WorldWideScience

Sample records for oil-and gas-field operations

  1. Oil and gas field code master list 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  2. Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-08

    This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

  3. Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations

  4. Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations

  5. Gas migration from oil and gas fields and associated hazards

    International Nuclear Information System (INIS)

    Gurevich, A.E.; Endres, B.L.; Robertson Jr, J.O.; Chilingar, G.V.

    1993-01-01

    The migration of gas from oil and gas formations to the surface is a problem that greatly affects those surface areas where human activity exists. Underground gas storage facilities and oil fields have demonstrated a long history of gas migration problems. Experience has shown that the migration of gas to the surface creates a serious potential risk of explosion, fires, noxious odors and potential emissions of carcinogenic chemicals. These risks must be seriously examined for all oil and gas operations located in urban areas. This paper presents the mechanics of gas migration, paths of migration and a review of a few of the risks that should be considered when operating a gas facility in an urban area. The gas can migrate in a continuous or discontinuous stream through porous, water-filled media to the surface. The primary force in this migration of gas is the difference between specific weights of gas and water

  6. Oil and gas field database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.

  7. Oil and gas field database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.

  8. Problems in operation of gas-oil condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Zheltov, Yu V; Martos, V N

    1966-12-01

    This is a review of various methods used to deplete gas-oil condensate reservoirs. Four depletion techniques are discussed: (1) natural depletion without injection of fluids into the reservoir; (2) depletion accompanied by gas cycling; (3) depletion in which the gas cap is separated from the oil by water injected into the reservoir, a method in which each part of the reservoir is produced essentially independently of the other; and (4) depletion in which reservoir temperature is raised above the cricondentherm point by in-situ combustion, so that gas and oil form a single phase. This method is prospective, and has not been tried in the field. Advantages and disadvantages of each method are discussed. It is concluded that a gas condensate reservoir can be depleted most economically only if some secondary energy is added. (13 refs.)

  9. Oil and Gas Field Locations, Geographic NAD83, LDNR (2007) [oil_gas_fields_LDNR_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — This GIS layer consists of oil and gas field approximate center point locations (approximately 1,800). Oil and gas fields not assigned a center point by the DNR...

  10. Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995

    International Nuclear Information System (INIS)

    1996-08-01

    This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables

  11. Natural gas in 1936: Petroleum in 1936: The gas and oil fields in the Guelph and Medina (Grimsby) formations: Appendix, the Brownsville Gas Field: Gas and oil in eastern Ontario. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B; Evans, C S

    1938-12-31

    Part V of this annual report consists of four separate reports: Natural gas, petroleum, gas and oil fields in the Guelph and Medina (Grimsby) formations, and gas and oil in eastern Ontario. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; gas wells and their production; and licenses issued. The logs of wells are also included, being presented alphabetically by counties, townships, and owners, respectively. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations.

  12. Oil and gas field code master list, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  13. Largest US oil and gas fields, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  14. Largest US oil and gas fields, August 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA's annual survey of oil and gas proved reserves. The series' objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series' approach is to integrate EIA's crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel

  15. Computer simulation of nonstationary thermal fields in design and operation of northern oil and gas fields

    Energy Technology Data Exchange (ETDEWEB)

    Vaganova, N. A., E-mail: vna@imm.uran.ru [Institute of Mathematics and Mechanics of Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation); Filimonov, M. Yu., E-mail: fmy@imm.uran.ru [Ural Federal University, Ekaterinburg, Russia and Institute of Mathematics and Mechanics of Ural Branch of Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2015-11-30

    A mathematical model, numerical algorithm and program code for simulation and long-term forecasting of changes in permafrost as a result of operation of a multiple well pad of northern oil and gas field are presented. In the model the most significant climatic and physical factors are taken into account such as solar radiation, determined by specific geographical location, heterogeneous structure of frozen soil, thermal stabilization of soil, possible insulation of the objects, seasonal fluctuations in air temperature, and freezing and thawing of the upper soil layer. Results of computing are presented.

  16. Oil and Gas field code master list 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  17. Characteristics of gas-liquid dynamics in operation of oil fields producing non-Newtonian crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Khasaev, A M; Gurbanov, R S; Akhmedov, Z M

    1968-08-01

    Experimental studies have shown that crude oils from Azerbaidzhan, Uzbekistan, Tataria, Kazakhstan and other areas have anomalous properties under reservoir conditions. Such crude oils are non-Newtonian and (1) obey Darcys Law at low velocities; (2) obey an exponential law at higher velocities; and (3) obey a modified Darcys Law at most velocities. A discussion is given of (1) flow of non-Newtonian crude oils together with gas or water; (2) flow of non-Newtonian crude oils in well tubing; (3) behavior of wells producing non-Newtonian crude oils; and (4) pumping of non-Newtonian oils in wells. Experiments have shown that a visco-plastic liquid does not fill pump inlets completely; as the diameter of the pump inlet decreases so also does the degree of liquid filling. A statistical analysis of production data from 160 fields with Newtonian oil and 129 fields with non- Newtonian oil has shown that much higher production is obtained from fields with Newtonian crude oils.

  18. Oil and Gas Field Code Master List 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  19. Environmental requirements for oil and gas operations in Saskatchewan

    International Nuclear Information System (INIS)

    Nystuen, L.J.

    1997-01-01

    The administration and regulation of environmental issues regarding the oil and gas industry in Saskatchewan were discussed. The political and cultural differences in Saskatchewan that make environmental processes distinct from its neighbouring jurisdictions were described. The following Saskatchewan legislation deals with environmental requirements: Environmental Management and Protection Act, Environmental Assessment Act, Oil and Gas Conservation Act, Wildlife Habitat Protection Act, Clean Air Act, Planning and Development Act, Forest Act, Water Corporation Act, Heritage Property Act, and Parks Act. The Saskatchewan Department of Energy and Mines (SEM) is the primary regulator of the upstream oil and gas industry. It regulates the construction, operation, reporting and abandonment requirements for oilfield operations. SEM also manages crude oil prior to refining and manages the wastes contaminated with crude oil. Provisions of the relevant Acts regarding drilling in environmentally sensitive areas, flaring requirements, transporting and disposing of oilfield wastes, road-building, operating restrictions, emergency response plans, spill clean-up responsibilities, well abandonment and site reclamation responsibilities were discussed. 8 refs., 2 tabs

  20. Noise characterization of oil and gas operations.

    Science.gov (United States)

    Radtke, Cameron; Autenrieth, Daniel A; Lipsey, Tiffany; Brazile, William J

    2017-08-01

    In cooperation with The Colorado Oil and Gas Conservation Commission, researchers at Colorado State University performed area noise monitoring at 23 oil and gas sites throughout Northern Colorado. The goals of this study were to: (1) measure and compare the noise levels for the different phases of oil and gas development sites; (2) evaluate the effectiveness of noise barriers; and (3) determine if noise levels exceeded the Colorado Oil and Gas Conservation Commission noise limits. The four phases of oil and gas development include drilling, hydraulic fracturing, completion and production. Noise measurements were collected using the A- and C-weighted sound scales. Octave band analysis was also performed to characterize the frequency spectra of the noise measurements.  Noise measurements were collected using noise dosimeters and a hand-held sound-level meter at specified distances from the development sites in each cardinal direction. At 350 ft (107 m), drilling, hydraulic fracturing, and completion sites without noise barriers exceeded the maximum permissible noise levels for residential and commercial zones (55 dBA and 60 dBA, respectively). In addition, drilling and hydraulic fracturing sites with noise barriers exceeded the maximum permissible noise level for residential zones (55 dBA). However, during drilling, hydraulic fracturing, and completion operations, oil producers are allowed an exception to the noise permissible limits in that they only must comply with the industrial noise limit (80 dBA). It is stated in Rule 604.c.(2)A. that: "Operations involving pipeline or gas facility installation or maintenance, the use of a drilling rig, completion rig, workover rig, or stimulation is subject to the maximum permissible noise levels for industrial zones (80dBA)." [8] Production sites were within the Colorado Oil and Gas Conservation Commission permissible noise level criteria for all zones. At 350 ft (107 m) from the noise source, all drilling

  1. Advances in operations research in the oil and gas industry

    International Nuclear Information System (INIS)

    Breton, M.; Zaccour, G.

    1991-01-01

    Various theories and examples of modelling, forecasting and optimization designing in the different parts of the petroleum and gas industries are presented, stochastic programming for long term planning in the refining industry, stochastic model for gasoline blending, feedstock optimization, location and sizing for offshore platforms, hydrocarbon exploration simulation rapid method, valuation of oil field development leases, economic models for petroleum allocation, models for oil supply market, trade embargo game theory, stochastic programming of gas contract portfolio management, scheduling transportation of oil and gas, strategic planning in an oil pipeline company, simulation of offshore oil terminal systems, hierarchical selection of oil and gas distribution systems

  2. Effect of zero discharge permits on oil and gas operations

    International Nuclear Information System (INIS)

    Higdon, G.D.

    1994-01-01

    This paper examines one of the more prominent effects of the Clean Water Act (CWA) upon oil and gas operations. To that end, the paper begins with a general discussion of the regulatory background and permitting framework which serves as the foundation for water pollution control. From this discussion, the paper will then move into a discussion of particular permit provisions which govern the discharge of wastes generated from oil and gas operations. Upon discussing these provisions, the paper will then discuss potential enforcement options available to the Environmental Protection Agency (EPA) to address violations of the regulations and permits it has issued to implement the CWA. In that regard, the paper will also discuss some recent enforcement theories advocated by the EPA which may have significant impacts upon oil and gas operators and the way in which they conduct their operations. In light of some of these recent enforcement activities, the paper will close with a discussion of the implications of the theories of liability espoused by EPA and steps which oil and gas operators may taking in response to the positions assumed by EPA

  3. The oil and gas operator as fiduciary

    International Nuclear Information System (INIS)

    Evans, Edward.

    1992-01-01

    What, if any, fiduciary duties are owed by those who direct oil and gas operations to their co-venturers? The question is a complex one that has led to much controversy among industry participants, lawyers, academics and judges. The law dealing with fiduciary duties has been constantly evolving in Canada as in other countries and has yet to reach its definitive form. The principles which underlie when a fiduciary relationship will exist and the scope of the duties that will be imposed on the fiduciary in a given relationship are elusive. Yet, while the courts in Canada have raised what amounts to a presumption against the existence of a fiduciary relationship in arm's length commercial transactions, it is clear that the presumption is rebuttable and may be disregarded in light of the facts of a particular case. Certain observations may be made about the potential fiduciary obligations of an operator of oil and gas properties from the decided cases in the oil and gas area and the trends in other areas of the law as they relate to fiduciaries. Such operators have routinely had imposed on them a duty of good faith or have been classified as in a fiduciary relationship with the non-operators, at least with respect to the management, administration and marketing of the product and ultimately the distribution of the revenues. These observations may provide useful guidelines to those companies who are operators or joint operators in a complex industry in which the same organisations may find themselves simultaneously to be conventurers in relation to one piece of property and intense competitors with respect to another. (Author)

  4. Oil and gas field development: an NOC perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kronman, George [Halliburton Energy Services (United States). Landmark Division

    2004-07-01

    Every day, oil companies around the world face real-life field development and management problems like the ones described above. Making timely and well-informed field development decisions are among the most important decisions the management of any oil company can make. The field development phase of the oil and gas life cycle extends from the discovery of a hydrocarbon deposit through initial production. It also includes revitalization of mature and marginal fields. Field development projects require the greatest level of cross-disciplinary integration and the largest investment decisions in the entire oil field life cycle. The ultimate economic success or failure of most fields is set by the quality of decisions made during field development. Oil companies take many different approaches to field development based on unique business drivers, their asset portfolio mix and risk tolerance, access to data and experienced manpower, adoption of technology, availability of capital, ownership, management style and so on. This paper focuses on understanding and addressing the particular field development challenges facing NOCs today. (author)

  5. Overview of DOE Oil and Gas Field Laboratory Projects

    Science.gov (United States)

    Bromhal, G.; Ciferno, J.; Covatch, G.; Folio, E.; Melchert, E.; Ogunsola, O.; Renk, J., III; Vagnetti, R.

    2017-12-01

    America's abundant unconventional oil and natural gas (UOG) resources are critical components of our nation's energy portfolio. These resources need to be prudently developed to derive maximum benefits. In spite of the long history of hydraulic fracturing, the optimal number of fracturing stages during multi-stage fracture stimulation in horizontal wells is not known. In addition, there is the dire need of a comprehensive understanding of ways to improve the recovery of shale gas with little or no impacts on the environment. Research that seeks to expand our view of effective and environmentally sustainable ways to develop our nation's oil and natural gas resources can be done in the laboratory or at a computer; but, some experiments must be performed in a field setting. The Department of Energy (DOE) Field Lab Observatory projects are designed to address those research questions that must be studied in the field. The Department of Energy (DOE) is developing a suite of "field laboratory" test sites to carry out collaborative research that will help find ways of improving the recovery of energy resources as much as possible, with as little environmental impact as possible, from "unconventional" formations, such as shale and other low permeability rock formations. Currently there are three field laboratories in various stages of development and operation. Work is on-going at two of the sites: The Hydraulic Fracturing Test Site (HFTS) in the Permian Basin and the Marcellus Shale Energy and Environmental Lab (MSEEL) project in the Marcellus Shale Play. Agreement on the third site, the Utica Shale Energy and Environmental Lab (USEEL) project in the Utica Shale Play, was just recently finalized. Other field site opportunities may be forthcoming. This presentation will give an overview of the three field laboratory projects.

  6. Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem

    Directory of Open Access Journals (Sweden)

    Roshan Sharma

    2012-01-01

    Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.

  7. Predicting emissions from oil and gas operations in the Uinta Basin, Utah.

    Science.gov (United States)

    Wilkey, Jonathan; Kelly, Kerry; Jaramillo, Isabel Cristina; Spinti, Jennifer; Ring, Terry; Hogue, Michael; Pasqualini, Donatella

    2016-05-01

    In this study, emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin are predicted (with uncertainty estimates) from 2015-2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010-2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010-2015 time period was 44.2E+06 (mean) ± 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015-2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 ± 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards. This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well.

  8. Claims of operators, non-operators and third parties arising from oil and gas operations

    International Nuclear Information System (INIS)

    Block, R.W.; Semadeni, T.

    1999-01-01

    There has come a resurgence in the number of companies involved in the oil and gas industry seeking protection from their creditors because of the recent weakness in commodity prices. Because most operations in this industry are conducted jointly, a single insolvency can lead to a toppling of other participants in the joint venture and beyond. The problem is to minimize one's losses if other members of the joint venture become insolvent. An examination is included of some remedies which may be available to operators, non-operators and third parties when faced with an insolvent oil and gas participant. The remedies which may be available to the non-operator that is owed moneys by its operator are discussed. The remedies that the operator has against its non-operators, with an emphasis on the nature of the operator's lien and the right of set-off, are described. A brief review is included of some of the remedies that might be available to a third party as against the operators and non-operators. Some s uggestions are included for directors, bankers, third parties, non-operators and operators

  9. Maximization of Egyptian Gas Oil Production Through the Optimal Use of the Operating Parameters

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Gas oil is the major fossil fuel consumed around the world. Global gas oil consumption is rising at a steadily fast pace because of its higher combustion efficiency (versus gasoline). The annual increase rate of gas oil consumption in Egypt is 7 % whereas, the world increase rates range from 1.5 % to 2 % . The main sources for producing gas oil in Egypt refiners is the direct production from the atmospheric distillation process units or it may be produced as a side product from vacuum distillation units . Gas oil is produced through hydrocracking process of vacuum distillation side streams and heavy cocked gas oil. Gas oil production yield can be increased through the existing operation process units. Modifications of the current atmospheric and vacuum tower operations will increase gas oil yield rates to 20 % more than the existing production rates. The modification of the operating conditions and adoption of the optimum catalyst of the existing hydrocracking and mild hydro cracking process units improve gas oil production yield. Operating delayed cocker at high temperatures, low pressure and low cycle ratio also support achieving the maximization of gas oil yield

  10. Mapping reactor operating regimes for heavy gas oil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Munteanu, Mugurel Catalin; Chen, Jinwen [CanmetENERGY, Natural Resources Canada (Canada)

    2011-07-01

    Hydrotreating (HDT) is used in oil refineries at temperatures of 350-400 degree C and pressure of 50-100 bars in a fixed bed to improve the quality of distillate fraction. HDT operates as a gas-liquid-solid process, trickle bed. Efforts have been made to model it but volatilization of liquid oil is often ignored. The aim of this paper is to predict vapor-liquid equilibrium (VLE) for a typical heavy distillate feed in pilot plant hydrotreaters. The study was conducted under various operating conditions and a flash calculation program calibrated in-house was used to predict VLE. VLE values were found and results showed that higher pressure, lower gas/oil ratio and temperature should be used to maintain the desired operating regimes when hydrotreating heavy distillate feed. This study determined the operating conditions for maintaining the desired operating regimes and these findings could be useful for operators.

  11. Index to names of oil and gas fields in Oklahoma, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Lacina, J.L.

    1979-05-01

    This index contains the current and discontinued names of the oil and gas fields in Oklahoma. They are listed according to assignments made by the Oklahoma Nomenclature Committee of the Kansas-Oklahoma Division, Mid-Continent Oil and Gas Association. Also listed are some names which have been used locally or unofficially for certain areas. Included also are: (1) the date when the field was named; (2) the description of location by county, township, and section; and (3) a statement as to the disposition of a field when it was combined with other fields.

  12. Upstream oil and gas. Subsector no. 7: Oil and gas exploration and development 1995 to 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    Prepared by the Alberta Human Resources and Employment, this report provides a summary of the lost-time injuries and disease descriptions of workers injured while employed in the upstream oil and gas industries in Alberta during the period 1995 to 1999. The report includes the characteristics of the injured worker and the risk of injury to workers in the industries in Alberta, as well as the cost of injuries and revenue by means of total premiums paid by the employers. The occupational fatalities that were accepted by the Workers Compensation Board and investigated by the Occupational Health and Safety were summarized in the report along with a brief description of the injuries. The aim was to provide information concerning health and safety issues to government, employers, workers, and health and safety officers in the industries in Alberta about health and safety issues. The focus was placed on the oil and gas exploration and development sub-sector. Defined as all upstream oil field activities of employers which generate revenue from the production and sale of crude oil and/or natural gas, the sub-sector comprises major integrated oil and gas companies and small independent producers. In those cases where the owner/producer operates its own upstream production/processing facilities, they form an integral part of this sub-section. In addition, oil and gas marketing firms are included. Oil/gas well, well head equipment; flow lines/gathering systems tied into field processing facilities; battery sites/compressors stations; crude oil separators and natural gas dehydrators/treaters; natural gas/sulfur processing plants; heavy oil projects including steam generation; and other enhanced recovery methods are all included in the sub-sector. The other sub-sectors in the upstream oil and gas industries are: exploration, oilfield maintenance and construction, well servicing with service rigs and power swivels, drilling of oil and gas wells, oilfield downhole and other

  13. Oil and gas field code master list 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  14. Effect of paraffin saturation in a crude oil on operation of a field

    Energy Technology Data Exchange (ETDEWEB)

    Trebin, G F; Kapyrin, Yu V

    1968-11-01

    Both theoretical and practical studies in recent years have shown that in planning operational procedures for an oil field, the paraffin saturation of the crude oil must be considered. If the crude oil is essentially saturated with paraffin at reservoir condition, then paraffin deposition can occur around the well and in the well. Temperature in the reservoir can be lowered by 2 mechanisms: (1) by injection of water below reservoir temperature, and (2) by expansion of produced gas and consequent cooling of the produced oil. Possible application of these principles to several Soviet oil fields is discussed. In the Uzen field, a preliminary investigation is under way to test the feasibility of heating the injection water to prevent paraffin deposition in the reservoir.

  15. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    Science.gov (United States)

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  16. Control of waste well casing vent gas from a thermal enhanced oil recovery operation

    International Nuclear Information System (INIS)

    Peavy, M.A.; Braun, J.E.

    1991-01-01

    This paper presents an overview of a waste gas treatment system designed to control emissions from thermally enhanced oil recovery wells. This case study discusses the need, design, installation and operations of the system. Oryx Energy Company (Oryx) operates approximately 940 wells in the Midway-Sunset (MWSS) field under casing vapor recovery systems. The emissions collected from well casing vent gas cotaining hydrocarbons and hydrogen sulfide that are collected and processed through casing vapor recovery skids. These skids are composed of condensers, compressors, and pumps that separate fluids from the waste gas stream. The non-condensible gas is then disposed of in incinerators that reduce the hydrocarbon and sulfur emissions into the atmosphere. Approximately 91,000 lbs/day of hydrocarbon and 10,116 lbs/day of sulfur dioxide are removed from the atmosphere from wells contained within these systems operated by Oryx. These hydrocarbons yield approximately 550 barrels of oil per day (BOPD). The system helps manage the pressure differential from the reservoir into each wellbore and contributes to improved ambient air quality in Kern County, California

  17. Technical and economic feasibility study of flue gas injection in an Iranian oil field

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2015-09-01

    The main aim of this research is to investigate various gas injection methods (N2, CO2, produced reservoir gas, and flue gas in one of the northern Persian gulf oil fields by a numerical simulation method. Moreover, for each scenario of gas injection technical and economical considerations are took into account. Finally, an economic analysis is implemented to compare the net present value (NPV of the different gas injection scenarios in the aforementioned oil field.

  18. In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery

    Science.gov (United States)

    Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall

    2016-01-01

    This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.

  19. Integrated field modelling[Oil and gas fields

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, Bamshad

    2002-07-01

    This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant

  20. Mobil positioning itself to become Canada's premier oil and gas company

    International Nuclear Information System (INIS)

    Thomas, A.

    1994-01-01

    To achieve its goal of becoming Canada's premier oil and gas company by the year 2000, Mobil Oil Canada is empowering its employees and applying appropriate technology to unlock resources and create value. Mobil produces 4.1 million m 3 of oil and natural gas liquids, 5.6 million m 3 /y of natural gas and 438,000 tonnes/y of sulfur. It also operates over 3,000 wells in western Canada and eleven gas processing plants, manages 1,700 km of pipeline, and has 33% interest in the Hibernia project on the Grand Banks. Oil lifting costs have decreased over the past three years from $3.40/bbl to $2.80/bbl and development costs are under $2/bbl. Innovative technology used to achieve high production and low costs include the use of three dimensional seismic surveys and horizontal drilling. Other techniques used at particular sites include installation of downhole injection regulators to control problems of segregation and metering between different water injection zones at the Carson Creek field, use of artificial lifts in gas wells, and a dual gas lift at the Rainbow Lake oil field. At the Lone Pine gas plant, the first Superclaus-99 sulfur recovery process was installed, reducing sulfur emissions by 60% and increasing recovery efficiency from 95% to 98%. Mobil has operated in Canada since 1940 and has made significant discoveries, including Canada's largest producing oil field, the Pembina. In 1971, Mobil discovered gas of commercial significance off the east coast and helped discover the Hibernia and Venture fields. The Hibernia project is scheduled to come on stream in 1997 and Mobil expects the economics of the project to be favorable, with a $12-13/bbl oil price needed to break even. 7 figs

  1. Artificial intelligence applications in offshore oil and gas production

    International Nuclear Information System (INIS)

    Attia, F.G.

    1994-01-01

    The field of Artificial Intelligence (AI) has gained considerable acceptance in virtually all fields, of engineering applications. Artificial intelligence is now being applied in several areas of offshore oil and gas operations, such as drilling, well testing, well logging and interpretation, reservoir engineering, planning and economic evaluation, process control, and risk analysis. Current AI techniques offer a new and exciting technology for solving problems in the oil and gas industry. Expert systems, fuzzy logic systems, neural networks and genetic algorithms are major AI technologies which have made an impact on the petroleum industry. Presently, these technologies are at different stages of maturity with expert systems being the most mature and genetic algorithms the least. However, all four technologies have evolved such that practical applications were produced. This paper describes the four major Al techniques and their many applications in offshore oil and gas production operations. A summary description of future developments in Al technology that will affect the execution and productivity of offshore operations will be also provided

  2. Radiological impact of oil and Gas Activities in selected oil fields in ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. ... A study of the radiological impact of oil and gas exploration activities in the production land area of Delta ... the public and non-nuclear industrial environment, while the levels for the fields at Otorogu, Ughelli West, ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  3. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in

  4. Methane emissions due to oil and natural gas operations in the Netherlands

    International Nuclear Information System (INIS)

    Oonk, J.; Vosbeek, M.E.J.P.

    1995-01-01

    The Netherlands is the 4th largest natural gas producer, with about 4% of the total world natural gas production. Also, significant amounts of oil are extracted. For this reason it can be expected that methane emissions from oil and natural gas operations contribute significantly to total methane emissions. Estimates so far, made by both the Dutch government and the industry vary widely. A renewed estimate is made of methane emissions from oil and natural gas production, based on a detailed engineering study of sources of methane in the system and quantification of source strengths. The estimate is validated by interpretation of atmospheric measurements. 1990 methane emissions from natural gas production were estimated to be 62 to 108 kton. The main cause of methane emissions is the venting of off-gases from processes and passing-valve emissions in the off-shore. Emissions from oil production were estimated to be 14 kton, mainly caused by venting of off-gases from processes. Best feasible options for emission reduction are: identification and replacement of leaking valves, and reuse or re-compression of off-gases from processes. Both options are existing policy in the Netherlands. 23 figs., 38 tabs., 2 appendices, 53 refs

  5. Effective use of complex secondary recovery methods in operation of small oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, M R; Akulov, V P; Khutorov, A M

    1966-11-01

    The North Sokhs Field, located in the southern part of the Fergen depression, is composed of many horizons and has an anticlinal structure. The eighth horizon has highest oil saturation, with an average porosity of 17% and permeability of 80 md. Poor oil recovery was initially obtained from this horizon because the basic producing mechanism was solution gas drive. In 1961, when reservoir pressure was 94 kg/cmU2D and gas factor was 700-800mU3D/ton, pressure maintenance was initiated by injection of gas to the structure. Gas injection improved oil recovery considerably; however, high gas-oil ratios appeared in several wells. Next, peripheral water injection was started, and continued simultaneously with gas injection. The simultaneous injection of gas and water almost doubled oil production. Because of continued, high produced gas/oil ratios, gas injection was eventually discontinued, while water injection was continued. Water injection is building up reservoir pressure and improving oil recovery.

  6. Oil and gas in Bolivia

    International Nuclear Information System (INIS)

    Pacheco, C.M.

    1993-01-01

    The oil and gas industry in Bolivia is discussed. Typically, the hydrocarbon production of the Bolivian fields is made up of very light oil and natural gas, both of very good quality with no deleterious contaminants. About 80% of the production comes from gas condensate fields. At present, the proven gas reserves are more than 6 trillion cubic feet that have been available for the last 10 years, notwithstanding the fact that 200 million cubic feet per day are exported

  7. Oil and gas operational and policy issues in the UK

    International Nuclear Information System (INIS)

    Howard, D.

    1992-01-01

    The method of arriving at monthly values under Schedule 3 OTA 1975 applies to all oil which can include LPG and condensate as well as crude oil and gas. The majority of crude oil is now sold spot and in 1987 the method of arriving at monthly values was amended better to reflect this aspect of the crude oil market. The UK gas market was such that the proceeds of sale of large amounts of natural gas were exempt from PRT under Section 10 OTA 1975 and very little gas was disposed of other than at arms length to British Gas. British Gas no longer buys virtually all gas produced from the UK Continental Shelf and neither does it sell all the gas used by UK customers. The use of natural gas to generate electricity has opened up a new market for UK landed gas. How do these changes affect gas valuation.?. (Author)

  8. Hydrocarbon degassing of the earth and origin of oil-gas fields (isotope-geochemical and geodynamic aspects)

    Science.gov (United States)

    Valyaev, Boris; Dremin, Ivan

    2016-04-01

    More than half a century ago, Academician PN Kropotkin substantiated the relationship of the formation and distribution of oil and gas fields with the processes of emanation hydrocarbon degassing of the Earth. Over the years, the concept of PN Kropotkin received further development and recognition of studies based on new factual material. Of particular importance are the following factors: a) the results of studies on global and regional uneven processes of traditional oil and gas and the role of deep faults in controlling the spread of oil and gas fields; b) the results of the research on gigantic volumes and localization of the discharges of hydrocarbon fluids (mud volcanoes, seeps) on land and into the atmosphere and through the bottom of the World ocean; c) the results of the studies on grand volumes of the spread of unconventional hydrocarbon resources in their non-traditional fields, especially on near-surface interval of unconventional oil and gas accumulation with gas hydrates, heavy oil and bitumen, as well as extraordinary resources of oil and gas in the shale and tight rocks. Deep mantle-crust nature of oil and gas in traditional and nontraditional deposits thus received further substantiation of geological and geophysical data and research results. However, isotopic and geochemical data are still interpreted in favor of the concept of the genesis of oil and gas in the processes of thermal catalytic conversion of organic matter of sedimentary rocks, at temperatures up to 200°C. In this report an alternative interpretation of the isotope carbon-hydrogen system (δ13C-δD) for gas and of oil deposits, isotope carbon system for methane and carbon dioxide (δ13C1-δ13C0) will be presented. An alternative interpretation will also be presented for the data on carbon-helium isotope geochemical system for oil and gas fields, volcanoes and mud volcanoes. These constructions agree with the geological data on the nature of deep hydrocarbon fluids involved in the

  9. The Kashagan Field: A Test Case for Kazakhstan's Governance of Its Oil and Gas Sector

    International Nuclear Information System (INIS)

    Campaner, N.; Yenikeyeff, S.

    2008-01-01

    This study focuses on the factors behind Kazakhstan's decision to renegotiate the terms of the existing Production Sharing Agreements (PSAs) with International Oil Companies (IOCs), in the context of the development of the huge Kashagan oil field. The development of Kashagan, one of the largest and most recently discovered oil fields in Kazakhstan, is crucial for Kazakhstan's ambitions of becoming a global oil producer. Kazakhstan, which has the largest oil reserves in the Caspian Sea region, is the second largest regional producer after Russia in the former Soviet Union. The country's potential for oil exports is also strategically significant as a future source of non- OPEC supplies. Amongst the CIS states, Kazakhstan is considered one of the most open countries for foreign investments. International projects in the form of Joint Ventures, Production Sharing Agreements (PSAs) or exploration/field concessions have brought foreign investments into the country's natural resources sector, particularly in the oil and gas industry. However, new developments have recently taken place, which have marked a shift in the Kazakh government's approach towards foreign investment in its energy sector. This study will therefore examine the following issues: - Kazakhstan's plans to abandon the practice of attracting foreign investments in its energy sector through new PSAs. - The recent entry of state-controlled KazMunaiGaz into the consortium operating over the Kashagan field and its impact on IOCs. - The impact of high oil prices on the negotiating power of producer states in the context of Kazakhstan's new stance on PSAs. Specifically, this study will focus on the following key factors, which will seek to further explain the changes in Kazakhstan's attitude toward the Kashagan PSA2: - Operational factors - management of the project, development strategy, cost estimates, levels of production and export markets. - Consortium factors - the relative strength of the investment

  10. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  11. Industry sector analysis, Mexico: Oil and gas field machinery and equipment. Export Trade Information

    International Nuclear Information System (INIS)

    1990-04-01

    The Industry Sector Analyses (I.S.A.) for oil and gas field machinery and equipment contains statistical and narrative information on projected market demand, end-users, receptivity of Mexican consumers to U.S. products, the competitive situation - Mexican production, total import market, U.S. market position, foreign competition, and competitive factors, and market access - Mexican tariffs, non-tariff barriers, standards, taxes and distribution channels. The I.S.A. provides the United States industry with meaningful information regarding the Mexican market for oil and gas field machinery and equipment

  12. Canada's east coast offshore oil and gas industry: a backgrounder

    International Nuclear Information System (INIS)

    Bott, R.

    1999-06-01

    Another of the backgrounder series published by the Petroleum Communication Foundation, this booklet describes Canada's offshore oil and natural gas operations in the North Atlantic Ocean, specifically in the Hibernia (off Newfoundland, crude oil), Terra Nova (off Newfoundland, crude oil), Cohasset-Panuke (off Nova Scotia, crude oil) and Sable Island (off Nova Scotia, natural gas) fields. Together, these project represent an investment of more than 10 billion dollars and constitute a growing portion of Canada's 400,000 cubic metres of crude oil and natural gas liquids per day production. The booklet explains the importance of the offshore oil and natural gas industry to Canada, the benefits accruing to the maritime provinces locally, prospects for future offshore oil and natural gas development and provides a brief summary of each of the four current major projects. The booklet also provides an overview of the facilities required for offshore energy projects, environmental impacts and safeguards, exploration, drilling, production, processing and transportation aspects of offshore oil and gas projects. 9 refs, photos

  13. Model improves oil field operating cost estimates

    International Nuclear Information System (INIS)

    Glaeser, J.L.

    1996-01-01

    A detailed operating cost model that forecasts operating cost profiles toward the end of a field's life should be constructed for testing depletion strategies and plans for major oil fields. Developing a good understanding of future operating cost trends is important. Incorrectly forecasting the trend can result in bad decision making regarding investments and reservoir operating strategies. Recent projects show that significant operating expense reductions can be made in the latter stages o field depletion without significantly reducing the expected ultimate recoverable reserves. Predicting future operating cost trends is especially important for operators who are currently producing a field and must forecast the economic limit of the property. For reasons presented in this article, it is usually not correct to either assume that operating expense stays fixed in dollar terms throughout the lifetime of a field, nor is it correct to assume that operating costs stay fixed on a dollar per barrel basis

  14. Source signature of volatile organic compounds from oil and natural gas operations in northeastern Colorado.

    Science.gov (United States)

    Gilman, J B; Lerner, B M; Kuster, W C; de Gouw, J A

    2013-02-05

    An extensive set of volatile organic compounds (VOCs) was measured at the Boulder Atmospheric Observatory (BAO) in winter 2011 in order to investigate the composition and influence of VOC emissions from oil and natural gas (O&NG) operations in northeastern Colorado. BAO is 30 km north of Denver and is in the southwestern section of Wattenberg Field, one of Colorado's most productive O&NG fields. We compare VOC concentrations at BAO to those of other U.S. cities and summertime measurements at two additional sites in northeastern Colorado, as well as the composition of raw natural gas from Wattenberg Field. These comparisons show that (i) the VOC source signature associated with O&NG operations can be clearly differentiated from urban sources dominated by vehicular exhaust, and (ii) VOCs emitted from O&NG operations are evident at all three measurement sites in northeastern Colorado. At BAO, the reactivity of VOCs with the hydroxyl radical (OH) was dominated by C(2)-C(6) alkanes due to their remarkably large abundances (e.g., mean propane = 27.2 ppbv). Through statistical regression analysis, we estimate that on average 55 ± 18% of the VOC-OH reactivity was attributable to emissions from O&NG operations indicating that these emissions are a significant source of ozone precursors.

  15. Towards sustainability in offshore oil and gas operations

    Science.gov (United States)

    Khan, M. Ibrahim

    acceptable, economically profitable and socially responsible. This dissertation discusses the framework of true 'sustainability' for practically all aspects oil and gas operations and nature-based resource operations. Sustainability of existing offshore oil and gas operations techniques are analyzed and new nature-based technologies are proposed. Also evaluated are the fate and effect, environmental impact, risk factors, and the green supply chain in the case of seismic, drilling, production and decommissioning of oil operations. It is demonstrated with detailed examples that using the new approach will be economically more beneficial than the conventional approach, even in the short-term. The dissertation also examines the present status of petroleum operations with respect to waste generation, improper resource management, and the usage of toxic compounds in the overall lifecycle. To achieve true sustainability, some innovative models and technologies are presented. They include achievement of zero emissions, zero waste of resources, zero waste in activities, zero use of toxics, and zero waste in product life-cycle. This dissertation also discusses the environmental and technological problems of the petroleum sector and provides guidelines to achieve overall sustainability in oil company activities. Finally, this dissertation shows that inherent sustainability can be achieved by the involvement of community participation. The new screening tool proposed in this dissertation provides proper guidelines to achieve true sustainability in the technology development and other resource development operations.

  16. The Nigerian experience in health, safety, and environmental matters during oil and gas exploration and production operations

    International Nuclear Information System (INIS)

    Oyekan, A.J.

    1991-01-01

    Since crude oil was first discovered in commercial quantities in the Country, in 1956, Nigerian oil and gas exploration and production activities have steadily increased as petroleum assumed strategic importance in the nation's economy. However, just as occurs in many parts of the world, crude oil and gas are found and produced in Nigeria sometimes in very hostile and unfavorable environments. The search for oil and gas takes explorers to the hot regions of the Northern parts of the country, the swamp jungle location of the Niger Delta, as well as offshore locations in the Atlantic Ocean. Each terrain, whether land, swamp or offshore, in deep or shallow waters, present unique health, safety and environmental implications and challenges to the operators, as well as, to the Government regulators. From a background of existing Nigerian Laws and operational experience, this paper details the programmes that have been put in place to guarantee a healthy workforce, ensure the safety of personnel and equipment, and protect the Nigerian environment during oil and gas exploration and production operations, as well as their documented effectiveness. The paper discusses the performance of the Petroleum Industry by analyzing the health, safety and environmental records available from 1956 - 1990. The records of major incidents related to safety and environment over the period are discussed and evaluated. The paper notes that relatively speaking, in spite of the Bomu 2 and Funiwa V oil well blow-outs in 1970 and 1980 respectively which caused extensive environmental damages and the Anieze, Oniku and KC 1 gas well blow-out of 1972, 1975 and 1989 respectively, which resulted in the loss of the rigs drilling the locations concerned, the safety performance records in the Nigerian oil and gas exploration and production activities in the past thirty-five years have been satisfactory compared with the records of similar operations in most other parts of the world

  17. Oil and Gas Industry In Qatar

    International Nuclear Information System (INIS)

    1992-12-01

    In less than two decades, numerous impressive developments have taken place. These include: the realization of full ownership and complete control by the State over oil and gas operations and related industries, the establishment of Qatar General Petroleum Corporation (QGPC), the development of exploration and production activities, the full utilization of natural gas in industry and domestic sectors and the construction of down stream industries in the industrial area (Umm Said) including the refinery, the natural gas liquids plants and the fertilizer and petrochemical complexes. Such important achievements have been crowned with the development of the North Field massive reserves of non associated gas. 4 figs

  18. Oil and gas products and energy equipment

    International Nuclear Information System (INIS)

    1996-01-01

    The planned activities of the Canadian oil and gas products and energy equipment industry for 1996-1997, were presented. The sector is made up of approximately 1500 small and medium sized enterprises. The Canadian oil field manufacturing and servicing industry holds only a small 2.5% share of the world export market, but it is recognized internationally as one of the leading suppliers of advanced petroleum equipment. Their exports include specialized equipment for extracting oil sands, gathering and treatment facilities for sour gas, underbalanced drilling technologies, equipment for wells experiencing declining production rates, top motor drives, winter drilling rigs, and horizontal drilling technologies. They also offer petroleum industry software products. Most exploration and production equipment sold abroad by Canadian firms is manufactured in Canada, but there is an increasing trend toward manufacturing in the country of operation. 2 tabs

  19. Bridging IMO e-Navigation Policy and Offshore Oil and Gas Operations through Geospatial Standards

    Directory of Open Access Journals (Sweden)

    Filipe Modesto Da Rocha

    2016-04-01

    Full Text Available In offshore industry activities, the suitable onboard provision of assets location and geospatial marine information during operations is essential. Currently, most companies use its own data structures, resulting in incompatibility between processes. In order to promote the data exchange, oil and gas industry associations have pursued initiatives to standardize spatial information. In turn, the IMO - International Maritime Organization - started the implementation of e-Navigation policy, which is the standardization of technologies and protocols applied to maritime information and navigation. This paper shows relationship and integration points between maritime activities of oil and gas industry and e-Navigation technologies and processes, highlighting geospatial information. This paper also preludes out an initiative for a suitable product specification for the offshore oil and gas industry, compliant with e-Navigation and IHO S-100 international standards.

  20. Naturally Occurring Radioactive Material (NORM) in oil and gas industry

    International Nuclear Information System (INIS)

    Algalhoud, K. A.; AL-Fawaris, B. H.

    2008-01-01

    Oil and gas industry in the Great Jamahiriya is one of those industries that were accompanied with generation of some solid and liquid waste, which associated with risks that might lead to harmful effects to the man and the environment. Among those risks the continuous increase of radioactivity levels above natural radioactive background around operating oil fields, due to accumulation of solid and liquid radioactive scales and sludge as well as contaminated produced water that contain some naturally occurring radioactive materials ( NORM/TE-NORM). Emergence of NORM/TE-NORM in studied area noticed when the natural background radioactivity levels increased around some oil fields during end of 1998, For this study, six field trips and a radiation surveys were conducted within selected oil fields that managed and owned by six operating companies under NOC, in order to determine the effective radiation dose in contrast with dose limits set by International Counsel of Radiation Protection(ICRP),and International Atomic Energy Agency(IAEA) Additionally solid samples in a form of scales and liquid samples were also taken for further investigation and laboratory analysis. Results were tabulated and discussed within the text .However to be more specific results pointed out to the fact that existence of NORM/TE-NORM as 226 Ra, 228 Ra, within some scale samples from surface equipment in some oil and gas fields in Jamahiriya were significant. As a result of that, the workers might receive moderate radiation dose less than the limits set by ICRP,IAEA, and other parts of the world producing oil and gas. Results predicted that within the investigated oil fields if workers receive proper training about handling of NORM/TE-NORM and follow the operating procedure of clean ups, work over and maintenance plane carefully, their committed exposure from NORM/TE-NORM will be less than the set limits by ICRP and IAEA. In a trend to estimate internal radiation dose as a result of possible

  1. The development and application of dynamic operational risk assessment in oil/gas and chemical process industry

    International Nuclear Information System (INIS)

    Yang Xiaole; Mannan, M. Sam

    2010-01-01

    A methodology of dynamic operational risk assessment (DORA) is proposed for operational risk analysis in oil/gas and chemical industries. The methodology is introduced comprehensively starting from the conceptual framework design to mathematical modeling and to decision making based on cost-benefit analysis. The probabilistic modeling part of DORA integrates stochastic modeling and process dynamics modeling to evaluate operational risk. The stochastic system-state trajectory is modeled according to the abnormal behavior or failure of each component. For each of the possible system-state trajectories, a process dynamics evaluation is carried out to check whether process variables, e.g., level, flow rate, temperature, pressure, or chemical concentration, remain in their desirable regions. Component testing/inspection intervals and repair times are critical parameters to define the system-state configuration, and play an important role for evaluating the probability of operational failure. This methodology not only provides a framework to evaluate the dynamic operational risk in oil/gas and chemical industries, but also guides the process design and further optimization. To illustrate the probabilistic study, we present a case-study of a level control in an oil/gas separator at an offshore plant.

  2. VSAT: opening new horizons to oil and gas explorations

    Science.gov (United States)

    Al-Dhamen, Muhammad I.

    2002-08-01

    Whether exploring in the Empty Quarter, drilling offshore in the Gulf of Mexico, or monitoring gas pipelines or oil wells in the deserts, communications is a key element to the success of oil and gas operations. Secure, efficient communications is required between remote, isolated locations and head offices to report on work status, dispatch supplies and repairs, report on-site emergencies, transfer geophysical surveys and real-time drilling data. Drilling and exploration firms have traditionally used land-based terrestrial networks that rely on radio transmissions for voice and data communications to offshore platforms and remote deep desert drilling rigs. But these systems are inefficient and have proven inflexible with today's drilling and exploration communications demands, which include high-speed data access, telephone and video conferencing. In response, numerous oil and gas exploration entities working in deep waters and remote deep deserts have all tapped into what is an ideal solution for these needs: Very Small Aperture Terminal Systems (VSAT) for broadband access services. This led to the use of Satellite Communication Systems for a wide range of applications that were difficult to achieve in the past, such as real-time applications transmission of drilling data and seismic information. This paper provides a thorough analysis of opportunities for satellite technology solutions in support of oil and gas operations. Technologies, architecture, service, networking and application developments are discussed based upon real field experience. More specifically, the report addresses: VSAT Opportunities for the Oil and Gas Operations, Corporate Satellite Business Model Findings, Satellite Market Forecasts

  3. NOAA Mobile Laboratory Measures Oil and Gas Emissions

    Science.gov (United States)

    Kofler, J. D.; Petron, G.; Dube, W. P.; Edwards, P. M.; Brown, S. S.; Geiger, F.; Patrick, L.; Crepinsek, S.; Chen, H.; Miller, B. R.; Montzka, S. A.; Lang, P. M.; Newberger, T.; Higgs, J. A.; Sweeney, C.; Guenther, D.; Karion, A.; Wolter, S.; Williams, J.; Jordan, A.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    A van capable of continuous real time measurements of CH4 , CO2, CO, Water Vapor, Ozone, NO, NO2, Volatile Organic Compounds VOCs including aromatics and other traces gases was driven in the oil and gas fields of the Uintah Basin in northeastern Utah. Compressor Stations, processing plants, oil and gas well heads. Separators, condensate tanks, evaporation pond disposal facilities, holding tanks, hydraulic fracturing sites, gas pipelines and more were studied using the van. The mobile measurements provide a powerful tool to get to the source of the emissions and reveal the unique chemical signature of each of the stages and components of oil and gas production as well as the overall basin and background gas concentrations. In addition to a suite of gas analyzers, the van includes a meteorological system (temperature, humidity, and wind speed and direction), GPS tracking, flask sampling system and a batter power system. Aspects of the vans hardware, sampling methods and operations are discussed along with a few highlights of the measurements.

  4. China Oil and Gas Market Assessment

    International Nuclear Information System (INIS)

    Qiu, Yu

    2004-08-01

    China, with one-fifth of the world's population and one of the fastest rates of economic growth, is experiencing a boom in its energy requirements. China has been identified as a high priority market for the oil and gas sector. This priority has resulted in the high level of investment and many large-scale projects related to the oil and gas industry. Oil production from existing fields is expected to increase, new oil and gas fields will be developed, and the country's oil and gas transmission infrastructure will be extended to meet domestic demands. In addition, total domestic investment needs for the next three decades till 2030 are estimated at around $119 billion, and upstream exploration and development will account for about $69 billion. China's oil and gas exploitation business has been the biggest beneficiary of the bearish crude oil prices, national oil stockpile and the need of infrastructure. In the first six-month period of 2005, this industry has gained a profit of USD16.5 billion, up 73.4 per cent year-on-year. The country is becoming increasingly open to international oil companies, contractors and equipment suppliers, who can bring advanced technology, equipment, and management experience. In this context, considerable opportunities in the supply and service sectors are open to Dutch companies. This report analyses the present situation and market prospect of China upstream oil and gas industry, including: Current status of Chinese oil and gas industry analysis and future development forecast; Potential customers analysis, such as three stated-owned oil companies and their foreign partners;Domestic and foreign competitors analysis; Potential opportunities and challenges analysis; Providing contacts and information on main ongoing oil exploration and development projects, and business practices

  5. New oil and gas discoveries

    International Nuclear Information System (INIS)

    Alazard-Toux, N.

    2004-01-01

    During the period 1999-2003, new oil and gas fields generated additional reserves of nearly 11 000 bcm of natural gas and 62 Gbbl of oil and condensates, volumes very much superior to those discovered in the five previous years. Two-thirds of these discoveries were located offshore, half in deep water. (author)

  6. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James [Texas Tech Univ., Lubbock, TX (United States); Li, Lei [Texas Tech Univ., Lubbock, TX (United States); Yu, Yang [Texas Tech Univ., Lubbock, TX (United States); Meng, Xingbang [Texas Tech Univ., Lubbock, TX (United States); Sharma, Sharanya [Texas Tech Univ., Lubbock, TX (United States); Huang, Siyuan [Texas Tech Univ., Lubbock, TX (United States); Shen, Ziqi [Texas Tech Univ., Lubbock, TX (United States); Zhang, Yao [Texas Tech Univ., Lubbock, TX (United States); Wang, Xiukun [Texas Tech Univ., Lubbock, TX (United States); Carey, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nguyen, Phong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porter, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jimenez-Martinez, Joaquin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mody, Fersheed [Apache Corp., Houston, TX (United States); Barnes, Warren [Apache Corp., Houston, TX (United States); Cook, Tim [Apache Corp., Houston, TX (United States); Griffith, Paul [Apache Corp., Houston, TX (United States)

    2017-11-17

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminated owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.

  7. 25 CFR 215.23a - Suspension of operations and production on leases for minerals other than oil and gas.

    Science.gov (United States)

    2010-04-01

    ... minerals other than oil and gas. 215.23a Section 215.23a Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.23a Suspension of operations and production on leases for minerals other than oil and gas. The provisions of...

  8. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  9. History and performance of the Steelman Oil Field, Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaychuk, J; Francis, R E

    1965-01-01

    This paper summarizes the development and performance of the Steelman oil field in southeastern Saskatchewan. Steelman was the first field in southeastern Saskatchewan in which pressure maintenance by waterflooding was attempted. Production is obtained, at a depth of 4,700 ft, mainly from the dolomitized limestone Midale beds reservoir. Some production is also obtained from the underlying Frobisher beds, but the productive development of this zone is quite sporadic. The discovery of the field in 1954 was followed by the drilling of approximately 800 wells on 80-acre spacing. An early decline in reservoir pressure and increasing gas-oil ratios in this solution gas drive reservoir caused the working-interest owners to unitize most of the field and institute a program of pressure maintenance by waterflooding. The bulk of the field is unitized as 6 separate units, with pressure maintenance being conducted by three operators. To the end of 1964, the cumulative oil production from the six-unit area was approximately 77,000,000 bpd.

  10. The Kashagan Field: A Test Case for Kazakhstan's Governance of Its Oil and Gas Sector

    Energy Technology Data Exchange (ETDEWEB)

    Campaner, N.; Yenikeyeff, S.

    2008-07-01

    This study focuses on the factors behind Kazakhstan's decision to renegotiate the terms of the existing Production Sharing Agreements (PSAs) with International Oil Companies (IOCs), in the context of the development of the huge Kashagan oil field. The development of Kashagan, one of the largest and most recently discovered oil fields in Kazakhstan, is crucial for Kazakhstan's ambitions of becoming a global oil producer. Kazakhstan, which has the largest oil reserves in the Caspian Sea region, is the second largest regional producer after Russia in the former Soviet Union. The country's potential for oil exports is also strategically significant as a future source of non- OPEC supplies. Amongst the CIS states, Kazakhstan is considered one of the most open countries for foreign investments. International projects in the form of Joint Ventures, Production Sharing Agreements (PSAs) or exploration/field concessions have brought foreign investments into the country's natural resources sector, particularly in the oil and gas industry. However, new developments have recently taken place, which have marked a shift in the Kazakh government's approach towards foreign investment in its energy sector. This study will therefore examine the following issues: - Kazakhstan's plans to abandon the practice of attracting foreign investments in its energy sector through new PSAs. - The recent entry of state-controlled KazMunaiGaz into the consortium operating over the Kashagan field and its impact on IOCs. - The impact of high oil prices on the negotiating power of producer states in the context of Kazakhstan's new stance on PSAs. Specifically, this study will focus on the following key factors, which will seek to further explain the changes in Kazakhstan's attitude toward the Kashagan PSA2: - Operational factors - management of the project, development strategy, cost estimates, levels of production and export markets. - Consortium factors - the

  11. The Netherlands: development of oil and gas reserves

    International Nuclear Information System (INIS)

    1993-01-01

    Oil was first discovered in The Netherlands in the late 1930s near The Hague. Later the larger onshore field at Schoonebeek was found. In the 1960s significant resources of oil were discovered in the Dutch sector of the North Sea. However onshore oil still provides about 20% of the nation's requirements. In the 1960s the vast size of the onshore Groningen gas field became apparent and its subsequent development has provided the Dutch with a huge source of wealth. In recent years the Dutch Continental Shelf has also yielded substantial reserves of gas, although these are not yet as important as the onshore gas reserves. Dutch Government policy is designed to encourage the development of smaller offshore gas fields thereby conserving the Gronigen field. Dutch oil and gas production, licensing and drilling activities are discussed, and the prospects for British suppliers is considered. (author)

  12. Operations and maintenance performance in oil and gas production assets. Theoretical architecture and capital value theory in perspective

    Energy Technology Data Exchange (ETDEWEB)

    Liyanage, Jayantha P.

    2003-07-01

    In response to growing demands from the Norwegian oil and gas industry, a joint industry project on the development and implementation of operations and maintenance performance indicators for the petroleum industry was initiated by the Center for Asset and Maintenance Management of Stavanger University College, Norway, in 1999. The project consortium composed of BP, Shell, Philips, Statoil, NorskHydro, Norwegian Petroleum Directorate, PricewaterhouseCoopers, Andersen Consulting, DNV, Industrial and Financial Systems (IFS), ADB Systems AS, DNV, RC Consultants and Tieto Enator. While the project was managed effectively to serve the expectations of member organizations, its boundaries were predefined by various conditions within organizational environments leaving a substantial space unexplored. Hence, the width and the breadth of operations and maintenance performance captured by the project were largely limited. This called for an independent research study to explore the phenomenon with a more broader or holistic perspective. Notably thus, while the project was devoted to a down-to-earth component of the exercise, i.e. to develop performance indicators, the exploratory research study was launched alongside to bring a theoretical or a philosophical insight. The study was conducted during 2000-2002 with collaboration of 14 organizations within the Norwegian continental shelf. The population included oil and gas producers regulatory and verification bodies and third parties. The study identified the bulk of problems that the entire problem domain constitute of within operations and maintenance performance. They were classified into some theoretical forms, and the study concentrated on, what I term, technical alienation, i.e. lack of descriptive performance models to guide meaningful assessment and management of operations and maintenance performance. The choice to shed some light in this endeavor was based on the relevance to SDV project, emerging managerial interest

  13. Operations and maintenance performance in oil and gas production assets. Theoretical architecture and capital value theory in perspective

    International Nuclear Information System (INIS)

    Liyanage, Jayantha P.

    2003-01-01

    In response to growing demands from the Norwegian oil and gas industry, a joint industry project on the development and implementation of operations and maintenance performance indicators for the petroleum industry was initiated by the Center for Asset and Maintenance Management of Stavanger University College, Norway, in 1999. The project consortium composed of BP, Shell, Philips, Statoil, NorskHydro, Norwegian Petroleum Directorate, PricewaterhouseCoopers, Andersen Consulting, DNV, Industrial and Financial Systems (IFS), ADB Systems AS, DNV, RC Consultants and Tieto Enator. While the project was managed effectively to serve the expectations of member organizations, its boundaries were predefined by various conditions within organizational environments leaving a substantial space unexplored. Hence, the width and the breadth of operations and maintenance performance captured by the project were largely limited. This called for an independent research study to explore the phenomenon with a more broader or holistic perspective. Notably thus, while the project was devoted to a down-to-earth component of the exercise, i.e. to develop performance indicators, the exploratory research study was launched alongside to bring a theoretical or a philosophical insight. The study was conducted during 2000-2002 with collaboration of 14 organizations within the Norwegian continental shelf. The population included oil and gas producers regulatory and verification bodies and third parties. The study identified the bulk of problems that the entire problem domain constitute of within operations and maintenance performance. They were classified into some theoretical forms, and the study concentrated on, what I term, technical alienation, i.e. lack of descriptive performance models to guide meaningful assessment and management of operations and maintenance performance. The choice to shed some light in this endeavor was based on the relevance to SDV project, emerging managerial interest

  14. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  15. Injection halos of hydrocarbons above oil-gas fields with super-high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.

    1979-09-01

    We studied the origin of injection halos of hydrocarbons above oil-gas fields with anomalously high formation pressures (AHFP). Using fields in Azerbaydzhan and Chechen-Ingushetiya as an example, we demonstrate the effect of certain factors (in particular, faults and zones of increased macro- and micro-jointing) on the morpholoy of the halos. The intensity of micro-jointing (jointing permeability, three-dimensional density of micro-jointing) is directly connected with vertical dimensions of the halos. We measured halos based on transverse profiles across the Khayan-Kort field and studied the distribution of bitumen saturation within the injection halo. Discovery of injection halos during drilling has enabled us to improve the technology of wiring deep-seated exploratory wells for oil and gas in regions with development of AHFP.

  16. Exploration and development of offshore oil and gas fields. [North Sea

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    In the last 9 years, the British companies, based on their rich engineering and commercial experience, have directed a considerable part of their material and manpower resources at developing oil and gas fields in the North Sea. The technological innovations used by British industry are: aero- and marine surveys to prospect for oil, underwater laying of pipelines, arrangement of platforms, etc.; exploratory drilling in the open sea and on dry land; design of platforms with regard for the depth of the water and unique weather conditions of the North Sea, their assembly and development; use of auxiliary ships and helicopters, and diving equipment.

  17. Quantitative calculation of GOR of complex oil-gas-water systems with logging data: A case study of the Yingdong Oil/Gas Field in the Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Sima Liqiang

    2014-12-01

    Full Text Available In the Yingdong Oil/Gas Field of the Qaidam Basin, multiple suites of oil-gas-water systems overlie each other vertically, making it difficult to accurately identify oil layers from gas layers and calculate gas-oil ratio (GOR. Therefore, formation testing and production data, together with conventional logging, NMR and mud logging data were integrated to quantitatively calculate GOR. To tell oil layers from gas layers, conventional logging makes use of the excavation effect of compensated neutron log, NMR makes use of the different relaxation mechanisms of light oil and natural gas in large pores, while mud logging makes use of star chart of gas components established based on available charts and mathematical statistics. In terms of the quantitative calculation of GOR, the area ratio of the star chart of gas components was first used in GOR calculation. The study shows that: (1 conventional logging data has a modest performance in distinguishing oil layers from gas layers due to the impacts of formation pressure, hydrogen index (HI, shale content, borehole conditions and invasion of drilling mud; (2 NMR is quite effective in telling oil layers from gas layers, but cannot be widely used due to its high cost; (3 by contrast, the star chart of gas components is the most effective in differentiating oil layers from gas layers; and (4 the GOR calculated by using the area ratio of star chart has been verified by various data such as formation testing data, production data and liquid production profile.

  18. Problems of developing the Timano-Pechora oil and gas province

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Features of the geological structure of oil formations, and types of oil and gas formations of the territory of the Timano-Pechora oil and gas province are covered, as well as indicators of hydrochemical situation for existence of natural waters. A study is made of the effect of parameters of the drilling mode on twisting of wells using the ISM bits. A calculation is made of the system of cooling the drilling mud. A quantitative evaluation is made of the effect of buffer pressure on well output and of ways to improve coverage of the productive section of the Pashninskiy field. Reserves for improving well output of the PermCarbonaceous formation and methods of reducing viscosity of heavy oil of the Usinskiy field are described. Hydraulic resistances are presented in the valves of deep sucker rod pumps and the use of packer-cut-offs to cap the wells, questions of improving the effectiveness of clay-acid treatment, and also valve devices for developing the wells. Paths are defined for improving the effectiveness of drilling operations at the association ''Komineft''. Questions of environmental protection in the process of developing the oil and gas province are examined.

  19. Source Signature of Volatile Organic Compounds (VOCs) associated with oil and natural gas operations in Utah and Colorado

    Science.gov (United States)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Young, C. J.; Edwards, P.; Brown, S. S.; Wolfe, D. E.; Williams, E. J.; De Gouw, J. A.

    2012-12-01

    The U.S. Energy Information Administration has reported a sharp increase in domestic oil and natural gas production from "unconventional" reserves (e.g., shale and tight sands) between 2005 and 2012. The recent growth in drilling and fossil fuel production has led to environmental concerns regarding local air quality. Severe wintertime ozone events (greater than 100 ppb ozone) have been observed in Utah's Uintah Basin and Wyoming's Upper Green River Basin, both of which contain large natural gas fields. Raw natural gas is a mixture of approximately 60-95 mole percent methane while the remaining fraction is composed of volatile organic compounds (VOCs) and other non-hydrocarbon gases. We measured an extensive set of VOCs and other trace gases near two highly active areas of oil and natural gas production in Utah's Uintah Basin and Colorado's Denver-Julesburg Basin in order to characterize primary emissions of VOCs associated with these industrial operations and identify the key VOCs that are precursors for potential ozone formation. UBWOS (Uintah Basin Winter Ozone Study) was conducted in Uintah County located in northeastern Utah in January-February 2012. Two Colorado studies were conducted at NOAA's Boulder Atmospheric Observatory in Weld County in northeastern Colorado in February-March 2011 and July-August 2012 as part of the NACHTT (Nitrogen, Aerosol Composition, and Halogens on a Tall Tower) and SONNE (Summer Ozone Near Natural gas Emissions) field experiments, respectively. The C2-C6 hydrocarbons were greatly enhanced for all of these studies. For example, the average propane mixing ratio observed during the Utah study was 58 ppb (median = 35 ppb, minimum = 0.8, maximum = 520 ppb propane) compared to urban averages which range between 0.3 and 6.0 ppb propane. We compare the ambient air composition from these studies to urban measurements in order to show that the VOC source signature from oil and natural gas operations is distinct and can be clearly

  20. Use of remote sensing and ground control in monitoring oil fields in Alabama

    Energy Technology Data Exchange (ETDEWEB)

    La Moreaux, P E; Muzikar, R [ed.

    1978-01-01

    Present and future water pollution problems resulting from oil field operations in Alabama are analyzed. An outline of a program of data collection and interpretation necessary to determine and evaluate solutions to these problems is presented. A method of adequate monitoring of the oil and gas fields in Alabama to protect against pollution of its valuable surface and groundwater supplies is described. Samples of brine are continuously collected and analyzed from sources representing all water producing horizons in the oil fields. A network of observation wells has been established in oil fields to periodically determine changes in the chemical quality of groundwaters. Water samples from wells adjacent to all major saltwater evaporation pits have been collected and analyzed for possible changes in chemical quality. Discharge measurements are made on streams adjacent to all oil fields. Periodic aerial photographs are being made of each field. Preliminary administrative reports are regularly prepared on each problem in the oil fields and remedial or disciplinary actions are taken by the Oil and Gas Board.

  1. How wireless remote technology reduces cost, boosts productivity and improves safety in upstream oil and gas operations

    Energy Technology Data Exchange (ETDEWEB)

    Wommack, K. [Viatran, Edmonton, AB (Canada)

    2009-09-15

    This article demonstrated how wireless communications can help oil and gas producers obtain the most current information on the status of their operations to help optimize operations and protect workers and equipment. Wireless communication can provide benefits at nearly every phase of upstream production. When combined with pressure, temperature, flow, level and other sensing devices, wireless communications provide an effective and economical way to deliver data on well or pipeline operations to site managers; optimize well-production, minimize workovers and prevent blowdowns at the wellhead; track oil and water production; measure differential pressure, line pressure and line temperature; and monitor the motorized choke and control valve position. Wireless technology offers significant savings through improved maintenance efficiency. With wireless systems in remote locations, there are seldom problems in the transmission path. Wireless technology makes it much easier and affordable to manage well operations from a safe distance. By eliminating the need for wires in a fracing operation, wireless can help fracing companies maintain a safe operating distance from their target wells, and move operations from well to well with ease. A wireless communication system for transmitting process data from field sensors to a field processing device consists of radio transmitters, a communications gateway and a user interface. The communications hub receives encrypted messages from the remote devices and transmits them to a flow computer, SCADA system, or Distributed Control System. Data is then transmitted to a central office. 1 fig.

  2. Recent experience with onshore oil and gas operations in the Mackenzie Delta, NWT

    International Nuclear Information System (INIS)

    Burns, J.

    1999-01-01

    Hydrocarbon deposits in the Beaufort Sea and Mackenzie Delta indicate mean discovered gas reserves of 5 trillion cubic feet of natural gas, 67 million barrels of condensate, and 247 million barrels of oil in fields located onshore. There may be even bigger undiscovered reserves that could be proven by a surge in drilling likely to occur in this region within the next few years. There are a number of characteristics of this area that appeal to the oil and gas industry over and above the discovered and undiscovered reserves. There is a local aboriginal group with a settled land claim, clear and reasonable rules for access, a business-like approach to development and a sophisicated understanding of the oil and gas industry. There is reasonable access by road, commercial air service, rail and barge by Hay river or sea with an excellent harbour at Tuktoyaktuk. Local contractors and labour with applicable skills and good equipment are available. The Inuvialuit Petroleum Corp. and its partners Altagas Services Inc. and Enbridge Inc. completed a project to supply the town of Inuvik with natural gas for electricity generation and local distribution. This project is a small example of the physical, economic and regulatory environments that the oil industry will face with the undertaking of larger projects. Aspects of the region described include: the Inuvialuit, recent experience, logistics, regulatory environment, project approvels, environmental, and specific observations

  3. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    Gas hydrate formation in multi phase mixtures containing an aqueous phase (with dissolved salts), reservoir fluid (crude oil) and natural gas phase was investigated by using a standard rocking cell (RC-5) apparatus. The hydrate formation temperature was reduced in the presence of crude oils...... can contribute to the safe operation of sub sea pipelines in the oil and gas industry....

  4. Analysis of the orderly distribution of oil and gas fields in China based on the theory of co-control of source and heat

    Directory of Open Access Journals (Sweden)

    Gongcheng Zhang

    2015-01-01

    Full Text Available Taking a hydrocarbon zone or a basin group as a unit, this paper analyzed the vertical hydrocarbon generation regularity of onshore and offshore oil and gas fields in China, based on the theory of co-control of source and heat. The results demonstrated that the hydrocarbon generation modes of oil and gas fields in China are orderly. First, the hydrocarbon zones in southeastern China offshore area, including the East and South China Sea basins, are dominated by single hydrocarbon generation mode, which displays as either single oil generation in the near shore or single gas generation in the offshore controlled by both source and heat. Second, the eastern hydrocarbon zones, including the Bohai Bay, Songliao and Jianghan basins and the North and South Yellow Sea basins, are dominated by a two-layer hydrocarbon generation mode, which performs as “upper oil and lower gas”. Third, the central hydrocarbon zones, including the Ordos, Sichuan and Chuxiong basins, are also dominated by the “upper oil and lower gas” two-layer hydrocarbon generation mode. In the Ordos Basin, gas is mainly generated in the Triassic, and oil is predominantly generated in the Paleozoic. In the Sichuan Basin, oil was discovered in the Jurassic, and gas was mostly discovered in the Sinian and Triassic. Fourth, the western hydrocarbon zones are dominated by a “sandwich” multi-layer mode, such as the Junggar, Tarim, Qaidam basins. In summary, the theory of co-control of source and heat will be widely applied to oil and gas exploration all over China. Oil targets should be focused on the near shore areas in the southeastern China sea, the upper strata in the eastern and middle hydrocarbon zones, and the Ordovician, Permian and Paleogene strata in the western hydrocarbon zone, while gas targets should be focused on the off-shore areas in the southeastern China sea, the Cambrian, Carboniferous, Jurassic, and Quaternary strata in the western hydrocarbon zone. A pattern of

  5. Oil and gas USSR

    International Nuclear Information System (INIS)

    Pickering, R.H.

    1991-01-01

    Business co-operation with various foreign partners has begun to develop intensively as a result of the restructuring that is now progressing in the Soviet Union. This is particularly the case with the enterprises and organisations dealing with oil and gas production, all of them component parts of the Ministry of Oil and Gas Industry of the USSR. Owing to the enormous territorial expanse of this country, and also to the rather considerable volume of oil produced, the scheme of organisation of this Ministry is complicated and versatile. This Directory lists all the enterprises and organisations that are component parts of the Ministry, their postal addresses, their telephone numbers and the names of their departmental heads. (author)

  6. The oil and gas equipment and services market in New Zealand

    International Nuclear Information System (INIS)

    2002-01-01

    In terms of petroleum exploration investment, New Zealand ranks seventeenth in the world. The oil, gas, and petrochemical industry is mainly concentrated in Taranaki, a province where considerable onshore and offshore exploration and production (E and P) activity is taking place. The largest licensing round in the petroleum industry of New Zealand was recently completed, with 41 applications emanating from 21 companies were submitted, related to 26 new exploration blocks located onshore and frontier Taranaki basin. Starting in 2007, New Zealand is expected to suffer from a natural gas shortfall due to the gradual depletion of the main natural gas field called Maui. As a result, the development of the Pohokura project is being afforded top priority. In 2002, in the province of Taranaki, it is expected that 125 million dollars will be spent in support of exploration activity. The areas of oil and gas exploration such as seismic surveying services, geophysical services, drilling, monitoring and logging, and field management technologies represent potential opportunities for Canadian companies specialized in the provision of oil and gas equipment and services. For the period 2002-2005, New Zealand is planning significant offshore deep-water E and P projects with a view to ensure a secure supply of natural gas. The largest domestic oil and gas E and P company in New Zealand is Todd Petroleum Mining Company, while the largest foreign-owned oil and gas production company operating in the country is Shell Petroleum Mining Company. Responsible for over 90 per cent of oil and gas production, the largest joint oil service company in New Zealand is Shell Todd Oil Service (STOS), 50 per cent owned by Shell Petroleum Mining Company and 50 per cent by Todd Petroleum Mining Company. Canadian equipment and services might be particularly well received by companies such as STOS and Natural Gas Corporation. Partners in oil and gas projects are sought by companies such as Shell. Higher

  7. The oil and gas equipment and services market in Bolivia

    International Nuclear Information System (INIS)

    2003-01-01

    The economy of Bolivia is based mainly on agriculture and resource extraction, making Bolivia one of the poorest countries in Latin America. Approximately 14 per cent of exports are hydrocarbons. Starting in 1996, the oil and gas sector was privatised, resulting in the domination of multinational corporations. It is estimated that the natural gas reserves of Bolivia stand in excess of 2.2 trillion cubic metres. Equipment, materials, and services used in all stages of the oil and gas production and distribution chain are all in demand in Bolivia. Over the medium term, it is expected that pipelines and equipment required for gas-fired power plants represent the most important opportunity in the country. Incentives for vehicle and industrial conversion were included in the new domestic energy plan, as well as the extension of the domestic gas distribution system to 250,000 homes. Canadian geomatics capability could fill the requirements concerning the Bolivian oil and gas assets still in the exploration, development, and documentation stages. Companies with exploration and development contracts, companies producing from commercial fields, refinery operators, producers in the liquid propane gas and compressed natural gas sub-sector, as well as pipeline operators are all considered key players, in addition to the Bolivian Chamber of Hydrocarbons. The customers are sophisticated buyers who purchase based on technical specifications and price negotiations. There are no significant non-tariff barriers, and Bolivia has adopted liberal trade policies. 9 refs., 3 tabs

  8. Reliability-Based Planning of Inspection, Operation and Maintenance for Offshore Oil & Gas Structures and Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based cost-optimal planning of inspection, maintenance and operation has many applications. In this paper applications for planning of inspections for oil & gas jacket structures and of operation and maintenance of offshore wind turbines are described and illustrated by examples....

  9. 75 FR 81224 - Availability of Recreational Diving, Oil and Gas Operations and Commercial Fishing Seats for the...

    Science.gov (United States)

    2010-12-27

    ... Recreational Diving, Oil and Gas Operations and Commercial Fishing Seats for the Flower Garden Banks National... Service (NOS), National Oceanic and Atmospheric Administration (NOAA), Department of Commerce DOC). ACTION... seats on the Flower Garden Banks National Marine Sanctuary Advisory Council: Recreational Diving, Oil...

  10. Biotransformation of natural gas and oil compounds associated with marine oil discharges.

    Science.gov (United States)

    Brakstad, Odd Gunnar; Almås, Inger K; Krause, Daniel Franklin

    2017-09-01

    Field data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases. Gas oxidation was not affected by the presence of volatile oil compounds. Contrary to DWH deep sea plume data, propane oxidation was not faster than methane oxidation. These data may reflect variations between biodegradation of oil and gas in seawater environments with different history of oil and gas exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Assessment of Instruments for Detecting Surface Water Spills Associated with Oil and Gas Operations

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Aubrey E. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); U.S. Bureau of Reclamation, Albuquerque, NM (United States); Hopkinson, Leslie [West Virginia Univ., Morgantown, WV (United States); Soeder, Daniel [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-12-02

    Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been used to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.

  12. Investigations of Flare Gas Emissions in Taq Taq Oil Field on the Surrounding Land

    Directory of Open Access Journals (Sweden)

    Jafar A. Ali

    2014-11-01

    Full Text Available Environmental pollution caused by oil takes many different forms; one of the most damaging sources is simply the combustion of oil products, such as a well flare burn-off. This paper presents the results of a survey of the agriculture lands around the Taq Taq Oil Production Company. The aim of the survey was to determine the potential contamination caused by the gas emissions from the well flares. Taq Taq field is located in the Kurdistan Region of Iraq, 60 km north of the giant Kirkuk oil field, 85 km south-east of Erbil and 120 km north-west of Suleimani. Samples of soil were collected from several locations around the site and analyzed to determine the content of Polycyclic Aromatic Hydrocarbons PAH present. A gas chromatography linked to a mass spectrometry (GCMS machine was used for these measurements. The PAH contamination at each location of soil was determined and the 16-PAHs, as listed in the US Environmental Protection Agency (EPA documentation were investigated. The average content of total PAH in all samples of the agricultural soil was 0.654 mg·kg-1 with the concentrations ranging from 0.310 to 0.869 mg·kg-1. It was found that the PAH concentrations decreased with increasing distance from the TTOPCO oil field, indicating that pollution was evident, the area close to the field being more affected by the gas pollution.

  13. Maps showing geology, oil and gas fields, and geological provinces of South America

    Science.gov (United States)

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  14. Oils; gas

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T

    1922-09-18

    Oils and gas are obtained from shale or oil-bearing sand by immersing the shale in and passing it through a bath of liquid oil, cracking the oil-soaked shale, and condensing the vapor and using the condensate to replenish the bath, preferably by passing the gases and vapors direct into the oil-bath container. Shale is fed continuously from a hopper to a bath of oil in an inclined chamber, is carried to the outlet by a conveyer, and through cracking tubes to an outlet pipe by conveyers. The gases and vapors escape by the pipe, a part condensing in the chamber and a run-back pipe and replenishing the bath, and the remainder passing through a condensing tower and condenser connected to reservoirs; the gas is further passed through a scrubber and a pipe to the burner of the retort. The oil condensed in the chamber overflows to the reservoir through a pipe provided with an open pipe to prevent siphoning. The conveyers and a valve on the pipe are operated by gearing. The operation may be conducted at reduced, normal, or increased pressure, e.g., 70 lbs. The temperature of the retort should be about 900 to 1400/sup 0/F, that of the inside of the tubes about 550 to 700/sup 0/F, and that of the chamber about 300/sup 0/F. The chamber and pipe may be insulated or artificially cooled.

  15. Oil and Gas in the Netherlands - Is there a future?

    NARCIS (Netherlands)

    Herber, R.; de Jager, J.

    The impact of oil and, in particular, gas fields discovered in the Dutch subsurface has been very significant. However, 50 years after the discovery of the giant Groningen gas field the Netherlands has become very mature for exploration of oil and gas, and the gas volume left to be discovered in

  16. Environmental issues in oil and gas operations in Yukon and in the N.W.T

    International Nuclear Information System (INIS)

    MacWilliam, A.G.

    1999-01-01

    Companies planning an expansion into the two territories ought to examine the way each territory deals with potential environmental issues such as spills, releases, contaminated sites and the reclamation of land. Recent legislation has provided each territory with a certain amount of autonomy, which includes the ability to oversee environmental protection. The Yukon, in particular, has considerable freedom in addressing environmental issues relating to oil and gas activities. Both territories are subject to the input and approval of the federal government and First Nations citizens where their respective interests or lands are involved. An overview is included of the regulation of environmental matters north of the 60th parallel. Although the expansion of oil and gas companies into the two territories 'north of 60' offers new opportunities, operators must consider the potential for environmental issues such as spills, releases, site contamination and reclamation of land. In the Yukon where the government has assumed jurisdiction to regulate oil and gas resources, it is implementing a comprehensive regime to deal with environmental issues, at first, in draft form. In contrast, in the N.W.T. the federal government retains considerable control over gas and oil rights and the consequent environmental issues, and, accordingly, it is essential to be aware of federal environmental regulations for the time being

  17. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    Energy Technology Data Exchange (ETDEWEB)

    Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

    1994-10-01

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

  18. Geologic distributions of US oil and gas

    International Nuclear Information System (INIS)

    1992-01-01

    This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists' Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail than has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study

  19. Performance indicators for evaluation of North Sea oil and gas platforms

    DEFF Research Database (Denmark)

    Voldsund, Mari; Nguyen, Tuong-Van; Elmegaard, Brian

    2013-01-01

    Well-defined performance indicators can motivate optimal operation of offshore oil and gas platforms. This paper aims to develop such parameters, indicating possibilities for reducing power consumption and emissions of pollutants. Different platforms have different oilfield conditions and process...... specifications. Such conditions determine the theoretical minimum work required to operate the platforms, and can have a high impact on the power consumption. We introduce performance indicators based on energy and exergy. The specific energy use and specific exergy consumption evaluate the resources spent...... required under ideal conditions (i.e. reversible operation), and specific exergy destruction illustrates the amount of resources lost due to irreversibilities. We use these indicators to evaluate the oil and gas processing at four different North Sea platforms that differ by the field lifetime, system...

  20. Top-down Constraints on Emissions: Example for Oil and Gas Operations

    Science.gov (United States)

    Petron, G.; Sweeney, C.; Karion, A.; Brewer, A.; Hardesty, R.; Banta, R. M.; Frost, G. J.; Trainer, M.; Miller, B. R.; Conley, S. A.; Kofler, J.; Newberger, T.; Higgs, J. A.; Wolter, S.; Guenther, D.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Montzka, S. A.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Helmig, D.; Hueber, J.; Rella, C.; Jacobson, G. A.; Wolfe, D. E.; Bruhwiler, L.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    In many countries, human-caused emissions of the two major long lived greenhouse gases, carbon dioxide and methane, are primarily linked to the use of fossil fuels (coal, oil and natural gas). Fugitive emissions of natural gas (mainly CH4) from the oil and gas exploration and production sector may also be an important contributor to natural gas life cycle/greenhouse gas footprint. Fuel use statistics have traditionally been used in combination with fuel and process specific emission factors to estimate CO2 emissions from fossil-fuel-based energy systems (power plants, motor vehicles…). Fugitive emissions of CH4, in contrast, are much harder to quantify. Fugitive emission levels may vary substantially from one oil and gas producing basin to another and may not scale with common activity data, such as production numbers. In the USA, recent efforts by the industry, States and the US Environmental Protection Agency have focused on developing new bottom-up inventory methodologies to assess methane and volatile organic compounds emissions from oil and gas producing basins. The underlying assumptions behind these inventories are multiple and result de facto in large uncertainties. Independent atmospheric-based estimates of emissions provide another valuable piece of information that can be used to evaluate inventories. Over the past year, the NOAA Earth System Research Laboratory has used its expertise in high quality GHG and wind measurements to evaluate regional emissions of methane from two oil and gas basins in the Rocky Mountain region. Results from these two campaigns will be discussed and compared with available inventories.

  1. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  2. Termoacu Cogeneration: gas, power and oil; Cogeracao Termoacu: gas, energia e oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Geraldo Jose; Gomes, Cicero Sena Moreira [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper describes the evolution of a project that involves cogeneration of power and steam for continuous injection in oil wells in the fields of Alto do Rodrigues and Estreito, in Rio Grande do Norte, Brazil. The project combines a PETROBRAS intention for recovering heavy oil in that area with partners intention of generating power to connect in a critical point of the Brazilian Electric System. PETROBRAS studies began in the nineties, when oil wells in that area became old end showed the necessity of some oil recovery technology. In 1999, PETROBRAS and Guaraniana made a partnership for implementation of Termoacu Combined Cycle, that would begin operation as a cogeneration plant for thirteen years, and as combined cycle from that point. The profile of steam injection has been adapted to a new one to comply with the powe r capacity of the Plant, and will operate eight years as a cogeneration plant , four years as a combined cycle with cogeneration and after twelve years as a complete combined cycle with 500 MW of capacity. The project integrates a gas pipeline, a Thermal Power Plant, a Transmission Line to connect to the grid and a Steam Pipeline for steam injection at Estreito and Alto do Rodrigues fields. (author)

  3. Radioisotope techniques for problem solving in the offshore oil and gas industry

    International Nuclear Information System (INIS)

    Charlton, J.S.; Hurst, J.A.

    1994-01-01

    Radioisotope technology has been used for almost half a century by the oil and gas industry to solve problems and to help optimize process operations. The use of radioactive isotopes to investigate the effectiveness of well stimulation procedures and to measure the sweep-out patterns of oil and gas in secondary recovery process is well known. The applications of radioisotopes to study features of plant and process operation has been less widely reported though the economic benefits deriving from such applications are very great. Nevertheless, there has been continuous development in the range of application and in the design of equipment to facilitate the use of the technology at remote environments such as an oil or gas platform. Some indication of the current usage of radioisotope techniques may be obtained from examination of Table I, which lists projects carried out in the UK's North Sea fields by ICI Tracerco, which is the world's largest radioisotope applications service group

  4. Floating production platforms and their applications in the development of oil and gas fields in the South China Sea

    Science.gov (United States)

    Zhang, Dagang; Chen, Yongjun; Zhang, Tianyu

    2014-03-01

    This paper studies the current available options for floating production platforms in developing deepwater oil fields and the potential development models of future oil and gas exploration in the South China Sea. A detailed review of current deepwater platforms worldwide was performed through the examples of industry projects, and the pros and cons of each platform are discussed. Four types of platforms are currently used for the deepwater development: tension leg platform, Spar, semi-submersible platform, and the floating production system offloading. Among these, the TLP and Spar can be used for dry tree applications, and have gained popularity in recent years. The dry tree application enables the extension of the drilling application for fixed platforms into floating systems, and greatly reduces the cost and complexity of the subsea operation. Newly built wet tree semi-submersible production platforms for ultra deepwater are also getting their application, mainly due to the much needed payload for deepwater making the conversion of the old drilling semi-submersible platforms impossible. These platforms have been used in different fields around the world for different environments; each has its own advantages and disadvantages. There are many challenges with the successful use of these floating platforms. A lot of lessons have been learned and extensive experience accumulated through the many project applications. Key technologies are being reviewed for the successful use of floating platforms for field development, and potential future development needs are being discussed. Some of the technologies and experience of platform applications can be well used for the development of the South China Sea oil and gas field.

  5. Gas, Oil, and Water Production from Jonah, Pinedale, Greater Wamsutter, and Stagecoach Draw Fields in the Greater Green River Basin, Wyoming

    Science.gov (United States)

    Nelson, Philip H.; Ewald, Shauna M.; Santus, Stephen L.; Trainor, Patrick K.

    2010-01-01

    Gas, oil, and water production data were compiled from selected wells in four gas fields in rocks of Late Cretaceous age in southwestern Wyoming. This study is one of a series of reports examining fluid production from tight-gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after commencement of production. For each producing interval, summary diagrams of oil versus gas and water versus gas production show fluid production rates, the change in rates during five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The ranges of first-sample gas rates in Pinedale field and Jonah field are quite similar, and the average gas production rate for the second sample, taken five years later, is about one-half that of the first sample for both fields. Water rates are generally substantially higher in Pinedale than in Jonah, and water-gas ratios in Pinedale are roughly a factor of ten greater in Pinedale than in Jonah. Gas and water production rates from each field are fairly well grouped, indicating that Pinedale and Jonah fields are fairly cohesive gas-water systems. Pinedale field appears to be remarkably uniform in its flow behavior with time. Jonah field, which is internally faulted, exhibits a small spread in first-sample production rates. In the Greater Wamsutter field, gas production from the upper part of the Almond Formation is greater than from the main part of the Almond. Some wells in the main and the combined (upper and main parts) Almond show increases in water production with time, whereas increases

  6. New oil and gas incentives in Saskatchewan

    International Nuclear Information System (INIS)

    Patel, B.

    2003-01-01

    Saskatchewan is Canada's second largest producer of crude oil and the third largest producer of natural gas with nearly 400 oil and gas companies operating in the province. The oil ranges from heavy sour to light sweet crude oil. Nearly half of the production is heavy oil, 30 per cent is medium oil and 20 per cent is light oil. In 2002, the Province announced changes to the oil and gas Royalty and Tax Regime in an effort to encourage new oil and gas exploration and development activities in Saskatchewan and to help the industry compete with other jurisdictions around the world. This paper examined the pre-October 2002 Saskatchewan Crown Royalty and freehold production tax structure and compared them to the new structure. The paper also briefly outlined the corporation capital tax, resource surcharge, and flow-through share tax credit initiatives announced in 2001 and 2002. With reductions in the Crown Royalty, freehold production tax and corporation capital taxes, the Province expects that more than 9000 oil and gas wells will be drilled in the next decade, representing new investment of about $4.3 billion and 40,000 new jobs. The flow-through share credit may not attract significant investment because it only benefits those who pay taxes in Saskatchewan. 40 refs

  7. Oil and gas exploration and production

    International Nuclear Information System (INIS)

    Babusiaux, D.; Favennec, J.P.; Bauquis, P.R.; Bret-Rouzaut, N.; Guirauden, D.

    2004-01-01

    The steps that lead to the production of oil and gas are diverse, complex and costly. They are diverse, because the detection of oil and gas involves input from many specialties, ranging from geology to reservoir engineering. They are complex, as shown by the development of the job of the petroleum architect, who coordinates all the operations. They are costly, as the investments for exploration and production represent more than half of all investments in the oil and gas sector. Moreover, exploration is a risky activity, both from the technical and financial viewpoint: only one well in five produces marketable oil. Meanwhile, the areas for exploration and production are spread throughout the world. This book provides a complete overview of the stakes and challenges involved in oil and gas exploration and production. Following a historical review and a survey of the markets, the technical phases are covered, as are the evaluation of reserves, the estimation of investments and costs, the decision-making and control processes, and the accounting, legal and contractual environment for these activities. The book concludes with a discussion of the role of safety, and of environmental and ethical issues. This work, which is designed for readers concerned with the various aspects of the oil and gas upstream sector, is accessible to all. Contents: 1. Petroleum: a strategic product. 2. Oil and gas exploration and production. 3. Hydrocarbon reserves. 4. Investments and costs. 5. Legal, fiscal and contractual framework. 6. Decision-making on exploration and production. 7. Information, accounting and competition analysis. 8. Health, safety, the environment, ethics. Bibliography. Glossary. Index

  8. Study on incineration technology of oil gas generated during the recovery process of oil spill

    International Nuclear Information System (INIS)

    Hou, Shuhn-Shyurng; Ko, Yung-Chang; Lin, Ta-Hui

    2011-01-01

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area.

  9. Study on incineration technology of oil gas generated during the recovery process of oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shuhn-Shyurng [Department of Mechanical Engineering, Kun Shan University, Tainan 71003 (China); Ko, Yung-Chang [China Steel Corporation, Kaohsiung 81233 (China); Lin, Ta-Hui [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2011-03-15

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area. (author)

  10. Peak oil and gas

    International Nuclear Information System (INIS)

    Ziegler, W. H.; Campbell, C. J.; Zagar, J.J.

    2009-01-01

    Oil and gas were formed under exceptional conditions in the geological past, meaning that they are subject to natural depletion, such that the past growth in production must give way to decline. Although depletion is a simple concept to grasp, public data on the resource base are extremely unreliable due to ambiguous definitions and lax reporting. The oil industry is reluctant to admit to an onset of decline carrying obvious adverse financial consequences. There are several different categories of oil and gas, from tar sands to deep water fields, each with specific characteristics that need to be evaluated. It is important to build a global model on a country by country basis in order that anomalous statistics may be identified and evaluated. Such a study suggests that the world faces the onset of decline, with far-reaching consequences given the central role of oil-based energy. It is accordingly an important subject deserving detailed consideration by policy makers. (author)

  11. Oil Fields, Oil and gas production platforms are potential source for oil spills and may interfere with mechanical means to clean up oil spills., Published in 1998, 1:24000 (1in=2000ft) scale, Louisiana State University (LSU).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Oil Fields dataset current as of 1998. Oil and gas production platforms are potential source for oil spills and may interfere with mechanical means to clean up oil...

  12. The features of oil & gas complex's strategic management and hydrocarbon products transportation at developing marine oil & gas fields in Arctic

    Directory of Open Access Journals (Sweden)

    Fadeev А. М.

    2017-12-01

    Full Text Available The paper considers some theoretical and practical issues of strategic management of oil and gas complex at the development of hydrocarbon resources in the Arctic offshore. The analysis of existing approaches in process and project management of oil and gas complex has been carried out taking into account characteristics of offshore projects in the Arctic zone. Considerable attention has been paid to the history and evolution of strategic management as an economic category, functional areas of strategic management at different levels of management have been proposed. The analysis of existing scientific works dedicated to the projects on the Arctic shelf, has shown insufficient development of the strategic management's theory and practice. In particular, the biggest part of the scientific studies is focused on studying issues of the management at the corporate level, at the same time questions at the level of the oil and gas complex are not considered. In existing studies, the project and process approaches to management are often opposed to each other, and according to the authors it is incorrect in relation to the management of the oil and gas complex on the Arctic shelf. The oil and gas complex is a complex and multilevel system that implements unprecedentedly difficult projects in terms of technology. The beginning of hydrocarbon production on the Arctic shelf is inextricably linked with the transportation of extracted raw materials to the processing and marketing sites; it complements the strategic management of the oil and gas complex by the features of organizing efficient transport and logistics solutions.

  13. Emissions from oil and gas operations in the United States and their air quality implications.

    Science.gov (United States)

    Allen, David T

    2016-06-01

    The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world's largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both

  14. Formation and distribution of large lithologic-stratigraphic oil & gas fields (provinces

    Directory of Open Access Journals (Sweden)

    Shizhen Tao

    2018-02-01

    Full Text Available Since the “Tenth Five-Year Plan”, lithologic and stratigraphic reservoirs have been the main contribution of both the discovery as well as reserve and production increase in China; there were about 80% of proven reserves. The typical reservoirs in six major basins in the eastern, central, and western China were adopted as reservoir forming models. The reservoir forming models in three types of slopes, three types of depressions, and three types of lithologic reservoir assemblages have been built on the basis of application of new technologies, physical modeling of reservoir forming mechanism, and investigation to the formation and distribution of the reservoirs. The evaluation methods for large lithologic reservoirs provinces were established based on the forming mechanism and main controlling factors mentioned above. In addition, the study reveals the main controlling factors and the laws of enrichment of two types of stratigraphic reservoirs (pinch-out and weathered karst reservoirs based on the evaluation methods for large stratigraphic reservoir provinces that have been established. By comprehensively understanding the laws of enrichment of lithologic-stratigraphic reservoirs in four types of basins, specific evaluation methods and fine exploration techniques have been developed. The findings led to an exploration direction in the “Thirteenth Five-Year Plan” period. The study supported the exploration and selection of oil and gas plays, as well as promoted the exploration of lithologic and stratigraphic reservoirs. Keywords: Lithologic trap, Stratigraphic trap, Lithostratigraphic reservoir, Large oil and gas field, Large oil and gas province, Formation and distribution, Exploration potential

  15. Report on the oil and gas industry in 2011

    International Nuclear Information System (INIS)

    Venturini, Isabelle; Hesske, Philip; Welter-Nicol, Cecile; Korman, Bernard; Wermelinger, Elea; Gouge, Patrick; Balian, Armelle; Guichaoua, Sabine; Levaillant, Elise; Ripaux, Marion; Baumont, Thierry; Fondeville, Louis; Lamy, Jean-Michel; Delvincourt, Thibaud; Pertuiset, Thomas; Quintaine, Thierry; Miraval, Bruno; Cesari, Vartouhie

    2012-01-01

    Illustrated by several graphs and tables, this report first proposes an overview of international oil and gas markets and supplies: markets, exploration, challenges faced by European supplies, and French hydrocarbon imports. It comments oil exploration and production activities in France, refining activities and activities in the field of substitution fuels. The next part addresses the French oil and gas logistics: domestic transports of oil products, oil product storage infrastructures, strategic storage, and gas infrastructures. The last part addresses the final consumption: consumption, distribution, fuel quality, prices, and tax policy

  16. Series of standards for use by an oil and gas production administration for progress-of work reports and inventory control

    Energy Technology Data Exchange (ETDEWEB)

    Kucherniuk, V A; Eliseev, V G; Iskandarov, R G

    1981-01-01

    Based on a study of the characteristics of product flows from oil wells, the test and monitoring equipment used to monitor the quantity of oil, and the standard documentation, it is demonstrated that in order to increase the measurement accuracy of the product produced by the oil and gas production administration, it is necessary to develop a system of enterprise standards to account for it. A list is given of standards of use by oil and gas production administration to account for its product. The use of the standards with existing metering equipment makes it possible to decrease the variation between operational and inventory records for the quantity of oil at the ''Rechitsaneft'' oil and gas production administration up to 5% and consequently to increase the control efficiency over the operation of the fields.

  17. Oil and gas in China: The door opens wider to international oil companies

    International Nuclear Information System (INIS)

    Tao, Wang

    1993-01-01

    This paper reviews new incentives offered by the China National Petroleum Corporation to help develop China's oil and gas fields. The initial offer for bids by foreign investors is for exploration and joint development contracts for western China's Tarim basin. However, the expansion to other basins and areas of China is well underway. It also discusses a pipeline project which will be connect the western China oil and gas fields with the eastern markets, approximately 2,200 miles. A historical review of the oil and gas production and utilization of China is presented along with forecasts of future production. It also provides estimates of gas and oil reserves and information on enhanced recovery techniques used to maintain a stable production level. The second half of the paper is an interview with Dr. Wang Tao, a PhD graduate of Moscow's Petroleum Institute, and president of the China National Petroleum Corporation. He reviews the government policies with regards to foreign investment in his country

  18. Sector report: Malaysia. Upstream oil and gas industry

    International Nuclear Information System (INIS)

    1997-01-01

    This report is one of a series designed to introduce British exporters to the opportunities offered by the Malaysian market in oil and natural gas. The report includes Malaysia's oil and gas reserves, production, exploration, major profits upstream, production sharing contracts, pipeline construction, operators in production, service sector, and Petronas. (UK)

  19. Energy efficiency measures for offshore oil and gas platforms

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter; Elmegaard, Brian

    2016-01-01

    Oil and gas platforms are energy-intensive systems – each facility uses from a few to several hundreds MW of energy, depending on the petroleum properties, export specifications and field lifetime. Several technologies for increasing the energy efficiency of these plants are investigated in this work. They include: (i) the installation of multiple pressure levels in production manifolds, (ii) the implementation of multiphase expanders, (iii) the promotion of energy and process integration, (iv) the limitation of gas recirculation around the compressors, (v) the exploitation of low-temperature heat from the gas cooling steps, (vi) the downsizing or replacement of the existing gas turbines, and (vii) the use of the waste heat from the power plant. The present study builds on four actual cases located in the North and Norwegian Seas, which differ by the type of oil processed, operating conditions and strategies. The benefits and practical limitations of each measure are discussed based on thermodynamic, economic and environmental factors. Significant energy savings and reductions in CO_2-emissions are depicted, reaching up to 15–20%. However, they strongly differ from one facility to another, which suggests that generic improvements can hardly be proposed, and that thorough techno-economic analyses should be conducted for each plant. - Highlights: • Energy efficiency measures for offshore platforms are assessed. • Energy savings and reductions in CO_2-emissions can reach up to 15-20%. • They differ strongly depending on the oil type, operating conditions and strategies.

  20. Canadian oil and gas survey 1998

    International Nuclear Information System (INIS)

    Roberge, R.B.

    1998-01-01

    The year 1997 brought record levels of financing for the Canadian oil and gas industry which led to record levels of capital spending and unprecedented merger and acquisition activity. Production records were achieved, but soft commodity prices in the fourth quarter resulted in a significant downturn in the equity markets. El Nino reduced demand for natural gas and heating oil, resulting in increased storage levels for both commodities. Record drilling and capital spending fueled the Canadian oilfield service industry as total market capitalization rose to $10 billion. As for the 1998 outlook, the industry has turned to natural gas as the favoured commodity, as indicated by the conclusion of the Alliance pipeline hearings and the Nova/TCPL merger. This survey presents a review of crude oil and natural gas production, prices, and capital spending for development and exploratory wells, and the financial and operating results for fiscal year 1997 of selected oil and gas companies and income trusts. All listed companies are Canadian public companies, or publicly traded income trusts, traded on one of the country's four major stock exchanges. They are ranked according to gross oil and gas production revenue only (before royalties). Syncrude and oil sands production is also included. The remaining data in the financial statistics tables includes all business segments of each company included. The survey excluded companies that were wholly-owned subsidiaries, divisions or U.S. subsidiaries and private companies. tabs., figs

  1. Oil and gas in the Ogaden Basin, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Du Toit, S.R.; Kurdy, S. [Alconsult International, Calgary, AB (Canada); Asfaw, S.H.; Gessesse, A.A. [Petroleum Operations Dept., Ministry of Mines and Energy, Addis Ababa (Ethiopia)

    1997-09-01

    To date, many of the 47 exploration and development wells drilled in the Ogaden Basin in Ethiopia have exhibited natural oil seeps and oil and gas shows. The Calub gas field and the Hilala oil field occurs in the central part of the 350,000 sq. km. basin. The various units within the basin consist of continental sediments, a regional organic-rich interval close to the Permo-Triassic boundary, organic-rich marine sediments and carbonates. The Ogaden Basin is dissected by several faults that are related to the Ethiopian Rift and may form a component of traps in the Calub-Hilala area.

  2. Mergers and acquisitions in the oil and gas industries

    International Nuclear Information System (INIS)

    Corlay, C.; Huby, D.

    1999-01-01

    This paper focuses on mergers and acquisitions in the oil and gas industries, and lists the most important mergers in terms of transaction value for the period 1981-1997, and plots oil and gas mergers and acquisitions activity by sector and by major region. The mean operation indicator in 1998 in terms of reserves, production and refining capacity of the major companies are tabulated. The impact of the mergers on the oil and gas markets are examined, and issues concerning these mergers and acquisitions are explored. (UK)

  3. Mergers and acquisitions in the oil and gas industries

    Energy Technology Data Exchange (ETDEWEB)

    Corlay, C.; Huby, D. [Institut Francais du Petrole, Rueil-Malmaison (France)

    1999-07-01

    This paper focuses on mergers and acquisitions in the oil and gas industries, and lists the most important mergers in terms of transaction value for the period 1981-1997, and plots oil and gas mergers and acquisitions activity by sector and by major region. The mean operation indicator in 1998 in terms of reserves, production and refining capacity of the major companies are tabulated. The impact of the mergers on the oil and gas markets are examined, and issues concerning these mergers and acquisitions are explored. (UK)

  4. The impact of energy production on the atmosphere: Laboratory and field studies of emissions from oil and gas production and their chemical transformation

    Science.gov (United States)

    Li, Rui

    Over the past decades, the rapid development of energy production in the U.S. has led to significant changes in atmospheric emissions and transformation of trace gas and particles, which are still very uncertain and poorly understood. Through laboratory, modeling and field experiments we hope to better understand the trace gas emission and their contribution to secondary organic aerosols (SOA) formation in the oil and natural gas (O&NG) operations. A fast time-response Oxidation Flow Reactor (OFR) is used for the study of SOA formation from oil vapors. The radical chemistry and quantification of OH exposure (OHexp) in the reactor under various conditions were investigated using a photochemical kinetic model. An OHexp estimation equation derived from the model was shown to agree with measurements in several field campaigns. This work further establishes the usefulness of such reactors in atmospheric studies. Motivated from the SOA observations of Gulf of Mexico oil spill, the SOA formation from organic compounds of different volatility in the oil vapors was studied in the laboratory using OFR. We use the evaporation time dependence on volatility of the precursors to quantify their contribution to total SOA formation. This study shows (1) organic compounds of intermediate volatility contribute the large majority of SOA mass formed, (2) the mass spectral signature of SOA shows good agreement with that of ambient SOA formed during oil spill. These results in O&NG operations, the air toxic hydrogen sulfide (H 2S) can be released at wellheads, separation and storage tanks. Here, quantitative, fast time-response measurements of H2S using Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) instruments in an O&NG field are presented. A laboratory calibration study was performed to measure the humidity dependent sensitivities of H2S. The close correlation between H2S and CH4 and significant H2S levels downwind of storage tanks suggest that H2S emissions associated with O

  5. Map of gas facilities and operators in Northeast British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-06-01

    This map represents 57 gas facilities and operators and references location on the map to the facility and operator. The Northern Rockies Regional district is indicated, as is the Peace River Regional district. Roads, truck trails, railroads, pipeline and airstrips are indicated as well as oil and gas fields. Various protected areas and First Nations settlement areas and regions are also indicated. The following companies placed advertisements on the map, detailing the services they provide: Wellco Energy Services; C.E. Franklin Ltd.; the City of Fort St. John, Region of Chetwynd; Smith Bits; the City of Dawson Creek, Economic Development and Tourism; Fort Nelson and Northern Rockies Regional District; Pipetech Corp.; Kenwood; Hughes Christensen; Spartan Controls; FI Canada Oil Services Ltd.; Northstar Drillstem Testers Inc.; Rainbow Transport Ltd.1 fig.

  6. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  7. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  8. Geoperspective | Oil and Gas in the Netherlands – Is there a future?

    NARCIS (Netherlands)

    Herber, R.; Jager, J. de

    2010-01-01

    The impact of oil and, in particular, gas fields discovered in the Dutch subsurface has been very significant. However, 50 years after the discovery of the giant Groningen gas field the Netherlands has become very mature for exploration of oil and gas, and the gas volume left to be discovered in

  9. Improving the organization of the outfitting of gas and oil fields in a unitized design

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, V.L.; Kurepin, B.N.; Sivergin, M.Yu.; Telegin, L.G.

    1985-01-01

    The basic tenets of the organization of outfitting gas and oil fields in a unitized design are examined. An economic and mathematical model for selecting a variant for transporting unitized devices is proposed in which the transport expenditures are minimal.

  10. The feasibility of the gas micro-turbines application in the heavy oil produced from onshore mature fields; A viabilidade do uso de micro-turbinas a gas em campos maduros onshore de oleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Arlindo Antonio de; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia

    2004-07-01

    This article presents a synthesis of the fast advances in micro co-generation technology and their possible applications in fields of petroleum. The subject is focus of a research of the authors and the preliminary results indicate a potential of contributing for the optimization of mature fields of heavy oil. In general, this technology involves smaller environmental impact and produces better efficiency in those uses that require heat and electricity. An application interesting it is the use of gas micro-turbines, operating in co-generation in a (heavy) oil fields onshore, where it is possible increment of the production to the if it uses the steam injection as method of secondary recovery. The idea of using the heat to improve the productivity of the wells and to increase the recovery factor is almost as old as the industry of the petroleum. The technique consists of heating up the oil to reduce his/her viscosity and to facilitate the drainage. Nowadays, the use of the steam injection is usual in fields of heavy oils (degree API <20), high viscosity (> 500 cp), reservoirs no deep (<1300 m) and net pay in the interval from 5 to 50 m. The innovation, here, is the use of a group of micro-turbines moved to gas (no rare, burned in the flare) to generate the steam 'in loco' (near to the well) and electricity for own consumption or even commercialization. This article presents a case study of the economical potential the use of four gas micro-turbines, operating in micro cogeneration, in a field of 6,6 km{sup 2} in the Brazilian Northeast. (author)

  11. Alaskan North Slope Oil & Gas Transportation Support

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Michael Russell [Geo-Watersheds Scientific LLC, Fairbanks, AK (United States)

    2017-03-31

    North Slope oil and gas resources are a critical part of US energy supplies and their development is facing a period of new growth to meet increasing national energy needs. While this growth is taking place in areas active in development for more than 20 years, there are many increasing environmental challenges facing industry and management agencies. A majority of all exploration and development activities, pipeline maintenance and other field support activities take place in the middle of winter, when the fragile tundra surface is more stable. The window for the critical oil and gas winter operational season has been steadily decreasing over the last 25 years. The number of companies working on the North Slope is increasing. Many of these companies are smaller and working with fewer resources than the current major companies. The winter operations season starts with the tundra-travel opening, which requires 15 cm of snow on the land surface in the coastal management areas and 23 cm in the foothills management areas. All state managed areas require -5°C soil temperatures at a soil depth of 30 cm. Currently there are no methods to forecast this opening date, so field mobilization efforts are dependent on agency personnel visiting field sites to measure snow and soil temperature conditions. Weeks can be easily lost in the winter operating season due to delays in field verification of tundra conditions and the resulting mobilization. After the season is open, a significant percentage of exploration, construction, and maintenance do not proceed until ice roads and pads can be built. This effort is dependent on access to lake ice and under-ice water. Ice chipping is a common ice-road construction technique used to build faster and stronger ice roads. Seasonal variability in water availability and permitting approaches are a constant constraint to industry. At the end of the winter season, projects reliant on ice-road networks are often faced with ending operations

  12. Market potential of solar thermal enhanced oil recovery-a techno-economic model for Issaran oil field in Egypt

    Science.gov (United States)

    Gupta, Sunay; Guédez, Rafael; Laumert, Björn

    2017-06-01

    Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil

  13. Oil and Gas Emergency Policy: Turkey 2013 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Oil has been one of the main energy sources in Turkey, accounting for some 28% of the country’s total primary energy supply (TPES) in 2011. Turkey’s oil demand slightly increased from 637 kb/d in 2003 to 670 kb/d in 2012, although it dropped down from 678 kb/d in 2009 to 650 kb/d in 2010. The transport sector accounted for half of total oil consumption in 2010. Domestic oil production is in decline in Turkey, amounting to 45 kb/d or about 6.7% of total consumption in 2012. In 2012, Turkey imported 712 kb/d, consisting of about 392 kb/d of crude oil and some 320 kb/d refined products. Around 39% of total crude oil imports came from Iran. Crude oil and petroleum products are mainly undertaken by tankers and two major international pipelines running through the country with a total annual handling capacity of 2.8 mb/d. In the country, there are four operational refineries with a total crude distillation capacity of around 610 kb/d. Turkey meets its 90-day stockholding obligation to the IEA by placing a minimum stockholding obligation on industry. Under the relevant acts, refineries and fuel distribution companies are obliged to hold at least 20 days of product stocks based on the average daily sales of previous year, while eligible consumers that use more than 20,000 tonnes annually are required to hold 15 days’ consumption of each type of liquid fuel. Turkey held some 61 million barrels of oil stocks at the end of January 2013, equating to 99 days of 2011 net-imports. Around 55% of total oil stocks are held in the form of crude oil. The use of emergency oil stocks is central to Turkey’s emergency response policy, which can be complemented by demand restraint measures. The share of natural gas in the country’s TPES significantly increased at 32% in 2011. Turkey’s gas demand significantly increased from 0.7 billion cubic meters (2 mcm/d) in 1987 to 45.3 bcm (124 mcm/d) in 2012, while indigenous natural gas production totalled some 0.63 bcm in the same year

  14. Kalimantan field development hikes gas supply for LNG export

    International Nuclear Information System (INIS)

    Suharmoko, G.R.

    1991-01-01

    This paper reports on the development of Tambora and Tunu gas fields in Kalimantan that have increased available gas supply for the export of liquefied natural gas (LNG) from Indonesia. The demand for LNG is increasing in the energy thirsty Far East market. And Indonesia, the world's largest exporter, is keeping pace by expanding the Bontang liquefaction plant in East Kalimantan. A fifth train, with a capacity of around 2.5 million tons/year, began operating in January 1990. Start-up of a sixth train, of identical capacity, is planned for January 1994. The Bontang plant is operated by PT Badak on behalf of Pertamina, the Indonesian state oil and gas mining company. The feed to the fifth train comes primarily from the first-phase development of Total Indonesie's two gas fields, Tambora and Tunu. The sixth train will be fed by a second-phase development of the Tunu field

  15. Ecological and Economic Indicators of Oil and Gas Companies Functioning

    OpenAIRE

    Anastasia V. Sheveleva

    2016-01-01

    This article analyzes the basic ecological-economic indicators of oil and gas companies, in particular the various volumes of oil, the number of spills per year of CO2 emissions, the costs of environmental protection. In the process of exploration, development and exploitation of oil and gas fields, production, refining, transportation and storage companies have a negative impact on the environment. Occur accidents involving oil spills, emissions and discharges of pollutants into the environm...

  16. Geospatial Analysis of Oil and Gas Wells in California

    Science.gov (United States)

    Riqueros, N. S.; Kang, M.; Jackson, R. B.

    2015-12-01

    California currently ranks third in oil production by U.S. state and more than 200,000 wells have been drilled in the state. Oil and gas wells provide a potential pathway for subsurface migration, leading to groundwater contamination and emissions of methane and other fluids to the atmosphere. Here we compile available public databases on oil and gas wells from the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources, the U.S. Geological Survey, and other state and federal sources. We perform geospatial analysis at the county and field levels to characterize depths, producing formations, spud/completion/abandonment dates, land cover, population, and land ownership of active, idle, buried, abandoned, and plugged wells in California. The compiled database is designed to serve as a quantitative platform for developing field-based groundwater and air emission monitoring plans.

  17. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    International Nuclear Information System (INIS)

    Staller, George E.; Whitlow, Gary

    1999-01-01

    On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two meters in an actual drilling operation, The relief well is nearing 14,000 feet deep, targeting an intercept of the first well near 17,600 feet. The relief well is expected to be completed in

  18. SEASAT demonstration experiments with the offshore oil, gas and mining industries

    Science.gov (United States)

    Mourad, A. G.; Robinson, A. C.; Balon, J. E.

    1979-01-01

    Despite its failure, SEASAT-1 acquired a reasonable volume of data that can be used by industrial participants on a non-real-time basis to prove the concept of microwave sensing of the world's oceans from a satellite platform. The amended version of 8 experimental plans are presented, along with a description of the satellite, its instruments, and the data available. Case studies are summarized for the following experiments: (1) Beaufort Sea oil, gas, and Arctic operations; (2) Labrador Sea oil, gas, and sea ice; (3) Gulf of Mexico pipelines; (4) U.S. East Coast offshore oil and gas; (5) worldwide offshore drilling and production operations; (6) Equatorial East Pacific Ocean mining; (7) Bering Sea ice project; and (8) North Sea oil and gas.

  19. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.

    Science.gov (United States)

    Gan, Wei; Frohlich, Cliff

    2013-11-19

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change.

  20. Companies: oil and gas industry on the up

    International Nuclear Information System (INIS)

    Burk, V.A.

    1994-01-01

    The results of a 1993 survey of the oil and gas industries in the USA are reported. Exploration and development spending and production replacement rates increased for the first time since 1990 while reserve replacement costs were at their lowest for five years. Data demonstrating these improvements are included. The information is drawn from 250 publicly owned oil and gas companies, 28 of which have headquarters outside the USA. A ranked list of the ''Top 100'' companies is presented, detailing: oil and gas reserves and production revenues; results of operations from producing activities; acquisition, exploration and development expenditures; reserve and production replacement costs. (UK)

  1. Oil and gas, the hot spots of the planet

    International Nuclear Information System (INIS)

    Delage, St.

    2009-01-01

    Despite the economic crisis, more than 400 billion dollars have been in,vested in 2009 in oil and gas exploration and production. Oil companies and their suppliers from the para-petroleum industry are still working hard to exploit new discoveries. This paper makes a worldwide overview of the most promising oil and gas fields in particular in Brazil, Australia, Ghana and qatar (investments, partners, production, reserves). (J.S.)

  2. Gas and Oil Flow through Wellbore Flaws

    Science.gov (United States)

    Hatambeigi, M.; Anwar, I.; Reda Taha, M.; Bettin, G.; Chojnicki, K. N.; Stormont, J.

    2017-12-01

    We have measured gas and oil flow through laboratory samples that represent two important potential flow paths in wellbores associated with the Strategic Petroleum Reserve (SPR): cement-steel interfaces (microannuli) and cement fractures. Cement fractures were created by tensile splitting of cement cores. Samples to represent microannuli were created by placing thin steel sheets within split cement cores so flow is channeled along the cement-steel interface. The test sequence included alternating gas and oil flow measurements. The test fluids were nitrogen and silicone oil with properties similar to a typical crude oil stored in the SPR. After correcting for non-linear (inertial) flow when necessary, flows were interpreted as effective permeability and hydraulic aperture using the cubic law. For both samples with cement fractures and those with cement-steel interfaces, initial gas and oil permeabilities were comparable. Once saturated with oil, a displacement pressure had to be overcome to establish gas flow through a sample, and the subsequent gas permeability were reduced by more than 50% compared to its initial value. Keywords: wellbore integrity, leakage, fracture, microannulus, SPR. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of NTESS/Honeywell, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-8168 A

  3. Market brief : the oil and gas market in Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This report presents a market overview of the oil and gas sector in Bolivia and describes the potential for Canadian suppliers to enter into joint ventures to establish local production facilities and transfer technology expertise. Bolivia has an estimated 54.9 trillion cubic feet of natural gas reserves and 440.5 million barrels of proven oil reserves. The main hope for future economic growth in Bolivia hinges on increasing natural gas exports. Opportunities for Canadian companies exist in exploration, production and pipeline construction. There is also a demand for drilling machinery equipment, pipeline components and services for the expansion of the proposed Bolivia-Brazil pipeline. The largest energy company in Bolivia is Repsol YPF which operates through its subsidiary Empress Petrolera Andina. The largest end-users of oil and gas equipment and services include domestic upstream operators and international oil majors and international exploration and production companies. This report describes the key factors shaping market growth along with the competitive environment, local capabilities, international competition and the Canadian position. Considerations for market-entry in Bolivia were also outlined.

  4. Field experiments with subsurface releases of oil and and dyed water

    International Nuclear Information System (INIS)

    Rye, H.; Brandvik, P.J.; Strom, T.

    1998-01-01

    A field experiment with a subsurface release of oil and air was carried out in June 1996 close to the Frigg Field in the North Sea area. One of the purposes of this sea trial was to increase the knowledge concerning the behaviour of the oil and gas during a subsurface blowout. This was done by releasing oil and air at 106 meters depth with a realistic gas oil ratio (GOR=67) and release velocity of the oil. In addition to the oil release, several releases with dyed water and gas (GOR=7 - 65) were performed. Important and unique data were collected during these subsurface releases. In particular, the experiments with the dyed water releases combined with air turned out to be an efficient way of obtaining field data for the behaviour of subsurface plumes. The main conclusions from analysis for the data collected are: the field methodology used to study blowout releases in the field appears to be appropriate. The use of dyed water to determine the performance of the subsurface plume proved out to be an efficient way to obtain reliable and useful data. The behaviour of the subsurface plume is very sensitive to gas flow rates. For low gas flow rates, the plume did not reach the sea surface at all due to the presence of stratification in the ambient water. Some discrepancies were found between a numerical model for subsurface releases and field results. These discrepancies are pointed out, and recommendations for possible model improvements are given. (author)

  5. Z662-96: oil and gas pipeline systems; 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ko, S; Burford, G; Martin, A; Adragna, M [eds.

    1997-12-31

    This Standard is part of the pipeline systems and materials segment of the Canadian Standards Association (CSA)`s Transportation program. It covers the design, construction, operation and maintenance of oil and gas industry pipeline systems that carry (1) liquid hydrocarbons, including crude oil, multiphase fluids, condensate, liquid petroleum products, natural gas liquids, and liquefied petroleum gas, (2) oilfield water, (3) oilfield steam, (4) carbon dioxide used in oilfield enhanced recovery schemes, or (5) natural gas, manufactured gas, or synthetic gas. tabs. figs.

  6. Profiler : Canadian oil and gas : the First Nations : building successful partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-05-15

    Canada's petroleum and natural gas is often produced in remote areas where the majority of the population is Aboriginal. Many First Nations and Metis communities are now playing an active role in Canada's oil and gas industry. Aboriginal-owned companies have earned more than $2.6 billion in the oil sands region since 1999. In 2007, the value of contracts between Alberta oil sands companies and Aboriginal companies was estimated at $606 million. This special supplement discussed First Nations partnerships in the oil and gas industry. Articles in the supplement presented new employment, training and partnership activities in the oil and gas industry as well as activities related to emerging unconventional resources. Educational programs and training facilities were described. The employment and procurement practices of leading oil and gas operators were discussed. The supplement featured presentations by several leading oil and gas companies. tabs., figs.

  7. The Nature of Temporally Variable Methane Emissions at Oil and Natural Gas Operations in the Eagle Ford Basin

    Science.gov (United States)

    Lavoie, T. N.; Shepson, P. B.; Cambaliza, M. O. L.; Stirm, B. H.; Conley, S. A.; Mehrotra, S.; Faloona, I. C.; Mayfield, M.; Lyon, D. R.; Alvarez, R.

    2015-12-01

    To understand the current state of U.S. greenhouse gas emissions from oil and gas operations, policy makers refer to national inventories and reporting programs, and therefore, it is imperative that these reports are accurate and representative. Many studies exist that investigate the reliability of current monitoring methods, however, to our knowledge the temporal variability of the magnitude and source of methane (CH4) emissions from oil and gas facilities has not been reported in the literature. We present results from a field campaign conducted in June 2014 in the Eagle Ford basin, Texas to assess the temporal variability of emissions from a variety of facilities using data obtained through four different methods. The variability of total CH4 emission rate from individual facilities was investigated by repeated measurement of emissions from five gathering facilities using two aircraft-based mass balance approaches. Basin-wide emissions variation was examined by conducting a series of eight four hour afternoon aerial surveys of two 35 x 35 km areas, with transects oriented perpendicular to the prevailing wind direction. The emission source-type and magnitude were further investigated using helicopter-based FLIR camera observations conducted repeatedly at eight oil wells, one gas well, and four gathering facilities. Results indicate a high degree of variability in day-to-day and sometimes hour-to-hour CH4 emissions magnitude. FLIR camera observations suggest that the component-level source of facility emissions is also highly variable over time, with both storage tank vent stacks and tank hatches representing important components of the observed day-to-day variability. While some emissions were due to scheduled maintenance, others appeared to occur due to faulty and/or aging equipment. Here we discuss what was learned in terms of factors that explain the observed emission rate variability.

  8. Oil and gas site contamination risks : improved oversight needed

    International Nuclear Information System (INIS)

    2010-02-01

    British Columbia has seen record levels of activities in the oil and gas sector. Upstream petroleum processes include exploration, well completion and production. Site contamination can occur during all of these activities, resulting in potential environmental and human health impacts. Although well operators are responsible by law for site restoration, there is a potential risk that some operators will not fulfill their responsibilities, thereby leaving the province liable for the site restoration costs. In British Columbia, the BC Oil and Gas Commission (OGC) is responsible for managing these risks through oversight activities designed to ensure that industry meets its obligations. The OGC also manages the orphan sites reclamation fund. This report presented an audit of the OGC in order to determine if it is providing adequate oversight of upstream oil and gas site contamination risks. The audit examined whether the agency responsibilities are clear and whether the OGC is fully aware of the environmental and financial risks associated with upstream oil and gas site contamination. The audit also examined if the OGC has established appropriate procedures to oversee the risks and to inform the public of how effectively site contamination risks are being managed. The report presented the audit background, audit expectations, findings, conclusions and recommendations. It was concluded that the OGC's oversight of the environmental and financial risks associated with oil and gas site contamination needs improving. tabs., figs.

  9. Integral anomalous effect of an oil and gas deposit in a seismic wave field

    Energy Technology Data Exchange (ETDEWEB)

    Korostyshevskiy, M.B.; Nabokov, G.N.

    1981-01-01

    The basic precepts of an elaborated version of a procedure for forecasting (direct exploration) of oil and gas deposits according to seismic prospecting data MOV are examined. This procedure was previously called the procedure of analysis of the integral affect of an oil and gas deposit in a seismic wave field (MIIEZ-VP). The procedure is implemented in the form of an automated system ASOM-VP for the BESM-4 computer in a standard configuration equipped with standard input-output devices for seismic information (''Potok'', MVU, ''Atlas''). The entire procedure of processing from input of data into the computer to output of resulting maps and graphs on graph plotter ''Atlas'' is automated. Results of testing of procedure MIIEZ-VP and system ASOM-VP on drilled areas of Kazakhstan, Azerbaydzhan and Uzbekistan are cited.

  10. Environmentally safe oil-field reagents for development and operation of oil-gas deposits

    Science.gov (United States)

    Fakhreeva, A. V.; Manaure, D. A.; Dokichev, V. A.; Voloshin, A. I.; Telin, A. G.; Tomilov, Yu V.; Nifantiev, N. E.

    2018-04-01

    Sodium-carboxymethylcellulose and arabinogalactane inhibits the crystallization of calcium carbonate from a supersaturated aqueous solution at 80°C. The sizes of formed crystals CaCO3 in the presence of arabinogalactane, sodium-carboxymethylcellulose and neonol AF 9-10 decrease on an average 7-12 μm and a change of their structure. It is expected, that the mechanism of inhibitionis in specific adsorption polysaccharides and neonol on occurring crystalline surface of the calcium carbonate, both at the expense of electrostatic interaction of functional groups with Ca2+ ions, located on the surface of the crystal, and due to coordination and hydrogen bonds with oxygen atoms and HO-groups of additives. Oil-water emulsion rheology in the presence of neonol AF 9-10 has been studied. It is shown that neonol AF 9-10 decrease viscosity natural water-oil emulsion by 25 times. Addition of 5% neonol to water-oil emulsion leads to formation more than 20 stable emulsion forms of different density and composition. New highly effective “green” oilfield reagents have been developed on the basis of neonol and natural polysaccharides.

  11. Hysteresis phenomenon during operation of gas condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Sadykh-Zade, E S; Karakashev, V K; Ismailov, D Kh

    1966-01-01

    Hysteresis behavior of gas-condensate mixtures was studied with a PVT apparatus. The study was conducted at 26 and 80/sup 0/C, with recombined samples having gas factors of 3,000, 6,500, and 10,000 cu meters per ton. Pressure on samples was decreased or increased at rates of 0.2; 0.1; 0.05; and 0.025 atm per sec. Composition of gas- condensate is given. It is reported that different amounts of liquid were produced by condensation and evaporation processes, i.e., results depended on whether pressure was being increased or decreased. It is suggested that the effect of hysteresis should be considered in operation of gas-condensate fields.

  12. Field Engineers' Scheduling at Oil Rigs: a Case Study

    Directory of Open Access Journals (Sweden)

    Y. S. Usmani

    2012-02-01

    Full Text Available Oil exploration and production operations face a number of challenges. Professional planners have to design solutions for various practical problems or issues. However, the time consumed is often very extensive because of the large number of possible solutions. Further, the matter of choosing the best solution remains. The present paper investigates a problem related to leading companies in the energy and chemical manufacturing sector of the oil and gas industry. Each company’s field engineers are expensive and valuable assets. Therefore, an optimized roster is rather important. In the present paper, the objective is to design a field engineers’ schedule which would be both feasible and satisfying towards the various demands of rigs, with minimum operational cost to the company. An efficient and quick optimization technique is presented to schedule the shifts of field engineers.

  13. Development and production prospects for oil and gas from the UK continental shelf after the Gulf crisis: a financial simulation

    International Nuclear Information System (INIS)

    Kemp, A.G.; Rose, David; Dandie, Russell

    1991-01-01

    A large computerized financial model has been developed to simulate the future exploitation of oil and gas in the UK north sea. Primary inputs into the model include all the publicity available information on currently producing fields relating to their historic and expected production rates, investment, operating and abandonment costs. Information has also been gathered on all new discoveries which have not yet been developed and estimates made of the timing of their development, the commencement of production and costs. Three oil price scenarios base, low and high, have been used in the analysis which extends to the year 2015. The results are presented for two major regions, the central and northern waters and the Southern Gas Basin, including the Irish Sea. Very large numbers of discovered but undeveloped oil and gas fields exist in the UK continental shelf substantial numbers of which could be developed in the event of a very modest real growth in oil and gas prices. The considerable sensitivity of development to movements in oil prices is brought out by the analysis of the three scenarios. (UK)

  14. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  15. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  16. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    Science.gov (United States)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  17. Impact of sustained low oil prices on China's oil & gas industry system and coping strategies

    Directory of Open Access Journals (Sweden)

    Jianjun Chen

    2016-05-01

    Full Text Available The global sustained low oil prices have a significant impact on China's oil and gas industry system and the national energy security. This paper aims to find solutions in order to guarantee the smooth development of China's oil and gas industry system and its survival in such a severe environment. First, the origins of sustained low oil prices were analyzed. Then, based on those published data from IEA, government and some other authorities, this study focused on the development status, energy policies and the future developing trend of those main oil & gas producing countries. Investigations show that the low-price running is primarily contributed to the so-called oil and gas policies in the USA. It is predicted that national petroleum consumption will reach up to 6.0 × 108 t (oil & 3300 × 108 m3 (gas in 2020 and 6.8 × 108 t (oil & 5200 × 108 m3 (gas in 2030. For reducing the dependence on foreign oil and gas, the investment in the upstream of oil and gas industry should be maintained and scientific research should be intensified to ensure the smooth operation of the oil and gas production system. Considering China's national energy security strategy, the following suggestions were proposed herein. First, ensure that in China the yearly oil output reaches 2 × 108 t, while natural gas yield will be expected to be up to 2700 × 108 m3 in 2030, both of which should become the “bottom line” in the long term. Second, focus on the planning of upstream business with insistence on risk exploration investment, scientific and technological innovation and pilot area construction especially for low-permeability tight oil & gas, shale oil & gas reservoir development techniques. Third, encourage the in-depth reform and further growth especially in the three major state-owned oil & gas companies under adverse situations, and create more companies competent to offer overseas technical services by taking the opportunity of the

  18. Interest grows in African oil and gas opportunities

    International Nuclear Information System (INIS)

    Knott, D.

    1997-01-01

    As African countries continue a slow drift towards democratic government and market economics, the continent is increasingly attractive to international oil and gas companies. Though Africa remains politically diverse, and its volatile politics remains a major barrier to petroleum companies, a number of recent developments reflect its growing significance for the industry. Among recent projects and events reflecting changes in Africa: oil and gas exporter Algeria has invited foreign oil companies to help develop major gas discoveries, with a view to boosting exports to Europe; oil and gas producer Egypt invited foreign companies to explore in the Nile Delta region, and the result appears to be a flowering world scale gas play; west African offshore exploration has entered deep water and new areas, and a number of major projects are expected in years to come; Nigeria's reputation as a difficult place to operate has been justified by recent political and civil events, but a long-planned liquefied natural gas (LNG) export plant is being built there; South Africa, which has returned to the international scene after years of trade isolation because of apartheid, is emerging as a potential driver for energy industry schemes throughout the continent. Activities are discussed

  19. Investigating oiled birds from oil field waste pits

    International Nuclear Information System (INIS)

    Gregory, D.G.; Edwards, W.C.

    1991-01-01

    Procedures and results of investigations concerning the oiling of inland raptors, migratory water-fowl and other birds are presented. Freon washings from the oiled birds and oil from the pits were analyzed by gas chromatography. In most instances the source of the oil could be established by chromatographic procedures. The numbers of birds involved (including many on the endangered species list) suggested the need for netting or closing oil field waste pits and mud disposal pits. Maintaining a proper chain of custody was important

  20. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    user

    protection technique as a method of controlling corrosion in oil and gas pipelines is effective and efficient when compared to ... In the field of crude oil production and associated engineering .... Industrial/Mechanical Systems, Joen Printing and.

  1. Expert hierarchical selection of oil and gas distribution systems

    International Nuclear Information System (INIS)

    Frankel, E.G.

    1991-01-01

    Selection and design of oil and gas distribution systems involves a large number of decision makers and interest groups, as well as many alternative technical, financial, network, operating, management and regulatory options. Their objectives and measures of performance are different. Decision models can be effectively represented by hierarchical structures. A simple deterministic analytic hierarchy process is presented with application to oil and gas distribution systems

  2. Oil and gas USSR

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book is a directory of enterprises under the Ministry of Oil and Gas Industry of the former USSR and is published for winter 1991 through spring 1992. It contains names and addresses for associations, institutes, design and engineering offices, oil and gas drilling administrations, and gas processing plants

  3. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  4. Prospective activity levels in the regions of the UKCS under different oil and gas prices: an application of the Monte Carlo technique

    International Nuclear Information System (INIS)

    Kemp, A.G.; Stephen, L.

    1999-01-01

    This paper summarises the results of a study using the Monte Carlo simulation to examine activity levels in the regions of the UK continental shelf under different oil and gas prices. Details of the methodology, data, and assumptions used are given, and the production of oil and gas, new field investment, aggregate operating expenditures, and gross revenues under different price scenarios are addressed. The total potential oil and gas production under the different price scenarios for 2000-2013 are plotted. (UK)

  5. 75 FR 67996 - Environmental Documents Prepared for Proposed Oil, Gas, and Mineral Operations by the Gulf of...

    Science.gov (United States)

    2010-11-04

    ... Environmental Documents Prepared for Proposed Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer... regarding whether those effects have significant impacts. Environmental Assessments are used to evaluate.... ACTION: Notice of the Availability of Environmental Documents Prepared for OCS Mineral Proposals by the...

  6. Oil and gas fiscal regimes of the western Canadian provinces

    International Nuclear Information System (INIS)

    1991-11-01

    This report compares the fiscal regimes in British Columbia, Alberta, Saskatchewan and Manitoba. During 1985-1988, federal and provincial governments have made numerous fiscal changes, many in response to the drop in world oil prices. The new fiscal policies generally have reflected governments' willingness to forego revenues in an effort to aid the oil and gas industry, with certain exemptions. Since 1988, changes have reflected trends of consolidation and less government willingness to forego revenues. A federal large corporations capital tax has been introduced, the natural gas exploration holiday in Alberta expired, new oil royalties were introduced, and changes were made in fiscal regimes to accomodate horizontal drilling in Saskatchewan and Manitoba. In this document, the existing corporate tax regime is described. A comparison of fiscal regimes must recognize the differing scale and nature of oil and gas operations among the 4 provinces, with Alberta accounting for 80-90% of Canada's oil and gas productions, while British Columbia, Saskatchewan and Manitoba are much smaller producers. The document describes Crown royalties and incentives and freehold taxes for each type of fuel (crude oil, natural gas, natural gas byproducts, nonconventional oil). 8 figs

  7. Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ettehadtavakkol, Amin, E-mail: amin.ettehadtavakkol@ttu.edu [Texas Tech University (United States); Jablonowski, Christopher [Shell Exploration and Production Company (United States); Lake, Larry [University of Texas at Austin (United States)

    2017-04-15

    Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.

  8. Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs

    International Nuclear Information System (INIS)

    Ettehadtavakkol, Amin; Jablonowski, Christopher; Lake, Larry

    2017-01-01

    Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.

  9. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry

    Energy Technology Data Exchange (ETDEWEB)

    Shires, T.M.; Loughran, C.J. [URS Corporation, Austin, TX (United States)

    2004-02-01

    This document is a compendium of currently recognized methods and provides details for all oil and gas industry segments to enhance consistency in emissions estimation. This Compendium aims to accomplish the following goals: Assemble an expansive collection of relevant emission factors for estimating GHG emissions, based on currently available public documents; Outline detailed procedures for conversions between different measurement unit systems, with particular emphasis on implementation of oil and gas industry standards; Provide descriptions of the multitude of oil and gas industry operations, in its various segments, and the associated emissions sources that should be considered; and Develop emission inventory examples, based on selected facilities from the various segments, to demonstrate the broad applicability of the methodologies. The overall objective of developing this document is to promote the use of consistent, standardized methodologies for estimating GHG emissions from petroleum industry operations. The resulting Compendium documents recognized calculation techniques and emission factors for estimating GHG emissions for oil and gas industry operations. These techniques cover the calculation or estimation of emissions from the full range of industry operations - from exploration and production through refining, to the marketing and distribution of products. The Compendium presents and illustrates the use of preferred and alternative calculation approaches for carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions for all common emission sources, including combustion, vented, and fugitive. Decision trees are provided to guide the user in selecting an estimation technique based on considerations of materiality, data availability, and accuracy. API will provide (free of charge) a calculation tool based on the emission estimation methodologies described herein. The tool will be made available at http://ghg.api.org/.

  10. Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations

    International Nuclear Information System (INIS)

    Gettleson, D.A.

    1993-01-01

    Continental Shelf Associates, Inc. (CSA) was contracted to conduct a three-year study of the environmental and health related impacts of produced water and sand discharges from oil and gas operations. Data on naturally occurring radioactive materials (NORM), heavy metals, and hydrocarbons in water, sediment, and biota will be collected and evaluated. Health related impacts will be studied through field collections and analyses of commercially- and recreationally-important fish and shellfish tissues. Additionally, information on seafood catch, consumption, and use patterns for the Gulf of Mexico will be gathered and analyzed. The facilities to be studied will include both offshore and coastal facilities in the Gulf of Mexico. Coastal sites will be additionally studied to determine ecological recovery of impacted wetland and open bay areas. The economic impact of existing and proposed effluent federal and state regulations will also be evaluated. The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of four terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana and Texas; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. Accomplishments for this period are described

  11. Modern Processes of Hydrocarbon Migration and Re-Formation of Oil and Gas Fields (Based on the Results of Monitoring and Geochemical Studies)

    Science.gov (United States)

    Plotnikova, Irina; Salakhidinova, Gulmira; Nosova, Fidania; Pronin, Nikita; Ostroukhov, Sergey

    2015-04-01

    Special geochemical studies of oils allowed to allocate a movable migration component of oils in the industrial oil deposits. In the field the migration component of oils varies in different parts of the field. The largest percentage of the light migration component (gas condensate of the oil) was detected in the central part of the Kama-Kinel troughs system. Monitoring of the composition of water, oil and gas (condensate light oil component) in the sedimentary cover and ni crystalline basement led to the conclusion of modern migration of hydrocarbons in sedimentary cover. This proves the existence of the modern processes of formation and reformation of oil and gas fields. This presentation is dedicated to the problem of definition of geochemical criteria of selection of hydrocarbons deposit reformation zone in the sample wells of Minibaevskaya area of Romashkinskoye field. While carrying out this work we examined 11 samples of oil from the Upper Devonian Pashiysky horizon. Four oil samples were collected from wells reckoned among the "anomalous" zones that were marked out according to the results of geophysical, oil field and geological research. Geochemical studies of oils were conducted in the laboratory of geochemistry of the Kazan (Volga-region) Federal University. The wells where the signs of hydrocarbons influx from the deep zones of the crust were recorded are considered to be "anomalous". A number of scientists connect this fact to the hypothesis about periodic influx of deep hydrocarbons to the oil deposits of Romashkinskoye field. Other researchers believe that the source rocks of the adjacent valleys sedimentary cover generate gases when entering the main zone of gas formation, which then migrate up the section and passing through the previously formed deposits of oil, change and "lighten" their composition. Regardless of the point of view on the source of the hydrocarbons, the study of the process of deposits refilling with light hydrocarbons is an

  12. Radiological consequences of gas and oil extraction

    International Nuclear Information System (INIS)

    Kutkov, V.

    2002-01-01

    Contamination of the environment by Technologically Enhanced Naturally Occurring Radioactive Material (TENORM) is a well-known side outcome of gas and oil extraction. Naturally Occurring Radioactive Material (NORM) means material containing the radionuclides of nature origin, i.e., K 40, U 238, Th 232 and their decay products. Technologically Enhanced means, that the physical, chemical, radiological properties, and concentrations of natural radionuclides in NORM have been altered such that there exists a potential for:Redistribution and contamination of environmental media (soil, water, and air); Increased environmental mobility in soils and groundwater; Incorporation of elevated levels of radioactivity in products and construction materials; Improper disposal or use of disposal methods that could result in unnecessary and relatively high exposures to individuals and populations via any environmental pathway and medium. NORM and TENORM are the major sources of human exposure in the World. Their contributions to the worldwide human exposure as evaluated by UNSCEAR. The radiological consequences of occupational and public exposures with TENORM are not clearly monitored and examined. The principal reason of such situation is that for a long time neither ecological organizations nor Regulatory Authorities did not consider the handling of material containing natural radionuclides (other than radon and thoron) as object for regulation of radiation safety. For instance, till now Green peace have not demonstrated any opinion about this problem. TENORM released in oil and gas extraction is a major source of environmental contamination of the Caspian Sea and soils, surface and ground waters in Azerbaijan. The origin of TENORM in oil fields of Apsheron peninsula is related to drilling, production, and processing operations. Other sources of contamination are oil well equipment where separation of contaminated water from oil takes place. Contamination of the environment leads

  13. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures.

    Science.gov (United States)

    Kassotis, Christopher D; Tillitt, Donald E; Lin, Chung-Ho; McElroy, Jane A; Nagel, Susan C

    2016-03-01

    Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  14. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2016-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  15. Underwater sound and vibrations due to oil & gas activities

    NARCIS (Netherlands)

    Beek, P.J.G. van; Binnerts, B.; Nennie, E.D.; Benda-Beckmann, A.M. von

    2014-01-01

    In the oil & gas industry there is a trend towards more subsea activities. To improve gas recovery from existing and new fields at greater depths, the produced gas will be compressed, processed and transported via subsea templates and underwater networks (pipelines, flexible risers, etc.). Besides

  16. Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry

    International Nuclear Information System (INIS)

    2010-01-01

    The oil and gas industry, a global industry operating in many Member States, makes extensive use of radiation generators and sealed and unsealed radioactive sources, some of which are potentially dangerous to human health and the environment if not properly controlled. In addition, significant quantities of naturally occurring radioactive material (NORM) originating from the reservoir rock are encountered during production, maintenance and decommissioning. The oil and gas industry operates in all climates and environments, including the most arduous conditions, and is continuously challenged to achieve high efficiency of operation while maintaining a high standard of safety and control - this includes the need to maintain control over occupational exposures to radiation, as well as to protect the public and the environment through proper management of wastes that may be radiologically and chemically hazardous. The oil and gas industry is organizationally and technically complex, and relies heavily on specialized service and supply companies to provide the necessary equipment and expertise, including expertise in radiation safety. This training manual is used by the IAEA as the basis for delivering its training course on radiation protection and the management of radioactive waste in the oil and gas industry. Enclosed with this manual is a CD-ROM that contains the presentational material used in the training course, the course syllabus and additional notes for course presenters. The course material is based principally on IAEA Safety Reports Series No. 34 Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry, published by the IAEA in 2003. The training course is aimed at regulatory bodies; oil and gas field operators and support companies; workers and their representatives; health, safety and environmental professionals; and health and safety training officers. A pilot training course was held in the Syrian Arab Republic in 2000 as

  17. The oil and gas industry and the Canadian economy: a backgrounder

    International Nuclear Information System (INIS)

    1999-06-01

    The technological and economic significance of the Canadian petroleum industry to the national economy and to Canada's standing in the world are reviewed. The six key ways in which the oil and gas industry affects Canada, namely employment, balance of trade, products, government revenues, international technology trade and community support are stressed within the context of describing present and future oil and gas resources, Canada's petroleum and natural gas trade balance, and capital spending and product sales. Attention is also drawn to the role of the Canadian petroleum and natural gas industry as a producer and exporter of world class technology, especially in the areas of high tech exploration methods, cold-climate and offshore operations, enhanced recovery techniques, heavy oil production and and processing, mining and upgrading of oil sands bitumen, oil well firefighting, and environmental protection technology. maps, figs

  18. The life cycle greenhouse gas emissions implications of power and hydrogen production for oil sands operations

    International Nuclear Information System (INIS)

    McKellar, J.M.; Bergerson, J.A.; MacLean, H.L.

    2009-01-01

    'Full text:' The Alberta Oil Sands represent a major economic opportunity for Canada, but the industry is also a significant source of greenhouse gas (GHG) emissions. One of the sources of these emissions is the use of natural gas for the production of electricity, steam and hydrogen. Due to concerns around resource availability and price volatility, there has been considerable discussion regarding the potential replacement of natural gas with an alternative fuel. While some of the options are non-fossil and could potentially reduce GHG emissions (e.g., nuclear, geothermal, biomass), others have the potential to increase emissions. A comparative life cycle assessment was completed to investigate the relative GHG emissions, energy consumption and financial implications of replacing natural gas with coal, coke, asphaltenes or bitumen for the supply of electricity, steam and hydrogen to oil sands operations. The potential use of carbon capture and storage (CCS) was also investigated as a means of reducing GHG emissions. Preliminary results indicate that, without CCS, the natural gas systems currently in use have lower life cycle GHG emissions than gasification systems using any of the alternative fuels analysed. However, when CCS is implemented in both the coke gasification and natural gas systems, the coke systems have lower GHG emissions and financial costs than the natural gas systems (assuming a 30-year project life and a natural gas price of 6.5 USD/gigajoule). The use of CCS does impose a financial penalty though, indicating that it is unlikely to be implemented without some financial incentive. While this study has limitations and uncertainties, the preliminary results indicate that although the GHG emissions of oil sands development pose a challenge to Canada, there are opportunities available for their abatement. (author)

  19. The oil and gas equipment and services market in Nigeria

    International Nuclear Information System (INIS)

    2003-01-01

    The oil and gas market in Nigeria is being expanded by the Nigerian government over the 2003-2010 period through increased exploration and production (E and P) in new areas. Other measures being implemented are the improvements of structural flaws that hamper industry growth, the modernization of the weak downstream sector, and attempts to attract foreign investment and technologies required for petroleum development. In 2001, it was estimated that the market for oil and gas equipment in Nigeria was approximately 1.03 billion dollars, and is expected to reach 1.15 billion dollars in 2002. In deep-sea areas, major offshore E and P projects are being planned by large oil multinationals. The implementation of several gas-related E and P operations and major liquefied natural gas (LNG) and gas-to-liquid (GTL) projects are being supported by the government of Nigeria to develop the natural gas sector. Onshore and offshore exploration, surveying and geophysical prospecting, drilling equipment, facilities maintenance, deepwater E and P, equipment for LNG/GTL facilities, enhanced recovery equipment and services, gas re-injection technology, pipelines, and the refinery sector are all areas where Canadian equipment and service suppliers could benefit from opportunities in Nigeria. One of the most prominent foreign player in the Nigerian market is Royal Dutch Shell. As far as the offshore deepwater E and P sub-sector, the three major players are Shell, ChevronTexaco, and ExxonMobil. The Nigerian government advocate in upstream and downstream oil industries in the country is Nigeria National Petroleum Corporation (NNPC). The primary domestic end-users of oil and gas equipment and services are member companies of the Nigerian Association of Indigenous Petroleum Exploration Companies (NAIPEC). Canadian companies are encouraged to form joint venture partnerships in oil and gas projects, as foreign majors operating in Nigeria tend to rely on the skills and expertise of foreign

  20. Methodological aspects of the use of materials from remote photographs in oil and gas search operations

    Energy Technology Data Exchange (ETDEWEB)

    Kostryukov, M I; Tsarenko, P T

    1981-01-01

    Presented are the methodological characteristics of the use of materials from remote probes in oil and gas search operations within the central part of the western Siberian plain. Examined briefly are ways to increase the effectiveness of interpreting deep structures and the necessity for an amplification in the development of automated systems for interpretation is show.

  1. The oil and gas industry in 2008

    International Nuclear Information System (INIS)

    2008-01-01

    Illustrated by many graphs and tables, this report presents and comments many data and figures on many aspects of the oil and gas industry in the world and in France: worldwide oil and gas markets, worldwide oil exploration and production, worldwide gas exploration and production and stakes for European supply, exploration and production in France, oil and oil-based industry, hydrocarbon supplies, refining in France, fuel quality, substitution fuels, domestic transport of oil products, gas infrastructures, oil product storage, oil and gas product consumption, hydrocarbon taxing, oil product prices, and oil product distribution

  2. 77 FR 27451 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft...

    Science.gov (United States)

    2012-05-10

    ... (other than diesel fuels) pursuant to hydraulic fracturing operations related to oil, gas, or geothermal... during HF related to oil, gas, or geothermal operations must obtain a UIC permit before injection begins... diesel fuels are available through the UIC Class II Program, the well class for oil and gas activities.\\1...

  3. The oil and gas presence of Sakhalin, Kamchatka and Chukotsk. Neftegazonosnost' Sakhalina, Kamchatki i Chukotki

    Energy Technology Data Exchange (ETDEWEB)

    Yusupov, B.Kh.

    1983-01-01

    A characterization of the geological structure and the prospects for oil and gas presence in Sakhalin, Kamchatka and Chukotka are given. The possibilities of using a transformed field of gravity for studying the oil and gas bearing series of Sakhalin and methods for oil field geophysics are analyzed in an example of the Okruzhnoy oil formation.

  4. Canadian oil and gas survey : 1997

    International Nuclear Information System (INIS)

    Roberge, R.B.

    1997-01-01

    An outlook of the Canadian Petroleum Industry, financial and operating statistics of the top 100 Canadian public oil and gas companies and 15 energy income trusts, were summarized for the fiscal year ending in 1996. In general, 1996 was a good year for the industry. Greater industry financing resulted in increased drilling activity and good stock market returns for investors. However, strong commodity prices also resulted in record levels of hedging activity, which meant lost revenues for the industry. The top 100 companies recorded losses of about $800 million in 1996, largely on crude oil hedges. The fact that volumes hedged forward to 1997 are down from 1996 indicate that many companies are rethinking their commitment to risk management. Details of crude oil and natural gas prices and production levels during 1996 were provided. A list of significant corporate mergers and acquisitions during the year under review rounded out the presentation

  5. Market for oil and gas assets defined in survey

    International Nuclear Information System (INIS)

    Taggart, L.; Murry, D.A.

    1991-01-01

    This paper reports that hundreds of companies are currently active in the oil and gas acquisition and disposition marketplace, but unfortunately, the entire sale process within the industry continues to operate inefficiently. The mechanism for selling oil and gas properties in this secondary market - as used here, a term that excludes initial investments in oil and gas assets and sales of drilling program shares - is sort of catch-as-catch- can. Identifying who is seeking what type of property at any time is difficult, bordering on guesswork. A recent survey of 186 company representatives and individuals, who declared themselves as in the market, disclosed some of this information at a point in time

  6. Interest grows in African oil and gas opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Knott, D.

    1997-05-12

    As African countries continue a slow drift towards democratic government and market economics, the continent is increasingly attractive to international oil and gas companies. Though Africa remains politically diverse, and its volatile politics remains a major barrier to petroleum companies, a number of recent developments reflect its growing significance for the industry. Among recent projects and events reflecting changes in Africa: oil and gas exporter Algeria has invited foreign oil companies to help develop major gas discoveries, with a view to boosting exports to Europe; oil and gas producer Egypt invited foreign companies to explore in the Nile Delta region, and the result appears to be a flowering world scale gas play; west African offshore exploration has entered deep water and new areas, and a number of major projects are expected in years to come; Nigeria`s reputation as a difficult place to operate has been justified by recent political and civil events, but a long-planned liquefied natural gas (LNG) export plant is being built there; South Africa, which has returned to the international scene after years of trade isolation because of apartheid, is emerging as a potential driver for energy industry schemes throughout the continent. Activities are discussed.

  7. Measurement of Submerged Oil/Gas Leaks using ROV Video

    Science.gov (United States)

    Shaffer, Franklin; de Vera, Giorgio; Lee, Kenneth; Savas, Ömer

    2013-11-01

    Drilling for oil or gas in the Gulf of Mexico is increasing rapidly at depths up to three miles. The National Commission on the Deepwater Horizon Oil Leak concluded that inaccurate estimates of the leak rate from the Deepwater Horizon caused an inadequate response and attempts to cap the leak to fail. The first response to a submerged oil/gas leak will be to send a Remotely Operated Vehicle (ROV) down to view the leak. During the response to the Deepwater Horizon crisis, the authors Savas and Shaffer were members of the Flow Rate Technical Group's Plume Team who used ROV video to develop the FRTG's first official estimates of the oil leak rate. Savas and Shaffer developed an approach using the larger, faster jet features (e.g., turbulent eddies, vortices, entrained particles) in the near-field developing zone to measure discharge rates. The authors have since used the Berkeley Tow Tank to test this approach on submerged dye-colored water jets and compressed air jets. Image Correlation Velocimetry has been applied to measure the velocity of visible features. Results from tests in the Berkeley Tow Tank and submerged oil jets in the OHMSETT facility will be presented.

  8. Physical aspects of the US oil and gas systems

    Energy Technology Data Exchange (ETDEWEB)

    D' Acierno, J.; Hermelee, A.

    1979-11-01

    The purpose of this report is to describe the physical operations which take place within the petroleum and natural gas industries of the US. This information was the basis for the overall network design and the detailed data requirements for the Emergency Management Information System (EEMIS) of the US Department of Energy (DOE). Since EEMIS represents the entire oil and gas systems this report can be used to obtain a basic understanding of the entire energy system, from production to consumption, that is composed of the US oil and gas industries.

  9. Oil and Gas Emergency Policy: Germany 2012 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Germany has very little domestic oil and natural gas production and relies heavily on imports. It has well diversified and flexible oil and natural gas supply infrastructure, which consists of crude, product and gas pipelines and crude and oil product import terminals. Natural gas is imported into Germany exclusively by cross-border pipeline. The country has no LNG infrastructure, although some German companies have booked capacities in overseas LNG terminals. Oil continues to be the main source of energy in Germany although it has declined markedly since the early 1970s. It now represents approximately 32% of Germany’s total primary energy supply (TPES). Natural gas consumption in Germany has declined 10% since 2006. Demand was 90 bcm in 2010, down from 100 bcm in 2005. According to government commissioned analysis, the total consumption of natural gas in Germany is expected to continue to decline over the long term. The share of natural gas in Germany’s TPES is currently around 22%. German oil stock levels are generally well above the required 90-days. Total oil stock levels in Germany were equivalent to 140 days net imports in April 2012. Since 1998, the German oil stockholding agency (EBV) has been solely responsible for meeting Germany's 90-day stockholding obligation. The Oil Stockholding Act stipulates that the EBV shall constantly maintain stocks of oil and petroleum products at a level equivalent to or above 90 days of net imports. There is no minimum stockholding obligation on industry, so industry held commercial stocks are held in addition to the EBV stocks. There are several legal tools available to German authorities for natural gas emergency response. These include Ordinances that can be used to restrict the sale, purchase or use of goods, both in terms of quantity and time, or permit them only for certain priority purposes, to ensure that vital energy needs are met. There are no compulsory natural gas storage requirements in Germany, and no

  10. Radioisotope techniques for process optimisation and control in the offshore oil and gas industries

    International Nuclear Information System (INIS)

    Charlton, J.S.

    2002-01-01

    For over fifty years, radioisotope technology has been used by the oil industry to solve problems and to help optimise process operations. The widespread development of offshore oil and gas fields has brought, and continues to bring, new challenges and, in response, new or modified applications of radioisotope technology have been introduced. This paper presents case studies, which illustrate the use of radioisotopes, both in the sub-sea environment and on the offshore production platforms. On the platform, radioisotope techniques applied singly or in combination, have been applied to the performance assessment of oil/gas separation and gas dehydration units. Novel nucleonic instrumentation has been developed for the control of three-phase separators. Sub-sea, radioactive tracers and/or sealed sources have been used to investigate the integrity of submerged structures and to troubleshoot pipeline problems. The continuing expansion in the use of this technology stems from industry increasing awareness of its versatility and from the fact that the benefits it confers can be obtained at a relatively modest cost. Examples of economic benefit described in the paper are associated with production enhancements derived from the ability of radioisotope technology to measure performance and diagnose problems on line, without disrupting process operations in any way. (Author)

  11. Toxicology of oil field pollutants in cattle: a review.

    Science.gov (United States)

    Coppock, R W; Mostrom, M S; Khan, A A; Semalulu, S S

    1995-12-01

    Cattle are poisoned by petroleum and substances used in drilling and operating oil and gas wells. The most common reported route of exposure for non-gaseous material is oral. Exposures occur when the petroleum or chemicals used in oil and gas field activities are available to cattle and when water and feed-stuffs are contaminated. Cattle, as a leisure activity, explore and ingest crude oil. Based on morbidity patterns in cattle herds, the amount of toxic substance ingested is variable. When water and feedstuffs are contaminated, a larger number in a herd generally are affected. Cattle have been poisoned by a wide variety of chemical mixtures. For substances high in volatile hydrocarbons, the lung is a target organ. Hydrocarbons also target the kidney, liver and brain. Exposure-linked abortions have been reported in cattle. Diethylene glycol targets the brain, liver and kidney. The reported threshold dose of unweathered oil for cattle ranges from 2.5 to 5.0 ml/kg bw, and the reported threshold dose for weathered oil is 8.0 ml/kg.

  12. Oil and Gas Emergency Policy: Japan 2013 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Oil remains the most significant energy source in Japan, accounting for some 45% of the country’s total primary energy supply (TPES) in 2011. Japan’s oil demand steadily decreased from 5.71 mb/d in 1997 to 4.47 mb/d in 2010. However, its oil demand increased to 4.48 mb/d in 2011 and 4.73 mb/d in 2012 due to the Great East Japan Earthquake in March 2011 and its subsequent impacts. The transport sector represented around 38% of total consumption in 2010, while the industry sector accounted for 30%. A significant proportion of the industry sector’s oil demand comes from the chemical industry. Of the 4.8 mb/d of oil imported by Japan in 2012, 3.5 mb/d consisted of crude oil, 209 kb/d of NGLs and feedstocks, and some 1.2 mb/d of refined products. About 83% of Japan’s crude oil imports in 2012 came from the Middle East. The country has 27 operational refineries with a total crude distillation capacity of around 4.5 mb/d. Japan meets its 90-day stockholding obligation to the IEA by holding government emergency stocks and by placing a minimum stockholding obligation on industry. JOGMEC’s primary role is to manage public stocks under the Oil Stockpiling Act, while industry (refineries, specified distributors and importers) is obliged to hold the equivalent of 70 days of their daily imports, sales or refinery production, based on the average of the previous 12 months. The public stocks mostly consist of crude oil, but the Administration has expanded its emergency inventory to include four categories of refined products - gasoline, kerosene, fuel oil and diesel oil. Japan held some 591 million barrels (mb) of oil stocks at the end of January 2013, equating to 166 days of 2011 net-imports (92 days of government stocks and 74 days of industry stocks). Around 72% of total stocks were held in the form of crude oil. Japan has consistently met its minimum IEA stockholding obligation. The share of natural gas in the country’s TPES increased significantly from 17% in 2010

  13. Operational Excellence in Manufacturing, Service and the Oil & Gas: the Sectorial Definitional Constructs and Risk Management Implication

    Directory of Open Access Journals (Sweden)

    Muazu Hassan Muazu

    2017-09-01

    Full Text Available The current global business climate has not been favorable to most firms irrespective of industry affiliation. That condition necessitated companies to adopt operational excellence as a strategy for optimising output with little resources, reducing lead time with the efficient use of assets and employees and avoiding safety and health issues to people and the environment. As a result of the need for operational excellence, many kinds of literature defined the concept based on the context of industry or sector. Industries such as manufacturing, services, oil and gas, mining and so many industries to mention a few, have their unique construct in the definition and therefore causing dilemma on which dimension to hold on to. It is against this backdrop that this paper synthesizes and integrate all the varying dimensions and fuses out similarities, differences and the antecedence of research directions taken on the few mentioned sectors. The paper thus concludes that the unique construct among all the definitions is continuous improvement, cost reduction, quality, time utilization, operational efficiency, staff involvement and output optimisation. However, they varied on risk management, staff health, safety and the concern for the environment, which is unique to oil and gas industry and that can affect the choice of research variables.

  14. Accounting for Depletion of Oil and Gas Resources in Malaysia

    OpenAIRE

    Othman, Jamal; Jafari, Yaghoob

    2011-01-01

    This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia. The physical and monetary balance sheets for crude oil and natural gas for the period 2000- 2007 was constructed. The net present value of expected future incomes to reflect the value of resource change was calculated based on a physical extraction and a resource rent scenario. Resource rent is gross operating surplus less the estimated user cost of produced capital in the crude oil and ...

  15. The Viability of the Oil and Gas Industry within the Former Soviet Union, excluding Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Coish, J.; Pyne, M.

    2004-01-15

    The former Soviet Union (FSU) has huge potential in the future of the world's oil and gas industry. The FSU includes some of the biggest producers and consumers of oil and gas in the world, and many of these countries include areas that lie untouched or explored. FSU territory also surrounds the Caspian Sea, which is itself a hotbed of activity in the oil and gas industry. The Caspian alone is important to world energy markets because of its own potential for oil and gas production and export, and this adds to the overall potential of the FSU. The FSU has been moving towards a free market economy since the fall of communism in the early 90's, and as such, is becoming a much more attractive area for foreign companies to operate. The FSU countries still requires foreign investment for their respective industries, and some of them have even put into place legislation to provide benefits to foreign investors. There are many types of foreign investment required in the FSU. Much of the infrastructure already in place is old and dilapidated, and requires maintenance and improvement. As well, new equipment and technologies for exploration and production are required to tap the oil and gas resources that lie in inconvenient locations. Finally, transportation of the oil and gas is a major issue here, as many of the fields are in hard to reach areas, and thus pipeline projects are increasing. Since the fall of communism, the FSU has been opening its doors more and more to foreign investors eager to bite into the huge market, and many of the largest oil and gas companies in the world are already operating there. The industries are still young to foreign investment, however, and those companies who get their foot in the door early, will be able to reap the benefits for years to come.

  16. The petroleum challenge. Present day questions about oil and gas

    International Nuclear Information System (INIS)

    Boussena, S.; Locatelli, C.; Pauwels, J.P.; Swartenbroekx, C.

    2006-04-01

    Will the 21. century be the petroleum challenge century? The petroleum problem is no longer the affair of experts and journalists, it challenges also governments and consumers in pressing terms. If there is today a petroleum problem, there is no oil or gas shortage for the moment. The cumulated oil and gas reserves would allow to face the demand of the century, with the condition that investments in exploration, field development, production, and back-end of oil and gas industries will be done in time. This book, written by specialists of energy economics and geopolitics shows up some of the key questions of our energy future. In particular, it invites us to never forget the basic heavy trends of the hydrocarbons sector in order to never be trapped by superficial extrapolations of short term phenomena. Content: heavy trend of oil prices at the 2020 prospects, natural gas take over?; oil and gas geopolitics: enough of hydrocarbons for the 21. century; Russia and Caspian sea oil and gas weight; China: a new strategic actor of the energy scene; influence of 'futures' market, of speculation, and of stocks on hydrocarbon prices; which future for LNG?; natural gas in the USA: towards a new foreign dependence. (J.S.)

  17. 78 FR 52239 - Oil and Gas and Sulphur Operations on the Outer Continental Shelf-Oil and Gas Production Safety...

    Science.gov (United States)

    2013-08-22

    ...] Electronic-based emergency shutdown systems (ESDs); [cir] Valve closure timing; [cir] Valve leakage rates... assembly of valves, gauges, and chokes mounted on a well casinghead used to control the production and flow of oil or gas. Dry tree completions are the standard for OCS shallow water platforms, with the tree...

  18. Human health cost of hydrogen sulfide air pollution from an oil and gas Field.

    Science.gov (United States)

    Kenessary, Dinara; Kenessary, Almas; Kenessariyev, Ussen Ismailovich; Juszkiewicz, Konrad; Amrin, Meiram Kazievich; Erzhanova, Aya Eralovna

    2017-06-08

    Introduction and objective. The Karachaganak oil and gas condensate field (KOGCF), one of the largest in the world, located in the Republic of Kazakhstan (RoK) in Central Asia, is surrounded by 10 settlements with a total population of 9,000 people. Approximately73% of this population constantly mention a specific odour of rotten eggs in the air, typical for hydrogen sulfide (H2S) emissions, and the occurrence of low-level concentrations of hydrogen sulfide around certain industrial installations (esp. oil refineries) is a well known fact. Therefore, this study aimed at determining the impact on human health and the economic damage to the country due to H2S emissions. Materials and method. Dose-response dependency between H2S concentrations in the air and cardiovascular morbidity using multiple regression analysis was applied. Economic damage from morbidity was derived with a newly-developed method, with Kazakhstani peculiarities taken into account. Results.Hydrogen sulfide air pollution due to the KOGCF activity costs the state almost $60,000 per year. Moreover, this is the reason for a more than 40% rise incardiovascular morbidity in the region. Conclusion. The reduction of hydrogen sulfide emissions into the air is recommended, as well as successive constant ambient air monitoring in future. Economic damage evaluation should be made mandatory, on a legal basis, whenever an industrial facility operation results in associated air pollution.

  19. 76 FR 38673 - Environmental Documents Prepared for Proposed Oil, Gas, and Mineral Operations by the Gulf of...

    Science.gov (United States)

    2011-07-01

    ... the Survey, SEA M10-008. Gulf of Mexico. Coastal Technology Corporation, Located on the Atlantic 2/1.... Planning Areas of the Gulf of Mexico. Energy Resource Technology GOM, Matagorda Island, Block 2/3/2011 Inc... Environmental Documents Prepared for Proposed Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

  20. Microseepage of methane to the atmosphere from the Dawanqi oil-gas field, Tarim Basin, China

    Science.gov (United States)

    Tang, Junhong; Xu, Yue; Wang, Guojian; Etiope, Giuseppe; Han, Wei; Yao, Zhitong; Huang, Jingang

    2017-04-01

    The microseepage of natural gas from subsurface hydrocarbon reservoirs is a widespread process in petroleum basins. On a global scale, microseepage represents an important natural source of atmospheric methane (CH4). To date, microseepage CH4 flux data have been obtained from 20 petroleum systems in North America, Europe, and Asia. While the seasonal variations of gas flux due to soil methanotrophic activity are known, the role of geological factors in controlling gas fluxes has been poorly investigated. Here we present new microseepage data from the Dawanqi oil-gas field located within the Tarim Basin (China), a petroleum system characterized by intense faulting and shallow (petroleum fields with active tectonics. Our results confirm that dry soil over petroleum fields can be a net source of atmospheric CH4 and its flux is primarily controlled by faulting, and reservoir depth and pressure. These factors shall be considered in global bottom-up seepage emission estimates.

  1. Arab oil and gas directory

    International Nuclear Information System (INIS)

    2005-01-01

    This reference book is the only oil and gas encyclopedia in the world providing detailed country surveys on the oil and gas industry in the Arab countries and Iran. It provides thorough country reports and detailed statistics on oil and gas exploration, production, transport, refining and petrochemicals, as well as on development projects in all countries in the Middle East and North Africa: Algeria, Bahrain, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Qatar, Saudi Arabia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen. Separate chapters cover OPEC and OAPEC, as well as world oil and gas statistics. It includes 53 maps and 268 tables and graphs, and 2420 addresses and contact names

  2. Exploration and production of crude oil and natural gas in Germany in 2012

    International Nuclear Information System (INIS)

    Pasternak, Michael

    2013-01-01

    This article presents an overview of oil and gas exploration and production in Germany in 2012. The report is based on data gathered on a regular basis by the State Authority for Mining, Energy and Geology (LBEG) from the oil and gas companies and the other state mining offices. Due to the granting of new licences in the last years, a significant increase of geophysical prospecting of the subsurface for oil and gas deposits was observed. Six 3D seismic surveys were conducted. Five surveys were located in the Upper Rhine Valley and one in the lowlands of Northwest Germany. 2D seismic data were acquired in Lusatia (Brandenburg) and at the coast of the Baltic Sea. The number of exploration wells decreased once again. In 2012 nine exploration wells were drilled, compared to ten in the previous year. In addition to that number, another seven exploration wells were drilled to total depth already before 2012, but not completed by final well results in 2012. None of the ten new field wildcats were completed by result. Three exploration wells (appraisal wells) were completed successfully. Two of these wells confirmed the presence of gas and one the presence of oil. The number of development wells decreased significantly. In 2012 31 wells were drilled, compared to 46 in the prominent year 2011. Another 13 wells were drilled to total depth already before 2012, but not completed by final well results in 2012. 31 wells were completed successfully. 30 of these wells encountered oil or gas pay zones. In 2011 drilling meterage has reached its highest value since 1998. In contrast the total drilling meterage decreased slightly by less than 2000 m to 71,424 min 2012. The natural gas production continued its downward trend. Due to the depletion of gas fields, the annual natural gas production dropped by 9.1% compared to the previous year and amounted to 11.7 billion m 3 (field quality). After the increase in 2011, the annual crude oil production decreased by 2.1% to 2.6 million t

  3. Comparison of vibration and noise level on the boiler during operation of fuel heavy oil (mazut) and on natural gas in TO 'Istok' - Toplifikacija - Joint-Stock Co. for district heating Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Kirovski, Hristo; Ninevski, Gjorgji; Sekovanikj, Ivica; Dzhingov, Gjorgji

    1999-01-01

    In the beginning of the heat season 1997/98, we started to use natural gas as a second fuel (the basic fuel is heavy fuel oil). Preparations were made for the use of natural gas in half of the TO 'Istok' Plant capacity (147 MW) in Skopje (Macedonia). During operation on natural gas, we noted that the levels of vibration and noise are higher when operating on heavy fuel oil. This was the reason why an investigation was carried out through a special company working on that issue. The investigation was made by measurement of vibration levels and noise at the boiler furnace in various orientation and levels. This material gives the results and conclusions from that investigation. A comparison has been made of the dynamic conditions and noise levels of the same boilers during operation on heavy fuel oil and on natural gas. We also compared the dynamic conditions and noise levels of different boilers during operations on natural gas, with different equipment for the atomizing of the natural gas. Conclusions on the dynamic conditions of the investigated boilers while operating on heavy fuel oil and on natural gas are given at the end of this material. (Author)

  4. Geographic information system (GIS)-based maps of Appalachian basin oil and gas fields: Chapter C.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ryder, Robert T.; Kinney, Scott A.; Suitt, Stephen E.; Merrill, Matthew D.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    One of the more recent maps of Appalachian basin oil and gas fields (and the adjoining Black Warrior basin) is the U.S. Geological Survey (USGS) compilation by Mast and others (1998) (see Trippi and others, this volume, chap. I.1). This map is part of a larger oil and gas field map for the conterminous United States that was derived by Mast and others (1998) from the Well History Control System (WHCS) database of Petroleum Information, Inc. (now IHS Energy Group). Rather than constructing the map from the approximately 500,000 proprietary wells in the Appalachian and Black Warrior part of the WHCS database, Mast and others (1998) subdivided the region into a grid of 1-mi2 (square mile) cells and allocated an appropriate type of hydrocarbon production (oil production, gas production, oil and gas production, or explored but no production) to each cell. Each 1-mi2 cell contains from 0 to 5 or more exploratory and (or) development wells. For example, if the wells in the 1-mi2 cell consisted of three oil wells, one gas well, and one dry well, then the cell would be characterized on the map as an area of oil and gas production. The map by Mast and others (1998) accurately shows the distribution and types of hydrocarbon accumulation in the Appalachian and Black Warrior basins, but it does not show the names of individual fields. To determine the locality and name of individual oil and gas fields, one must refer to State oil and gas maps (for example, Harper and others, 1982), which are generally published at scales of 1:250,000 or 1:500,000 (see References Cited), and (or) published journal articles.

  5. Thermodynamic analysis of oil and gas platforms over various production profiles and feed compositions

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Junior, Silvio de Oliveira

    2017-01-01

    Oil and gas platforms present similar structural designs but process fluids with different thermo-physical and chemical properties. In addition, the field properties, such as the gas-to-oil and water-to-oil ratios, change significantly over time. It is therefore not possible to suggest a standard...... of energy and exergy. Feed compositions and production profiles, which correspond to data from actual fields, are used for calibrating the simulations. In a second step, the minimum energy and exergy losses of the platform are assessed by performing thermodynamic analyses, assuming an ideal scenario...... in which all processes are run at their design points. This approach proves to be useful for evaluating consistently different options for oil and gas production, and for determining, in a further step, the most promising solutions for minimising the energy use over a field lifetime....

  6. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  7. Records of wells drilled for oil and gas in New Mexico

    Science.gov (United States)

    Dixon, G.H.; Baltz, D.H.; Stipp, T.F.; Bieberman, R.A.

    1954-01-01

    Data concerning nearly 3,000 of the more than 13,000 wells drilled in New Mexico, before September 1, 1953, including unsuccessful wildcat and field extension wells and most of the discovery wells, have been compiled and are published in this circular. Although the search for oil and gas has extended to all parts of the State, most of the wells and all the oil and natural gas fields are located in the northwest and southeast quadrants of the State.

  8. Oil and gas conservation in Saskatchewan

    International Nuclear Information System (INIS)

    Sereda, M.A.

    1997-01-01

    The Saskatchewan's Oil and Gas Conservation Act provides legislative authority for the Oil and Gas Conservation Regulations, 1985. The main purposes of the Act are to maximize oil and gas recovery, to allow each owner the opportunity of obtaining his share of oil or gas and to protect the environment and prevent waste. The document under review described how this legislative intent is fulfilled through the spacing of wells, the setting of allowables, and approval of waterflood and enhanced recovery projects, while considering equitable drainage of oil and gas. Specific topics dealt with include: vertical well spacing, infill drilling, off-target drilling, horizontal well spacing, and allowables. The concepts of voluntary and statutory pooling as well as voluntary and statutory unitization were explained. Examples of waterflood and enhanced oil recovery projects were provided. The regulation relating to oil and gas conservation were first implemented in 1952 and evolved to their present form through a series of changes and amendments. The most significant changes to the regulations were made in 1991 when horizontal drilling needed to be accommodated. 1 tab

  9. Have oil and gas prices got separated?

    International Nuclear Information System (INIS)

    Erdős, Péter

    2012-01-01

    This paper applies vector error correction models that show that oil and natural gas prices decoupled around 2009. Before 2009, US and UK gas prices had a long-term equilibrium with crude prices to which gas prices always reverted after exogenous shocks. Both US and UK gas prices adjusted to the crude oil price individually, and departure from the equilibrium gas price on one continent resulted in a similar departure on the other. After an exogenous shock, the adjustment between US and UK gas prices took approximately 20 weeks on average, and the convergence was mediated mainly by crude oil with a necessary condition that arbitrage across the Atlantic was possible. After 2009, however, the UK gas price has remained integrated with oil price, but the US gas price decoupled from crude oil price and the European gas price, as the Atlantic arbitrage has halted. The oversupply from shale gas production has not been mitigated by North American export, as there has been no liquefying and export capacity. - Highlights: ► VEC models are applied to investigate the relationship between oil and natural gas prices. ► While natural gas prices in Europe and Asia react to oil price, US gas price decoupled from oil in 2009. ► Since 2009, the US gas price has decoupled from the European and Asian gas prices.

  10. Combilift ideal for maneuvering oil and gas equipment

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-07-15

    This article described an innovative forklift that responds to the oil industry's need for a safer, better and easier way to move long tubular products that cannot be carried high in the air. The Gator Jaw is a duplex pipe clamp attachment that secures to the Combilift forklift carriage. The clamp arm can be hydraulically moved upwards to allow the operator full use of the forks without interference from the hold down arm. The Combilift's platform is ideal for maneuvering oil and gas equipment close to the ground. Since it can travel sideways, the length of the load is not critical. The Gator Jaw's unique design makes it possible for one forklift to handle both skids and pallets. The C-Series product extends to the subsea oil and gas industry, which works with long loads such as oil drilling tools and pipe. The benefits include safer product handling, significant space savings, increased productivity and versatile indoor and outdoor use. The machines are available with a fuel-efficient liquefied petroleum gas (LPG) or diesel engine. 1 fig.

  11. Development of oil and gas service as organizational form of entrepreneurship in post-industrial economy

    Directory of Open Access Journals (Sweden)

    Н. В. Василенко

    2017-10-01

    Full Text Available The article is devoted to the problem of development of oil and gas service. The transformation of the oil and gas sector with the separation of independent enterprises and organizations providing services in the oil and gas service sector is compared by the author with the trend of rapid development of the service sector in the postindustrial economy. The purpose of the study is to identify the general and specific characteristics of modern oil and gas services and to determine the directions for the transformation of organizational forms of entrepreneurship in the sphere under consideration. The growth of quantitative parameters of the oil and gas services market has been analyzed. The classification of this market is proposed depending on the place of services in a single technological cycle in relation to the main oil production process. The positive consequences of the development of oil and gas services for the development of oil and gas production have been systematized. Basic organizational models of entrepreneurship development in oil and gas service are generalized and substantiated. It is shown that the main influence in the market of services is taken by vertically integrated national oil and gas companies, as well as by international companies that provide service support for the work of Russian oil and gas companies. The results of a comparative analysis of advantages and disadvantages of organizational models of entrepreneurship in the field of oil and gas services are presented. It is proved that oil and gas service as an organizational form of entrepreneurship in its development reflects the general trends of the post-industrial economy. Specific features of oil and gas service in Russia are singled out. The revealed directions of transformation of organizational forms of entrepreneurship in the sphere of oil and gas service in current conditions can be used in the formation of state programs in the field of industrial

  12. Oil/gas collector/separator for underwater oil leaks

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.

    1992-12-31

    This invention is comprised of an oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  13. Natural gas in 1927: Petroleum in 1927: The oil and gas fields of Ontario. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, R B

    1930-12-31

    This annual report presents figures for gas consumption in Ontario, gas wells and their production, and leakage. It includes licenses issued for the year and logs of wells. Information is also given on oil production in Ontario, petroleum refining and petroleum imported into Ontario.

  14. Oil and Gas Emergency Policy: Sweden 2012 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    , while households and other small consumers, numbering over 33 thousand, account for 2% of the total. The Swedish Energy Agency (SEA), under the Ministry of Enterprise, Energy and Communications, has the main responsibility for both oil and natural gas emergency response policy. Sweden fulfils its oil stockholding requirements to both the IEA and the European Union by placing minimum stockholding obligations on industry and major consumers. During a supply disruption and as a contribution to an IEA collective action, Swedish authorities would reduce the minimum obligation, thereby granting operators permission to draw stocks below the minimum level. In a natural gas crisis, supplies to protected customers (i.e. households) are safeguarded while the physical balance of the gas system would be maintained by restricting or discontinuing supplies to non-protected customers in a crisis. System operators are obliged to have in place crisis plans for dealing with emergency situations, including a strategy for reducing supplies to customers.

  15. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    Science.gov (United States)

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  16. Oil and gas in the environment

    International Nuclear Information System (INIS)

    1998-01-01

    Our society and economy have become dependent on oil and gas. The UK uses oil and gas for more than two-thirds of its energy needs - to run its transport network, heat its homes, in industrial processes, and to produce over a quarter of its electricity. There has been a steady increase in consumption of petrol, diesel and aviation fuel since 1970, mostly for transportation, although consumption of fuel oil has fallen dramatically. This has largely been replaced in the industrial and domestic sectors by gas, the consumption of which has risen sharply since 1990. This report assesses how this dependence on oil and gas is affecting the environment, and looks at the impact of the increasing consumption of oil and gas on the environment. The need to regulate and manage these impacts has been recognised for many years. The report forms the Environment Agency's view on the general state of pollution of the environment in relation to oil and gas. It looks at how well existing regulations and controls are working in practice and what more needs to be done, both by the Agency itself and by others, to reduce pollution. After giving a background to the formation of oil and gas and the history of their exploitation, the report summarises who does what in regulation. It then takes a life-cycle approach to look at the pressures on the environment from the exploration, production, transportation, refining, storage, and the use of oil and gas, and finally the disposal of used oil and oily waste. (UK)

  17. Environmental law issues: Offshore oil and gas activities and tanker transportation

    International Nuclear Information System (INIS)

    Chapman, P.M.

    1991-01-01

    The environmental law issues that arise from offshore oil/gas activities and petroleum transport are reviewed, focusing on marine oil pollution and especially on the issues surrounding accidental spills. Some observations are offered on the context of these issues, namely on the risks of oil spills, the difficulty of spill response in the ocean and on shorelines, and the possible environmental damage. Environmental control of petroleum operations is discussed with reference to Canadian regulation, the primary source of which is the Oil and Gas Production and Conservation Act. These regulations require developmental approval for offshore operations, formulation of plans for foreseeable spill emergencies, and compensation to those affected by spills, notably those in the fishing industry. Ship-source oil pollution and spill compensation is discussed with reference to international agreements and the Canada Shipping Act. Some problems and trends with oil spill compensation and recovery for environmental damage are noted in such areas as tanker ship standards, cleanup capabilities, and inadequacy of spill penalties and compensation. 18 refs., 1 fig

  18. Fortum Oil and Gas 2000: Exceptionally high price of crude oil and strong refining margins

    International Nuclear Information System (INIS)

    Ropponen, V.-M.

    2001-01-01

    Fortum intends to be an active player in the structural reorganization of the oil business by utilizing its niche position in oil refining. Fortum produces sophisticated motor fuel components, which it uses in its reformulated gasolines and sells and exports to other oil companies, even to highly demanding markets in California. The increase in the price of crude oil considerably improved the results of Oil and Gas Upstream. Similarly, an improvement in the refining margin, as well as profitable shipping operations and a strong demand for gasoline components, boosted the results of Oil Refining and Marketing. (orig.)

  19. Mineral and surface issues in oil and gas operations

    International Nuclear Information System (INIS)

    Vasseur, P.F.

    1998-01-01

    The Farmers' Advocate Office was created in 1972 to help put Alberta mineral owners on an equal footing with the energy sector. Most mineral owners are at a disadvantage when dealing with the disposition of their minerals because they have little or no knowledge of what they own or what their surface rights are. This paper addresses key features of mineral leasing arrangements in Alberta and explains their potential impact. It also brings to the mineral owner's attention some specific problems and concerns including mineral rights, the lease agreement, signing considerations, length of leases, delayed production payment, drilling rental, royalties, and gas cost allowance. Issues regarding oil and gas production including shut-in wells, off-set clauses , drilling depth, taxes and prepayment for minerals are also discussed from the perspective of a mineral owner

  20. The investment challenges facing the oil and gas industry

    International Nuclear Information System (INIS)

    Suellentrop, Steve

    1998-01-01

    In considering the potential of the United Kingdom for investment in the oil and gas industry, four factors are discussed. They are: the importance of certainty in identifying markets; the importance of infrastructure in assisting follow-on developments in mature oil and gas fields; the UK's competitive position in the world investment market; fiscal terms in the UK as compared with those offered by other countries. The conclusion drawn is that the UK needs to be responsive to its status as a mature oil and gas area and have the flexibility to stimulate investment in frontier areas. Stability in both the fiscal regime and also handling issues like market access is important. There is a need to capitalise on the many advantages conferred by the existing infrastructure in mature areas. (UK)

  1. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  2. 77 FR 34405 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Science.gov (United States)

    2012-06-11

    ... Geophysical Survey, SEA M09- Planning Area of the 013. Gulf of Mexico. Energy Resource Technology GOM, South... Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY... documents prepared for OCS mineral proposals by the Gulf of Mexico OCS Region SUMMARY: BOEM, in accordance...

  3. Oil and gas information 1995

    International Nuclear Information System (INIS)

    1996-07-01

    This reference book on current developments in oil and gas supply and demand contains country-specific statistics for OECD countries on production, trade, demand and prices. This book is divided in four parts. Part 1 gives the statistics sources for oil, gas and by products (lubricants, bitumen, paraffin waxes etc..) supply, demand, consumption, origin, feedstocks, import and export prices, spot and end-user prices and taxes, and gives also the definitions of products, supply and consumption items reported in this book. Part 2 provides summary tables of world oil and gas market developments with time series back to the early 1970's. Parts 3 and 4 provide, in tables form, a more detailed and comprehensive picture of oil and gas supply and demand for the OECD by region and individual countries. (J.S.)

  4. Ecological and Economic Indicators of Oil and Gas Companies Functioning

    Directory of Open Access Journals (Sweden)

    Anastasia V. Sheveleva

    2016-01-01

    Full Text Available This article analyzes the basic ecological-economic indicators of oil and gas companies, in particular the various volumes of oil, the number of spills per year of CO2 emissions, the costs of environmental protection. In the process of exploration, development and exploitation of oil and gas fields, production, refining, transportation and storage companies have a negative impact on the environment. Occur accidents involving oil spills, emissions and discharges of pollutants into the environment. As a result contaminates water resources, soil and atmosphere, animals dying, birds and fish, but also transformed the structure of the subsurface and changes the landscape, reduced strategic reserves of fuel and energy resources are formed objects of accumulated environmental damage. The need for construction of environmental protection facilities; the protection, rational use and rehabilitation of lands; protection of water resources and atmospheric air; monitoring the environment and industrial facilities; the prevention and elimination of consequences of accidents on pipelines; disposal and recycling of waste; environmental education; conducting scientific research requires oil and gas companies to undertake large expenditures. A positive trend of modern development of oil and gas companies is the introduction of mechanisms for environmental management in practice their activities, which leads to a gradual reduction of the negative impact of their activities on the environment.

  5. Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry. Additional Information

    International Nuclear Information System (INIS)

    2010-01-01

    The oil and gas industry, a global industry operating in many Member States, makes extensive use of radiation generators and sealed and unsealed radioactive sources, some of which are potentially dangerous to human health and the environment if not properly controlled. In addition, significant quantities of naturally occurring radioactive material (NORM) originating from the reservoir rock are encountered during production, maintenance and decommissioning. The oil and gas industry operates in all climates and environments, including the most arduous conditions, and is continuously challenged to achieve high efficiency of operation while maintaining a high standard of safety and control - this includes the need to maintain control over occupational exposures to radiation, as well as to protect the public and the environment through proper management of wastes that may be radiologically and chemically hazardous. The oil and gas industry is organizationally and technically complex, and relies heavily on specialized service and supply companies to provide the necessary equipment and expertise, including expertise in radiation safety. This training manual is used by the IAEA as the basis for delivering its training course on radiation protection and the management of radioactive waste in the oil and gas industry. Enclosed with this manual is a CD-ROM that contains the presentational material used in the training course, the course syllabus and additional notes for course presenters. The course material is based principally on IAEA Safety Reports Series No. 34 Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry, published by the IAEA in 2003. The training course is aimed at regulatory bodies; oil and gas field operators and support companies; workers and their representatives; health, safety and environmental professionals; and health and safety training officers. A pilot training course was held in the Syrian Arab Republic in 2000 as

  6. Report on the oil and gas sector in Ecuador

    International Nuclear Information System (INIS)

    1990-01-01

    After a brief introduction on the economic and political situation in Ecuador, the state of the country's oil and gas sector is reviewed. Before 1967, all oil came from wells along the Pacific coast, but with discoveries in the Amazon Basin, the opening of the trans-Ecuador pipeline, and creation of the state oil company CEPE (renamed Petroecuador in 1990) by the early 1970s, a boom in the industry occurred. Current proven reserves stand at 1.2-1.5 billion bbl of oil and 140 billion ft 3 of natural gas. Current production is generally around 300,000 bbl/d, mostly from the Petroecuador-Texaco consortium block in the Amazon Basin. Petroecuador now operates the main oil export pipeline and has subsidiaries responsible for exploration and production, refining, and the marketing of petroleum and its derivatives. In recent years Petroecuador has imported about $60 million worth of goods annually, offering a market opportunity for foreign companies supplying goods and services to the oil and gas industry. Market opportunities of interest to Canadian companies are outlined, local procedures for doing business are presented, and lists of Canadian and Ecuadorian contacts are provided. 3 figs., 5 tabs

  7. Oil prices touch fifty year low - industry gears up for further cuts in operating costs

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    International crude oil prices hit a 50-year low (inflation adjusted) in December 1998. Prices are now lower than in 1973 and are expected to remain low for several years; so much so that the future of production activities are under threat. The paper goes on to discuss the UK Government's initiative to tackle the problem and of the activities of the CRINE (Cost Reduction in the New Era) Network to reduce operating costs. The Government Oil and Gas Task Force aimed to develop strategies to reduce the cost base of UK gas and oil operations and recommend action by Government and/or the industry by summer 1999. The concern is that current costs of production on the UK continental shelf will make new offshore development uneconomic. A meeting in January 1999 agreed six key areas for action. The work of the Task Force overlaps that of Crine which, since 1992 has been working to drive down capital costs of developing oil and gas fields by innovative approaches including cooperation between companies. (UK)

  8. Geochemical haloes as an indication of over oil and gas fields in the Arctic shelf

    Science.gov (United States)

    Kholmiansky, Mikhail; Anokhin, Vladimir

    2013-04-01

    Hydrocarbon deposits at the Arctic shelf of Russia are a source of jet dispersion of heavy metals that forms haloes in sediments and in the bottom layer of sea water. The intensity of the haloes and their spatial position are jointly determined by geological structure of their source and the environment, i.e., hydrocarbon deposits in host rocks, seafloor lithodynamics and oceanographic factors. Based on theoretical works of Kholmyansky and Putikov (2000; 2006; 2008), an application of electrochemical modification of electric prospecting for offshore hydrocarbon exploration and detailed survey of the morphology of deposits was developed. Specialized equipment was developed for studies of electrochemical features of bottom water layer. With this equipment one can detect ion anomalies in water and determine the type of deposit as gas, gas hydrate, gas condensate or oil. At operation, the unit with equipment is towed underwater off the stern of research vessel. Type and configuration of deposits are determined based on occurrence of trace heavy metals detected by ion-selective electrodes. The proposed method was applied to study a few hydrocarbon fields in Barents and Kara seas in 2001 -2012 including Shtokman, Medyn, Polyarnoe, Prirazlomnoye and others. The results allowed us to trace the margins of the deposits in more detail, and geochemical data, in addition, showed the type of deposits. In general, the method has proven efficient and applicable to a wide range of hydrocarbon deposits.

  9. Oil and natural gas

    International Nuclear Information System (INIS)

    Hamm, Keith

    1992-01-01

    The two major political events of 1991 produced a much less dramatic reaction in the global oil industry than might have been expected. The economic dislocation in the former USSR caused oil production to fall sharply but this was largely offset by a concurrent fall in demand. Within twelve months of the invasion of Kuwait, crude oil prices had returned to their pre-invasion level; there was no shortage of supply due to the ability of some producers to boost their output rapidly. Details are given of world oil production and developments in oil demand. Demand stagnated in 1991 due to mainly to the economic chaos in the former USSR and a slowdown in sales in the USA; this has produced problems for the future of the refining industry. By contrast, the outlook for the natural gas industry is much more buoyant. Most clean air or carbon emissions legislation is designed to promote the use of gas rather than other hydrocarbons. World gas production rose by 1.5% in 1991; details by production on a country by country basis are given. (UK)

  10. Regional resource depletion and industry activity: The case of oil and gas in the Gulf of Mexico

    Science.gov (United States)

    Attanasi, E.D.

    1986-01-01

    Stable and declining oil and gas prices have changed the industry's price expectations and, along with depletion of promising exploration prospects, has resulted in reduced exploration. Even with intensive additional exploration, production in most U.S. areas is expected to decline. What does this imply for the drilling and petroleum industry suppliers in particular regions? How should planners in government and the private sector project and incorporate the consequences of these changes in their strategies? This paper answers these questions for the industry operating in the offshore Gulf of Mexico. Future oil and gas production, as well as demand for offshore drilling and production facilities, are shown to depend on the size distribution of undiscovered fields, their associated production costs, and oil and gas prices. Declining well productivity is a consequence of development of progressively smaller fields so that long-run drilling demand should not decline in proportion to the expected production decline. Calculations show a substantial payoff to the drilling industry, in terms of potential demand increases, if it can develop and implement cost reducing technologies. Implications of these results for other offshore producing areas such as the North Sea are also discussed. ?? 1986.

  11. Indian gas field development plan aims for quick production

    International Nuclear Information System (INIS)

    Banerjee, N.

    1992-01-01

    The development of a new oil or gas field involves construction of various downstream facilities such as field flow lines, trunk lines, oil and gas collecting and processing stations, and transportation to refineries and consuming centers. This paper reports that it is essential that these facilities be built on a schedule that allows the products to be transported and processed as early as possible. Unless such an approach is initiated, the wells producing crude oil or natural gas will need to be shut-in in the absence of the other relative facilities. For quick returns on the investments, a realistic program and careful evaluation of the schedule is needed to ensure that early commissioning of the fields is possible

  12. Oil and Gas Emergency Policy: China 2012 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    Although coal is the dominant energy source in China, accounting for some 70% of the country's Total Energy Consumption (TEC) in 2009, oil and gas are also essential energy sources. Despite strong growth in consumption of oil, its share of TEC fell from 22% in 2000 to 18% in 2009, as coal use rose even faster to meet burgeoning demand for electricity. A strong policy push boosted natural gas supplies, particularly to residential customers, so that the share of natural gas doubled from 2% in 2000 to 4% in 2009. China is one of the important oil and natural gas producing counties in the world. In 2010, China's crude oil production exceeded 4 million barrels per day (mb/d). However, with strong and sustained economic growth, its demand for oil has also increased, from 4.6 mb/d in 2000 to over 8 mb/d in 2009. In the New Policy Scenario (NPS) of the IEA World Energy Outlook (WEO) 2011, China's primary oil demand rises to 12.2 mb/d in 2020. Although China is now the world's fifth largest oil producer, the country has been a net oil importer since 1993. In 2011, China imported over 5 mb/d of crude oil, accounting for about 54% of its total demand. More than 50% of the total crude oil imports came from counties of the Middle East. To prevent a potential shock to the economy caused by an oil supply disruption, the Chinese government has been steadily pushing building an oil stock reserve system. China has completed four stockpiling facilities with a capacity of around 103 mb in the first phase of its Strategic Petroleum Reserve (SPR) plan, and has begun construction of its second phase, which comprises eight storage sites that will reportedly have a combined capacity of around 207 mb. Among them, two sites were completed in the second half of 2011 and the Tianjin site is reportedly set to be completed in 2012. According to unofficial reports, the remaining four SPR-II sites are expected to become operational by 2013. The third phase is expected to boost

  13. Middle East oil and gas

    International Nuclear Information System (INIS)

    1995-01-01

    This study is intended to shed light on structural changes occurring in six Middle East countries (Iran, Iraq, Kuwait, Qatar, Saudi Arabia and the United Arab Emirates) that can be expected to have a significant impact on their oil and gas industry. These six countries provide 42% of the world's traded crude oil, on which Member countries of the International Energy Agency (IEA) are increasingly dependent. They also contain about 65% and 30% of the world's proven oil and natural gas reserves, respectively, and command a strategic location between Europe and Asia. The Middle East has been one of the most volatile parts of the world where war, revolution and embargoes have caused major upheavals that have led to oil supply disruptions. The oil resources of all six countries were initially developed by international oil companies and all are members of the Organization of the Petroleum Exporting Countries (OPEC). In 1994, their crude oil production capacity was about 23 million barrels per day (mbd) and is planned to expand to about 28 mbd by the year 2000. Revenue from the sale of oil accounts for more than 80% of each nation's total exports and about 75% of each government's income. The objectives of this study are: to detail their announced oil and gas development plans, to describe the major trends occurring in these countries, to outline the government responses to the trends, and to analyse the impact of government policies on oil and gas development. (J.S.). 121 refs., 136 figs., 212 tabs

  14. Atmospheric emissions from the upstream oil and gas industry

    International Nuclear Information System (INIS)

    Taylor, B.G.S.

    1994-01-01

    The results are presented of a study set up to determine the nature and levels of atmospheric emissions resulting from United Kingdom oil and gas exploration and production activities. The study was commissioned by the UK Offshore Operators Association. Emissions by the upstream oil and gas industry of common pollutants, such as carbon monoxide, sulphur dioxide and nitrous oxide, and ozone depletion chemicals were shown in each case to be less than 1% of total UK emissions. Greenhouse gas emissions in the industry arise mainly from production operations with a small but significant contribution from onshore activities. Carbon dioxide is the major component followed in descending order by nitrogen oxides, methane and volatile organic compounds. In 1991, these emissions formed 3.2%, 4.6%, 2.9% and 2.8% of the UK totals respectively; overall this represented only about 3% of UK global warming emissions. The evidence of this study illustrates that the industry, which produces 67% of the UK's primary energy, is successfully managing its operations in an environmentally responsible way. (3 figures, 3 tables) (UK)

  15. Replacement of 13 valves by using an isolation plug in the 20 inches diameter main offshore gas pipeline at Cantarell oil field, Campeche Bay, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Carvahal Reyes, Jorge Omar; Ulloa Ochoa, Carlos Manuel [PEMEX, Exploracion y Produccion, MX (Mexico)

    2009-12-19

    In 2002 we changed 13 valves on deck of one gas production platform called Nohoch-A-Enlace at Cantarell Offshore Oil Field. The 20'' diameter gas pipeline and 200 km of length, transport and deliver gas for others production platforms in the Gas Lift System, So 2 millions of oil barrels per day depends of the operation of this gas pipeline but there was 13 valves on pig traps to be changed after 20 years of service to high pressure (64 to 63 kg/cm{sup 2}). We could not stop the operation of this pipeline and some little gas leaks were eliminated in some parts of the valves. This pipeline has two risers so the gas can be injected by two sides of the ring of 20 Km. So we found the proper technology in order to isolate one riser nad change 8 valves and the isolate the other and change the 5, and the gas lift system never stop during the plug and maintenance operations on platform. In the first isolation plug operation this tool run 20 mts inside the riser and was actionated and resists 65 Kg/cm{sup 2} of gas pressure during 44 hours so we changed 8 valves: 2 of 20'', 2 of 10'', 3 of 4'' and 1 of 8'' diameter. In the second isolation the plug run 30 mts inside the second risers and resist 64 Kg/cm{sup 2} of gas during 46 hours and we changed 5 valves of 20'' diameter. In the paper I will describe all the details of this successful operations and procedures. Also the aspects of Health, Security and Environment that we prepared one year before this operations at platform. Pemex save almost 2.5 millions of dollars because the gas lift system never stop and all valves were changed and now we can run cleaning and inspection tools inside the full ring. We used the first isolation plug in Latin America and we want to share this experience to all the pipeline operators in the world as a good practice in pipeline maintenance using plugging technology in the main and large pipelines of high pressure. (author)

  16. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Robinson

    2005-01-01

    This report summarizes activities that have taken place in the last 6 months (July 2004-December 2004) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the US: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico.

  17. Development and operation of Northern Natural's aquifer gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, E V

    1969-01-01

    There are no depleted (or nondepleted) oil and gas fields in Northern Natural Gas Co.'s market area. Consequently, when the search was started for a possible underground field, the company had to resort to the possibility of locating a water-filled, porous-rock formation (aquifer) in a geological structure which would form a suitable trap for gas storage. Geological research and exploratory drilling was carried on in S. Minnesota, E. Nebraska, and W.-central Iowa. An area located about 40 miles northwest of Des Moines, Iowa, near Redfield, appeared to have the most desirable characteristics for development of a gas-storage field. Drilling of deep developmental wells was started in late 1953 on a double- plunging anticline. The geological structure is similar to that of many oil and gas fields, but the porous formations contained only fresh water. To date, 2 major reservoirs and a minor reservoir have been developed in this structure. As much as 120 billion cu ft has been stored in the 3 reservoirs which supplied 43 billion cu ft gas withdrawals this past season from a total of 85 wells. A second aquifer gas-storage field is under development in N.-central Iowa about 15 miles northeast of Ft. Dodge.

  18. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.

    Science.gov (United States)

    Allard, David J

    2015-02-01

    This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This

  19. Giant Oil Fields - The Highway to Oil: Giant Oil Fields and their Importance for Future Oil Production

    International Nuclear Information System (INIS)

    Robelius, Fredrik

    2007-01-01

    Since the 1950s, oil has been the dominant source of energy in the world. The cheap supply of oil has been the engine for economic growth in the western world. Since future oil demand is expected to increase, the question to what extent future production will be available is important. The belief in a soon peak production of oil is fueled by increasing oil prices. However, the reliability of the oil price as a single parameter can be questioned, as earlier times of high prices have occurred without having anything to do with a lack of oil. Instead, giant oil fields, the largest oil fields in the world, can be used as a parameter. A giant oil field contains at least 500 million barrels of recoverable oil. Only 507, or 1 % of the total number of fields, are giants. Their contribution is striking: over 60 % of the 2005 production and about 65 % of the global ultimate recoverable reserve (URR). However, giant fields are something of the past since a majority of the largest giant fields are over 50 years old and the discovery trend of less giant fields with smaller volumes is clear. A large number of the largest giant fields are found in the countries surrounding the Persian Gulf. The domination of giant fields in global oil production confirms a concept where they govern future production. A model, based on past annual production and URR, has been developed to forecast future production from giant fields. The results, in combination with forecasts on new field developments, heavy oil and oil sand, are used to predict future oil production. In all scenarios, peak oil occurs at about the same time as the giant fields peak. The worst-case scenario sees a peak in 2008 and the best-case scenario, following a 1.4 % demand growth, peaks in 2018

  20. Frontier lands: Oil and gas statistical overview, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Canada's frontier lands consist of offshore and onshore areas outside the provinces which fall under federal authority. These lands cover some 10.2 million km 2 and include the Northwest Territories, Yukon Territory, and areas off the east and west coasts and in the far north. A statistical summary is presented of oil and gas activities in these frontier lands for 1992. Information provided includes activity status and wells drilled on frontier lands, a resource inventory, oil and gas production, land holdings and status, licenses concluded, petroleum-related employment on frontier lands, and petroleum expenditures on frontier lands. Highlights of activities include the first commercial production of crude oil from the Panuke oil field on the Scotian Shelf; a continued decrease in exploration activity on the frontier lands; the introduction of legislation to eliminate restrictions on foreign ownership of production licences on frontier lands; and the resolution to the Canada-France maritime boundary dispute by the International Court of Arbitration. 9 figs., 10 tabs

  1. Exploring the Linkages Between Deming’s Principle, World-Class Company, Operational Excellence, and Company Performance in an Oil and Gas Industry Setting

    Directory of Open Access Journals (Sweden)

    Wakhid Slamet Ciptono

    2005-06-01

    Full Text Available This study explores the linkages between Deming’s Principle, World-Class Company, Operational Excellence, and Company Performance in the Indonesia’s oil and gas industry. The aim of this study is to examine the causal relationships model between the Deming’s Principle (DP, World-Class Company (WCC, Operational Excellence (OE, and Company Performance (Monetary Gain Performance or MGP and Value Gain Performance or VGP. The author used 140 strategic business units (SBUs in 49 oil and gas companies in Indonesia. The survey was administered to every level of management at each SBU (Top, Middle, and Low Level Management. A multiple informant sampling unit is used to ensure a balanced view of the relationships between the research constructs, and to collect data from the most informed respondents on different levels of management. A total of 1,332 individual usable questionnaires were returned thus qualified for analysis, representing an effective response rate of 50.19 percent. Path analysis and structural equation modeling (SEM are used to analyze the effect of Deming’s principle on company performance and to investigate the interrelationships between Deming’s principle, world-class company, operational excellence, and company performance. The results show that Deming’s Principle has significant positive and indirect effect on company performance (monetary gain performance and value gain performance. Although the Deming’s Principle has no significant direct effects on company performance, the Deming’s Principle has significant positive effects on the intervening variables (world-class company and operational excellence. The result also shows that a complete model fit and the acceptable parameter level that indicate the overall parameter are good fit between the hypothesized model and the observed data. By concentrating on a single industry (oil and gas, SEM specification of the causal relationship model between five constructs can be

  2. International oil and gas finance review 1997

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This first edition covers financing projects in the developing world, mergers and acquisitions; mitigating cross-border risk; basic risk in energy markets; real-time oil and gas pricing issues; oil and gas equity; risk management; project finance. The yearbook also features more regional specific topics such as: gas transportation in the Mercosur; 25 years of growth in the UAE; natural gas in Mexico; LNG in the Far East; legal issues surrounding the Russian oil and gas industry; LNG projects in the Middle East; the North Sea; and financing the oil and gas industry of Southern and South Africa. (UK)

  3. Cattle and the oil and gas industry in Alberta: A literature review with recommendations for environmental management

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this report is to bring together a review of published information on the potential effects of upstream oil and gas industry operations on the cattle industry in Alberta, some indication of the probability of occurrence of these effects, and recommendations on how they might be avoided or mitigated. Based on reviews of scientific papers and industry good-practice manuals, the report describes: The sources and quantities of environmental contaminants generated by Alberta's oil and gas industry, including normal operations, accidental releases, and the effects of aging infrastructure; the chemical composition of the products, materials, and wastes associated with the industry; the fate and transport of the contaminants through air, water, and soil; cattle operations in Alberta; the toxicology of oil and gas industry contaminants in cattle; and selected Alberta case studies of accidental releases and planned experiments. Conclusions and recommendations deal with critical information gaps and strategies for the sustainable management of cattle and oil/gas operations in the province

  4. Report on the oil and gas industry 2010

    International Nuclear Information System (INIS)

    2011-01-01

    Illustrated by graphs and tables of data, this report discusses the recent evolutions and trends of world oil and gas markets in 2010, of oil and gas exploration and production in the world, of the issue of European gas supplies, of exploration and production in France, of the oil industry and oil services, of hydrocarbon imports, of refining activities in France, of the quality of fuels, of substitution fuels, of the domestic transportation of oil products, of the issue of strategic storage, of oil product storage, of oil and gas products consumption, of hydrocarbon taxing, of the retailing of oil products, of oil product prices, and of gas price for the end consumer

  5. Some characteristics in operation of long exploited oil fields in Fergana depression. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Gordinskii, E V; Ovanesov, M G; Irmatov, E K

    1969-01-01

    A review of geological and oil production data from 3 Fergana fields is presented. The reservoirs are small, tectonically bounded, and are anticlines of Paleogenic carbonates. Reservoirs are heterogeneous with porosity ranging from 3 to 25% and permeability ranging from a few to 500 md. Some of the reservoirs have expanding gas caps, some are solution drive, and others have been waterflooded. All are now in the final stage of depletion. Production history and characteristics of each group are given. One way of increasing present production rate appears to be injection of gas or air into the reservoirs. This can be done inexpensively, since additional injection wells would not have to be drilled and some produced gas is available. Increased fluid withdrawal from present wells should also be beneficial.

  6. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields

    Science.gov (United States)

    Houghton, J.C.

    1988-01-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.

  7. Oil field rejuvenation work starts at 14 project sites

    International Nuclear Information System (INIS)

    Petzet, G.A.

    1992-01-01

    This paper reports that the U.S. Department of Energy and oil and gas companies have released more information about a joint effort to rejuvenate aging U.S. oil fields in danger of abandonment. Work is starting on 14 demonstration projects that could recover 21 million bbl of oil from the fluvial dominated deltaic (FDD) reservoirs in which they are conducted. Wider application of the same techniques, if they are successful, could results in addition of 6.3 billion bbl of reserves, nearly 25% of U.S. crude oil reserves. A multidisciplinary team approach is to be used, with as many as 11 operators, service companies, universities, or state agencies participating in each project. All of the projects will culminate in extensive technology transfer activities. Here are descriptions of the projects gleaned from public abstracts provided by the DOE contractors

  8. (Canada) Oil and gas survey, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This summarizes the financial reporting of a major segment of the oil and gas industry in Canada as shown in annual reports to shareholders for 1986. Annual reports have been surveyed with particular attention to developments in accounting practices in the oil and gas industry during 1986. The survey was not restricted to financial statements and all information presented in the annual reports was considered. Matters of general financial disclosure not unique to the oil and gas industry are not included. Examples quoted from reports covered by this survey are not presented as recommended methods but are illustrations of present practice only. Some illustrations were drawn from oil and gas companies not included in the survey.

  9. Energy Return on Investment for Norwegian Oil and Gas from 1991 to 2008

    Directory of Open Access Journals (Sweden)

    Mikael Höök

    2011-10-01

    Full Text Available Norwegian oil and gas fields are relatively new and of high quality, which has led, during recent decades, to very high profitability both financially and in terms of energy production. One useful measure for profitability is Energy Return on Investment, EROI. Our analysis shows that EROI for Norwegian petroleum production ranged from 44:1 in the early 1990s to a maximum of 59:1 in 1996, to about 40:1 in the latter half of the last decade. To compare globally, only very few, if any, resources show such favorable EROI values as those found in the Norwegian oil and gas sector. However, the declining trend in recent years is most likely due to ageing of the fields whereas varying drilling intensity might have a smaller impact on the net energy gain of the fields. We expect the EROI of Norwegian oil and gas production to deteriorate further as the fields become older. More energy-intensive production techniques will gain in importance.

  10. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions

    Science.gov (United States)

    In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (sup...

  11. Environmental risk analysis for offshore oil and gas activities

    Energy Technology Data Exchange (ETDEWEB)

    Brude, Odd Willy; Aspholm, Ole O.; Rudberg, Anders [Det Norske Veritas (Brazil)

    2008-07-01

    Offshore oil and gas activities always have a risk for environmental impact due to potential accidental releases of oil and gas. The environmental risk can be calculated as a combination of the frequency of such accidents to occur and their environmental consequences in terms of environmental damage to habitats or populations. A method for conducting environmental risk analysis has been in use in Norwegian offshore waters for a decade, with a continuously refinement of methodology over the past years. This paper outlines the principles in the MIRA method and gives examples and discussions regarding use in different environmental compartments. The risk assessment starts with identification of oil spill scenarios with frequencies of potential release rates and spill durations. The next step is to model the oil drift for each accidental oil spill scenario. Drift and fate of oil is modeled probabilistic. Based on the oil spill scenarios and their probability of oil pollution, the potential environmental damage is quantified for each scenario. The endpoint of environmental damage is reduction of a population and the resulting recovery time (in years) for various species and habitats. Environmental risk levels are then evaluated against the operating companies' environmental acceptance criteria. (author)

  12. Description and discussion of governmental participations for companies producing oil and gas in marginal fields; Descricao e discussao do regime tributario e participacoes governamentais para empresas produtoras de petroleo e gas em campos marginais

    Energy Technology Data Exchange (ETDEWEB)

    Eduardo, Antonio Sergio [Universidade Salvador (UNIFACS), BA (Brazil); Rodrigues, Jose Allankardec Fernandes [Universidade do Estado da Bahia (UNEB), Salvador, BA (Brazil); Rodrigues, Livia da Silva Modesto [Universidade do Estado da Bahia (UNEB), Salvador, BA (Brazil); Universidade Salvador (UNIFACS), BA (Brazil); Fundacao Visconde de Cairu, Salvador, BA (Brazil); Ferreira, Doneivan Fernandes [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    This article reports taxing and government participation in oil and gas extraction in peripheral fields as defined by the Agencia Nacional de Petroleo, Gas Natural e Combustivel (ANP) and the need to discuss the essence of the contributing capacity as a means to take into account the characteristics of this specific niche in gas and oil production. Their own particular policies distinguish them from other segments. The analysis is founded on the Aristotelian view which treats equals equally and unequals unequally. The analysis shows these companies' present situation and makes it clear that taxing in Brazil acts as an obstacle to the development of several sectors, including the small oil and gas production sector. Also worth mentioning is, besides taxes in the oil business, there is also the incidence of financial indemnity established by the Petroleum Law, illustrating an analysis of this legislation. Initially, when peripheral fields are still seen as great opportunities (according to the regulatory definition adopted by the ANP), mainly because of the high price of the barrel of oil (over US$ 100 ) the weight of taxes may not be a critical factor. However, when marginal oil wells do not attract interest in the average independent producer, the only mechanisms capable of extending the activity, and as a consequence, the positive impacts generated in producing communities, may well be tax relief and government involvement. The method used was a reference research and technical visits to leasers of concessions at peripheral fields. The present study will continue with the object of showing econometric models by simulating the impact taxing has on marginal production projects at different stages of maturity. (author)

  13. Environmental flows and life cycle assessment of associated petroleum gas utilization via combined heat and power plants and heat boilers at oil fields

    International Nuclear Information System (INIS)

    Rajović, Vuk; Kiss, Ferenc; Maravić, Nikola; Bera, Oskar

    2016-01-01

    Highlights: • Environmental impact of associated petroleum gas flaring is discussed. • A modern trend of introducing cogeneration systems to the oil fields is presented. • Three alternative utilization options evaluated with life cycle assessment method. • Producing electricity and/or heat instead of flaring would reduce impacts. - Abstract: Flaring of associated petroleum gas is a major resource waste and causes considerable emissions of greenhouse gases and air pollutants. New environmental regulations are forcing oil industry to implement innovative and sustainable technologies in order to compete in growing energy market. A modern trend of introducing energy-effective cogeneration systems to the oil fields by replacing flaring and existing heat generation technologies powered by associated petroleum gas is discussed through material flow analysis and environmental impact assessment. The environmental assessment is based on the consequential life cycle assessment method and mainly primary data compiled directly from measurements on Serbian oil-fields or company-supplied information. The obtained results confirm that the utilization of associated petroleum gas via combined heat and power plants and heat boilers can provide a significant reduction in greenhouse gas emissions and resource depletion by displacing marginal production of heat and electricity. At the base case scenario, which assumes a 100% heat realization rate, the global warming potential of the combined heat and power plant and heat boiler scenarios were estimated at −4.94 and −0.54 kg CO_2_e_q Sm"−"3, whereas the cumulative fossil energy requirements of these scenarios were −48.7 and −2.1 MJ Sm"−"3, respectively. This is a significant reduction compared to the global warming potential (2.25 kg CO_2_e_q Sm"−"3) and cumulative fossil energy requirements (35.36 MJ Sm"−"3) of flaring. Nevertheless, sensitivity analyses have shown that life cycle assessment results are sensitive

  14. Experience of molecular monitoring techniques in upstream oil and gas operations

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Anthony F.; Anfindsen, Hilde; Liengen, Turid; Molid, Solfrid [Statoil ASA (Denmark)

    2011-07-01

    For a numbers of years, molecular monitoring tools have been used in upstream oil and gas operations but the results have given only limited added value. This paper discusses the various techniques available for upstream molecular monitoring which provides scope for identification of microbial influenced problems. The methodology, which consists of analyzing solid samples using traditional as well as molecular techniques, is detailed. Two cases were studied with the objective of determining if microbial contamination was contributing to the problem. The first case was a study of amorphous deposits in production wells and mainly iron sulphide was found. The second study was of amorphous deposits in water injection wells and the analysis showed typical components of drilling and completion fluids with some organic material. Two more cases, corrosion of tubing in a water injection well and flow line corrosion, are discussed and the results are given. From the study, it can be concluded that failure can be due to several factors, chemical and biological.

  15. Contributions to Economic Geology, 1913: Part II - Mineral Fuels - Oil and Gas in the Western Part of the Olympic Peninsula, Washington

    Science.gov (United States)

    Lupton, Charles T.

    1915-01-01

    High-grade paraffin oil is reported to have been discovered in the western part of the Olympic Peninsula, Wash., as early as 1881. Since then attempts to obtain oil or gas in commercial quantities by drilling have been made from time to time in different localities in this region, but without success. Within the past few years interest has been aroused in oil seeps near the mouth of Hoh River and in gas vents in other parts of the field to such an extent that many persons have been attracted to this country to search for oil and gas. As a result of this interest and on account of the fact that efforts had been made to lease tracts of land for this purpose in the Queniult Indian Reservation, an examination of this region was made by the United States Geological Survey at the request of the Office of Indian Affairs. The results of the investigation, which are enumerated below and which are discussed in detail throughout this report, suggest that certain parts of the field are worthy of careful consideration by oil operators. The following summary includes the most important facts regarding the area examined: High-grade paraffin oil issues from two seeps near the mouth of Hoh River, and at other localities oil-saturated sandy clay ('smell mud' of the Indians) is exposed. Natural gas containing about 95 per cent methane escapes from a conical mound just north of the mouth of Queniult River and also from an inverted cone-shaped water-filled depression on Hoh River a short distance west of Spruce post office. Other minor gas vents are also known in this field and are described in detail in this report. Three wells - one in the reservation about 1 mile north and slightly west from Taholah, another near the mouth of Hoh River, and the third about 1 mile south of Forks - are being drilled for oil and gas. So far as drilling has progressed none of these wells have encountered oil in paying quantities, but all of them have struck small amounts of gas. A study of the structure

  16. Yukon's common oil and gas regime

    International Nuclear Information System (INIS)

    Love, B.

    1998-01-01

    The Yukon's common oil and gas regime was developed in partnership with First Nations and it sets out the rules that will apply throughout the Yukon and on Yukon and First Nation lands. While separate and distinct, it conforms with and is compatible with other government systems and regimes. The major elements of the common regime include the Oil and Gas Act, regulations, policies, processes and agreements. The specific opportunities that are available in each phase of oil and gas development in the Yukon are described, with a map showing all basins, reserves and sites of current oil and gas activity. The Yukon has eight potential oil and gas basins: North Coast, Old Crow, Kandik, Eagle Plain, Peel Plateau, Bonnet Plume, Whitehorse Trough, and Liard Plateau. Only three of the eight, the Liard Plateau, Whitehorse Trough and Eagle Plain, have been explored. No wells have been drilled in several of Yukon's basins. Factors influencing economic opportunities in the Territory are also described, including: (1) international events and energy markets, (2) North American gas markets, (3) environmental factors, (4) competitiveness of the Yukon regime, and (5) the commitment of industry resources. 4 figs

  17. Simulation of permafrost changes due to technogenic influences of different ingeneering constructions used in nothern oil and gas fields

    Science.gov (United States)

    Filimonov, M. Yu; Vaganova, N. A.

    2016-10-01

    Significant amount of oil and gas is producted in Russian Federation on the territories with permafrost soils. Ice-saturated rocks thawing due to global warming or effects of various human activity will be accompanied by termocarst and others dangerous geological processes in permafrost. Design and construction of well pads in permafrost zones have some special features. The main objective is to minimize the influence of different heat sources (engineering objects) inserted into permafrost and accounting long-term forecast of development of permafrost degradation due to different factors in particular generated by human activity. In this work on the basis a mathematical model and numerical algorithms approved on 11 northern oil and gas fields some effects obtained by carrying out numerical simulations for various engineering systems are discussed.

  18. Study of condensate composition during field processing of gas of the Shatlyk field

    Energy Technology Data Exchange (ETDEWEB)

    Kuldzhayev, B.A.; Annamukhamedov, M.B.; Makarov, V.V.; Serbnenko, S.R.; Talalayev, Ye.I.

    1983-01-01

    Studies were made of the composition and properties of condensates from field separators of the East Shatlyk field. The expediency is shown of separate collection of the condensates into a separate container and used for local needs as the diesel fuel. The condensates from the UNTS separators are used as chemical raw material to produce the lowest olephins by pyrolysis of gas-oil fraction and normal paraffins from kerosene-gas-oil part to obtain the protein-vitamin concentrates.

  19. North Africa oil and gas

    International Nuclear Information System (INIS)

    Priddle, R.

    1996-01-01

    During the last decade, Algeria, Egypt and Libya have improved their fiscal terms for oil and gas development to attract more investment in this area. As a group, the three countries are implementing plans to increase crude oil production capacity 16 % from 3.15 million barrels per day (Mb/d) in 1995 to 3.65 Mb/d in the year 2000. Natural gas liquid are also being developed and their production capacity is planned to increase 30 % to 0.82 Mb/d in 2000. Concurrently, natural gas production capacity is being expanded about 50 % by 200 and natural gas exporting capacity should see a 92 % increase in 2000 over 1995 levels in short, the North Africa hydrocarbon producers are rapidly expanding their production and export capacity of gaseous and liquid hydrocarbons. This is the first IEA study to focus on North Africa. It shows how changing hydrocarbon legislation or production sharing agreements can result in changes in crude oil and natural gas production capacity. Much of the expansion outlined in this study is being guided by international oil companies attracted by the improved fiscal terms

  20. Radiation protection programme in the oil and gas industry

    International Nuclear Information System (INIS)

    Essien, E. C.

    2014-04-01

    The oil and gas industry uses many radiation sources in various radiation based technologies which are of great benefit to the industry, this includes nucleonic gauges, multiphase flow meters, well logging etc. Inappropriate use of these equipment and installations and uncontrolled activities associated with naturally occurring radioactive materials (NORM) can contaminate the environment resulting in occupational and public exposures. The objective of this work is to develop a Radiation Protection Programme (RPP) for the oil and gas industry which when implemented by the operating organisation will keep doses to the workers and public as low as reasonably achievable (ALARA), maximize the benefits while minimizing the hazards associated with the use of radiation based technologies. In order to achieve the aim of this work, review of previous works on radiation sources in nucleonic gauges, well logging and waste management processes of NORMs was carried out. Some recommendations were stated, which if strictly implemented would improve the scope of radiation protection in the oil and gas industries. (au)

  1. Assessment of undiscovered oil and gas resources in the Ventura Basin Province, California, 2016

    Science.gov (United States)

    Tennyson, Marilyn E.; Schenk, Christopher J.; Pitman, Janet K.; Lillis, Paul G.; Klett, Timothy R.; Brownfield, Michael E.; Finn, Thomas M.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Marra, Kristen R.; Mercier, Tracey J.; Le, Phuong A.; Leathers-Miller, Heidi M.

    2017-10-02

    The U.S. Geological Survey (USGS) completed a geology-based assessment of undiscovered, technically recoverable conventional and continuous oil and gas resources in the part of the Ventura Basin Province that lies onshore or within State waters (within 3 miles of the shoreline) of California (fig. 1). Conventional oil and gas resources are those that have migrated upward into structural or stratigraphic traps from deep zones where the oil and gas is generated; water is present below the oil or gas. Continuous accumulations, in contrast, are those in which oil or gas is pervasively present in essentially all wells that penetrate them, that may not be structurally or stratigraphically trapped, and that typically lack oil-water or gas-water contacts. They are commonly produced with well-stimulation technology, such as hydraulic fracturing, referred to as “unconventional.” The same stimulation technology, however, is also used in many conventionally trapped accumulations. We estimated both the likely range of oil and gas volumes remaining to be discovered in accumulations similar to existing conventional oil and gas fields in the Ventura Basin Province (previously assessed by Keller [1995] as 1,060 million barrels of oil [MMBO], 1,900 billion cubic feet of gas [BCFG], and 60 million barrels of natural gas liquids [MMBNGL]), and the potential for oil and gas that might be present in a continuous accumulation at extreme depth in the floor of the basin.

  2. Report on the oil and gas industry in 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Illustrated by graphs and tables of data, this report discuss the recent evolutions of world oil and gas markets in 2009, of the oil and gas exploration and production in the world, of the issue of European gas supplies, of the exploration and production in France, of the oil industry and oil services, of hydrocarbon imports, of refining activities in France, of the quality of fuels, of substitution fuels, of the domestic transportation of oil products, of gas infrastructures, of oil product storage, of oil and gas products consumption, of hydrocarbon taxing, of gas price for the end consumer, of oil product prices, and of the retailing of oil products

  3. Oil and gas development in Greenland: A social license to operate, trust and legitimacy in environmental governance

    NARCIS (Netherlands)

    Smits, C.; Leeuwen, van J.; Tatenhove, van J.P.M.

    2017-01-01

    Since the turn of the century, Greenland has been examining the possibilities to develop its potential oil and gas resources. The large scale oil and gas activities will impact the small Greenlandic society, both positively and negatively. In this paper we employ the concept of a social license to

  4. Application of bio-huff-`n`-puff technology at Jilin oil field

    Energy Technology Data Exchange (ETDEWEB)

    Xiu-Yuan Wang; Yan-Fed Xue; Gang Dai; Ling Zhao [Institute of Microbiology, Beijing (China)] [and others

    1995-12-31

    An enriched culture 48, capable of adapting to the reservoir conditions and fermenting molasses to produce gas and acid, was used as an inoculum for bio- huff-`n`-puff tests at Fuyu oil area of Jilin oil field. The production well was injected with water containing 4-6% (v/v) molasses and inoculum, and then shut in. After 15-21 days, the well was placed back in operation. A total of 44 wells were treated, of which only two wells showed no effects. The daily oil production of treated wells increased by 33.3-733.3%. Up to the end of 1994, the oil production was increased by 204 tons per well on average. Results obtained from various types of production wells were discussed.

  5. The taxation of UK oil and gas production. Why the windfalls got away

    International Nuclear Information System (INIS)

    Abdo, Hafez

    2010-01-01

    Starting with evidence that United Kingdom Continental Shelf oil and gas companies have benefitted very disproportionately from the recent period of extraordinarily high oil prices, this paper traces the history of this weakness in the UK's petroleum fiscal regime. Evidence is provided that the progressive relaxations in the UK's petroleum fiscal regime in 1983, 1987-1988 and 1993 were: largely unnecessary to stimulate the development of new, smaller, 'marginal' fields; misguided in their assumption that such fields were more costly to develop than earlier counterparts or larger contemporary fields; and impotent compared with the effects of oil price movements. The paper concludes with a conceptualisation which illuminates why these failures of policy were not just random: they emerged from the UK's 'non-proprietorial' stance with respect to the country's oil and gas resources, a stance which assumes responsibility for oil company profitability and vainly tries to counter market forces at the expense of government revenues. (author)

  6. The taxation of UK oil and gas production: Why the windfalls got away

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Hafez, E-mail: hafez.abdo@ntu.ac.u [Nottingham Business School, Burton Street, Nottingham NG1 4BU (United Kingdom)

    2010-10-15

    Starting with evidence that United Kingdom Continental Shelf oil and gas companies have benefitted very disproportionately from the recent period of extraordinarily high oil prices, this paper traces the history of this weakness in the UK's petroleum fiscal regime. Evidence is provided that the progressive relaxations in the UK's petroleum fiscal regime in 1983, 1987-1988 and 1993 were: largely unnecessary to stimulate the development of new, smaller, 'marginal' fields; misguided in their assumption that such fields were more costly to develop than earlier counterparts or larger contemporary fields; and impotent compared with the effects of oil price movements. The paper concludes with a conceptualisation which illuminates why these failures of policy were not just random: they emerged from the UK's 'non-proprietorial' stance with respect to the country's oil and gas resources, a stance which assumes responsibility for oil company profitability and vainly tries to counter market forces at the expense of government revenues.

  7. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  8. Controlled PVTS oil and gas production stimulation system

    Energy Technology Data Exchange (ETDEWEB)

    Ospina-Racines, E

    1970-02-01

    By completing oil- or gas-producing wells according to the PVTS method and energizing the flow of the oil-gas fluids in the reservoir with a small horse-power gas compressor at the wellhead, the following oil and gas production features are attained: (1) Original reservoir story energy conditions are restored, improved, used, and conserved while producing oil and/or gas. (2) The flow of oil or gas in the pay formation to the well bore is stimulated by gas compressor energy, outside of the reservoir system. The pressure drawdown is developed by gas-compressor energy in the well casing and not in the pay formation. (3) The stored energy of the reservoir is conserved while producing oil or gas. The potential energy (pressure) of the reservoir can be used to advantage up to bubble point of the virgin crude. (4) Producible reserves are increased from 4-to 5-fold by the conservation of reservoir energy. Present-day primary oil production practice yields a maximum of 20% of the oil in place by depleting the original reservoir energy. The PVTS system will yield over 80% + of oil in place. (5) Producible gas reserves can be increased greatly by establishing a low abandonment pressure at will. The principal features of the PVTS well mechanism and energy injection method are illustrated by a schematic diagram.

  9. Modern Political and Economic Aspects of the Oil and Gas Complex in the Southeast Asia Region

    Directory of Open Access Journals (Sweden)

    Valery I. Salygin

    2014-01-01

    Full Text Available AbstracUThe article reviews the problems caused by the conflict of interests between certain Southeast Asian countries and other states, China foremost, which aroused from oil and gas field development on disputable offshore sections. At the same time the positions of the region's leading transnational corporations in the field of oil and gas policy and their relationships with the countries-ASEAN (Association of South East Asian Nations members are outlined. Separately are represented the foreign policy stands of Indonesia, Vietnam, Brunei, Philippines and Malaysia on territorial disputes over offshore oil and gas fields. These processes are pushing both European and American business to abandon the conventional schemes and accept the new conditions of their activity in Southeast Asia.

  10. Practice points on three aspects of oil and gas property transactions - operatorship, confidentiality and title review

    International Nuclear Information System (INIS)

    Edwards, P.D.

    1999-01-01

    Practice points regarding three aspects of oil and gas property transactions were described. The first topic dealt with purchase and sale transactions and how to determine which party is entitled to act as the Operator following the sale of the Operator's interest. The second topic addressed issues of confidentiality in connection with oil and gas transactions. The final point discussed contractual provisions relating to title defects, along with their many variations and legal consequences. All three of these topics present issues which give rise to a surprising number of disputes, but which frequently receive only cursory attention in the negotiation and documentation of oil and gas transactions

  11. TOPEX: An expert system for estimating and analyzing the operating costs of oil and gas production facilities

    International Nuclear Information System (INIS)

    Greffioz, J.; Olver, A.J.; Schirmer, P.

    1993-01-01

    TOPEX is a new approach to operating costs estimation of oil and gas installations. It does not rely on knowledge of the capital cost of the installation and uses a computerized expert system (or knowledge base). Estimates are generated from specific details of the equipment and systems and general databases of prices and man hours. A novel methodology has been developed for quantifying the operational complexity of an installation which is then correlated with operations manpower. The use of a computerized application allows rapid calculation of estimates so that what-if and sensitivity studies can be readily done. The knowledge base provides a powerful tool to handle the large amounts of data involved and acts as a repository for the expertise used in its development

  12. Kashagan oil field development. Kazakhstan

    International Nuclear Information System (INIS)

    Urbaniak, D.; Gerebizza, E.; Wasse, G.; Kochladze, M.

    2007-12-01

    Based on our research and field investigations of the Kashagan oil field development and relevant infrastructure in the Atyrau and Mangistau regions of Kazakhstan (cities and vicinities of Aktau, Atash, Atyrau, Bautino, Bolashak, Karabatan and Koshanai) evidence has been collected that raises serious concerns about environmental, social and health effects of this oil field development - such as sulphur emissions and storage which may pose serious threats for the communities close to the Kashagan oil facilities and for the Caspian Sea environment. Furthermore, since becoming the single Operator of the North Caspian Sea Production Sharing Agreement (PSA), the Agip Kazakhstan North Caspian Operating Company N.V. (Agip KCO) has failed to release all information available on the environmental, health and social impacts of its operations in the Kashagan oil field. As requested by the local communities and required by Constitution of Kazakhstan Republic and Aarhus Convention on Access to Information, Public Participation in Decision-Making and Access to Justice in Environmental Matters ratified by Kazakhstan in 2001, such information must be made available. There is also a growing concern among the civil society that the European Commission through its officials is publicly expressing support to European oil companies' members of the Agip KCO despite their failure to fulfil basic environmental regulations. This continued support contradicts the European Union's fundamental values and frequent statements related to Human Rights and Sustainable Development. Thousands of people have already been relocated in the region because of sulphur emissions and other highly poisonous chemicals such as mercaptans, which are present at very high levels in Northern Caspian oil. Unprotected storage of large quantities of sulphur is also recognised as a major cause of acid rain on a global level. This Report implores Agip KCO to release all available and required information on the

  13. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  14. Report on the oil and gas industry in 2009

    International Nuclear Information System (INIS)

    2010-01-01

    This report proposes an overview of facts, events and data concerning the world oil and gas markets, the oil and gas exploration and production in the world, the challenges of gas European supplies, the exploration and production in France, the oil and oil-related industry, hydrocarbons imports, the refining activity in France, fuel quality, alternative fuels, the domestic transportation of oil products, gas infrastructures, the storage of oil products, the consumption of oil and gas products, taxes on hydrocarbons, prices for the final consumer, and the prices of oil products

  15. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  16. The 2003 Update of the ASPO Oil and Gas Depletion Model

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Colin; Sivertsson, Anders [Uppsala Univ. (Sweden). Hydrocarbon Depletion Study Group

    2003-07-01

    What we can term the ASPO Oil and Gas Depletion Model has developed over many years, based on an evolving knowledge of the resource base, culled from many sources, and evolving ideas about how to model depletion. It is sure that the estimates and forecasts are incorrect. The question is: By how much? The model recognises so-called Regular Oil, which excludes the following categories: Oil from coal and shale; Bitumen and synthetics derived therefrom; Extra Heavy Oil (<10 deg API); Heavy Oil (10-17 deg API); Deepwater Oil (>500 m); Polar Oil; Liquids from gas fields and gas plants. It has provided most oil to-date and will dominate all supply far into the future. Its depletion therefore determines the date of peak. The evidence suggests that about 896 Gb (billion barrels) had been produced to end 2002; about 871 Gb remain to produce from known fields and about 113 Gb is expected to be produced from new fields. It is convenient to set a cut-off of, say 2075, for such production, to avoid having to worry about the tail end that can drag on for a long time. A simple depletion model assumes that production declines at the current Depletion Rate (annual production as a percentage of future production) or at the Midpoint Rate in countries that have not yet reached Midpoint (namely half the total). The five main Middle East producers, which hold about half of what remains, are assumed to exercise a swing role, making up the difference between world demand and what the other countries can supply. The base case scenario assumes that consumption will be on average flat until 2010 because of recession; and that the Middle East swing role will end then, as in practice those countries will no longer have the capacity to discharge it. Whether the Iraq war results in extending or shortening the swing role remains to be seen. Adding the contributions of the other categories of oil and gas liquids gives an overall peak in 2010. Gas depletes differently, being more influenced by

  17. The 2003 Update of the ASPO Oil and Gas Depletion Model

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Colin; Sivertsson, Anders [Uppsala Univ. (Sweden). Hydrocarbon Depletion Study Group

    2003-07-01

    What we can term the ASPO Oil and Gas Depletion Model has developed over many years, based on an evolving knowledge of the resource base, culled from many sources, and evolving ideas about how to model depletion. It is sure that the estimates and forecasts are incorrect. The question is: By how much? The model recognises so-called Regular Oil, which excludes the following categories: Oil from coal and shale; Bitumen and synthetics derived therefrom; Extra Heavy Oil (<10 deg API); Heavy Oil (10-17 deg API); Deepwater Oil (>500 m); Polar Oil; Liquids from gas fields and gas plants. It has provided most oil to-date and will dominate all supply far into the future. Its depletion therefore determines the date of peak. The evidence suggests that about 896 Gb (billion barrels) had been produced to end 2002; about 871 Gb remain to produce from known fields and about 113 Gb is expected to be produced from new fields. It is convenient to set a cut-off of, say 2075, for such production, to avoid having to worry about the tail end that can drag on for a long time. A simple depletion model assumes that production declines at the current Depletion Rate (annual production as a percentage of future production) or at the Midpoint Rate in countries that have not yet reached Midpoint (namely half the total). The five main Middle East producers, which hold about half of what remains, are assumed to exercise a swing role, making up the difference between world demand and what the other countries can supply. The base case scenario assumes that consumption will be on average flat until 2010 because of recession; and that the Middle East swing role will end then, as in practice those countries will no longer have the capacity to discharge it. Whether the Iraq war results in extending or shortening the swing role remains to be seen. Adding the contributions of the other categories of oil and gas liquids gives an overall peak in 2010. Gas depletes differently, being more influenced by

  18. Development of a multi-fuel burner for operation with light oil, natural gas and low calorific value gas; Entwicklung eines Mehrstoffbrenners fuer Heizoel-, Erdgas- und Schwachgasbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Giese, Anne; Tali, Eren [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2013-08-15

    In the course of the AiF research project 'Development of a multi-fuel burner for operation with natural gas, light oil and low calorific value gas (MSB)' (IGF Grant No. 16202 N), various burner concepts based on the principle of continuously staged air were developed, analysed by means of computational fluid dynamics, built, investigated experimentally and finally tested at a real biomass gasifier (plant). This article describes the results of this research project. (orig.)

  19. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  20. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  1. Environmental Management System of Petroleum Industries: A case study of Oil and Gas Exploration in the Zamrud Field Conservation Areas

    Directory of Open Access Journals (Sweden)

    Onny Setiani

    2015-12-01

    Full Text Available ABSTRACT Background:The Zamrud Field is one of the oil fields managed by Caltex Pacific Indonesia (CPI a production sharing contractor of Pertamina. It is located in the Coastal Plain and  Pekanbaru (CPP Block. The government of Indonesia has designated Zamrud as a conservation area. The petroleum industry in Zamrud fields has received 14001 ISO Certificate on Environmental Management System. The production sharing contract between CPI and the Government of Indonesia expired in August 2002 Methods: .This case study describes how CPI managed the development  of oil and gas production and compared to  the environmental management system for  petroleum industries  that should be taken  in the Zamrud conservation areas. Results: A number of specific measures were employed by CPI  to protect this sensitive area including a green seismic project, zero-discharge drilling, water management, preservation of nature and regular monitoring and impact assessment. There are two  important points that should be in consideration  for the environmental management system by CPI in the Zamrud areas, including top soil utilization to maintain biological and nutrients quality and re-vegetation in all areas of significant disturbances. Conclusion: oil and gas  exploration and production in conservation areas has to be managed through high commitment to good environmental  and social practices. Key words     : Environmental Management System (EMS, Petroleum Industries, Zamrud Field

  2. Oil and gas fiscal regime review

    International Nuclear Information System (INIS)

    1993-04-01

    Poor levels of oil and gas industry profitability, declining activity, and increasing provincial budgetary pressures led to formation of a joint government/industry committee to review fiscal systems in the oil and gas industry and identify areas for potential change. An overview is presented of the development of oil and gas resources in Saskatchewan, showing that reserves and production peaked in 1966. Although reserves and production declined steadily until the early 1980s, some growth has occurred in the past decade, largely due to the influence of horizontal drilling. The province's oil and gas royalty structure is then summarized, giving the classes of oil and gas production and the royalty applicable to each class, as well as incentives available to encourage exploration and development activity. Opportunities for increased exploration and development are identified in two categories (existing wells and new wells) and impacts of possible changes in the existing royalty and incentive regime are discussed. Recommendations are provided to promote new capital investment in the industry and to extend the economic life of existing wells which are at or near the point of abandonment or suspension. 40 figs., 16 tabs

  3. Naturally occurring radioactive material in the oil and gas industry

    International Nuclear Information System (INIS)

    Steingraber, W.A.

    1994-01-01

    Naturally occurring radioactive material (NORM) has been found in the Earth's crust and soil, the water we drink, the food we eat, the air we breathe, and the tissues of every living organism. It is relatively easy to determine open-quotes concentrationsclose quotes, or specific activity levels, in the range of 1 part per trillion for radioactive materials. With radioactive elements so abundant and detection possible at such low levels, the presence of NORM in oil and gas operations shouldn't be surprising. In fact, this presence has been recognized since at least the 1930's, but the phenomenon received only minimal attention in the United States until the mid-1980's. At that time regulatory agencies in several oil- and gas-producing states began to focus on NORM in the exploration and production segment of the industry, expressing concern over potential health and safety implications. The most significant aspects of NORM in oil production operations include original source, transport media, composition/radionuclides present, measurement methods, health/safety issues, waste classification, and waste disposal. In addition, I will summarize industry-sponsored NORM data collection and analysis efforts being conducted to aid in development of sound policies and procedures to address environmental, health, and safety issues. Current activities by state and federal regulatory agencies relevant to NORM in the oil and gas industry will also be reviewed

  4. 77 FR 40354 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft

    Science.gov (United States)

    2012-07-09

    ... through the UIC Class II Program, the well class for oil and gas activities. Geothermal activities are not... inject diesel fuels during hydraulic fracturing related to oil, gas, or geothermal operations must obtain... geothermal activities, the draft guidance only covers hydraulic fracturing using diesel fuels related to oil...

  5. A Bootstrap Approach to Computing Uncertainty in Inferred Oil and Gas Reserve Estimates

    International Nuclear Information System (INIS)

    Attanasi, Emil D.; Coburn, Timothy C.

    2004-01-01

    This study develops confidence intervals for estimates of inferred oil and gas reserves based on bootstrap procedures. Inferred reserves are expected additions to proved reserves in previously discovered conventional oil and gas fields. Estimates of inferred reserves accounted for 65% of the total oil and 34% of the total gas assessed in the U.S. Geological Survey's 1995 National Assessment of oil and gas in US onshore and State offshore areas. When the same computational methods used in the 1995 Assessment are applied to more recent data, the 80-year (from 1997 through 2076) inferred reserve estimates for pre-1997 discoveries located in the lower 48 onshore and state offshore areas amounted to a total of 39.7 billion barrels of oil (BBO) and 293 trillion cubic feet (TCF) of gas. The 90% confidence interval about the oil estimate derived from the bootstrap approach is 22.4 BBO to 69.5 BBO. The comparable 90% confidence interval for the inferred gas reserve estimate is 217 TCF to 413 TCF. The 90% confidence interval describes the uncertainty that should be attached to the estimates. It also provides a basis for developing scenarios to explore the implications for energy policy analysis

  6. Canadian incentives for oil and gas exploration. [Applicability to USA

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    During the 1970s a number of different exploration and production incentive programs were put in place in Canada, in particular in the Province of Alberta, Canada's principal oil- and gas-producing province. The DOE/RA is evaluating Canadian incentives for oil and gas exploration, and this study is intended to provide information that will help guide DOE/RA in determining the applicability of Canadian incentive programs in US energy policy. The study describes and documents the fiscal structure in which the Canadian oil industry operates. The incentive features of pricing policy, taxation policy, and provincial royalty systems are discussed. A principal focus of the study is on one of the most important of Canada's specific incentive programs, the Alberta Exploratory Drilling Incentive Credit Program (EDICP). The study describes and evaluates the effect of the EDICP on increased oil and gas exploration activity. Similarly, the study also reviews and evaluates other specific incentive programs such as the Alberta Geophysical Incentive Program, Frontier Exploration Allowances, and various tar sand and heavy oil development incentives. Finally the study evaluates the applicability of Canadian incentives to US energy policy.

  7. Market risks and oilfield ownership - Refining oil and gas disclosures

    International Nuclear Information System (INIS)

    Kretzschmar, Gavin L.; Hatherly, David; Misund, Bard

    2007-01-01

    Market risk exposures of balance sheet asset values are becoming an increasingly important accounting issue. In oil and gas, oilfield exposures to oil prices are specific and contractual, presenting a contingency problem for investors, financial analysts, standard setting bodies and government agencies. Our paper uses an extensive sample of 292 oilfields to provide evidence that the US Securities and Exchange Commission (SEC) supplementary disclosures do not capture the price sensitivities of oil and gas disclosures implicit in the two main forms of oilfield ownership, concession and production sharing contracts (PSCs). Current asset disclosures neither distinguish between global variations in oilfield ownership terms, nor on market risk implications for the value of oilfield assets. Importantly, we show that unlike concessions, reserve and production disclosures vary in response to oil price movements for PSC regimes. Our results highlight the need to differentiate PSC disclosures from concession fields, and to fully reflect price risks implicit in oilfield ownership contracts. We extend findings by Rajgopal [1999. Early evidence on the informativeness of the SEC's market risk disclosures: the case of commodity price risk exposure of oil and gas producers. The Accounting Review 74, 251-280] and propose refinements to capture market risk in financial reporting. (author)

  8. Oil, gas and other energies, a primer

    International Nuclear Information System (INIS)

    Legault, A.

    2007-09-01

    At a time when the topic of energy is front and centre, this book examines the basic concepts that are essential to grasping the energy issues of the 21 st century. Ail the main questions that people have about energy, especially oil and gas, are addressed, providing students, academics, journalists, representatives of government and other institutions and interested readers in general with the information they need to understand the complex, multifaceted energy sector. Abundantly illustrated, this book represents five years of exhaustive research on a fascinating and highly controversial topic. If discusses all the processes related to fossil forms of energy, from the formation of hydrocarbons (crude oil and natural gas) to the delivery of oil and gas to consumers. It also examines renewable energy options and climate change issues in addressing the major geopolitical challenges facing the energy sector. Content: 1 - The Extraordinary History of the Earth; 2 - The Formation of Oil and Gas; 3 - Energy, Past and Present; 4 - Renewable Energies; 5 - The Essence of Oil and Gas; 6 - Geography of Oil and Gas; 7 - The Outlook for Petroleum Prices and Demand Until 2030; 8 - Global Warming; 9 - Liquefied Natural Gas;10 - The Big Three: Russia, China and the United States

  9. Norm waste in oil and gas industry: The Syrian experience

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Suman, H.

    2001-01-01

    This paper describes the Syrian experience in respect to Naturally Occurring Radioactive Materials (NORM) waste in Syrian oil and gas industry. NORM can be concentrated and accumulated in tubing and surface equipment of oil and gas production lines in the form of scale and sludge. NORM waste (scale, sludge, production water) is therefore generated during cleaning, physical or chemical treatment of streams. Uncontrolled disposal of this type of waste could lead to environmental pollution, and thus eventually to exposure of members of the public. The presence of NORM in Syrian oil fields has been recognized since 1987 and AECS has initiated several studies, in cooperation with oil companies, to manage such type of waste. Three categories of NORM waste in Syrian oil fields were identified. Firstly, hard scales from either decontamination of contaminated equipment and tubular using high-pressure water systems or mechanical cleaning at site are considered to contain the highest levels of radium isotopes ( 226 Ra, 228 Ra, 224 Ra). Secondly, sludge wastes are generated with large amount but low levels of radium isotopes were found. Thirdly, contaminated soil with 226 Ra as a result of uncontrolled disposal of production water was also considered as NORM waste. The first waste type (scale) is stored in Standard storage barrels in a controlled area; the number of barrels is increasing with time. High levels of radium isotopes were found in these scales. The options for disposal of these wastes are still under investigations; one of the most predominant thinking is the re-injection into abundant wells. For sludge waste, plastic lined disposal pits were constructed in each area for temporary storage. Moreover, big gas power stations have been built and operated since the last ten years. Maintenance operations for these stations produce tens of tones of scales containing radon daughters, 210 Pb and 210 Po with relatively high concentrations. The common practice used to dispose

  10. Gas, oil, and environmental biotechnology IV

    Energy Technology Data Exchange (ETDEWEB)

    Akin, C; Markuszewski, R; Smith, J [eds.; Institute of Gas Technology, Chicago, IL (United States)

    1992-01-01

    Contains 32 papers presented at the 4th international IGT symposium on gas, oil and environmental biotechnology. Topics covered were: hydrocarbon bioremediation; groundwater, soil and explosives bioremediation; gas and oil reservoir souring; and biodesulfurization. 2 papers have been abstracted separately.

  11. Conditions of prospecting, development, production, and supply of oil and natural gas in Cameroun, Congo, and Ivory Coast

    Energy Technology Data Exchange (ETDEWEB)

    Shirakami, Yoshimasa; Norisugi, Yoichi; Miyake, Keiji

    1988-08-01

    This paper reports the conditions of national affairs, oil industry, and prospecting, development, production of oil and natural gas in Ivory Coast in western Africa. All of oil and natural gas are produced in Cretaceous and Tertiary sedimentary basins on the continental margin off the coast of Ivory Coast and Ghana. In 1970 the first oil field (Belier) was discovered by the test boring drilled under the sea, and in 1980 Espoir Oil Field was discovered. No further new oil field, however, has been discovered since then. The total production until 1987, amounts to 45.55 million bbl and the minable reserve is estimated about 84 million bbl. The production reached the maximum 1984, and thereafter has gone down. Few plans of prospecting are carried out recently. (10 figs, 2 tabs)

  12. British Columbia Oil and Gas Commission 2. annual report (1999/2000)

    International Nuclear Information System (INIS)

    2001-01-01

    The British Columbia Oil and Gas Commission (OGC) is a regulatory agency which was created in 1998 to oversee oil and gas industry operations in the province including exploration, development, reclamation and pipeline transportation systems. In addition, the OGC resolves industry land use and economic issues related to Aboriginal Lands on behalf of the province. This annual report highlights the operational performance and outlines business priorities and initiatives. Environmental Fund and Advisory Committee activity were also presented along with financial data for fiscal 1999-2000. Given that the OGC is a young agency, it took the year to stabilize its organization and finalize primary recruitment. Its business processes were also reorganized and streamlined. The year also saw an increase in oil and gas activity in Northeast British Columbia. The process to improve relationships with First Nations was initiated. All of the operations and application functions in Fort St. John were consolidated. Applications received during 1999-2000 were 63 per cent higher than the previous year. The OGC also conducted more than 2500 consultations with Treaty 8 First Nations on various applications. The future will focus on innovation and the effective use of technology with a leading edge workforce. 1999/2000 saw record rig activity for the province. In January 2000 there were more than 120 rigs operating in the province. tabs

  13. Market Brief : Turkey oil and gas pipelines

    International Nuclear Information System (INIS)

    2001-08-01

    This report presented some quick facts about oil and gas pipelines in Turkey and presented opportunities for trade. The key players and customers in the oil and gas sector were described along with an export check list. Turkey is looking into becoming an energy bridge between oil and gas producing countries in the Middle East, Central Asia and Europe. The oil and gas sectors are dominated by the Turkish Petroleum Corporation, a public enterprise dealing with exploration and production, and the State Pipeline Corporation which deals with energy transmission. They are also the key buyers of oil and gas equipment in Turkey. There are several pipelines connecting countries bordering the Caspian Sea. Opportunities exist in the areas of engineering consulting as well as contracting services for oil and gas pipeline transmission and distribution. Other opportunities lie in the area of pipeline construction, rehabilitation, materials, equipment, installation, and supervisory control and data acquisition (SCADA) systems. Currently, the major players are suppliers from Italy, Germany, France, United States and Japan. Turkey has no trade barriers and imported equipment and materials are not subjected to any restriction. The oil and gas market in Turkey expected in increase by an average annual growth rate of 15 per cent from 2001 to 2003. A brief description of pipeline projects in Turkey was presented in this report along with a list of key contacts and support services. 25 refs., 1 append

  14. MCNP modeling of NORM dosimetry in the oil and gas industry

    International Nuclear Information System (INIS)

    Siqiu Wang

    2016-01-01

    Naturally-occurring radioactive materials wastes in the oil and gas industry create a radioactive environment for the workers in the field. MCNP simulation conducted in this work provides a useful tool in terms of radiation safety design of the oil field, as well as validation and an important addition to in situ measurements. Furthermore, phantoms are employed to observe the dose distribution throughout the human body, demonstrating radiation effects on each individual organ. (author)

  15. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  16. Caspian Oil and Gas: Production and Prospects

    National Research Council Canada - National Science Library

    Gelb, Bernard A

    2005-01-01

    .... The Caspian Sea region historically has been an oil and natural gas producer, but many believe that the region contains large reserves of oil and gas capable of much greater production than at present...

  17. Golden age: marketers extract the most from oil and natural gas trade

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, A.

    2000-04-01

    The complexity of the oil and natural gas markets, the complex factors which interact to produce the price of oil or natural gas on any given day, and the role of marketers in this high stakes game are discussed. While oil and natural gas prices are very good today compared to the low prices through much of the 1990s, marketers are now concerned about the ability of Canadian fields to produce enough to fill the expanded pipelines and meet the rising demand. As the oil and natural gas industry in Canada is moving from a pipeline-constrained environment to a resource-constrained environment, the question of declining reserves in the Western Canadian Sedimentary Basin and the resulting surplus in pipeline capacity is one of the most serious issues facing industry in the immediate future. This is especially true of natural gas where the cost of transportation, which can be as high as 30 per cent, is one of major importance to gas marketers. Locking in prices or allowing prices to float can make the difference between huge losses or gains depending on the interplay of the various factor that influence price fluctuations. Examples of how decisions about oil and gas prices are made, and the various outcomes that may result from marketer decisions are described to illustrate the vagaries of the natural gas market.

  18. Golden age: marketers extract the most from oil and natural gas trade

    International Nuclear Information System (INIS)

    Lorenz, A.

    2000-01-01

    The complexity of the oil and natural gas markets, the complex factors which interact to produce the price of oil or natural gas on any given day, and the role of marketers in this high stakes game are discussed. While oil and natural gas prices are very good today compared to the low prices through much of the 1990s, marketers are now concerned about the ability of Canadian fields to produce enough to fill the expanded pipelines and meet the rising demand. As the oil and natural gas industry in Canada is moving from a pipeline-constrained environment to a resource-constrained environment, the question of declining reserves in the Western Canadian Sedimentary Basin and the resulting surplus in pipeline capacity is one of the most serious issues facing industry in the immediate future. This is especially true of natural gas where the cost of transportation, which can be as high as 30 per cent, is one of major importance to gas marketers. Locking in prices or allowing prices to float can make the difference between huge losses or gains depending on the interplay of the various factor that influence price fluctuations. Examples of how decisions about oil and gas prices are made, and the various outcomes that may result from marketer decisions are described to illustrate the vagaries of the natural gas market

  19. Adapting Human Reliability Analysis from Nuclear Power to Oil and Gas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory

    2015-09-01

    ABSTRACT: Human reliability analysis (HRA), as currently used in risk assessments, largely derives its methods and guidance from application in the nuclear energy domain. While there are many similarities be-tween nuclear energy and other safety critical domains such as oil and gas, there remain clear differences. This paper provides an overview of HRA state of the practice in nuclear energy and then describes areas where refinements to the methods may be necessary to capture the operational context of oil and gas. Many key distinctions important to nuclear energy HRA such as Level 1 vs. Level 2 analysis may prove insignifi-cant for oil and gas applications. On the other hand, existing HRA methods may not be sensitive enough to factors like the extensive use of digital controls in oil and gas. This paper provides an overview of these con-siderations to assist in the adaptation of existing nuclear-centered HRA methods to the petroleum sector.

  20. Possibility of removing condensate and scattered oil from gas-condensate field during bed flooding

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, N.A.; Yagubov, M.S.

    1984-01-01

    The problem is set of evaluating the possible removal from the bed of scattered oil and condensate during flooding of the bed. For this purpose, an experimental study was made of the displacement by water from the porous medium of the oil and condensate saturating it. The obtained experimental results permit evaluation of the possible removal from the gas-condensate bed of scattered oil and condensate during flooding of the bed.

  1. The taxation of UK oil and gas production. Why the windfalls got away

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Hafez [Nottingham Business School, Burton Street, Nottingham NG1 4BU (United Kingdom)

    2010-10-15

    Starting with evidence that United Kingdom Continental Shelf oil and gas companies have benefitted very disproportionately from the recent period of extraordinarily high oil prices, this paper traces the history of this weakness in the UK's petroleum fiscal regime. Evidence is provided that the progressive relaxations in the UK's petroleum fiscal regime in 1983, 1987-1988 and 1993 were: largely unnecessary to stimulate the development of new, smaller, 'marginal' fields; misguided in their assumption that such fields were more costly to develop than earlier counterparts or larger contemporary fields; and impotent compared with the effects of oil price movements. The paper concludes with a conceptualisation which illuminates why these failures of policy were not just random: they emerged from the UK's 'non-proprietorial' stance with respect to the country's oil and gas resources, a stance which assumes responsibility for oil company profitability and vainly tries to counter market forces at the expense of government revenues. (author)

  2. Panorama 2016 - The revival of mergers and acquisitions in the oil and gas sector

    International Nuclear Information System (INIS)

    Fosse, Florian; Hache, Emmanuel; Portenart, Philomene

    2015-12-01

    The oil and gas sector remains fertile ground for mergers and acquisitions (M and A). This sector represented between 5% and 15% of total transactions from 2008 to 2014. Since 2008, M and A transactions in the sector have been dominated by a triad made up of a region (North America), a business segment (upstream oil and gas) and a type of key player (independent operators). (authors)

  3. Review of disaster management implementation for the community safety in the vicinity of oil and gas field

    Energy Technology Data Exchange (ETDEWEB)

    Musa, R. Abdullah; Heni, Siti [JOB Pertamina Petrochina East Java, Lingkar Pertamina - Soko, Tuban 62372 (Indonesia); Harjanto, Meddy, E-mail: mharja@gmail.com [JOB Pertamina Petrochina East Java, Lingkar Pertamina - Soko, Tuban 62372 (Indonesia); Occupational Health and Safety of Airlangga University, Surabaya 60115 (Indonesia)

    2015-04-24

    Sukowati site which is operated by Production Sharing Contract (PSC) Joint Operating Body Pertamina Petrochina East Java (JOB P-PEJ) located at Bojonegoro regency East Java Province. This site is close to densely populated settlements with approximately 6,010 people within a radius less than 600 m. The fluid produced have a dangerous potential to the above mention community, due to accompanying of hydrogen sulphide gas (H2S) with a concentration about 0.6% – 2% from the total gas produced. In 2006, there was incident of gas leak from drilling development well of Sukowati # 5. The incident made the surrounding community panic due to lack of preparedness and awareness. Learning from the incident, the company together with the government and local communities initiated to make improvements through the disaster management system approach. The efforts are carried out in accordance with the 4 (four) periods in a continuous cycle consist of (1) mitigation; (2) preparation; (3) response and (4) recovery. Emergency response drills conducted regularly at least once a year, its main purpose is to find out the results of the implementation of the existing disaster management. The results of the drills showed an increase in public awareness and responsiveness to emergency situations caused by the operational failures of oil and gas exploration and production activities near their settlement.

  4. Review of disaster management implementation for the community safety in the vicinity of oil and gas field

    International Nuclear Information System (INIS)

    Musa, R. Abdullah; Heni, Siti; Harjanto, Meddy

    2015-01-01

    Sukowati site which is operated by Production Sharing Contract (PSC) Joint Operating Body Pertamina Petrochina East Java (JOB P-PEJ) located at Bojonegoro regency East Java Province. This site is close to densely populated settlements with approximately 6,010 people within a radius less than 600 m. The fluid produced have a dangerous potential to the above mention community, due to accompanying of hydrogen sulphide gas (H2S) with a concentration about 0.6% – 2% from the total gas produced. In 2006, there was incident of gas leak from drilling development well of Sukowati # 5. The incident made the surrounding community panic due to lack of preparedness and awareness. Learning from the incident, the company together with the government and local communities initiated to make improvements through the disaster management system approach. The efforts are carried out in accordance with the 4 (four) periods in a continuous cycle consist of (1) mitigation; (2) preparation; (3) response and (4) recovery. Emergency response drills conducted regularly at least once a year, its main purpose is to find out the results of the implementation of the existing disaster management. The results of the drills showed an increase in public awareness and responsiveness to emergency situations caused by the operational failures of oil and gas exploration and production activities near their settlement

  5. PRODUCE MORE OIL AND GAS VIA eBUSINESS DATA SHARING

    Energy Technology Data Exchange (ETDEWEB)

    Paul Jehn; Mike Stettner

    2004-04-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  6. Produce More Oil and Gas via eBusiness Data Sharing

    Energy Technology Data Exchange (ETDEWEB)

    Paul Jehn; Mike Stettner; Ben Grunewald

    2005-07-22

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  7. Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Muili Feyisitan Fakoya

    2017-12-01

    Full Text Available The application of nanotechnology in the oil and gas industry is on the rise as evidenced by the number of researches undertaken in the past few years. The quest to develop more game-changing technologies that can address the challenges currently facing the industry has spurred this growth. Several nanoparticles, of different sizes and at different concentrations, have been used in many investigations.In this work, the scope of the study covered the application of nanotechnology in drilling and hydraulic fracturing fluids, oilwell cementing, enhanced oil recovery (which includes transport study, and foam and emulsion stability, corrosion inhibition, logging operations, formation fines control during production, heavy oil viscosity reduction, hydrocarbon detection, methane release from gas hydrates, and drag reduction in porous media. The observed challenges associated with the use of nanoparticles are their stability in a liquid medium and transportability in reservoir rocks. The addition of viscosifier was implemented by researchers to ensure stability, and also, surface-treated nanoparticles have been used to facilitate stability and transportability.For the purpose of achieving better performance or new application, studies on synergistic effects are suggested for investigation in future nanotechnology research. The resulting technology from the synergistic studies may reinforce the current and future nanotechnology applications in the oil and gas industry, especially for high pressure and high temperature (HPHT applications. To date, majority of the oil and gas industry nanotechnology publications are reports of laboratory experimental work; therefore, more field trials are recommended for further advancement of nanotechnology in this industry. Usually, nanoparticles are expensive; so, it will be cost beneficial to use the lowest nanoparticles concentration possible while still achieving an acceptable level of a desired performance. Hence

  8. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels

    International Nuclear Information System (INIS)

    Agblevor, Foster A.; Mante, O.; McClung, R.; Oyama, S.T.

    2012-01-01

    The major obstacle in thermochemical biomass conversion to hydrocarbon fuels using pyrolysis has been the high oxygen content and the poor stability of the product oils, which cause them to solidify during secondary processing. We have developed a fractional catalytic pyrolysis process to convert biomass feedstocks into a product termed “biocrude oils” (stable biomass pyrolysis oils) which are distinct from unstable conventional pyrolysis oils. The biocrude oils are stable, low viscosity liquids that are storable at ambient conditions without any significant increases in viscosity; distillable at both atmospheric pressure and under vacuum without char or solid formation. About 15 wt% biocrude oils containing 20–25% oxygen were blended with 85 wt% standard gas oil and co-cracked in an Advanced Catalyst Evaluation (ACE™) unit using fluid catalytic cracking (FCC) catalysts to produce hydrocarbon fuels that contain negligible amount of oxygen. For the same conversion of 70% for both the standard gas oil and the biocrude oil/gas oil blends, the product gasoline yield was 44 wt%, light cycle oil (LCO) 17 wt%, heavy cycle oil (HCO) 13 wt%, and liquefied petroleum gas (LPG) 16 wt%. However, the coke yield for the standard gas oil was 7.06 wt% compared to 6.64–6.81 wt% for the blends. There appeared to be hydrogen transfer from the cracking of the standard gas oil to the biocrude oil which subsequently eliminated the oxygen in the fuel without external hydrogen addition. We have demonstrated for the first time that biomass pyrolysis oils can be successfully converted into hydrocarbons without hydrogenation pretreatment. -- Highlights: ► The co-processed product had less than 1% oxygen content and contained biocarbons determined by 14 C analysis. ► The co-processing did not affect the yields of gasoline, LCO, and HCO. ► First demonstration of direct conversion of pyrolysis oils into drop-in hydrocarbon fuels.

  9. Water scaling in the North Sea oil and gas fields and scale prediction: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, M

    1997-12-31

    Water-scaling is a common and major production chemistry problem in the North Sea oil and gas fields and scale prediction has been an important means to assess the potential and extent of scale deposition. This paper presents an overview of sulphate and carbonate scaling problems in the North Sea and a review of several widely used and commercially available scale prediction software. In the paper, the water chemistries and scale types and severities are discussed relative of the geographical distribution of the fields in the North Sea. The theories behind scale prediction are then briefly described. Five scale or geochemical models are presented and various definitions of saturation index are compared and correlated. Views are the expressed on how to predict scale precipitation under some extreme conditions such as that encountered in HPHT reservoirs. 15 refs., 7 figs., 9 tabs.

  10. An Investigation on Gas Lift Performance Curve in an Oil-Producing Well

    Directory of Open Access Journals (Sweden)

    Deni Saepudin

    2007-01-01

    Full Text Available The main objective in oil production system using gas lift technique is to obtain the optimum gas injection rate which yields the maximum oil production rate. Relationship between gas injection rate and oil production rate is described by a continuous gas lift performance curve (GLPC. Obtaining the optimum gas injection rate is important because excessive gas injection will reduce production rate, and also increase the operation cost. In this paper, we discuss a mathematical model for gas lift technique and the characteristics of the GLPC for a production well, for which one phase (liquid is flowing in the reservoir, and two phases (liquid and gas in the tubing. It is shown that in certain physical condition the GLPC exists and is unique. Numerical computations indicate unimodal properties of the GLPC. It is also constructed here a numerical scheme based on genetic algorithm to compute the optimum oil production.

  11. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  12. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  13. Implementation of Enterprise Risk Management (ERM Framework in Enhancing Business Performances in Oil and Gas Sector

    Directory of Open Access Journals (Sweden)

    Sanmugam Annamalah

    2018-01-01

    Full Text Available This study empirically investigated the ERM Implementation model and proposed framework to identify and manage risks in Oil and Gas Sector in Malaysia. The study examined the role of ERM framework implementation in improving business performance by utilizing Economic Value Added as a measurement tool. The study also provides insights to the Oil and Gas Sector to gain higher profit returns, reduce cost of capital, and improve shareholders value. Moreover, it contributes significantly in the field of Enterprise risk management in Malaysia. The identification and management of risk is significant to organizations in managing risks efficiently. Expectations of stakeholders of the organization are high from executives and board of directors in managing the risk effectively. Linear regression analysis is utilized in analyzing the data obtained from the data collection performed for this paper. Purposive sampling has been employed in order to select the firms that are operating in Malaysian oil and gas sector. Primary data has been utilized to collect data with the help of structured questions and interview techniques that involve semi structured questions. The results of the regression analysis conducted for in this study suggested that a significant and positive relationship between Enterprise Risk Management with operational risk; market risk; political risk; health, safety and environmental risk; and, also business performance.

  14. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  15. Investigation of oil production conditions and production operation by solution gas drive in low permeable heterogeneous limestones

    Energy Technology Data Exchange (ETDEWEB)

    Lillie, W

    1966-04-01

    It was the purpose of this study to investigate the production of oil and gas from a low permeable heterogeneous limestone-reservoir by solution gas drive. The rock-samples were subjected to extensive petrolphysical analyses in order to characterize the pore structure of of the limestone material. Laboratory model flow tests were undertaken to outline in detail the production history during the pressure depletion process under reservoir conditions and by using original reservoir fluids. The experiments were carried out at different rates of pressure decline. It can be stated that the rate of pressure decline is the most important factor affecting the oil recovery and the development of the gas-oil-ratio in a model flow test. The present investigation leads to the following conclusion: It is posible to get reliable results which could be the base for a reservoir performance prediction only when the gas and oil phase are maintained at equilibrium conditions within the rock sample during the pressure decline. An additional calculation of the solution gas drive reservoir production history by the Tarner method shows a good agreement of the experimental and the calculated data. (40 refs.)

  16. Oil and gas markets, companies, and technology in the 1990`s and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, J.L.

    1995-08-01

    During the late 1990`s and beyond, oil prices will be stagnant while costs increase, competition for markets and capital will be fierce, funds available for exploration and development will be limited, and environmental extremists will keep prospective areas off-limits. Higher taxes will limit growth in oil and gas demand and reapportion energy market shares. And a campaign to brand oil use as an ``addiction`` that must be cured will gather steam. But opportunities abound, too, even in the US High-quality properties are available throughout the US, independents can find and develop reserves cheaper than the majors, and new tools are available to reduce risks both in the field and in the market. Gas prices are firming and natural gas is often labeled the ``fuel of the future.`` To succeed in the petroleum industry of the 1990`s, all companies must accept change, be creative, and take initiative. To prosper, oil and gas producers and refiners and those who supply and serve the industry must face the new realities of the market. They cannot mark time until the return of 4,000 active rigs and $40/bbl oil. those days are never coming back. Never.

  17. Environmental benefits of advanced oil and gas exploration and production technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  18. Global climate change implications for coastal and offshore oil and gas development

    International Nuclear Information System (INIS)

    Burkett, Virginia

    2011-01-01

    The discussion and debate about climate change and oil and gas resource development has generally focused on how fossil fuel use affects the Earth's climate. This paper explores how the changing climate is likely to affect oil and gas operations in low-lying coastal areas and the outer continental shelf. Oil and gas production in these regions comprises a large sector of the economies of many energy producing nations. Six key climate change drivers in coastal and marine regions are characterized with respect to oil and gas development: changes in carbon dioxide levels and ocean acidity, air and water temperature, precipitation patterns, the rate of sea level rise, storm intensity, and wave regime. These key drivers have the potential to independently and cumulatively affect coastal and offshore oil and gas exploration, production, and transportation, and several impacts of climate change have already been observed in North America. - Highlights: ► Climate change effects on coastal and offshore energy development have been observed in some regions. ► Key drivers include changes in temperature, precipitation, sea level rise, storm intensity and wave regime. ► These can independently and cumulatively affect coastal and offshore exploration, production, and transportation. ► A methodical vulnerability and impact assessment is needed to support adaptation in this sector of the global economy.

  19. Gas injection pilot in the Hochleiten field

    Energy Technology Data Exchange (ETDEWEB)

    Potsch, K.; Ramberger, R.; Glantschnig, J.; Baumgarthuber, S.; Goessnitzer, F. [OMV AG, Wien (Austria)

    2004-07-01

    The Hochleiten field, located in the north of Vienna, is small in extension and highly compartmentalized. The main reservoir horizons are at a depth of approximately 1000 m. The oil quality shows high density and viscosity. Waterflood was initiated, but worked only in a part of the reservoir. Compartmentalization and lateral facies changes result in poor comunication and big pressure differences across the field. Some of the oil in place is not reached by primary or secondary recovery processes, and a solution was sought for accessing the bypassed oil. The screening process suggested gas injection as the most promising method. This contribution presents the first results of a field pilot project. Information will be given on the geology, additional lab work, and the realization in the field. The injection and production profiles of this pilot are presented. CO{sub 2} improved the inflow capacity of the injector, but the oil rates of the effected wells increased only slightly. In order to match the actual response of the reservoir, we had to adjust our reservoir model. Meanwhile N{sub 2} was injected as a tracer in one of the wells, to find out the preferred communication paths, before we proceeded with further gas injection. (orig.)

  20. Rosneftegazstroy - Russia's premier oil and gas contractor

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This special Petroleum Economist Sponsored Supplement looks at the present condition and future prospects of the Russian oil and gas industry. Russia's chief oil and gas contractor, Rosneftegazstroy, a joint stock company formed in 1991, took over from the former Soviet Union's Ministry of Oil and Gas Construction and from Neftegazstroy, the State concern. Responsible for the exploration and exploitation of the country's huge oil and gas reserves, Rosneftegazstroy has a mammoth task ahead to modernize and create an adequate infrastructure for its new commercial basis. Its foreign investment projects are described and plans for rebuilding and new developments are discussed. Russia's fuel and energy industries now show clear signs of increasing activity, amid a backdrop of falling production overall. (UK)

  1. Proceedings of the Ontario Petroleum Institute's 48. annual conference : Ontario oil, gas and storage conference

    International Nuclear Information System (INIS)

    2009-01-01

    This conference discussed issues related to Ontario's petroleum industry and evaluated the province's potential hydrocarbon plays. Geological studies of interest to oil and gas operators were presented along with storage opportunities for hydrocarbons in underground formations. Regulatory issues related to the environmental impacts of oil and gas operations on soil and groundwater were reviewed, and various mitigation options for treating soils impacted by hydrocarbons were discussed. New technologies currently being used in Ontario's petroleum industry were presented together with various investment and exploration opportunities. An economic update of recent oil and gas activities in the region was also presented. The conference was divided into 7 sessions, and featured 17 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs.

  2. Beyond the crude oil and gas reserves

    International Nuclear Information System (INIS)

    Sote, K.

    1993-01-01

    Petroleum remains the greatest jewel of inestimable value in both the local and international treasure hunts for cheap energy source and viable investment options the world over. The diverse business potentials and favourable government policies in Nigeria aimed specifically at stimulating investments in the up streams, midstream and downstream industries need to be tapped by both indigenous and foreign investors alike. Beyond the crude oil and gas reserves' is therefore our modest effort to support such policies, sensitise the Nigerian petroleum industry and promote more dynamic awareness for the varied business opportunities abound in this sector of the economy. The main objective or this publication is to bring to a wider audience within and outside the oil industry a spectrum of such salient opportunities therein. The publication further presents in a lucid and consize form the hidden potentials yet to be harnessed, captures the essence of such investments, identifies the inherent problems in Nigeria peculiar circumstance and thus provides a detailed guide to address such short-coming, viz. Inadequate and poor knowledge of petroleum industry, its operation, by products and their correct applications. - Lack of understanding of the intricacies, realities and technicalities of petroleum business in general. - Poor financial resources, management style, operational and marketing strategies man power and human resources development.- Dirge of information, lack of professional advice and technical service support on the varied business opportunities for diversification. Apathy on the part of the investors themselves to seek for professional support from competent oil consultants, technocrats, institutionalised authorities on petroleum and related matters, amongst others. In summary, the book is divided into ten chapters with illustrations, graphics, drawings, sketches and incorporating figures, statistics, business reports, marketing results, feasibility studies

  3. A Chronology of Attacks on and Unlawful Interferences with, Offshore Oil and Gas Installations, 1975 – 2010

    Directory of Open Access Journals (Sweden)

    Mikhail Kashubsky

    2011-12-01

    Full Text Available Throughout its history, the oil and gas industry has been a subject of environmental protests, labour disputes, tensions with local communities, and it has also been a target of various violent activities ranging from vandalism to political violence, which have impinged on the security of oil industry workers and interfered with operational activities of oil companies on numerous occasions. Although a considerable number of attacks on oil and gas infrastructure occurred over the course of the industry’s existence, most of those attacks were directed against onshore petroleum targets. Compared to onshore petroleum infrastructure, attacks on offshore oil and gas installations are relatively rare. The following chronology provides details of attacks, unlawful interferences, and security incidents involving offshore oil and gas installations that happened between 1975 and 2010. 

  4. Oil and gas-fuelled high-efficiency boilers still going strong; Oel und Gas - Brennwert setzt sich weiter durch

    Energy Technology Data Exchange (ETDEWEB)

    Donnerbauer, R.

    2007-07-15

    High-efficiency boilers are going strong. They are generally used in gas boilers and are now conquering the gas boiler field as well. Producers are advertising their high energy efficiency, as was reflected at the ISH 2007. Further, the option of bio-natural gas and bio-oil provides an image of high sustainability. (orig.)

  5. Development of a ROV Deployed Video Analysis Tool for Rapid Measurement of Submerged Oil/Gas Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Savas, Omer [Univ. of California, Berkeley, CA (United States)

    2017-04-03

    Expanded deep sea drilling around the globe makes it necessary to have readily available tools to quickly and accurately measure discharge rates from accidental submerged oil/gas leak jets for the first responders to deploy adequate resources for containment. We have developed and tested a field deployable video analysis software package which is able to provide in the field sufficiently accurate flow rate estimates for initial responders in accidental oil discharges in submarine operations. The essence of our approach is based on tracking coherent features at the interface in the near field of immiscible turbulent jets. The software package, UCB_Plume, is ready to be used by the first responders for field implementation. We have tested the tool on submerged water and oil jets which are made visible using fluorescent dyes. We have been able to estimate the discharge rate within 20% accuracy. A high end WINDOWS laptop computer is suggested as the operating platform and a USB connected high speed, high resolution monochrome camera as the imaging device are sufficient for acquiring flow images under continuous unidirectional illumination and running the software in the field. Results are obtained over a matter of minutes.

  6. On general principles of supplying safe operation of sea objects of Russian Federation oil and gas complex in ice conditions

    Directory of Open Access Journals (Sweden)

    Kukui Firmin Jeevo

    2016-12-01

    Full Text Available Ice sheet exerts a force on the hydraulic structures and vessels with developing and transporting hydrocarbons in the offshore waters of the Arctic causing to strengthen their design and/or provide additional measures against ice loads. The risk of ice impacts on objects of offshore oil and gas fields of the Arctic region determines the existence of the problem of ensuring the sustainability of these objects in terms of iceberg danger and ice formations. Reducing these risks involves the development of organizational and technical measures for improving the sustainability of the facilities in terms of iceberg danger through the use of international experience and development of advanced technologies to prevent dangerous effects of ice formations. Based on the fact that ice management is a specific activity that requires special effort and funds which as part of the rescue security (RS forces at sea are missing, as well as on the basis of the fact that the system of RS at sea is not assigned to prevent accidents and to ensure the smooth operation of offshore facilities, an ice management is seen as an independent kind of ensuring the proper functioning objects of hydrocarbons production and marine transportation. The paper considers the analysis and synthesis of domestic and foreign experience of ice and iceberg management. A system of security measures for functioning marine oil and gas facilities in icy conditions on the basis of technology of preventing dangerous effects of ice formations has been worked out. It has been shown that the system of ice and iceberg management of marine objects of hydrocarbon production and marine transportation should be a practical mechanism for reducing deposits' operation risks in ice conditions. The work relates to the safe operation of mining platforms in the Arctic seas, and more particularly, to methods and means of influence on the icebergs in order to prevent collisions with fixed or floating production

  7. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    Science.gov (United States)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  8. Innovative options for structuring oil and gas leases and exploration permits on Aboriginal lands

    International Nuclear Information System (INIS)

    Douglas, W.; Wells, M.

    1999-01-01

    Operations in the oil and gas industry that involve exploration and production on Aboriginal lands are definitely more complex than operations on provincial Crown lands and there is clearly a need to meet different objectives. There are many good reasons for a petroleum exploration company to make a risk investment on First Nation lands, and the governing legislation permits considerable latitude in the terms of exploration permits and production leases. Indian Oil and Gas Canada will have to approve any agreement negotiated with a First Nation, so they must be made part of the deal-making process. It is important to recognize the responsibility a company has as a partner of a First Nation to help them achieve the maximum benefits from this non-renewable resource. Aspects considered include: the participants and their needs; terms and conditions in oil and gas leases; innovative compensation models; marketing the royalty share; equity participation, and managing exploration and development risk

  9. The oil field chemists role during field abandonment

    Energy Technology Data Exchange (ETDEWEB)

    Read, P.A.; Alfsnes, K.

    1996-12-31

    During the next ten years an increasing number of redundant oil and gas production facilities are scheduled for decommissioning on the Norwegian continental shelf. The oil field chemists role in this connection is discussed. Many of the facilities are large combined drilling and production platforms, others no more than field control centres. Their construction materials and methods are very varied, ranging from steel jackets to concrete gravity structures. Many sub sea templates and flow lines will be targeted for removal. An initial review of a simple production platform has revealed the presence of almost 800 chemical substances. The environmental fate of the materials is needed for estimating the best possible environmental option for the disposal of installations and their contents

  10. The impact of the UK 1993 budget proposals on oil and gas in the UKCS

    International Nuclear Information System (INIS)

    Kemp, A.G.; Rose, David; Hoevring, Mary; Reading, David

    1993-01-01

    The key features of the 1993 United Kingdom budget proposals for the reform of petroleum taxation as they relate to the upstream oil and gas industry are summarized. These fairly radical proposals will have far reaching effects. They are examined in terms of their impact on the following activities: ongoing production from existing producing fields; incremental investments in mature oil fields; development of existing discoveries; exploration, appraisal and development of new discoveries; development of new fields involving third-party tariffing; incremental investments and new contracts in mature gas fields; investment climate and confidence. (35 figures). (UK)

  11. Oil/gas collector/separator for underwater oil leaks

    International Nuclear Information System (INIS)

    Henning, C.D.

    1993-01-01

    An oil/gas collector/separator for underwater oil leaks is described comprising: a cylindrical tank; a hollow float member for supporting said tank in a substantially upright position; a skirt assembly secured to said hollow float member and extending in a direction away from said float member opposite said tank; means for removing oil from said tank; and means for removing gas from said tank

  12. Future Oil and Gas Resources of the World: A Coming Supply Crisis?

    Science.gov (United States)

    Ahlbrandt, T. S.

    2002-05-01

    Is the world running out of oil? Where will future oil and gas supplies come from? To help answer these questions, the U.S. Geological Survey completed in 2000 a new assessment of the undiscovered conventional oil and gas resources and potential additions to reserves from field growth. One hundred and twenty-eight provinces were assessed in a 100 man-year effort from 1995-2000. The assessed provinces included 76 priority provinces containing 95 percent of the world's discovered oil and gas and an additional 52 "boutique" provinces, many of which may be highly prospective. Total Petroleum Systems (TPS) were identified and described for each of these provinces along with associated Assessment Units (AU) that are the basic units for assessing undiscovered petroleum. The assessment process coupled geologic analysis with a probabilistic methodology to estimate remaining potential. Within the 128 assessed provinces, were 159 TPS and 274 AU. For these provinces, the endowment of recoverable oil, which includes cumulative production, remaining reserves, reserve growth, and undiscovered resources is estimated at about 3 trillion barrels of oil (TBO). The natural gas endowment is estimated at 2.6 trillion barrels of oil equivalent (TBOE). Oil reserves are currently 1.1 TBO; world consumption is about .028 TBO per year. Natural gas reserves are about .8 TBOE; world consumption is about .014 TBOE. Thus, without any additional discoveries of oil, gas or natural gas liquids, we have about 2 TBOE of proved petroleum reserves. Of the oil and gas endowment of about 5.6 TBOE, we estimate that the world has consumed about 1 TBOE, or 18 percent leaving about 82 percent of endowment to be utilized or found. Half of the world's undiscovered potential is offshore. Arctic basins with about 25 percent of undiscovered petroleum resources make up the next great frontier. An additional 279 provinces contain some oil and gas and, if considered, would increase the oil and gas endowment

  13. Human and Organisational Safety Barriers in the Oil & Gas Industry

    International Nuclear Information System (INIS)

    Nystad, E.; Szőke, I.

    2016-01-01

    The oil & gas industry is a safety-critical industry where errors or accidents may potentially have severe consequences. Offshore oil & gas installations are complex technical systems constructed to pump hydrocarbons from below the seabed, process them and pipe them to onshore refineries. Hydrocarbon leaks may lead to major accidents or have negative environmental impacts. The industry must therefore have a strong focus on safety. Safety barriers are devices put into place to prevent or reduce the effects of unwanted incidents. Technical barriers are one type of safety barrier, e.g., blow-out preventers to prevent uncontrolled release of hydrocarbons from a well. Human operators may also have an important function in maintaining safety. These human operators are part of a larger organisation consisting of different roles and responsibilities and with different mechanisms for ensuring safety. This paper will present two research projects from the Norwegian oil & gas industry that look at the role of humans and organisations as safety barriers. The first project used questionnaire data to investigate the use of mindful safety practices (safety-promoting work practices intended to prevent or interrupt unwanted events) and what contextual factors may affect employees’ willingness to use these safety practices. Among the findings was that employees’ willingness to use mindful safety practices was affected more by factors on a group level than factors at an individual or organisational level, and that the factors may differ depending on what is the object of a practice—the employee or other persons. It was also suggested that employees’ willingness to use mindful safety practices could be an indicator used in the assessment of the safety level on oil & gas installations. The second project is related to organisational safety barriers against major accidents. This project was based on a review of recent incidents in the Norwegian oil & gas industry, as well as

  14. The oil and gas industry and the Canadian economy: a backgrounder

    International Nuclear Information System (INIS)

    Curran, R.

    2000-02-01

    The impact of the oil and natural gas industry on the Canadian economy is explained in terms of employment, balance of trade, products, government revenues, international technology trade and industry support to the community. It is reported that the industry employs almost one half million people in Canada; is the second largest contributor to Canada's balance of trade; generate billions of dollars for the economy and pays hundreds of millions of dollars in taxes and its employees contribute millions of dollars and thousands of hours of time to charitable and community organizations. The industry is also one of the major contributors to Canada's technology export through its leadership in high technology exploration methods, cold climate and offshore operations, enhanced recovery technologies, producing and processing heavy oil; mining and upgrading oil sands bitumen, oil-well firefighting techniques and environmental protection technologies, among others. Citing Canada's cold climate and energy-intensive industries, hence the need for large quantities of energy, the booklet offers a rationale for the industry's need to continue to be profitable in order to develop new sources of oil and gas production and invest in energy-efficient technologies. Assuming continued profitability, combined with more efficient use of oil and gas, the Foundation remains confident that the industry will provide energy security and export revenues for the benefit of all Canadians. 12 refs., photos

  15. Future of oil and gas

    International Nuclear Information System (INIS)

    Gatermann, R.; Ten Hoedt, R.

    2009-01-01

    Two articles in the section 'Future of oil and gas': one ('Baltic strained by oil traffic') on the growing risks of accidents in maritime traffic in the Baltic region, and one ('Angola wants bigger piece of the pie') on the importance of the oil production in Angola to energy supplies in Europe and the USA. It appears that national oil company Sonango wants to have a greater part of the profits

  16. Impact of solution gas on SAGD performance

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan K. [Marathon Oil Corporation (United States)

    2011-07-01

    In the Athabasca region of Canada, steam assisted gravity drainage (SAGD) is used as a means to enhance oil recovery in the highly viscous oil reservoirs. During steam injection, the solution gas evolves from oil phase as a non-condensable gas. Researchers assessed through simulations that non-condensable gas has a significant negative effect on SAGD performance although field operations might show a less severe effect. This research aimed at finding the reason for the difference between simulation and field results. Simulations were conducted in homogeneous and heterogeneous models with properties from a typical Athabasca reservoir. Results showed that the solubility of gas in the liquids has to be correctly taken into account, otherwise simulation models will overestimate the gas accumulation. This paper looked into the behavior of methane gas in simulation and field operations and highlighted the reasons for the discrepancies between their results.

  17. Technology keeps ice away from offshore oil and gas installations

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2003-05-01

    Ice management services provided to oil and natural gas operators off Canada's North Atlantic coast by Provincial Airlines is described. Provincial Airlines performs iceberg reconnaissance for both the offshore oil and natural gas operators as well as for the Canadian Ice Centre, using its specially equipped B-200 aircraft. The special equipment includes a complete electronic sensor package with 360-degree anti-submarine warfare radar, a thermal imaging system, high powered gyro-stabilized TV camera system, and a computerized data collection and management system. The Ice Data Network System (IDNS) is a fifth generation computer software package designed to monitor ice, provide drift analysis and forecast future trajectories, assess potential threats or risks associated with each piece of ice, and monitor and evaluate towing operations if required. The IDNS is backed up by a fully staffed ice operations centre from which Provincial Airline ice specialists can access satellite data and reports on ice conditions from around the world. Using a process of data fusion and careful analysis, staff of the Ice Centre can produce near-real time reports that depict ice conditions specific to individual operational requirements. Since drilling platforms cannot move, or require a great deal of time to move, to avoid any risk of an iceberg colliding with an oil platform it is important to know where exactly an iceberg is at any given time, hence the enormous importance of iceberg location information.

  18. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  19. Formation of the oil and gas lease

    International Nuclear Information System (INIS)

    Gillespie, E.M.; Piercy, J.R.

    1998-01-01

    The legal nature of an oil and gas lease was described and the challenges associated with working with the freehold oil and gas lease were discussed. This paper also reviewed the formalities of execution under seal, issues relating to capacity of the executing party, ability of an executor of an estate to grant the lease, and homestead rights. Precautions that should be taken to ensure that oil and gas lease documents are properly executed so as not to void a lease are also discussed. 46 refs

  20. Knowledge Based Oil and Gas Industry

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Amir; Blomgren, Atle

    2011-07-01

    This study presents the Norwegian upstream oil and gas industry (defined as all oil and gas related firms located in Norway, regardless of ownership) and evaluates the industry according to the underlying dimensions of a global knowledge hub - cluster attractiveness, education attractiveness, talent attractiveness, RandD and innovation attractiveness, ownership attractiveness, environmental attractiveness and cluster dynamics.(au)

  1. 2008 annual site restoration report of the BC Oil and Gas Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    Oil and gas operators in British Columbia are responsible for all issues related to the surface reclamation of a site, including the management of contaminated sites. They require a certificate of restoration (CoR) for lands no longer required in the extraction of hydrocarbons. The CoR program ensures that the land used for oil and development is restored to a safe and productive state. The restoration process promotes the timely recovery of wellsite and facility locations and helps in managing environmental impacts. The BC Oil and Gas Commission oversees the restoration process by oil and gas operators through the application of regulations, compliance and enforcement. The Commission balances a broad range of environmental, economic and social considerations. Among its specific objectives are public safety, conservation of petroleum resources, promoting a healthy environment, and equitable participation in production. This report included a review of performance measures that have been developed to evaluate restoration programs, including well plugging. Site reclamation requirements for lands within the Agricultural Land Reserve (ALR) were also described along with orphan site reclamation activities. A CoR is issued after a permit holder demonstrates that the remediation criteria have been met. There are currently 3,814 sites that have received a CoR in the province. refs., tabs., figs.

  2. Integrated Risk Management as a Factor of Competitiveness Increase of Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Darya Nikolaevna Shabanova

    2016-06-01

    Full Text Available The article is dedicated to risk assessment and analysis (RAA in oil and gas industry. The article reviews current trends of risks’ assessment and management in oil and gas industry in relation to the activities of enterprises engaged in engineering design in the field of oil and gas processing considering the requirements of international standards (ISO. The classification of risks is provided with consideration of peculiar features of enterprises of Mineral Resources Sector. The authors present a review of major international and national standards, specifying the activities in risk management. It is shown that one of the modern trends of international standardization is a development of risk management and management of sustainable business based on the risk oriented approach. The authors have proposed the algorithm of risk management in oil and gas projects using the domestic software Business Studio, logically divided into following three stages: identification and assessment of project risks, development of risks mitigation measures and monitoring of project risks. The main indicators of the oil and gas complex of Russia (the volume of oil and gas, the primary oil refining, are the main risk factors for the oil and gas industry. The peculiarities of risk management are described in the form of an economic category. The article shows that risk can and should be controlled, in other words, certain measures should be applied to anticipate as many as possible the risk events and to reduce them.

  3. Oil and gas -94

    International Nuclear Information System (INIS)

    Bauer, A.

    1994-06-01

    This report deals with the use of oil-, natural gas and liquefied petroleum gas (LPG) during 1993. Information about markets and technical environmental questions are also given. Data have been collected from earlier reports, information given by different persons and statistics from SCB and SPI. The import of crude oil increased from 16,8 million tons in 1992 to 17,8 million tons in 1993. The import of oil products decreased by 0,9 million tons down to 6,7 million tons in the same period. During this period, the import of natural gas increased by 9%, a total of 817 million cubic meters. The import of LPG was 748000 tons in 1993, which is 61000 tons less compared to the import of 1992. The production in Sweden for 1993 was 290000 tons, the same level as the level reached in 1992. The export of LPG increased from 107000 tons to 138000 tons during this period. In January 1993, legislative changes were made concerning energy taxes and carbon dioxide penalty taxes. The rate of the latter was increased from 25 to 32 oere per kilogram of carbon dioxide released in the atmosphere. For industry and greenhouse production, the penalty rate is only 25% or 8 oere per kilogram of carbon dioxide. From 1995 to 1998, yearly increases in the rate of energy taxes and carbon dioxide penalty taxes will be based on the consumer price index. Taxes will be increased by 4% in 1994. Due to changes in energy taxes, the consumption of LPG decreased in 1993. Earlier, many industries had changed from oil to LPG but now have changed back to oil. 8 figs, 17 tabs

  4. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations.

    Science.gov (United States)

    Warner, N R; Darrah, T H; Jackson, R B; Millot, R; Kloppmann, W; Vengosh, A

    2014-11-04

    Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.

  5. Hydroprocesssing of light gas oil - rape oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Walendziewski, Jerzy; Stolarski, Marek; Luzny, Rafal; Klimek, Bartlomiej [Faculty of Chemistry, Wroclaw University of Technology, ul. Gdanska 7/9, 50-310 Wroclaw (Poland)

    2009-05-15

    Two series of experiments of hydroprocessing of light gas oil - rape oil mixtures were carried out. The reactor feed was composed of raw material: first series - 10 wt.% rape oil and 90 wt.% of diesel oil; second series - 20 wt.% rape oil and 80 wt.% of diesel oil. Hydroprocessing of both mixtures was performed with the same parameter sets, temperature (320, 350 and 380 C), hydrogen pressure 3 and 5 MPa, LHSV = 2 h{sup -} {sup 1} and hydrogen feed ratio of 500 Nm{sup 3}/m{sup 3}. It was stated that within limited range it is possible to control vegetable oil hydrogenolysis in the presence of light gas oil fraction (diesel oil boiling range) through the proper selection of the process parameters. Hydrogenolysis of ester bonds and hydrogenation of olefinic bonds in vegetable oils are the main reactions in the process. Basic physicochemical properties of the obtained hydroprocessed products are presented. (author)

  6. Thermodynamic analysis of an upstream petroleum plant operated on a mature field

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tuong-Van [Section of Thermal Energy, Department of Mechanical Engineering, Technical University of Denmark, Building 403, Nils Koppels Allé, 2800 Kongens Lyngby (Denmark); Jacyno, Tomasz [Faculty of Mechanical and Power Engineering, Wrocław University of Technology, Building A-1, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Breuhaus, Peter [Department of Energy, International Research Institute of Stavanger, Professor Olav Hanssens vei 15, 4021 Stavanger (Norway); Voldsund, Mari [Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim (Norway); Elmegaard, Brian [Section of Thermal Energy, Department of Mechanical Engineering, Technical University of Denmark, Building 403, Nils Koppels Allé, 2800 Kongens Lyngby (Denmark)

    2014-04-01

    Oil and gas processing on offshore platforms operates under changing boundary conditions over a field lifespan, as the hydrocarbon production declines and the water extraction increases. In this paper, the processing plant of the Draugen platform is evaluated by performing an energy and exergy analysis. This facility exploits an end-life oilfield and runs at conditions deviating significantly from its optimal operating specifications. Two different operating modes were assessed, and process models were developed using the simulation tools Aspen Plus{sup ®} and Aspen HYSYS{sup ®}, based on measured and reconciliated process data. The total energy demand is moderately sensitive to daily and monthly variations: it ranges between 22 and 30 MW, of which 18–26 MW and about 3–4 MW are in electrical and thermal energy forms. The greatest exergy destruction takes place in the gas treatment (51%), recompression (12%) and production manifold (10%) modules. The separation work performed on this platform is greater than in similar facilities because of higher propane and water fractions of the well-streams. These findings emphasise the differences between peak and end-life productions: they suggest (i) to set focus on processes including gas expansion and compression, (ii) to investigate possibilities for an improved energy integration, and (iii) to consider and evaluate alternative system designs. - Highlights: • The thermodynamic performance of an upstream oil and gas processing plant is assessed. • Energy and exergy analyses are performed, and the plant inefficiencies are depicted. • The effects of end-life field conditions are evaluated.

  7. Thermodynamic analysis of an upstream petroleum plant operated on a mature field

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Jacyno, Tomasz; Breuhaus, Peter; Voldsund, Mari; Elmegaard, Brian

    2014-01-01

    Oil and gas processing on offshore platforms operates under changing boundary conditions over a field lifespan, as the hydrocarbon production declines and the water extraction increases. In this paper, the processing plant of the Draugen platform is evaluated by performing an energy and exergy analysis. This facility exploits an end-life oilfield and runs at conditions deviating significantly from its optimal operating specifications. Two different operating modes were assessed, and process models were developed using the simulation tools Aspen Plus ® and Aspen HYSYS ® , based on measured and reconciliated process data. The total energy demand is moderately sensitive to daily and monthly variations: it ranges between 22 and 30 MW, of which 18–26 MW and about 3–4 MW are in electrical and thermal energy forms. The greatest exergy destruction takes place in the gas treatment (51%), recompression (12%) and production manifold (10%) modules. The separation work performed on this platform is greater than in similar facilities because of higher propane and water fractions of the well-streams. These findings emphasise the differences between peak and end-life productions: they suggest (i) to set focus on processes including gas expansion and compression, (ii) to investigate possibilities for an improved energy integration, and (iii) to consider and evaluate alternative system designs. - Highlights: • The thermodynamic performance of an upstream oil and gas processing plant is assessed. • Energy and exergy analyses are performed, and the plant inefficiencies are depicted. • The effects of end-life field conditions are evaluated

  8. An Investigation of Hayes and Wheelwright’s Practices: Empirical Evidence from The Indonesia’s Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Wakhid Slamet Ciptono

    2009-05-01

    Full Text Available The research extracts sixty seven Hayes and Wheelwright’s practices from the Hayes and Wheel-wright’s six principles. These items formed the basis of a questionnaire sent to over 2800 managers at the SBUs level in the Indonesia’s oil and gas companies. The empirical result indicates that All Hayes and Wheelwright’s six principles collectively have positive impact on an overall construct that may be termed world-class company (WCC. Result also points out that Hayes and Wheelwright’s six principles can be reduced into four meaningful factors of world-class company—as operations strategies—for the Indonesia’s oil and gas industry— Workforce skills and capabilities, Management technical competence, Competing through quality, and Workforce participation. These meaningful factors of WCC were shown to be reliable and valid, and offer new insights into the understanding of operations strategy implementation in an oil and gas industry.Based on the oil and gas managers (the SBU level, operations strategies (four meaningful factors of WCC can be viewed as the effective use of production and operations capability and technology for achieving business and corporate goals. Operations strategy, therefore, is to help a company’s operations organization define the common ground where it can play a proactive and collaborative role with other company functions or cross-functional relationships (Hayes et al., 1996.  Oil and gas managers in Indonesia can use these meaningful factors in concert with other critical qual-ity management practices to help them in there word-class company initiatives. Researchers can also use these factors to build structural model linking such factors to various organizational performance measures (i.e., Critical Success Factors of TQM, Operational Excellence, Six Sigma Quality Management, and Good Corporate Governance.Keywords: Hayes and wheelwright’s six principles, Hayes and Wheelwright practices, World

  9. Visual Workflows for Oil and Gas Exploration

    KAUST Repository

    Hollt, Thomas

    2013-04-14

    The most important resources to fulfill today’s energy demands are fossil fuels, such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures to plan the path of the borehole, is crucial in order to minimize economic and ecological risks. Before that, the placement, as well as the operations of oil rigs need to be planned carefully, as off-shore oil exploration is vulnerable to hazards caused by strong currents. The oil and gas industry therefore relies on accurate ocean forecasting systems for planning their operations. This thesis presents visual workflows for creating subsurface models as well as planning the placement and operations of off-shore structures. Creating a credible subsurface model poses two major challenges: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second, a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and forth between the different steps, or in an unphysical velocity model in many cases. We present a novel, integrated approach to interactively creating subsurface models from reflection seismics, by integrating the interpretation of the seismic data using an interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the effects of changes to the interpretation and velocity model on the depth-converted model, on the fly enables an integrated feedback loop that enables a completely new connection of the seismic data in time domain, and well data in depth domain. For planning the operations of off-shore structures we present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations used in ocean

  10. Corrosion Challenges for the Oil and Gas Industry in the State of Qatar

    Science.gov (United States)

    Johnsen, Roy

    In Qatar oil and gas has been produced from onshore fields in more than 70 years, while the first offshore field delivered its first crude oil in 1965. Due to the atmospheric conditions in Qatar with periodically high humidity, high chloride content, dust/sand combined with the temperature variations, external corrosion is a big treat to the installations and connecting infrastructure. Internal corrosion in tubing, piping and process systems is also a challenge due to high H2S content in the hydrocarbon mixture and exposure to corrosive aquifer water. To avoid corrosion different type of mitigations like application of coating, chemical treatment and material selection are important elements. This presentation will review the experiences with corrosion challenges for oil & gas installations in Qatar including some examples of corrosion failures that have been seen.

  11. Diversification of Oil and Gas Companies’ Activities in the Condition of Oil Prices Reduction and Economic Sanctions

    Directory of Open Access Journals (Sweden)

    Anastasia V. Sheveleva

    2016-01-01

    Full Text Available This article analyzes the influence of the economic sanctions imposed from the USA and the EU and oil prices reduction on the oil and gas companies and the directions of diversification of their activity as a method of management of price risks are considered. In the modern dynamic and quickly developing world, in the conditions of globalization and market economy, the oil and gas companies are affected by various risks which can exert negative impact on production and financial results. Risks can arise in absolutely various spheres, beginning from natural and technological hazards, and finishing with price risks. Sharp reduction of oil prices and decrease in demand for energy resources in the world markets, first of all in the European countries, input of financial or technological sanctions from the USA and Europe against Russia in 2014 has caused necessity of search a new more effective methods of price risks management of the oil and gas company. The methods of price risk management include the creation of commodity reserves, the establishment of a reserve fund, long-term contracts, subsidies from the state and the diversification of activities. The most effective it is possible to offer diversification of oil and gas companies' activity. It is expedient to carry out diversification of oil and gas companies' activity in such directions as geographical diversification of the oil, oil products and gas realization directions, geographical diversification of oil and gas companies' purchasing activity, diversification of oil, oil products and gas transportation ways, diversification of oil and gas companies' business. This approach allows to expand the activities of the oil and gas companies and create additional ways to generate revenue and enhance efficiency of oil and gas companies.

  12. Identification of the causes of risks under the conditions of innovative development of oil and gas companies

    Directory of Open Access Journals (Sweden)

    Khvostina I. M.

    2015-05-01

    Full Text Available The market environment, in which oil and gas companies operate, is characterized by elements of uncertainty and is accompanied by risks of entrepreneurship and production. Insufficient attention to the issues of risk management in the conditions of innovative development of enterprises leads to an inadequate response of oil and gas companies on the risks and threats that arise in the current economic environment, and, as a consequence, the adoption of unjustified managerial decisions. All this contributes to the significant threats in the activity of enterprises, limited mobility and loss of potential opportunities. The article defines the modern state oil and gas complex of Ukraine. The main problems of enterprises operating in this industry are considered. The causes of risks influencing the innovative activity of enterprises of oil and gas complex, the necessity of building an integrated risk management system are investigated.

  13. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  14. ) The Digital Oil and Gas Enterprise

    International Nuclear Information System (INIS)

    Cox, H.

    2003-01-01

    The E and P industry faces mounting pressures to meet the expected demand for energy, reduce costs increase recovery rates and maximize asset value. Stockholders and the investment community are demanding higher returns from an industry that has traditionally lagged the financial performance and business pace of other commercial sectors. Value generated from efficiency and productivity gains at the reservoir level over the past decade has been captured and translated into sufficiently improved financial results. In response, the industry is rapidly transforming itself to an information centered economy, the i Economy, where information technology (IT) is leveraged to conduct business without borders, to streamline operations, markets. This is not an incremental adjustment. It represents a quantum shift in the way business is conducted. Business, at all levels within the oil field marketplace, is changing.This paper will describe how oil gas companies can achieve this step improvement in their business results and an enhanced profile in the financial sector. To do this they must combine their specific energy industry knowledge and market position with innovative technologies, flexible infrastructures and will be discussed in this paper and that E and P companies are already implementing are: Installation of best-in-class, integrated software tools, developed according to industry-wide open standards, - decentralized and highly connected expert service organization, - Global and secure connectivity via intra- and internets, enabling the implementation of collaborative practices, - ore effective data capture and transmission systems, - advanced skills development programs for human resources

  15. Charting the new world order: proceedings of the 15. CERI international oil and gas markets conference

    International Nuclear Information System (INIS)

    1996-10-01

    The 15th International Oil and Gas Markets Conference, organized by the Canadian Energy Research Institute (CERI) and held in Calgary, AB, provided a wide variety of opportunities for discussion of the global oil and gas market outlook, international oil and gas market strategies and corporate planning in the new world order, competition for investments, the re-emergence of the geopolitics of energy, energy in the Americas, international gas market strategies, and the financing of Canadian international operations. More than 100 delegates from around the world attended the conference to hear some 20 presentations. refs., tabs., figs

  16. Risk assessment and safety regulations in offshore oil and gas ...

    African Journals Online (AJOL)

    Risk management of which risk assessment is part, and safety regulations are common in the offshore oil and gas industry management system. The process of conducting risk assessment is mostly a challenge for operational personnel assigned to perform this function. The most significant problem is the decision to use ...

  17. How much due diligence is enough? (in oil and gas property transactions)

    International Nuclear Information System (INIS)

    Edie, D.C.

    1999-01-01

    The issue of due diligence for oil and gas property transactions was discussed, with particular emphasis on how to find an appropriate balance between cost and protection (risk aversion) within an available time period. The paper focused primarily on oil and gas reserves transactions comprised of petroleum and natural gas rights, leases, operating and title documents, tangibles and the regulatory authorizations needed to acquire, hold and operate these assets. Various concerns related to gas processing plants and pipeline facilities were also treated. Issues of due diligence that should always be raised were emphasized. These are: (1) acceptability of the purchaser to the Alberta Energy and Utilities Board or other regulators as an operator for the purposes of transfer of well and facility licenses, (2) assessment of the purchaser's financial status for environmental liabilities relating to the assets following closing, (3) in an asset swap, property due diligence will be the same for both parties, and (4) where the assets are sold in exchange for stock, the purchaser should at least address concerns about the purchaser's liquidity, the purchaser's underlying asset value, and necessary regulatory authorizations to issue the stock. 10 refs

  18. Medium-Term Oil and Gas Markets 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-16

    Oil and gas markets have been marked by an increased divergence in recent months. On the one hand, oil market developments have generated an unpleasant sense of deja vu: rapid demand growth in emerging markets eclipsed sluggish supply growth to push prices higher even before the conflict in Libya tightened supplies still further. Oil prices around $100/bbl are weighing down on an already-fragile macroeconomic and financial situation in the OECD, pressuring national budgets in the non-OECD and causing price inflation of other commodities, as well as political concerns about speculation. There is an uncanny resemblance to the first half of 2008. On the other hand, in the world of natural gas an amazing disconnect has developed as demand recovered to well above pre-financial-crisis levels in most major regions. Gas markets have tightened in Europe and Asia, where prices are about twice the level seen in the United States, as the unconventional gas revolution is in full swing. From the upstream implications of the Arab Spring to the macroeconomic consequences of the eurozone crisis, energy markets are experiencing one of the most uncertain periods in decades. This publication provides a comprehensive outlook for oil and gas fundamentals through 2016. The oil market analysis covers demand developments on a product-by-product and key-sector basis, as well as a detailed bottom-up assessment of upstream and refinery investments, trade flows, oil products supply and OPEC spare capacity. The gas market analysis offers a region-by-region assessment of demand and production, infrastructure investment, price developments and prospects for unconventional gas. It also examines the globalising LNG trade.

  19. Financial Times oil and gas international year book 1994

    International Nuclear Information System (INIS)

    Williams, Julian

    1993-01-01

    The greater part of this book aims to provide narrative, production and financial details of major oil and gas companies, both upstream and downstream, across the world. Smaller sections give details on major oil and gas brokers and traders, and on the principal oil and gas associations. These sections are arranged alphabetically by company name. A geographical index towards the end of the book enables the user to identify upstream companies exploring for or producing oil and gas in particular areas. The company index includes every company mentioned in the book and includes all subsidiary and related companies to the major companies. Four introductory tables give data on world petroleum production, oil refining, tanker tonnage and oil consumption. (Author)

  20. Oil and gas projects in Amazon: an environmental challenge; Projetos de petroleo e gas na Amazonia: um desafio ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Taam, Mauricio [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Cabral, Nelson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Regional Norte SMS ; Cardoso, Vanderlei [TRANSPETRO, Rio de Janeiro, RJ (Brazil). Gerencia de Seguranca, Meio Ambiente e Saude

    2004-07-01

    In the heart of the Amazon forest, some 600 km from the city of Manaus, the Brazilian Oil Company - PETROBRAS - is developing the 'URUCU PROJECT'. Consisting on 3 oil and gas production fields and 3 natural gas processing plant, 2 huge pipelines crossing the dense Amazon forest and its rivers and going towards COARI - the Fluvial Terminal of Solimoes river. Then, vessels and ferries, loads LGN to the north region and oil to feed the Manaus refinery plant. In a near future natural gas pipelines will connect COARI to Manaus and URUCU to Porto Velho. The whole project will allow energy supply to the less developed and isolated region of Brazil, and brings relief for the local population, but represents one of the biggest challenges for the oil and gas industry in terms of environmental sustainability for projects in very sensitive areas. The paper concludes that it is viable to face such a challenges counting on an Environmental Management System tailored to fit the region peculiarities, including a high level of Preparedness and Response for oil incidents, and last but never least assuming a respectful attitude towards the Amazon and its people. (author)

  1. Natural gas and crude oil

    International Nuclear Information System (INIS)

    Valais, M.R.

    1991-01-01

    Two main development could gradually modify these traditional features of natural gas markets and prices. First, environmental pressures and the tightening of emission standards and of the quality specifications for fuels should work in favor of natural gas. Second the increasing distance of resources in relation to the major consuming zones should bring about a considerable development of international natural gas trade. International expansion should mark the development of the gas industry in the coming decades. This evolution will give natural gas an importance and a role appreciably closer to those of oil on the world energy scene. But it is obvious that such a development can come about only at the cost of considerable investments for which the economic viability is and will remain dependent on the level of the prices of natural gas as the inlet to its consuming markets. This paper attempts to answer the questions: Will these markets accept a new scale of value for gas in relation to other fossil fuels, including oil, which will take into account new environmental constraints and which will be able to fulfill the formidable financial needs of the gas industry in the coming decades?

  2. India expanding oil/gas E and D, infrastructure

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports that India continues to press oil and gas exploration and development and expansion of its petroleum sector infrastructure. One of the key moves is the government's decision to stage a fourth exploration bidding round, its most ambitious to date and one expected to elicit enthusiasm from international oil companies. At the same time, state oil companies Oil and Natural Gas Commission and Oil India Ltd. plan to maintain strong domestic E and D programs. ONGC is seeking more revenue to sustain India's ambitious oil and gas upstream plans. The state company has asked the government for a 50% hike in the price of domestic crude. The government currently pays ONGC and OIL only about $8.84/bbl, a price fixed in 1981. A jump of 50% in the domestic crude price would net ONGC another $1 billion/year in revenues, ONGC Chairman S.L. Khosla the. The government and other state companies also continue efforts to expand gas utilization and markets and match refining plans with market needs

  3. Ranking Canadian oil and gas projects using TOPSIS

    Directory of Open Access Journals (Sweden)

    Seyed Jafar Sadjadi

    2017-08-01

    Full Text Available One of the primary concerns for investment in oil and gas projects is to have a comprehensive understanding on different issues associated with this industry. The industry is mainly influ-enced by the price of oil and gas and in some events, many production units have been forced to shut down solely because of low price of oil and gas. Environmental issues are other important factors, which may put pressure on Canada’s political affairs since the country has strong com-mitment to reduce green gas effect. In this paper, we introduce a multi-criteria decision making method, which helps us rank different projects in terms of investment. The proposed study con-siders different investment factors including net present value, rate of return, benefit-cost analy-sis and payback period along with the intensity of green gas effects for ranking the present oil and gas projects in Canada.

  4. Hydraulic fracturing in shales: the spark that created an oil and gas boom

    Science.gov (United States)

    Olson, J. E.

    2017-12-01

    In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better

  5. Oil and gas market developments in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2003-01-01

    Turkey's strategic location makes it a natural 'energy bridge' between major oil and gas producing areas in the Middle East and Caspian Sea regions on one hand and consumer markets in Europe on the other. Oil consumption has increased in recent years in Turkey, and this trend is expected to continue, with growth of 2-3% annually in coming years. The annual oil consumption of the country is around 31.3 million tons, while 83% of total consumption is supplied from imports and only 17% is supplied from indigenous production. Oil provides around 43% of Turkey's total energy requirements, but its share is declining (as the share of natural gas rises). On the other hand, due to diversification efforts of energy sources, use of natural gas was newly introduced into the Turkish economy in 1987 and has been growing rapidly. Turkey's natural gas reserves seem limited and current gas production in the country meets 2.8% of domestic consumption requirements. The annual natural gas consumption of Turkey is around 14.7 billion m 3 and is assumed to increase by 12% per annum. Turkish natural gas use is projected to increase dramatically in coming years, with the prime consumers expected to be industry and power plants. Turkey has chosen natural gas as the preferred fuel for the massive amount of new power plant capacity to be added in coming years. (Author)

  6. Oil and gas leasing/production program

    International Nuclear Information System (INIS)

    Heimberger, M.L.

    1992-01-01

    As the Congress declared in the Outer Continental Shelf Lands Act the natural gas and oil production from the Outer Continental Shelf constitutes an important part of the Nation's domestic energy supply. Federal offshore minerals are administered within the Department of the Interior by the Minerals Management Service (MMS), which provides access to potential new sources of natural gas and oil offshore by conducting lease sales. Each year, on or before March 31, the MMS presents to Congress a fiscal year annual report on the Federal offshore natural gas and oil leasing and production program. In FY 1991, this program was the third largest producer of non-tax revenue for the US Treasury, contributing more than $3 billion. This report presents Federal offshore leasing, sales, production, and exploration activities, and environmental monitoring activities

  7. 0-Accidents in Offshore Oil and Gas Production - the Quantitative part

    DEFF Research Database (Denmark)

    Jensen, Olaf Chresten

    According to data from the national authorities and operators, the injury incidence rates of lost time accidents in Danish oil and gas operators have declined significantly over the recent decades. There have been significant annual variations, but the trend points towards a zero-injury level......, and this is probably due to the safety programmes applied by the industry. An analysis of the data and methods used by the authorities in five countries shows comparable trends, but incomparable risk levels. This incomparability is due mainly to different criteria applied for inclusion of injuries and to different...... populations that may or may not include onshore workers. The International Association of Oil & Gas Producers (OGP) runs an international surveillance sys-tem that, however, also gives insufficient information on the methods in the OGP annual reports. We identified a number of potential threats...

  8. Learning through Oil and Gas Exploration

    DEFF Research Database (Denmark)

    Levitt, Clinton J.

    I investigate the importance of learning in oil and gas exploration. I developed a tractable dynamic structural model of oil and gas exploration in which firms gradually learn about the productive qualities of different regions through exploratory drilling. Exploratory drilling is modelled...... as an information-gathering process in which each new exploratory well provides information concerning the profitability of drilling additional wells in a given area. The model is geographically based and accounts for the heterogeneity in the characteristics of oil and gas deposits that can exist across large...... the observed geography of exploratory drilling. The broader implications of my model indicate that the structure of information has important effects on drilling behaviour, and that these effects vary, depending on the specific characteristics of the regions being explored....

  9. Entrepreneurial Leadership in Upstream Oil and Gas Industry

    OpenAIRE

    Kalu, Mona Ukpai

    2015-01-01

    The study examined Entrepreneurial leadership in Upstream Oil and Gas industry and its ability to accelerate innovative energy technology development. The declining deliverability from existing reservoirs and ever increasing demand for energy to fuel growth in many parts of the world is driving oil and gas exploration into more difficult to access reservoirs like bituminous sands and shale gas. Accelerating new innovative technology development to access these new streams of profitable oil an...

  10. CHALLENGES AND PROSPECTS FOR DEVELOPMENT OF UKRAINIAN OIL AND GAS COMPLEX ENTITIES

    Directory of Open Access Journals (Sweden)

    Mikhail Borodin

    2016-11-01

    Full Text Available The aim of the paper is to analyze the current state of the oil and gas complex of Ukraine, upon which to identify the challenges and to justify the development prospects of the effective activities of complex entities. Comprehensive introduction of the advanced mechanisms for the development of oil and gas complex entities’ development will contribute to the economic growth of other industries and the Ukrainian economy as a whole, as well as decrease in the energy dependence and security of the state interests. Methods. The following methods were used in research: systematic, economic and mathematical, balancing, judgment-based and abstract-logical. In addition, methods of statistical analysis, analytical spread sheet tabulation method, and method of scientific hypothesis modelling for studied processes. Results. The effectiveness of introduction of the proposed perspective trends of the entities of Ukrainian oil and gas complex is estimated. It is proved that their comprehensive implementation will improve the competitiveness of their operations, and energy independence of Ukraine. The necessity of introduction of the innovative technologies and new approaches to solution of the management problems at oil and gas complex entities is proved. Implementation of prospective mechanisms for the development of effective activity of oil and gas entities shall be based on economic competition between the entities with simultaneous implementation of the measures of state support for the promising modernization technologies reflecting the public interest to the energy security improvement. Practical significance. A study of the current state of oil and gas complex of Ukraine and challenges of development of the complex entities contributes to the identification of areas for balancing and substantiation of the development prospects of the oil and gas sector of economy in order to ensure its energy security, taking into account the strategic orientations

  11. Innovation and entrepreneurship in geosciences: challenges and opportunities for oil and gas production in marginal fields; Inovacao e empreendedorismo em geociencias: desafios e oportunidades para a producao de petroleo e gas em campos marginais

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Livia da Silva Modesto [Universidade do Estado da Bahia (UNEB), Salvador, BA (Brazil); Universidade Salvador (UNIFACS), BA (Brazil); Fundacao Visconde de Cairu, Salvador, BA (Brazil); Ferreira, Doneivan Fernandes [Universidade Federal da Bahia (UFBA), BA (Brazil)

    2012-07-01

    The purpose of this paper is to provide a conceptual perspective for the analysis of entrepreneurial behavior and the implementation of a innovation and applied research culture on the niche of marginal oil and gas production in Brazil. Among other topics discussed, there is the conceptual approach of entrepreneurship and innovation, its correlation to the geosciences field, the importance of applied research in the segment, the innovative environment in business and Academia and regulatory issues (Innovation Law and 'Lei do Bem'). The culture of innovation and entrepreneurship in the field of Geosciences should be embodied in the Upstream Segment, highlighting the opportunities represented by geo-knowledge and entrepreneurship, service, technical expertise, and even by the capacity to elaborate a Business Plan Document. The methodology used was literature research through existing publications, books, magazines, web sites, seminars and interaction with players in the niche of production in marginal fields, based on interviews and content analysis, and on the experience of the Group of Applied Research CNPq 'Production of Oil and Gas Marginal Fields' experienced at the Federal University of Bahia. (author)

  12. Visualization of Solution Gas Drive in Viscous Oil, SUPRI TR-126

    Energy Technology Data Exchange (ETDEWEB)

    George, D.S.; Kovscek, A.R.

    2001-07-23

    Several experimental studies of solution gas drive are available in this report. Almost all of the studies have used light oil. Solution gas drive behavior, especially in heavy oil reservoirs, is poorly understood. Experiments were performed in which pore-scale solution gas drive phenomena were viewed in water/carbon dioxide and viscous oil/carbon dioxide systems. A new pressure vessel was designed and constructed to house silicon-wafer micromodels that previously operated at low (<3 atm) pressure. The new apparatus is used for the visual studies. Several interesting phenomena were viewed. The repeated nucleation of gas bubbles was observed at a gas-wet site occupied by dirt. Interestingly, the dissolution of a gas bubble into the liquid phase was previously recorded at the same nucleation site. Gas bubbles in both systems grew to span one ore more pore bodies before mobilization. Liquid viscosity affected the ease with which gas bubbles coalesced. More viscous solutions result in slower rates of coalescence. The transport of solid particles on gas-liquid interfaces was also observed.

  13. Sustitución de fuel oil por gas natural en ANDERCOL Medellín

    OpenAIRE

    Peña Puerto, José Miguel; Ayala Mendoza, Miguel Eduardo

    2008-01-01

    Introduction. This article shows the evaluation of the demand and the tendencies of fuel in the plant of ANDERCOL-Medellín, the current and future trends of the prices for the fuels available (fuel oil and natural gas) and also the operation costs, the investments required for their substitution and the limitations and benefits of substituting fuel oil with natural gas. Objective. To evaluate the impact of substituting fuel oil with natural gas in the ANDERCOL´s plant in Medell...

  14. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  15. Prospects for oil and gas

    International Nuclear Information System (INIS)

    Laherrere, J.

    2011-01-01

    It was five years ago, in January 2006, that Futuribles devoted a major special issue (no. 315) to energy prospects and the greenhouse effect. That was already a time of great concern about this question and several articles offered analyses of the gloomy prospects for the development of energy resources and the issues around climate change. Among these, an article by Jean Laherrere outlined the prospects for oil resources, showing the extent to which information in this area was disparate, unreliable and even questionable, being often highly political. As one of the more pessimistic writers on the question, Laherrere reminded us of the imminence of 'peak oil' (the prelude to a decline in global oil production) and the need to re-think our styles of consumption to adapt to a new age in which, as energy becomes scarcer, it will be increasingly expensive. Five years later, Jean Laherrere returns to the columns of Futuribles on the occasion of a new special issue on energy and the climate, to update us on the global prospects for oil and gas production. He begins by recalling how politically slanted and unreliable information in this area can be, depending on its source, the units of measurement employed etc. He stresses, too, that in the view of many experts peak oil was reached in 2006 and the situation is currently plateau-ing, just ahead of a decline in oil production (gradual or sudden, depending on whether measures of economic constraint are implemented). For its part, gas production should peak around 2025-2030. Jean Laherrere specifies what reserves remain, how these are currently exploited and marketed, and the prospects that ensue in the longer term (he also shows how wrong gas-price forecasts have been in the past). As he stresses, in conclusion, with both oil and gas we must be aware that the world does not have infinite resources and, since the alternatives do not allow us, at the moment, to make up for future energy-resource shortages, it is for

  16. Documentation of the Oil and Gas Supply Module (OGSM)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  17. Plans to revive oil fields in Venezuela on track

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports on the three operating units of Venezuela's state owned oil company Petroleos de Venezuela SA which will begin receiving bids Feb. 28 from companies interested in operating 55 inactive oil fields in nine producing areas of Venezuela. Francisco Pradas, Pdvsa executive in charge of the program, the the company expects 88 companies or combines of foreign and domestic private companies to participate in the bidding. The program, announced last year, aims to reactivate production in marginal oil fields. It will involve the first direct participation by private companies in Venezuela's oil production since nationalization in 1976

  18. A Guidance Document for Kentucky's Oil and Gas Operators

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  19. Environmental Compliance for Oil and Gas Exploration and Production

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  20. Emissions of Volatile Organic Compounds from Oil and Gas Operations in Northeastern Oklahoma - Wintertime Ambient Air Studies from Three Consecutive Years

    Science.gov (United States)

    Ghosh, B.

    2017-12-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from a variety of sources including oil and gas (O&G) operations, vehicle exhausts, industrial processes, and biogenic sources. Understanding of emission sources and their air quality impact is crucial for effective environmental policymaking and its implementation. Three consecutive wintertime campaigns to study ambient air were conducted in Northeastern Oklahoma during February-March of 2015, 2016, and 2017. The goals of these campaigns were to study ambient VOCs in the region, estimate their air quality impact, and understand how the impact changes over a span of three years. This presentation highlights results from the 2017 campaign. In-situ measurements of methane, ethane, and CO were conducted by an Aerodyne Dual QCL Analyzer while ozone and NOx were measured using Teledyne monitors. In addition, 392 whole air samples were collected and non-methane hydrocarbons (NMHCs) in the samples were analyzed using GC-MS (Agilent). High levels of methane (> 8 ppm) were observed during the study. Correlation with ethane indicated that methane primarily originated from O&G operations with little biogenic contributions. Among NMHCs, C2-C5 alkanes were the most dominant with mean mixing ratios ranging from 0.9 to 6.8 ppb. Chemical tracers (propane, ethyne, CO) and isomeric ratios (iC5/nC5, Figure 1) identified oil and gas activity as the primary source of NMHCs. Photochemical age was calculated to estimate emission source composition. Ozone showed strong diurnal variation characteristic of photochemical production with a maximum mixing ratio of 58 ppb. The results from the 2017 study will be compared with results from studies in 20151 and 20162 and their significance on local air quality will be discussed. References Ghosh, B.; Volatile Organic Compound Emissions from Oil and Gas Production Sources: A Pilot Study in Northeastern Oklahoma; Poster presentation at AGU Fall Meeting; 2015; A11M-0249; (Link) Ghosh

  1. Aqueous Rare Earth Element Patterns and Concentration in Thermal Brines Associated With Oil and Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Charles [University of Wyoming; Quillinan, Scott Austin [University of Wyoming; Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-13

    This study is part of a joint effort by the University of Wyoming (UW) School of Energy Resources (SER), the UW Engineering Department, Idaho National Laboratories (INL), and the United States Geological Survey (USGS) to describe rare earth element concentrations in oil and gas produced waters and in coal-fired power station ash ponds. In this work we present rare earth element (REE) and trace metal behavior in produced water from four Wyoming oil and gas fields and surface ash pond water from two coal-fired power stations. The concentration of REEs in oil and gas produced waters is largely unknown. For example, of the 150,000 entries in the USGS National Produced Waters Geochemical Database less than 5 include data for REEs. Part of the reason for this scarcity is the analytical challenge of measuring REEs in high salinity, hydrocarbon-bearing waters. The industry standard for water analysis struggles to detect REEs in natural waters under ideal conditions. The detection of REEs in oil and gas field samples becomes all but impossible with the background noise and interferences caused by high concentrations of non-REE ions and residual hydrocarbons. The INL team members have overcome many of these challenges (e.g. McLing, 2014), and continue to develop their methods. Using the methods of the INL team members we measured REEs in high salinity oil and gas produced waters. Our results show that REEs exist as a dissolved species in all waters measured for this project, typically within the parts per trillion range. The samples may be grouped into two broad categories analytically, and these categories match their genesis: Wyoming oil and gas brines contain elevated levels of Europium, and Wyoming industrial pond waters show elevation in heavy REEs (HREEs). While broadly true, important variations exist within both groups. In the same field Europium can vary by more than an order of magnitude, and likewise HREEs in industrial ponds at the same site can vary by more than

  2. Produce More Oil Gas via eBusiness Data Sharing

    Energy Technology Data Exchange (ETDEWEB)

    Paul Jehn; Mike Stettner

    2004-09-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  3. Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Quintero, A.; Vargas-Villamil, F.D. [Prog. de Matematicas Aplicadas y Computacion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, D.F. 07330 (Mexico); Arce-Medina, E. [Instituto Politecnico Nacional, ESIQIE, Ed. 8 Col. Lindavista, Mexico, D.F. 07738 (Mexico)

    2008-01-30

    In this work, a sensitivity analysis of a light gas oil deep hydrodesulfurization catalytic distillation column is presented. The aim is to evaluate the effects of various parameters and operating conditions on the organic sulfur compound elimination by using a realistic light gas oil fraction. The hydrocarbons are modeled using pseudocompounds, while the organic sulfur compounds are modeled using model compounds, i.e., dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). These are among the most refractive sulfur compounds present in the oil fractions. A sensitivity analysis is discussed for the reflux ratio, bottom flow rate, condenser temperature, hydrogen and gas oil feed stages, catalyst loading, the reactive, stripping, and rectifying stages, feed disturbances, and multiple feeds. The results give insight into the qualitative effect of some of the operating variables and disturbances on organic sulfur elimination. In addition, they show that special attention must be given to the bottom flow rate and LGO feed rate control. (author)

  4. The state tax regulation in the oil and gas industry

    Directory of Open Access Journals (Sweden)

    E. I. Cherkasova

    2018-01-01

    Full Text Available Russian tax laws in petrochemical complex generally has a fiscal orientation now. The current system of taxation in the oil industry has the biggest tax burden in the world, amount of oil and gas revenues was more then 43-51% of all budget revenues over past decades, remaining its main source. Generally, there were changes in the ratios of incomes in the forms of export customs duty and tax on the extraction of minerals. State policy in the field of resource payments affects the entire industry, influencing the structure of oil and oil supplies on internal and external markets and realization of the programs for modernization and development in priority areas. Changes of structure of national production, increasing the contribution of agriculture, IT sphere and other branches to aggregate national product should be reflected in the revision of the tax burden on the industries, associated with the extraction and processing of minerals. It is necessary to reduce the fiscal direction of tax regulation in petrochemical sector with a simultaneous increasing the role of tools that stimulate modernization and updating of equipment, implementation of new processes and technologies, the maximum use of process-deepening processes as well as the development of deposits with severe production conditions. In the near future, it is planned to introduce new changes in taxation in field of oil production and refining - introduction of benefits for oil production in new fields or fields with difficult production conditions or poor quality of oil and introduction of a tax on additional income..

  5. Malaysia: oil, gas, petrochemicals

    International Nuclear Information System (INIS)

    1990-01-01

    Petronas or Petroliam Nasional Berhad was established on 17 August 1974 as the national petroleum corporation of Malaysia. The Petroleum Development Act, passed by the Malaysian Parliament in October of that same year, vested in Petronas the entire ownership of all oil and natural gas resources in the country. These resources are considerable and Malaysia is poised to become one of the major petrochemical producers in the region. This report outlines the extent of oil, gas and petrochemicals production in Malaysia, lists companies holding licences and contracts from Petronas and provides a directory of the Malaysian oil industry. (Author)

  6. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated

  7. A comparison of ground-based and aircraft-based methane emission flux estimates in a western oil and natural gas production basin

    Science.gov (United States)

    Snare, Dustin A.

    Recent increases in oil and gas production from unconventional reservoirs has brought with it an increase of methane emissions. Estimating methane emissions from oil and gas production is complex due to differences in equipment designs, maintenance, and variable product composition. Site access to oil and gas production equipment can be difficult and time consuming, making remote assessment of emissions vital to understanding local point source emissions. This work presents measurements of methane leakage made from a new ground-based mobile laboratory and a research aircraft around oil and gas fields in the Upper Green River Basin (UGRB) of Wyoming in 2014. It was recently shown that the application of the Point Source Gaussian (PSG) method, utilizing atmospheric dispersion tables developed by US EPA (Appendix B), is an effective way to accurately measure methane flux from a ground-based location downwind of a source without the use of a tracer (Brantley et al., 2014). Aircraft measurements of methane enhancement regions downwind of oil and natural gas production and Planetary Boundary Layer observations are utilized to obtain a flux for the entire UGRB. Methane emissions are compared to volumes of natural gas produced to derive a leakage rate from production operations for individual production sites and basin-wide production. Ground-based flux estimates derive a leakage rate of 0.14 - 0.78 % (95 % confidence interval) per site with a mass-weighted average (MWA) of 0.20 % for all sites. Aircraft-based flux estimates derive a MWA leakage rate of 0.54 - 0.91 % for the UGRB.

  8. Scope of current abandonment issues in the oil and gas industry

    International Nuclear Information System (INIS)

    Scott, I.F.H.

    1997-01-01

    Abandonment issues in the oil and gas industry, such as well sites, batteries, gas plants, compressor stations, and pipelines, were discussed. Responsibilities of the Canadian Association of Petroleum Producers (CAPP) for informing the Canadian public about energy and environmental issues on behalf of the upstream petroleum industry were reviewed. Industry regulators and those who have jurisdiction over the abandonment of facilities were identified. In Alberta, the main agencies are the Alberta Energy and Utilities Board, Alberta Environmental Protection, and Alberta Food and Rural Development in addition to the National Energy Board and Indian Oil and Gas Canada. At the end of 1995, 160,000 wells had been drilled in Alberta of which 60,000 are still active, 35,000 are suspended and 70,000 wells have been abandoned. The industry-financed Orphan Well Program was established to provide funds for facility abandonment, decontamination and surface reclamation costs associated with orphaned facilities. CAPP agrees that operators of oil and gas facilities must be held responsible and accountable for the abandonment of their facilities. CAPP is looking for support from government to ensure that enforcement actions limit the number of orphan facilities. tabs., figs

  9. Noble Gas signatures of Enhanced Oil Recovery

    Science.gov (United States)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble

  10. Risk factors in stock returns of Canadian oil and gas companies

    International Nuclear Information System (INIS)

    Sadorsky, P.

    2001-01-01

    This paper uses a multifactor market model to estimate the expected returns to Canadian oil and gas industry stock prices. Results are presented to show that exchange rates, crude oil prices and interest rates each have large and significant impacts on stock price returns in the Canadian oil and gas industry. In particular, an increase in the market or oil price factor increases the return to Canadian oil and gas stock prices while an increase in exchange rates or the term premium decreases the return to Canadian oil and gas stock prices. Furthermore, the oil and gas sector is less risky than the market and its moves are pro-cyclical. This suggests that Canadian oil and gas stocks may not be a good hedge against inflation

  11. Value of the principles of ''isolation of basins and their boundaries'' and ''isolation of basins and elevations'' in prospecting for oil and gas in the oil and gas basin of China

    Energy Technology Data Exchange (ETDEWEB)

    Chzhan, V.; Li, Yu.; Se, M.

    1982-01-01

    A feature of the Chinese oil and gas basins is their fracturing into a large number (to several dozen in one oil and gas basin) isolated basins which are controlled by fault disorders. In these basins in which thick masses of Mesozoic and mainly Cenozoic sedimentary rocks are developed, the main volumes of source rocks are concentrated. Migration of hydrocarbons usually occurs to short distances not exceeding tens of kilometers. From the experience of prospecting and exploration back in the 1950's it was established that thick masses in the central zones of the basins are favorable for processes of hydrocarbon generation, while accumulation occurs in the elevated peripheral parts of the basins and in the regions of the central elevations. The zones of articulation of the central elevations and the edges of the basins are very promising for prospecting for local structures. Examples of large fields which are subordinate to these laws are the largest oil fields in China, Lyakhoe, Dagan and Shenli which are located along the edges of the Bokhayvan basin in the North Chinese oil and gas basin and the Datsin field which is confined to the central elevation of the Sunlyao basin.

  12. Corrosion of API 5L B and X52 in crude oil/water/gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, J J; Gonzalez, J J; Viloria, A; De Veer, H; De Abreu, Y

    2000-02-01

    Laboratory and field tests were conducted to evaluate the corrosion behavior of API 5L grade B and X52 steels using Furrial's crude oil in the presence of water and gas containing carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). The results suggest that the corrosiveness of this crude oil/water/gas mixture is not detrimental to either steel. However, pitting corrosion was observed. The low general corrosion rates measured were attributed to the natural inhibiting properties of the crude oil.

  13. Experienced in Conducting Radiological Impact Assessment (RIA) in Oil and Gas Industry

    International Nuclear Information System (INIS)

    Khairuddin Mohamad Kontol; Ismail Sulaiman; Azmi Hassan; Faizal Azrin Abdul Razalim

    2011-01-01

    Oil and gas industry is a major contributor to the nation economy. Oil sludge and scales produced during production contain enhanced naturally occurring radioactive material (NORM).All the oil sludge and scales are temporarily stored at the crude oil terminal premise. Sludge and scales are under the jurisdiction of Department of Environment (DOE) and Atomic Energy Licensing Board (AELB).AELB has issued a guideline regarding the disposal of sludge and scales as in (LEM/TEK/30, 1996). In this guideline, Radiological Impact Assessment (RIA) should be carried out on all proposed disposals and demonstrate that no member of public will be exposed to more than 1 mSv/y. Malaysian Nuclear Agency (Nuclear Malaysia) has the expertise and capability to conduct the RIA. Nuclear Malaysia has been conducting RIA for local and international oil and gas companies operated in Malaysia. Recently, AELB has issued code of practice on radiation protection for oil and gas industry (LEM/TEK/58, 2009). In this code of practice, RIA shall be conducted to assess the dose received by a critical group of public as a result of the disposal of oil sludge and scale higher than 3 Bq/g Total Activity Concentration (TAC). For exemption by AELB, the RIA calculated dose shall not exceed 0.3 mSv/y. (author)

  14. Conference Proceedings: Structuring oil and gas property transactions

    International Nuclear Information System (INIS)

    1999-01-01

    The 12 presentations at this conference dealt with issues concerning the legal aspects of oil and gas property transaction agreements. Several issues regarding sales and purchase negotiations of oil and gas property are reviewed and some of the basic principles of contract law are explained. Advantages, disadvantages and opportunities of structuring oil and gas property acquisitions, as well as their tax consequences are also identified. The issue of risk assessment regarding environmental consequences and how public concerns regarding the state of the environment has had an impact on oil and gas transactions, is addressed. Interest in this topic stems from the fact that improved enforcement of existing laws regarding the environment can potentially make purchasers liable for significant costs associated with remediation or clean-up of contaminated properties. refs., tabs., figs

  15. Oil and gas development on the Metis settlements of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Ghostkeeper, E.N. [Metis Settlements General Council, Edmonton, AB (Canada); Goldie, D. [First Street Law Office, Edmonton, AB (Canada)

    2003-07-01

    This paper presents a brief history of the Alberta Metis Settlements. In 1990, the Metis Settlement Act defined the Metis as a people of Aboriginal ancestry. The mandate of the Alberta Federation of Metis Settlement Associations is to protect settlement lands, and to take legal action against the province for alleged improper handling of subsurface resource revenues regarding the Metis Population Betterment Trust Fund. The Federation also attains local government authority for the Settlements. The Metis resources include game farming and alternative livestock, oil and gas, diamonds, forestry, and agriculture. The main source of economic development is in the oil and gas sector. Before the 1990 Metis Settlement Accord, the only money earned by the Metis from oil and gas development was through employment and surface rights compensation. No benefits were derived from royalties or participation. Since 1990, 265 wells have been drilled on settlement lands, with participation of the Metis General Council in 136 wells. This paper presents the terms of the Metis Development Agreement with reference to: royalties; General Council's participation rights; operating procedures; disposition of production; and, general matters. 6 figs.

  16. Displacement of oil by gas in power production

    International Nuclear Information System (INIS)

    Sundram, S.; Seng, L.K.; Kow, P.T.A.

    1992-01-01

    After the oil crises, Malaysia unveiled its four fuel diversification policy in the late 1970s towards utilization of gas, oil, coal and hydro. This was to ensure adequate and continuous energy supply for driving economic development and to cushion itself against impact of possible future fluctuations in oil prices. The primary energy supply in 1978 was predominantly oil based, consisting of 75.5% oil. As a result of this diversification policy, the oil component was reduced to about 51.8% in 1988. Due to its inherent ability to adapt and adjust to different fuels, the power sector played a crucial role in this massive shift away from oil. For the corresponding period, the oil component in the electricity generation input mix has decreased from 86.7% oil to 47.4%. Malaysia is endowed with substantial natural gas reserves amounting to 52.5 trillion cubic feet. Gas, therefore constitutes a natural and attractive option for the power sector in diversifying into non-oil indigenous energy resources, as the country's hydro potential has its limitations and the available proven coal reserves are relatively small. The paper addresses the past and current status and issues involved in displacing oil by gas for the power sector. These include the economic, technological and pricing aspects of natural gas development and issues pertaining to power system development. Future gas utilization strategies include the conversion of existing oil-fired plants to gas-fired, and the plant-up of gas turbines and the efficient combined cycle plants to meet the load requirements. These strategies are assessed from the viability and security perspective of increased gas utilization. Oil will continue to be displaced, but the extent to which gas will increase its share in power production is dependent on numerous factors ranging from its economics to supply security

  17. Importance of separating sedimentation facies in prospecting for oil and gas pools confined to sloping structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B

    1984-01-01

    The Shuantotszi field which is in the southeast part of the Sunlyalo oil and gas basin was discovered in 1962. For a long time the correlation of the main factors controlling the oil and gas distribution remained obscure. It has been established in recent years that the main volume of oil and gas is confined to facies in the channels of the second order, arranged between the facies of the main channel and the perlite deposits of the delta. It was established that formation of the accumulation is associated with redistribution and secondary migration of hydrocarbons.

  18. China's energy security: Oil and gas

    International Nuclear Information System (INIS)

    Wu, Kang

    2014-01-01

    China is currently the largest energy consuming country in the world. Until the early 1990s, China had long been a net energy exporter. The country became a net oil importer in 1993, the first time since the 1960s. For China, energy security first means oil supply security. China turned into a net natural gas importer in 2007 and then a net coal importer in 2009. In other words, China is now a net importer of all three types of fossil energy—oil, natural gas, and coal. In the context of rising oil imports and implementation of China's 12th Five-Year Program from 2011 to 2015, this paper examines China's energy security strategies with a focus on three leading elements, namely overseas oil investment, strategic petroleum reserves (SPR)and unconventional gas development. Our findings suggest that the Chinese government has promoted overseas investment strongly; its SPR program has been established though the progress for Phase II has been slower than expected and the government intends to boost the unconventional gas sector development. However, the challenges are enormous as well. As for future research, other elements for each dimension of energy security should be reviewed to reach a comprehensive conclusion about how well China has done and what steps are needed to move forward. - Highlights: • Identified China's key energy security strategies during the 12th Five-Year Program (FYP) and previous FYPs. • Provided a unique insight into China's rising oil imports. • Reviewed China's overseas oil and gas investment as a key energy security measure. • Assessed China's strategic petroleum reserves program and the future growth. • Provided a comprehensive coverage of China's unconventional gas development, including both coal-bed methane and shale gas

  19. Corrosion of API 5L B and X52 in crude oil/water/gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, J.J.; Gonzalez, J.J.; Viloria, A.; De Veer, H.; De Abreu, Y.

    2000-02-01

    Laboratory and field tests were conducted to evaluate the corrosion behavior of API 5L grade B and X52 steels using Furrial's crude oil in the presence of water and gas containing carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). The results suggest that the corrosiveness of this crude oil/water/gas mixture is not detrimental to either steel. However, pitting corrosion was observed. The low general corrosion rates measured were attributed to the natural inhibiting properties of the crude oil.

  20. The Oil and Gas Discourse from the Perspective of the Canadian and Albertan Governments, Non-Governmental Organizations and the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Jacqueline Noga

    2014-01-01

    Full Text Available Three of the major players in the discussion of the production of oil and gas are: (1 government; (2 the oil and gas industry and (3 non-governmental organizations (NGOs. A comparison of contributions from these three sources using a list of positive and negative words from the General Inquirer Category Listings showed that industry provided a very positive message about the production and consumption of oil and gas that is generally reinforced by government whereas NGOs advocated for a reduction in the use of oil and gas. Messages delivered by each player are focused on the same topics in either a positive or negative way and are often contradictory. The authors submit to be properly informed the public must consider all the sources in order to avoid bias. A mind map is presented in a supplementary file which summarizes information from each source in a comprehensive way. This approach can be used by consumers when considering the choice of using oil and gas and can be extended to the discourse beyond Canada.

  1. Comparative study of the sources of exergy destruction on four North Sea oil and gas platforms

    DEFF Research Database (Denmark)

    Voldsund, Mari; Nguyen, Tuong-Van; Elmegaard, Brian

    2013-01-01

    temperatures and pressures, gas- and water-to-oil ratios in the feed, crude oil properties, product specifications and recovery strategies. These differences imply that some platforms naturally need less power for oil and gas processing than others. Reservoir properties and composition also vary over......In this paper, the oil and gas processing systems on four North Sea offshore platforms are reported and discussed. Sources of exergy destruction are identified and the findings for the different platforms are compared. Different platforms have different working conditions, such as reservoir...... the lifetime of an oil field, and to maintain the efficiency of an offshore platform is therefore challenging. In practice, variations in the process feed result in the use of control strategies such as anti-surge recycling, which cause additional power consumption and exergy destruction. For all four...

  2. Advanced cost-effective surface geochemical techniques for oil/gas/uranium exploration, environmental assessments and pipeline monitoring - a template for India

    International Nuclear Information System (INIS)

    Lafleur, Paul; Chanrasekharan, G.Y.V.N.; Rajender Rao, S.

    2011-01-01

    Advanced geochemical soil gas methods have been successfully developed for the exploration of oil/gas/uranium and for environmental assessments. Application of these cost-effective technologies in India can substantially reduce exploration risk while accelerating the development of oil/gas/uranium onshore resources. A reliable and effective monitoring system using geochemical soil gas surveys ensures that CO 2 Enhanced Oil Recovery operations as well as CO 2 sequestration projects are safe and acceptable for the disposal of CO 2 , Soil gas surveys along with other technologies can also be applied for monitoring of oil/gas pipelines for leakage, especially those that are old or pass through populated regions

  3. Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?

    Science.gov (United States)

    Hughes, J. D.

    2012-12-01

    Shale gas has been heralded as a "game changer" in the struggle to meet America's demand for energy. The "Pickens Plan" of Texas oil and gas pioneer T.Boone Pickens suggests that gas can replace coal for much of U.S. electricity generation, and oil for, at least, truck transportation1. Industry lobby groups such as ANGA declare "that the dream of clean, abundant, home grown energy is now reality"2. In Canada, politicians in British Columbia are racing to export the virtual bounty of shale gas via LNG to Asia (despite the fact that Canadian gas production is down 16 percent from its 2001 peak). And the EIA has forecast that the U.S. will become a net exporter of gas by 20213. Similarly, recent reports from Citigroup and Harvard suggest that an oil glut is on the horizon thanks in part to the application of fracking technology to formerly inaccessible low permeability tight oil plays. The fundamentals of well costs and declines belie this optimism. Shale gas is expensive gas. In the early days it was declared that "continuous plays" like shale gas were "manufacturing operations", and that geology didn't matter. One could drill a well anywhere, it was suggested, and expect consistent production. Unfortunately, Mother Nature always has the last word, and inevitably the vast expanses of purported potential shale gas resources contracted to "core" areas, where geological conditions were optimal. The cost to produce shale gas ranges from 4.00 per thousand cubic feet (mcf) to 10.00, depending on the play. Natural gas production is a story about declines which now amount to 32% per year in the U.S. So 22 billion cubic feet per day of production now has to be replaced each year to keep overall production flat. At current prices of 2.50/mcf, industry is short about 50 billion per year in cash flow to make this happen4. As a result I expect falling production and rising prices in the near to medium term. Similarly, tight oil plays in North Dakota and Texas have been heralded

  4. Oil and Gas Emergency Policy: Chile 2012 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    Chile has experienced several serious energy supply incidents over the last decade, including major droughts, a sustained gas supply cut from Argentina (since 2004), and a major earthquake in early 2010 which affected electricity networks and refineries, and caused several black-outs. Due to Chile's unique and sinuous geography - it runs 4 300 kilometres from North to South and only 175 kms from East to West- the country's energy markets are regionally disjointed, particularly as the regional gas and electricity grids are not connected. In the arid North, energy demand is dominated by the mining industry, and operates based on a separate thermal-based Sistema Interconectado Norte Grande (SING) electricity grid. The more densely-populated central region (including Santiago) operates on the more hydro-dependent Sistema Interconectado Central (SIC) electricity grid. The southernmost, hydro-rich regions of the country are not connected to the rest of Chile in terms of electricity and gas. The following report is based on an IEA Emergency Response Assessment carried out in 2010 and 2011 which looked specifically at Chile's capacity to respond to short-term emergencies in oil, gas and electricity.

  5. Oil and Gas Emergency Policy: Chile 2012 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    Chile has experienced several serious energy supply incidents over the last decade, including major droughts, a sustained gas supply cut from Argentina (since 2004), and a major earthquake in early 2010 which affected electricity networks and refineries, and caused several black-outs. Due to Chile's unique and sinuous geography - it runs 4 300 kilometres from North to South and only 175 kms from East to West- the country's energy markets are regionally disjointed, particularly as the regional gas and electricity grids are not connected. In the arid North, energy demand is dominated by the mining industry, and operates based on a separate thermal-based Sistema Interconectado Norte Grande (SING) electricity grid. The more densely-populated central region (including Santiago) operates on the more hydro-dependent Sistema Interconectado Central (SIC) electricity grid. The southernmost, hydro-rich regions of the country are not connected to the rest of Chile in terms of electricity and gas. The following report is based on an IEA Emergency Response Assessment carried out in 2010 and 2011 which looked specifically at Chile's capacity to respond to short-term emergencies in oil, gas and electricity.

  6. Prediction of critical transport velocity for preventing sand deposition in gas-oil multiphase production and well systems

    Energy Technology Data Exchange (ETDEWEB)

    Bello, O.O.; Reinicke, K.M. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Petroleum Engineering; Teodoriu, C. [Texas A and M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2008-10-23

    The critical transport velocity is one of the key parameters for gas-oil-sand multiphase production and well system design and safe operation. Existing American Petroleum Institute Recommended Practice 14E (API RP 14E) for the sizing of multiphase flow systems suggests an equation to calculate threshold transport velocity. This equation only considers mixture density and does not account for factors such as fluid properties, gas-liquid flow patterns, sand loading, sand particle size, size distributions, shape factor and density. This work presents an improved computational methodology, which can be applied to estimate the critical transport velocity required to ensure efficient performance of gas-oil-sand multiphase production and well systems. The improved method is based on the modelling of three-phase gas-oil-sand pipe flow physics from first principle. Computations of the critical transport velocities show reasonable agreement with values calculated from mechanistic model (Danielson, 2007) for a relatively wide range of design and operating conditions. Compared with the mechanistic model (Danielson, 2007), the present method has no imposed limitations to the range of applicability. It is also takes into adequate account the effects of operating pressure, flow geometry, sand particle size, size distribution and shape factor, which have considerable influence on the critical transport velocity in gas-oil-sand multiphase production and well systems. (orig.)

  7. The voice of Canada's oil and natural gas industry : oil and natural gas

    International Nuclear Information System (INIS)

    2001-04-01

    The Canadian Association of Petroleum Producers (CAPP) represents 150 members of the oil and gas industry, which together are responsible for approximately 95 per cent of the oil and natural gas produced in Canada. The upstream sector comprises companies that explore for, develop and produce petroleum resources, while the downstream sector involves companies that refine and market the resources. CAPP works closely with governments of 11 of Canada's 13 provinces and territories and with public groups to represent upstream producers active across the country. The enhancement of the economic well-being and sustainability of the upstream petroleum industry is the mission of the CAPP. The main priorities of the CAPP are: Environment, Health and Safety Stewardship, reasonable and timely access to resources, competitiveness of the Canadian industry on a global basis, the secure and efficient access to markets, and open and constructive public, government and media affairs. Some of the issues dealt with by the CAPP are sour gas, flaring, venting and industry-landowner relations, improved safety performance, federal issues such as corporate taxes and environmental issues, Aboriginal and First Nations issues, transportation costs for natural gas on major pipelines, and oil and sands bitumen issues, to name a few. The board of the CAPP is made up of 32 members. The work is carried out by hundreds of volunteers from member companies who provide their time and expertise for various committees and working groups, as well as a staff of approximately 40 people to assist them. The members provide the entire funding for CAPP, which is located in Calgary, Alberta. The document concluded with a few facts concerning the petroleum industry in general. 12 figs

  8. A first: U.S. natural gas wellhead value tops oil's

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The value of natural gas production in the US in 1993 exceeded that of crude oil output for the first time in history. The reversal owes as much to trends in price as in production and, most recently, record frigid weather in much of the US. Another key factor is a newly revitalized, restructured gas industry operating in the most unfettered regulatory environment in recent memory. The industry's sterling performance in accommodating the surge in demand caused by the arctic cold that steamrolled across North America early in the 1993--94 winter strengthens the natural gas case for reliability. And that can only enhance the industry's prospects for adding more long term supply contracts. Looming on the immediate horizon is the prospect of an extended slump in oil prices, which could mean that natural gas dominance in US petroleum industry revenues will be short lived if low cost oil recaptures market share from gas. While that may temporarily dethrone natural gas from its new top slot, the reversal in 1993 represents what is likely to be a long term trend for the US petroleum industry

  9. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    Energy Technology Data Exchange (ETDEWEB)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  10. Innovation and entrepreneurship in geosciences: challenges and opportunities for oil and gas production in marginal fields; Inovacao e empreendedorismo em geociencias: desafios e oportunidades para a producao de petroleo e gas em campos marginais

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Livia da Silva Modesto [Universidade do Estado da Bahia (UNEB), Salvador, BA (Brazil); Universidade Salvador (UNIFACS), BA (Brazil); Fundacao Visconde de Cairu, Salvador, BA (Brazil); Ferreira, Doneivan Fernandes [Universidade Federal da Bahia (UFBA), BA (Brazil)

    2012-07-01

    The purpose of this paper is to provide a conceptual perspective for the analysis of entrepreneurial behavior and the implementation of a innovation and applied research culture on the niche of marginal oil and gas production in Brazil. Among other topics discussed, there is the conceptual approach of entrepreneurship and innovation, its correlation to the geosciences field, the importance of applied research in the segment, the innovative environment in business and Academia and regulatory issues (Innovation Law and 'Lei do Bem'). The culture of innovation and entrepreneurship in the field of Geosciences should be embodied in the Upstream Segment, highlighting the opportunities represented by geo-knowledge and entrepreneurship, service, technical expertise, and even by the capacity to elaborate a Business Plan Document. The methodology used was literature research through existing publications, books, magazines, web sites, seminars and interaction with players in the niche of production in marginal fields, based on interviews and content analysis, and on the experience of the Group of Applied Research CNPq 'Production of Oil and Gas Marginal Fields' experienced at the Federal University of Bahia. (author)

  11. Joint exploration and development: A self-salvation road to sustainable development of unconventional oil and gas resources

    Directory of Open Access Journals (Sweden)

    Lihui Zheng

    2017-11-01

    Full Text Available Commercial production of unconventional oil and gas resources will not be easily achieved without large-scale engineering measures, let alone the additional operation cost, increasingly stricter requirement for safety and environment, fluctuating low oil and gas prices, etc., defeating the confidence of those investors. Therefore, unconventional measures are urgently needed to guide the exploration and exploitation of unconventional oil and gas resources. Thus, we put forward the concept of joint exploration and development by integrating research methodologies and operating techniques for a variety of oil and gas resources to simultaneously achieve analysis, construction, gathering and exploitation of multiple hydrocarbon sources. In this way, the annoying interference between the produced mixture of hydrocarbon flow resulting in the reduction of single-well flowrate will be possibly turned into a dynamic mutual force to enhance the well's flowrate. We also point out that the inevitability of joint exploration and development is determined by the occurrence conditions of oil and gas resources, its feasibility relies on the advancement of technologies, and its arduous and long-term nature is attributed to the current energy market and environment. In spite of various problems and difficulties, we believe that joint exploration and development will be a feasible option to achieve both cost reduction and production & benefit enhancement, boost investors' confidence, raise energy comprehensive utilization, and enhance energy supply efficiency. In conclusion, the advantages of joint exploration and development outweigh its disadvantages for both countries and enterprises.

  12. Definitions and guidelines for classification of oil and gas reserves

    Energy Technology Data Exchange (ETDEWEB)

    DeSorcy, G.J.; Warne, G.A.; Ashton, B.R.; Campbell, G.R.; Collyer, D.R.; Drury, J.; Lang, R.V.; Robertson, W.D.; Robinson, J.G.; Tutt, D.W

    1993-05-01

    The unpredictability of estimating reserves of oil and gas has made it imperative to develop a universal set of definitions and guidelines for calculating and classifying reserves. A committee of representatives from the oil and gas industry, consulting firms, industry associations, regulatory agencies, government, and financial organizations in Canada has prepared definitions of oil and gas resources and reserves, as well as a recommended classification system for those reserves. The committee believes these definitions and guidelines are suitable for use with respect to all types of oil and gas and related substances, including offshore situations and oil sands. Both deterministic and probabilistic methods are presented, as well as guidelines for specific methods including the volumetric, material balance, decline curve analysis, and reservoir simulation methods. The guidelines also consider reserves from improved recovery projects and reserves of natural gas liquids and sulfur. A glossary of terms is appended. 14 figs.

  13. Alberta oil and gas industry annual statistics for 1999

    International Nuclear Information System (INIS)

    2000-01-01

    A compilation of statistical data from Alberta's oil and gas industry was presented to provide energy analysts and economists a single source of consistent energy-related data. Alberta is Canada's largest crude oil and natural gas producer. This report provides current monthly and historical annual energy data covering the last decade. Data is organized by energy type including butane, ethane, natural gas, natural gas liquids, oil, propane and sulphur. This CD-Rom also included statistical data on energy supply, energy production, disposition, and prices. tabs

  14. Remote and Onsite Direct Measurements of Emissions from Oil and Natural Gas Production

    Science.gov (United States)

    Environmentally responsible oil and gas production requires accurate knowledge of emissions from long-term production operations1, which can include methane, volatile organic compounds, and hazardous air pollutants. Well pad emissions vary based on the geologically-determined com...

  15. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  16. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  17. Department of Energy and Mines, Oil and Gas Revolving Fund financial statements for the year ended March 31, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Oil and Gas Revolving Fund of the Saskatchewan Department of Energy and Mines was set up to provide a system of accounting for costs related to regulating and providing certain services to the oil and gas industry. Costs are shared equally by the Department and the industry. The Fund's income from the industry comes from a well levy consisting of annual fees charged to license holders and unit operators of certain types of oil and gas wells. Audited financial statements for the year ending March 31, 1993 are presented

  18. Department of Energy and Mines, Oil and Gas Revolving Fund financial statements for the year ended March 31, 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Oil and Gas Revolving Fund of the Saskatchewan Department of Energy and Mines was set up to provide a system of accounting for costs related to regulating and providing certain services to the oil and gas industry. Costs are shared equally by the Department and the industry. The Fund's income from the industry comes from a well levy consisting of annual fees charged to license holders and unit operators of certain types of oil and gas wells. Audited financial statements for the year ending March 31, 1992 are presented

  19. 77 FR 21748 - Oil and Gas Trade Mission to Israel

    Science.gov (United States)

    2012-04-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Oil and Gas Trade Mission to Israel... Foreign Commercial Service (CS), is organizing an Executive-led Oil and Gas Trade Mission to Israel.... The purpose of the mission is to introduce U.S. firms to Israel's rapidly expanding oil and gas market...

  20. Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection

    Science.gov (United States)

    Feng, Qingshan; Li, Rui; Nie, Baohua; Liu, Shucong; Zhao, Lianyu; Zhang, Hong

    2016-01-01

    Girth weld cracking is one of the main failure modes in oil and gas pipelines; girth weld cracking inspection has great economic and social significance for the intrinsic safety of pipelines. This paper introduces the typical girth weld defects of oil and gas pipelines and the common nondestructive testing methods, and systematically generalizes the progress in the studies on technical principles, signal analysis, defect sizing method and inspection reliability, etc., of magnetic flux leakage (MFL) inspection, liquid ultrasonic inspection, electromagnetic acoustic transducer (EMAT) inspection and remote field eddy current (RFDC) inspection for oil and gas pipeline girth weld defects. Additionally, it introduces the new technologies for composite ultrasonic, laser ultrasonic, and magnetostriction inspection, and provides reference for development and application of oil and gas pipeline girth weld defect in-line inspection technology. PMID:28036016

  1. Thermodynamic analysis of an upstream petroleum plant operated on a mature field

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Jacyno, Tomasz; Breuhaus, Peter

    2014-01-01

    Oil and gas processing on offshore platforms operates under changing boundary conditions over a field lifespan, as the hydrocarbon production declines and the water extraction increases. In this paper, the processing plant of the Draugen platform is evaluated by performing an energy and exergy...... and reconciliated process data. The total energy demand is moderately sensitive to daily and monthly variations: it ranges between 22 and 30 MW, of which 18-26 MW and about 3-4 MW are in electrical and thermal energy forms. The greatest exergy destruction takes place in the gas treatment (51%), recompression (12...

  2. Brine contamination to aquatic resources from oil and gas development in the Williston Basin, United States

    Science.gov (United States)

    Gleason, Robert A.; Contributions by Chesley-Preston, Tara L.; Coleman, James L.; Haines, Seth S.; Jenni, Karen E.; Nieman, Timothy L.; Peterman, Zell E.; van der Burg, Max Post; Preston, Todd M.; Smith, Bruce D.; Tangen, Brian A.; Thamke, Joanna N.; Gleason, Robert A.; Tangen, Brian A.

    2014-01-01

    The Williston Basin, which includes parts of Montana, North Dakota, and South Dakota in the United States and the provinces of Manitoba and Saskatchewan in Canada, has been a leading domestic oil and gas producing region for more than one-half a century. Currently, there are renewed efforts to develop oil and gas resources from deep geologic formations, spurred by advances in recovery technologies and economic incentives associated with the price of oil. Domestic oil and gas production has many economic benefits and provides a means for the United States to fulfill a part of domestic energy demands; however, environmental hazards can be associated with this type of energy production in the Williston Basin, particularly to aquatic resources (surface water and shallow groundwater) by extremely saline water, or brine, which is produced with oil and gas. The primary source of concern is the migration of brine from buried reserve pits that were used to store produced water during recovery operations; however, there also are considerable risks of brine release from pipeline failures, poor infrastructure construction, and flow-back water from hydraulic fracturing associated with modern oilfield operations. During 2008, a multidisciplinary (biology, geology, water) team of U.S. Geological Survey researchers was assembled to investigate potential energy production effects in the Williston Basin. Researchers from the U.S. Geological Survey participated in field tours and met with representatives from county, State, tribal, and Federal agencies to identify information needs and focus research objectives. Common questions from agency personnel, especially those from the U.S. Fish and Wildlife Service, were “are the brine plumes (plumes of brine-contaminated groundwater) from abandoned oil wells affecting wetlands on Waterfowl Production Areas and National Wildlife Refuges?” and “are newer wells related to Bakken and Three Forks development different than the older

  3. Wage Inequality and Violent Protests in Oil/Gas Producing Countries

    Science.gov (United States)

    Nuraliyev, Nurlan

    This work examines contrasting claims made by academic scholars on the relationship between income inequality and political discontent. Does income inequality directly cause social unrest or is this relationship conditional on the level of democratic development? Using the data from 55 oil/gas producing countries between 2010-2013, the author finds: 1) income disparity between an average income per capita of local population and an average income of foreign labor employed in the oil/gas industry results in higher number of violent protests in more democratic oil/gas producing societies; 2) wage disparity between local and foreign labor in the oil/gas industry is associated with higher number of protests in this industry in more democratic oil/gas producing states.

  4. A catalytic distillation process for light gas oil hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Villamil, F.D.; Marroquin, J.O.; Paz, C. de la; Rodriguez, E. [Prog. de Matematicas Aplicadas y Computacion, Prog. de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Mexico City, DF (Mexico)

    2004-07-01

    A light gas oil hydrodesulfurization process via catalytic distillation is developed and compared to a conventional process. By integrating the separation and reaction into a single unit, the catalytic distillation may produce a diesel with low concentration of sulfur compounds at a lower cost than the traditional reaction/separation process. The process proposed in this work is compared to an optimised conventional hydrodesulfurization unit which represents fairly well a plant that belongs to the National System of Refineries. During the optimisation of the conventional process, a compromise is established among the production of diesel and naphtha and the operating costs. The results show that the light gas oil hydrodesulfurization via catalytic distillation is as or more efficient than the conventional process. However, the removal of the sulfur compounds is carried out under less rigorous conditions. This design reduces the fix and operational costs. (author)

  5. Safety instrumented systems in the oil and gas industry : Concepts and methods for safety and reliability assessments in design and operation

    Energy Technology Data Exchange (ETDEWEB)

    Lundteigen, Mary Ann

    2009-07-01

    This thesis proposes new methods and gives new insight to safety and reliability assessments of safety instrumented systems (SISs). These systems play an important role in many industry sectors and are used to detect the onset of hazardous events and mitigate their consequences to humans, the environment, and material assets. The thesis focuses on SIS applications in the oil and gas industry. Here, the SIS must respond to hazardous events such as gas leakages, fires, and over pressurization. Because there are personnel onboard the oil and gas installations, the operations take place in a vulnerable marine environment, and substantial values are associated with the offshore facilities, the reliability of SIS is of great concern to the public, the authorities, and the plant owners. The objective of this project has been to identify some of the key factors that influence the SIS reliability, clarify their effects on reliability, and suggest means to improve the treatment of these factors in safety and reliability assessments in design and operation. The project builds on concepts, methods, and definitions in two key standards for SIS design, construction, and operation: IEC 61508 and IEC 61511. The main contributions from this project are: A product development model that integrates reliability, availability, maintainability, and safety (RAMS) requirements with product development. The contributions have been presented in ten articles, five published in international journals, two submitted for publication, and three presented at conferences and in conference proceedings. The contributions are also directed to the industry and the actors that are involved in SIS design, construction, and operation. Even if the oil and gas industry is the main focus area, the results may be relevant for other industry sectors as well. SIS manufacturers and SIS designers face a large number of requirements from authorities, oil companies, international standards, and so on. At the same

  6. The economics of Australia's oil and gas industry

    International Nuclear Information System (INIS)

    McDonald, Rob

    1994-01-01

    This article evaluates the performance of the Australian oil and gas industry, focusing on the listed companies. A large part of the Australian oil and gas industry-(as much as 60 per cent)-is held by unlisted companies or by major international groups not listed in Australia. Nevertheless, it was considered that the sample of companies reviewed gives a reasonable guide to overall industry performance. Also, as part of this relative analysis, the Australian oil and gas industry will be compared to other investments that shareholders could have enjoyed. As well, its performance will be compared with the much larger industry in the United States. It is shown that over the past 10 to 20 years, the rate of return that the Australian oil and gas industry has offered to providers of equity capital has been less than industry expectations. While it was a better performer than the smaller US companies, it lagged substantially behind the major three sectors of the US index, which are international integrated gas distribution and domestic. 10 figs

  7. Methane emissions from the global oil and gas supply chain: recent advances and next steps

    Science.gov (United States)

    Zavala Araiza, D.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Knighton, W. B.; Johnson, M.; Tyner, D. R.; Hamburg, S.

    2017-12-01

    A wide body of research has characterized methane emissions from the oil and gas system in the US. In contrast, empirical data is limited for other significant oil and gas producing regions across the world. As a consequence, measuring and characterizing methane emissions across global oil and gas operations will be crucial to the design of effective mitigation strategies. Several countries have announced pledges to reduce methane emissions from this system (e.g., North America, Climate and Clean Air Coalition [CCAC] ministers). In the case of Canada, the federal government recently announced regulations supporting a 40-45% reduction of methane emissions from the oil and gas production systems. For these regulations to be effective, it is critical to understand the current methane emission patterns. We present results from a coordinated multiscale (i.e., airborne-based, ground-based) measurement campaign in Alberta, Canada. We use empirically derived emission estimates to characterize site-level emissions and derive an emissions distribution. Our work shows that many major sources of emissions are unmeasured or underreported. Consistent with previous studies in the US, a small fraction of sites disproportionately account for the majority of emissions: roughly 20% of sites accounted for 75% of emissions. An independent airborne-based regional estimate was 40% lower than the ground-based regional estimate, but not statistically different. Finally, we summarize next steps as part of the CCAC Oil and Gas Methane Study: ongoing work that is targeting oil and gas sectors/production regions with limited empirical data on methane emissions. This work builds on the approach deployed in quantifying methane emissions from the oil and gas supply chain in the US, underscoring the commitment to transparency of the collected data, external review, deployment of multiple methodologies, and publication of results in peer-reviewed journals.

  8. Oil and Natural Gas Pipelines, North America, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Oil and Natural Gas Pipeline geospatial data layer contains gathering, interstate, and intrastate natural gas pipelines, crude and product oil pipelines, and...

  9. Oil and gas in Papua New Guinea

    International Nuclear Information System (INIS)

    Owen, A.D.; Lattimore, J.C.

    1998-01-01

    This paper documents the current status of oil and gas reserves and production in Papua New Guinea. It then provides an assessment of future prospects for the industry in the context of both the international market for oil and gas and local constraints on the industry's growth. Finally, an estimate of the impact of the industry's development on the economy of PNG is presented. (author)

  10. Oil and gas competition in Western Europe

    International Nuclear Information System (INIS)

    Carrie, J.L.

    1991-01-01

    This paper reports that in Western Europe, the competition between oil and gas began on a large scale during the 1960s. Indeed, natural gas accounted for only 2 percent of Western Europe's energy consumption in 1960 and for already 7 percent in 1970. It now accounts for about 17 percent. Almost all of this increase took place at the detriment of oil products. The competition between those two energy sources has resulted in the development of natural gas supply on one hand, and in several political and economic factors on the other

  11. Clean coal and heavy oil technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    Global power generation markets have shown a steady penetration of GT/CC technology into oil and gas fired applications as the technology has matured. The lower cost, improved reliability and efficiency advantages of combined cycles can now be used to improve the cost of electricity and environmental acceptance of poor quality fuels such as coal, heavy oil, petroleum coke and waste products. Four different technologies have been proposed, including slagging combustors, Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC) and Integrated Gasification Combined Cycle (IGCC). Details of the technology for the three experimental technologies can be found in the appendix. IGCC is now a commercial technology. In the global marketplace, this shift is being demonstrated using various gasification technologies to produce a clean fuel for the combined cycle. Early plants in the 1980s demonstrated the technical/environmental features and suitability for power generation plants. Economics, however, were disappointing until the model F GT technologies were first used commercially in 1990. The economic break-through of matching F technology gas turbines with gasification was not apparent until 1993 when a number of projects were ordered for commercial operation in the mid-1990s. GE has started 10 new projects for operation before the year 2000. These applications utilize seven different gasification technologies to meet specific application needs. Early plants are utilizing low-cost fuels, such as heavy oil or petroleum coke, to provide economics in first-of-a-kind plants. Some special funding incentives have broadened the applications to include power-only coal plants. Next generation gas turbines projected for commercial applications after the year 2000 will contribute to another step change in technology. It is expected that the initial commercialization process will provide the basis for clear technology choices on future plants.

  12. Oil palm and the emission of greenhouse gasses- from field measurements in Indonesia

    Science.gov (United States)

    Rahman, Niharika; Bruun, Thilde Bech; Giller, Ken E.; Magid, Jakob; van de Ven, Gerrie; de Neergaard, Andreas

    2017-04-01

    Palm oil from the oil palm (Elaeis guianensis) has in recent years become the world's most important vegetable oil. The increasing demand for palm oil has led to expansion of oil palm plantations, which has caused environmental controversies associated with carbon losses and the use of large amounts of mineral fertilizers. Efforts to increase sustainability of oil palm cultivation, include recycling of oil-mill residues and pruning's, but with this comes increased potential for methane emission from the plantations. Until now no field-based data on greenhouse gas emissions from oil palm plantations have been reported. Here for the first time we present data from a long term (360 days) field trial in Bah Lias Research Station, North Sumatra, Indonesia on greenhouse gas emissions from an oil palm plantation with various treatments of recycled oil palm waste products, fertilizers and simulated rainfall. The first experiment was conducted over a full year (dry + wet season) with mineral fertilizer treatments including urea and ammonium sulphate, and organic fertilizer treatments constituting: empty fruit bunches (EFB), enriched mulch (EFB + palm oil mill effluent (POME) ) and pruned oil palm fronds (OPF). Treatment doses represent the current management in Indonesian plantations and the higher doses that are expected in the imminent future. For the organic treatments several methods of application (applied in inter-rows, piles, patches or bands) were evaluated. The second experiment investigated effects of soil water saturation on GHG emissions through adding 25 mm simulated rainfall per day for 21 days. Each palm tree received 1 kg of N fertilizer as urea or ammonium sulphate and enriched mulch. The gas fluxes in the fields was measured by a large static-chamber (1.8 m x 1.2 m) method and CH4 and N2O concentrations were determined using gas chromatographs. We found that emissions were significantly affected by the type and dose of mineral fertilizers. Application of

  13. Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sonia; Ghandi, Abbas; Scanlon, Bridget R.; Brandt, Adam R.; Cai, Hao; Wang, Michael Q.; Vafi, Kourosh; Reedy, Robert C.

    2017-01-30

    A rapid increase in horizontal drilling and hydraulic fracturing in shale and “tight” formations that began around 2000 has resulted in record increases in oil and natural gas production in the U.S. This study examines energy consumption and greenhouse gas (GHG) emissions from crude oil and natural gas produced from ~8,200 wells in the Eagle Ford Shale in southern Texas from 2009 to 2013. Our system boundary includes processes from primary exploration wells to the refinery entrance gate (henceforth well-to-refinery or WTR). The Eagle Ford includes four distinct production zones—black oil (BO), volatile oil (VO), condensate (C), and dry gas (G) zones—with average monthly gas-to-liquids ratios (thousand cubic feet per barrel—Mcf/bbl) varying from 0.91 in the BO zone to 13.9 in the G zone. Total energy consumed in drilling, extracting, processing, and operating an Eagle Ford well is ~1.5% of the energy content of the produced crude and gas in the BO and VO zones, compared with 2.2% in the C and G zones. On average, the WTR GHG emissions of gasoline, diesel, and jet fuel derived from crude oil produced in the BO and VO zones in the Eagle Ford play are 4.3, 5.0, and 5.1 gCO2e/MJ, respectively. Comparing with other known conventional and unconventional crude production where upstream GHG emissions are in the range 5.9–30 gCO2e/MJ, oil production in the Eagle Ford has lower WTR GHG emissions.

  14. The crude petroleum and natural gas industry : 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Statistics regarding Canada's crude oil and natural gas industry for 1996 were presented. Data presentation was in tabular form, the topics being exploration and development, synthetic crude oil reserves, crude oil production and movements by source, natural gas production, drilling completions, net cash expenditures of the petroleum industry, and total sales of natural gas by province. Some of the noteworthy highlights for 1996 were: (1) 14,600 new wells were drilled, the highest number ever recorded, (2) capital investment was over $13 billion, (3) 148 companies were involved in mergers and acquisitions, (4) value of marketable production of oil, natural gas and natural gas by-products topped $30 billion, (5) Empress pipelines began operations of the first new major oil pipeline from Western Canada in 45 years, (6) the Hibernia offshore crude oil facility was completed, (7) Sable Island offshore energy projects applications were filed, and (8) the development of the Terra Nova, Whitehorse and Hebron fields was announced. 8 tabs

  15. Documentation of the oil and gas supply module (OGSM)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSK, to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2). OGSM is a comprehensive framework with which to analyze oil and gas supply potential and related issues. Its primary function is to produce forecast of crude oil, natural gas production, and natural gas imports and exports in response to price data received endogenously (within NEMS) from the Natural Gas Transmission and Distribution Model (NGTDM) and the Petroleum Market Model (PMM). To accomplish this task, OGSM does not provide production forecasts per se, but rather parameteres for short-term domestic oil and gas production functions and natural gas import functions that reside in PMM and NGTDM.

  16. Documentation of the oil and gas supply module (OGSM)

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSK, to describe the model's basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration's (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2). OGSM is a comprehensive framework with which to analyze oil and gas supply potential and related issues. Its primary function is to produce forecast of crude oil, natural gas production, and natural gas imports and exports in response to price data received endogenously (within NEMS) from the Natural Gas Transmission and Distribution Model (NGTDM) and the Petroleum Market Model (PMM). To accomplish this task, OGSM does not provide production forecasts per se, but rather parameteres for short-term domestic oil and gas production functions and natural gas import functions that reside in PMM and NGTDM

  17. Review of technology for Arctic offshore oil and gas recovery. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  18. Geology and assessment of undiscovered oil and gas resources of the Yukon Flats Basin Province, 2008

    Science.gov (United States)

    Bird, Kenneth J.; Stanley, Richard G.; Moore, Thomas E.; Gautier, Donald L.

    2017-12-22

    The hydrocarbon potential of the Yukon Flats Basin Province in Central Alaska was assessed in 2004 as part of an update to the National Oil and Gas Assessment. Three assessment units (AUs) were identified and assessed using a methodology somewhat different than that of the 2008 Circum-Arctic Resource Appraisal (CARA). An important difference in the methodology of the two assessments is that the 2004 assessment specified a minimum accumulation size of 0.5 million barrels of oil equivalent (MMBOE), whereas the 2008 CARA assessment specified a minimum size of 50 MMBOE. The 2004 assessment concluded that >95 percent of the estimated mean undiscovered oil and gas resources occur in a single AU, the Tertiary Sandstone AU. This is also the only AU of the three that extends north of the Arctic Circle.For the CARA project, the number of oil and gas accumulations in the 2004 assessment of the Tertiary Sandstone AU was re-evaluated in terms of the >50-MMBOE minimum accumulation size. By this analysis, and assuming the resource to be evenly distributed across the AU, 0.23 oil fields and 1.20 gas fields larger than 50 MMBOE are expected in the part of the AU north of the Arctic Circle. The geology suggests, however, that the area north of the Arctic Circle has a lower potential for oil and gas accumulations than the area to the south where the sedimentary section is thicker, larger volumes of hydrocarbons may have been generated, and potential structural traps are probably more abundant. Because of the low potential implied for the area of the AU north of the Arctic Circle, the Yukon Flats Tertiary Sandstone AU was not quantitatively assessed for the 2008 CARA.

  19. Heat pipe air preheater for gas-/oil-fired power plants

    International Nuclear Information System (INIS)

    Teixeira, D.P.

    1993-02-01

    With the rising costs of fuel, utilities are constantly looking for ways to improve the net plant heat rate of new and existing units. Significant heat rate improvements can be obtained by reducing the exit stack flue gas temperature. This project evaluated two technologies to reduce flue gas temperatures: heat pipes and liquid-coupled heat exchangers. The specific unit chosen for evaluating these systems was Pacific Gas ampersand Electric's 750 MW Moss Landing Power Plant, Unit 7. Both natural gas and low sulfur (0.5%) fuel oil are fired at this plant. Accordingly, the heat exchangers were required to operate on both fuels. This study investigated the heat recovery installation through the preliminary engineering level of detail. At the conclusion of this effort, the results indicated that neither concept was economically attractive for the retrofit situation involved. In addition, several major technical questions remained unresolved concerning the design of a single heat-exchange device capable of operating on gas (sulfur-free) and oil (sulfur-containing) environments over the full normal operating load range. While the technologies this study reviewed have been installed in actual power plant applications, the site-specific aspects of Moss Landing Unit 7 significantly influenced the estimated costs and performance of each alternative. Using more cost-effective and corrosion-resistant materials may help reduce costs. The following conditions would further enhance the viability of lowering exit gas temperatures: Higher capacity factors; rising fuel costs; greater use of sulfur-free fuels, such as natural gas; lower manufacturing costs for heat exchanger technologies; or new unit application

  20. Experience in oil field processing of gas and condensate at the Shatlyk deposits

    Energy Technology Data Exchange (ETDEWEB)

    Dalmatov, V.V.; Chernikov, Ye.I.; Govorun, V.P.; Turevskiy, Ye.N.

    1983-01-01

    The operation of installations for preparing gas are analyzed, along with the operation of individual technological devices at the Shatlyk deposit, the basic things which hinder the support of the designed low temperature conditions are shown and recommendations for standardizing the operation of the technological installations are given. Experience in the operation of the gas preparation installations at the Shatlyk deposit is recommended for use in deposits being introduced into development.

  1. 6 Ghana's Quest for Oil and Gas.cdr

    African Journals Online (AJOL)

    Administrator

    the European Union and the United States of. America (Ayoade ... oil and gas industry and their effects on the environment are discussed. Also discussed are ... There are some existing laws in Ghana .... As may be the case elsewhere, oil and gas ... construction and vehicular traffic ..... spillage, Newmont was negligent.

  2. Saskatchewan external cost review : report prepared by a Joint Oil and Gas Industry - Saskatchewan Energy and Mines Committee

    International Nuclear Information System (INIS)

    Anon.

    1996-11-01

    The external costs associated with the operating phase of oil and gas wells in Saskatchewan, were reviewed. The report identified external costs and compared their competitiveness with those of other producing jurisdictions. The profitability of the oil and gas industry in Saskatchewan was also assessed in an effort to provide industry and government with an informational package for use for discussion purposes. The study showed that (1) the oil and gas industry has been a major force for economic growth within Saskatchewan, (2) the province will continue to face stiff competition from other jurisdictions for new oil and gas investment dollars, (3) the system used for determining and administering external costs vary widely from one jurisdiction to another, and (4) a number of external costs are not sensitive to well production rates or commodity price movements. tabs., figs

  3. The ties between natural gas and oil prices

    International Nuclear Information System (INIS)

    Maisonnier, G.

    2006-01-01

    On the European continent, the price of natural gas is still tied directly and to a great extent to the price of competing energies, especially heavy fuel oil and home heating oil. In other words, the gas market is linked to the oil market. Under the effect of deregulation, this model is likely to change in the future, making a shift like that which took place on the American market in the past. (author)

  4. Pollution control in oil, gas and chemical plants

    CERN Document Server

    Bahadori, Alireza

    2014-01-01

    This unique book covers the fundamental requirements for air, soil, noise and water pollution control in oil and gas refineries, chemical plants, oil terminals, petrochemical plants, and related facilities. Coverage includes design and operational considerations relevant to critical systems such as monitoring of water pollution control, equipment, and engineering techniques as well as engineering/technological methods related to soil, noise and air pollution control. This book also: ·         Covers a diverse list of pollution control strategies important to practitioners, ranging from waste water gathering systems and oil/suspended solids removal to chemical flocculation units, biological treatment, and sludge handling and treatment ·         Provides numerous step-by-step tutorials that orient both entry level and veteran engineers to the essentials of pollution control methods in petroleum and chemical industries ·         Includes a comprehensive glossary providing readers with...

  5. International oil and gas imnvestment: moving eastward?

    International Nuclear Information System (INIS)

    Waelde, T.W.; Ndi, G.K.

    1994-01-01

    Emerging trends in international oil and gas investment are surveyed in this volume. There is a particular emphasis on the evolution in investment conditions, the environment, and the relationship between the international petroleum industry and the oil and gas sectors in Russia, the Commonwealth of Independent States, and Eastern Europe. A number of legislative documents appear as annexes. A separate abstract has been prepared for each of the 23 chapters. (UK)

  6. BC's oil and gas industry : opportunities and challenges

    International Nuclear Information System (INIS)

    Alvarez, P.

    2003-01-01

    An update of the Canadian petroleum and natural gas industry was presented with reference to activity trends and major issues. The presentation also described opportunities and challenges facing the industry in British Columbia and reviewed the impact of federal policies on BC. In recent years the industry has moved to oil sands and unconventional gas, offshore sites, and coalbed methane development. Other changes are a result of technology which makes it possible to drill deeper and faster while having less environmental impact. Government issues have become increasingly complex, however. Industry capital spending from 2000 to 2003 was presented for Northern Canada, the east coast offshore, Alberta, the Western Canada Sedimentary Basin, oil sand deposits, and international activities. The presentation included several graphs depicting: the changing natural gas production mix; North American natural gas demand; wells drilled by province; natural gas resources in BC; upstream capital spending in BC; wells drilled by type and depth in BC; top natural gas wells in 2000 and 2002; natural gas production in BC; finding and development costs for Canadian natural gas; and, the widening gap of the federal income tax rate between oil and natural gas and other industries. British Columbia is in the strategic position of having significant untapped gas potential in the northeastern part of the province. For now, there is sufficient pipeline capacity to bring the gas to markets in the United States where there is a strong demand for electric power generation. 16 figs

  7. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs

    Science.gov (United States)

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.

    2017-01-01

    The Iġnik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for CO2 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure CO2 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of CO2 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and (3) an extended (30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of CO2 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for

  8. The oil and gas equipment and services market in India

    International Nuclear Information System (INIS)

    2002-01-01

    In terms of purchasing power, India represents the fourth largest economy in the world. In the year April 1, 2001-Mar 31, 2002, it was estimated that India had a 5.4 per cent growth in gross domestic product (GDP). Canada experienced a 19.9 per cent increase in exports to India in 2001, reaching 656 million dollars. With the world's six-largest energy consumption, oil demand in India is expected to grow to 179 million tonnes in 2006-2007, while the demand for natural gas is expected to reach 231 million cubic metres per day in the same period. To meet this growing demand, India will require investments in the order of 150 billion dollars over the next 10 to 12 years. The oil and gas industry is being opened to the private sector and foreign direct investment, due to new government policies on exploration, production, distribution, and sales. Foreign involvement in exploration, previously restricted to Indian state-owned firms, is now allowed through the New Exploration Licensing Policy. In exploration and production (E and P) activities, as well as the refinery sector, foreign ownership of up to 100 per cent is now allowed. Two Indian companies which dominate the Indian E and P sector, namely Oil and Natural Gas Corporation (ONGC) and Oil India Limited (OIL), will be upgrading their ageing infrastructure, purchasing new equipment and redeveloping existing oil and gas fields, thereby creating opportunities for the supply of equipment and services. Canadian companies possessing the latest technologies and services in exploration, drilling machinery and equipment, directional drilling services, production machinery and equipment, enhanced recovery services, deep-water drilling equipment and services, and equipment for coal methane E and P should benefit from these opportunities. Over 12,000 kilometres of pipelines are being planned across India, as well as private opportunities in the refinery sector which was opened to the private sector in April 2002. Occasional

  9. Economic growth to raise U.S. oil products, natural gas demand

    International Nuclear Information System (INIS)

    Beck, R.J.

    1994-01-01

    An accelerating economy will raise consumption of oil products and natural gas in the US this year. Contributing to demand growth will be the slump that began late last year in prices for crude oil and petroleum products. Some price recovery is likely in 1994, but there's little reason to expect a major increase. With oil production falling and demand rising, imports will have to climb again this year. OGJ projects a 2.6% increase this year following a 6.6% increase last year. Imports are expected to fill a record high 49.3% of US oil demand this year. The paper discusses energy and the economy, overall energy use, energy by source, the electrification trend, energy supplies, imports, refining operations, the growth of margins, and the energy demand of motor gasoline, jet fuel, distillate fuels, residual fuel oils, other petroleum products, and natural gas

  10. US crude oil, natural gas, and natural gas liquids reserves: 1990 annual report

    International Nuclear Information System (INIS)

    1991-09-01

    The primary focus of this report is to provide an accurate estimate of US proved reserves of crude oil, natural gas, and natural gas liquids. These estimates were considered essential to the development, implementation, and evaluation of natural energy policy and legislation. In the past, the government and the public relied upon industry estimates of proved reserves. These estimates were prepared jointly by the American Petroleum Institute (API) and the American Gas Association (AGA) and published in their annual report, Reserves of Crude Oil, Natural Gas Liquids, and Natural Gas in the United States and Canada. However, API and AGA ceased publication of reserves estimates after their 1979 report. By the mid-1970's, various federal agencies had separately established programs to collect data on, verify, or independently estimate domestic proved reserves of crude oil or natural gas. Each program was narrowly defined to meet the particular needs of the sponsoring agency. In response to recognized need for unified, comprehensive proved reserves estimates, Congress in 1977 required the Department of Energy to prepare such estimates. To meet this requirement, the EIA's reserves program was undertaken to establish a unified, verifiable, comprehensive, and continuing statistical series for proved reserves of crude oil and natural gas. The program was expanded to include proved reserves of natural gas liquids in the 1979 report. 36 refs., 11 figs., 16 tabs

  11. Governance of Arctic Offshore Oil and Gas

    DEFF Research Database (Denmark)

    Bringing together leading experts from various disciplines, this book offers a comprehensive study of the governance of offshore oil and gas activities in the circumpolar Arctic. As a consequence of energy globalisation, and of a sharp increase in world energy demand, the Arctic Ocean is also now...... being targeted for its offshore oil and gas resources, at the same time as an increasing demand for democratic legitimisation and recognition of the rights of indigenous peoples is emerging in the civil spheres of society. The volume analyses how, in the daunting context of climate change......, the interactions between the various levels of governance structure the policy process and impact on the efficiency of environmental management and the effectiveness of public participation, including the participation of indigenous peoples. Any governance system for Arctic offshore oil and gas activities...

  12. 13th CERI [Canadian Energy Research Inst.] international oil and gas markets conference

    International Nuclear Information System (INIS)

    1994-01-01

    At an oil and gas industry conference, papers were presented on world oil supply and demand, energy geopolitics, world oil prices, the status of the Chinese oil/gas industry and prospects for exploration and development, Latin American oil/gas markets and development opportunities, the oil and gas industries in non-OPEC Middle East countries (Oman, Yemen, Turkey), oil and gas markets in North America, and financial and regulatory aspects of domestic gas markets in Canada and the USA. Separate abstracts have been prepared for 17 papers from this conference

  13. Dalhart's only Permian field gets best oil well

    International Nuclear Information System (INIS)

    Land, R.

    1992-01-01

    This paper reports that activity is picking up in Proctor Ranch oil field in the northwestern Texas panhandle, the only Permian producing field in the lightly drilled Dalhart basin. During the last 2 1/2 months, the field has a new operator and a new producing well, the best of five drilled since discovery in 1990. Corlena Oil Co., Amarillo, acquired the field from McKinney Oil Co. in May and tested its first well in early July. The 1-64 Proctor, 18 miles west of Channing, pumped at rates as high as 178 bd of oil and 6 b/d of water from Permian Wolfcamp dolomite perforations at 4,016-29 ft. Corlena plans to drill another well south of the field soon. The lease requires that the next well be spudded by early November. The field appears to be combination structural-stratigraphic trap in which the dolomite pinches out against the Bravo Domes-Oldham nose to the west

  14. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

    2008-05-15

    Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

  15. A detailed analysis of the productivity performance of oil and gas extraction in Canada

    International Nuclear Information System (INIS)

    Bradley, C.; Sharpe, A.

    2009-09-01

    The productivity and performance of oil and gas extraction in Canada has been poor over the last few years. Various input estimates show that labour productivity dropped by 8.23 per cent per year between 2000 and 2007. Hours worked grew 108.0 per cent while real gross domestic product (GDP) increased by 14.1 per cent. Oil and gas extraction accounted for 6.2 per cent of aggregate labour productivity growth in Canada between 1987 and 2006. Relative real oil and gas prices also increased significantly during this period. However, declining capital intensity, higher output prices and lagging innovation and technological progress led to declines in labour, capital, and total factor productivity in the oil and gas extraction sector during this period. Higher prices translated into a falling capital-labour ratio. Productivity growth suffered as a result of greater inefficiencies in operations. It was concluded that the deceleration in labour productivity growth after 2000 indicates a slower rate of increase in living standards despite the fact that higher commodity prices have increased the real income of Canadians. 90 refs., 6 tabs., 20 figs.

  16. Straight vegetable oil use in Micro-Gas Turbines: System adaptation and testing

    International Nuclear Information System (INIS)

    Prussi, M.; Chiaramonti, D.; Riccio, G.; Martelli, F.; Pari, L.

    2012-01-01

    Highlights: → The possibility to feed a Micro Gas Turbine with Straight Vegetable Oil (SVO) has been investigated. → Correlative analysis and CFD were used to model the effect of SVO characteristics on atomization and evaporation. → Minor modifications to a the commercial MGT were adopted. → Measured power output and specific fuel consumption were close to standard fuel, taking into account the LHV of SVO. → Emissions were higher than for standard fossil fuel but strongly affected by SVO temperature. -- Abstract: The aim of this research work is to investigate the use of straight vegetable sunflower oil (SFO), a liquid biofuel, in a Micro-Gas Turbine (MGT). Compared to conventional diesel engines, micro-gas turbines represent a very reliable, clean and performing small scale cogeneration technology. Commercial gas turbines have already been tested with unconventional fuels, such as biomass derived fuels; however, research work on using Straight Vegetable Oil (SVO) as fuel in MGTs are really scarce. The chemical and physical characteristics of SVO are different from fossil diesel oil and rather far from the common technical specifications for gas turbine liquid fuels, not only in terms of kinematic viscosity and Lower Heating Value, but also as regards other issues as contaminant levels and composition, fuel cold properties, ignition properties, etc. Therefore, particular attention has to be given to the atomization and evaporation phases, as these are the most critical steps to achieve stable and efficient long term operation. An analysis based on numerical correlations available from literature was initially adopted for the analysis of the atomization process, supported by CFD modeling to qualitatively investigate the flow pattern. Control parameters were revised and set so to produce a sunflower oil spray having evaporation time comparable to diesel, and minor adaptations to the fuel line were designed and installed on the MGT. Tests with blends and

  17. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A. V., E-mail: ponomarev@ipc.rssi.ru [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation); Pershukov, V. A. [ROSATOM National Nuclear Corporation (Russian Federation); Smirnov, V. P. [CJSC “Nauka i Innovatsii” (Russian Federation)

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  18. Oil and gas in Central and Eastern Europe

    International Nuclear Information System (INIS)

    Doeh, D.

    1994-01-01

    A lawyer's view of oil and gas activity in Central and Eastern Europe is presented. General observations include: the regional interdependence which stems from the persistence of the influence of Russian price subsidies and the transport infrastructure; the difference between the region's organization of the oil and gas industry from that of the West; political and historical dimensions; the difficulties of coming to terms with both the cultural elements of the law and the flood of new legislation; the search of the oil companies for a stable legal environment; and taxation. Brief country reports follow this overview. (UK)

  19. Late diagenetic indicators of buried oil and gas

    Science.gov (United States)

    Donovan, Terrence J.; Dalziel, Mary C.

    1977-01-01

    At least three hydrocarbon seepage mechanisms are interpreted to operate over oil and gas fields. These are: (1) effusion ofh ydrocarbons through inadequate caprocks and along faults and fractures, (2) low-molecular-weight hydrocarbons dissolved in water moving vertically through capping shales as a result of a hydrodynamic or chemical potential drive, and (3) diffusion of gases dissolved in water. Combinations of these mechanisms may also occur. Seeping hydrocarbons are oxidized near the earth's surface, and the resulting carbon dioxide reacts with water producing bicarbonate ions, which combine with calcium and magnesium dissolved in ground waters to yield isotopically distinctive pore-filling carbonate cements and surface rocks. The passage of hydrocarbons and associated compounds such as hydrogen sulfide through surface rocks causes a reducing environment and consequent reduction, mobilization, and loss of iron from iron-bearing minerals commonly resulting in a discoloration. Other metals such as manganese are also mobilized and redistributed. These changes in the physical and chemical properties of surface rocks correlate with the subsurface distribution of petroleum, and potentially can be detected from both airborne and spaceborne platforms.

  20. Our energy future is not set in stone. How can the demand for oil and gas in 2035 be met?

    International Nuclear Information System (INIS)

    Charlez, Philippe A.

    2014-01-01

    If technology is an undeniable catalyst for progress, then energy is its inevitable basic food. It is no coincidence that since the industrial revolution, economic growth has been fuelled first by coal, then by oil and gas. Although energy intensity reserves are still sizeable in emerging economies and the technological catalyst can partially dematerialise growth, it is unrealistic to separate growth from its basic food. And, even if the 'fossil energies share' (oil/gas/coal) will lose a few percent to nuclear and renewable energies over the next decades, all the indicators point to a world mix in which the fossil energy share will still top 75% by 2035. Driven by growth in emerging countries, the demand for oil and gas will continue to grow steadily. Even if there are enough oil and gas reserves to see us through the next three decades, will the industry be able to exploit and produce new resources that are increasingly complex to develop at a sufficient rate and which are often located in politically unstable countries? Not to mention the added challenge of the growing numbers of stakeholders who are increasingly insistent on industrial safety, environment and societal issues? In particular, will non-conventional resources, whose production growth could defer the oil and gas peaks by several decades, be able to withstand political and environmental lobbies? The evolution of oil and gas landscape over the past few years reveals a disturbing increase in the time required to develop large new fields and an accelerated decline of the production base due to the ageing of most of the mature-field facilities. This book aims to analyze all the critical factors (technical, political, economic, social and human) that could potentially accelerate or delay the maintenance and redevelopment of mature producing fields as well as the discovery and development of new conventional and unconventional resources. Insofar as in 2035, oil and gas still account for more than half of

  1. Overcoming tortuosity in hydraulic fracture operations in the Pilar Field, Alagoas, Brazil; Operacoes de fraturamento hidraulico no Campo de Pilar, Alagoas

    Energy Technology Data Exchange (ETDEWEB)

    Payao, Edson da C. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Gomes, Luiz A.Q.M.; Araujo, Josue de S. [Schlumberger, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The growing demand of natural gas by the industries in the Northeast of Brazil is the main drive for the conversion campaign witnessed in the oil wells producing at marginal rates from the Coqueiro Seco formation in the Pilar field, State of Alagoas, to gas wells producing from the deep Penedo reservoir, with total depths in the vicinity of 3500 meters. One of the important steps for increasing natural gas production in the Pilar field is the hydraulic fracturing operations in the Penedo formation. The process of creating these fractures show a distinct behavior from the treatments performed in the shallow Coqueiro Seco formation, aiming at improved oil productivity. This paper describes the completion strategy for the wells converted from oil to gas producers, highlighting the problems faced and overcome during the hydraulic fracture treatments. In deviated wells crossing the deep Penedo reservoir, the risk of multiple fractures and influence of tortuosity have been diminished through corrective techniques, unique for each one of the existing wells. In the early hydraulic fracture treatments performed in the Pilar field, premature screen-outs were commonplace, disencouraging the use of the technique. The need to produce gas brought new ideas to the battlefield, and their implementation led to results beyond expectations. (author)

  2. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    Science.gov (United States)

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  3. Evaluation of energy efficiency efforts of oil and gas offshore processing

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter

    2015-01-01

    the energy performance of these facilities, by decreasing the power and heating requirements and designing more efficient processes. Several technologies that have been proposed are to (i) promote energy integration within the oil and gas processing plant, (ii) add an additional pressure extraction level......, (iii) implement multiphase expanders, and (iv) install a waste heat recovery system. The present work builds on two case studies located in the North and Norwegian Seas, which differ by the type of oil processed, operating conditions and strategies. The findings suggest that no generic improvement can...

  4. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  5. Microbiologically Influenced Corrosion (MIC) in the Oil and Gas Industry

    DEFF Research Database (Denmark)

    Skovhus, Torben Lund; Eckert, Rickard

    2015-01-01

    Microbiologically influenced corrosion (MIC) is a serious corrosion threat that impacts the operating integrity and reliability of assets in the oil and gas, maritime, power generation, and other industries. Yet MIC is also commonly misunderstood, leading to ineffective mitigation programs, wasted...... and implement improved mitigation strategies and thereby reduce operating risk. Our experts provide guidance in applying the latest state-of-the-art molecular microbiological methods (MMM) and industry standards to properly diagnose MIC in operating assets and on failed components. With this understanding, MIC...... can be effectively addressed as part of the overall Corrosion Management System (CMS)....

  6. Australia's oil and gas industry

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Reasons for underperformance in the Australian oil and gas industry are explored in this paper including lower than expected oil prices following major capital investment, management strategies, taxation changes and access problems. Over the last two decades, the return offered to providers of equity capital has been adequate but lower than the industry expected. Corporate planning techniques need to be reexamined in the light of past performance, and realistic goals set. (UK)

  7. The origin of gas in the Changxing–Feixianguan gas pools in the Longgang gas field in the Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Shengfei Qin

    2016-10-01

    Full Text Available In this paper, the origin of natural gas in the formations of the Changxing–Feixianguan within the Longgang gas field was studied in detail using geochemical methods. The gas discovered has a very high dryness coefficient, yet low ethane and other less heavy hydrocarbons content. Apart from a small amount of N2 and CO2 gasses it generally contains H2S. In the field location, the Changxing–Feixianguan formations itself does not have a hydrocarbon generation potential. Nearing the edge of the Kaijiang-Liangping Trough, there developed the Dalong Formation. However, it also has a very low TOC content in the area of the Longgang gas field, and it cannot act as an effective source rock. The geochemistry of natural gas is much different from the gasses generated by the Silurian and Cambrian source rocks. Therefore, it is impossible that the gas in the Longgang gas field is from the Silurian and Cambrian source rocks. Gas reservoirs generally contain bitumen which is considered a product of crude oil cracking. The carbon isotope fractionation between the bitumen and methane is not distinct, and it indicates that the gas is not directly from oil cracking. The carbon of methane and ethane has isotopically less negative value, which is considered to be in a high-overmature coal-formed gas, mainly from the Longtan Formation coal measures. In comparison to the gas from high overmature stage obtained from the Xujiahe coal measure source rock in the Western Sichuan Depression. The methane in the Longgang gas field has abnormal less negative carbon isotopic value. It is due to the superposition of these two factors together: higher evolution of source rocks and mixing of gas degassing from the water. It is not caused by TSR that most researchers believed at present because the methane carbon isotopic values have no relationship with H2S content.

  8. The European Gas and Oil Market: The Role of Norway

    International Nuclear Information System (INIS)

    Harbo, F.

    2008-01-01

    The research question of this paper is related to the role of Norway in the European gas and oil market. This study aims to give a presentation of the energy policy in Norway and Norwegian participation at the European level. The first chapter will introduce Norwegian relations with Europe. For the purpose of my research, I will focus mainly on Norwegian energy policy in the second chapter, presenting Norway's oil industry in chapter 2.1.; Norwegian gas production in chapter 2.2.; and the Norwegian electrical power system in chapter 2.3. The sub-chapter 2.4. will analyse in detail the activity of the largest Norwegian oil and gas company, StatoilHydro. The third chapter will be dedicated to Norway's green energy policy (wind, sun and water), etc. The fourth chapter looks at the European perspective and will examine the European strategic gas and oil market in a globalized world. The fifth chapter will present Norway's participation in the European gas and oil market. Such strategic research must also include a look at the European Union's (EU) energy market development between Russia and Norway, which will be presented in chapter six. And finally, Norway's contribution to the development of an EU energy policy in fighting climate change will be emphasised in chapter seven. This research will analyse the following central issues: - Norwegian oil industry, - Norwegian gas production, - Norwegian electrical power system, - Norwegian challenges in the European gas and oil market. (author)

  9. The future of the oil and gas industry

    International Nuclear Information System (INIS)

    1998-01-01

    Changes are under way that are moving the oil and gas industry in Norway toward the creation of global energy companies in a global energy market. According to the author, three key forces are creating the changes of oil and gas companies comprising a global market for energy, growing demand - ample supply, and the end-user. 5 figs

  10. Decision 99-27 application 1029022 - Petro-Canada Oil and Gas application to install compressors at the Wilson Creek gas plant and at LSD 3-19-43-4 W5M, Wilson Creek Field

    International Nuclear Information System (INIS)

    1999-11-01

    Petro-Canada Oil and Gas applied to the Alberta Energy and Utilities Board (EUB) for approval to add two new compressors at the existing Wilson Creek sour gas processing facility, and to construct and operate a new sour gas compressor station in Alberta. The application was made pursuant to Section 26 (1)(b) of the Oil and Gas Conservation Act and Sections 7.001, 9.020, and 15.050 of the Oil and Gas Conservation Regulations. The applications and interventions were considered at a hearing at the Last West Hall, Rimbley, Alberta, commencing 7 April 1999. The issues concerning the applications were: the need for and location of the compressors, plant life, emissions, sulphur recovery, and noise. Petro-Canada will proceed with its commitment to local landowners to install and commission a sulphur recovery unit within 16 months of the date of this report. The sulphur recovery capability of the facility will meet guidelines defined in IL 88-13 for new sour gas plants based on either the current or an acceptable maximum daily inlet sulphur rate. Continuous-vent gas streams, including glycol regenerator, produced-water tank, and hydrocarbon condensate tank vents, at both the 3-29 compressor and at the Wilson Creek plant site will be burned in a flare or incinerator. Flare stacks at the 3-19 compressor site will be equipped with a suitable pilot and automatic igniter. The Wilson Creek plant flare system will be equipped with a suitable pilot, as well as automatic igniter and/or flame failure detection system. Petro-Canada will implement local ambient air quality monitoring and sound level monitoring consistent with its commitments to local landowners and regulatory requirements

  11. Exergetic assessment of energy systems on North Sea oil and gas platforms

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Pierobon, Leonardo; Elmegaard, Brian; Haglind, Fredrik; Breuhaus, Peter; Voldsund, Mari

    2013-01-01

    Oil and gas platforms in the North Sea region are associated with high power consumption and large CO 2 -emissions, as the processing and utility plants suffer from significant changes in production rates and performance losses over the field lifespan. In this paper, a generic model of the overall offshore system is described: its thermodynamic performance is assessed by performing an exergy accounting and rules of thumb for oil and gas platforms are derived. Simulations are built and conducted with the tools Aspen Plus ® , Dynamic Network Analysis and Aspen HYSYS ® . 62–65% of the total exergy destruction of an offshore platform is attributable to the power generation and waste heat recovery system, and 35–38% to the oil and gas processing. The variability of the feed composition has little effect on the split of the thermodynamic irreversibilities between both plants. The rejection of high-temperature gases from the utility and flaring systems is the major contributor to the exergy losses. These findings suggest to focus efforts on a better use of the waste heat contained in the exhaust gases and on the ways in which the gas compression performance can be improved. - Highlights: • North Sea oil and gas platforms are investigated and a generic model is developed. • Exergy analysis of these offshore facilities is performed. • Most of the total exergy destruction is attributable to the utility systems producing the electrical power required onsite. • Rejection of the exhaust gases from the utility systems is the major exergy loss of this system. • The highest thermodynamic performance is reached with low well-fluid content of water and gas

  12. Exergetic assessment of energy systems on North Sea oil and gas platforms

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tuong-Van [Section of Thermal Energy, Department of Mechanical Engineering, Technical University of Denmark, Building 403, Nils Koppels Allé, 2800 Kongens Lyngby (Denmark); Pierobon, Leonardo; Elmegaard, Brian; Haglind, Fredrik [Section of Thermal Energy, Department of Mechanical Engineering, Technical University of Denmark, Building 403, Nils Koppels Allé, 2800 Kongens Lyngby (Denmark); Breuhaus, Peter [Department of Energy, International Research Institute of Stavanger, Professor Olav Hanssens vei 15, 4021 Stavanger (Norway); Voldsund, Mari [Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim (Norway)

    2013-12-01

    Oil and gas platforms in the North Sea region are associated with high power consumption and large CO{sub 2}-emissions, as the processing and utility plants suffer from significant changes in production rates and performance losses over the field lifespan. In this paper, a generic model of the overall offshore system is described: its thermodynamic performance is assessed by performing an exergy accounting and rules of thumb for oil and gas platforms are derived. Simulations are built and conducted with the tools Aspen Plus{sup ®}, Dynamic Network Analysis and Aspen HYSYS{sup ®}. 62–65% of the total exergy destruction of an offshore platform is attributable to the power generation and waste heat recovery system, and 35–38% to the oil and gas processing. The variability of the feed composition has little effect on the split of the thermodynamic irreversibilities between both plants. The rejection of high-temperature gases from the utility and flaring systems is the major contributor to the exergy losses. These findings suggest to focus efforts on a better use of the waste heat contained in the exhaust gases and on the ways in which the gas compression performance can be improved. - Highlights: • North Sea oil and gas platforms are investigated and a generic model is developed. • Exergy analysis of these offshore facilities is performed. • Most of the total exergy destruction is attributable to the utility systems producing the electrical power required onsite. • Rejection of the exhaust gases from the utility systems is the major exergy loss of this system. • The highest thermodynamic performance is reached with low well-fluid content of water and gas.

  13. Strategies for restoration of deep-water coral ecosystems based on a global survey of oil and gas regulations

    Science.gov (United States)

    Cordes, E. E.; Jones, D.; Levin, L. A.

    2016-02-01

    The oil and gas industry is one of the most active agents of the global industrialization of the deep sea. The wide array of impacts following the Deepwater Horizon oil spill highlighted the need for a systematic review of existing regulations both in US waters and internationally. Within different exclusive economic zones, there are a wide variety of regulations regarding the survey of deep-water areas prior to leasing and the acceptable set-back distances from vulnerable marine ecosystems once they are discovered. There are also varying mitigation strategies for accidental release of oil and gas, including active monitoring systems, temporary closings of oil and gas production, and marine protected areas. The majority of these regulations are based on previous studies of typical impacts from oil and gas drilling, rather than accidental releases. However, the probability of an accident from standard operations increases significantly with depth. The Oil & Gas working group of the Deep Ocean Stewardship Initiative is an international partnership of scientists, managers, non-governmental organizations, and industry professionals whose goal is to review existing regulations for the oil & gas industry and produce a best practices document to advise both developed and developing nations on their regulatory structure as energy development moves into deeper waters.

  14. Knowledge Based Oil and Gas Industry

    OpenAIRE

    Sasson, Amir; Blomgren, Atle

    2011-01-01

    This study presents the Norwegian upstream oil and gas industry (defined as all oil and gasrelated firms located in Norway, regardless of ownership) and evaluates the industry according to the underlying dimensions of a global knowledge hub - cluster attractiveness, education attractiveness, talent attractiveness, R&D and innovation attractiveness, ownership attractiveness, environmental attractiveness and cluster dynamics.

  15. Origin of natural gas; Tennen gas no kigen

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Y. [The Institute of Applied Energy, Tokyo (Japan)

    1996-03-20

    Natural gas, which is a general term of flammable hydrocarbon gases such as methane, is classified by origin into the following categories : (1) oil field gas (oil gas), (2) aquifers (bacteria-fermented methane), (3) coal gas (coal field gas), and (4) abiogenetic gas. The natural gas which has (1-4) origins and is now used as resource in a large quantity is (1) oil field gas. This gas is a hydrocarbon gas recovered in the production process of petroleum and contains components such as ethane, propane and butane. To the contrary, (2) aquifers and (3) coal gas have methane as main component. As (4) abiogenetic methane, there are gas formed in inorganic reaction in activities of submarine volcanos and deep gas (earth origin gas). Oil field gas has kerogen origin. Aquifers were formed by fermentation of organic matters. Coal gas was formed by coalification of vitrinite. As abiogenetic methane, there are inorganic reaction formation gas and deep gas, the latter of which exists little as resource. 7 refs., 11 figs., 1 tab.

  16. The effect of oil and gas content on the controllability and separation in a de-oiling hydrocyclone

    OpenAIRE

    Belaidi, Hafid

    2003-01-01

    The effect of free gas on cyclonic oil-water separation was examined using a geometry which sought to minimise problems with gas. Tests were carried out using the purpose built oil-water separation facility at Bradford University where pre-choke conditions could be partially simulated. Firstly, tests were carried out with water and gas-water to look at flow behaviour and control parameters, then comparative tests carried out with gas-oil-water. Comparisons were also made with tests data from ...

  17. Future of oil and gas development in the western Amazon

    International Nuclear Information System (INIS)

    Finer, Matt; Babbitt, Bruce; Novoa, Sidney; Ferrarese, Francesco; Pappalardo, Salvatore Eugenio; Marchi, Massimo De; Saucedo, Maria; Kumar, Anjali

    2015-01-01

    The western Amazon is one of the world’s last high-biodiversity wilderness areas, characterized by extraordinary species richness and large tracts of roadless humid tropical forest. It is also home to an active hydrocarbon (oil and gas) sector, characterized by operations in extremely remote areas that require new access routes. Here, we present the first integrated analysis of the hydrocarbon sector and its associated road-building in the western Amazon. Specifically, we document the (a) current panorama, including location and development status of all oil and gas discoveries, of the sector, and (b) current and future scenario of access (i.e. access road versus roadless access) to discoveries. We present an updated 2014 western Amazon hydrocarbon map illustrating that oil and gas blocks now cover 733 414 km 2 , an area much larger than the US state of Texas, and have been expanding since the last assessment in 2008. In terms of access, we documented 11 examples of the access road model and six examples of roadless access across the region. Finally, we documented 35 confirmed and/or suspected untapped hydrocarbon discoveries across the western Amazon. In the Discussion, we argue that if these reserves must be developed, use of the offshore inland model—a method that strategically avoids the construction of access roads—is crucial to minimizing ecological impacts in one of the most globally important conservation regions. (letter)

  18. Asian gas and oil supplies, production, and utilization

    International Nuclear Information System (INIS)

    Jonchere, J.P.

    1991-01-01

    Some changes which have occurred recently, or which are now emerging, allow one to consider commercial energy revolving effectively around three poles--oil, natural gas and electricity, and these to be viewed more and more as commodities for services. A hard core of oil consumption, mainly dedicated to the transportation sector, will continue to fuel the crude oil demand growth. In Asia, such a trend will lead to an increasing reliance on Middle East crudes and thus to the need to upgrade the heavier part of the barrel. For its part, natural gas will help to limit the reliance on oil, and its resource base is large enough to offer it increasing shares in two key energy consuming sectors: electricity generation and nitrogen fertilizers. Moreover, concerns about the need to conserve natural gas reserves for use as a feedstock for nitrogen fertilizers and other petrochemicals, do not affect the picture. Limited amounts would be required and a dynamic approach to the development of fossil fuel resources enables the consideration of natural gas as a transitional fuel for the energy hungry power sector. However, in the meantime it is expected to play a key role both in safeguarding the environment and alleviating the investment burden, particularly in the power and nitrogen fertilizer sectors

  19. Alberta oil and gas industry : annual statistics for 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Alberta's 1996 annual and historical statistics for the supply and disposition of the following oil and gas products was presented: (1) crude oil and equivalent, (2) natural gas, (3) ethane, (4) propane, (5) butanes, (6) natural gas liquids, and (7) sulphur. Statistics regarding the deliveries and average price of the products and statistical data on drilling activity during 1996 were also included. Tables

  20. Tribological Behavior of HNBR in Oil and Gas Field Applications

    Directory of Open Access Journals (Sweden)

    Winoj Balasooriya

    2018-02-01

    Full Text Available The common usages of elastomeric components in oil and gas field applications are in dynamic atmospheres; especially sealing appliances that are in relative motion when interacting with surfaces. Therefore, their performance and service life mainly depend on the wear and friction characteristics in use. The objective of this scientific work is to identify the effect of swelling-induced ageing on the tribological properties and surface damage mechanisms of hydrogenated nitrile butadiene rubber (HNBR in contact with different liquids. Furthermore, the investigation of the co-relation between mechanical properties and surface properties in the tested conditions is indispensable. In the swollen state, deteriorated mechanical properties were observed; however, in de-swollen conditions, the mechanical properties were restored. As far as the surface characterization is concerned, when the HNBR was swollen by a standard IRM 903 solvent, its wear was greater compared with the un-swollen specimen (1.1 times despite the lower coefficient of friction (COF (reduced by ~25% and surface temperature (reduced by ~2.4 °C. In the de-swollen condition, wear was even greater (6 times, but the COF and surface temperature were situated in between those recorded in the swollen and un-swollen conditions. With swelling, greater wear damage and lower COF were observed; higher surface ageing (softness, which eases crack growth, created bigger debris. Under the conditions used, in the de-swollen states, the bulk mechanical properties were almost recovered, in contrast to the surface properties, which were still significantly impaired.

  1. Oil & Ethnocentrism: A study of Global Oil & Gas Organisations

    OpenAIRE

    Rees, Gareth

    2014-01-01

    This dissertation will examine the concept of ‘ethnocentrism’, or a belief in the superiority of one’s own cultural norms and values, against the backdrop of the Global Oil & Gas Service industry. Using Howard Perlmutter’s framework, ethnocentrism will be tested and analysed across distinct areas of international business; staffing and cultural prevalence, the management of international subsidiaries and corporate and national culture. Data will be collected from experienced Oil & Gas ma...

  2. Oil and gas: year full of major events and dramatic changes

    International Nuclear Information System (INIS)

    Hirman, K.

    2004-01-01

    many unclear and unsolved technical and business details that may decide about implementation of either of the projects. All these unclear issues should be solved within this year but the final execution of these plans will also depend on external business factors, on the oil markets and constellation of interest of political elites of the involved countries. Especially important will be the development of relationship between the EU and Russia after EU enlargement in May this year. The energy dialogue officially started on EU and Russia summit in Paris in 2000 should support not only business but also political cooperation between Brussels and Moscow. Similarly as in times of the cold war cooperation in area of energies could positively influence the mutual relations and could become one of the most important tools bringing Russia closer to Europe. For Russia the EU is the closes and largest export market for its raw material. This export is one of Russia's major income sources. And for the EU Russia is an important potential supplier that can ensure a stabile market and consequently a stabile economy and is also a perspective investment target for European gas and oil concerns. A development of co-operation between Russia and the EU can be beneficial for Slovakia too as it increases the perspectives for use of the Slovak gas transit corridor and in the near future could also lead to increased volumes of oil transported. It is in Slovakia's interest that Ukraine keeps its position in transit of Russian gas to Europe and that the relationship in this area between Russia and Ukrainian remains good. Should plans for building a new transit gas pipeline to Ukrainian Uzhgorod come true the volumes of gas transported through Slovakia would increase. On the other hand the construction of a pipeline through the Baltic Sea to Germany together with an increase of transport capacity of gas pipeline Jamal-Europe could result in stagnation in volumes of Russian gas transported

  3. The U.S. Oil and Gas Boom

    International Nuclear Information System (INIS)

    Brodman, John

    2012-01-01

    A funny thing happened in the last few years when no one was paying attention. What is going on is nothing short of a revolution in U.S., Lower-48 oil and natural gas production that is quickly transforming the energy sector. This transformation, while important for the oil market, is likely to be spectacularly more evolutionary in natural gas markets, both here and abroad. New production technologies have arrived at a time when the whole world is looking for cleaner-burning fuels, and they may usher in a new golden era for natural gas as a bridge fuel to a cleaner, more-sustainable energy future

  4. Environmental Risks of Landscape Botanical Complexes and Minimization of Technogenic Influence Exerted by Objects of Oil&Gas Production in Steppe Zone of the Southern Urals

    Science.gov (United States)

    Ryabukhina, M. V.; Maiski, R. A.; Salikhova, R. H.

    2017-11-01

    The modern rates of oil and gas production, developed industry, high technologies in the field of the construction and operation of wells, pipelines and other facilities of the oil and gas industry, as well as growing environmental control do not fully solve the problem of the negative impacts on natural objects, in particular, landscape botanical complexes. Taking into account the increasing oil and gas production rates, the existing objects-Orenburg NGKM and constructed ones, for example, by 2015 in the Orenburg region was organized a “new thread” oil company, LLC, the activities of which include exploration, design and preparation of the Mogutovskoye deposits, a part of the Vorontsov and a part of Gremjacheskoye deposits, as well as their exploitation, should explore and develop some effective mechanisms to minimize and eliminate the environmental risks of industrial impact. In our view the multi-component continuous monitoring of environmental risks will help to formulate an effective strategy and develop an effective preventive mechanism of technological activities, identify landscape botanical complexes which are more exposed to environmental risks as well as the regional forecast component changes in terms of a landscape botanical complex in the zone of technogenic influence exerted by the objects of the oil and gas industry.

  5. Integrated approach to gas accumulation identification in Field M

    International Nuclear Information System (INIS)

    Malyshevskaya, K; Rukavishnikov, V; Belozerov, B; Podnebesnikh, A

    2015-01-01

    The given paper describes how the integration of different methods, such as core data, well logs, production logging, seismic data and well test analysis, was used to solve the problem of determining gas accumulation boundaries in sediment complex PK1-3 of Field M. This paper is devoted to the block with wells 2, 36, 49, 85, 127, 148 of the field, since it is characterized by high uncertainty, sc. recently drilled wells 1V, 2V and 120 have produced oil, although according to the present-day geological concept they were considered to be gas saturated in the intervals investigated with production logging. Besides, well 127 that was presumably oil saturated has produced gas. By accounting mismatching production data and the geological concept, the authors have supposed that PK1-3 gas accumulation is characterized by a more complex structure than it was supposed by the predecessors and it is represented by reservoir compartmentalization and high heterogeneity. Therefore, the main goal of the work was to revise the distribution of gas saturated reservoir within the PK1-3 sediment complex. To achieve this goal, the authors have set the following tasks: to revise the geological correlation and gas oil contact; to carry out fault interpretation by means of seismic and well test data; to determine areal facies distribution on the basis of integrated core, perform a log motifs and seismic facies analysis. Thus, the estimation of the gas saturated reservoir portion was implemented in two stages: defining the boundary of gas accumulation in depth on the basis of well logs, production data and fault interpretation; reservoir distribution determination on the basis of the seismic facies analysis within the derived gas accumulation boundary

  6. Environmental guidance documents for exploration, development, Production, and transportation of crude oil and natural gas in texas: Quarterly technical report, January 1, 1997-March 31, 1997

    International Nuclear Information System (INIS)

    Savage, L.

    1997-01-01

    The following technical report provides a detailed status report of the DOE grant project entitled ''Environmental Guidance Documents for Exploration, Development, Production, and Transportation of Crude Oil and Natural Gas in Texas.'' The grant funding allocated is for the purpose of provided the Railroad Commission of Texas (Commission) with resources and capabilities to draft, publish and distribute documents that provide guidance to oil and gas operators on issues concerning oil and gas naturally occurring radioactive material (NORM) waste, oil and gas hazardous waste, remediation of crude oil spills, management of non-hazardous oil and gas wastes, and mechanical integrity testing of Class II injection and disposal wells

  7. Oil and gas trends and implications in Malaysia

    International Nuclear Information System (INIS)

    Rahim, Khalid Abdul; Liwan, Audrey

    2012-01-01

    The trends of reserves, production and consumption of oil in Malaysia to meet the ever-increasing demands do not seem to show that oil and gas will be depleted soon, contrary to many reports. Malaysia’s net exporter status of oil continues to expand over time for as long as the value of exports is greater than the value of imports. Only in physical quantities of oil that Malaysia’s imports exceed exports, but this does not mean that Malaysia will be a net importer by then. Given higher prices of exports, the value of exports outweighs the value of imports. If the current reserves are extracted based on the domestic consumption trend of 1980–2010, Malaysia’s reserves will last until 2027 but based on the 1998–2010 trend, the reserves will be depleted by 2035. Malaysia has adopted a four fuel diversification strategy comprising oil, gas, coal and hydro, instead of heavily dependent on oil. Gas has a huge potential for domestic utilization as well as for exports to increase revenues. Malaysia is one of the few countries having many types of renewable energy sources. Malaysia has great potential in biomass utilization as renewable resources mostly from the existing natural forest and planned plantations. - Highlights: ► The quantities of petroleum production and consumption are expected to converge. ► Malaysia’s status as a net exporter in value terms is expected to expand. ► With slower consumption trend, petroleum reserves will be depleted by 2035. ► There is a large potential in natural gas utilization in Malaysia. ► Renewable energy is abundant for the fuel diversification policy for Malaysia.

  8. Royalty financing for the oil and gas industry

    International Nuclear Information System (INIS)

    Read, F. M. D.

    1998-01-01

    Key concepts in royalty financing for the oil and gas industry are described. The basic significance of royalty financing for a public company is that financing is 'off balance sheet', and can be used to achieve objectives that neither debt, equity, nor outright sale of assets or farm-outs can accomplish. Royalty financing can provide increased available capital or debt reduction while maintaining the full gross share of reserve and production volumes on the books. This paper provides an overview of the field of royalty financing, with an appreciation of the benefits, reviews each of the financial alternatives (debt, equity, farmout and or sale of assets to reduce capital requirements), and provides examples of specific application of royalty financing. It is claimed that this type of financing, which has been available to the mining sector for some time, is a useful alternative to other financing instruments to acquire new oil and gas assets, to develop new areas, to implement enhanced recovery projects or to carry out mergers and acquisitions. Used judiciously, royalty financing can provide significant benefits to both the working interest owner and his shareholders, as well as the royalty company

  9. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  10. Modelling a deep water oil/gas spill under conditions of gas hydrate formation and decomposition

    International Nuclear Information System (INIS)

    Zheng, L.; Yapa, P.D.

    2000-01-01

    A model for the behavior of oil and gas spills at deepwater locations was presented. Such spills are subjected to pressures and temperatures that can convert gases to gas hydrates which are lighter than water. Knowing the state of gases as they rise with the plume is important in predicting the fate of an oil or gas plume released in deepwater. The objective of this paper was to develop a comprehensive jet/plume model which includes computational modules that simulate the gas hydrate formation/decomposition of gas bubbles. This newly developed model is based on the kinetics of hydrate formation and decomposition coupled with mass and heat transfer phenomena. The numerical model was successfully tested using results of experimental data from the Gulf of Mexico. Hydrate formation and decomposition are integrated with an earlier model by Yapa and Zheng for underwater oil or gas jets and plumes. The effects of hydrate on the behavior of an oil or gas plume was simulated to demonstrate the models capabilities. The model results indicate that in addition to thermodynamics, the kinetics of hydrate formation/decomposition should be considered when studying the behavior of oil and gas spills. It was shown that plume behavior changes significantly depending on whether or not the local conditions force the gases to form hydrates. 25 refs., 4 tabs., 12 figs

  11. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email: jairccfreitas@yahoo.com.br; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)

    2010-07-01

    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  12. Development of UK policy towards oil and gas and their effects

    International Nuclear Information System (INIS)

    Kemp, A.G.

    1992-01-01

    The evolution of policy towards the development of North Sea oil is without precedent in the government of the United Kingdom. In a remarkably short period a complex framework was devised which include arrangements to promote offshore exploration, development and operation; a novel system of taxation and special measures to encourage domestic industry to supply the needs of the oil industry. This chapter is made up of three sections. In the first there is a brief introduction to the evolution of the main policies towards oil and gas. There follows a section in which there is an assessment of these policies with particular attention given to the licensing arrangements, royalty and taxation payments, state participation, and depletion policy. Finally, there is a brief section in which some general conclusions are drawn. (author)

  13. Refining fuels of the heavy gas--oil type

    Energy Technology Data Exchange (ETDEWEB)

    Bruzac, J F.A.

    1930-01-28

    This invention has for its object the production of a new type of gas-oil fuel, obtained from crude petroleum, shale oil, and peat oil, according to the method of treatment mentioned, by means of which is obtained from gas oil, shale oil, lignite oil, and peat oil (deprived of asphaltic, and bituminous, resinous, and sulfur compounds), a fuel suitable for running Diesel, Junkers, and Clerget motors and all others of the same kind, by diminishing considerably the fouling and attack on the metal.

  14. Understanding and managing environmental liability in the Saskatchewan oil and gas industry

    International Nuclear Information System (INIS)

    Andrychuk, L.D.; LeBlanc, L.B.

    1998-01-01

    An overview of Saskatchewan legislative framework regarding the oil and gas industry was presented. In the oil and gas industry, environmental issues are regulated at the provincial level, but the industry must also be aware of federal environmental law when dealing with federal lands, federal financial assistance, interprovincial or international projects or projects which have transboundary environmental effects. In this context, the provisions of the Oil and Gas Conservation Act (OGCA) and the Oil and Gas Conservation Regulations (OGCR), the licensing of oil and gas wells, the acquisition and surrender of surface rights, and the procedures involved in environmental assessment approval were outlined. Emission control, air pollution abatement, the storage and disposal of hazardous materials, environmental issues in property transactions, and corporate environmental management are also subject to regulation under OGCA and OGCR. 42 refs

  15. Oil, Gas, Coal and Electricity - Quarterly statistics. Second Quarter 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This publication provides up-to-date and detailed quarterly statistics on oil, coal, natural gas and electricity for the OECD countries. Oil statistics cover production, trade, refinery intake and output, stock changes and consumption for crude oil, NGL and nine selected oil product groups. Statistics for electricity, natural gas, hard coal and brown coal show supply and trade. Import and export data are reported by origin and destination. Moreover, oil and hard coal production are reported on a worldwide basis.

  16. Britain's North Sea oil and gas production: a critical review

    International Nuclear Information System (INIS)

    Odell, P.R.

    1996-01-01

    The size and longevity of Britain's offshore hydrocarbons resources have been underestimated. Gas reserves were seriously under-exploited for almost 20 years from the late 1960s, given a belief that gas should be used only as a premium fuel and in the context of an uncompetitive market. Oil reserves' development and production has suffered from time to time from inappropriate politico-economic conditions. Nevertheless, offshore oil and gas has come to dominate the UK's energy production over the past 20 years and currently accounts for 85% of the country's total energy output. Fears for resources' exhaustion remain unjustified, as the industry continues to replace oil and gas reserves used each year. The North Sea is still not comprehensively explored: the continuation of the process will enable oil production to remain at high levels and that of gas to expand further. Supplementary output from the new west of Shetland province will become progressively more important after 2000. But continued intensive production overall depends on the maintenance of attractive politico-economic conditions and on present oil prices. It also requires the European gas market to remain firm but, ironically, the planned flow of UK gas to the mainland constitutes a threat to this condition. (Author)

  17. Virginia oil and gas production, exploration and development

    International Nuclear Information System (INIS)

    Stern, M.

    1990-01-01

    This paper reports that although production and drilling declined in Virginia in 1989, there were interesting projects that should impact Virginal's future oil and gas potential. In Dickenson County, Equitable Resources (EREX) began development on two areas of coalbed methane and extended the limits of the Nora Coalbed Methane Field with an exploratory well. In Westmoreland County, Texaco drilled a deep test well in the Taylorsville Basin. While a depressed market caused a decline in natural gas production of four percent, there was significant new production from ten coalbed methane wells in Dickenson County. The coalbed methane wells produced 181,526 Mcf or over one percent of the total production in the state. The 1989 total of 17,935,376 Mcf produced from 752 wells was a four percent decline from the 1988 figure of 18,682,350 Mcf from 728 wells

  18. World oil and gas resources: status and outlook - A rational attempt at an emotional issue

    International Nuclear Information System (INIS)

    Burri, P.

    2008-01-01

    This paper examines the status of world oil and gas resources and attempts to provide a rational view of the situation and the prospects available. The author states that only about a quarter of the world's estimated ultimately recoverable oil resources and one eighth of the ultimate gas resources have been produced until today. Further, the author is of the opinion that very significant reserve additions are to be expected not only from the still existing exploration frontiers (e.g. deep water and Arctic fields) but even more so from new hydrocarbon detection tools, advanced recovery technology and from unconventional oil and gas resources. The price situation is discussed as are various developments that not only have a negative but also a positive impact on supplies. Reserves and unconventional resources are discussed, particularly from the pricing point of view. The effect of pricing on consumption is examined, as are new technologies for recovery and the potential available for future exploration

  19. World oil and gas resources: status and outlook - A rational attempt at an emotional issue

    Energy Technology Data Exchange (ETDEWEB)

    Burri, P.

    2008-07-01

    This paper examines the status of world oil and gas resources and attempts to provide a rational view of the situation and the prospects available. The author states that only about a quarter of the world's estimated ultimately recoverable oil resources and one eighth of the ultimate gas resources have been produced until today. Further, the author is of the opinion that very significant reserve additions are to be expected not only from the still existing exploration frontiers (e.g. deep water and Arctic fields) but even more so from new hydrocarbon detection tools, advanced recovery technology and from unconventional oil and gas resources. The price situation is discussed as are various developments that not only have a negative but also a positive impact on supplies. Reserves and unconventional resources are discussed, particularly from the pricing point of view. The effect of pricing on consumption is examined, as are new technologies for recovery and the potential available for future exploration

  20. Venezuela slates second oil field revival round

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Venezuela will accept bids under a second round next year from private foreign and domestic companies for production contracts to operate marginal active as well as inactive oil fields. The first such round came earlier this year, involving about 55 other marginal, inactive fields. It resulted in two contractors signed with domestic and foreign companies. It represented the first time since nationalization of the petroleum industry in Venezuela in 1976 that private companies were allowed to produce oil in the country. A public bid tender was expected at presstime last week