lee, Hyejung; Lee, Kang-Min; Shim, Insop; Kang, Sung-Keel; Yin, Chang-Shick; Hahm, Dae-Hyun

    2009-10-01

    To enhance the medicinal activity of bee venom (BV) acupuncture, bee venom was loaded into biodegradable poly(D,L-lactide-co-glycolide) nanoparticles (BV-PLGA-NPs) by a water-in-oil-in-water-emulsion/solvent-evaporation technique. Rat formalin tests were performed after subcutaneous injection of BV-PLGA-NPs to the Zusanli acupuncture point (ST36) at 0.5, 1, 2, 6, 12, 24, and 48 h before plantar injection of 2% formalin. BV-PLGA-NPs treatment showed comparable analgesic activity to typical BV acupuncture during the late phase, compared with saline-treated controls, and the analgesic effect lasted for 12h. PLGA-encapsulation was also effective in alleviating the edema induced by allergens in bee venom. These results indicate that PLGA-encapsulation provided a more prolonged effect of BV acupuncture treatment, while maintaining a comparable therapeutic effect.

  20. Scientific Opinion on the safety of refined Buglossoides oil as a novel food ingredient

    DEFF Research Database (Denmark)

    Tetens, Inge

    2015-01-01

    . With the exceptions of SDA and GLA, these FAs are widely present in common foods. The NFI is intended to be used in a range of foods and food supplements to provide approximately 200 mg of SDA per day. Upon digestion, FAs are used primarily as an energy source. ALA and SDA can be elongated and desaturated to produce......Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on refined Buglossoides oil as a novel food ingredient (NFI) in the context of Regulation (EC) No 258/97. The NFI is produced from the seeds...... eicosapentaenoic acid. In human studies using various sources of SDA, no increase or small increases in SDA were observed in blood cell membranes or in total plasma. The proposed specifications for pyrrolizidine alkaloids and erucic acid, which are undesirable substances,do not give rise to concern in view...

  1. Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers: Role of metal ions and their mechanism in oil removal.

    Science.gov (United States)

    Elanchezhiyan, S Sd; Prabhu, Subbaiah Muthu; Meenakshi, Sankaran

    2018-06-01

    Herein, synthesized and compared the three different kinds of hybrid bio-polymeric composites viz., lanthanum embedded chitosan/gelatin (La@CS-GEL), zirconium embedded chitosan/gelatin (Zr@CS-GEL) and cerium embedded chitosan/gelatin (Ce@CS-GEL) in terms of their oil uptake efficiency. The adsorption efficiency was studied under various optimized parameters like contact time, pH, dose, initial oil concentration and temperature. The oil adsorption capacity was found to be 91, 82 and 45% for La@CS-GEL, Zr@CS-GEL and Ce@CS-GEL composites respectively. The metals were used as a bridging material to connect both CS and GEL using the hydrophilic groups to enhance the oil recovery by hydrophobic interaction. Also, the introduction of metal ions on the surface of biopolymers would modify the oil/water properties which in turn, decrease the interfacial tension between oil and water phases. The mechanism of oil uptake was explained using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), energy dispersive X-ray (EDAX) and heat of combustion. The experimental data confirmed Langmuir isotherm as the best fit for oil adsorption process. Thermodynamic parameters such as standard free energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) indicated that the oil adsorption was spontaneous and endothermic. The oil adsorption mechanism was established based on isotherm and thermodynamic models. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Optimization of frying process in food safety

    Directory of Open Access Journals (Sweden)

    Quaglia, G.

    1998-08-01

    Full Text Available The mechanics of frying are fairly simple. Hot oil serves as a heat exchange medium in which heat is transferred to the food being fried. As a result, the heat converts water within the food to steam and melts the fat within the food. The steam and fat then migrate from the interior of the food through the exterior and into the oil. Conversely, some of the frying oil is absorbed into the food being fried. The chemistry occurring in the frying oil and in the food being fried includes a myriad of thermal and oxidative reactions involving lipids, proteins, carbohydrates and minor food constituents. Decomposition products by autoxidation above 100°C, polimerization without oxigen between 200-300°C and thermal oxidation at 200°C, can be produced in frying oil and their amounts are related to different chemical and physical parameters such as temperature, heating time, type of oil used and food being fried, oil turnover rate, management of the oil and finally type of equipment used. Different studies have remarked as the toxicity of these by-products, is due to their chemistry and concentration. Since the prime requirement in food quality is the safety of the products, attainable through preventive analysis of the risks and total control through all frying processes, in this work the critical points of particular importance are identify and showed: Oil composition, and in particular its antioxidant capacity. Proper fryer design. Food/oil ratio. Good manufactured practice. Beside the quality screening has to be direct towards the chemical quality evaluation by easy and rapid analysis of oil (colour, polar compounds, free fatty acids and antioxidant capacity and food fried (panel test and/or consumer test. Conclusion, to maintain high quality in the frying medium, choose efficient equipment, select a fat with desirable flavour and good antioxidant capacity, eliminate crackling as soon and often as possible, choose better components with minimal but

  3. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  4. Migration of mineral oil from party plates of recycled paperboard into foods: 1. Is recycled paperboard fit for the purpose? 2. Adequate testing procedure.

    Science.gov (United States)

    Dima, Giovanna; Verzera, Antonella; Grob, Koni

    2011-11-01

    Party plates made of recycled paperboard with a polyolefin film on the food contact surface (more often polypropylene than polyethylene) were tested for migration of mineral oil into various foods applying reasonable worst case conditions. The worst case was identified as a slice of fried meat placed onto the plate while hot and allowed to cool for 1 h. As it caused the acceptable daily intake (ADI) specified by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) to be exceeded, it is concluded that recycled paperboard is generally acceptable for party plates only when separated from the food by a functional barrier. Migration data obtained with oil as simulant at 70°C was compared to the migration into foods. A contact time of 30 min was found to reasonably cover the worst case determined in food.

  5. Chemical characterization of the Allium sativum and Origanum vulgare essential oils and their inhibition effect on the growth of some food pathogens

    Directory of Open Access Journals (Sweden)

    A.C.T. Mallet

    2014-12-01

    Full Text Available This study sought to evaluate the chemical composition of the Allium sativum and Origanum vulgare essential oils and their effect on the growth inhibition of microorganisms, such as P. aeruginosa, S. Choleraesuis, A. flavus, A. niger and P. simplicissimum, important food contaminants. The main constituents of the oregano essential oil were 4-terpineol (27.03%, γ-terpinene (20.04%, and β-cymene (6.34%, and the main constituents of the garlic essential oil were diallyl trisulfide (38, 81%, diallyl disulfide (25.23%, and methyl allyl trisulfide (12.52%. Inhibition zones were formed in in vitro tests on the bacteria S. Choleraesuis and P. aeruginosa, except for A. sativum against P. aeruginosa. The inhibition of mycelial growth caused by the oregano essential oil occurred with the concentrations of 0.10, 0.03 and 0.05 mg mL-1 for the A. flavus, A. niger and P. simplicissimum fungi, respectively. The CMI for the garlic oil began at the 0.03 mg mL-1 concentration for all species of fungi. The oils presented an inhibitory effect against the microorganisms studied and constitute an alternative for microbiological control in food.

  6. Migration kinetics of mineral oil hydrocarbons from recycled paperboard to dry food: monitoring of two real cases.

    Science.gov (United States)

    Lorenzini, R; Biedermann, M; Grob, K; Garbini, D; Barbanera, M; Braschi, I

    2013-01-01

    Mineral oil hydrocarbons present in printing inks and recycled paper migrate from paper-based food packaging to foods primarily through the gas phase. Migration from two commercial products packed in recycled paperboard, i.e. muesli and egg pasta, was monitored up to the end of their shelf life (1 year) to study the influence of time, storage conditions, food packaging structure and temperature. Mineral oil saturated and aromatic hydrocarbons (MOSH and MOAH, respectively), and diisopropyl naphthalenes (DIPN) were monitored using online HPLC-GC/FID. Storage conditions were: free standing, shelved, and packed in transport boxes of corrugated board, to represent domestic, supermarket and warehouse storage, respectively. Migration to food whose packs were kept in transport boxes was the highest, especially after prolonged storage, followed by shelved and free-standing packs. Tested temperatures were representative of refrigeration, room temperature, storage in summer months and accelerated migration testing. Migration was strongly influenced by temperature: for egg pasta directly packed in paperboard, around 30 mg kg⁻¹ of MOSH migrated in 8 months at 20°C, but in only 1 week at 40°C. Muesli was contained into an internal polyethylene bag, which firstly adsorbed hydrocarbons and later released them partly towards the food. Differently, the external polypropylene bag, containing pasta and recycled paper tray, strongly limited the migration towards the atmosphere and gave rise to the highest level of food contamination. Tests at increased temperatures not only accelerated migration, but also widened the migration of hydrocarbons to higher molecular masses, highlighting thus a difficult interpretation of data from accelerated simulation.

  7. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: Updates from last decade.

    Science.gov (United States)

    Bhat, Rajeev; Reddy, Kasa Ravindra Nadha

    2017-01-15

    Safety concerns pertaining towards fungal occurrence and mycotoxins contamination in agri-food commodities has been an issue of high apprehension. With the increase in evidence based research knowledge on health effects posed by ingestion of mycotoxins-contaminated food and feed by humans and livestock, concerns have been raised towards providing more insights on screening of agri-food commodities to benefit consumers. Available reports indicate majority of edible oil-yielding seeds to be contaminated by various fungi, capable of producing mycotoxins. These mycotoxins can enter human food chain via use of edible oils or via animals fed with contaminated oil cake residues. In this review, we have decisively evaluated available data (from the past decade) pertaining towards fungal occurrence and level of mycotoxins in various oil seeds and their edible oils. This review can be of practical use to justify the prevailing gaps, especially relevant to the research on presence of mycotoxins in edible plant based oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Impact of Endogenous Phenolics in Canola Oil on the Oxidative Stability of Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Friel, James; Moser, Jill

    canola seeds. Fractionated extracts of Sinapic acid, Sinapine and Canolol was used as well as a non fractionated extract. These extracts was added (100 and 350 μM) to 10% o/w emulsion with stripped canola oil in order to evaluate their effect on lipid oxidation in emulsions. For comparison......Canola oil is low in saturated fat, high in monounsaturated fat and has a favourable omega-6:omega-3 ratio . Therefore, Canola oil has a healthier fatty acid profile compared to other plant oils such as soy oil. Therefore, canola oil is also an ingredient in many food products. However, the content...... of unsaturated lipid makes canola oil susceptible towards lipid oxidation. Many food products are lipid containing emulsions and a lot of efforts have been put into developing methods to protect the lipids against oxidation. Since lipid oxidation has a negative influence on the shelf life of the foods, efficient...

  9. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660 Section 573.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil...

  10. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    Science.gov (United States)

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  11. Lippia origanoides essential oil: an efficient and safe alternative to preserve food, cosmetic and pharmaceutical products.

    Science.gov (United States)

    Hernandes, C; Pina, E S; Taleb-Contini, S H; Bertoni, B W; Cestari, I M; Espanha, L G; Varanda, E A; Camilo, K F B; Martinez, E Z; França, S C; Pereira, A M S

    2017-04-01

    The aim of this work was to evaluate the efficacy and safety of Lippia origanoides essential oil as a preservative in industrial products. The composition, antimicrobial activity, mutagenic and toxic potential of L. origanoides were determined. Then, the effect of essential oil as a preservative in food, cosmetics and pharmaceutical products was evaluated. The essential oil of L. origanoides consisted mainly of oxygenated monoterpenes (38·13%); 26·28% corresponded to the compound carvacrol. At concentrations ranging from 0·312 to 1·25 μl ml -1 and in association with polysorbate 80, the essential oil of L. origanoides inhibited the growth of all the tested micro-organisms. The medium lethal dose in mice was 3·5 g kg -1 , which categorizes it as nontoxic according to the European Union criteria, and negative results in the Ames test indicated that this oil was not mutagenic. In combination with polysorbate 80, the essential oil exerted preservative action on orange juice, cosmetic and pharmaceutical compositions, especially in the case of aqueous-based products. Lippia origanoides essential oil is an effective and safe preservative for orange juice, pharmaceutical and cosmetic products. This study allowed for the complete understanding of the antimicrobial action and toxicological potential of L. origanoides essential oil. These results facilitate the development of a preservative system based on L. origanoides essential oil. © 2017 The Society for Applied Microbiology.

  12. Review of encapsulation technologies

    International Nuclear Information System (INIS)

    Shaulis, L.

    1996-09-01

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms

  13. How mechanical behavior of glassy polymers enables us to characterize melt deformation: elastic yielding in glassy state after melt stretching?

    Science.gov (United States)

    Wang, Shi-Qing; Zhao, Zhichen; Tsige, Mesfin; Zheng, Yexin

    Fast melt deformation well above the glass transition temperature Tg is known to produce elastic stress in an entangled polymer due to the chain entropy loss at the length scale of the network mesh size. Here chains of high molecular weight are assumed to form an entanglement network so that such a polymer behaves transiently like vulcanized rubber capable of affine deformation. We consider quenching a melt-deformed glassy polymer to well below Tg to preserve the elastic stress. Upon heating such a sample to Tg, the sample can return to the shape it took before melt deformation. This is the basic principle behind the design of all polymer-based shape-memory materials. This work presents intriguing evidence based on both experiment and computer simulation that the chain network, deformed well above Tg, can drive the glassy polymer to undergo elastic yielding. Our experimental systems include polystyrene, poly(methyl methacrylate) and polycarbonate; the molecular dynamics simulation is based on Kremer-Grest bead-spring model. National Science Foundation (DMR-1444859 and DMR-1609977).

  14. SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND

    International Nuclear Information System (INIS)

    Stroud, Rhonda M.; Chisholm, Matthew F.; Heck, Philipp R.; Alexander, Conel M. O'D.; Nittler, Larry R.

    2011-01-01

    Nanodiamond (ND) was the first extrasolar dust phase to be identified in meteorites. However, the 2 nm average size of the NDs precludes isotopic analysis of individual particles, and thus their origin(s) remains controversial. Using electron microscopy with subnanometer resolution, we show that ND separates from the Allende and Murchison meteorites are actually a two-phase mixture of ND and glassy carbon. This phase mixture is likely the product of supernova shock-wave transformation of pre-formed organics in the interstellar medium (ISM). The glassy carbon-ND mixture is also a plausible contributor to the 2175 A extinction feature in the diffuse ISM.

  15. Fisetin yeast-based bio-capsules via osmoporation: effects of process variables on the encapsulation efficiency and internalized fisetin content.

    Science.gov (United States)

    de Câmara, Antonio Anchieta; Dupont, Sébastien; Beney, Laurent; Gervais, Patrick; Rosenthal, Amauri; Correia, Roberta Targino Pinto; Pedrini, Márcia Regina da Silva

    2016-06-01

    Osmoporation is an innovative method that can be used with food-grade yeast cells of Saccharomyces cerevisiae as natural encapsulating matrices. This technique overcomes barriers that difficult encapsulation and enables the internalization of fragile bioactive molecules such as fisetin into yeasts. In the present study, we assessed the effects of concentration, osmotic pressure, and temperature on the encapsulation efficiency (EE) and internalized fisetin content (IF). Two different quantification strategies were investigated: direct extraction (DE) without cell washing or freeze-drying steps and indirect extraction (IE) performed after washings with ethanol and freeze-drying. Our results showed that osmoporation improved EE (33 %) and IF (1.199 mg). The best experimental conditions were found by using DE. High-resolution images showed that the yeast cell envelope was preserved during osmoporation at 30 MPa and 84 % of yeast cells remained viable after treatment. Washing cells with organic solvent led to decreased EE (0.65 %) and IF (0.023 mg). This was probably due to either damages caused to yeast cell envelope or fisetin dragged out of cell. Overall, the results demonstrated the adequacy and relevant biotechnological potential of yeasts as encapsulating matrices for hydrophobic compounds. This fresh biotechnological approach has proven to be a promising tool for the production of bioactive-rich food products.

  16. Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes

    Science.gov (United States)

    da Silva Malheiros, Patrícia; Sant'Anna, Voltaire; Micheletto, Yasmine Miguel Serafini; da Silveira, Nadya Pesce; Brandelli, Adriano

    2011-08-01

    Antimicrobial peptide P34, a substance showing antibacterial activity against pathogenic and food spoilage bacteria, was encapsulated in liposomes prepared from partially purified soybean phosphatidylcholine, and their physicochemical characteristics were evaluated. The antimicrobial activity was estimated by agar diffusion assay using Listeria monocytogenes ATCC 7644 as indicator strain. A concentration of 3,200 AU/mL of P34 was encapsulated in nanovesicles and stocked at 4 °C. No significant difference ( p > 0.05) in the biological activity of free and encapsulated P34 was observed through 24 days. Size and PDI of liposomes, investigated by light scattering analysis, were on average 150 nm and 0.22 respectively. Zeta potential was -27.42 mV. There was no significant change ( p > 0.05) in the physicochemical properties of liposomes during the time of evaluation. The liposomes presented closed spherical morphology as visualized by transmission electron microscopy (TEM). The mode of action of liposome-encapsulated P34 under L. monocytogenes cells was investigated by TEM. Liposomes appeared to adhere but not fuse with the bacterial cell wall, suggesting that the antimicrobial is released from nanovesicles to act against the microorganism. The effect of free and encapsulated P34 was tested against L. monocytogenes, showing that free bacteriocin inhibited the pathogen more quickly than the encapsulated P34. Liposomes prepared with low-cost lipid showed high encapsulation efficiency for a new antimicrobial peptide and were stable during storage. The mode of action against the pathogen L. monocytogenes was characterized.

  17. Voltammetric fingerprinting of oils and its combination with chemometrics for the detection of extra virgin olive oil adulteration.

    Science.gov (United States)

    Tsopelas, Fotios; Konstantopoulos, Dimitris; Kakoulidou, Anna Tsantili

    2018-07-26

    In the present work, two approaches for the voltammetric fingerprinting of oils and their combination with chemometrics were investigated in order to detect the adulteration of extra virgin olive oil with olive pomace oil as well as the most common seed oils, namely sunflower, soybean and corn oil. In particular, cyclic voltammograms of diluted extra virgin olive oils, regular (pure) olive oils (blends of refined olive oils with virgin olive oils), olive pomace oils and seed oils in presence of dichloromethane and 0.1 M of LiClO 4 in EtOH as electrolyte were recorded at a glassy carbon working electrode. Cyclic voltammetry was also employed in methanolic extracts of olive and seed oils. Datapoints of cyclic voltammograms were exported and submitted to Principal Component Analysis (PCA), Partial Least Square- Discriminant Analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA). In diluted oils, PLS-DA provided a clear discrimination between olive oils (extra virgin and regular) and olive pomace/seed oils, while SIMCA showed a clear discrimination of extra virgin olive oil in regard to all other samples. Using methanolic extracts and considering datapoints recorded between 0.6 and 1.3 V, PLS-DA provided more information, resulting in three clusters-extra virgin olive oils, regular olive oils and seed/olive pomace oils-while SIMCA showed inferior performance. For the quantification of extra virgin olive oil adulteration with olive pomace oil or seed oils, a model based on Partial Least Square (PLS) analysis was developed. Detection limit of adulteration in olive oil was found to be 2% (v/v) and the linearity range up to 33% (v/v). Validation and applicability of all models was proved using a suitable test set. In the case of PLS, synthetic oil mixtures with 4 known adulteration levels in the range of 4-26% were also employed as a blind test set. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial activity of the oil in food systems.

    Science.gov (United States)

    Liu, Tai-Ti; Yang, Tsung-Shi

    2012-05-01

    Using natural additives to preserve foods has become popular due to consumer demands for nature and safety. Antimicrobial activity is one of the most important properties in many plant essential oils (EOs). The antimicrobial activity of the essential oil of Litsea cubeba (LC-EO) from Taiwan and the antimicrobial impact of individual volatile components in the oil on pathogens or spoilage microorganisms: Vibrio parahaemolyticus, Listeria monocytogenes, Lactobacillus plantarum, and Hansenula anomala in vitro, and the antimicrobial activity of the LC-EO against these organisms in food systems were studied. The "antimicrobial impact" (AI) is a new term that combines the effects of minimal microbicidal concentration (MMC) and quantity of an antimicrobial substance. The AI can quantitatively reflect the relative importance of individual components of the EO on the entire antimicrobial activity of the EO. The MMCs of the LC-EO against V. parahaemolyticus, L. monocytogenes, L. plantarum, and H. anomala were determined as 750, 750, 1500, and 375 μg/g, respectively in vitro. The MMCs of the LC-EO were 3000, 6000, and 12,000 μg/g for L. monocytogenes in tofu stored at 4 °C, 25 °C, and 37 °C, respectively. The temperature affected the bacterial growth which consequently influenced the MMCs of the LC-EO. The MMCs of the LC-EO were 3000, 6000, and 375 μg/g for Vibrio spp. in oysters, L. plantarum in orange-milk beverage, and H. anomala in soy sauce, respectively. Except for soy sauce, the food systems exhibited marked matrix effects on diminishing the antimicrobial activity of the LC-EO. Averagely, citral accounted for ca 70% of the total AI value for all the tested organisms, and the rest of the AI value of the LC-EO was determined by all the tested compounds (ca 4%) and the unidentified compounds (ca 26%). Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A systematic assessment of quality assurance-based food safety management system of Chinese edible oil manufacturer in view of context characteristics

    NARCIS (Netherlands)

    Ren, Yingxue; He, Zhen; Luning, Pieternel A.

    2016-01-01

    This study uses a framework of a food safety management system-diagnostic instrument (FSMS-DI), for the assessment of the context of a Chinese edible oil manufacture through the view of a case study, and an evaluation of the performance of the FSMS of a Chinese edible oil company. The study

  20. Food-safe modification of stainless steel food processing surfaces to reduce bacterial biofilms.

    Science.gov (United States)

    Awad, Tarek Samir; Asker, Dalal; Hatton, Benjamin D

    2018-06-11

    Biofilm formation on stainless steel (SS) surfaces of food processing plants, leading to foodborne illness outbreaks, is enabled by the attachment and confinement within microscale cavities of surface roughness (grooves, scratches). We report Foodsafe Oil-based Slippery Coatings (FOSCs) for food processing surfaces that suppress bacterial adherence and biofilm formation by trapping residual oil lubricant within these surface cavities to block microbial growth. SS surfaces were chemically functionalized with alkylphosphonic acid to preferentially wet a layer of food grade oil. FOSCs reduced the effective surface roughness, the adhesion of organic food residue, and bacteria. FOSCs significantly reduced Pseudomonas aeruginosa biofilm formation on standard roughness SS-316 by 5 log CFU cm-2, and by 3 log CFU cm-2 for mirror-finished SS. FOSCs also enhanced surface cleanability, which we measured by bacterial counts after conventional detergent cleaning. Importantly, both SS grades maintained their anti-biofilm activity after erosion of the oil layer by surface wear with glass beads, which suggests there is a residual volume of oil that remains to block surface cavity defects. These results indicate the potential of such low-cost, scalable approaches to enhance the cleanability of SS food processing surfaces and improve food safety by reducing biofilm growth.

  1. A formulation to encapusulate nootkatone oil for tick control

    Science.gov (United States)

    Nootkatone is a component of grapefruit oil that is toxic to the disease vectoring tick, Ixodes scapularis Say, but unfortunately causes phytotoxicity to treated plants and has a short residual activity due to volatility. We prepared an encapsulated formulation of nootkatone using lignin to compare...

  2. Irradiation-induced defects in graphite and glassy carbon studied by positron annihilation

    International Nuclear Information System (INIS)

    Hasegawa, M.; Kajino, M.; Kuwahara, H.; Yamaguchi, S.; Kuramoto, E.; Takenaka, M.

    1992-01-01

    ACAR and positron lifetime measurements have been made on, HOPG, isotropic fine-grained graphites, glassy carbons and C 60 /C 70 . HOPG showed a marked bimodal ACAR distribution along the c-axis. By irradiation of 1.0 X 10 19 fast neutrons/cm 2 remarkable narrowing in the ACAR curves and disappearance of the bimodal distribution were observed. Lifetime in HOPG increased from 225 psec to 289 psec (positron-lifetime in vacancies and their small clusters) by the irradiation. The irradiation on isotropic graphites and glassy carbons, however, gave slight narrowing in ACAR curves and decrease in lifetimes (360 psec → 300psec). This suggests irradiation-induced vacancy trapping in crystallites. In C 60 /C 70 powder two lifetime components were detected: τ 1 =177psec, τ 2 =403psec (I 2 =58%). The former is less than the bulk lifetime of HOPG, while the latter being very close to lifetimes in the isotropic graphites and glassy carbons. This and recent 2D-ACAR study of HOPG surface [15] strongly suggest free and defect surface states around ''soccer ball'' cages

  3. Electrochemical pre anodization of glassy carbon electrode and application to determine chloramphenicol

    International Nuclear Information System (INIS)

    Truc, Nguyen Minh; Mortensen, John; Anh, Nguyen Ba Hoai

    2008-01-01

    This paper suggested a method to enhance the performance of carbon electrodes for the determination of chloramphenicol (CAP). The sensitivity and the reproducibility of the carbon electrodes could be enhanced easily by electrochemical pretreatment. Some kinds of carbon material were studied including glassy carbon, graphite carbon and pyrolytic carbon. Numerous kinds of supporting electrolyte have been tried. For glassy carbon electrode, the acidic solution, H 2 SO 4 5 mM, resulted in best performance at pretreated voltage of +2.1V (vs. Ag/ AgCl) in duration of 250 second. However, for graphite and pyrolytic carbon electrodes, the phosphate buffer solution pH 6.0 gave the best performance at +1.7V (vs. Ag/ AgCl) in duration of 20 seconds. The detection limit could be at very low concentration of CAP: 0.8 ng/ ml for glassy carbon electrode, 3.5 ng/ ml for graphite carbon electrode. The method was successful applied to aqua-agriculture water sample and milk sample with simple extraction as well as direct ointment sample analysis. (author)

  4. Permeation of Mixed Penetrants through Glassy Polymer Membranes.

    Science.gov (United States)

    1985-03-15

    and LOPE. Also, ESCA was used in conjunction with plasma etching to determine the effects of the gas phase fluorine concentration and fluorination...at 35 3C. ARD-AISS5 65 PERMEATION OF MIXED PENETRANTS THROUGH GLASSY POLYMER 213 MENBRANES (U) NORTH CAROLINA STATE UNIV AT RALEIGH R T CHERN ET AL. 15

  5. Effects of Different End-Point Cooking Temperatures on the Efficiency of Encapsulated Phosphates on Lipid Oxidation Inhibition in Ground Meat.

    Science.gov (United States)

    Kılıç, B; Şimşek, A; Claus, J R; Atılgan, E; Aktaş, N

    2015-10-01

    Effects of 0.5% encapsulated (e) phosphates (sodium tripolyphosphate, STP; sodium hexametaphosphate, HMP; sodium pyrophosphate, SPP) on lipid oxidation during storage (0, 1, and 7 d) of ground meat (chicken, beef) after being cooked to 3 end-point cooking temperatures (EPCT; 71, 74, and 77 °C) were evaluated. The use of STP or eSTP resulted in lower (P cooking loss (CL) compared to encapsulated or unencapsulated forms of HMP and SPP. Increasing EPCT led to a significant increase in CL (P chicken compared to 74 and 71 °C (P chicken samples (P < 0.05). Findings suggest that encapsulated phosphates can be a strategy to inhibit lipid oxidation for meat industry and the efficiency of encapsulated phosphates on lipid oxidation inhibition can be enhanced by lowering EPCT. © 2015 Institute of Food Technologists®

  6. Radiosensitizing Silica Nanoparticles Encapsulating Docetaxel for Treatment of Prostate Cancer.

    Science.gov (United States)

    Belz, Jodi; Castilla-Ojo, Noelle; Sridhar, Srinivas; Kumar, Rajiv

    2017-01-01

    The applications of nanoparticles in oncology include enhanced drug delivery, efficient tumor targeting, treatment monitoring, and diagnostics. The "theranostic properties" associated with nanoparticles have shown enhanced delivery of chemotherapeutic drugs with superior imaging capabilities and minimal toxicities. In conventional chemotherapy, only a fraction of the administered drug reaches the tumor site or cancer cells. For successful translation of these formulations, it is imperative to evaluate the design and properties of these nanoparticles. Here, we describe the design of ultra-small silica nanoparticles to encapsulate a radiosensitizing drug for combined chemoradiation therapy. The small size of nanoparticles allows for better dispersion and uptake of the drug within the highly vascularized tumor tissue. Silica nanoparticles are synthesized using an oil-in-water microemulsion method. The microemulsion method provides a robust synthetic route in which the inner hydrophobic core is used to encapsulate chemotherapy drug, docetaxel while the outer hydrophilic region provides dispersibility of the synthesized nanoparticles in an aqueous environment. Docetaxel is commonly used for treatment of resistant or metastatic prostate cancer, and is known to have radiosensitizing properties. Here, we describe a systematic approach for synthesizing these theranostic nanoparticles for application in prostate cancer.

  7. Synthesis and Characterisation of Aminoplast Microcapsules for Controlled Release of Bioactives. Influence of the Resin:Oil Ratio

    OpenAIRE

    Sánchez Navarro, M. Magdalena; Arán Aís, Francisca; Marcilla, Antonio; Orgilés-Barceló, César

    2015-01-01

    In this study a series of melamine-formaldehyde (MF) microcapsules containing Melaleuca alternifolia oil as natural biocide with different polymer to oil ratio was prepared by the in situ polymerization (O/W) method. The characterization of the microcapsules properties was undertaken by different experimental techniques in order to establish a correlation between the polymer to oil ratio and the oil encapsulation efficiency and properties for further applications. The average size distributio...

  8. Antimicrobial drugs encapsulated in fibrin nanoparticles for treating microbial infested wounds.

    Science.gov (United States)

    Alphonsa, B Maria; Sudheesh Kumar, P T; Praveen, G; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2014-05-01

    In vitro evaluation of antibacterial and antifungal drugs encapsulated fibrin nanoparticles to prove their potential prospect of using these nanocomponent for effective treatment of microbial infested wounds. Surfactant-free oil-in-water emulsification-diffusion method was adopted to encapsulate 1 mg/ml each of antimicrobial drugs (Ciprofloxacin and Fluconazole) in 4 ml of aqueous fibrinogen suspension and subsequent thrombin mediated cross linking to synthesize drug loaded fibrin nanoparticles. Ciprofloxacin loaded fibrin nanoparticles (CFNPs) showed size range of 253 ± 6 nm whereas that of Fluconazole loaded fibrin nanoparticles (FFNPs) was 260 ± 10 nm. Physico chemical characterizations revealed the firm integration of antimicrobial drugs within fibrin nanoparticles. Drug release studies performed at physiological pH 7.4 showed a release of 16% ciprofloxacin and 8% of fluconazole while as the release of ciprofloxacin at alkaline pH 8.5, was 48% and that of fluconazole was 37%. The antimicrobial activity evaluations of both drug loaded systems independently showed good antibacterial activity against Escherichia coli (E.coli), Staphylococcus aureus (S. aureus) and antifungal activity against Candida albicans (C. albicans). The in vitro toxicity of the prepared drug loaded nanoparticles were further analyzed using Human dermal fibroblast cells (HDF) and showed adequate cell viability. The efficacies of both CFNPs and FFNPs for sustained delivery of encapsulated anti microbial drugs were evaluated in vitro suggesting its potential use for treating microbial infested wounds (diabetic foot ulcer).

  9. Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells

    Science.gov (United States)

    Beta-carotene (BC) was encapsulated by sodium caseinate (SC), whey protein isolate (WPI), and soybean protein isolate (SPI) by the homogenization-evaporation method forming nanoparticles of 78, 90 and 370 nm diameter. Indices of the chemical antioxidant assays, the reducing power, DPPH radical scave...

  10. Carbon dynamics, food web structure and reclamation strategies in Athabasca oil sands wetlands (CFRAW)

    International Nuclear Information System (INIS)

    Ciborowski, J.J.; Dixon, G.; Foote, L.; Liber, K.; Smits, J.E.

    2007-01-01

    The remediation and ecology of oilsands constructed wetlands was discussed with reference to a project known as the Carbon dynamics, Food web structure and Reclamation strategies in Athabasca oil sands Wetlands (CFRAW). This joint project between 7 mining partners and 5 universities documents how tailings in constructed wetlands modify maturation leading to natural conditions in a reclaimed landscape. Since wetlands are expected to make up 20-50 per cent of the final reclamation landscape of areas surface mined for oil sands in northeastern Alberta, the project focuses on how quickly wetlands amended with reclamation materials approach the conditions seen in reference wetland systems. This study provided a conceptual model of carbon pathways and budgets to evaluate how the allocation of carbon among compartments changes as newly formed wetlands mature in the boreal system. It is likely that succession and community development will accelerate if constructed wetlands are supplemented with stockpiled peat or topsoil. The bitumens and naphthenic acids found in wetlands constructed with mine tailings materials are initially toxic, but may ultimately serve as an alternate source of carbon once they degrade or are metabolized by bacteria. This study evaluated the sources, biological uptake, pathways, and movement through the food web of materials used by the biota in constructed wetlands, with particular reference to how productivity of new wetlands is maintained. Net ecosystem productivity is being monitored along with rates of organic carbon accumulation from microbial, algal, and macrophyte production, and influx of outside materials. The rates of leaf litter breakdown and microbial respiration are also being monitored to determine how constituents speed or slow food web processes of young and older wetlands. Carbon and nitrogen stable isotope measurements indicate which sources are incorporated into the food web as wetlands age, and how this influences community

  11. Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Özdemir, N.; Boutrup Stephansen, Karen

    2017-01-01

    The encapsulation of fish oil in carbohydrate-based nanomicrostructures obtained by electrohydrodynamic processing was investigated. Solutions of pullulan 200 kDa (15 wt%) and dextran 70 kDa (25 wt%) presented appropriate properties (viscosity, surface tension and conductivity) to allow the forma......The encapsulation of fish oil in carbohydrate-based nanomicrostructures obtained by electrohydrodynamic processing was investigated. Solutions of pullulan 200 kDa (15 wt%) and dextran 70 kDa (25 wt%) presented appropriate properties (viscosity, surface tension and conductivity) to allow...... the formation of nano-microfibers and nano-microcapsules, respectively. Although dextran 70 kDa exhibited antioxidant properties in solution, their capsules produced at lab and pilot-plant scales showed a low oxidative stability both with emulsified and neat oil. Phase separation of solution and opened capsules...... indicated a poor interaction between dextran and fish oil, which suggested that further optimization of the electrospraying solution is necessary. On the contrary, pullulan solutions were optimized to work even at pilot-plant scale. In this case, in spite of the prooxidant effect of pullulan in solution...

  12. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application.

    Science.gov (United States)

    Aditya, N P; Espinosa, Yadira Gonzalez; Norton, Ian T

    2017-07-01

    Increased health risk associated with the sedentary life style is forcing the food manufacturers to look for food products with specific or general health benefits e.g. beverages enriched with nutraceuticals like catechin, curcumin rutin. Compounds like polyphenols, flavonoids, vitamins are the good choice of bioactive compounds that can be used to fortify the food products to enhance their functionality. However due to low stability and bioavailability of these bioactives (both hydrophobic and hydrophilic) within the heterogeneous food microstructure and in the Gastro Intestinal Tract (GIT), it becomes extremely difficult to pass on the real health benefits to the consumers. Recent developments in the application of nano-delivery systems for food product development is proving to be a game changer which has raised the expectations of the researchers, food manufacturers and consumers regarding possibility of enhancing the functionality of bioactives within the fortified food products. In this direction, nano/micro delivery systems using lipids, surfactants and other materials (carbohydrates, polymers, complexes, protein) have been fabricated to stabilize and enhance the biological activity of the bioactive compounds. In the present review, current status of the various delivery systems that are used for the delivery of hydrophilic bioactives and future prospects for using other delivery systems that have been not completely explored for the delivery of hydrophilic bioactives e.g. niosomes; bilosomes, cubosomes are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D., E-mail: david.lambertin@cea.fr; Poulesquen, A.; Frizon, F.

    2015-09-15

    Highlights: • Formulation with 20 vol.% of oil in a geopolymer have been successful tested. • Oil waste is encapsulated as oil droplets in metakaolin-based geopolymer. • Oil/geopolymer composite present good mechanical performance. • Carbon lixiviation of oil/geopolymer composite is very low. - Abstract: The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH{sup −}) are involved into diffusion process.

  14. Edible lipid nanoparticles: digestion, absorption, and potential toxicity.

    Science.gov (United States)

    McClements, David Julian

    2013-10-01

    Food-grade nanoemulsions are being increasingly used in the food and beverage industry to encapsulate, protect, and deliver hydrophobic functional components, such as oil-soluble flavors, colors, preservatives, vitamins, and nutraceuticals. These nanoemulsions contain lipid nanoparticles (radius beverage industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Epoxide resin coatings of cans - substance transfer to oil-containing foods possible

    OpenAIRE

    German Federal Institute for Risk Assessment

    2016-01-01

    Oily foods in cans can contain levels of Cyclo-di-BADGE (CdB) that present a health risk for high consumers. This is the result of a health risk assessment of the Federal Institute for Risk Assessment (BfR) in which the institute analysed data on the CdB content of canned fish preserved in oil. CdB is a molecule consisting of Bisphenol A (BPA) and Bisphenol A diglycidyl ether (BADGE). It is formed as a by-product during the production of epoxide resins which are, for example, used for the int...

  16. Effects of nymphal diet and adult feeding on allocation of resources to glassy-winged sharpshooter egg production

    Science.gov (United States)

    The glassy-winged sharpshooter is an invasive insect capable of transmitting the bacterial pathogen Xylella fastidiosa. Pre-oviposition periods of laboratory reared glassy-winged sharpshooters are variable. Here, two questions were addressed: does nymphal diet affect pre-oviposition period and how d...

  17. Encapsulation of nuclear wastes

    International Nuclear Information System (INIS)

    Arnold, J.L.; Boyle, R.W.

    1978-01-01

    Toxic waste materials are encapsulated by the method wherein the waste material in liquid or finely divided solid form is uniformly dispersed in a vinyl ester resin or an unsaturated polyester and the resin cured under conditions that the exotherm does not rise above the temperature at which the integrity of the encapsulating material is destroyed

  18. Pseudobinary glassy compositions (AsSex)1-y(AsTex)y

    International Nuclear Information System (INIS)

    El Mously, M.K.; El Dem, M.B.

    1987-09-01

    The ternery glassy composition of the general formula (AsSe x ) 1-y (AsTe x ) y can be considered as a pseudobinary system at x=1, 3/2 and 5/2 and 0 ≤ y ≤ 1. The results of DTA, electrical conductivity measurements, density of such glasses as well as the X-ray diffraction of the crystallized samples have been used to confirm this point of view and to explain the presence of new phases not shown in the simple binary systems As-Se and As-Te. The possibility of transformation of the glassy network from partially polymerized state MCN (molecular cluster network) to completely polymerized state CRN (continuous random network) by mixing two structural units was also discussed. (author). 12 refs, 7 figs, 2 tabs

  19. Transport of encapsulated nuclear fuels

    International Nuclear Information System (INIS)

    Broman, Ulrika; Dybeck, Peter; Ekendahl, Ann-Mari

    2005-12-01

    The transport system for encapsulated fuel is described, including a preliminary drawing of a transport container. In the report, the encapsulation plant is assumed to be located to Oskarshamn, and the repository to Oskarshamn or Forsmark

  20. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    Science.gov (United States)

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Formation of glassy carbon structure and its change under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurolenkin, E.I.; Lopato, Yu.S.; Virgil' ev, Yu.S.; Khakimova, D.K.; Aksenov, S.I.

    1981-01-01

    The changes of glassy carbon structure, which is prepared of phenol-formaldehyde and furfurol-phenol-formaldehyde resins in the process of irradiation with 5.3x10/sup 20/ cm/sup -2/ neutron fluence with the energy E>0.18 MeV in the temperature range of 90-540 deg C are studied. It is established the irradiation results in the shrinkage of the samples. The compression of the samples increases with the irradiation temperature and neutron fluence. The thermal annealing does not result in the restoration of the volume of samples. The sample shrinkage, caused by more compact package of globular structures and the destruction of film structures, decrease gas permeability of glassy carbon.

  2. A DANREF certified reference plastic for measurement of overall migration into the food simulant olive oil by single sided testing

    DEFF Research Database (Denmark)

    Lund, K. H.; Lillemark, L.; Petersen, Jens Højslev

    2000-01-01

    A reference material for the determination of overall migration from a plastic coextrudate into the fatty food simulant olive oil was produced and certified in an interlaboratory study. The analyses were carried out according to the ENV 1186 standard from the European Committee for Standardization...... (CEN) [1, 2, 3] with exposure of the coextrudate to olive oil for 10 days at 40 degrees C. After an initial preliminary interlaboratory study eight laboratories participated in the certification round, and two different methods were used to obtain single sided exposure of the plastic to the oil...

  3. Food commodities from microalgae

    NARCIS (Netherlands)

    Draaisma, R.B.; Wijffels, R.H.; Slegers, P.M.; Brentner, L.B.; Roy, A.; Barbosa, M.J.

    2013-01-01

    The prospect of sustainable production of food ingredients from photoautotrophic microalgae was reviewed. Clearly, there is scope for microalgal oils to replace functions of major vegetable oils, and in addition to deliver health benefits to food products. Furthermore, with a limited production

  4. [Study on the encapsulation technique of high purity gamma-linolenic acid, part 1--saponification reaction and saponification value].

    Science.gov (United States)

    Liu, Feng-xia; Xue, Gang; Gao, Qiu-hua; Gao, Wei-xia; Zhang, Li-hua

    2005-03-01

    To measure the saponification value and fatty acid formation of evening primrose oil, to study the effects of pH value on production yield and fatty acid formation during the saponification reaction, and to provide rationales for the selection of raw material, the enhancement of production yield of saponification, and the encapsulation of gamma-linolenic acid with urea. To measure fatty acid's formation with gas chromatographic method and to measure the saponification value. The content of gamma-linolenic acid is 7%-10% in evening primrose oil. The content of gamma-linolenic acid is inversely correlated with that of unsaturated fatty acid. The saponification value, the amount of KOH for saponification of evening primrose oil, and the pH value for subsequent isolations of oils are determined. From the measurement of fatty acids of evening primrose oil in two different cultivation locations, the content of gamma-linolenic acid is determined to be 7%-10%, unsaturated oils account for 90%. The saponification value of evening primrose oil is between 180-200, pH value of isolated oil is 1.5-2.0 after saponification reaction. Fatty acids mainly include palmitic acid, stearic acid, oleic acid, linolic acid and gamma-linolenic acid.

  5. Oxidative Stability of Nano-Microstructures containing fish oil

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Özdemir, N.; Boutrup Stephansen, Karen

    investigated. For that purpose, three different biopolymers namely pullulan, dextran and whey protein concentrate (WPC) were evaluated as encapsulating materials. First, the influence of biopolymer concentration on the physical properties (e.g. viscosity, conductivity and surface tension) of the biopolymer...... solutions and on the morphology of NMS was assayed. Secondly, the oxidative stability of the biopolymer solutions containing emulsified fish oil during storage (14 days at 40 °C) and of NMS loaded with fish oil (e.g. pullulan fibers and dextran and WPC capsules) was determined. Finally, to improve...... the oxidative status of the NMS, pullulan fibers, dextran capsules and WPC capsules were produced by adding neat fish oil instead of emulsified fish oil to the biopolymer solutions. These latter NMS presented a higher oxidative stability, which may be due to a better entrapment of the fish oil into biopolymer...

  6. Iron Nanoparticles-Encapsulating Silica Microspheres for Arterial Embolization Hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Kawashita, M, E-mail: zhixia@ecei.tohoku.ac.jp [Graduate School of Biomedical Engineering, Tohoku University (Japan)

    2011-10-29

    We attempted to prepare {alpha}-Fe-encapsulating silica ({alpha}FeSi) microspheres by a sol-gel process using tetramethoxysilane (TMOS) in water-in-oil emulsion. The effect of preparation conditions on the structure, magnetic and heating properties of resultant products were investigated. Oil phase consisted of kerosene with 32 wt% of surfactants (sorbitan monooleate / sorbitan monostearate in 3:1 weight ratio). Water phase consisted of TMOS, ethanol (CH{sub 2}CH{sub 3}OH), water and iron nitrate (Fe(NO{sub 3}){sub 3{center_dot}}9H{sub 2}O) with TMOS / CH{sub 2}CH{sub 3}OH/H{sub 2}O/Fe{sup 3+} in 1:7.4:16.2:0.4{approx}1.2 molar ratio. Fe{sup 3+}-containing silica gel (FeSiG) microspheres 5 to 30 {mu}m in size were successfully obtained by adding the water phase into the oil phase at 60 deg. C under stirring of 1500 rpm for 100 min. {alpha}FeSi microspheres was obtained by heating the FeSiG microspheres at 850deg. C in argon atmosphere. The obtained {alpha}FeSi microspheres have a saturation magnetization (Ms) up to 21 emu g{sup -1} and a coercive force (Hc) of 133 Oe. The in vitro heating generation was evaluated under an alternating current (AC) magnetic field of 300 Oe and 100 kHz.

  7. OSR encapsulation basis -- 100-KW

    International Nuclear Information System (INIS)

    Meichle, R.H.

    1995-01-01

    The purpose of this report is to provide the basis for a change in the Operations Safety Requirement (OSR) encapsulated fuel storage requirements in the 105 KW fuel storage basin which will permit the handling and storing of encapsulated fuel in canisters which no longer have a water-free space in the top of the canister. The scope of this report is limited to providing the change from the perspective of the safety envelope (bases) of the Safety Analysis Report (SAR) and Operations Safety Requirements (OSR). It does not change the encapsulation process itself

  8. Optimum Plans For Oilpalm And Food Crop Combinations In Edo ...

    African Journals Online (AJOL)

    Intercropping food crops in oil palm plantations is a popular practice among oil ... are not guided by economic rationale for the choice of food crops and oil palm. ... linear programming model for oil palm/food crops enterprise combinations in ...

  9. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    Science.gov (United States)

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  10. Micro-Encapsulation of Probiotics

    Science.gov (United States)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  11. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  12. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2012-09-01

    Full Text Available The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA, levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re

  13. 21 CFR 173.275 - Hydrogenated sperm oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogenated sperm oil. 173.275 Section 173.275... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.275 Hydrogenated sperm oil. The food additive hydrogenated sperm oil may be safely used in accordance with the following prescribed...

  14. Microbubble stability and applications in food

    OpenAIRE

    Rovers, T.A.M.

    2015-01-01

    Aeration of food is considered to be a good method to create a texture and mouthfeel of food products that is liked by the consumer. However, traditional foams are not stable for a prolonged time. Microbubbles are air bubbles covered with a shell that slows down disproportionation significantly and arrests coalescence. Protein stabilized microbubbles are seen as a promising new food ingredient for encapsulation, to replace fat, to create new textures, and to improve sensorial properties of fo...

  15. Electrospun nanofibres in agriculture and the food industry: a review.

    Science.gov (United States)

    Noruzi, Masumeh

    2016-11-01

    The interesting characteristics of electrospun nanofibres, such as high surface-to-volume ratio, nanoporosity, and high safety, make them suitable candidates for use in a variety of applications. In the recent decade, electrospun nanofibres have been applied to different potential fields such as filtration, wound dressing, drug delivery, etc. and a significant number of review papers have been published in these fields. However, the use of electrospun nanofibres in agriculture is comparatively novel and is still in its infancy. In this paper, the specific applications of electrospun nanofibres in agriculture and food science, including plant protection using pheromone-loaded nanofibres, plant protection using encapsulation of biocontrol agents, preparation of protective clothes for farm workers, encapsulation of agrochemical materials, deoxyribonucleic acid extraction in agricultural research studies, pre-concentration and measurement of pesticides in crops and environmental samples, preparation of nanobiosensors for pesticide detection, encapsulation of food materials, fabrication of food packaging materials, and filtration of beverage products are reviewed and discussed. This paper may help researchers develop the use of electrospun nanofibres in agriculture and food science to address some serious problems such as the intensive use of pesticides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    Science.gov (United States)

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  17. Effects of Mentha longifolia L. essential oil and nisin alone and in combination on Bacillus cereus and Bacillus subtilis in a food model and bacterial ultrastructural changes.

    Science.gov (United States)

    Pajohi, Mohamad Reza; Tajik, Hossein; Farshid, Amir Abbas; Basti, Afshin Akhondzadeh; Hadian, Mojtaba

    2011-02-01

    In the face of emerging new pathogens and ever-growing health-conscious customers, food preservation technology remains on the top agenda of food industry. This study was aimed at determining the effects of the essential oil of Mentha longifolia L., alone and in combination with nisin, on Bacillus cereus and Bacillus subtilis at 8°C and 25°C in a food model (commercial barley soup) during 15 days. The essential oil alone at 8°C inhibited bacterial growth significantly compared with the control (p < 0.05). However, at 25°C, none of the concentrations of the essential oil alone showed inhibitory effect on bacterial growth. At 8°C, the combination effect of the essential oil and nisin on bacteria was noted at 0.25 μg mL(-1) for nisin and 0.05 μL mL(-1) for the essential oil (p < 0.05). The combination of nisin and the essential oil demonstrated significant inhibitory effects on the vegetative forms of bacteria at 25°C, although it was comparable to that of nisin alone at the same concentrations. Electron microscopy studies revealed a great deal of damage to B. cereus treated with a combination of nisin and the essential oil. However, the combination of nisin with the essential oil led to a complete destruction of cell wall and cytoplasm of vegetative cells of B. subtilis.

  18. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    Directory of Open Access Journals (Sweden)

    Branko Bugarski

    2008-03-01

    Full Text Available The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginateused in this study had a high content (67 % of guluronic residues and was rich in GG diadblocks (FGG = 55% and thus presented a high-quality immobilisation matrix. The thermalbehaviour of alginate beads encapsulating ethyl vanilline was investigated bythermogravimetric (TG and differential scanning calorimetry measurements (TG-DSCunder heating conditions which mimicked usual food processing to provide informationabout thermal decomposition of alginate matrix and kinetics of aroma release. Two wellresolved weight losses were observed. The first one was in the 50-150 °C temperaturerange with the maximum at approx. 112 °C, corresponding to the dehydration of thepolymer network. The second loss in the 220-325 °C temperature range, with a maximumat ~ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to230 °C most of the vanilline remained intacta, while prolonged heating at elevatedtemperatures led to the entire loss of the aroma compound.

  19. Encapsulation methods for organic electrical devices

    Science.gov (United States)

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  20. Carbon dynamics, food web structure and reclamation strategies in Athabasca oil sands wetlands (CFRAW) : overview and progress

    International Nuclear Information System (INIS)

    Ciborowski, J.; Dixon, D.G.; Foote, L.; Liber, K.; Smits, J.E.

    2009-01-01

    Seven oil sand mining partners and 5 university labs have joined forces to study the effects of mine tailings and process waters on development, health and function of wetland communities formed in post-mining landscapes. The collaborative effort, know as the carbon dynamics, food web structure and reclamation strategies in Athabasca oil sands wetlands (CRFAW), aims to identify the materials and strategies most effective and economical in producing a functioning reclamation landscape. This presentation reported on part of the study that tested predictions about how quickly wetlands amended with reclamation materials approach the conditions of reference wetland systems. It provided a conceptual model of carbon pathways and budgets to assess how the allocation of carbon among compartments changes as newly formed wetlands mature in the boreal system. It was assumed that stockpiling constructed wetlands with peat or topsoil would accelerate succession and community development. Although the bitumen and the naphthenic acids found in constructed wetlands are initially toxic, they may serve as an alternate source of carbon once they degrade. This study also assessed the sources, biological uptake, pathways, and movement through the food web of materials used by the biota in constructed wetlands. Additional studies are examining how the productivity of new wetlands is maintained. Net ecosystem productivity is being monitored along with rates of organic carbon accumulation from microbial, algal, and macrophyte production, and influx of outside materials. The rates of leaf litter breakdown and microbial respiration are being compared to determine how constituents speed or slow food web processes of young and older wetlands. Carbon and nitrogen isotope values in food web compartments indicate which sources are incorporated into the food web as wetlands age. The values are used to determine how this influences community development, food web structure and complexity, and the

  1. The structure of omega3 food emulsions

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Loussert, C.; Horn, Anna Frisenfeldt

    Fish oil is rich in polyunsaturated omega-3 fatty acids (omega-3 PUFAs) which are generally recognized as being beneficial to the health [1]. The addition of fish oil to food products is attractive to both the consumers and the food industry. Indeed, these components will improve nutritional value...... and add product value. Omega-3 PUFAs are rich in double bonds in their fatty acid chains and this attribute renders them highly susceptible to lipid oxidation. Omega-3 PUFAs can be added to food products as neat oil or as a delivery system such as oil-in-water emulsions. In this last configuration...... and the prooxidants. But this protective aspect is a really complex process and it is dependent on the food matrix to which the oil is added [2]. Oxidation is presumed to be initiated at the emulsifier layer, i.e. the interface layer between the oil and water where the oil is most likely to come into contact...

  2. Antibacterial Activity of Clove ( Syzigium aromaticum L .) Essential Oil and Gamma Irradiation against Some Food-Borne Pathogens in Minced Chicken Meat

    International Nuclear Information System (INIS)

    Gibriel, A.Y.; ALI, H.G.M.; Abdeldaiem, M.H.

    2017-01-01

    Antibacterial activity of clove essential oil ( Syzigium aromaticum L.) against five strains of pathogenic bacteria namely, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhimurium, Escherichia coli and Bacillus cereus was investigated in vitro. The essential oil of clove exhibited antibacterial activity against tested microorganisms. Comparatively, 25, 50 and 100 ml/l concentrations of clove essential oil were of less inhibitory effect than 200, 300 and 500 ml/l concentrations. However, S. aureus showed less sensitivity towards clove essential oil inhibition; however Salmonella typhimurium was strongly inhibited by clove essential oil. Then, the effect of clove essential oil at two concentrations (3 and 5% v/w) and combined treatments between gamma irradiation at doses of 1, 2, 3, 4, 5 and 6 kGy and clove essential oil at concentrations as formerly on inactivation of Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhimurium , Escherichia coli and Bacillus cereus inoculated into chicken minced meat was investigated. Addition of clove essential oil to samples of chicken minced meat inoculated with three pathogens reduced the counts of these pathogens, proportionally with increasing concentration. The irradiated samples at doses of 3, 4, 5 and 6 kGy and that irradiated at doses 2, 3, 4, 5 and 6 kGy of chicken minced and containing 3 and 5% completely inactivation of inoculated pathogens and not detected during cold storage at 4±1°C for 7 days. Accordingly, clove essential oil can be used as natural antimicrobial additive or in combination treatments with gamma irradiation for incorporation in various food products. Also, there is a possibility of using low doses gamma irradiation and low concentrations clove essential oil for treatment of meat products in order to this to reduce the economic cost of products and improving hygienic quality and extend its shelf-life. Therefore clove essential oil could be used as preservative ingredients in

  3. Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals.

    Science.gov (United States)

    Bai, Long; Xiang, Wenchao; Huan, Siqi; Rojas, Orlando J

    2018-05-14

    We report on high-internal-phase, oil-in-water Pickering emulsions that are stable against coalescence during storage. Viscous, edible oil (sunflower) was emulsified by combining naturally derived cellulose nanocrystals (CNCs) and a food-grade, biobased cationic surfactant obtained from lauric acid and L-arginine (ethyl lauroyl arginate, LAE). The interactions between CNC and LAE were elucidated by isothermal titration calorimetry (ITC) and supplementary techniques. LAE adsorption on CNC surfaces and its effect on nanoparticle electrostatic stabilization, aggregation state, and emulsifying ability was studied and related to the properties of resultant oil-in-water emulsions. Pickering systems with tunable droplet diameter and stability against oil coalescence during long-term storage were controllably achieved depending on LAE loading. The underlying stabilization mechanism was found to depend on the type of complex formed, the LAE structures adsorbed on the cellulose nanoparticles (as unimer or as adsorbed admicelles), the presence of free LAE in the aqueous phase, and the equivalent alkane number of the oil phase (sunflower and dodecane oils were compared). The results extend the potential of CNC in the formulation of high-quality and edible Pickering emulsions. The functional properties imparted by LAE, a highly effective molecule against food pathogens and spoilage organisms, open new opportunities in food, cosmetics, and pharmaceutical applications, where the presence of CNC plays a critical role in achieving synergistic effects with LAE.

  4. Fish protein hydrolysates: application in deep-fried food and food safety analysis.

    Science.gov (United States)

    He, Shan; Franco, Christopher; Zhang, Wei

    2015-01-01

    Four different processes (enzymatic, microwave-intensified enzymatic, chemical, and microwave-intensified chemical) were used to produce fish protein hydrolysates (FPH) from Yellowtail Kingfish for food applications. In this study, the production yield and oil-binding capacity of FPH produced from different processes were evaluated. Microwave intensification significantly increased the production yields of enzymatic process from 42% to 63%. It also increased the production yields of chemical process from 87% to 98%. The chemical process and microwave-intensified chemical process produced the FPH with low oil-binding capacity (8.66 g oil/g FPH and 6.25 g oil/g FPH), whereas the microwave-intensified enzymatic process produced FPH with the highest oil-binding capacity (16.4 g oil/g FPH). The FPH from the 4 processes were applied in the formulation of deep-fried battered fish and deep-fried fish cakes. The fat uptake of deep-fried battered fish can be reduced significantly from about 7% to about 4.5% by replacing 1% (w/w) batter powder with FPH, and the fat uptake of deep-fried fish cakes can be significantly reduced from about 11% to about 1% by replacing 1% (w/w) fish mince with FPH. Food safety tests of the FPH produced by these processes demonstrated that the maximum proportion of FPH that can be safely used in food formulation is 10%, due to its high content of histamine. This study demonstrates the value of FPH to the food industry and bridges the theoretical studies with the commercial applications of FPH. © 2015 Institute of Food Technologists®

  5. Melting of Pb clusters encapsulated in large fullerenes

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: Encapsulation significantly increases the melting point of nanometer-sized Pb particles with respect to the corresponding unsupported ones. Highlights: → Nanometer-sized Pb particles are encapsulated in fullerene cages. → Their thermal behavior is studied by molecular dynamics simulations. → Encapsulated particles undergo a pressure rise as temperature increases. → Encapsulated particles melt at temperatures higher than unsupported ones. - Abstract: Molecular dynamics simulations have been employed to explore the melting behavior of nanometer-sized Pb particles encapsulated in spherical and polyhedral fullerene cages of suitable size. The encapsulated particles, as well as the corresponding unsupported ones for comparison, were submitted to a gradual temperature rise. Encapsulation is shown to severely affect the thermodynamic behavior of Pb particles due to the different thermal expansion coefficients of particles and cages. This determines a volume constraint that induces a rise of pressure inside the fullerene cages, which operate for particles as rigid confinement systems. The result is that surface pre-melting and melting processes occur in encapsulated particles at temperatures higher than in unsupported ones.

  6. Food fried in extra-virgin olive oil improves postprandial insulin response in obese, insulin-resistant women.

    Science.gov (United States)

    Farnetti, Sara; Malandrino, Noemi; Luciani, Davide; Gasbarrini, Giovanni; Capristo, Esmeralda

    2011-03-01

    The benefits of low glycemic load (GL) diets on clinical outcome in several metabolic and cardiovascular diseases have extensively been demonstrated. The GL of a meal can be affected by modulating the bioavailability of carbohydrates or by changing food preparation. We investigated the effect on plasma glucose and insulin response in lean and obese women of adding raw or fried extra-virgin olive oil to a carbohydrate-containing meal. After an overnight fast, 12 obese insulin-resistant women (body mass index [BMI], 32.8 ± 2.2 kg/m(2)) and five lean subjects (BMI, 22.2 ± 1.2 kg/m(2)) were randomly assigned to receive two different meals (designated A and B). Meal A was composed of 60 g of pasta made from wheat flour and 150 g of grilled courgettes with 25 g of uncooked oil. Meal B included 15 g of oil in the 150 g of deep-fried courgettes and 10 g of oil in the 60 g of stir-fried pasta. Both meals included 150 g of apple. Blood samples were collected at baseline and every 30 minutes over a 3-hour post-meal period and were tested for levels of glucose, insulin, C-peptide, and triglycerides. The area under the curve (AUC) values were calculated. In obese women the AUCs for C-peptide were significantly higher after meal A than after meal B at 120 minutes (W [Wilcoxon sign rank test] = 27.5, P = .0020), 150 minutes (W = 26.5, P = .0039), and 180 minutes (W = 26.5, P = .0039). No differences were found in lean subjects. This study demonstrated that in obese, insulin-resistant women, food fried in extra-virgin olive oil significantly reduced both insulin and C-peptide responses after a meal.

  7. Application of Starch Foams Containing Plant Essential Oils to Prevent Mold Growth and Improve Shelf Life of Packaged Bread

    Directory of Open Access Journals (Sweden)

    S. Lotfinia

    2013-04-01

    Full Text Available In the recent years, considerable attention has been allocated in the area of using natural preservatives in foods, especially vegetable oils. Starch foams prepared from high amylose starch are useful for encapsulation of substances such as chemicals, liquids or solids, including flavor compounds, pharmaceuticals and essential oils. The foams have the ability to trap the active material and subsequently release the activity. Cinnamon oil is absorbed to foam starch microparticles and acts as an antimicrobial agent. This study was designed and implemented to evaluate the use of starch foam containing vegetable oil to prevent mold growth and improve packaged bread shelf life. For this purpose, first cinnamon essential oil was extracted with water by distillation method then, 250 groups of bread were prepared within polypropylene plastic bags. Various amounts of cinnamon essential oil (500, 750, 1000and1500ppm with 1 g of starch foam powder inside sterilized filter paper were added to these packages.The obtained results of multi-way and intergroup repeated tests indicated that there was a significant difference (P <0/05 between the control groups and various groups containing cinnamon essential oil in terms of microbial load. In the groups containing essential oils, less increase was showed in microbial load and with increasing concentrations of cinnamon essential oil, mold and yeast growth rate decreased. It concluded that by using starch foam containing cinnamon essential oil in bulky bread packing at ambient temperature (25°C, the spoilage process of bulky bread can be postponed 3 to 6 days, and it can be used as an appropriate natural and antifungal preservative in packaging of bread.

  8. Application of Starch Foams Containing Plant Essential Oils to Prevent Mold Growth and Improve Shelf Life of Packaged Bread

    Directory of Open Access Journals (Sweden)

    S. Lotfinia

    2014-02-01

    Full Text Available In the recent years, considerable attention has been allocated in the area of using natural preservatives in foods, especially vegetable oils.  Starch foams prepared from high amylose starch are useful for encapsulation of substances such as chemicals, liquids or solids, including flavor compounds, pharmaceuticals and essential oils. The foams have the ability to trap the active material and subsequently release the activity. Cinnamon oil is absorbed to foam starch microparticles and acts as an antimicrobial agent. This study was designed and implemented to evaluate the use of starch foam containing vegetable oil to prevent mold growth and improve packaged bread shelf life. For this purpose, first cinnamon essential oil was extracted with water by distillation method then, 250 groups of bread were prepared within polypropylene plastic bags. Various amounts of cinnamon essential oil (500, 750, 1000and1500ppm with 1 g of starch foam powder inside sterilized filter paper were added to these packages.The obtained results of multi-way and intergroup repeated tests indicated that there was a significant difference (P <0/05 between the control groups and various groups containing cinnamon essential oil in terms of microbial load. In the groups containing essential oils, less increase was showed in microbial load and with increasing concentrations of cinnamon essential oil, mold and yeast growth rate decreased. It concluded that by using starch foam containing cinnamon essential oil in bulky bread packing at ambient temperature (25°C, the spoilage process of bulky bread can be postponed 3 to 6 days, and it can be used as an appropriate natural and antifungal preservative in packaging of bread.

  9. Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi.

    Science.gov (United States)

    Nguefack, J; Leth, V; Amvam Zollo, P H; Mathur, S B

    2004-08-01

    Five essential oils (EO) extracted from Cymbopogon citratus, Monodora myristica, Ocimum gratissimum, Thymus vulgaris and Zingiber officinale were investigated for their inhibitory effect against three food spoilage and mycotoxin producing fungi, Fusarium moniliforme, Aspergillus flavus and Aspergillus fumigatus. Five strains of each fungus were tested. The agar dilution technique was used to determine the inhibitory effect of each EO on the radial growth of the fungus, and a dose response was recorded. The EO from O. gratissimum, T. vulgaris and C. citratus were the most effective and prevented conidial germination and the growth of all three fungi on corn meal agar at 800, 1000 and 1200 ppm, respectively. Moderate activity was observed for the EO from Z. officinale between 800 and 2500 ppm, while the EO from M. myristica was less inhibitory. These effects against food spoilage and mycotoxin producing fungi indicated the possible ability of each essential oil as a food preservative. A comparative test on the preservative ability of the EO from O. gratissimum and potassium sorbate against A. flavus at pH 3.0 and 4.5 showed that the EO remained stable at both pH, whereas the efficacy of potassium sorbate was reduced at higher pH. We concluded that the EO from O. gratissimum is a potential food preservative with a pH dependent superiority against potassium sorbate, and these are novel scientific information.

  10. Plant essential oils and allied volatile fractions as multifunctional additives in meat and fish-based food products: a review.

    Science.gov (United States)

    Patel, Seema

    2015-01-01

    Essential oils are concentrated aromatic volatile compounds derived from botanicals by distillation or mechanical pressing. They play multiple, crucial roles as antioxidants, food pathogen inhibitors, shelf-life enhancers, texture promoters, organoleptic agents and toxicity-reducing agents. For their versatility, they appear promising as food preservatives. Several research findings in recent times have validated their potential as functional ingredients in meat and fish processing. Among the assortment of bioactive compounds in the essential oils, p-cymene, thymol, eugenol, carvacrol, isothiocyanate, cinnamaldehyde, cuminaldehyde, linalool, 1,8-cineol, α-pinene, α-terpineol, γ-terpinene, citral and methyl chavicol are most familiar. These terpenes (monoterpenes and sesquiterpenes) and phenolics (alcohols, esters, aldehydes and ketones) have been extracted from culinary herbs such as oregano, rosemary, basil, coriander, cumin, cinnamon, mint, sage and lavender as well as from trees such as myrtle, fir and eucalyptus. This review presents essential oils as alternatives to conventional chemical additives. Their synergistic actions with modified air packaging, irradiation, edible films, bacteriocins and plant byproducts are discussed. The decisive roles of metabolic engineering, microwave technology and metabolomics in quality and quantity augmentation of essential oil are briefly mooted. The limitations encountered and strategies to overcome them have been illuminated to pave way for their enhanced popularisation. The literature has been mined from scientific databases such as Pubmed, Pubchem, Scopus and SciFinder.

  11. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-01-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms

  12. Ibuprofen-in-cyclodextrin-in-W/O/W emulsion - Improving the initial and long-term encapsulation efficiency of a model active ingredient.

    Science.gov (United States)

    Hattrem, Magnus N; Kristiansen, Kåre A; Aachmann, Finn L; Dille, Morten J; Draget, Kurt I

    2015-06-20

    A challenge in formulating water-in-oil-in-water (W/O/W) emulsions is the uncontrolled release of the encapsulated compound prior to application. Pharmaceuticals and nutraceuticals usually have amphipathic nature, which may contribute to leakage of the active ingredient. In the present study, cyclodextrins (CyDs) were used to impart a change in the relative polarity and size of a model compound (ibuprofen) by the formation of inclusion complexes. Various inclusion complexes (2-hydroxypropyl (HP)-β-CyD-, α-CyD- and γ-CyD-ibuprofen) were prepared and presented within W/O/W emulsions, and the initial and long-term encapsulation efficiency was investigated. HP-β-CyD-ibuprofen provided the highest encapsulation of ibuprofen in comparison to a W/O/W emulsion with unassociated ibuprofen confined within the inner water phase, with a four-fold increase in the encapsulation efficiency. An improved, although lower, encapsulation efficiency was obtained for the inclusion complex γ-CyD-ibuprofen in comparison to HP-β-CyD-ibuprofen, whereas α-CyD-ibuprofen had a similar encapsulation efficiency to that of unassociated ibuprofen. The lower encapsulation efficiency of ibuprofen in combination with α-CyD and γ-CyD was attributed to a lower association constant for the γ-CyD-ibuprofen inclusion complex and the ability of α-CyD to form inclusion complexes with fatty acids. For the W/O/W emulsion prepared with HP-β-CyD-ibuprofen, the highest encapsulation of ibuprofen was obtained at hyper- and iso-osmotic conditions and by using an excess molar ratio of CyD to ibuprofen. In the last part of the study, it was suggested that the chemical modification of the HP-β-CyD molecule did not influence the encapsulation of ibuprofen, as a similar encapsulation efficiency was obtained for an inclusion complex prepared with mono-1-glucose-β-CyD. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Genetic resources of the functional food, teramnus labialis (L.f.) spreng for improving seed number, flavonol content, oil %, and fatty acid compositions

    Science.gov (United States)

    Teramnus labialis is used as food in India and has potential to be used as a functional food vegetable in the U.S.A. Photoperiod-sensitive T. labialis accessions were grown in the greenhouse from 2010 to 2011 and evaluated for flavonol content, oil %, and fatty acid compositions. Significant variati...

  14. Food preservative potential of essential oils and fractions from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against mycotoxigenic fungi

    DEFF Research Database (Denmark)

    Nguefack, J.; Dongmo, J. B. Lekagne; Dakole, C. D.

    2009-01-01

    The food preservative potential of essential oils from three aromatic plants Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris and their fractions was investigated against two mycotoxigenic strains each of Aspergillus ochraceus, Penicillium expansum and P. verrucosum. The fungicidal...

  15. Designing deoxidation inhibiting encapsulation of metal oxide nanostructures for fluidic and biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Moumita, E-mail: ghoshiisc@gmail.com [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Ghosh, Siddharth [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Seibt, Michael [IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Schaap, Iwan A.T. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Schmidt, Christoph F. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Mohan Rao, G. [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-12-30

    Graphical abstract: To retain atomic structure and morphology of ZnO nanostructures (caused by deoxidation of ZnO) in water/bio-fluids, we propose and demonstrate a robust and inexpensive encapsulation technique using bio-compatible non-ionic surfactant. - Highlights: • Aqueous solutions of ZnO nanorods with and without surfactant are prepared. • With time ZnO nanorods show structural deterioration in different aqueous solutions. • Crystallinity of ZnO nanorods in absence of aqueous solution remain unaffected. • Encapsulation of bio-compatible surfactant in alchohol avoid ZnO deoxidation. • Crystallinity and structure of ZnO nanorods after encapsulation remain unaffected. - Abstract: Due to their photoluminescence, metal oxide nanostructures such as ZnO nanostructures are promising candidates in biomedical imaging, drug delivery and bio-sensing. To apply them as label for bio-imaging, it is important to study their structural stability in a bio-fluidic environment. We have explored the effect of water, the main constituent of biological solutions, on ZnO nanostructures with scanning electron microscopy (SEM) and photoluminescence (PL) studies which show ZnO nanorod degeneration in water. In addition, we propose and investigate a robust and inexpensive method to encapsulate these nanostructures (without structural degradation) using bio-compatible non-ionic surfactant in non-aqueous medium, which was not reported earlier. This new finding is an immediate interest to the broad audience of researchers working in biophysics, sensing and actuation, drug delivery, food and cosmetics technology, etc.

  16. Dielectric relaxation and AC conductivity studies of Se90Cd10−xInx glassy alloys

    Directory of Open Access Journals (Sweden)

    Nitesh Shukla

    2016-06-01

    Full Text Available Chalcogenide glassy alloys of Se90Cd10−xInx (x = 2, 4, 6, 8 are synthesized by melt quench technique. The prepared glassy alloys have been characterized by techniques such as differential scanning calorimetry (DSC, scanning electron microscopy (SEM and energy dispersive X-ray (EDAX. Dielectric properties of Se90Cd10−xInx (x = 2, 4, 6, 8 chalcogenide glassy system have been studied using impedance spectroscopic technique in the frequency range 42 Hz to 5 MHz at room temperature. It is found that the dielectric constants ɛ′, dielectric loss factor ɛ″ and loss angle Tan δ depend on frequency. ɛ′, ɛ″ and loss angle Tan δ are found to be decreasing with the In content in Se90Cd10−xInx glassy system. AC conductivity of the prepared sample has also been studied. It is found that AC conductivity increases with frequency where as it has decreasing trend with increasing In content in Se–Cd matrix. The semicircles observed in the Cole–Cole plots indicate a single relaxation process.

  17. Photopolymerizable liquid encapsulants for microelectronic devices

    Science.gov (United States)

    Baikerikar, Kiran K.

    2000-10-01

    Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion

  18. Hybrid chip-on-board LED module with patterned encapsulation

    Science.gov (United States)

    Soer, Wouter Anthon; Helbing, Rene; Huang, Guan

    2018-02-27

    Different wavelength conversion materials, or different concentrations of a wavelength conversion material are used to encapsulate the light emitting elements of different colors of a hybrid light emitting module. In an embodiment of this invention, second light emitting elements (170) of a particular color are encapsulated with a transparent second encapsulant (120;420;520), while first light emitting elements (160) of a different color are encapsulated with a wavelength conversion first encapsulant (110;410;510). In another embodiment of this invention, a particular second set of second and third light emitting elements (170,580) of different colors is encapsulated with a different encapsulant than another first set of first light emitting elements (160).

  19. Effect of glassy carbon properties on the electrochemical deposition of platinum nano-catalyst and its activity for methanol oxidation

    Directory of Open Access Journals (Sweden)

    SANJA TERZIC

    2007-02-01

    Full Text Available The effects of the properties of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on glassy carbon (GC/Pt for methanol oxidation in alkaline and acidic solutions were studied. Platinum was potentiostatically deposited on two glassy carbon samples, thermally treated at different temperatures, which were either polished or anodicaly polarised in acid (GCOX-AC/Pt and in alkali (GCOX-AL/Pt. Anodic polarisation of glassy carbon, either in alkaline or acidic solution, enhances the activity of both types of GC/Pt electrodes for methanol oxidation. The activity of the catalysts follows the change in the properties of the glassy carbon support upon anodic treatment. The specific activity of the GCOX-AL/Pt electrode for this reaction in alkali is increased only a few times in comparison with the activity of the GC/Pt one. On the other hand, the specific activity of the GCOX-AC/Pt electrode for methanol oxidation in acid is about one order of magnitude higher than that of the GC/Pt electrode. The role of the substrate on the properties of catalyst is discussed in detail.

  20. Connection between NMR and electrical conductivity in glassy chalcogenide fast ionic conductors

    International Nuclear Information System (INIS)

    Kim, K.H.

    1995-01-01

    The work documented in this thesis follows the traditional order. In this chapter a general discussion of ionic conduction and of glassy materials are followed by a brief outline of the experimental techniques for the investigation of fast ionic conduction in glassy materials, including NMR and impedance spectroscopy techniques. A summary of the previous and present studies is presented in the last section of this introductory chapter. The details of the background theory and models are found in the Chapter II, followed by the description of the experimental details in Chapter III. Chapter IV of the thesis describes the experimental results and the analysis of the experimental observations followed by the conclusions in chapter V

  1. Fatty Acid Digestibility in Lactating Cows Fed Increasing Amounts of Protected Vegetable Oil, Fish Oil or Saturated Fat

    DEFF Research Database (Denmark)

    Børsting, Christian Friis; Weisbjerg, Martin Riis; Hvelplund, Torben

    1992-01-01

    Fatty acid digestion was studied in three dairy cows cannulated in the rumen, duodenum and ileum. Cows were fed encapsulated fat sources (vegetable oil, saturated fat and fish oil). A preperiod diet was fed with no added fat. In a graeco-latin design nine diets comprising three levels of each...... of the three fat sources were fed. The preperiod diet contained 230 g fatty acids (FA), whereas the three other fats were fed at about 550, 850 and 1150 g FA/day. The feed-ileùm true digestibility of total FA was 95, 47 and 86% for vegetable, saturated and fish fat, respectively. The true digestibility of FA...

  2. Orbital physics in sulfur spinels: ordered, liquid and glassy ground states

    International Nuclear Information System (INIS)

    Buettgen, N; Hemberger, J; Fritsch, V; Krimmel, A; Muecksch, M; Nidda, H-A Krug von; Lunkenheimer, P; Fichtl, R; Tsurkan, V; Loidl, A

    2004-01-01

    Measurements of magnetization M(T, H), heat capacity C(T), NMR lineshift K(T) and linewidth Δ(T), neutron scattering S(Q, ω, T) and broadband dielectric spectroscopy ε(ω, T) provide experimental evidence of the different orbital ground states in the cubic sulfur spinels under investigation. In all compounds, the tetrahedrally coordinated Jahn-Teller ions Fe 2+ are characterized by a degeneracy of the orbital degrees of freedom. Particularly, we found a long-range orbital ordering in polycrystalline (PC) FeCr 2 S 4 , and a glassy freezing of the orbital degrees of freedom in FeCr 2 S 4 (single crystals) (SCs). In contrast, FeSc 2 S 4 belongs to the rare class of spin-orbital liquids, where quantum fluctuations accompanying the glassy freezing of the orbitals suppress long-range magnetic order

  3. Acoustically excited encapsulated microbubbles and mitigation of biofouling

    KAUST Repository

    Qamar, Adnan

    2017-08-31

    Provided herein is a universally applicable biofouling mitigation technology using acoustically excited encapsulated microbubbles that disrupt biofilm or biofilm formation. For example, a method of reducing biofilm formation or removing biofilm in a membrane filtration system is provided in which a feed solution comprising encapsulated microbubbles is provided to the membrane under conditions that allow the encapsulated microbubbles to embed in a biofilm. Sonication of the embedded, encapsulated microbubbles disrupts the biofilm. Thus, provided herein is a membrane filtration system for performing the methods and encapsulated microbubbles specifically selected for binding to extracellular polymeric substances (EFS) in a biofilm.

  4. Glassy behavior in the layered perovskites La2−xSrxCoO4(1.1≤x≤1.3)

    International Nuclear Information System (INIS)

    Mukherjee, S.; Mukherjee, Rajarshi; Banerjee, S.; Ranganathan, R.; Kumar, Uday

    2012-01-01

    The glassy behavior of the phase segregated state in the layered cobaltite La 2−x Sr x CoO 4 has been studied. The role of the inter-cluster interactions as well as the disordered spins at the paramagnetic–ferromagnetic interface, behind the observed glassy behavior have been investigated. The disordered spins at the interface appear to be strongly pinned, and they contribute little to the observed glassy behavior. On the other hand, the inter-cluster interactions play the key role. Both the Co 4+ and Co 3+ ions are in the intermediate spin state. - Highlights: ► Phase segregated state of cobaltite La 2−x Sr x CoO 4 for (1.1≤x≤1.3) to find the origin of the observed glassy behavior. ► Result of the frequency dependent ac susceptibility measurement excludes the possibility of any spin glass phase, hints strong inter-cluster interactions. ► Relaxation experiments confirm the system to be a collection of clusters with two preferred sizes. ► The glassy behavior originates from strong inter-cluster interactions.

  5. Thin film Encapsulations of Flexible Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tsai Fa-Ta

    2016-01-01

    Full Text Available Various encapsulated films for flexible organic light emitting diodes (OLEDs were studied in this work, where gas barrier layers including inorganic Al2O3 thin films prepared by atomic layer deposition, organic Parylene C thin films prepared by chemical vapor deposition, and their combination were considered. The transmittance and water vapor transmission rate of the various organic and inorgabic encapsulated films were tested. The effects of the encapsulated films on the luminance and current density of the OLEDs were discussed, and the life time experiments of the OLEDs with these encapsulated films were also conducted. The results showed that the transmittance are acceptable even the PET substrate were coated two Al2O3 and Parylene C layers. The results also indicated the WVTR of the PET substrate improved by coating the barrier layers. In the encapsulation performance, it indicates the OLED with Al2O3 /PET, 1 pair/PET, and 2 pairs/PET presents similarly higher luminance than the other two cases. Although the 1 pair/PET encapsulation behaves a litter better luminance than the 2 pairs/PET encapsulation, the 2 pairs/PET encapsulation has much better life time. The OLED with 2 pairs/PET encapsulation behaves near double life time to the 1 pair encapsulation, and four times to none encapsulation.

  6. Herbal infusions of black seed and wheat germ oil: Their chemical profiles, in vitro bio-investigations and effective formulations as Phyto-Nanoemulsions.

    Science.gov (United States)

    Gumus, Z Pinar; Guler, Emine; Demir, Bilal; Barlas, F Baris; Yavuz, Murat; Colpankan, Dilara; Senisik, A Murat; Teksoz, Serap; Unak, Perihan; Coskunol, Hakan; Timur, Suna

    2015-09-01

    The reported studies related to black seed oil (BSO) and wheat germ oil (WGO) have illustrated that they have a wide range of biological activities. Therefore, enhancing the amount of bio-active compounds that caused higher cell based anti-oxidative effect as well as cell proliferation, etc. in seed oils, infusion of crude plant material has been gained importance as a traditional technique. Herein, we accomplished the infusion of Calendula flowers that also contains many phyto-constituents into BSO and WGO. After the infusion of oils, the change of phytochemical amount was investigated and evaluated according to the oils by chromatography, radical scavenging activity. Subsequently, for investigating the biological impact upon live cells, cytotoxicity, cell-based antioxidant capacity, wound healing and radioprotective activity were tested with monkey kidney fibroblast like cells (Vero) and HaCaT keratinocytes. In vitro cell based experiments (wound healing and radioprotective activity) confirmed that Calendula infused BSO and WGO have greater bio-activity when compared to those plain forms. The herbal oils prepared with an effective extraction technique were incorporated into nanoemulsion systems which will be then called as 'Phyto-Nanoemulsion'. After herbal oil biomolecules were encapsulated into nanoemulsion based delivery systems, the designed formulations were investigated in terms of biological activities. In conclusion, these preparations could be a good candidate as a part of dermal cosmetic products or food supplements which have the therapeutic efficiency, especially after radio- or chemotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Epoxidized soy bean oil migrating from the gaskets of lids into food packed in glass jars. Analysis by on-line liquid chromatography-gas chromatography.

    Science.gov (United States)

    Fankhauser-Noti, Anja; Fiselier, Katell; Biedermann-Brem, Sandra; Grob, Koni

    2005-08-05

    The migration of epoxidized soy bean oil (ESBO) from the gasket in the lids of glass jars into foods, particularly those rich in edible oil, often far exceeds the legal limit (60 mg/kg). ESBO was determined through a methyl ester isomer of diepoxy linoleic acid. Transesterification occurred directly in the homogenized food. From the extracted methyl esters, the diepoxy components were isolated by normal-phase LC and transferred on-line to gas chromatography with flame ionization detection using the on-column interface in the concurrent solvent evaporation mode. The method involves verification elements to ensure the reliability of the results for every sample analyzed. The detection limit is 2-5 mg/kg, depending on the food. Uncertainty of the procedure is below 10%.

  8. Glassy slag from rotary hearth vitrification

    International Nuclear Information System (INIS)

    Eschenbach, R.C.; Simpson, M.D.; Paulson, W.S.; Whitworth, C.G.

    1995-01-01

    Use of a Plasma Arc Centrifugal Treatment (PACT) system for treating mixed wastes containing significant quantities of soil results in formation of a glassy slag which melts at significantly higher temperatures than the borosilicate glasses. The slag typically contains mostly crystalline material, frequently in an amorphous matrix, thus the appellation open-quotes glassy slag.close quotes Details of the PACT process are given. The process will be used for treating buried wastes from Pit 9 at the Idaho National Engineering Laboratory and low-level mixed wastes from nuclear power plants in Switzerland. Properties of the slag after cooling to room temperature are reported, in particular the Product Consistency Test, for a number of different feedstocks. In almost all cases, the results compare favorably with conventional borosilicate glasses. In the PACT system, a transferred arc carries current from the plasma torch to a rotating molten bed of slag, which is the material being heated. Thus this transferred arc adds energy where it is needed - at and near the surface of the molten bath. Material is fed into the furnace through a sealed feeder, and falls into a rotating tub which is heated by the arc. Any organic material is quickly vaporized into the space above the slag bed and burned by the oxygen in the furnace. Metal oxides in the charge are melted into the slag. Metal in the feed tends to melt and collect as a separate phase underneath the slag, but can be oxidized if desired. When oxidized, it unites with other constituents forming a homogeneous slag

  9. Current Demands for Food-Approved Liposome Nanoparticles in Food and Safety Sector

    Directory of Open Access Journals (Sweden)

    Shruti Shukla

    2017-12-01

    Full Text Available Safety of food is a noteworthy issue for consumers and the food industry. A number of complex challenges associated with food engineering and food industries, including quality food production and safety of the food through effective and feasible means can be explained by nanotechnology. However, nanoparticles have unique physicochemical properties compared to normal macroparticles of the same composition and thus could interact with living system in surprising ways to induce toxicity. Further, few toxicological/safety assessments have been performed on nanoparticles, thereby necessitating further research on oral exposure risk prior to their application to food. Liposome nanoparticles are viewed as attractive novel materials by the food and medical industries. For example, nanoencapsulation of bioactive food compounds is an emerging application of nanotechnology. In several food industrial practices, liposome nanoparticles have been utilized to improve flavoring and nutritional properties of food, and they have been examined for their capacity to encapsulate natural metabolites that may help to protect the food from spoilage and degradation. This review focuses on ongoing advancements in the application of liposomes for food and pharma sector.

  10. Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds

    Science.gov (United States)

    Mastin, L.G.

    2007-01-01

    The deposits of mafic hydromagmatic eruptions are more fine grained and variable in vesicularity than dry magmatic deposits. Blocky, equant shapes of many hydromagmatic clasts also contrast with droplet, thread, and bubble wall morphology of dry magmatic fragments. Small (disintegration of glassy rinds on pyroclast surfaces as they deform within turbulent flows. This process, termed "turbulent shedding", may occur during the expansion phase of vapor explosions or during turbulent but nonexplosive mixing of magma with water, steam, or water sprays. The occurrence of turbulent shedding and the resulting fragment sizes depend on the timescale for rind growth and the timescale between disturbances that remove or disintegrate glassy rinds. Turbulent shedding is directly observable in some small littoral jets at Kilauea. Calculations suggest that, in the presence of liquid water or water sprays, glassy rinds having a thickness of microns to millimeters should form in milliseconds to seconds. This is similar to the timescale between turbulent velocity fluctuations that can shred lava globules and remove such rinds. The fraction of a deposit consisting of fine ash should increase with the duration of this process: Large-scale Surtseyan jets generate hundreds or thousands of shedding events; bubble bursts or tephra jets at Kilauea's coast may produce only a few.

  11. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    International Nuclear Information System (INIS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guerin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-01-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 deg. C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon

  12. Perspective of metal encapsulation of waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-01-01

    A conceptual flow sheet is presented for encapsulating solid, stabilized calcine (e.g., supercalcine) in a solid lead alloy, using existing or developing technologies. Unresolved and potential problem areas of the flow sheet are outlined and suggestions are made as how metal encapsulation might be applied to other solid wastes from the fuel cycle. It is concluded that metal encapsulation is a technique applicable to many forms of solid wastes and is likely to meet future waste isolation criteria and regulations

  13. Essential Oils and Antifungal Activity

    Science.gov (United States)

    Coppola, Raffaele; De Feo, Vincenzo

    2017-01-01

    Since ancient times, folk medicine and agro-food science have benefitted from the use of plant derivatives, such as essential oils, to combat different diseases, as well as to preserve food. In Nature, essential oils play a fundamental role in protecting the plant from biotic and abiotic attacks to which it may be subjected. Many researchers have analyzed in detail the modes of action of essential oils and most of their components. The purpose of this brief review is to describe the properties of essential oils, principally as antifungal agents, and their role in blocking cell communication mechanisms, fungal biofilm formation, and mycotoxin production. PMID:29099084

  14. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T)

    OpenAIRE

    Karim Asadpour-Zeynali; Venus Baghalabadi

    2017-01-01

    In this work poly eriochrome black T (EBT) was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH) was investigated. The poly (EBT)-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak ...

  15. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    OpenAIRE

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 ? 10?6 to 100 ? 10?6?mol?L?1 with determination coefficient and method detection limit (LoD = 3?s/slope) of 0....

  16. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    International Nuclear Information System (INIS)

    Garcia, M.G.; Armendariz, G.M.E.; Godinez, Luis A.; Torres, J.; Sepulveda-Guzman, S.; Bustos, E.

    2011-01-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 ± 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  17. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.G. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Department of Chemistry, Universidad de Guanajuato, Cerro de la Venada S/N Col. Pueblito de Rocha, 36040 Guanajuato, Gto (Mexico); Armendariz, G.M.E.; Godinez, Luis A.; Torres, J. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Sepulveda-Guzman, S. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad, San Nicolas de los Garza, Nuevo Leon, 66451 Nuevo Leon (Mexico); Bustos, E., E-mail: ebustos@cideteq.mx [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico)

    2011-09-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 {+-} 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  18. Migration of fluorochemical paper additives from food-contact paper into foods and food simulants.

    Science.gov (United States)

    Begley, T H; Hsu, W; Noonan, G; Diachenko, G

    2008-03-01

    Fluorochemical-treated paper was tested to determine the amount of migration that occurs into foods and food-simulating liquids and the characteristics of the migration. Migration characteristics of fluorochemicals from paper were examined in Miglyol, butter, water, vinegar, water-ethanol solutions, emulsions and pure oil containing small amounts of emulsifiers. Additionally, microwave popcorn and chocolate spread were used to investigate migration. Results indicate that fluorochemicals paper additives do migrate to food during actual package use. For example, we found that microwave popcorn contained 3.2 fluorochemical mg kg(-1) popcorn after popping and butter contained 0.1 mg kg(-1) after 40 days at 4 degrees C. Tests also indicate that common food-simulating liquids for migration testing and package material evaluation might not provide an accurate indication of the amount of fluorochemical that actually migrates to food. Tests show that oil containing small amounts of an emulsifier can significantly enhance migration of a fluorochemical from paper.

  19. Sensory attribute preservation in extra virgin olive oil with addition of oregano essential oil as natural antioxidant.

    Science.gov (United States)

    Asensio, Claudia M; Nepote, Valeria; Grosso, Nelson R

    2012-09-01

    Four commercial varieties of oregano are farmed in Argentina: "Compacto,"Cordobes,"Criollo," y "Mendocino." Oregano essential oil is known for antioxidant properties. The objective of this study was to evaluate changes in the intensities of positive and negative attributes in extra virgin olive oil with addition of essential oil obtained from the 4 Argentinean oregano types. Oregano essential oil was added into olive oil at 0.05% w/w. The samples were stored in darkness and light exposure during 126 d at room temperature. The intensity ratings of fruity, pungency, bitterness, oregano flavor, and rancid flavor were evaluated every 21 d by a trained sensory panel. In general, samples with addition of oregano essential oil in olive oil exhibited higher and lower intensity ratings of positive and negative attributes, respectively, during storage compared with the control samples. The first 2 principal components explained 72.3% of the variability in the olive oil samples. In general, positive attributes of olive oil were highly associated with the addition of oregano essential oil in darkness, whereas rancid flavor was negatively associated with them. Olive oil with oregano "Cordobes" essential oil was oppositely associated with light exposure treatments and negative attribute (rancid flavor) suggesting better performance as natural antioxidant of this essential oil in olive oil. The result of this study showed that the presence of oregano essential oil, specially "Cordobes" type, preserve sensory quality of extra virgin olive oil prolonging the shelf life of this product. Extra virgin olive oil is highly appreciated for its health benefits, taste, and aroma. These properties are an important aspect in this product quality and need to be preserved. The addition of natural additives instead of synthetic ones covers the present trend in food technology. This research showed that the addition of oregano essential oil preserved the intensity ratings of positive attributes

  20. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  1. Efficiency and protective effect of encapsulation of milk immunoglobulin G in multiple emulsion.

    Science.gov (United States)

    Chen, C C; Tu, Y Y; Chang, H M

    1999-02-01

    Milk immunoglobulin G (IgG), separated with protein G affinity chromatography, and IgG in colostral whey were encapsulated by 0.5% (w/v) of Tween 80, sucrose stearate, or soy protein, which were used as secondary emulsifiers in the water in oil in water type multiple emulsion. The residual contents of separated IgG and IgG in colostral whey, ranging from 58.7 to 49.7% and from 13.2 to 21.3%, respectively, in the inner water phase (water phase surrounded by oil phase) with emulsifiers were determined by ELISA. However, the emulsion stability decreased after 24 h, and the residual IgG content in the inner water phase was lowered. Encapsulation of IgG in the multiple emulsion increased the stability of separated IgG against acid (pH 2.0) and alkali (pH 12.0) by 21-56% and 33-62%, respectively, depending on the emulsifier used. Moreover, multiple emulsion also provided a remarkable protective effect on separated IgG stability against proteases. The residual contents of separated IgG in multiple emulsion, using Tween 80 as secondary emulsifier, incubated for 2 h with pepsin (pH 2.0) and trypsin and chymotrypsin (pH 7.6) (enzyme/substrate = 1/20) were 35.4, 72.5, and 82.3%, whereas those of separated IgG in enzyme solution were only 7.2, 33. 1, and 35.2%, respectively. However, the separated IgG loss during the preparation of multiple emulsion was almost 41-50%.

  2. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design

    Directory of Open Access Journals (Sweden)

    Fard Masoumi HR

    2015-10-01

    Full Text Available Hamid Reza Fard Masoumi, Mahiran Basri, Wan Sarah Samiun, Zahra Izadiyan, Chaw Jiang Lim Nanodelivery Group, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti­psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homo­genizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3–6 wt%, lecithin (2–3 wt%, Tween 80 (0.5–1 wt%, glycerol (1.5–3 wt%, and water (87–93 wt% on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm with residual standard error <3.2%. Keywords: schizoaffective disorder, antipsychotic drug, bipolar I disorder, D-optimal mixture design, optimization formulation

  3. Waste vegetable oil survey report

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, R. [Science enterprise Algoma seA, Sault Ste. Marie, ON (Canada)

    2009-02-06

    This study was conducted to estimate potential sources of feedstock waste oils for biodiesel production in the Sault Ste. Marie region of Ontario. Two feedstocks were investigated over a period of several months, notably cooking oil and waste vegetable oil. The study was conducted to examine oil throughput, collection practices, and to gauge interest in local initiatives. A distribution list of commercial restaurant listings was developed, and surveys were conducted with members of private enterprises, city government, and non-profit stakeholders in the region. Average volumes of waste vegetable oil were presented for different types of restaurants. The various types of oil used in the restaurants were also quantified. Results of the study showed a positive public response to the idea of a local biodiesel initiative. Steak house, fast food, and Italian establishments generated the largest portion of waste vegetable oil amongst survey respondents. However, the highest response rates came from establishments with little or no oil consumption. Many franchise fast food restaurants are already in contracts with waste oil removal companies. 3 tabs., 3 figs.

  4. The use of food grade oil in the prevention of vase tunicate fouling on mussel aquaculture gear

    Directory of Open Access Journals (Sweden)

    Jiselle A. BAKKER

    2011-01-01

    Full Text Available Current mitigation strategies against invasive tunicates on mussel aquaculture gear in Prince Edward Island concentrate on labour-intensive and costly fouling removal. Instead of removal, this study focused on preventing the settlement of the vase tunicate Ciona intestinalis and other fouling organisms by applying a layer of food grade oil to gear prior to recruitment. Laboratory tests established the adherence and persistence of shortening, a food grade oil with a melting point exceeding ambient water temperatures, to rope and mussels. In situ tests showed that shortening decreased C. intestinalis weight and abundance on buoys, spat collector ropes and collector plates but not on mussel socks. Fouling by algae and other tunicates was significantly reduced on most substrates. There were no detrimental effects of shortening treatment on mussel length and abundance on mussel socks, but total mussel weight was significantly lower on shortening-treated socks. Shortening treatment did not significantly affect mussel spat settlement on spat collector ropes, but further evaluation is required. Overall, shortening application has considerable potential for reducing tunicate and other fouling, particularly on buoys.

  5. Relook on fitting of viscosity with undercooling of glassy liquids

    Indian Academy of Sciences (India)

    Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur ... The present approach is on the modification of viscosity fitting of undercooled liquid as a function of ... behaviour of glassy alloys and organic and ionic compounds ...... the present method is applied to calculate the analytical solu-.

  6. Biological Activities of Three Essential Oils of the Lamiaceae Family

    Directory of Open Access Journals (Sweden)

    Gema Nieto

    2017-08-01

    Full Text Available Herbs and spices have been used since ancient times to improve the sensory characteristics of food, to act as preservatives and for their nutritional and healthy properties. Herbs and spices are generally recognized as safe (GRAS and are excellent substitutes for chemical additives. Essential oils are mixtures of volatile compounds obtained, mainly by steam distillation, from medicinal and aromatic plants. They are an alternative to synthetic additives for the food industry, and they have gained attention as potential sources for natural food preservatives due to the growing interest in the development of safe, effective, natural food preservation. Lamiaceae is one of the most important families in the production of essential oils with antioxidants and antimicrobial properties. Aromatic plants are rich in essential oils and are mainly found in the Mediterranean region, where the production of such oils is a profitable source of ecological and economic development. The use of essential oils with antimicrobial and antioxidant properties to increase the shelf life of food is a promising technology, and the essential oils of the Lamiaceae family, such as rosemary, thyme, and sage, have been extensively studied with respect to their use as food preservatives. Regarding the new applications of essential oils, this review gives an overview of the current knowledge and recent trends in the use of these oils from aromatic plants as antimicrobials and antioxidants in foods, as well as their biological activities, future potential, and challenges.

  7. Biological Activities of Three Essential Oils of the Lamiaceae Family.

    Science.gov (United States)

    Nieto, Gema

    2017-08-23

    Herbs and spices have been used since ancient times to improve the sensory characteristics of food, to act as preservatives and for their nutritional and healthy properties. Herbs and spices are generally recognized as safe (GRAS) and are excellent substitutes for chemical additives. Essential oils are mixtures of volatile compounds obtained, mainly by steam distillation, from medicinal and aromatic plants. They are an alternative to synthetic additives for the food industry, and they have gained attention as potential sources for natural food preservatives due to the growing interest in the development of safe, effective, natural food preservation. Lamiaceae is one of the most important families in the production of essential oils with antioxidants and antimicrobial properties. Aromatic plants are rich in essential oils and are mainly found in the Mediterranean region, where the production of such oils is a profitable source of ecological and economic development. The use of essential oils with antimicrobial and antioxidant properties to increase the shelf life of food is a promising technology, and the essential oils of the Lamiaceae family, such as rosemary, thyme, and sage, have been extensively studied with respect to their use as food preservatives. Regarding the new applications of essential oils, this review gives an overview of the current knowledge and recent trends in the use of these oils from aromatic plants as antimicrobials and antioxidants in foods, as well as their biological activities, future potential, and challenges.

  8. Influence of High Temperature and Duration of Heating on the Sunflower Seed Oil Properties for Food Use and Bio-diesel Production.

    Science.gov (United States)

    Giuffrè, Angelo Maria; Capocasale, Marco; Zappia, Clotilde; Poiana, Marco

    2017-01-01

    Two important problems for the food industry are oil oxidation and oil waste after frying. Sunflower seed oil is one of the vegetable oils most commonly used in the food industry. Two variables were applied to the low oleic sunflower seed oil in this work i.e. heating temperature (180-210-240°C) and time of heating (15-30-60-120 minutes), to study from the edible point of view the variations of its physico-chemical properties. After 120 minutes heating at 240°C the following was found: refractive index (1.476), free acidity (0.35%), K232 (2.87), K270 (3.71), antiradical activity (45.90% inhibition), total phenols (523 mg kg -1 ), peroxide value (17.00 meq kg -1 ), p-anisidine value (256.8) and Totox (271.7), all of which showed a constant deterioration. In relation to the use as a feedstock for bio-diesel production, after 120 minutes heating at 240℃ the following was found: acid value 0.70 mg KOH g -1 oil, iodine value 117.83 g I 2 100 g -1 oil, oil stability index 0.67 h, kinematic viscosity (at 40°C) 77.85 mm 2 s -1 , higher heating value 39.86 MJ kg -1 , density 933.34 kg/m 3 and cetane number 67.04. The parameters studied in this work were influenced, in different ways, by the applied variables. Heating temperature between 180 and 210°C and 120 min heating duration were found to be the most appropriate conditions for sunflower seed oil both from the deep frying point of view and from a subsequent use as feedstock for bio-diesel production. In light of the vegetable oils' International standards for an edible use and for a bio-diesel production, findings of this work can be used to set heating temperature and heating duration to preserve as long possible the physico-chemical properties of a low oleic sunflower seed oil for both its edible use as a fat during cooking and for its re-use after frying.

  9. Electrical resistivity in Zr48Nb8Cu12Fe8Be24 glassy and crystallized alloys

    Science.gov (United States)

    Bai, H. Y.; Tong, C. Z.; Zheng, P.

    2004-02-01

    The electrical resistivity of Zr48Nb8Cu12Fe8Be24 bulk metallic glassy and crystallized alloys in the temperature range of 4.2-293 K is investigated. It is found that the resistivity in glassy and crystallized states shows opposite temperature coefficients. For the metallic glass, the resistivity shows a negative logarithmic dependence at temperatures below 16 K, whereas it has more normal behavior for the crystallized alloy. At higher temperatures, the resistivity in both glassy and crystallized alloys shows dependence upon both T and T2, but the signs of the T and T2 terms are opposite. The results are interpreted in terms of scattering from two-level tunneling states in glasses and the generalized Ziman diffraction model.

  10. Polysaccharide Hydrogels Support the Long-Term Viability of Encapsulated Human Mesenchymal Stem Cells and Their Ability to Secrete Immunomodulatory Factors

    Directory of Open Access Journals (Sweden)

    Fahd Hached

    2017-01-01

    Full Text Available While therapeutically interesting, the injection of MSCs suffers major limitations including cell death upon injection and a massive leakage outside the injection site. We proposed to entrap MSCs within spherical particles derived from alginate, as a control, or from silanized hydroxypropyl methylcellulose (Si-HPMC. We developed water in an oil dispersion method to produce small Si-HPMC particles with an average size of about 68 μm. We evidenced a faster diffusion of fluorescein isothiocyanate-dextran in Si-HPMC particles than in alginate ones. Human adipose-derived MSCs (hASC were encapsulated either in alginate or in Si-HPMC, and the cellularized particles were cultured for up to 1 month. Both alginate and Si-HPMC particles supported cell survival, and the average number of encapsulated hASC per alginate and Si-HPMC particle (7102 and 5100, resp. did not significantly change. The stimulation of encapsulated hASC with proinflammatory cytokines resulted in the production of IDO, PGE2, and HGF whose concentration was always higher when cells were encapsulated in Si-HPMC particles than in alginate ones. We have demonstrated that Si-HPMC and alginate particles support hASC viability and the maintenance of their ability to secrete therapeutic factors.

  11. Antimicrobial effect of dietary oregano essential oil against Vibrio bacteria in shrimps

    Directory of Open Access Journals (Sweden)

    Gracia-Valenzuela M.H.

    2014-01-01

    Full Text Available The effect of dietary oregano essential oils on the growth of Vibrio bacteria in shrimps was evaluated. Shrimps were fed: (i food with oregano oil with a high level of thymol; (ii food with oregano oil with a high level of carvacrol, and (iii food without oregano oil (the control. The animals were infected by three species of Vibrio (vulnificus, parahaemolyticus and cholerae. The microbial counts of Vibrio species were significantly lower (p <0.05 in tissues from animals whose food was supplemented with oregano oil. We concluded that dietary supplementation of shrimps with oregano oil provides antimicrobial activity into the body of the penaeids.

  12. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    Science.gov (United States)

    Shi, Wenxiong

    2016-11-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly.

  13. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  14. Encapsulation Efficiency, Oscillatory Rheometry

    Directory of Open Access Journals (Sweden)

    Z. Mohammad Hassani

    2014-01-01

    Full Text Available Nanoliposomes are one of the most important polar lipid-based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using a modified thermal method. Only one melting peak in DSC curve of gamma oryzanol bearing liposomes was observed which could be attributed to co-crystallization of both compounds. The addition of gamma oryzanol, caused to reduce the melting point of 5% (w/v lecithin-based liposome from 207°C to 163.2°C. At high level of lecithin, increasing of liposome particle size (storage at 4°C for two months was more obvious and particle size increased from 61 and 113 to 283 and 384 nanometers, respectively. The encapsulation efficiency of gamma oryzanol increased from 60% to 84.3% with increasing lecithin content. The encapsulation stability of oryzanol in liposome was determined at different concentrations of lecithin 3, 5, 10, 20% (w/v and different storage times (1, 7, 30 and 60 days. In all concentrations, the encapsulation stability slightly decreased during 30 days storage. The scanning electron microscopy (SEM images showed relatively spherical to elliptic particles which indicated to low extent of particles coalescence. The oscillatory rheometry showed that the loss modulus of liposomes were higher than storage modulus and more liquid-like behavior than solid-like behavior. The samples storage at 25°C for one month, showed higher viscoelastic parameters than those having been stored at 4°C which were attributed to higher membrane fluidity at 25°C and their final coalescence.Nanoliposomes are one of the most important polar lipid based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using modified thermal method. Only one

  15. 21 CFR 181.26 - Drying oils as components of finished resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Drying oils as components of finished resins. 181... Prior-Sanctioned Food Ingredients § 181.26 Drying oils as components of finished resins. Substances classified as drying oils, when migrating from food-packaging material (as components of finished resins...

  16. Properties of organogels of high stearic soybean oil

    Science.gov (United States)

    Recently, the U.S. Food and Drug Administration (FDA) announced that food companies have to phase out the use of partially hydrogenated oils containing trans-fats by 2018. The use of high-stearic oils has been recognized as one of the ways to replace trans fats in food. Organogels also have drawn a ...

  17. Some Recent Developments in Structure and Glassy Behavior of Proteins

    Science.gov (United States)

    Hu, Chin-Kun

    2012-02-01

    We have used ARVO developed by us to find that the ratio of volume and surface area of proteins in Protein Data Bank distributed in a very narrow region [1]. Such result is useful for the determination of protein 3D structures. It has been widely known that a spin glass model can be used to understand the slow relaxation behavior of a glass at low temperatures [2]. We have used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that polymer chains with neighboring monomers connected by rigid bonds can relax very slowly and show glassy behavior [3]. We have also found that native collagen fibrils show glassy behavior at room temperatures [4]. The results of [3] and [4] about the glassy behavior of polymers or proteins are useful for understanding the mechanism for a biological system to maintain in a non-equilibrium state, including the ancient seed [5], which can maintain in a non-equilibrium state for a very long time. (1) M.-C. Wu, M. S. Li, W.-J. Ma, M. Kouza, and C.-K. Hu, EPL, in press (2011); (2) C. Dasgupta, S.-K. Ma, and C.-K. Hu. Phys. Rev. B 20, 3837-3849 (1979); (3) W.-J. Ma and C.-K. Hu, J. Phys. Soc. Japan 79, 024005, 024006, 054001, and 104002 (2010), C.-K. Hu and W.-J. Ma, Prog. Theor. Phys. Supp. 184, 369 (2010); S. G. Gevorkian, A. E. Allahverdyan, D. S. Gevorgyan and C.-K. Hu, EPL 95, 23001 (2011); S. Sallon, et al. Science 320, 1464 (2008).

  18. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  19. Preparation and characterization of polyurethane microcapsules containing functional oil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.H.; Seo, J.B.; Kim, Y.J. [Sungkyunkwan University, Suwon (Korea)

    2002-05-01

    Polyurethane microcapsules containing functional oil (citronella oil) were successfully prepared by conventional interfacial polymerization of tolulene 2,4-diisocyanate (TDI) and ethylene glycol (EG) and characterized by Fourier transform (FT-IR) spectroscopy, Ultraviolet spectroscopy, particle size analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The effects of polymerization variables such as surfactant concentration and agitation speed, on the particle size and particle size distribution were investigated. FT-IR spectroscopic data showed that citronella oil was successfully encapsulated in the microcapsule. Thermogravimetric analysis data showed that the microcapsule was thermally stable up to 220 deg. C. The controlled release of the citronella oil present in the microcapsule core in a methanol medium was demonstrated by ultraviolet spectroscopy, showing that the amount of released citronella oil was increased with increasing time. It was observed that the amount of released citronella oil was increased with increasing stirring speed and emulsifier concentration in the microcapsule preparation step. Polyurethane microcapsules containing citronella oil showed excellent anti-moth property. (author). 28 refs., 1 tab., 12 figs.

  20. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids.

    Science.gov (United States)

    Soukoulis, Christos; Bohn, Torsten

    2018-01-02

    Carotenoids are lipophilic secondary plant compounds, and their consumption within fruits and vegetables has been positively correlated with a decreased risk of developing several chronic diseases. However, their bioavailability is often compromised due to incomplete release from the food matrix, poor solubility and potential degradation during digestion. In addition, carotenoids in food products are prone to oxidative degradation, not only lowering the nutritional value of the product but also triggering other quality deteriorative changes, such as formation of lipid pro-oxidants (free radicals), development of discolorations or off-flavor defects. Encapsulation refers to a physicochemical process, aiming to entrap an active substance in structurally engineered micro- or nano-systems, in order to develop an effective thermodynamical and physical barrier against deteriorative environmental conditions, such as water vapor, oxygen, light, enzymes or pH. In this context, encapsulation of carotenoids has shown to be a very effective strategy to improve their chemical stability under common processing conditions including storage. In addition, encapsulation may also enhance bioavailability (via influencing bioaccessibility and absorption) of lipophilic bioactives, via modulating their release kinetics from the carrier system, solubility and interfacial properties. In the present paper, it is aimed to present the state of the art of carotenoid microencapsulation in order to enhance storability and bioavailability alike.

  1. Mathematical Modeling of Vegetable-Oil Crystallization

    DEFF Research Database (Denmark)

    Hjorth, Jeppe Lindegaard

    be desirable to enhance specific properties such as shelf life, viscosity, texture, sensory aspects and physical appearance. Vegetable oils and fats constitute a considerable part of many food products such as chocolate, margarine, bread, spreads and ice cream. Several attractive properties found......In recent years the food sector has experienced a great boost in demand for tailor-made fats and oils to produce so-called functional foods, where ingredients have been carefully modified to yield products with specific, valuable properties. Depending on market segment and product, it may...... in these products, including flavor release, melting profile and appearance, are governed by the oils and fats added. Consequently, altering the fat phase may lead to enhanced properties of the products. The primary focus of the present work is vegetable oils and fats originating from different sources covering...

  2. Limonene encapsulation in freeze dried gellan systems.

    Science.gov (United States)

    Evageliou, Vasiliki; Saliari, Dimitra

    2017-05-15

    The encapsulation of limonene in freeze-dried gellan systems was investigated. Surface and encapsulated limonene content was determined by measurement of the absorbance at 252nm. Gellan matrices were both gels and solutions. For a standard gellan concentration (0.5wt%) gelation was induced by potassium or calcium chloride. Furthermore, gellan solutions of varying concentrations (0.25-1wt%) were also studied. Limonene was added at two different concentrations (1 and 2mL/100g sample). Gellan gels encapsulated greater amounts of limonene than solutions. Among all gellan gels, the KCl gels had the greater encapsulated limonene content. However, when the concentration of limonene was doubled in these KCl gels, the encapsulated limonene decreased. The surface limonene content was significant, especially for gellan solutions. The experimental conditions and not the mechanical properties of the matrices were the dominant factor in the interpretation of the observed results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Preliminary investigation of cryopreservation by encapsulation ...

    African Journals Online (AJOL)

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star, a new commercial ornamental orchid hybrid, were cryopreserved by an encapsulation-dehydration technique. The effects of PLB size, various sucrose concentrations in preculture media and sodium alginate concentration for encapsulation were the main ...

  4. Equation-free dynamic renormalization in a glassy compaction model

    International Nuclear Information System (INIS)

    Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.

    2006-01-01

    Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena

  5. Equation-free dynamic renormalization in a glassy compaction model

    Science.gov (United States)

    Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.

    2006-07-01

    Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena.

  6. Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports

    Czech Academy of Sciences Publication Activity Database

    Bernardos, A.; Marina, T.; Žáček, Petr; Pérez-Esteve, É.; Martínez-Manez, R.; Lhotka, M.; Kouřimská, L.; Pulkrábek, J.; Klouček, P.

    2015-01-01

    Roč. 95, č. 14 (2015), s. 2824-2831 ISSN 0022-5142 Institutional support: RVO:61388963 Keywords : essential oils * encapsulation * cyclodextrin * controlled release * antifungal activity Subject RIV: EE - Microbiology, Virology Impact factor: 2.076, year: 2015

  7. Comparison of lubricant properties of castor oil and commercial engine oil

    Directory of Open Access Journals (Sweden)

    Binfa Bongfa

    2015-06-01

    Full Text Available The tribological performance of crude Nigeria-based castor oil has been investigated and compared with that of a foreign, 20W-50 high quality crankcase oil, to see its suitability as base oil for lubricating oils in indigenous vehicle and power plants engines. The experiment was conducted using a four ball tester. The results showed that unrefined castor oil has superior friction reduction and load bearing capability in an unformulated form than the commercial oil; can compete favourably with the commercial oil in wear protection when formulated with suitable antiwear agent, hence can be a good alternative base stock for crankcase oils suitable for Nigeria serviced vehicles, and plants engines from tribological, environmental, and non-food competitive points of view.

  8. Preparation of O/I1-type Emulsions and S/I1-type Dispersions Encapsulating UV-Absorbing Agents.

    Science.gov (United States)

    Aramaki, Kenji; Kimura, Minami; Masuda, Kazuki

    2015-01-01

    Oil-in-cubic phase (O/I1) emulsions encapsulating the cosmetic UV absorbing agents 2-ethylhexyl 4-methoxycinnamate (EHMC), 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (octocrylene, OCR) and 1-(4-tertbutylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione (Avobenzone, TBMP) were prepared by vortex mixing accompanied by a heating-cooling process. A ternary phase diagram in a water/C12EO25/EHMC system at 25°C was constructed and the two-phase equilibrium of an oil phase and an I1 phase, which is necessary to prepare the O/I1-type emulsions, was confirmed. Also, the melting of the I1 phase into a fluid micellar solution phase was confirmed, allowing emulsification by a heating-cooling process. The O/I1-type emulsions were formulated in the ternary system as well as a quaternary system. The four-component system contained an additional cosolvent, isopropyl myristate (IPM). The use of the cosolvent allows the use of reduced amounts of EHMC, which is desirable because EHMC can cause temporary skin irritation. Formulation of the O/I1-type emulsions with other UV absorbing agents (OCR and TBMP) was also possible using the same emulsification method. When IPM was changed to tripalmitin, which has a melting point greater than room temperature, a solid-oil dispersion in I1 phase was formed. We have termed this a "solidin-cubic phase (S/I1) type dispersion". These novel emulsions have not been reported previously. The UV absorbability of the O/I1-type emulsions and S/I1-type dispersions that encapsulate the UV absorbing agents was confirmed by measurement of UV absorption spectra.

  9. Photovoltaic module encapsulation design and materials selection, volume 1

    Science.gov (United States)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  10. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries

    NARCIS (Netherlands)

    Amenta, V.; Aschberger, K.; Arena, M.; Bouwmeester, H.; Botelho Moniz, F.; Brandhoff, P.; Gottardo, S.; Marvin, H.J.P.; Mech, A.; Quiros Pesudo, L.; Rauscher, H.; Schoonjans, R.; Vettori, M.V.; Weigel, S.; Peters, R.J.B.

    2015-01-01

    Nanotechnology has the potential to innovate the agricultural, feed and food sectors (hereinafter referred to as agri/feed/food). Applications that are marketed already include nano-encapsulated agrochemicals or nutrients, antimicrobial nanoparticles and active and intelligent food packaging. Many

  11. Toxicological assessment of crude palm oil (Elaeis guineensis Jacq. used in deep frying of akara (cowpea paste finger food

    Directory of Open Access Journals (Sweden)

    Felzenszwalb, I.

    2014-06-01

    Full Text Available Akara is cowpea paste which is deep-fried in crude palm oil (CPO; Elaeis guineensis Jacq. and sold as a street finger food in Brazil and Africa. During the food frying oils can form toxic decomposition products as total polar compounds (TPC, which can determinate oil degradation. The aim of this study was to assess the toxicity of CPO used in akara frying for 25 hours. Changes in the oil were determined by TPC quantification and mutagenicity using a Salmonella/microssome assay with Salmonella Typhimurium strains TA97, TA98, TA100 and TA102 with and without exogenous metabolic activation. Assuming that 25% TPC is the maximum level permitted in frying oils and it ranged from 14.08 to 29.81%, frying palm oil exceeded the limit. Nonetheless, no cytotoxic, mutagenic or genotoxic activity were detected in CPO used in the traditional akara frying process.Akara es una tapa hecha de pasta de frijol frito en aceite de palma crudo (CPO; Elaeis guineensis, que se vende en las calles de Brasil y África. Durante la fritura de alimentos, los aceites pueden formar productos de descomposición tóxicos como los compuestos polares totales (TPC, que determinan la degradación del aceite. El objetivo de este estudio fue evaluar la toxicidad de CPO utilizado en 25 horas de frituras de akara. Los cambios en el aceite se determinaron mediante la cuantificación de TPC y ensayos de mutagenicidad en Salmonella microsomas usando cepas de Salmonella Typhimurium TA97, TA98, TA100 y TA102 con y sin activación metabólica exógena. Se asume que el 25% de TPC es el nivel máximo permitido, los aceites de fritura oscilaron desde 14,08 hasta 29,81%. Ningún CPO utilizado en el proceso de akara tradicional mostró ser citotóxico, ni tener actividad mutagénica o genotóxica.

  12. A study of nanostructured gold modified glassy carbon electrode for ...

    Indian Academy of Sciences (India)

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy ...

  13. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  14. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gang; Shu, Honghui; Ji, Kai [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Liu, Xiong [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm{sup −2} mM{sup −1} and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  15. Using low-field NMR to infer the physical properties of glassy oligosaccharide/water mixtures.

    Science.gov (United States)

    Aeberhardt, Kasia; Bui, Quang D; Normand, Valéry

    2007-03-01

    Low-field NMR (LF-NMR) is usually used as an analytical technique, for instance, to determine water and oil contents. For this application, no attempt is made to understand the physical origin of the data. Here we build a physical model to explain the five fit parameters of the conventional free induction decay (FID) for glassy oligosaccharide/water mixtures. The amplitudes of the signals from low-mobility and high-mobility protons correspond to the density of oligosaccharide protons and water protons, respectively. The relaxation time of the high-mobility protons is described using a statistical model for the probability that oligosaccharide hydroxyl groups form multiple hydrogen bonds. The variation of energy of the hydrogen bond is calculated from the average bond distance and the average angle contribution. Applying the model to experimental data shows that hydrogen atoms screen the water oxygen atoms when two water molecules solvate a single hydroxyl group. Furthermore, the relaxation time of the oligosaccharide protons is independent of its molecular weight and the water content. Finally, inversion of the FID using the inverse Laplace transform gives the continuous spectrum of relaxation times, which is a fingerprint of the oligosaccharide.

  16. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    Science.gov (United States)

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  17. Lipid oxidation in fish oil enriched oil-in-water emulsions and cream cheese with pre-emulsified fish oil is affected differently by the emulsifier used

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Andersen, Ulf

    It is well-documented that a high intake of long chain omega-3 polyunsaturated fatty acids has several health beneficial effects in humans. Consequently, the interest in food products enriched with marine oils has increased during recent years. However, addition of these highly unsaturated fatty...... will include results from studies on lipid oxidation in simple oil-in-water emulsions prepared with milk proteins alone or combinations of milk proteins and phospholipids. In addition, a study on fish oil enriched cream cheese will be presented. In this study, the cream cheese was enriched with either neat...... acids to foods invariably increases the risk of lipid oxidation. A possible strategy to avoid lipid oxidation and the consecutive development of unpleasant off-flavours is to protect the oil in a delivery emulsion in which the oil droplets are shielded from its possible pro-oxidative surroundings...

  18. Link between lipid metabolism and voluntary food intake in rainbow trout fed coconut oil rich in medium-chain TAG

    NARCIS (Netherlands)

    Figueiredo-Silva, A.C.; Kaushik, S.; Terrier, F.; Schrama, J.W.; Médale, F.; Geurden, I.

    2012-01-01

    We examined the long-term effect of feeding coconut oil (CO; rich in lauric acid, C12) on voluntary food intake and nutrient utilisation in rainbow trout (Oncorhynchus mykiss), with particular attention to the metabolic use (storage or oxidation) of ingested medium-chain TAG. Trout were fed for 15

  19. Different encapsulation strategies for implanted electronics

    Directory of Open Access Journals (Sweden)

    Winkler Sebastian

    2017-09-01

    Full Text Available Recent advancements in implant technology include increasing application of electronic systems in the human body. Hermetic encapsulation of electronic components is necessary, specific implant functions and body environments must be considered. Additional functions such as wireless communication systems require specialized technical solutions for the encapsulation.

  20. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions.

    Science.gov (United States)

    Assadpour, Elham; Maghsoudlou, Yahya; Jafari, Seid-Mahdi; Ghorbani, Mohammad; Aalami, Mehran

    2016-05-01

    Due to susceptibility of folic acid like many other vitamins to environmental and processing conditions, it is necessary to protect it by highly efficient methods such as micro/nano-encapsulation. Our aim was to prepare and optimize real water in oil nano-emulsions containing folic acid by a low energy (spontaneous) emulsification technique so that the final product could be encapsulated within maltodextrin-whey protein double emulsions. A non ionic surfactant (Span 80) was used for making nano-emulsions at three dispersed phase/surfactant ratios of 0.2, 0.6, and 1.0. Folic acid content was 1.0, 2.0, and 3.0mg/mL of dispersed phase by a volume fraction of 5.0, 8.5, and 12%. The final optimum nano-emulsion formulation with 12% dispersed phase, a water to surfactant ratio of 0.9 and folic acid content of 3mg/mL in dispersed phase was encapsulated within maltodextrin-whey protein double emulsions. It was found that the emulsification time for preparing nano-emulsions was between 4 to 16 h based on formulation variables. Droplet size decreased at higher surfactant contents and final nano-emulsions had a droplet size<100 nm. Shear viscosity was higher for those formulations containing more surfactant. Our results revealed that spontaneous method could be used successfully for preparing stable W/O nano-emulsions containing folic acid. Copyright © 2016 Elsevier B.V. All rights reserved.