WorldWideScience

Sample records for oil vapor pressures

  1. Vapor pressure and enthalpy of vaporization of oil of catnip by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Gobble, Chase; Chickos, James

    2016-01-01

    Highlights: • Vaporization enthalpies of the nepetalactones from oil of catnip have been evaluated. • Vapor pressures from T = (298.15 to 350) K have been evaluated. • Oil of catnip has a vapor pressure similar to DEET at T = 298.15 K. - Abstract: The vaporization enthalpy and vapor pressure of the two nepetalactones found in Nepeta cataria have been evaluated by correlation gas chromatography. Vaporization enthalpies at T = 298.15 K of {(68.0 ± 1.9) and (69.4 ± 1.9)} kJ ⋅ mol"−"1 have been derived for the minor diastereomer, (4aS,7S,7aS)-nepetalactone, and major one, (4aS,7S,7aR)-nepetalactone, respectively. Vapor pressures also at T = 298.15 K of p = (1.2 ± 0.04) Pa and (0.91 ± 0.03) Pa have been evaluated for the minor and the major stereoisomer. In addition to being of interest because of the remarkable effect it has on various felids, oil of catnip is also quite effective in repelling mosquitoes, comparable to diethyl-m-toluamide (DEET). The vapor pressures evaluated in this work suggest that the two stereoisomers have similar volatility to DEET at ambient temperatures.

  2. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    Science.gov (United States)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  3. Prediction of vapor pressure and heats of vaporization of edible oil/fat compounds by group contribution

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Gani, Rafiqul; Liu, Y.A.

    2013-01-01

    In the present work, a group contribution method is proposed for the estimation of vapor pressures and heats of vaporization of organic liquids found in edible fat/oil and biofuel industries as a function of temperature. The regression of group contribution parameters was based on an extensive...

  4. Determination of Vaporization Properties and Volatile Hazardous Components Relevant to Kukersite Oil Shale Derived Fuel Oil Handling

    Directory of Open Access Journals (Sweden)

    Ada TRAUMANN

    2014-09-01

    Full Text Available The aim of this study was to investigate vaporization properties of shale fuel oil in relation to inhalation exposure. The shale fuel oil was obtained from kukersite oil shale. The shale oil and its light fraction (5 % of the total fuel oil were characterized by vapor pressure curve, molecular weight distribution, elemental composition and functional groups based on FTIR spectra. The rate of vaporization from the total fuel oil at different temperatures was monitored as a function of time using thermogravimetric analysis (TGA. It is shown that despite its relatively low vapor pressure at room temperature a remarkable amount of oil vaporizes influencing air quality significantly. From the TGA data the changes in the vapor pressure during vaporization process were estimated. Although the shale fuel oil has a strong, unpleasant smell, the main hazards to workplace air quality depend on the vaporization rate of different toxic compounds, such as benzene, toluene, xylene or phenolic compounds. The presence of these hazardous substances in the vapor phase of shale fuel oil was monitored using headspace analysis coupled with selective ion monitoring (SIM and confirmed by the NIST Mass Spectral library and retention times of standards. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4549

  5. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  6. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  7. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  8. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  9. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  10. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  11. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  12. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  13. Vapor pressures and vaporization enthalpy of codlemone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Schultz, Shannon M.; Harris, Harold H.; Chickos, James S.

    2015-01-01

    Highlights: • The vaporization enthalpy of codlemone has been evaluated. • The vapor pressure of codlemone has been evaluated from T = (298.15 to T b ) K. • Vapor pressures for the 1-alkanols standards are available from T = (298.15 to 500) K. - Abstract: The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol −1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of T B = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of T B = (549.1 ± 0.1) K is also estimated by extrapolation

  14. Improvement of Oil-Vapor Treatment Facility for Wolsong Unit 3,4

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Kwon, S. W.; Lee, H. S.

    2009-11-01

    With the purpose to minimize an oil-vapor discharge to the atmosphere and to be an environmentally friendly nuclear power plant by an improvement of mist eliminator for turbine lubricant system at Wolsong Nuclear Power Plant Unit 3,4, this project - project name : Improvement of Oil-vapor Treatment Facility for Wolsong Unit 3,4 - was conducted for six months (from Apr. 15, 2009 to Oct. 14, 2009). This Project contains Oil-vapor Source and Environmental Regulation, Analysis on the Present Oil-vapor Treatment Facility, Improvement of Oil-vapor Treatment Facility, Test Facility Design, Fabrication, Installation, Test Operation, Evaluation of the Facility

  15. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Rong Yunhong; Gregson, Christopher M.; Parker, Alan

    2012-01-01

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  16. Flow condensation pressure drop characteristics of R410A-oil mixture inside small diameter horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, Shanghai 200020 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China)

    2010-11-15

    Flow condensation pressure drop characteristics of R410A-oil mixture inside small diameter (5.0 mm and 4.0 mm O.D.) horizontal microfin tubes were investigated experimentally covering nominal oil concentrations from 0% to 5%. The research results indicate that, comparing with the frictional pressure drop of pure R410A, the frictional pressure drop of R410A-oil mixture may decrease by maximum of 18% when the vapor quality is lower than 0.6, and increase by maximum of 13% when the vapor quality is higher than 0.6. A new frictional pressure drop correlation for R410A-oil mixture flow condensation inside microfin tubes is developed based on the refrigerant-oil mixture properties, and can agree with 94% of the experimental data within a deviation of -30% to +30%. (author)

  17. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  18. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  19. Experimental investigation and correlation of two-phase frictional pressure drop of R410A-oil mixture flow boiling in a 5 mm microfin tube

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Guoliang; Hu, Haitao; Huang, Xiangchao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China); Gao, Yifeng [International Copper Association, Shanghai Office, Shanghai 200020 (China)

    2009-01-15

    This study presents experimental two-phase frictional data for R410A-oil mixture flow boiling in an internal spiral grooved microfin tube with outside diameter of 5 mm. Experimental parameters include the evaporation temperature of 5 C, the mass flux from 200 to 400 kg m{sup -2} s{sup -1}, the heat flux from 7.46 to 14.92 kW m{sup -2}, the inlet vapor quality from 0.1 to 0.8, and nominal oil concentration from 0 to 5%. The test results show that the frictional pressure drop of R410A initially increases with vapor quality and then decreases, presenting a local maximum in the vapor quality range between 0.7 and 0.8; the frictional pressure drop of R410A-oil mixture increases with the mass flux, the presence of oil enhances two-phase frictional pressure drop, and the effect of oil on frictional pressure drop is more evident at higher vapor qualities where the local oil concentrations are higher. The enhanced factor is always larger than unity and increases with nominal oil concentration at a given vapor quality. The range of the enhanced factor is about 1.0-2.2 at present test conditions. A new correlation to predict the local frictional pressure drop of R410A-oil mixture flow boiling inside the internal spiral grooved microfin tube is developed based on local properties of refrigerant-oil mixture, and the measured local frictional pressure drop is well correlated with the empirical equation proposed by the authors. (author)

  20. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    Directory of Open Access Journals (Sweden)

    J. P. Bender

    2008-09-01

    Full Text Available This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE, liquid-liquid (LLE and vapor-liquid-liquid (VLLE equilibrium were recorded. It was experimentally observed that, at a given temperature and surfactant content, an increase in the concentration of glycerol/oil ratio led to a pronounced increase in the slope of the liquid-liquid coexistence curve. A comparison with results reported for the same system but using propane as solvent showed that much lower pressure transition values are obtained when using n-butane.

  1. Enthalpy of vaporization and vapor pressure of whiskey lactone and menthalactone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Chickos, James

    2017-01-01

    Highlights: • The vapor pressure and vaporization enthalpies of cis and trans-whiskey lactone have been evaluated. • Enthalpies of vaporization and vapor pressures of (+)-isomintlactone and (−)-mintlactone were also evaluated. • The sublimation enthalpy and corresponding vapor pressure of (+) -isomintlactone at T = 298.15 K is estimated. - Abstract: Enthalpies of vaporization at T = 298.15 K of cis and trans-whiskey lactone have been evaluated by correlation gas chromatography to be (68.4 ± 1.7) kJ·mol −1 and (67.5 ± 1.7) kJ·mol −1 , respectively. The enthalpies of vaporization of isomintlactone and mintlactone also evaluated by correlation gas chromatography have been found to have vaporization enthalpies of (74.2 ± 1.8) kJ·mol −1 and (73.2 ± 1.8) kJ·mol −1 respectively. The vapor pressures for cis and trans-whiskey lactone at T = 298.15 K have been evaluated as (1.5 ± 0.09) Pa and (2.0 ± 0.1) Pa using vapor pressures of a series of lactones as standards. Vapor pressures for isomintlactone and mintlactone were evaluated as (0.26 ± 0.012) Pa and (0.33 ± 0.02) Pa, respectively. Fusion and sublimation enthalpies for (+)-isomintlactone as well as the vapor pressure of the solid have been estimated.

  2. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a.... In addition, chemicals that are likely to be gases at ambient temperatures and which have low water... gases until the measured vapor pressure is constant, a process called “degassing.” Impurities more...

  3. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    OpenAIRE

    Bender,J. P.; Junges,A.; Franceschi,E.; Corazza,F. C.; Dariva,C.; Oliveira,J. Vladimir; Corazza,M. L.

    2008-01-01

    This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE), liquid-liquid (L...

  4. Parylene-on-oil packaging for long-term implantable pressure sensors.

    Science.gov (United States)

    Shapero, Aubrey M; Liu, Yang; Tai, Yu-Chong

    2016-08-01

    This paper reports and analyzes the feasibility study of a parylene-on-oil encapsulation packaging method of pressure sensors targeted for long-term implantation. Commercial barometric digital-output pressure sensors are enclosed in silicone oil and then encapsulated in situ with parylene-C or -D (PA-C, PA-D) chemical vapor deposition. Experimentally, sensors encapsulated with 30,000 cSt silicone oil and 27 μm PA-D show good performance for 6 weeks in 77 °C saline with >99 % of original sensitivity, corresponding to an extrapolated lifetime of around 21 months in 37 °C saline. This work shows that, with proper designs, such a packaging method can preserve the original pressure sensor sensitivity without offset, validated throughout accelerated lifetime tests. In experiments, wires on the prototypes are used for external electronics but it is found that they contributed to early failures, which would be absent in real wireless versions, indicating a potential for even longer lifetimes. Finally, a verified model is presented to predict the pressure sensor sensitivity of parylene-on-oil packaging with and without the presence of a bubble in the oil.

  5. Vapor pressures and vaporization enthalpy of (−) α-bisabolol and (dl) menthol by correlation gas chromatography

    International Nuclear Information System (INIS)

    Keating, Leasa; Harris, Harold H.; Chickos, James S.

    2017-01-01

    Highlights: • The vaporization enthalpy and vapor pressure of (−) α-bisabolol and (dl)-menthol have been measured as a function of temperature. • Vapor pressures, vaporization enthalpies and boiling temperatures have been compared to available literature data. • Vapor pressures of (l)-menthol are compared to (dl)-menthol. - Abstract: The vapor pressures and vaporization enthalpies of (−) α-bisabolol and (dl)-menthol, two GRAS chemicals (generally recognized as safe) are evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. Vaporization enthalpies of (96.6 ± 2.4) and (74.2 ± 2.8) kJ mol −1 and vapor pressures of p/Pa = (0.020 ± 0.003) and (4.5 ± 0.44) were evaluated at T = 298.15 K for (−) α-bisabolol and (dl)-menthol, respectively, and compared to literature values. The vapor pressures of both compounds from T = (298.15 to 500) K have been derived from correlations using vapor pressures of a series of 1-alkanols and corresponding gas chromatographic retention times at 10 K intervals. The results were fit to a second order polynomial. Calculated normal boiling temperatures of T B = (574.8 and 492.7) K are calculated for (−) α-bisabolol and (dl)-menthol, respectively. A normal boiling temperature of T B = (485.2, and 489.7) K has previously been reported for (dl)-menthol. Vapor pressures for both (l)-menthol and (dl)-menthol from a previous study and (dl)-menthol from this study are compared with literature values.

  6. High-pressure vapor-liquid equilibrium data for CO2-orange peel oil

    Directory of Open Access Journals (Sweden)

    G.R. Stuart

    2000-06-01

    Full Text Available Recently, there has been a growing interest in fractionating orange peel oil by the use of supercritical carbon dioxide (SCCO2. However, progress in this area has been hindered by the lack of more comprehensive work concerning the phase equilibrium behavior of the SCCO2-orange peel oil system. In this context, the aim of this work is to provide new phase equilibrium data for this system over a wide range of temperatures and pressures, permitting the construction of coexistence PT-xy curves as well as the P-T diagram. The experiments were performed in a high-pressure variable-volume view cell in the temperature range of 50-70ºC from 70 to 135 atm and in the CO2 mass fraction composition range of 0.35-0.98. Based on the experimental phase equilibrium results, appropriate operating conditions can be set for high-pressure fractionation purposes.

  7. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    Science.gov (United States)

    Troutt, William D; DiDonato, Matthew D

    2017-11-01

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  8. Vapor pressures and thermophysical properties of selected hexenols and recommended vapor pressure for hexan-1-ol

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Matějka, P.

    2015-01-01

    Roč. 402, Sep (2015), 18-29 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alcohols * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization enthalpy Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  9. Influence of phosphorus content of coconut oil on deposit and performance of plant oil pressure stoves

    Energy Technology Data Exchange (ETDEWEB)

    Kratzeisen, M.; Mueller, J. [Institut fuer Agrartechnik, Universitaet Hohenheim (440e), Garbenstrasse 9, D-70593 Stuttgart (Germany)

    2010-11-15

    Influence of phosphorus lipids on formation of deposits and performance of plant oil pressure stoves was investigated. Refined coconut oil with an original phosphorous content of 5.9 mg/kg was used as base for fuel blends by adding lecithin to adjust increased phosphorous concentrations of 32.2, 51.6 and 63.0 mg/kg. The fuel blends were analysed for acid value, iodine value, total contamination, ash content and Conradson carbon residue according to standard methods. In burning trials, the specific fuel consumption, the required frequency of nozzle cleaning and the amount of deposits in the vaporizer were measured. Results showed an exponential increase of deposits in the vaporizer when phosphorous content was increased: deposits amounted to 0.12 g/kg of consumed fuel for unblended coconut oil and 0.92 g/kg for the blend with the highest phosphorous content. Furthermore, increased phosphorous content caused higher fuel consumption of 0.375 kg/h compared to 0.316 kg/h for the control. (author)

  10. Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold.

    Science.gov (United States)

    Santoro, Karin; Maghenzani, Marco; Chiabrando, Valentina; Bosio, Pietro; Gullino, Maria Lodovica; Spadaro, Davide; Giacalone, Giovanna

    2018-01-05

    The effect of biofumigation, through slow-release diffusors, of thyme and savory essential oils (EO), was evaluated on the control of postharvest diseases and quality of peaches and nectarines. EO fumigation was effective in controlling postharvest rots. Naturally contaminated peaches and nectarines were exposed to EO vapors for 28 days at 0 °C in sealed storage cabinets and then exposed at 20 °C for five days during shelf-life in normal atmosphere, simulating retail conditions. Under low disease pressure, most treatments significantly reduced fruit rot incidence during shelf-life, while, under high disease pressure, only vapors of thyme essential oil at the highest concentration tested (10% v / v in the diffusor) significantly reduced the rots. The application of thyme or savory EO favored a reduction of brown rot incidence, caused by Monilinia fructicola , but increased gray mold, caused by Botrytis cinerea . In vitro tests confirmed that M. fructicola was more sensitive to EO vapors than B. cinerea . Essential oil volatile components were characterized in storage cabinets during postharvest. The antifungal components of the essential oils increased during storage, but they were a low fraction of the volatile organic compounds in storage chambers. EO vapors did not influence the overall quality of the fruit, but showed a positive effect in reducing weight loss and in maintaining ascorbic acid and carotenoid content. The application of thyme and savory essential oil vapors represents a promising tool for reducing postharvest losses and preserving the quality of peaches and nectarines.

  11. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  12. The vaporization enthalpy and vapor pressure of S (+)-methamphetamine at T = 298.15 K by correlation gas chromatography

    International Nuclear Information System (INIS)

    Thornton, Melissa; Gobble, Chase; Chickos, James

    2014-01-01

    Highlights: • The vaporization enthalpy of (d)-methamphetamine was measured. • The vapor pressure of (d)-methamphetamine as a function of temperature was evaluated. • The vapor pressure of 4-benzylpiperidine as a function of temperature was evaluated. - Abstract: The vaporization enthalpy and vapor pressure of S (+)-methamphetamine is evaluated by correlation-gas chromatography. A vaporization enthalpy of (58.7 ± 4.3) kJ · mol −1 and a vapor pressure, p = (38 ± 9) Pa has been obtained using a variety of secondary aliphatic amines as standards. In addition, equations describing the vapor pressure temperature dependence are provided for standards and S (+)-methamphetamine covering the temperature range from T = 298.15 K to the boiling temperature. Boiling temperatures are reproduced within an interval of 8 K or less

  13. Apparatus to measure vapor pressure, differential vapor pressure, liquid molar volume, and compressibility of liquids and solutions to the critical point. Vapor pressures, molar volumes, and compressibilities of protiobenzene and deuteriobenzene at elevated temperatures

    International Nuclear Information System (INIS)

    Kooner, Z.S.; Van Hook, W.A.

    1986-01-01

    An apparatus designed to measure vapor pressure differences between two similar liquids, such as isotopic isomers, or between a solution and its reference solvent at temperatures and pressures extending to the critical point is described. Vapor-phase volume is minimized and pressure is transmitted to the transducer through the liquid, thereby avoiding several experimental difficulties. Liquid can be injected into the heated part of the system by volumetrically calibrated screw injectors, thus permitting measurements of liquid molar volume, compressibility, and expansivity. The addition of a high-pressure circulating pump and injection valve allows the apparatus to be employed as a continuous dilution differential vapor pressure apparatus for determining partial molar free energies of solution. In the second part of the paper data on the vapor pressure, molar volume, compressibility, and expansivity and their isotope effects for C 6 H 6 and C 6 D 6 from room temperature to near the critical temperature are reported

  14. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    Science.gov (United States)

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  15. Vapor pressure and thermodynamics of beryllium carbide

    International Nuclear Information System (INIS)

    Rinehart, G.H.; Behrens, R.G.

    1980-01-01

    The vapor pressure of beryllium carbide has been measured over the temperature range 1388 to 1763 K using Knudsen-effusion mass spectrometry. Vaporization occurs incongruently according to the reaction Be 2 C(s) = 2Be(g) + C(s). The equilibrium vapor pressure above the mixture of Be 2 C and C over the experimental temperature range is (R/J K -1 mol -1 )ln(p/Pa) = -(3.610 +- 0.009) x 10 5 (K/T) + (221.43 +- 1.06). The third-law enthalpy change for the above reaction obtained from the present vapor pressures is ΔH 0 (298.15 K) = (740.5 +- 0.1) kJ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (732.0 +- 1.8) kJ mol -1 . The enthalpy of formation for Be 2 C(s) calculated from the present third-law vaporization enthalpy and the enthalpy of formation of Be(g) is ΔH 0 sub(f)(298.15 K) = -(92.5 +- 15.7) kJ mol -1 . (author)

  16. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  17. Recommended Vapor Pressure of Solid Naphthalen

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Růžička, V.

    2005-01-01

    Roč. 50, - (2005), s. 1956-1970 ISSN 0021-9568 Institutional research plan: CEZ:AV0Z10100521 Keywords : solid naphthalene * vapor pressure * enthalpy of vaporization * enthalpy of fusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.610, year: 2005

  18. Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.; Růžička, M.

    2011-01-01

    Roč. 303, č. 2 (2011), s. 205-216 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : thiophene sulfolane * dimethyl sulfoxide * vapor pressure * heat capacity * vaporization enthalpy * recommended vapor pressure equation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  19. Recommended vapor pressure and thermophysical data for ferrocene

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.; Červinka, C.; Rocha, M.A.A.; Santos, L.M.N.B.F.; Berg, R.F.

    2013-01-01

    Roč. 57, FEB (2013), 530-540 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : ferrocene * vapor pressure * heat capacity * ideal gas thermodynamic properties * sublimation enthalpy * recommended vapor pressure equation Subject RIV: BJ - Thermodynamics Impact factor: 2.423, year: 2013

  20. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  1. The vapor pressure and enthalpy of vaporization of M-xylene

    International Nuclear Information System (INIS)

    Rothenberg, S.J.; Seiler, F.A.; Bechtold, W.E.; Eidson, A.F.

    1988-01-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 ± 0.1 (SE) kj/ g·mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 (± 0.1) (SE) kjg·mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization (ΔCpdeg.) of 35 ± 3 (SE) J/g·mol·K over the temperature range studied. (author)

  2. Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold

    Science.gov (United States)

    Santoro, Karin; Maghenzani, Marco; Chiabrando, Valentina; Gullino, Maria Lodovica; Giacalone, Giovanna

    2018-01-01

    The effect of biofumigation, through slow-release diffusors, of thyme and savory essential oils (EO), was evaluated on the control of postharvest diseases and quality of peaches and nectarines. EO fumigation was effective in controlling postharvest rots. Naturally contaminated peaches and nectarines were exposed to EO vapors for 28 days at 0 °C in sealed storage cabinets and then exposed at 20 °C for five days during shelf-life in normal atmosphere, simulating retail conditions. Under low disease pressure, most treatments significantly reduced fruit rot incidence during shelf-life, while, under high disease pressure, only vapors of thyme essential oil at the highest concentration tested (10% v/v in the diffusor) significantly reduced the rots. The application of thyme or savory EO favored a reduction of brown rot incidence, caused by Monilinia fructicola, but increased gray mold, caused by Botrytis cinerea. In vitro tests confirmed that M. fructicola was more sensitive to EO vapors than B. cinerea. Essential oil volatile components were characterized in storage cabinets during postharvest. The antifungal components of the essential oils increased during storage, but they were a low fraction of the volatile organic compounds in storage chambers. EO vapors did not influence the overall quality of the fruit, but showed a positive effect in reducing weight loss and in maintaining ascorbic acid and carotenoid content. The application of thyme and savory essential oil vapors represents a promising tool for reducing postharvest losses and preserving the quality of peaches and nectarines. PMID:29303966

  3. Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold

    Directory of Open Access Journals (Sweden)

    Karin Santoro

    2018-01-01

    Full Text Available The effect of biofumigation, through slow-release diffusors, of thyme and savory essential oils (EO, was evaluated on the control of postharvest diseases and quality of peaches and nectarines. EO fumigation was effective in controlling postharvest rots. Naturally contaminated peaches and nectarines were exposed to EO vapors for 28 days at 0 °C in sealed storage cabinets and then exposed at 20 °C for five days during shelf-life in normal atmosphere, simulating retail conditions. Under low disease pressure, most treatments significantly reduced fruit rot incidence during shelf-life, while, under high disease pressure, only vapors of thyme essential oil at the highest concentration tested (10% v/v in the diffusor significantly reduced the rots. The application of thyme or savory EO favored a reduction of brown rot incidence, caused by Monilinia fructicola, but increased gray mold, caused by Botrytis cinerea. In vitro tests confirmed that M. fructicola was more sensitive to EO vapors than B. cinerea. Essential oil volatile components were characterized in storage cabinets during postharvest. The antifungal components of the essential oils increased during storage, but they were a low fraction of the volatile organic compounds in storage chambers. EO vapors did not influence the overall quality of the fruit, but showed a positive effect in reducing weight loss and in maintaining ascorbic acid and carotenoid content. The application of thyme and savory essential oil vapors represents a promising tool for reducing postharvest losses and preserving the quality of peaches and nectarines.

  4. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Jin; Choi, Hyo Hyun [Department of Mechanical Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Sohn, Chae Hoon, E-mail: chsohn@sejong.ac.kr [Department of Mechanical Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 deg. C. First, its auto-ignition temperature is measured 365 deg. C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 deg. C to 255 deg. C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  5. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner

    International Nuclear Information System (INIS)

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-01

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 deg. C. First, its auto-ignition temperature is measured 365 deg. C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 deg. C to 255 deg. C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  6. The vapor pressure and enthalpy of vaporization of M-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, S J; Seiler, F A; Bechtold, W E; Eidson, A F

    1988-12-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 {+-} 0.1 (SE) kj/ g{center_dot}mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 ({+-} 0.1) (SE) kjg{center_dot}mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization ({delta}Cpdeg.) of 35 {+-} 3 (SE) J/g{center_dot}mol{center_dot}K over the temperature range studied. (author)

  7. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  8. Some empirical rules concerning the vapor pressure curve revisited

    International Nuclear Information System (INIS)

    Velasco, S.; White, J.A.

    2014-01-01

    Highlights: • A Claussius–Claperyron equation is obtained in the Pitzer corresponding states scheme. • Some well-known empirical rules for the vapor pressure are rewritten in terms of the Pitzer acentric factor. • The Guggenheim point follows the corresponding state scheme better than the normal boiling point. • The Ambrose–Walton vapor pressure equation yields excellent agreement with NIST data in all considered cases. -- Abstract: A form for the Clausius–Clapeyron vapor-pressure equation is obtained in the Pitzer corresponding states scheme. This equation allows one to rewrite the well-known Trouton, Guldberg, van Laar and Guggenheim rules in terms of the acentric factor ω. The original forms of these empirical rules are recovered for some particular values of ω. The proposed rules are checked by analyzing National Institute of Standards and Technology (NIST) data on the liquid-vapor coexistence curve for 105 fluids. These rules have been also analyzed by using the well-known Ambrose–Walton (AW) vapor pressure equation

  9. Vaporization order and burning efficiency of crude oils during in-situ burning on water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, Linus M.V.; Jomaas, Grunde

    2017-01-01

    furthermore showed that the vaporization was diffusion-limited. Analysis of the heat transfer balance for the crude oils indicated that the energy available for evaporation decreased over time due to increasing heat losses, which were caused by the volatility controlled vaporization order. Presumably, larger......In order to improve the understanding of the burning efficiency and its observed size dependency of in-situ burning of crude oil on water, the vaporization order of the components in crude oils was studied. The vaporization order of such multicomponent fuels was assessed by studying the surface...... these results. The crude oils did not show any steady state behavior, but instead had an increasing surface temperature and decreasing burning rate and flame height, indicating a volatility controlled vaporization order. An increasing concentration gradient from the medium to heavy fraction in the burn residues...

  10. Solid vapor pressure for five heavy PAHs via the Knudsen effusion method

    International Nuclear Information System (INIS)

    Fu Jinxia; Suuberg, Eric M.

    2011-01-01

    Highlights: → We report on vapor pressures and enthalpies of fusion and sublimation of five heavy PAHs. → Solid vapor pressures were measured using Knudsen effusion method. → Solid vapor pressures for benzo[b]fluoranthene, and indeno[1,2,3-cd]pyrene have not been published in the open literature. → Reported subcooled liquid state vapor pressures may or may not lend themselves to correction to sublimation vapor pressure. → Subcooled liquid state vapor pressures might sometimes actually be closer to actual solid state sublimation vapor pressures. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) are compounds resulting from incomplete combustion and many fuel processing operations, and they are commonly found as subsurface environmental contaminants at sites of former manufactured gas plants. Knowledge of their vapor pressures is the key to predict their fate and transport in the environment. The present study involves five heavy PAHs, i.e. benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene, which are all as priority pollutants classified by the US EPA. The vapor pressures of these heavy PAHs were measured by using Knudsen effusion method over the temperature range of (364 to 454) K. The corresponding values of the enthalpy of sublimation were calculated from the Clausius-Clapeyron equation. The enthalpy of fusion for the five PAHs was also measured by using differential scanning calorimetry and used to convert earlier published sub-cooled liquid vapor pressure data to solid vapor pressure in order to compare with the present results. These adjusted values do not agree with the present measured actual solid vapor pressure values for these PAHs, but there is good agreement between present results and other earlier published sublimation data.

  11. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000 0 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O 2 , O, Pu, PuO and PuO 2 . The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu 6 + from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO 2 for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed

  12. HIGH-PRESSURE VAPOR-LIQUID EQUILIBRIUM DATA FOR BINARY AND TERNARY SYSTEMS FORMED BY SUPERCRITICAL CO2, LIMONENE AND LINALOOL

    Directory of Open Access Journals (Sweden)

    MELO S. A. B. VIEIRA DE

    1999-01-01

    Full Text Available The feasibility of deterpenating orange peel oil with supercritical CO2 depends on relevant vapor-liquid equilibrium data because the selectivity of this solvent for limonene and linalool (the two key components of the oil is of crucial importance. The vapor-liquid equilibrium data of the CO2-limonene binary system was measured at 50, 60 and 70oC and pressures up to 10 MPa, and of the CO2-linalool binary system at 50oC and pressures up to 85 bar. These results were compared with published data when available in the literature. The unpublished ternary phase equilibrium of CO2-limonene-linalool was studied at 50oC and up to 9 MPa. Selectivities obtained using these ternary data were compared with those calculated using binary data and indicate that a selective separation of limonene and linalool can be achieved.

  13. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine,

  14. Vapor pressure lowering effects due to salinity and suction pressure in the depletion of vapor-dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, A. [Aquater S.p.A., Pisa (Italy); Calore, C. [Istituto Internazionale per le Ricerche Geotermiche-CNR, Pisa (Italy); Pruess, K. [Lawrence Berkeley Lab., Berkeley, CA (United States)

    1995-03-01

    The equation-of-state module able to handle saline brines with non-condensible gas, developed for the TOUGH2 simulator, has been improved to include vapor pressure lowering (VPL) due to suction pressure as represented by Kelvin`s equation. In this equation the effects of salt are considered whereas those of non-condensible gas have currently been neglected. Numerical simulations of fluid production from tight matrix blocks have been performed to evaluate the impact of VPL effects due to salinity and suction pressure on the depletion behaviour of vapor-dominated geothermal reservoirs. Previous studies performed neglected VPL due to suction pressure showed that for initial NaCl mass fractions above threshold values, {open_quotes}sealing{close_quotes} of the block occurs and large amounts of liquid fluid may not be recovered. On the other hand, below the threshold value the matrix block dries out due to fluid production. The inclusion of VPL due to suction pressure does not allow complete vaporization of the liquid phase. As a result, the threshold NaCl concentration above which sealing of the matrix block occurs is increased. Above the {open_quotes}critical{close_quotes} NaCl concentration, block depletion behaviour with and without the VPL due to suction pressure is almost identical, as liquid phase saturation remains high even after long production times. As the VPL due to suction pressure depends mainly on capillary pressure, the shape of capillary pressure functions used in numerical simulations is important in determining VPL effects on block depletion.

  15. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    Science.gov (United States)

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    Science.gov (United States)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  17. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    Science.gov (United States)

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  18. The Yaws handbook of vapor pressure Antoine coefficients

    CERN Document Server

    Yaws, Carl L

    2015-01-01

    Increased to include over 25,000 organic and inorganic compounds, The Yaws Handbook of Vapor Pressure: Antoine Coefficients, 2nd Edition delivers the most comprehensive and practical database source for today's petrochemical. Understanding antoine coefficients for vapor pressure leads to numerous critical engineering applications such as pure components in storage vessels, pressure relief valve design, flammability limits at the refinery, as well as environmental emissions from exposed liquids, making data to efficiently calculate these daily challenges a fundamental need. Written by the world's leading authority on chemical and petrochemical data, The Yaws Handbook of Vapor Pressure simplifies the guesswork for the engineer and reinforces the credibility of the engineer's calculations with a single trust-worthy source. This data book is a must-have for the engineer's library bookshelf. Increase compound coverage from 8,200 to over 25,000 organic and inorganic compounds, including sulfur and hydrocarbons Sol...

  19. The self-similar turbulent flow of low-pressure water vapor

    Science.gov (United States)

    Konyukhov, V. K.; Stepanov, E. V.; Borisov, S. K.

    2018-05-01

    We studied turbulent flows of water vapor in a pipe connecting two closed vessels of equal volume. The vessel that served as a source of water vapor was filled with adsorbent in the form of corundum ceramic balls. These ceramic balls were used to obtain specific conditions to lower the vapor pressure in the source vessel that had been observed earlier. A second vessel, which served as a receiver, was empty of either air or vapor before each vapor sampling. The rate of the pressure increase in the receiver vessel was measured in a series of six samplings performed with high precision. The pressure reduction rate in the source vessel was found to be three times lower than the pressure growth rate in the receiver vessel. We found that the pressure growth rates in all of the adjacent pairs of samples could be arranged in a combination that appeared to be identical for all pairs, and this revealed the existence of a rather interesting and peculiar self-similarity law for the sampling processes under consideration.

  20. Method for enhanced oil recovery

    Science.gov (United States)

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  1. A technique to depress desflurane vapor pressure.

    Science.gov (United States)

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  2. Vapor pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes

    Czech Academy of Sciences Publication Activity Database

    Verevkin, S. P.; Krasnykh, E. L.; Vasiltsova, T. V.; Koutek, Bohumír; Doubský, Jan; Heintz, A.

    2003-01-01

    Roč. 206, - (2003), s. 331-339 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z4055905 Keywords : aldehydes * vapor pressure * enthalpy of vaporization Subject RIV: CC - Organic Chemistry Impact factor: 1.165, year: 2003

  3. Vapor pressures and thermophysical properties of selected monoterpenoids

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Dergal, F.; Mokbel, I.; Fulem, Michal; Jose, J.; Růžička, K.

    2015-01-01

    Roč. 406, Nov (2015), 124-133 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : monoterpenoids * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization and sublimation enthalpy Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  4. Vapor pressure and vapor fractionation of silicate melts of tektite composition

    Science.gov (United States)

    Walter, Louis S.; Carron, M.K.

    1964-01-01

    The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.

  5. Liquid-liquid contact in vapor explosion. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture).

  6. Vapor pressures and enthalpies of vaporization of a series of γ and δ-lactones by correlation gas chromatography

    International Nuclear Information System (INIS)

    Kozlovskiy, Mikhail; Gobble, Chase; Chickos, James

    2014-01-01

    Highlights: • The vaporization enthalpies of γ-octanolactone, γ- and δ-undecanolactone and γ and δ-dodecanolactone are reported. • Equations for predicting the vapor pressures over the temperature range T = (298.15 to 350) K are provided. • Vaporization enthalpies are compared to predicted values. - Abstract: The vaporization enthalpies of γ-octanolactone, γ- and δ-undecanolactone and γ and δ-dodecanolactone used commercially as flavor ingredients are reported as are their vapor pressures over the temperature range T = (298.15 to 350) K. Vaporization enthalpies at T = 298.15 K of: (66.0 ± 3.9), (79.4 ± 4.4), (80.1 ± 4.5), (83.9 ± 4.6), and (84.61 ± 4.7) kJ · mol −1 and vapor pressures also at T = 298.15 K of: (2.8 ± 0.9), (0.12 ± 0.05), (0.09 ± 0.04), (0.04 ± 0.02), and (0.03 ± 0.02) Pa, respectively, have been evaluated by correlation gas chromatography experiments. The vaporization enthalpies of the lactones studied are reproduced within ±0.5 kJ · mol −1 using a group additivity scheme reported previously for γ- and δ-lactones. The vaporization enthalpies of the γ- and δ-lactones are compared to a similar series of ω-lactones

  7. [Study on essential oil separation from Forsythia suspensa oil-bearing water body based on vapor permeation membrane separation technology].

    Science.gov (United States)

    Zhang, Qian; Zhu, Hua-Xu; Tang, Zhi-Shu; Pan, Yong-Lan; Li, Bo; Fu, Ting-Ming; Yao, Wei-Wei; Liu, Hong-Bo; Pan, Lin-Mei

    2018-04-01

    To investigate the feasibility of vapor permeation membrane technology in separating essential oil from oil-water extract by taking the Forsythia suspensa as an example. The polydimethylsiloxane/polyvinylidene fluoride (PDMS/PVDF) composite flat membrane and a polyvinylidene fluoride (PVDF) flat membrane was collected as the membrane material respectively. Two kinds of membrane osmotic liquids were collected by self-made vapor permeation device. The yield of essential oil separated and enriched from two kinds of membrane materials was calculated, and the microscopic changes of membrane materials were analyzed and compared. Meanwhile, gas chromatography-mass spectrometry (GC-MS) was used to compare and analyze the differences in chemical compositions of essential oil between traditional steam distillation, PVDF membrane enriched method and PDMS/PVDF membrane enriched method. The results showed that the yield of essential oil enriched by PVDF membrane was significantly higher than that of PDMS/PVDF membrane, and the GC-MS spectrum showed that the content of main compositions was higher than that of PDMS/PVDF membrane; The GC-MS spectra showed that the components of essential oil enriched by PVDF membrane were basically the same as those obtained by traditional steam distillation. The above results showed that vapor permeation membrane separation technology shall be feasible for the separation of Forsythia essential oil-bearing water body, and PVDF membrane was more suitable for separation and enrichment of Forsythia essential oil than PDMS/PVDF membrane. Copyright© by the Chinese Pharmaceutical Association.

  8. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  9. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available In the big vacuum freeze-drying equipment, the drying rate of materials is uneven at different positions. This phenomenon can be explained by the uneven distribution of vapor pressure in chamber during the freeze-drying process. In this paper, a mathematical model is developed to describe the vapor flow in the passageways either between material plates and in the channel between plate groups. The distribution of vapor pressure along flow passageway is given. Two characteristic factors of passageways are defined to express the effects of structural and process parameters on vapor pressure distribution. The affecting factors and their actions are quantitatively discussed in detail. Two examples are calculated and analyzed. The analysis method and the conclusions are useful to estimate the difference of material drying rate at different parts in equipment and to direct the choice of structural and process parameters.

  10. Water-vapor pressure control in a volume

    Science.gov (United States)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  11. Communication: Dynamical and structural analyses of solid hydrogen under vapor pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon-Deuk, Kim, E-mail: kim@kuchem.kyoto-u.ac.jp [Department of Chemistry, Kyoto University, Kyoto 606-8502 (Japan); Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ando, Koji [Department of Chemistry, Kyoto University, Kyoto 606-8502 (Japan)

    2015-11-07

    Nuclear quantum effects play a dominant role in determining the phase diagram of H{sub 2}. With a recently developed quantum molecular dynamics simulation method, we examine dynamical and structural characters of solid H{sub 2} under vapor pressure, demonstrating the difference from liquid and high-pressure solid H{sub 2}. While stable hexagonal close-packed lattice structures are reproduced with reasonable lattice phonon frequencies, the most stable adjacent configuration exhibits a zigzag structure, in contrast with the T-shape liquid configuration. The periodic angular distributions of H{sub 2} molecules indicate that molecules are not a completely free rotor in the vapor-pressure solid reflecting asymmetric potentials from surrounding molecules on adjacent lattice sites. Discrete jumps of librational and H–H vibrational frequencies as well as H–H bond length caused by structural rearrangements under vapor pressure effectively discriminate the liquid and solid phases. The obtained dynamical and structural information of the vapor-pressure H{sub 2} solid will be useful in monitoring thermodynamic states of condensed hydrogens.

  12. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  13. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  14. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids.

    Science.gov (United States)

    Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar

    2007-09-07

    The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.

  15. A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols

    Science.gov (United States)

    Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gøbel, Freya M.; Bilde, Merete; Marsh, Aleksandra; Reid, Jonathan P.; Huisman, Andrew J.; Riipinen, Ilona; Hyttinen, Noora; Myllys, Nanna; Kurtén, Theo; Bannan, Thomas; Percival, Carl J.; Topping, David

    2018-01-01

    To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H - (O - CH2 - CH2)n - OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10-7 to 5×10-2 Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass

  16. DETERMINATION OF SATURATION VAPOR PRESSURE OF LOW VOLATILE SUBSTANCES THROUGH THE STUDY OF EVAPORATION RATE BY THERMOGRAVIMETRIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. V. Ralys

    2015-11-01

    been carried in a stream of nitrogen N2 (20-250 ml·min-1; the duration of evaporation-sublimation (each TGA experiment is 10 hours. As a result, the vapor pressure of these substances has been determined in a wide temperature range; analysis of the dependence for the evaporation coefficients on TGA experiment conditions has been carried out; recommendations on their choice for determination of the enthalpy of vaporization and sublimation of the evaporation rate have been given. Practical Relevance. The presented theoretical and experimental apparatus allows determining the vapor pressure by TGA method for wide classes of compounds with varying volatility (including low volatility. The proposed method requires only necessary data on isothermal evaporation (sublimation and no standards. It is advisable to use this approach for the study of a wide range of high boiling compounds, such as pharmacologically active substances, oils, "green solvents", including ionic liquids, and others.

  17. Vapor pressures and sublimation enthalpies of novel bicyclic heterocycle derivatives

    International Nuclear Information System (INIS)

    Blokhina, Svetlana V.; Ol’khovich, Marina V.; Sharapova, Angelica V.; Perlovich, German L.; Proshin, Alexey N.

    2014-01-01

    Highlights: • The vapor pressures of novel bicyclo-derivatives of amine were measured. • Thermodynamic functions of sublimation were calculated. • The influence of substituent structure and chemical nature on the vapor pressure was studied. -- Abstract: The vapor pressures of five novel bicyclic heterocycle derivatives were measured over the temperature 341.15 to 396.15 K using the transpiration method by means of an inert gas carrier. From these results the standard enthalpies and Gibbs free energies of sublimation at the temperature 298.15 K were calculated. The effects of alkyl- and chloro-substitutions on changes in the thermodynamic functions have been investigated. Quantitative structure–property relationship on the basis HYBOT physico-chemical descriptors for biologically active compounds have been developed to predict the sublimation enthalpies and Gibbs free energies of the compounds studied

  18. The vapor pressure and vaporization enthalpy of R-(+)-menthofuran, a hepatotoxin metabolically derived from the abortifacient terpene, (R)-(+)-pulegone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Gobble, Chase; Chickos, James S.

    2016-01-01

    Highlights: • The vaporization enthalpy and vapor pressure of R-(+) menthofuran is evaluated. • The normal boiling temperature is predicted and compared to experimental and predicted values. • A vapor pressure equation as a function of temperature for menthofuran is evaluated. - Abstract: The vapor pressure as a function of temperature and its vaporization enthalpy at T = 298.15 K of R-(+)-menthofuran, a substance metabolically derived from R-(+)-pulegone that is both a flavoring agent at low concentrations and a hepatotoxin at larger ones, is evaluated by correlation-gas chromatography. A vapor pressure p/Pa = (36 ± 12) has been evaluated at T = 298.15 K, and a normal boiling temperature of T_b/K = 482.4 K is predicted. A boiling temperature of T_b/K = 374.3 compares with the literature value of T_b/K = 371.2 at reduced pressure, p/kPa = 2.93. The vaporization enthalpy of (56.5 ± 3.0) kJ·mol"−"1 compares to an estimated value of (57.8 ± 2.9) kJ·mol"−"1.

  19. Modified swelling pressure apparatus using vapor pressure technique for compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, Tomoyoshi

    2012-01-01

    Document available in extended abstract form only. bentonite. The compacted bentonite is found in unsaturated conditions before applying of swelling due to absorption. The behaviour of compacted bentonite is not consistent with the principle and concepts of classical, saturated soil mechanics. An unsaturated soil theoretical framework using soil water characteristic curve has been fairly established over the past several decades. The soil-water characteristic curve is a relationship between soil moisture and soil suction obtained by the axis translation technique, vapor pressure technique or osmotic suction control which is a key feature in unsaturated soil mechanics. The soil-water characteristic curve can be used for prediction of the shear strength, volume change and hydraulic conductivity. Cui et al. 2002 indicated soil-water characteristic curve of expansive clay soil in high soil suction ranges using osmotic suction technique. Tripathy et al. 2010 described the soil-water characteristic curve both using the axis translation technique and vapor pressure technique in the entire soil suction ranges. Nishimura and Koseki 2011 measured suction of bentonite applied high soil suction due vapor pressure using a chilled mirror dew point potentiometer (WP4-T of DECAGON Device). The bentonite with gravimetric water content of 18 % indicated soil suction of 2.8 MPa at least. It is predicted that suction efforts to swelling pressure and shear strength of unsaturated compacted bentonite. This study focuses on the influence of suction on both swelling pressure and shear strength of compacted bentonite. The soil-water characteristic curve (SWCC) tests were conducted for compacted bentonite using both axis-translation technique and vapor pressure technique. The SWCC had a range from 0 kPa to 296 MPa in suction. The compacted bentonite having two different soil suctions were prepared for swelling pressure tests. Newly swelling pressure testing apparatus was developed in order

  20. Vapor pressure of selected organic iodides

    Czech Academy of Sciences Publication Activity Database

    Fulem, M.; Růžička, K.; Morávek, P.; Pangrác, Jiří; Hulicius, Eduard; Kozyrkin, B.; Shatunov, V.

    2010-01-01

    Roč. 55, č. 11 (2010), 4780-4784 ISSN 0021-9568 R&D Projects: GA ČR GA203/08/0217 Institutional research plan: CEZ:AV0Z10100521 Keywords : vapor pressure * static method * organic iodides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.089, year : 2010

  1. A Local Propagation for Vapor Explosions

    International Nuclear Information System (INIS)

    Ochiai, M.; Bankoff, S.G.

    1976-01-01

    Explosive boiling, defined as energy transfer leading to formation of vapor rapidly enough to produce large shock waves, has been widely studied in a number of contexts. Depending upon the nature and temperatures of the liquids and mode of contacting, large-scale mixing and explosive vaporization may occur, or alternatively, only relatively non-energetic, film-type boiling may exist. The key difference is whether a mechanism is operative for increasing the liquid-liquid interfacial area in a time scale consistent with the formation of a detonation wave. Small drops of a cold volatile liquid were dropped onto a free surface of a hot, non-volatile liquid. The critical Weber number for coalescence is obtained from the envelope of the film boiling region. Markedly different behavior for the two hot liquids is observed. A 'splash' theory for local propagation of vapor explosions in spontaneously nucleating liquid-liquid systems is now formulated. After a random contact is made, explosive growth and coalescence of the vapor bubbles occurs as soon as the surrounding pressure is relieved, resulting in a high-pressure vapor layer at the liquid-liquid contact area. This amounts to an impact pressure applied to the free surface, with a resulting velocity distribution obtained from potential flow theory. The peak pressure predictions are. consistent with data for Freon-oil mixing, but further evaluation will await additional experimental data. Nevertheless, the current inference is that a UO 2 -Na vapor explosion in a reactor environment cannot be visualized. In conclusion: The propagation model presented here differs in some details from that of Henry and Fauske, although both are consistent with some peak pressure data obtained by Henry, et al. Clearly, additional experimental information is needed for further evaluation of these theories. Nevertheless, it should be emphasized that even at this time a number of important observations concerning the requirements for a vapor

  2. Saturated vapor pressure of lutetium tris-acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1983-12-01

    By the statical method using /sup 177/Lu radioactive isotope the saturated vapor pressure of anhydrous lutetium acetylacetonate at 130 to 160 deg is determined. The calculations are carried out assuming the vapor to be monomolecular. The equation of lgP versus 1/T takes the form: lg Psub((mmHg))=(8.7+-1.6)-(4110+-690)/T. The thermodynamical characteristics of LuA/sub 3/ sublimation are calculated to be ..delta..Hsub(subl.)=79+-13 kJ/mol; ..delta..Ssub(subl.)=111+-20 J/kxmol.

  3. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    International Nuclear Information System (INIS)

    Huang, Zhixian; Jiang, Haiming; Li, Ling; Wang, Hongxing; Qiu, Ting

    2015-01-01

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF 3 COOCH 2 CH 3 ) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R 2 ) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  4. Vapor pressures of dimethylcadmium, trimethylbismuth, and tris(dimethylamino)antimony

    Czech Academy of Sciences Publication Activity Database

    Morávek, Pavel; Fulem, Michal; Pangrác, Jiří; Hulicius, Eduard; Růžička, K.

    2013-01-01

    Roč. 360, Dec (2013), s. 106-110 ISSN 0378-3812 R&D Projects: GA ČR GA13-15286S; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : vapor pressure * dimethylcadmium * trimethylbismuth * tris(dimethylamino)antimony * sublimation and vaporization enthalpy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.241, year: 2013

  5. Vapour pressure and enthalpy of vaporization of aliphatic poly-amines

    International Nuclear Information System (INIS)

    Efimova, Anastasia A.; Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Chernyak, Yury

    2010-01-01

    Molar enthalpies of vaporization of aliphatic poly-amines: 1,4-dimethylpiperazine [106-58-1], 1-(2-aminoethyl)-piperazine, [140-31-8], 1-(2-aminoethyl)-4-methyl-piperazine [934-98-5], and triethylenetetramine [112-24-3] were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. A large number of the primary experimental results on temperature dependences of vapour pressures of the parent compounds have been collected from the literature and have been treated uniformly in order to derive vaporization enthalpies of poly-amines at the reference temperature 298.15 K. An internal consistency check was performed on enthalpy of vaporization values for poly-amines studied in this work.

  6. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Vapor Pressure 1 3. Experiment 3 4. Discussion and Measurements 5 5...SbI3 as a function of temperature ......................... 6 Approved for public release; distribution is unlimited. 1 1. Introduction ...single-crystal thin films of n-type (Bi,Sb)2(Te,Se)3 materials presents new doping challenges because it is a nonequilibrium process. (Bi,Sb)2(Te,Se)3

  7. Wash-oil problem

    Energy Technology Data Exchange (ETDEWEB)

    Chlosta, J

    1941-01-01

    Meier-Grolman and others have deduced from experimental studies of the vapor pressure of solutions of benzene in paraffin oil and Solway oil-paraffin oil mixtures that the higher the proportion of aliphatic compounds in a wash oil, the less suitable it is for benzene scrubbing. This generalization is not supported. Paraffin oils from brown-coal tar and low viscous oils from the Fischer-Tropsch hydrocarbon synthesis process are both being successfully used for benzene scrubbing.

  8. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    Science.gov (United States)

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  9. Controlling Vapor Pressure In Hanging-Drop Crystallization

    Science.gov (United States)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  10. On the vapor-liquid equilibrium in hydroprocessing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Munteanu, M.; Farooqi, H. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2009-07-01

    When petroleum distillates undergo hydrotreating and hydrocracking, the feedstock and hydrogen pass through trickle-bed catalytic reactors at high temperatures and pressures with large hydrogen flow. As such, the oil is partially vaporized and the hydrogen is partially dissolved in liquid to form a vapor-liquid equilibrium (VLE) system with both vapor and liquid phases containing oil and hydrogen. This may result in considerable changes in flow rates, physical properties and chemical compositions of both phases. Flow dynamics, mass transfer, heat transfer and reaction kinetics may also be modified. Experimental observations of VLE behaviours in distillates with different feedstocks under a range of operating conditions were presented. In addition, VLE was predicted along with its effects on distillates in pilot and commercial scale plants. tabs., figs.

  11. Recovery of light oil from organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, E; Schultz, E L

    1927-10-04

    To recover a high percentage of light oil from organic materials, such as crude oil, shale, and the like, the raw material, as crude oil, is vaporized in a still. The vapors are passed into a converter constructed of zinc, nickel, and lead, or sherardized steel, and contain lime and zinc chloride or zinc oxide and are agitated by paddles. The gases react under pressure which is maintained therein and gradually increased, as the temperatures in the still and converter are both gradually increased, so that after the gases have been condensed an odorless high grade light oil is produced. A pressure of from 2 to 10 lb per square inch is maintained in the converter by means of an expansion valve of the needle type, which is located in the vapor outlet pipe between the converter and the condenser. In a modified form of apparatus, a dephlegmator is located between the converter and the condenser.

  12. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    Science.gov (United States)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  13. Thermodynamic functions and vapor pressures of uranium and plutonium oxides at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Reedy, G.T.; Leibowitz, L.

    1977-01-01

    The total energy release in a hypothetical reactor accident is sensitive to the total vapor pressure of the fuel. Thermodynamic functions which are accurate at high temperature can be calculated with the methods of statistical mechanics provided that needed spectroscopic data are available. This method of obtaining high-temperature vapor pressures should be greatly superior to the extrapolation of experimental vapor pressure measurements beyond the temperature range studied. Spectroscopic data needed for these calculations are obtained from infrared spectroscopy of matrix-isolated uranium and plutonium oxides. These data allow the assignments of the observed spectra to specific molecular species as well as the calculation of anharmonicities for monoxides, bond angles for dioxides, and molecular geometries for trioxides. These data are then employed, in combination with data on rotational and electronic molecular energy levels, to determine thermodynamic functions that are suitable for the calculation of high-temperature vapor pressures

  14. Low temperature measurement of the vapor pressures of planetary molecules

    Science.gov (United States)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  15. Determination of the solid-liquid-vapor triple point pressure of carbon

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1976-01-01

    A detailed experimental study of the triple point pressure of carbon using laser heating techniques has been completed. Uncertainties and conflict in previous investigations have been addressed and substantial data presented which places the solid-liquid-vapor carbon triple point at 107 +- 2 atmospheres. This is in agreement with most investigations which have located the triple point pressure between 100 and 120 atmospheres, but is in disagreement with recent low pressure carbon experiments. The absence of any significant polymorphs of carbon other than graphite suggests that the graphite-liquid-vapor triple point has been measured. Graphite samples were melted in a pressure vessel using a 400 W Nd:YAG continuous-wave laser focused to a maximum power density of approximately 80 kW/cm 2 . Melt was confirmed by detailed microstructure analysis and x-ray diffraction of the recrystallized graphite. Experiments to determine the minimum melt pressure of carbon were completed as a function of sample size, type of inert gas, and laser power density to asure that laser power densities were sufficient to produce melt at the triple point pressure of carbon, and the pressure of carbon at the surface of the sample was identical to the measured pressure of the inert gas in the pressure vessel. High-speed color cinematography of the carbon heating revealed the presence of a laser-generated vapor or particle plume in front of the sample. The existence of this bright plume pevented the measurement of the carbon triple point temperature

  16. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    Science.gov (United States)

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  17. Rose oil (from Rosa × damascena Mill.) vapor attenuates depression-induced oxidative toxicity in rat brain.

    Science.gov (United States)

    Nazıroğlu, Mustafa; Kozlu, Süleyman; Yorgancıgil, Emre; Uğuz, Abdülhadi Cihangir; Karakuş, Kadir

    2013-01-01

    Oxidative stress is a critical route of damage in various physiological stress-induced disorders, including depression. Rose oil may be a useful treatment for depression because it contains flavonoids which include free radical antioxidant compounds such as rutin and quercetin. We investigated the effects of absolute rose oil (from Rosa × damascena Mill.) and experimental depression on lipid peroxidation and antioxidant levels in the cerebral cortex of rats. Thirty-two male rats were randomly divided into four groups. The first group was used as control, while depression was induced in the second group using chronic mild stress (CMS). Oral (1.5 ml/kg) and vapor (0.15 ml/kg) rose oil were given for 28 days to CMS depression-induced rats, constituting the third and fourth groups, respectively. The sucrose preference test was used weekly to identify depression-like phenotypes during the experiment. At the end of the experiment, cerebral cortex samples were taken from all groups. The lipid peroxidation levels in the cerebral cortex in the CMS group were higher than in control whereas their levels were decreased by rose oil vapor exposure. The vitamin A, vitamin E, vitamin C and β-carotene concentrations in the cerebral cortex were lower in the CMS group than in the control group whereas their concentrations were higher in the rose oil vapor plus CMS group. The CMS-induced antioxidant vitamin changes were not modulated by oral treatment. Glutathione peroxidase activity and reduced glutathione did not change statistically in the four groups following CMS or either treatment. In conclusion, experimental depression is associated with elevated oxidative stress while treatment with rose oil vapor induced protective effects on oxidative stress in depression.

  18. Liquid-vapor phase transition upon pressure decrease in the lead-bismuth system

    Science.gov (United States)

    Volodin, V. N.

    2009-11-01

    The liquid-vapor phase transitions boundaries were calculated on the basis of the values of vapor pressure of the components in the lead-bismuth system during the stepwise pressure decrease by one order of magnitude from 105 down to 1 Pa. The emergence of azeotropic liquid under pressure lower than 19.3 kPa was ascertained. The emergence of azeotropic mixture near the lead edge of the phase diagram was concluded to be the reason for technological difficulties in the distillation separation of the system into the components in a vacuum.

  19. Modeling vapor pressures of solvent systems with and without a salt effect: An extension of the LSER approach

    International Nuclear Information System (INIS)

    Senol, Aynur

    2015-01-01

    Highlights: • A new polynomial vapor pressure approach for pure solvents is presented. • Solvation models reproduce the vapor pressure data within a 4% mean error. • A concentration-basis vapor pressure model is also implemented on relevant systems. • The reliability of existing models was analyzed using log-ratio objective function. - Abstract: A new polynomial vapor pressure approach for pure solvents is presented. The model is incorporated into the LSER (linear solvation energy relation) based solvation model framework and checked for consistency in reproducing experimental vapor pressures of salt-containing solvent systems. The developed two structural forms of the generalized solvation model (Senol, 2013) provide a relatively accurate description of the salting effect on vapor pressure of (solvent + salt) systems. The equilibrium data spanning vapor pressures of eighteen (solvent + salt) and three (solvent (1) + solvent (2) + salt) systems have been subjected to establish the basis for the model reliability analysis using a log-ratio objective function. The examined vapor pressure relations reproduce the observed performance relatively accurately, yielding the overall design factors of 1.084, 1.091 and 1.052 for the integrated property-basis solvation model (USMIP), reduced property-basis solvation model and concentration-dependent model, respectively. Both the integrated property-basis and reduced property-basis solvation models were able to simulate satisfactorily the vapor pressure data of a binary solvent mixture involving a salt, yielding an overall mean error of 5.2%

  20. Calculation of vapor pressure of fission product fluorides and oxyfluorides

    International Nuclear Information System (INIS)

    Roux, J.P.

    1976-03-01

    The equilibrium diagrams of the condensed phases - solid and liquid - and vapor phase are collected for the principal fluorides and oxyfluorides of fission product elements (atomic number from 30 to 66). These diagrams are used more particularly in fuel reprocessing by fluoride volatility process. Calculations and curves (vapor pressure in function of temperature) are processed using a computer program given in this report [fr

  1. Vapor pressure of plutonium carbide adsorbed on graphite

    International Nuclear Information System (INIS)

    Tallent, O.K.; Wichner, R.P.; Towns, R.L.; Godsey, T.T.

    1984-09-01

    An investigation was conducted to obtain data needed to make realistic estimates of plutonium contamination in the primary coolant system in High Temperature Gas-Cooled Reactors (HTGRs). The vapor pressure of plutonium over plutonium sesquicarbide (Pu 2 C 3 ) adsorbed on the surface of H-451 graphite was found to be defined by adsorption isotherms at test temperatures of 1000, 1200, and 1400 0 C. The vapor pressures at low concentrations of Pu 2 C 3 on the surface of the graphite were up to three orders of magnitude below that of pure Pu 2 C 3 at a given temperature. The heat of adsorption increases with decreasing Pu 2 C 3 surface coverage with the measured value at 0.05 μmol Pu 2 C 3 /m 2 being 107.9 kcal/mol. The Pu 2 C 3 concentration required for monolayer surface coverage on the graphite was found to be 3.27 μmol/m 2

  2. Vapor pressures of oxide reactor fuels above 3000 K: Review and perspective

    International Nuclear Information System (INIS)

    Breitung, W.

    1982-03-01

    Vapor pressures of liquid oxide reactor fuels are among the most important material data required for theoretical analyses of Hypothetical Core Disruptive Accidents in Fast Breeder Reactors. This report is an attempt to completely summarize and critically review the numerous theoretical and experimental results published for the pressure-temperature and pressure-energy relation of unirradiated UO 2 and (U,Pu)O 2 . First - to define the research goal - the precision in the saturation vapor pressure is quantified which is required for the purpose of HCDA calculations. Then the various theoretical and experimental methods used for the determination of p-T and p-U data are reviewed with respect to their principles, results and uncertainties. The achievements of the individual methods are discussed in the light of the research goal and - in view of the widely scattered data - recommendations are made concerning the p-T and p-U relation of UO 2 . Finally, the most important future research areas are identified, including some specific research proposals which aim at reducing the still large uncertainties in fuel vapor pressures down to the desired level. (orig.) [de

  3. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    Science.gov (United States)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  4. Indirect Determination of Vapor Pressures by Capillary Gas-Liquid Chromatography: Analysis of the Reference Vapor-Pressure Data and Their Treatment

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Koutek, Bohumír; Fulem, M.; Hoskovec, Michal

    2012-01-01

    Roč. 57, č. 5 (2012), s. 1349-1368 ISSN 0021-9568 R&D Projects: GA ČR GA203/09/1327 Institutional research plan: CEZ:AV0Z40550506 Keywords : vapor pressures * capillary gas–liquid chromatography * reference data * relative retention time Subject RIV: CC - Organic Chemistry Impact factor: 2.004, year: 2012

  5. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. (Argonne National Lab., IL (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  6. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. [Argonne National Lab., IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-04-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  7. DOE/DOE Tight Oil Flammability & Transportation Spill Safety

    Energy Technology Data Exchange (ETDEWEB)

    Lord, David L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This presentation describes crude oils, their phase behavior, the SPR vapor pressure program, and presents data comparisons from various analytical techniques. The overall objective is to describe physical properties of crude oil relevant to flammability and transport safety

  8. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric uranium-plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions in equilibrium with a hypostoichiometric uranium-plutonium dioxide condensed phase (U/sub 1-y/Pu/sub y/)O/sub 2-x/, as functions of T, x, and y, have been calculated for 0.0 less than or equal to x less than or equal to 0.1, 0.0 less than or equal to y less than or equal to 0.3, and for the temperature range 2500 less than or equal to T less than or equal to 6000 K. The range of compositions and temperatures was limited to the region of interest to reactor safety analysis. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen potential model to obtain partial pressures of O, O 2 , Pu, PuO, PuO 2 , U, UO, UO 2 , and UO 3 as functions of T, x, and y

  9. Oils; gas

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T

    1922-09-18

    Oils and gas are obtained from shale or oil-bearing sand by immersing the shale in and passing it through a bath of liquid oil, cracking the oil-soaked shale, and condensing the vapor and using the condensate to replenish the bath, preferably by passing the gases and vapors direct into the oil-bath container. Shale is fed continuously from a hopper to a bath of oil in an inclined chamber, is carried to the outlet by a conveyer, and through cracking tubes to an outlet pipe by conveyers. The gases and vapors escape by the pipe, a part condensing in the chamber and a run-back pipe and replenishing the bath, and the remainder passing through a condensing tower and condenser connected to reservoirs; the gas is further passed through a scrubber and a pipe to the burner of the retort. The oil condensed in the chamber overflows to the reservoir through a pipe provided with an open pipe to prevent siphoning. The conveyers and a valve on the pipe are operated by gearing. The operation may be conducted at reduced, normal, or increased pressure, e.g., 70 lbs. The temperature of the retort should be about 900 to 1400/sup 0/F, that of the inside of the tubes about 550 to 700/sup 0/F, and that of the chamber about 300/sup 0/F. The chamber and pipe may be insulated or artificially cooled.

  10. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    Science.gov (United States)

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  11. Vapor pressure, heat capacities, and phase transitions of tetrakis(tert-butoxy)hafnium

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.

    2011-01-01

    Roč. 311, Dec. (2011), s. 25-29 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : tetrakis(tert-butoxy)hafnium * MO precursor * vapor pressure * heat capacity * vaporization enthalpy * enthalpy of fusion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  12. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  13. The effect of deuterium substitution on the vapor pressure of acetonitrile

    International Nuclear Information System (INIS)

    Jancso, G.; Jakli, Gy.; Koritsanszky, T.

    1980-01-01

    The vapor pressure difference between CH 3 CN and CD 3 CN was measured by differential capacitance manometry between -40 and +80 deg C. The vapor pressure isotope effects (VPIE) derived from the results may be expressed by the equation: ln(psub(H)/Psub(D))=871.761/T 2 -13.577/T+0.006874. The experimental data were interpreted within the framework of the statistical theory of isotope effects in condensed systems. The largest contribution to the VPIE arises from the shifts in the CH stretching vibrations resulting from condensation which were found to be temperature dependent in good agreement with the available spectroscopic information. (author)

  14. The effect of fish oil supplements on blood pressure.

    Science.gov (United States)

    Lofgren, R P; Wilt, T J; Nichol, K L; Crespin, L; Pluhar, R; Eckfeldt, J

    1993-01-01

    We conducted a double-blind, placebo-controlled crossover study to determine the effects of fish oil supplementation on blood pressure in middle-aged men. Subjects were randomly assigned to consume either 20 g of fish oil or safflower oil for 12 weeks and then consume the other oil for an additional 12 weeks after a 4-week washout period. We found no significant changes from the pretreatment value in systolic or diastolic blood pressure with the use of fish oil supplements. In addition, there were no significant differences in the posttreatment blood pressures comparing the fish and safflower oil phases of the study. PMID:8427339

  15. Distilling hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, J E

    1923-03-19

    In distilling mineral oils such as petroleum, shale oil, distillates and topped or residual oils, particularly to obtain lubricating oils, the distillation is carried out under reduced pressures below an absolute pressure of 25 mm. of mercury and preferably below about 5 mm. of mercury, and the distillate is collected in fractions determined by the physical characteristics, such as viscosity, flash point, fire point, etc. Superheated steam may be passed through the liquid during distillation. A horizontal cylindrical still provided with cross braces and peripheral ribs interrupted at the base is connected through a condensing coil immersed in a steam chest and a baffled chamber with distillate receiver and is evacuated by a pump. Steam from a boiler and superheater is injected into the still through a perforated pipe. Steam and light oil vapors passing from the chamber are condensed in a coil.

  16. Vapour pressures and enthalpies of vaporization of a series of the ferrocene derivatives

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Krol, Olesya V.; Varushchenko, Raisa M.; Chelovskaya, Nelly V.

    2007-01-01

    Vapour pressures of the ferrocene, ferrocene-methanol, benzyl-ferrocene, and benzoyl-ferrocene have been determined by the transpiration method. The molar enthalpies of sublimation Δ cr g H m and of vaporization Δ l g H m have been determined from the temperature dependence of the vapour pressure. The molar enthalpies of fusion of these compounds were measured by d.s.c. The measured data sets of vaporization, sublimation, and fusion enthalpies were checked for internal consistency

  17. Vapor Measurement System of Essential Oil Based on MOS Gas Sensors Driven with Advanced Temperature Modulation Technique

    Science.gov (United States)

    Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.

    2018-05-01

    The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.

  18. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  19. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    International Nuclear Information System (INIS)

    Johnson, Kyle W.; Guruvenket, Srinivasan; Sailer, Robert A.; Ahrenkiel, S. Phillip; Schulz, Douglas L.

    2013-01-01

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H 2 O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF 2 . • Carbonaceous contamination from the precursor was minimal

  20. Vapor pressures and enthalpies of vaporization of a series of 1- and 2-halogenated naphthalenes

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.

    2003-01-01

    Molar enthalpies of vaporization, Δ l g H m 0 , of 1-methyl-naphthalene, 1-chloro-napthalene, 2-chloro-naphthalene, 1-bromo-naphthalene, 2-bromo-naphthalene, and 1-iodo-naphthalene, as well as molar enthalpies of sublimation, Δ s g H m 0 , of 2-chloro-naphthalene and 2-bromo-naphthalene have been obtained from the temperature dependence of the vapor pressure determined with the transpiration method. These values and the correlation gas-chromatography method, based on the Kovat's index, have been used to determine Δ l g H m 0 and Δ s g H m 0 of 2-iodo-naphthalene. Results obtained in this work have been compared with those from the literature and found consistent

  1. Mosquito knock-down and adulticidal activities of essential oils by vaporizer, impregnated filter paper and aerosol methods

    Directory of Open Access Journals (Sweden)

    M. Ramar

    2014-09-01

    Full Text Available Essential oils from 12 medicinal plants were evaluated by three different bioassay methods (Vaporizer, Filter paper and Aerosol for Knock-down and adulticidal efficacy on the filarial vector mosquito, Culex quinquefasciatus. Based on screening results the effective plants were selected for investigating Knock-down and adulticidal potential against adult female of the laboratory-reared mosquito species, Cx. quinquefasciatus. In vaporizer bioassay method four different doses (1.25, 2.5, 5 and 10% were used. Four different doses (0.625, 1.25, 2.5 and 10% were used both filter paper (cm2 and aerosol (cm3 bioassay methods. Five essential oils (calamus, camphor, citronella, clove and eucalyptus were identified as potential treatments in vaporizer bioassay. The result showed that the knock down time decreased with increased concentration in clove oil treatment; the Knock-down time (KT 50 = 46.1 ± 0.1, 38.5 ± 0.1, 30.7 ± 0.2, and 20.1 ± 0.1 minutes was recorded at 1.25, 2.5, 5 and 10% /cm3 respectively. In filter paper method nine essential oils were identified as potential treatments. After 1 hr exposure period clove oil recorded the lowest median Knock-down time (KT50 which was calculated as 9.15 ± 0.1min/cm2. Followed by citronella (KT50 =11.4 ± 0.1 min and eucalyptus (KT50 =11.4 ±0.1min oils since they recorded lower median Knock-down time. All the twelve essential oils were identified as potential treatments in aerosol activity. The lethal time decreased when the concentration increased. At 5 % concentration the median lethal time (LT50 for clove oil was calculated as (LT50=3.80 ± 0.1minutes. The Cinnamon oil was effective which recorded (LT50 = 1.99 mins as median lethal time. Camphor (LT50 =19.6± 0.1 min oil were found to be less toxic by aerosol method. These results suggest that clove oil and cinnamon oil have the potential to be used as a eco-friendly approach for the control of the major important filaria vector Cx. quinquefasciatus

  2. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Fernando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)]. E-mail: fgarcias@imp.mx; Eliosa-Jimenez, Gaudencio [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Silva-Oliver, Guadalupe [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Godinez-Silva, Armando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)

    2007-06-15

    In this work, new (vapor + liquid) equilibrium data for the (N{sub 2} + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N{sub 2} + n-heptane) system.

  3. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    International Nuclear Information System (INIS)

    Garcia-Sanchez, Fernando; Eliosa-Jimenez, Gaudencio; Silva-Oliver, Guadalupe; Godinez-Silva, Armando

    2007-01-01

    In this work, new (vapor + liquid) equilibrium data for the (N 2 + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N 2 + n-heptane) system

  4. Influence of environmental pollution with creosote oil or its vapors on biomass and selected physiological groups of microorganisms

    Science.gov (United States)

    Krzyśko-Łupicka, Teresa; Cybulska, Krystyna; Kołosowski, Paweł; Telesiński, Arkadiusz; Sudoł, Adam

    2017-11-01

    Survival of microorganisms in soils from treatment facility and landfill of wooden railway sleepers contaminated with creosote oil as well as in two types of soils with different content of organic carbon, treated with creosote oil vapors, was assessed. Microbiological assays including determination of: the biomass of living microorganisms method and the number of proteolytic, lipolytic and amylolytic microorganisms were carried out under laboratory conditions. Chromatography analysis of the soil extract from railway sleepers treatment facility was performed using GC/MS. The highest biomass and the number of tested microorganisms were determined in soils from wooden railway sleepers landfill, while the lowest in soil from the railway sleepers treatment facility. Vapors of creosote oil, regardless of the soil type, significantly increased only the number of lipolytic bacteria.

  5. Vapor pressures of solid and liquid xanthene and phenoxathiin from effusion and static studies

    Czech Academy of Sciences Publication Activity Database

    Monte, M.J.S.; Santos, L.M.N.B.F.; Sousa, C.A.D.; Fulem, Michal

    2008-01-01

    Roč. 53, č. 8 (2008), s. 1922-1926 ISSN 0021-9568 Institutional research plan: CEZ:AV0Z10100521 Keywords : vapor pressure * xanthene * phenoxanthiin * sublimation and vaporization enthalpy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.063, year: 2008

  6. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  7. Performance of vapor compression systems with compressor oil flooding and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Ian H.; Groll, Eckhard A.; Braun, James E. [Purdue University, Department of Mechanical Engineering, 140 S. Martin Jischke Drive, West Lafayette, IN 47906 (United States)

    2011-01-15

    Vapor compression refrigeration technology has seen great improvement over the last several decades in terms of cycle efficiency through a concerted effort of manufacturers, regulators, and research engineers. As the standard vapor compression systems approach practical limits, cycle modifications should be investigated to increase system efficiency and capacity. One possible means of increasing cycle efficiency is to flood the compressor with a large quantity of oil to achieve a quasi-isothermal compression process, in addition to using a regenerator to increase refrigerant subcooling. In theory, compressor flooding and regeneration can provide a significant increase in system efficiency over the standard vapor compression system. The effectiveness of compressor flooding and regeneration increases as the temperature lift of the system increases. Therefore, this technology is particularly well suited towards lower evaporating temperatures and high ambient temperatures as seen in supermarket refrigeration applications. While predicted increases in cycle efficiency are over 40% for supermarket refrigeration applications, this technology is still very beneficial for typical air-conditioning applications, for which improvements in cycle efficiency greater than 5% are predicted. It has to be noted though that the beneficial effects of compressor flooding can only be realized if a regenerator is used to exchange heat between the refrigerant vapor exiting the evaporator and the liquid exiting the condenser. (author)

  8. Vapor Pressure of N,N’-Diisopropylcarbodiimide (DICDI)

    Science.gov (United States)

    2016-02-01

    11. Furumoto, S. The Synthesis of Carbodiimides from N,N-Disubstituted Thioureas and 2- Chloro-4,6-dimethylpyrimidine, 2,4-Dichloropyrimidine or...N-Phenylbenzimidoyl Chloride . Journal of Synthetic Organic Chemistry, Japan 1975, 33, 748–752. 12. Kagami, H.; Hanzawa, N.; Suzuki, N.; Yamaguchi...25. Brozena, A.; Buchanan, J.H.; Miles, R.W., Jr.; Williams, B.R.; Hulet, M.S. Vapor Pressure of Triethyl and Tri-n- Propyl Phosphates and Diethyl

  9. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    International Nuclear Information System (INIS)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed

  10. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid

    DEFF Research Database (Denmark)

    Rodier, Marion; Li, Qingfeng; Berg, Rolf W.

    2016-01-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed...... with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available...... in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case...

  11. Assessment of Fluctuation Patterns Similarity in Temperature and Vapor Pressure Using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    A. Araghi

    2014-12-01

    Full Text Available Period and trend are two main effective and important factors in hydro-climatological time series and because of this importance, different methods have been introduced and applied to study of them, until now. Most of these methods are statistical basis and they are classified in the non-parametric tests. Wavelet transform is a mathematical based powerful method which has been widely used in signal processing and time series analysis in recent years. In this research, trend and main periodic patterns similarity in temperature and vapor pressure has been studied in Babolsar, Tehran and Shahroud synoptic stations during 55 years period (from 1956 to 2010, using wavelet method and the sequential Mann-Kendall trend test. The results show that long term fluctuation patterns in temperature and vapor pressure have more correlations in the arid and semi-arid climates, as well as short term oscillation patterns in temperature and vapor pressure in the humid climates, and these dominant periods increase with the aridity of region.

  12. Thermodynamic consistency of vapor pressure and calorimetric data for argon, krypton, and xenon

    International Nuclear Information System (INIS)

    Schwalbe, L.A.; Crawford, R.K.; Chen, H.H.; Aziz, R.A.

    1977-01-01

    A new two-parameter vapor pressure equation has been derived which, unlike the Salter equation, is shown to be equally applicable to quantum or classical solids and even liquids. The condensed phase enthalpies and entropies are given directly by the fitted parameters with accuracies comparable to those which have been claimed for existing independent calorimetric measurements. Recent vapor pressure data for the solid and liquid phases of argon, krypton, and xenon are analyzed in this manner, and the results are compared with the available calorimetric data. New values for the cohesive energy at T=0 are also derived for these substances

  13. Dual-pressure vaporization Kalina cycle for cascade reclaiming heat resource for power generation

    International Nuclear Information System (INIS)

    Guo, Zhanwei; Zhang, Zhi; Chen, Yaping; Wu, Jiafeng; Dong, Cong

    2015-01-01

    Graphical abstract: Schematic of the dual-pressure evaporation Kalina cycle. - Highlights: • Dual-pressure vaporization Kalina cycle for high-grade heat resource is investigated. • It is designed with 2nd evaporation branch for cascade utilization of heat resource. • Work and basic concentrations, dew point temperature of evaporation are optimized. • Power recovery efficiency of proposed cycle is 17% higher than that of Kalina cycle. • Dual-p vaporization Kalina cycle fits reclaiming heat resource higher than 350 °C. - Abstract: To further improve the cycle efficiency with the heat transfer curves between higher than 350 °C heat resource and the evaporating working medium of the Kalina cycle and to reduce the exhaust temperature of heat resource, the dual-pressure vaporization Kalina cycle for cascade utilization of high-to-mid grade heat resource is proposed. The optimization was conducted for parameters in this modified Kalina cycle such as concentrations of work solution and basic solution, evaporation dew point temperature. Under the conditions of inlet temperatures of heat resource and cooling water of respectively 400 °C and 25 °C and the constraints of proper heat transfer pinch point temperature differences, the maximum evaporation pressure not exceeds 20 MPa, the vapour quality at the turbine outlet is greater than 0.85 and the exhaust temperature of heat resource is not lower than 90 °C, the optimum parameters are obtained that the work and basic concentrations are 0.45 and 0.272 respectively, the dew point temperature of evaporation is 300 °C, and the corresponding power recovery efficiency of the dual-pressure vaporization Kalina cycle reaches 27%, which is 17% higher than that of the Kalina cycle with optimum parameters.

  14. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO2 + alkanol) binary systems

    International Nuclear Information System (INIS)

    Bejarano, Arturo; Gutierrez, Jorge E.; Araus, Karina A.; Fuente, Juan C. de la

    2011-01-01

    Research highlights: → (Vapor + liquid) equilibria of three (CO 2 + C 5 alcohol) binary systems were measured. → Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. → No liquid immiscibility was observed at the temperatures and pressures studied. → Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. → Correlation results showed relative deviations ≤8 % (liquid) and ≤2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO 2 + 3-methyl-2-butanol), (CO 2 + 2-pentanol), and (CO 2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO 2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  15. Vapor Pressure of Selected Aliphatic Alcohols by Ebulliometry. Part 1

    Czech Academy of Sciences Publication Activity Database

    Čenský, M.; Roháč, V.; Růžička, K.; Fulem, M.; Aim, Karel

    2010-01-01

    Roč. 298, č. 2 (2010), s. 192-198 ISSN 0378-3812 R&D Projects: GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapor pressure * ebulliometry * aliphatic alcohols Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.253, year: 2010

  16. Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Kang, Woo Seok, E-mail: kang@kimm.re.kr [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of); Hur, Min; Lee, Jin Young [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Song, Young-Hoon [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-12-31

    This work investigates the use of plasma-enhanced chemical vapor deposition under atmospheric pressure for achieving uniform layer formation. Electrical and optical measurements demonstrated that the counterbalance between oxygen and precursors maintained the homogeneous discharge mode, while creating intermediate species for layer deposition. Several steps of the deposition process of the layers, which were processed on a stationary stage, were affected by flow stream and precursor depletion. This study showed that by changing the flow streamlines using substrate stage motion uniform layer deposition under atmospheric pressure can be achieved. - Highlights: • Zirconium oxide was deposited by atmospheric-pressure plasma-enhanced chemical vapor deposition. • Homogeneous plasma was maintained by counterbalancing between discharge gas and precursors. • Several deposition steps were observed affected by the gas flow stream and precursor depletion. • Thin film layer was uniformly grown when the substrate underwent a sweeping motion.

  17. Development of a device to valuate the effect of ethanol on the vapor pressure and vaporization enthalpy of fuel gasolines

    OpenAIRE

    Cataluña, Renato; Silva, Rosângela

    2006-01-01

    The quality of the gasoline utilized for fueling internal combustion engines with spark ignition is directly affected by the gasoline's properties. Thus, the fuel's properties must be in perfect equilibrium to allow the engine to perform optimally, not only insofar as fuel consumption is concerned, but also in order to reduce the emission of pollutants. Vapor pressure and vaporization enthalpy are important properties of a gasoline determining the fuel's behavior under different operating con...

  18. Influence of the helium-pressure on diode-pumped alkali-vapor laser

    Science.gov (United States)

    Gao, Fei; Chen, Fei; Xie, Ji-jiang; Zhang, Lai-ming; Li, Dian-jun; Yang, Gui-long; Guo, Jing

    2013-05-01

    Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.

  19. On Boiling of Crude Oil under Elevated Pressure

    Science.gov (United States)

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2016-02-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  20. Contribution of water vapor pressure to pressurization of plutonium dioxide storage containers

    Science.gov (United States)

    Veirs, D. Kirk; Morris, John S.; Spearing, Dane R.

    2000-07-01

    Pressurization of long-term storage containers filled with materials meeting the US DOE storage standard is of concern.1,2 For example, temperatures within storage containers packaged according to the standard and contained in 9975 shipping packages that are stored in full view of the sun can reach internal temperatures of 250 °C.3 Twenty five grams of water (0.5 wt.%) at 250 °C in the storage container with no other material present would result in a pressure of 412 psia, which is limited by the amount of water. The pressure due to the water can be substantially reduced due to interactions with the stored material. Studies of the adsorption of water by PuO2 and surface interactions of water with PuO2 show that adsorption of 0.5 wt.% of water is feasible under many conditions and probable under high humidity conditions.4,5,6 However, no data are available on the vapor pressure of water over plutonium dioxide containing materials that have been exposed to water.

  1. Modeling of Pressure Dependence of Interfacial Tension Behaviors of Supercritical CO2 + Crude Oil Systems Using a Basic Parachor Expression

    International Nuclear Information System (INIS)

    Dayanand, S.

    2017-01-01

    Parachor based expressions (basic and mechanistic) are often used to model the experimentally observed pressure dependence of interfacial tension behaviors of complex supercritical carbon dioxide (sc-CO 2 ) and crude oil mixtures at elevated temperatures. However, such modeling requires various input data (e.g. compositions and densities of the equilibrium liquid and vapor phases, and molecular weights and diffusion coefficients for various components present in the system). In the absence of measured data, often phase behavior packages are used for obtaining these input data for performing calculations. Very few researchers have used experimentally measured input data for performing parachor based modeling of the experimental interfacial tension behaviors of sc-CO 2 and crude oil systems that are of particular interest to CO 2 injection in porous media based enhanced oil recovery operations. This study presents the results of parachor based modeling performed to predict pressure dependence of interfacial tension behaviors of a complex sc-CO 2 and crude oil system for which experimentally measured data is available in public domain. Though parachor model based on calculated interfacial tension behaviors shows significant deviation from the measured behaviors in high interfacial tension region, difference between the calculated and the experimental behaviors appears to vanish in low interfacial tension region. These observations suggest that basic parachor expression based calculated interfacial tension behaviors in low interfacial tension region follow the experimental interfacial tension behaviors more closely. An analysis of published studies (basic and mechanistic parachor expressions based on modeling of pressure dependence of interfacial tension behaviors of both standard and complex sc-CO 2 and crude oil systems) and the results of this study reinforce the need of better description of gas-oil interactions for robust modeling of pressure dependence of

  2. In vitro inhibitory activity of essential oil vapors against Ascosphaera apis.

    Science.gov (United States)

    Kloucek, Pavel; Smid, Jakub; Flesar, Jaroslav; Havlik, Jaroslav; Titera, Dalibor; Rada, Vojtech; Drabek, Ondrej; Kokoska, Ladislav

    2012-02-01

    This work evaluates the in vitro inhibitory activity of 70 essential oils (EOs) in the vapor phase for the control of Chalkbrood disease caused by Ascosphaera apis Maassen ex Claussen (Olive et Spiltoir). Two wild strains isolated from infected honey bee colonies together with one standard collection strain were tested by the microatmosphere method. From 70 EOs, 39 exhibited an antifungal effect against A. apis standard and wild strains. The greatest antifungal action was observed for EO vapors from Armoracia rusticana, followed by Thymus vulgaris, Cymbopogon flexosus, Origanum vulgare and Allium sativum. An investigation of chemical composition by GC-MS revealed, that the most active EOs contained allyl isothiocyanate, citral, carvacrol and diallyl sulfides as the main constituents. The chemical composition plays a key role, as activities of different EOs from the same botanical species were different according to their composition.

  3. The oil pressure test of the hydraulic impeller blade

    Science.gov (United States)

    Ye, Wen-bo; Jia, Li-tao

    2017-12-01

    This article introduced the structure of the Kaplan runner in hydropower station and the operating process of the oil pressure test has been described. What’s more, the whole process, including filling oil to the runner hub, the movement of the runner blade, the oil circuit, have been presented in detail.Since the manipulation of the oil circuit which controlled by three Valve groups consisting of six valves was complicated, the author is planning to replace them with 3-position 3-way electromagnetic valves, so we can simplify the operation procedure.The author hopes this article can provide technical reference for the oil pressure test.

  4. Vapor Pressure Data and Analysis for Selected Organophosphorus Compounds, CMMP, DPMP, DMEP, and DEEP: Extrapolation of High-Temperature Data

    Science.gov (United States)

    2018-04-01

    comparison. The correlation equations are presented using two common units systems , one with temperature given in kelvin (T) and pressure in pascal...This report documents vapor pressure data and correlations for four phosphonate ester compounds that have molecular structures similar to those of...Antoine equation Clausius–Clapeyron equation Enthalpy of vaporization Volatility Differential scanning calorimetry (DSC) Vapor saturation Normal boiling

  5. Oil vaporizer

    Energy Technology Data Exchange (ETDEWEB)

    Dumontier, F

    1904-03-31

    An oil burner particularly applicable to heavy oils, composed essentially of one or more gasification chambers, heated by the flame from the burners, to which the combustible gases are fed by the collectors suitably fixed on the chambers, all parts of the apparatus and especially the gasification chambers being easily demountable to permit cleaning, and all arranged in such a manner as to avoid fouling by reducing or localizing the deposition of solid deposits in the coking chamber.

  6. The vaporization enthalpies and vapor pressures of fatty acid methyl esters C18, C21 to C23, and C25 to C29 by correlation - gas chromatography

    International Nuclear Information System (INIS)

    Chickos, James S.; Zhao Hui; Nichols, Gary

    2004-01-01

    Vapor pressures and vaporization enthalpies for methyl heptadecanoate and methyl heneicosanoate to methyl octacosanoate exclusive of methyl tricosanoate are evaluated as a function of temperature over the temperature range T = 298.15-450 K by correlation gas chromatography. The results are generated by an extrapolative process using literature values for methyl tetradecanoate to methyl eicosanoate as standards. Relationships for calculating vapor pressures of the title compounds from T = 298.15 to 450 K are provided. Experimental fusion enthalpies are also reported for the methyl esters from methyl hexadecanoate to methyl octacosanoate excluding methyl tridecanoate. Vaporization enthalpies and fusion enthalpies adjusted for temperature to T = 298.15 K are combined to provide sublimation enthalpies. The results are compared to available literature values. A rationale for the linear relationship observed between enthalpies of vaporization and enthalpies of transfer from solution to the vapor is also provided

  7. Numerical simulation of vapor flow and pressure drop across the demister of MSF desalination plant

    International Nuclear Information System (INIS)

    Janajreh, I.; Hasania, A.; Fath, H.

    2013-01-01

    Highlights: ► Porous media was used to simulate the pressure drop across desalination demister. ► Simulation results plausibly compared with experimental results. ► FC inlet Velocity distribution has no effect on the demister pressure drop. ► Demister inertial resistance affects pressure drop more than viscous resistance. - Abstract: This paper presents a numerical simulation of the water vapor flow in an MSF flash chamber along with the pressure drop across the demister. The demister is a simple porous blanket of metal wires mesh (usually made of stainless steel wires) which retains liquid droplets entrained by the vapor momentum to enhance the quality of the product water. Two main areas of concern in wire mesh mist eliminators are; (i) the pressure drop and (ii) the mist removal efficiency. The present simulation focuses only on the pressure drop across the demister. The simulation is carried out considering a full scale flashing chamber of a typical operational MSF desalination plant and of a real industrial demister dimensions. The study simulates the demister as porous media flow. It takes into account the vapor velocity, the dimension of the demister, its porosity and wire thickness. The obtained pressure drop was found to be within a reasonable agreement with the published literature data and it follows a trend compatible with Ergun’s equation as well as the empirical correlation of Svendsen.

  8. Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {1,1,1,2-tetrafluoroethane (R134a) + propane (R290)} by a recirculation apparatus with view windows

    International Nuclear Information System (INIS)

    Dong Xueqiang; Gong Maoqiong; Liu Junsheng; Wu Jianfeng

    2011-01-01

    The saturated vapor pressures of 1,1,1,2-tetrafluoroethane (R134a) and propane (R290), and the (vapor + liquid) equilibrium (VLE) data at (255.000, 265.000, 275.000, and 285.000) K for the (R134a + R290) system were measured by a recirculation apparatus with view windows. The uncertainty of the temperatures, pressures, and compositions are less than ±5 mK, ±0.0005 MPa, and ±0.005, respectively. The saturated vapor pressures data were correlated by a Wagner type equation and compared with the reference data. The binary VLE data were correlated with the Peng-Robinson equation of state (PR EoS) incorporating the Huron-Vidal (HV) mixing rule utilizing the nonrandom two-liquid (NRTL) activity coefficient model. For mixtures, the maximum average absolute relative deviation of pressure is 0.15%, while the maximum average absolute deviation of vapor phase mole fraction is 0.0045. Azeotropic behavior can be found for the (R134a + R290) system at measured temperatures.

  9. Prediction of the liquid-vapor equilibrium pressure using the quasi-Gaussian entropy theory

    NARCIS (Netherlands)

    Amadei, A; Roccatano, D; Apol, M.E F; Berendsen, H.J.C.; Di Nola, A.

    1996-01-01

    We derived a method to evaluate the liquid-vapor equilibrium pressure, with high accuracy over a large range of temperature, using the quasi-Gaussian entropy theory. The final expression that we obtain for the equilibrium pressure as a function of the temperature can be considered as a very accurate

  10. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    Science.gov (United States)

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water.

  11. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO{sub 2} + alkanol) binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Gutierrez, Jorge E. [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Araus, Karina A. [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.c [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2011-05-15

    Research highlights: (Vapor + liquid) equilibria of three (CO{sub 2} + C{sub 5} alcohol) binary systems were measured. Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. No liquid immiscibility was observed at the temperatures and pressures studied. Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. Correlation results showed relative deviations {<=}8 % (liquid) and {<=}2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO{sub 2} + 3-methyl-2-butanol), (CO{sub 2} + 2-pentanol), and (CO{sub 2} + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO{sub 2} + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  12. Vapor pressure data for fatty acids obtained using an adaptation of the DSC technique

    International Nuclear Information System (INIS)

    Matricarde Falleiro, Rafael M.; Akisawa Silva, Luciana Y.; Meirelles, Antonio J.A.; Krähenbühl, Maria A.

    2012-01-01

    Highlights: ► Vapor pressure data of fatty acids were measured by Differential Scanning Calorimetry. ► The DSC technique is especially advantageous for expensive chemicals. ► High heating rate was used for measuring the vapor pressure data. ► Antoine constants were obtained for the selected fatty acids. - Abstract: The vapor pressure data for lauric (C 12:0 ), myristic (C 14:0 ), palmitic (C 16:0 ), stearic (C 18:0 ) and oleic (C 18:1 ) acids were obtained using Differential Scanning Calorimetry (DSC). The adjustments made in the experimental procedure included the use of a small sphere (tungsten carbide) placed over the pinhole of the crucible (diameter of 0.8 mm), making it possible to use a faster heating rate than that of the standard method and reducing the experimental time. The measurements were made in the pressure range from 1333 to 9333 Pa, using small sample quantities of fatty acids (3–5 mg) at a heating rate of 25 K min −1 . The results showed the effectiveness of the technique under study, as evidenced by the low temperature deviations in relation to the data reported in the literature. The Antoine constants were fitted to the experimental data whose values are shown in Table 5.

  13. Relationship between the evaporation rate and vapor pressure of moderately and highly volatile chemicals.

    Science.gov (United States)

    van Wesenbeeck, Ian; Driver, Jeffrey; Ross, John

    2008-04-01

    Volatilization of chemicals can be an important form of dissipation in the environment. Rates of evaporative losses from plant and soil surfaces are useful for estimating the potential for food-related dietary residues and operator and bystander exposure, and can be used as source functions for screening models that predict off-site movement of volatile materials. A regression of evaporation on vapor pressure from three datasets containing 82 pesticidal active ingredients and co-formulants, ranging in vapor pressure from 0.0001 to >30,000 Pa was developed for this purpose with a regression correlation coefficient of 0.98.

  14. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    Science.gov (United States)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  15. Laser induced fluorescence measurements of the mixing of fuel oil with air

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Hubschmid, W; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    We report on measurements of the mixing of fuel oil with air at atmospheric pressure in an industrial premixed gas turbine burner. The concentration of the vaporized fuel oil was measured with laser induced fluorescence. We reason that the fuel oil concentration can be considered with good accuracy as proportional to the fluorescence intensity. (author) 6 fig., 3 refs.

  16. In-pile vapor pressure measurements on UO2 and (U,Pu)O2

    International Nuclear Information System (INIS)

    Breitung, W.; Reil, K.O.

    1985-08-01

    The Effective-Equation-of-State (EEOS) experiments investigated the saturation vapor pressures of ultra pure UO 2 , reactor grade UO 2 , and reactor grade (Usub(.77)Pusub(.23))O2 using newly developed in-pile heating techniques. For enthalpies between 2150 and 3700 kJ/kg (about 4700 to 8500 K) vapor pressures from 1.3 to 54 MPa were measured. The p-h curves of all three fuel types were identical within the experimental uncertainties. An assessment of all published p-h measurements showed that the p-h saturation curve of UO 2 appears now well established by the EEOS and the CEA in-pile data. Using an estimate for the heat capacity of liquid UO 2 , the in-pile results were also compared to earlier p-T measurements. The assessments lead to proposal of two equations. Equation I, which includes a factor-of-2 uncertainty band, covers all p-T equilibrium evaporation measurements. Equation I yields 3817 K for the normal boiling point, 415.4 kJ/mol for the corresponding heat of vaporization, and 1.90 MPa for the vapor pressure at 5000 K. Equations I and II, which represent a parametric form of the p-h curve (T=parameter), also give a good description of the EEOS and CEA in-pile data. Thus the proposed equations allow a consistent representation of both p-T and p-h measurements, they are sufficiently precise for CDA analyses and cover the whole range of interest (3120-8500 K, 1400-3700 kJ/kg). (orig./HP) [de

  17. Investigation of low pressure ES-SAGD

    Energy Technology Data Exchange (ETDEWEB)

    Ivory, J.; Zheng, R.; Nasr, T.; Deng, X.; Beaulieu, G.; Heck, G. [Alberta Research Council, Edmonton, AB (Canada)

    2008-10-15

    This paper described a scaled model experiment conducted to investigate the effectiveness of expanding solvent steam assisted gravity drainage (ES-SAGD) processes at low pressures. Lower SAGD pressures typically result in reduced oil production as a result of correspondingly lower steam temperatures. However, lower pressures may also result in a reduced steam to oil ratio (SOR) and a higher vaporization heat. Steam was injected into an injection well at 33 cm{sup 3} per minute and in a production well at 31 cm{sup 3} per minute. Steam and solvents were then co-injected into the injection well at a temperature of 206 degrees C. The experiment was history-matched and a parametric analysis was conducted using a simulation tool. The 2-D and 3-D field-scale simulations investigated the impact of operating pressures, injection rates; sub-cool; oil and gas phase diffusion and dispersion; live oil versus dead oil performance; and the use of drawdown when oil rates declined. Low pressure ES-SAGD was then compared with low-pressure SAGD. Results of the study suggested that production pressures, sub-cool and solvent concentrations are important parameters in ES-SAGD processes. At 1500 kPa production pressure and 10 degrees C sub-cool, the co-injection of solvent with steam increased average oil rates by 15 per cent more than the SAGD process. SOR was also reduced. 6 refs., 8 tabs., 20 figs.

  18. An Improved CO2-Crude Oil Minimum Miscibility Pressure Correlation

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2015-01-01

    Full Text Available Minimum miscibility pressure (MMP, which plays an important role in miscible flooding, is a key parameter in determining whether crude oil and gas are completely miscible. On the basis of 210 groups of CO2-crude oil system minimum miscibility pressure data, an improved CO2-crude oil system minimum miscibility pressure correlation was built by modified conjugate gradient method and global optimizing method. The new correlation is a uniform empirical correlation to calculate the MMP for both thin oil and heavy oil and is expressed as a function of reservoir temperature, C7+ molecular weight of crude oil, and mole fractions of volatile components (CH4 and N2 and intermediate components (CO2, H2S, and C2~C6 of crude oil. Compared to the eleven most popular and relatively high-accuracy CO2-oil system MMP correlations in the previous literature by other nine groups of CO2-oil MMP experimental data, which have not been used to develop the new correlation, it is found that the new empirical correlation provides the best reproduction of the nine groups of CO2-oil MMP experimental data with a percentage average absolute relative error (%AARE of 8% and a percentage maximum absolute relative error (%MARE of 21%, respectively.

  19. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuping; Li, Chengchen [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Mingming, E-mail: andychain@live.cn [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Yu, Xiao; Chang, Yunwei [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Anqi [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Zhu, Hai, E-mail: zhuhai5@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Tang, Zikang, E-mail: zktang@umac.mo [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau (China)

    2016-12-09

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  20. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhao, Yuping; Li, Chengchen; Chen, Mingming; Yu, Xiao; Chang, Yunwei; Chen, Anqi; Zhu, Hai; Tang, Zikang

    2016-01-01

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  1. Experimental study on the performance of the vapor injection refrigeration system with an economizer for intermediate pressures

    Science.gov (United States)

    Moon, Chang-Uk; Choi, Kwang-Hwan; Yoon, Jung-In; Kim, Young-Bok; Son, Chang-Hyo; Ha, Soo-Jung; Jeon, Min-Ju; An, Sang-Young; Lee, Joon-Hyuk

    2018-04-01

    In this study, to investigate the performance characteristics of vapor injection refrigeration system with an economizer at an intermediate pressure, the vapor injection refrigeration system was analyzed under various experiment conditions. As a result, the optimum design data of the vapor injection refrigeration system with an economizer were obtained. The findings from this study can be summarized as follows. The mass flow rate through the compressor increases with intermediate pressure. The compression power input showed an increasing trend under all the test conditions. The evaporation capacity increased and then decreased at the intermediate pressure, and as such, it became maximum at the given intermediate pressure. The increased mass flow rate of the by-passed refrigerant enhanced the evaporation capacity at the low medium pressure range, but the increased saturation temperature limited the subcooling degree of the liquid refrigerant after the application of the economizer when the intermediate pressure kept rising, and degenerated the evaporation capacity. The coefficient of performance (COP) increased and then decreased with respect to the intermediate pressures under all the experiment conditions. Nevertheless, there was an optimum intermediate pressure for the maximum COP under each experiment condition. Therefore, the optimum intermediate pressure in this study was found at -99.08 kPa, which is the theoretical standard medium pressure under all the test conditions.

  2. In-tube flow boiling of R-407C and R-407C/oil mixtures. Part 1: Microfin tube

    Energy Technology Data Exchange (ETDEWEB)

    Zuercher, O; Thome, J R; Favrat, D

    1999-07-01

    In-tube evaporation tests for R-407C and R-407C/oil are reported for a microfin tube. The tests were run at a nominal inlet pressure of 645 kPa (93.5 psia) at mass velocities of 100, 200 and 300 kg/(m{sup 2}{center{underscore}dot}s) (20.5, 41, and 61 lb/s{center{underscore}dot}ft{sup 2}) over nearly the entire vapor quality range. At similar operating conditions, pure R-407C performed similarly to previous pure R-134a tests at the highest mass velocity, but lower than R-134a for the other mass velocities. Any amount of oil tended to decrease local R-407C microfin heat transfer coefficients, especially at high vapor qualities were degradations of as much as 50% or more occurred. Two-phase pressure drops were increased by the presence of oil, especially at high vapor qualities. Buildup of the local oil mass fraction in the microfin test sections was observed at high vapor qualities, together with the formation of slowly flowing viscous liquid films, a phenomenon that became more acute at lower mass velocities.

  3. Vapor pressure data for fatty acids obtained using an adaptation of the DSC technique

    Energy Technology Data Exchange (ETDEWEB)

    Matricarde Falleiro, Rafael M. [LPT, Departamento de Processos Quimicos (DPQ), Faculdade de Engenharia Quimica, Universidade de Campinas (UNICAMP), 13083-852 Campinas - SP (Brazil); Akisawa Silva, Luciana Y. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo (UNIFESP), 09972-270 Diadema - SP (Brazil); Meirelles, Antonio J.A. [EXTRAE, Departamento de Engenharia de Alimentos (DEA), Faculdade de Engenharia de Alimentos, Universidade de Campinas (UNICAMP), 13083-862 Campinas - SP (Brazil); Kraehenbuehl, Maria A., E-mail: mak@feq.unicamp.br [LPT, Departamento de Processos Quimicos (DPQ), Faculdade de Engenharia Quimica, Universidade de Campinas (UNICAMP), 13083-852 Campinas - SP (Brazil)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer Vapor pressure data of fatty acids were measured by Differential Scanning Calorimetry. Black-Right-Pointing-Pointer The DSC technique is especially advantageous for expensive chemicals. Black-Right-Pointing-Pointer High heating rate was used for measuring the vapor pressure data. Black-Right-Pointing-Pointer Antoine constants were obtained for the selected fatty acids. - Abstract: The vapor pressure data for lauric (C{sub 12:0}), myristic (C{sub 14:0}), palmitic (C{sub 16:0}), stearic (C{sub 18:0}) and oleic (C{sub 18:1}) acids were obtained using Differential Scanning Calorimetry (DSC). The adjustments made in the experimental procedure included the use of a small sphere (tungsten carbide) placed over the pinhole of the crucible (diameter of 0.8 mm), making it possible to use a faster heating rate than that of the standard method and reducing the experimental time. The measurements were made in the pressure range from 1333 to 9333 Pa, using small sample quantities of fatty acids (3-5 mg) at a heating rate of 25 K min{sup -1}. The results showed the effectiveness of the technique under study, as evidenced by the low temperature deviations in relation to the data reported in the literature. The Antoine constants were fitted to the experimental data whose values are shown in Table 5.

  4. Supplementary vapor pressure data of the glycol ethers, 1-methoxy-2-propanol, and 2-methoxyethanol at a pressure range of (15 to 177) kPa

    International Nuclear Information System (INIS)

    Bejarano, Arturo; Poveda, Laura J.; Fuente, Juan C. de la

    2012-01-01

    Highlights: ► Vapor pressure of 2-methoxyethanol and 1-methoxy-2-propanol were measured. ► Complementary data are reported at ranges of (342 to 417) K and (15 to 177) kPa. ► Three commonly used vapor pressure equations were fitted to experimental data. ► The parameters of Antoine and Wagner type equations were estimated. ► The relative deviations (rmsd) from the three vapor pressure equations were <0.4%. - Abstract: The vapor pressure of pure 1-methoxy-2-propanol and 2-methoxyethanol, commonly used as co-solvents in inks, paints, coatings, organic/water solutions among many other applications, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa. The measurements were performed at temperature ranges of (342 to 412) K for 1-methoxy-2-propanol and (346 to 417) K for 2-methoxyethanol. The maximum likelihood method was used to estimate the parameters of the Antoine equation, the parameters of an extended Antoine equation and the Wagner equation were determined by non linear least squares method. The three models showed root mean square deviations (rmsd) of 0.39%, 0.38%, and 0.29%, and 0.37%, 0.33%, and 0.32%, for 1-methoxy-2-propanol and 2-methoxyethanol, respectively. Additionally, the experimental data and correlation were compared with those available in the literature.

  5. Pressure variation characteristics at trapping region in oil hydraulic piston pumps

    International Nuclear Information System (INIS)

    Kim, Jong Ki; Jung, Jae Youn; Rho, Byung Joon; Song, Kyu Keun; Oh, Seok Hyung

    2003-01-01

    Pressure variation is one of the major sources on noise emission in the oil hydraulic piston pumps. Therefore, it is necessary to clarify about pressure variation characteristics of the oil hydraulic piston pumps to reduce noise. Pressure variations in a cylinder at trapping region were measured during pump working period with discharge pressures, rotational speeds. The effect of pre-compression of the discharge port with three types valve plates also investigated. It was found that the pressure variation characteristics of oil hydraulic piston pumps deeply related with pre-compression design of the discharge port. Also, it was found that the pressure overshoot at trapping region can reduce by use of pre-compression at the end of the discharge port in valve plate

  6. Vapor pressure isotope effect in 13CClF3/12CClF3 by cryogenic distillation kinetics

    International Nuclear Information System (INIS)

    Wieck, H.J.; Ishida, T.

    1975-08-01

    The vapor pressure of 13 CClF 3 relative to the vapor pressure of 12 CClF 3 was measured as a function of temperature between 169 0 and 206 0 K by using a modified Bigeleisen distillation column. The transient build-up of the isotopic concentration gradient along the length of the packed column during the start-up period was monitored by taking samples from the condenser section as a function of time. The gaseous samples were completely oxidized to carbon dioxide in the presence of a platinum catalyst and a large excess of oxygen at temperatures between 1050 and 1100 0 C. The combustion products were purified by means of gas chromatography, and the purified carbon dioxide samples were analyzed in a Nier-type isotope-ratio mass spectrometer. The data of each distillation run were reduced in the light of Cohen's theory of the kinetics of square cascade of close-separation stages. The vapor pressure isotope effect for the carbon substitution in CClF 3 at temperatures between 169 0 and 206 0 K was found to be an inverse effect and to be rather insensitive to changes in temperature. The relative vapor pressure may be expressed 1n(P'/P) = [(1.5 +- 14.1)/T 2 ] - [(0.159 +- 0.076)/T], or 1n(P'/P) = [(0.173 +- 0.098)/T] - [(0.11 +- 0.53) x 10 -3 ], where P' and P are the vapor pressures of 12 CClF 3 and 13 CClF 3 , respectively. To the first-order, the presence of chlorine isotopes would not affect the fractionation of carbon isotopes by the distillation of CClF 3

  7. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique

    International Nuclear Information System (INIS)

    Goldfarb, Jillian L.; Suuberg, Eric M.

    2010-01-01

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) g . mol -1 were measured over the temperature range of (301 to 486) K using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin, and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents.

  8. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanif, Zahid; Lee, Seyeong; Arsalani, Nasir; Geckeler, Kurt E.; Hong, Sukwon; Yoon, Myung-Han [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2016-02-15

    In this study, commercially available cellulose membranes were hybridized with conjugated polymer via vapor-phase polymerization using pyrrole and iron chloride as a monomer and oxidant, respectively. The iron (III) chloride layer dip-coated on the hydrophilic cell ulose surface oxidized the vaporized pyrrole monomer leading to the polypyrrole-cellulose hybrid membrane. The conductivity of hybrid membrane was optimized by varying the oxidant concentration and the monomer vapor exposure time. The various surface characterizations of polypyrrole-cellulose hybrid membrane show that the conductive polypyrrole layer was uniformly deposited onto the surface of cellulose fibrous networks unlike the polypyrrole-nylonhybrid membrane prepared in the similar way. The polypyrrole-incorporated cellulose networks exhibits steeper electrical conductance increase over the vertical pressure than its nylon counterpart. Our result suggests that the polypyrrole-cellulose hybrid membrane can be applicable for a disposable high-load pressure sensor.

  9. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes

    International Nuclear Information System (INIS)

    Hanif, Zahid; Lee, Seyeong; Arsalani, Nasir; Geckeler, Kurt E.; Hong, Sukwon; Yoon, Myung-Han

    2016-01-01

    In this study, commercially available cellulose membranes were hybridized with conjugated polymer via vapor-phase polymerization using pyrrole and iron chloride as a monomer and oxidant, respectively. The iron (III) chloride layer dip-coated on the hydrophilic cell ulose surface oxidized the vaporized pyrrole monomer leading to the polypyrrole-cellulose hybrid membrane. The conductivity of hybrid membrane was optimized by varying the oxidant concentration and the monomer vapor exposure time. The various surface characterizations of polypyrrole-cellulose hybrid membrane show that the conductive polypyrrole layer was uniformly deposited onto the surface of cellulose fibrous networks unlike the polypyrrole-nylonhybrid membrane prepared in the similar way. The polypyrrole-incorporated cellulose networks exhibits steeper electrical conductance increase over the vertical pressure than its nylon counterpart. Our result suggests that the polypyrrole-cellulose hybrid membrane can be applicable for a disposable high-load pressure sensor.

  10. Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {l_brace}1,1,1,2-tetrafluoroethane (R134a) + propane (R290){r_brace} by a recirculation apparatus with view windows

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xueqiang [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Gong Maoqiong, E-mail: gongmq@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Liu Junsheng [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Wu Jianfeng, E-mail: jfwu@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China)

    2011-03-15

    The saturated vapor pressures of 1,1,1,2-tetrafluoroethane (R134a) and propane (R290), and the (vapor + liquid) equilibrium (VLE) data at (255.000, 265.000, 275.000, and 285.000) K for the (R134a + R290) system were measured by a recirculation apparatus with view windows. The uncertainty of the temperatures, pressures, and compositions are less than {+-}5 mK, {+-}0.0005 MPa, and {+-}0.005, respectively. The saturated vapor pressures data were correlated by a Wagner type equation and compared with the reference data. The binary VLE data were correlated with the Peng-Robinson equation of state (PR EoS) incorporating the Huron-Vidal (HV) mixing rule utilizing the nonrandom two-liquid (NRTL) activity coefficient model. For mixtures, the maximum average absolute relative deviation of pressure is 0.15%, while the maximum average absolute deviation of vapor phase mole fraction is 0.0045. Azeotropic behavior can be found for the (R134a + R290) system at measured temperatures.

  11. Determination of vapor pressures, enthalpies of sublimation, and enthalpies of fusion of benzenetriols

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Schick, Christoph

    2004-01-01

    Molar enthalpies of sublimation of 1,2,4-, 1,2,3-, and 1,3,5-tri-hydroxy-benzene, were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. The molar enthalpies of fusion and molar heat capacities of these compounds were measured by DSC. The measured data sets of vaporization, sublimation and fusion enthalpies were checked for internal consistency. Strength of the inter- and intra-molecular hydrogen bonding in di- and tri-hydroxy-benzenes have been assessed

  12. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    Science.gov (United States)

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  13. Effect of coating systems on the vaporization of pentachlorophenol from treated wood

    Science.gov (United States)

    L. L. Ingram; G. D. McGinnis; P. M. Pope; W. C. Feist

    1983-01-01

    Specimens of southern pine treated with pentachlorophenol (penta) in mineral spirits (dip treatment), penta in P9 type A oil and penta in methylene chloride (pressure treatments) were used to evaluate the efficacy of different types of coatings in suppressing the vaporization of penta from treated wood. The clear film-forming coatings, such as polyurethane and alkyds,...

  14. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  15. A thermodynamic study of glucose and related oligomers in aqueous solution: Vapor pressures and enthalpies of mixing

    DEFF Research Database (Denmark)

    Cooke, S.A.; Jonsdottir, Svava Osk; Westh, Peter

    2002-01-01

    Vapor pressures above aqueous solutions of glucose and maltose at both 298.06 K and 317.99 K and vapor pressures above aqueous solutions of cellobiose, maltotriose, maltotetraose, and maltopentaose at 317.99 K have been measured. The excess enthalpies have been recorded for all of the above-menti...... in aqueous solution. This so-called transference principle is found to be of interest in furthering the discussion concerning the applicability of lattice-based models for solution theory....

  16. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    Science.gov (United States)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  17. Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands

    Science.gov (United States)

    Mathai, C. V.; Walls, W. L.; Broersma, S.

    1977-01-01

    An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.

  18. Catalytic cracking of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1940-09-12

    A process is described for the vapor phase catalytic cracking of hydrocarbon oils boiling substantially in the gas oil range. The reaction takes place in the presence of a solid catalyst between 700 to 900/sup 0/F under pressure between atmospheric and 400 psi. A gas containing between 20 and 90 mol % of free hydrogen is used. The reaction is allowed to proceed until consumption of the free begins. The reaction is discontinued at that point and the catalyst is regenerated for further use.

  19. Experimental Results For Hydrocarbon Refrigerant Vaporization In Brazed Plate Heat Exchangers at High Pressure

    OpenAIRE

    Desideri, Adriano; Schmidt Ommen, Torben; Wronski, Jorrit; Quoilin, Sylvain; Lemort, Vincent; Haglind, Fredrik

    2016-01-01

    In this contribution, the experimental heat transfer coefficient  and the pressure drop measured during HFC refrigerants vaporization inside small brazed plate heat exchanger (PHE) at typical evaporation temperature for organic Rankine cycle systems for low thermal energy quality applications are presented. Scientific work focusing on the heat transfer in PHEs has been carried out since the late 19th century. More recent publications have been focusing on vaporization and condensation of ref...

  20. Recommended vapor pressures for aniline, nitromethane, 2-aminoethanol, and 1-methyl-2-pyrrolidone

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Mahnel, T.; Červinka, C.

    2015-01-01

    Roč. 406, Nov (2015), 34-46 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : recommended vapor pressure equations * heat capacity * ideal - gas thermodynamic properties * aniline * nitromethane Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  1. Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica

    Science.gov (United States)

    Ferguson, Frank T.; Nuth, Joseph A., III

    2012-01-01

    The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 plus or minus 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 plus or minus 25) kJ per mol and (363.6 plus or minus 4.1) kJ per mol respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound.

  2. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, Jillian L., E-mail: JillianLGoldfarb@gmail.co [Division of Engineering, Brown University, Providence, RI 02912 (United States); Suuberg, Eric M., E-mail: Eric_Suuberg@brown.ed [Division of Engineering, Brown University, Providence, RI 02912 (United States)

    2010-06-15

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) g . mol{sup -1} were measured over the temperature range of (301 to 486) K using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin, and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents.

  3. Studies on micro-structures at vapor-liquid interfaces of film boiling on hot liquid surface at arriving of a shock pressure

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Lee, S. [Tokyo Inst. of Tech. (Japan)

    1998-01-01

    In vapor explosions, a pressure wave (shock wave) plays a fundamental role in the generation, propagation and escalation of the explosion. Transient volume change by rapid heat flow from a high temperature liquid to a low temperature volatile one and phase change generate micro-scale flow and the pressure wave. One of key issues for the vapor explosion is to make clear the mechanism to support the explosive energy release from hot drop to cold liquid. According to our observations by an Image Converter Camera, growth rate of vapor film around a hot tin drop became several times higher than that around a hot Platinum tube at the same conditions when a pressure pulse collapsed the film. The thermally induced fragmentation was followed by the explosive growth rate of the hot drop. In the previous report, we have proposed that the interface instability and fragmentation model in which the fine Taylor instability of vapor-liquid interface at the collapsing and re-growth phase of vapor film and the instability induced by the high pressure spots at the drop surface were assumed. In this study, the behavior of the vapor-liquid interface region at arrival of a pressure pulse was investigated by the CIPRIS code which is able to simulate dynamics of transient multi-phase interface regions. It is compared with the observation results. Through detailed investigations of these results, the mechanisms of the thermal fragmentation of single drop are discussed. (J.P.N.)

  4. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 °C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  5. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    International Nuclear Information System (INIS)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 ℃). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  6. Vapor Pressure Measurements of LiBH4, NaBH 4 and Ca(BH4)2 using Knudsen Torsion Effusion Gravimetric Method

    Science.gov (United States)

    Danyan, Mohammad Masoumi

    Hydrogen storage is one of the critical technologies needed on the path towards commercialization for mobile applications. In the past few years, a range of new light weight hydrogen containing material has been discovered with good storage properties. Among them, lithium borohydride (LiBH 4) sodium borohydride (NaBH4) and calcium borohydride (Ca(BH 4)2) have shown promising results to be used as solid state hydrogen storage material. In this work, we have determined equilibrium vapor pressures of LiBH 4 NaBH4 and Ca(BH4)2 obtained by Torsion effusion thermogravimetric method. Results for all the three hydrides exhibited that a small fraction of the materials showed congruency, and sublimed as gaseous compound, but the majority of the material showed incongruent vaporization. Two Knudsen cells of 0.3 and 0.6mm orifice size was employed to measure the total vapor pressures. A Whitman-Motzfeldt method is used to extrapolate the measured vapor pressures to zero orifice size to calculate the equilibrium vapor pressures. In the case of LiBH4 we found that 2% of the material evaporated congruently (LiBH4(s) → LiBH4(g)) according to the equation: logPLiBH4/P 0 =-3263.5 +/-309/T + (1.079 +/-0.69) and rest as incongruent vaporization to LiH, B, and hydrogen gas according to the equation logPeq/P0 =(-3263.5 +/-309)/T+ (2.458 +/-0.69) with DeltaH evap.= 62.47+/-5.9 kJ/mol of H2, DeltaSevap. = 47.05+/-13 J/mol of H2.K. The NaBH4 also had somewhat similar behavior, with 9% congruent evaporation and equilibrium vapor pressure equation of logPLiBH4=-7700+/-335/ T+ (6.7+/-1.5) and 91% incongruent decomposition to Na and Boron metal, and hydrogen gas. The enthalpy of vaporization; DeltaHevap. = 147.2+/-6.4kJ/molH2 and DeltaSevap.= 142 +/-28 kJ/molH2.K (550-650K). The Ca(BH4) 2 exhibited similar vaporization behavior with congruency of 3.2%. The decomposition products are CaH2 and Boron metal with evolution of hydrogen gas varying with the pressure equation as logPeq /P0 =(-1562

  7. Effect of processing conditions on oil point pressure of moringa oleifera seed.

    Science.gov (United States)

    Aviara, N A; Musa, W B; Owolarafe, O K; Ogunsina, B S; Oluwole, F A

    2015-07-01

    Seed oil expression is an important economic venture in rural Nigeria. The traditional techniques of carrying out the operation is not only energy sapping and time consuming but also wasteful. In order to reduce the tedium involved in the expression of oil from moringa oleifera seed and develop efficient equipment for carrying out the operation, the oil point pressure of the seed was determined under different processing conditions using a laboratory press. The processing conditions employed were moisture content (4.78, 6.00, 8.00 and 10.00 % wet basis), heating temperature (50, 70, 85 and 100 °C) and heating time (15, 20, 25 and 30 min). Results showed that the oil point pressure increased with increase in seed moisture content, but decreased with increase in heating temperature and heating time within the above ranges. Highest oil point pressure value of 1.1239 MPa was obtained at the processing conditions of 10.00 % moisture content, 50 °C heating temperature and 15 min heating time. The lowest oil point pressure obtained was 0.3164 MPa and it occurred at the moisture content of 4.78 %, heating temperature of 100 °C and heating time of 30 min. Analysis of Variance (ANOVA) showed that all the processing variables and their interactions had significant effect on the oil point pressure of moringa oleifera seed at 1 % level of significance. This was further demonstrated using Response Surface Methodology (RSM). Tukey's test and Duncan's Multiple Range Analysis successfully separated the means and a multiple regression equation was used to express the relationship existing between the oil point pressure of moringa oleifera seed and its moisture content, processing temperature, heating time and their interactions. The model yielded coefficients that enabled the oil point pressure of the seed to be predicted with very high coefficient of determination.

  8. Distribution of multi-component solvents in solvent vapor extraction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    Vapex process performance is sensitive to operating pressures, temperatures and the types of solvent used. The hydrocarbon solvents used in Vapex processes typically have between 5 and 10 per cent hydrocarbon impurities, and the accumulation of dense phases inside the vapor chamber reduces gravity drainage potential. This study investigated the partitioning of solvent compounds inside the vapor chamber during in situ Vapex processes.The aim of the study was to examine how the different components of the mixed solvent partitioned inside the extracted chamber during the oil and vapor phase. A 2-D homogenous reservoir model was used to simulate the Vapex process with a solvent mixture comprised of propane and methane at various percentages. The effect of injecting a hot solvent vapor was also investigated. The study showed that injected methane accumulated at both the top and the extraction interface. Accumulations near the top had a positive impact on solvent confinement in thin reservoirs. Diffusion of the solvent component was controlled by gas phase molecular diffusion, and was much faster than the diffusion of solvent molecules in the liquid phase. The use of hot solvent mixtures slowed the extraction process due to lower solvent solubility in the oil phase. It was concluded that the negative impact on viscosity reduction by dilution was not compensated by rises in temperature. 6 refs., 11 figs.

  9. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  10. The effects of heated vegetable oils on blood pressure in rats

    Directory of Open Access Journals (Sweden)

    Kamsiah Jaarin

    2011-01-01

    Full Text Available OBJECTIVES: The goal of this study was to determine the possible mechanism that is involved in the blood pressureraising effect of heated vegetable oils. METHODS: Adult male Sprague-Dawley rats were divided into 11 groups; the control group was fed with rat chow, and the other groups were fed with chow that was mixed with 15% weight/weight palm or soy oils, which were either in a fresh form or heated once, twice, five, or ten times. Blood pressures were measured at the baseline and throughout the 24-week study. Plasma nitric oxide levels were assessed prior to treatment and at the end of the study. Following 24 weeks, the rats were sacrificed to investigate their vascular reactivity using the thoracic aorta. RESULTS: Palm and soy oils had no detrimental effects on blood pressure, and they significantly elevated the nitric oxide contents and reduced the contractile responses to phenylephrine. However, trials using palm and soy oils that were repeatedly heated showed an increase in blood pressure, enhanced phenylephrine-induced contractions, reduced acetylcholine- and sodium nitroprusside-induced relaxations relative to the control and rats that were fed fresh vegetable oils. CONCLUSIONS: The blood pressure-raising effect of the heated vegetable cooking oils is associated with increased vascular reactivity and a reduction in nitric oxide levels. The chronic consumption of heated vegetable oils leads to disturbances in endogenous vascular regulatory substances, such as nitric oxide. The thermal oxidation of the cooking oils promotes the generation of free radicals and may play an important contributory role in the pathogenesis of hypertension in rats.

  11. Rapid Chemical Vapor Infiltration of Silicon Carbide Minicomposites at Atmospheric Pressure.

    Science.gov (United States)

    Petroski, Kenneth; Poges, Shannon; Monteleone, Chris; Grady, Joseph; Bhatt, Ram; Suib, Steven L

    2018-02-07

    The chemical vapor infiltration technique is one of the most popular for the fabrication of the matrix portion of a ceramic matrix composite. This work focuses on tailoring an atmospheric pressure deposition of silicon carbide onto carbon fiber tows using the methyltrichlorosilane (CH 3 SiCl 3 ) and H 2 deposition system at atmospheric pressure to create minicomposites faster than low pressure systems. Adjustment of the flow rate of H 2 bubbled through CH 3 SiCl 3 will improve the uniformity of the deposition as well as infiltrate the substrate more completely as the flow rate is decreased. Low pressure depositions conducted at 50 Torr deposit SiC at a rate of approximately 200 nm*h -1 , while the atmospheric pressure system presented has a deposition rate ranging from 750 nm*h -1 to 3.88 μm*h -1 . The minicomposites fabricated in this study had approximate total porosities of 3 and 6% for 10 and 25 SCCM infiltrations, respectively.

  12. Complementary vapor pressure data for 2-methyl-1-propanol and 3-methyl-1-butanol at a pressure range of (15 to 177) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Quezada, Nathalie [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile)], E-mail: juan.delafuente@usm.cl

    2009-09-15

    The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.

  13. Vapor pressure data for ethyl-2-methylbutyrate, hexanal and (E)-2-hexenal at a pressure range of (25 to 190) kPa

    International Nuclear Information System (INIS)

    Meneses, David A.; Bejarano, Arturo; Fuente, Juan C. de la

    2014-01-01

    Highlights: • Vapor pressures of three pure apple aroma constituents were measured. • Measurements were made over the temperature range of (362.1 to 429.9) K. • Constants of Antoine and Wagner type equations were fitted to the experimental data. • Relative deviations (rmsd) from the three vapor-pressure equations were <0.9%. • Contrast with literature showed discrepancies <9% among them and with this work. - Abstract: The saturated vapor pressures of pure ethyl-2-methylbutyrate, hexanal and (E)-2-hexenal, which are volatile compounds characteristic of apple aroma, were measured with a dynamic recirculation apparatus at a pressure range of (24.5 to 190.0) kPa. Measurements were made over the temperature range of (362.1 to 429.9) K for ethyl-2-methylbutyrate, (358.1 to 425.8) K for hexanal, and (373.5 to 446.2) K for (E)-2-hexenal. The maximum likelihood method was used to estimate the parameters of the Antoine equation, whereas the parameters of an extended Antoine equation and the Wagner equation were determined by non linear least square method. The three models showed root mean square deviations (rmsd) of 0.29%, 0.28%, and 0.27% for ethyl-2-methylbutyrate, 0.58%, 0.48%, and 0.38% for hexanal, and 0.89%, 0.62% and 0.36% for (E)-2-hexenal, respectively. Additionally, the experimental data and correlation were compared with those available in the literature

  14. Cracking hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Seigle, A A.F.M.

    1922-12-20

    Hydrocarbon oils such as petroleum, peat, shale, or lignite oils, heavy tars, resin oils, naphthalene oils, etc., are vaporized by being fed from a tank through a preheater to the lower part of a vertical annular retort heated by a flame projected down the central cavity from a burner. The oil vapors rise through annular passages formed by disks, on which are placed chips of copper, iron, aluminum, etc., to act as catalysts.

  15. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  16. Energy saving in crude oil atmospheric distillation columns by modifying the vapor feed inlet tray

    Energy Technology Data Exchange (ETDEWEB)

    Arjmand, M. [Royal Institute of Technology (KTH), Graduate School of Chemical Engineering, Stockholm (Sweden); Moreno, L.; Liu, L. [Royal Institute of Technology (KTH), Department of Chemical Engineering and Technology, Stockholm (Sweden)

    2011-08-15

    Optimization of a typical crude oil atmospheric distillation unit and reduction of energy conservation were carried out through modifying the implementation and change in the flash zone of the tower. A conventional procedure in such units involves the combination of liquid and vapor product of the prefractionation train surge drum upon introduction to the tower. However, it is theoretically illustrated and represented by simulation means that introducing the vapor feed into the upper stages of the distillation column separately can lead to an energy saving of 12.6 % in the condenser duty, an increased liquid-to-gas flow (L/G) at certain points of the column, and hence to a reduction in diameter and investment costs of new tower designs of approximately US$ 0.7 million a{sup -1}. The proposal can be put into practice without the need of additional equipments or additional cost of difficult rerouting the streams. An industrial case study of a steady-state crude oil distillation unit is given by simulation provision of AspenHysys trademark. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L; Cha, Min

    2016-01-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble

  18. Development of a quasi-adiabatic calorimeter for the determination of the water vapor pressure curve.

    Science.gov (United States)

    Mokdad, S; Georgin, E; Hermier, Y; Sparasci, F; Himbert, M

    2012-07-01

    Progress in the knowledge of the water saturation curve is required to improve the accuracy of the calibrations in humidity. In order to achieve this objective, the LNE-CETIAT and the LNE-CNAM have jointly built a facility dedicated to the measurement of the saturation vapor pressure and temperature of pure water. The principle is based on a static measurement of the pressure and the temperature of pure water in a closed, temperature-controlled thermostat, conceived like a quasi-adiabatic calorimeter. A copper cell containing pure water is placed inside a temperature-controlled copper shield, which is mounted in a vacuum-tight stainless steel vessel immersed in a thermostated bath. The temperature of the cell is measured with capsule-type standard platinum resistance thermometers, calibrated with uncertainties below the millikelvin. The vapor pressure is measured by calibrated pressure sensors connected to the cell through a pressure tube whose temperature is monitored at several points. The pressure gauges are installed in a thermostatic apparatus ensuring high stability of the pressure measurement and avoiding any condensation in the tubes. Thanks to the employment of several technical solutions, the thermal contribution to the overall uncertainty budget is reduced, and the remaining major part is mainly due to pressure measurements. This paper presents a full description of this facility and the preliminary results obtained for its characterization.

  19. Vapor pressure determination of liquid UO/sub 2/ using a boiling point technique

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1987-01-01

    By analogy with the classic boiling point method, a quasi-stationary millisecond laser-heating technique was applied to measure the saturated vapor pressure curve of liquid UO/sub 2/ in the temperature range of 3500 to 4500 K. The results are represented by log rho (MPa)=5.049 - 23 042/T (K), which gives an average heat of vaporization of 441 kJ/mol and a normal boiling point of 3808 K. In addition, spectral emissivities of liquid UO/sub 2/ were determined as a function of the temperature at the pyrometer wavelengths of 752 and 1064 nm

  20. A catalogue of crude oil and oil product properties, 1990

    International Nuclear Information System (INIS)

    Bobra, M.A.; Callaghan, S.

    1990-09-01

    This catalogue is a compilation of available data on crude oils and petroleum products. The emphasis of the catalogue is upon oils which could potentially impact Canada's environment. Other oils which are unlikely to be of direct Canadian concern are also included because they have been well characterized and used in relevant studies. The properties listed for each oil are those which will provide an indication of a spilled oil's environmental behaviour and effects. The properties on which data is provided include API gravity, density, viscosity, interfacial tension, pour point, flash point, vapor pressure, volatility and component distribution, emulsion formation tendency and stability, weathering, dispersability, major hydrocarbon groups, aqueous solubility, toxicity, sulfur content, fire point, and wax content. Most of the chemical-physical properties listed in this catalogue were measured using standard tests. For certain properties, data are given at different temperatures and for different degrees of oil weathering. An oil's degree of weathering is expresed as the volume or weight percent evaporated from the fresh oil. Weathered oils used for testing were artificially weathered by gas stripping following the method of Mackay and Stiver. 109 refs

  1. A catalogue of crude oil and oil product properties, 1992

    International Nuclear Information System (INIS)

    Whiticar, S.; Bobra, M.; Liuzzo, P.; Callaghan, S.; Fingas, M.; Jokuty, P.; Ackerman, F.; Cao, J.

    1993-02-01

    This catalogue is a compilation of available data on crude oils and petroleum products. The emphasis of the catalogue is upon oils which could potentially impact Canada's environment. Other oils which are unlikely to be of direct Canadian concern are also included because they have been well characterized and used in relevant studies. The properties listed for each oil are those which will provide an indication of a spilled oil's environmental behaviour and effects. The properties on which data is provided include API gravity, density, viscosity, interfacial tension, pour point, flash point, vapor pressure, volatility and component distribution, emulsion formation tendency and stability, weathering, dispersability, major hydrocarbon groups, aqueous solubility, toxicity, sulfur content, fire point, and wax content. Most of the chemical-physical properties listed in this catalogue were measured using standard tests. For certain properties, data are given at different temperatures and for different degrees of oil weathering. An oil's degree of weathering is expresed as the volume or weight percent evaporated from the fresh oil. Weathered oils used for testing were artificially weathered by gas stripping following the method of Mackay and Stiver. 140 refs

  2. Sorption and vapor transmission properties of uncompressed and compressed microcellular starch foam.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur P; Takeoka, Gary; Orts, William J; Wood, Delilah; Widmaier, Robert

    2002-11-20

    Microcellular starch foams (MCFs) are made by a solvent-exchange process and consist of a porous matrix with pores generally ranging from approximately 2 microm to submicrometer size. MCF may potentially be useful as a slow-release agent for volatile compounds because of its ability to sorb chemicals from the atmosphere and to absorb liquids into its porous structure, and because it can be compressed to form a starch plastic. MCF made of high-amylose corn and wheat starches was prepared with or without 2% (w/w) silicone oil (SO) or palmitic acid (PA). The MCF was loaded with 1% of various volatile compounds with vapor pressures ranging from 0.02 to 28 mm. The MCF depressed the vapor pressure from 0.37 to 37% compared to a control containing no MCF. Incorporating SO or PA in the matrix of the MCF had little effect on sorption of volatiles. Compressing MCF at 1.4, 6.9, and 69 MPa made a starch plastic with varying porosity. The vapor transmission rate of various volatile compounds through MCF was positively correlated to the vapor pressure of the test compound but was inversely proportional to the compression force used to form the starch plastic. The results indicate that uncompressed and compressed MCFs could be effective slow-release agents for a variety of volatile compounds, especially if used together.

  3. Separation of compressor oil from helium

    International Nuclear Information System (INIS)

    Strauss, R.; Perrotta, K.A.

    1982-01-01

    Compression of helium by an oil-sealed rorary screw compressor entrains as much as 4000 parts per million by weight of liquid and vapor oil impurities in the gas. The reduction below about 0.1 ppm for cryogenic applications is discussed. Oil seperation equipment designed for compressed air must be modified significantly to produce the desired results with helium. The main differences between air and helium filtration are described. A description of the coalescers is given with the continuous coalescing of liquid mist from air or other gas illustrated. Oil vapor in helium is discussed in terms of typical compressor oils, experimental procedure for measuring oil vapor concentration, measured volatile hydrocarbons in the lubricants, and calculated concentration of oil vapor in Helium. Liquid oil contamination in helium gas can be reduced well below 0.1 ppm by a properly designed multiple state coalescing filter system containing graded efficiency filter elements. The oil vapor problem is best attached by efficiently treating the oil to remove most of the colatiles before charging the compressor

  4. Mass Spectrometric Identification of Si-O-H(g) Species from the Reaction of Silica with Water Vapor at Atmospheric Pressure

    Science.gov (United States)

    Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1997-01-01

    A high-pressure sampling mass spectrometer was used to detect the volatile species formed from SiO2 at temperatures between 1200C and 1400C in a flowing water vapor/oxygen gas mixture at 1 bar total pressure. The primary vapor species identified was Si(OH)4. The fragment ion Si(OH)3+,' was observed in quantities 3 to 5 times larger than the parent ion Si(OH)4+. The Si(OH)3+ intensity was found to have a small temperature dependence and to increase with the water vapor partial pressure as expected. In addition, SiO(OH)+ believed to be a fragment of SiO(OH)2, was observed. These mass spectral results were compared to the behavior of silicon halides.

  5. Effect of Furnish on Temperature and Vapor Pressure Behavior in the Center of Mat Panels during Hot Pressing

    Directory of Open Access Journals (Sweden)

    Muhammad Navis Rofii

    2014-07-01

    Full Text Available Particleboard achieves its overall performance characteristics during hot pressing process. As this process is influenced by several factors, particularly temperature and pressure, it is very important to understand the behavior of both. This study investigates the effects of furnish materials on temperature and vapor pressure behavior inside particleboard mat panels during hot pressing. Strand type particles from hinoki and ring-flaker recycled wood particles were used as furnish for laboratory-scale particleboard panels with a target density of 0.76 g/cm³. Mat panels with a moisture content of about 10% were hot pressed at a platen temperature of 180°C and an initial pressure of 3 MPa until the mat center reached the same temperature as the platen. A press monitoring device (PressMAN Lite was used for detecting the temperature and vapor pressure change in the center of the mat panels. The study showed that the furnish type affected the temperature and vapor behavior inside the mat panels. Particleboard made of hinoki strand resulted in a longer plateau time, a higher plateau temperature and a higher gas pressure generated during hot pressing than those of ring-flaker recycled wood particles. Mixed board resulted in values between those of the two other furnish materials.

  6. Vapor-Liquid Phase Equilibria for Carbon Dioxide-I- Isopentanol Binary System at Elevated Pressure%Vapor-Liquid Phase Equilibria for Carbon Dioxide-I- Isopentanol Binary System at Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    王琳; 曹丰璞; 刘珊珊; 杨浩

    2011-01-01

    High-pressure vapor-liquid phase equilibrium data for carbon dioxide+ isopentanol were measured at tempera- tures of 313.2, 323.1, 333.5 and 343.4 K in the pressure range of 4.64 to 12.71 MPa in a variable-volume high-pressure visual cell. The experimental data were well correlated with Peng-Robinson equation of state (PR-EOS) together with van der Waals-2 two-parameter mixing rule, and the binary interaction parameters were obtained. Henry coefficients and partial molar volumes of CO2 at infinite dilution were estimated based on Krichevsky-Kasarnovsky equation, and Henry coefficients increase with increasing temperature, however, partial molar volumes of CO2 at infinite dilution are negative and the magnitudes decrease with temperature.

  7. Observations on vapor pressure in SPR caverns : sources.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Darrell Eugene

    2010-05-01

    considered through computations using the Multimechanism Deformation Coupled Fracture (MDCF) model, suggesting a relative minor, but potentially significant, contribution to the regain process. Apparently, gains in gas content can be generated from the oil itself during storage because the salt dome has been heated by the geothermal gradient of the earth. The heated domal salt transfers heat to the oil stored in the caverns and thereby increases the gas released by the volatile components and raises the boiling point pressure of the oil. The process is essentially a variation on the fractionation of oil, where each of the discrete components of the oil have a discrete temperature range over which that component can be volatized and removed from the remaining components. The most volatile components are methane and ethane, the shortest chain hydrocarbons. Since this fractionation is a fundamental aspect of oil behavior, the volatile component can be removed by degassing, potentially prohibiting the evolution of gas at or below the temperature of the degas process. While this process is well understood, the ability to describe the results of degassing and subsequent regain is not. Trends are not well defined for original gas content, regain, and prescribed effects of degassing. As a result, prediction of cavern response is difficult. As a consequence of this current analysis, it is suggested that solutioning brine of the final fluid exchange of a just completed cavern, immediately prior to the first oil filling, should be analyzed for gas content using existing analysis techniques. This would add important information and clarification to the regain process. It is also proposed that the quantity of volatile components, such as methane, be determined before and after any degasification operation.

  8. Characteristics of the Na/beta-alumina/Na cell as a sodium vapor pressure sensor

    International Nuclear Information System (INIS)

    Takikawa, O.; Imai, A.; Harata, M.

    1982-01-01

    The EMF and voltage-current characteristics for a galvanic cell with the configuration Na vapor (P 1 )/sodium beta-alumina/Na vapor (P 2 ) were studied. It was verified that the EMF followed the Nernst relation over a wide pressure range. For example, when P 1 = 2 x 10 -2 mm Hg and beta-alumina temperature = 340 0 C, the measured EMF agreed with the calculated value in P 2 range from 10 -5 to 10 -2 mm Hg. At lower pressure range, the measured EMF showed a negative deviation. Coexisting argon gas did not influence the cell EMF characteristic. In an atmosphere containing oxygen, the measured EMF was very high at first. Then it decreased and finally approached a value which agreed with the Nernst equation after several hours. At low beta-alumina temperatures, current saturation was observed in the voltage versus current relation with the anode on the P 2 side. Although the sodium pressure could be determined from saturating current measurement, the measurable pressure range was narrower than that for EMF measurement. At high beta-alumina temperature, current saturation was not clear. Values of 6 x 10 -6 (Ω cm) -1 for the electron conductivity and 6 x 10 -10 (Ω cm) -1 for the hole conductivity at 340 0 C were obtained for beta-alumina from the voltage-current characteristics at low sodium pressure. (Auth.)

  9. Is oil supply choked by financial market pressures?

    International Nuclear Information System (INIS)

    Osmundsen, P.; Mohn, K.; Misund, B.; Asche, F.

    2007-01-01

    Since the late 1990s, financial analysts have focused strongly on short-term profitability for benchmarking and valuation of international oil and gas companies. The increasing pressure for strict capital discipline among oil and gas companies may have reduced their willingness to invest for future reserves and production growth. The current high oil price is partly due to low exploration activity in the oil industry the last decade. We present and discuss the background for this development - based on previous academic research, industry trends and current valuation practices. An estimated econometric model of stock market valuation among oil and gas companies suggests that analysts and companies have put exaggerate weight on short-term earnings and accounting profitability. We therefore expect that the attention will shift back to long-term reserve and production growth. (author)

  10. Is oil supply choked by financial market pressures?

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Mohn, Klaus; Misund, Bard; Asche, Frank

    2007-01-01

    Since the late 1990s, financial analysts have focused strongly on short-term profitability for benchmarking and valuation of international oil and gas companies. The increasing pressure for strict capital discipline among oil and gas companies may have reduced their willingness to invest for future reserves and production growth. The current high oil price is partly due to low exploration activity in the oil industry the last decade. We present and discuss the background for this development-based on previous academic research, industry trends and current valuation practices. An estimated econometric model of stock market valuation among oil and gas companies suggests that analysts and companies have put exaggerate weight on short-term earnings and accounting profitability. We therefore expect that the attention will shift back to long-term reserve and production growth

  11. Financial market pressure, tacit collusion and oil price formation

    International Nuclear Information System (INIS)

    Aune, Finn Roar; Rosendahl, Knut Einar; Mohn, Klaus; Osmundsen, Petter

    2010-01-01

    We explore a hypothesis that a change in investment behaviour among international oil companies (IOC) towards the end of the 1990s had long-lived effects on OPEC strategies, and on oil price formation. Coordinated investment constraints were imposed on the IOCs through financial market pressures for improved short-term profitability in the wake of the Asian economic crisis. A partial equilibrium model for the global oil market is applied to compare the effects of these tacitly collusive capital constraints on oil supply with an alternative characterised by industrial stability. Our results suggest that even temporary economic and financial shocks may have a long-term impact on oil price formation. (author)

  12. Sulphation of oil shale ash under atmospheric and pressurized combustion conditions

    International Nuclear Information System (INIS)

    Kuelaots, I.; Yrjas, P.; Hupa, M.; Ots, A.

    1995-01-01

    One of the main problems in conventional combustion boilers firing pulverized oil shale is the corrosion and fouling of heating surfaces, which is caused by sulphur compounds. Another major problem, from the environmental point of view, are the high SO 2 emissions. Consequently, the amount of sulphur in flue gases must be reduced. One alternative to lower the SO 2 , concentration is the use of new technologies, such as pressurized fluidized bed combustion (PFBC). In FBC processes, the sulphur components are usually removed by the addition of limestone (CaCO 3 ) or dolomite (CaCO 3 x MgCO 3 ) into the bed. The calcium in these absorbents react with SO 2 , producing solid CaSO 4 . However, when burning oil shale, there would be no need to add limestone or dolomite into the bed, due to the initially high limestone content in the fuel (molar ratio Ca/S =10). The capture of sulphur by oil shale ashes has been studied using a pressurized thermogravimetric apparatus (PTGA). The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. Four different materials were tested - one cyclone ash from an Estonian oil shale boiler, two size fractions of Estonian oil shale and, one fraction of Israeli oil shale. The cyclone ash was found to be the poorest sulphur absorbent. In general, the results from the sulphur capture experiments under both atmospheric and pressurized fluidized bed conditions showed that the oil shale can capture not only its own sulphur but also significant amounts of additional sulphur from another fuel if the fuels are mixed together. (author)

  13. Prediction of high pressure vapor-liquid equilibria with mixing rule using ASOG group contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Kojima, K.; Kurihara, K.

    1985-02-01

    To develop a widely applicable method for predicting high-pressure vapor-liquid equilibria by the equation of state, a mixing rule is proposed in which mixture energy parameter ''..cap alpha..'' of theSoave-RedlichKwong, Peng-Robinson, and Martin cubic equations of state is expressed by using the ASOG group contribution method. The group pair parameters are then determined for 14 group pairs constituted by six groups, i.e. CH/sub 4/, CH/sub 3/, CH/sub 2/, N/sub 2/, H/sub 2/, and CO/sub 2/ groups. By using the group pair parameters determined, high-pressure vapor-liquid equilibria are predicted with good accuracy for binary and ternary systems constituted by n-paraffins, nitrogen, hydrogen, and carbon dioxide in the temperature range of 100 - 450K.

  14. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    Science.gov (United States)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  15. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    . The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...... and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient......PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P...

  16. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  17. Pore-scale modelling of the effect of viscous pressure gradients during heavy oil depletion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bondino, I. [Total E and P UK Ltd., London (United Kingdom); McDougall, S.R. [Heriot-Watt Univ., Edinburgh (United Kingdom); Hamon, G. [Total E and P Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    In solution gas drive, when the reservoir pressure is lowered below the bubble point, bubbles nucleate and grow within saturated oil. A period of internal gas-phase expansion maintains reservoir pressure, driving oil to the wellbore region. Continued pressure reduction eventually leads to the formation of a connected gas phase that is capable of being produced along with the oleic phase. As a result, the total produced gas-oil ratio in the well begins to increase. Once the connected gas phase develops, oil production begins to decrease. This general description can be inadequate in the context of heavy oils where additional characteristics, such as foamy oil, and atypically high recoveries are observed. In order to improve the simulation of solution gas drive for heavy oil in the framework of a pre-existing pore-scale network simulator, a dynamic gas-oil interface tracking algorithm was used to determine the mobilization of bubbles under intense pressure gradients. The model was used to characterize both the stationary capillary controlled growth of bubbles characteristic of slow depletion rates in the far wellbore region and the flow phenomena in the near wellbore region. A rationale for interpreting a range of flow mechanism, their associated gas relative permeabilities and critical gas saturations was also proposed. The paper first presented a description of the dynamic pore network model in terms of its' ability to model the porous space; and mobilize gas under viscous pressure gradients and unsteady-state gas relative permeabilities. The dynamic network modelling of heavy oil depletion experiments at different rates and the prediction of the experimental gas saturations were then presented along with a discussion on critical gas saturations. It was concluded that foamy oil behaviour can be observed in situations where capillary pressures are overcome by viscous pressure gradients. 47 refs., 5 tabs., 17 figs.

  18. Influence of CO{sup 2} on PVT properties of an oil crude at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nilo Ricardo; Bonet, Euclides Jose [Centro de Estudos de Petroleo (CEPETRO/UNICAMP), SP (Brazil); Elias Junior, Antonio; Trevisan, Osvair Vidal [Universidade Estadual de Campinas (DEP/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2012-07-01

    The current oil frontier in Brazil is in Santos and Campos Basins, where huge oil accumulations were identified recently. Well tests have shown high values of pressure and concentration of carbon dioxide in these reservoirs. The characterization of the fluids existing in the pores of the reservoir rocks is a task for the exploitation of the hydrocarbons. The objective of this work is to present the experimental set up that was assembled to perform PVT analysis for oils at high pressure, moderate temperature and high CO{sub 2} content, oils analogous to that found in the new Brazilian pre-salt discoveries. Samples of dead oil and synthetic gas were received at the laboratory, where the recombination was carried out to obtain live oil, with twelve mole percent CO{sub 2}. The fluids were maintained inside special cylinders, with a floating piston, separating two compartments, one with the test fluid and the other with hydraulic fluid. Pressure was provided by a positive displacement pump connected to the bottles. The experiments achieved pressures up to 70 MPa at constant temperature, conditions expected for the reservoir. Starting at the high pressure, the fluid volume was increased by withdrawing the hydraulic fluid from the cylinder. Pressure and volume were recorded to determine the bubble point and compressibility of the system. The pressure drop continued until the mixture was in the two phase region, finishing the constant composition expansion process. After that, the sample was re-pressurized and the PVT bottle was agitated to reach the thermodynamic equilibrium, when the live oil was at single phase again. An aliquot of this mixture was transferred, keeping their pressure and temperature conditions, to a high pressure viscometer and to a densimeter. Another portion of live oil was flashed to a test tube and to a gasometer, to render the gas oil ratio. Afterwards, successive additions of carbon dioxide increased its concentration in live oil to 15, 20 and 35

  19. Experimental and numerical study of palm oil and castor oil biodiesel droplet evaporation

    OpenAIRE

    Botero, M.L; Molina, A.

    2017-01-01

    ABSTRACT: The vaporization characteristics of Palm and Castor oil biodiesel (Ricinus comunis) droplets were studied. An experimental set-up for measuring the evaporation rate of fuel droplets at atmospheric pressure and variable temperatures was developed. The droplets were suspended on a quartz fiber with initial droplet diameters ranging from 0.9 mm to 1.3 mm. The D2 law model for droplet evaporation was used to predict the evaporation rate of the fuels. Biodiesel physical properties were e...

  20. Oil majors under states pressure: two examples in the Caspian basin

    International Nuclear Information System (INIS)

    Lussac, Samuel; Raballand, Gael

    2011-01-01

    All over the world, and especially in developing countries, governments strive to strengthen national oil companies over oil and gas majors. The Caspian, and notably Azerbaijan and Kazakhstan, is not an exception to this current trend. This article sheds light on the leverages both Azerbaijani and Kazakhstani governments have used to increase pressure over oil and gas multinationals. In a first step, they both established a publicly-owned integrated company managed by the presidential entourage. Then, Azerbaijan and Kazakhstan have applied various instruments. Baku has sought to increase its own oil production to decrease the role of majors while Astana has preferred to use ecological, fiscal, legal and logistical leverages. However, in both cases, the outcome has been rather similar since the increasing pressure over majors has not necessarily led to benefit local populations

  1. Vapour pressures and enthalpies of vaporization of a series of the linear n-alkyl acetates

    Czech Academy of Sciences Publication Activity Database

    Krasnykh, E. L.; Verevkin, S. P.; Koutek, Bohumír; Doubský, Jan

    2006-01-01

    Roč. 38, č. 6 (2006), s. 717-723 ISSN 0021-9614 Institutional research plan: CEZ:AV0Z40550506 Keywords : aliphatic acetates * transpiration method * vapour pressure * enthalpy of vaporization Subject RIV: CC - Organic Chemistry Impact factor: 1.842, year: 2006

  2. Physico-chemical characterization antituberculosis thioacetazone: Vapor pressure, solubility and lipophilicity

    International Nuclear Information System (INIS)

    Sharapova, Angelica; Ol'khovich, Marina; Blokhina, Svetlana; Perlovich, German

    2017-01-01

    Highlights: • Vapor pressures of antituberculosis thioacetazone were determined by transpiration method. • Solubilities of the TAZ in four modeling solvents were measured at different temperatures. • Temperature dependence of octanol/buffer pH 7.4 partition coefficients was obtained. • Thermodynamics parameters of solubility, sublimation, solvation and transfer were calculated. - Abstract: Vapor pressure of thioacetazone (TAZ) has been determined in the temperature range of 404.15–429.15 K by the transpiration method. The obtained data were used to calculate the standard molar enthalpy of sublimation that was found to be 164.1 kJ/mol at T = 298.15 K. The drug solubility was measured at seven temperatures from 288.15 to 318.15 K in modeling solvents: octanol, hexane and aqueous buffers pH 2.0 and 7.4 by the saturation shake-flask method by using spectrophotometric analysis. It has been found that TAZ has poor solubility in hexane and buffer solutions and limited solubility in octanol. The experimental data were well correlated by van’t Hoff and modified Apelblat equations. A temperature dependence of TAZ partition coefficient in the octanol/buffer pH 7.4 system has been derived. The partition coefficient value in this system (logP = 1.82) refers to the optimal interval for oral absorption drugs. The thermodynamic parameters of sublimation, solubility, solvation and transfer have been determined based on experimental data. The dominant effect of enthalpy and entropy contributions to the Gibbs energy of the investigated processes has been revealed.

  3. Evaluation of Oil Film Pressure and Temperature of an Elliptical Journal Bearing - An Experimental Study

    Directory of Open Access Journals (Sweden)

    A. Singla

    2016-03-01

    Full Text Available The present study is aimed at experimental evaluation of both oil film pressure and temperature at the central plane of finite elliptical journal bearing configuration. These parameters have been obtained by running the machine at various speeds under different applied loads ranging from 500 N to 2000 N using three different grades of oil (HYDROL 32, 68 and 150. The data has been obtained through a test rig which is capable of measuring both pressure and temperature at the same location on the elliptical bearing profile. An elliptical journal bearing with journal diameter=100 mm, L/D ratio=1.0, Ellipticity Ratio=1.0 and radial clearance=0.1 mm has been designed and tested to access the pressure and temperature rise of the oil film at the central plane of the bearing. Two different lobes of positive pressure have been obtained for elliptical bearing which results in smaller area for cavitation zone and accounts for better thermal stability. Also, with the increase in load both pressure and temperature of an oil film increases for all the three grades of oil. Experimentally, it has been established that the HYDROL 68 is suitable grade of lubricating oil which gives the optimum rise of pressure and temperate under all operating conditions among the lubricating oils under study.

  4. Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)

    2009-09-15

    A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.

  5. Fish oil affects blood pressure and the plasma lipid profile in healthy Danish infants

    DEFF Research Database (Denmark)

    Damsgaard, C.T.; Schack-Nielsen, L.; Michaelsen, K.F.

    2006-01-01

    with an oscillometric device, and blood was sampled for analysis of erythrocyte fatty acid composition and the plasma lipid profile. This paper examines the effects of the fish oil supplement, with adjustment for the effects of the milk intervention when relevant. The fish oil intervention increased erythrocyte (n-3......Animal and epidemiologic studies indicate that early nutrition has lasting effects on metabolism and cardiovascular disease risk. In adults, (n-3) long-chain PUFA (LCPUFA) from fish oils improve blood pressure, the lipid profile, and possibly cardiovascular disease mortality. This randomized trial...... is the first to investigate the effects of fish oil on blood pressure and the lipid profile in infancy. Healthy term 9-mo old infants In 83) were randomly assigned to 5 mL fish oil daily or no fish oil for 3 mo and to 2 different milk types. Before and after the intervention, blood pressure was measured...

  6. Effect of Preferential Solvation of Polymer Chains on Vapor-Pressure Osmometry Results. Computer Simulation Study.

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Martin; Lísal, Martin; Limpouchová, Z.; Procházka, Karel

    2018-01-01

    Roč. 23, č. 3 (2018), s. 244-251 ISSN 1023-666X R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : vapor-pressure osmometry * simulation * solvatation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  7. The transport phase of pyrolytic oil exiting a fast fluidized bed reactor

    Science.gov (United States)

    Daugaard, Daren Einar

    An unresolved and debated aspect in the fast pyrolysis of biomass is whether the bio-oil exits as a vapor or as an aerosol from the pyrolytic reactor. The determination of the bio-oil transport phase will have direct and significant impact on the design of fast pyrolysis systems. Optimization of both the removal of particulate matter and collection of bio-oil will require this information. In addition, the success of catalytic reforming of bio-oil to high-value chemicals will depend upon this transport phase. A variety of experimental techniques were used to identify the transport phase. Some tests were as simple as examining the catch of an inline filter while others attempted to deduce whether vapor or aerosol predominated by examining the pressure drop across a flow restriction. In supplementary testing, the effect of char on aerosol formation and the potential impact of cracking during direct contact filtering are evaluated. The study indicates that for pyrolysis of red oak approximately 90 wt-% of the collected bio-oil existed as a liquid aerosol. Conversely, the pyrolysis of corn starch produced bio-oil predominately in the vapor phase at the exit of the reactor. Furthermore, it was determined that the addition of char promotes the production of aerosols during pyrolysis of corn starch. Direct contact filtering of the product stream did not collect any liquids and the bio-oil yield was not significantly reduced indicating measurable cracking or coking did not occur.

  8. Dynamic of vapor bubble growth in fields of variable pressure

    International Nuclear Information System (INIS)

    Pedroso, H.K.

    1982-01-01

    A mathematical model for the description of the growth from an initial nucleus of a vapor bubble imersed in liquid, subjected to a loss of pressure is presented. The model is important for analysing LOCA (Loss of Coolant Acident) in P.W.R. type reactors. Several simplifications were made in the phenomenum governing equations. With such simplifications the heat diffusion equation became the determining factor for the bubble growth, and the problem was reduced to solve the heat diffusion equation for semi infinite solid whose surface temperature is a well known function of time (it is supposed that the surface temperature is equal to the saturation temperature of the liquid at the system pressure at a given moment). The model results in an analytical expression for the bubble radius as a function of time. Comparisons with experimental data and previous models were made, with reasonable agreement. (author) [pt

  9. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    Science.gov (United States)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  10. Efect of Pressure-Drop Rate on the Isolation of Cananga Oil using Instantaneous Controlled Pressure-Drop Process.

    Czech Academy of Sciences Publication Activity Database

    Kristiawan, M.; Sobolík, Václav; Al-Haddad, M.; Allaf, K.

    2008-01-01

    Roč. 47, 1 (2008) , s. 66-75 ISSN 0255-2701 Institutional research plan: CEZ:AV0Z40720504 Keywords : cananga oil * essential oil isolation * instantaneous controlled pressure drop (DIC) Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.518, year: 2008

  11. Highly ionized physical vapor deposition plasma source working at very low pressure

    Science.gov (United States)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.

    2012-04-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.

  12. Highly ionized physical vapor deposition plasma source working at very low pressure

    International Nuclear Information System (INIS)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Hippler, R.; Cada, M.; Hubicka, Z.; Tichy, M.

    2012-01-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti + and Ti ++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density n e ∼ 10 18 m -3 , measured during the HiPIMS pulse.

  13. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  14. Water vapor pressure over molten KH_2PO_4 and demonstration of water electrolysis at ∼300 °C

    International Nuclear Information System (INIS)

    Berg, R.W.; Nikiforov, A.V.; Petrushina, I.M.; Bjerrum, N.J.

    2016-01-01

    Highlights: • The vapor pressure over molten KH_2PO_4 was measured by Raman spectroscopy to be about 8 bars at ∼300 °C. • Raman spectroscopy shows that molten KH_2PO_4 under its own vapor pressure contains much dissolved water. • It is demonstrated spectroscopically that water electrolysis is possible in KH_2PO_4 electrolyte forming H_2 and O_2 at 300 °C. • Molten KH_2PO_4 is a possible electrolyte for water electrolysis. - Abstract: A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH_2PO_4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH_2PO_4 was found to dissociate into H_2O gas in equilibrium with a melt mixture of KH_2PO_4−K_2H_2P_2O_7−KPO_3−H_2O. The water vapor pressure above the melt, when contained in a closed ampoule, was determined quantitatively vs. temperature by use of Raman spectroscopy with methane or hydrogen gas as an internal calibration standard, using newly established relative ratios of Raman scattering cross sections of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH_2PO_4 can be split by electrolysis via the reaction 2H_2O → 2H_2 + O_2 at temperatures ∼275–325 °C. At these temperatures, before the start of the electrolysis, the KH_2PO_4 melt gives off H_2O gas that pressurizes the cell according to the following dissociations: 2KH_2PO_4 ↔ K_2H_2P_2O_7 + H_2O ↔ 2KPO_3 + 2H_2O. The spectra show however that the water by

  15. A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene.

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Chen, Yu; Lin, Yung-Chen; Qu, Yongquan; Bai, Jingwei; Ivanov, Ivan A; Liu, Gang; Huang, Yu; Duan, Xiangfeng

    2012-01-28

    Graphene has attracted considerable interest as a potential material for future electronics. Although mechanical peel is known to produce high quality graphene flakes, practical applications require continuous graphene layers over a large area. The catalyst-assisted chemical vapor deposition (CVD) is a promising synthetic method to deliver wafer-sized graphene. Here we present a systematic study on the nucleation and growth of crystallized graphene domains in an atmospheric pressure chemical vapor deposition (APCVD) process. Parametric studies show that the mean size of the graphene domains increases with increasing growth temperature and CH 4 partial pressure, while the density of domains decreases with increasing growth temperature and is independent of the CH 4 partial pressure. Our studies show that nucleation of graphene domains on copper substrate is highly dependent on the initial annealing temperature. A two-step synthetic process with higher initial annealing temperature but lower growth temperature is developed to reduce domain density and achieve high quality full-surface coverage of monolayer graphene films. Electrical transport measurements demonstrate that the resulting graphene exhibits a high carrier mobility of up to 3000 cm 2 V -1 s -1 at room temperature.

  16. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    Science.gov (United States)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  17. Low-pressure chemical vapor deposition as a tool for deposition of thin film battery materials

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Dongen, van T.; Niessen, R.A.H.; Croon, de M.H.J.M.; Notten, P.H.L.

    2009-01-01

    Low Pressure Chemical Vapor Deposition was utilized for the deposition of LiCoO2 cathode materials for all-solid-state thin-film micro-batteries. To obtain insight in the deposition process, the most important process parameters were optimized for the deposition of crystalline electrode films on

  18. Calculation of vapor pressures of oxide fuels up to 5,000 K for equilibrium and nonequilibrium evaporation

    International Nuclear Information System (INIS)

    Breitung, W.

    1975-06-01

    In the first part of this work the evaporation kinetics of multicomponent systems is studied with UO 2 as the example. The evaporation, which is generally incongruent, implies that two opposing types of steady-state evaporation must be distinguished: equilibrium evaporation and 'forced congruent' evaporation. The two types of evaporation indicated entail different vapor pressures. In some prompt critical reactor incidents forced congruent evaporation must be anticipated. The second part of this work contains the calculation of the vapor pressures of UOsub(2+-x) and (U,Pu)Osub(2+-x) for both types of evaporation up to temperature of 5,000 K. The calculating procedures are based on the method of Rand and Markin (1967) incorporating the recent thermodynamic data. The agreement between the measured and calculated total pressures is good for the ranges of temperature and stoichiometry for which experimental results are available. This supports the results calculated for higher temperature ranges. (orig./UA) [de

  19. Virgin Coconut Oil Prevents Blood Pressure Elevation and Improves Endothelial Functions in Rats Fed with Repeatedly Heated Palm Oil

    Directory of Open Access Journals (Sweden)

    Badlishah Sham Nurul-Iman

    2013-01-01

    Full Text Available This study was performed to explore the effects of virgin coconut oil (VCO in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i control (basal diet, (ii VCO (1.42 mL/kg, oral, (iii five-times-heated palm oil (15% (5HPO, and (iv five-times-heated palm oil (15% and VCO (1.42 mL/kg, oral (5HPO + VCO. Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.

  20. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles......The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low...... volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar...

  1. Equilibrium water vapor pressures over polyvanadates M2V12O30.7·nH2O

    International Nuclear Information System (INIS)

    Volkov, V.L.; Zakharova, G.S.; Ivakin, A.A.

    1986-01-01

    Equilibrium pressures of water vapors over polyvanadates M 2 V 12 O 30.7 xnH 2 O where M=Li, Na, K are determined in the 293-343 K temperature range. Changes in Gibbs free energy and enthalpy of compound dehydration depending on water content in the final product are calculated on the basis of these data. Molar enthalpy of water is shown to reduce from lithium to potassium, while equilibrium pressure of water vapors over the compounds grows from lithium to potassium. Good correlation of thermodynamic properties of crystallization water of polyvanadates with energy characteristics of hydrated M + ions of the solutions confirms the conclusion that they cannot be attributed to ordinary crystallohydrates

  2. Penicillium expansum Inhibition on Bread by Lemongrass Essential Oil in Vapor Phase.

    Science.gov (United States)

    Mani López, Emma; Valle Vargas, Georgina P; Palou, Enrique; López Malo, Aurelio

    2018-02-23

    The antimicrobial activity of lemongrass ( Cymbopogon citratus) essential oil (EO) in the vapor phase on the growth of Penicillium expansum inoculated on bread was evaluated, followed by a sensory evaluation of the bread's attributes after EO exposure. The lemongrass EO was extracted from dry leaves of lemongrass by microwave-assisted steam distillation. The chemical composition of the lemongrass EO was determined using a gas chromatograph coupled to a mass spectrometer. The refractive index and specific gravity of the EO were also determined. Bread was prepared and baked to reach two water activity levels, 0.86 or 0.94, and then 10 μL of P. expansum spore (10 6 spores per mL) suspension was inoculated on the bread surface. Concentrations of lemongrass EO were tested from 125 to 4,000 μL/L air , whereas mold radial growth was measured for 21 days. For sensory evaluation, breads were treated with lemongrass EO vapor at 0, 500, or 1,000 μL/L air for 48 h and tested by 25 untrained panelists. The EO yield was 1.8%, with similar physical properties to those reported previously. Thirteen compounds were the main components in the EO, with citral being the major compound. P. expansum was inhibited for 21 days at 20°C with 750 μL of EO/L air , and its inhibition increased with increasing concentrations of EO. Sensory acceptance of bread exposed to vapor concentrations of 500 or 1,000 μL of EO/L air or without EO was favorable; similar and no significant differences ( P > 0.05) were observed among them.

  3. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    Science.gov (United States)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-03-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (g F ) derives a canopy conductance (g W ) from measured transpiration by inverting the coupled transpiration model to yield g W = m - n ln(D) where m and n are fitting parameters. In contrast, this paper demonstrates that the relation between coupled g W and D is g W = AP/D + B, where P is the barometric pressure, A is the radiative term, and B is the convective term coefficient of the Penman-Monteith equation. A and B are functions of g F and of meteorological parameters but are mathematically independent of D. Keeping A and B constant implies constancy of g F . With these premises, the derived g W is a hyperbolic function of D resembling the logarithmic expression, in contradiction with the pre-set constancy of g F . Calculations with random inputs that ensure independence between g F and D reproduce published experimental scatter plots that display a dependence between g W and D in contradiction with the premises. For this reason, the dependence of g W on D is a computational artifact unrelated to any real effect of ambient humidity on stomatal aperture and closure. Data collected in a maize field confirm the inadequacy of the logarithmic function to quantify the relation between canopy conductance and vapor pressure deficit.

  4. Test description and preliminary pitot-pressure surveys for Langley Test Technique Demonstrator at Mach 6

    Science.gov (United States)

    Everhart, Joel L.; Ashby, George C., Jr.; Monta, William J.

    1992-01-01

    A propulsion/airframe integration experiment conducted in the NASA Langley 20-Inch Mach 6 Tunnel using a 16.8-in.-long version of the Langley Test Technique Demonstrator configuration with simulated scramjet propulsion is described. Schlieren and vapor screen visualization of the nozzle flow field is presented and correlated with pitot-pressure flow-field surveys. The data were obtained at nominal free-stream conditions of Re = 2.8 x 10 exp 6 and a nominal engine total pressure of 100 psia. It is concluded that pitot-pressure surveys coupled to schlieren and vapor-screen photographs, and oil flows have revealed flow features including vortices, free shear layers, and shock waves occurring in the model flow field.

  5. Vapor pressures and standard molar enthalpies, entropies, and Gibbs free energies of sublimation of 2,4- and 3,4-dinitrobenzoic acids

    International Nuclear Information System (INIS)

    Vecchio, Stefano; Brunetti, Bruno

    2009-01-01

    The vapor pressures of the solid and liquid 2,4- and 3,4-dinitrobenzoic acids were determined by torsion-effusion and thermogravimetry under both isothermal and non-isothermal conditions, respectively. From the temperature dependence of vapor pressure derived by the experimental torsion-effusion and thermogravimetry data the molar enthalpies of sublimation Δ cr g H m 0 ( ) and vaporization Δ l g H m 0 ( ) were determined, respectively, at the middle of the respective temperature intervals. The melting temperatures and the molar enthalpies of fusion of these compounds were measured by d.s.c. Finally, the results obtained by all the methods proposed were corrected at the reference temperature of 298.15 K using the estimated heat capacity differences between gas and liquid for vaporization experiments and the estimated heat capacity differences between gas and solid for sublimation experiments. Therefore, the averages of the standard (p o = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation at 298.15 K, have been derived.

  6. High-pressure catalytic chemical vapor deposition of ferromagnetic ruthenium-containing carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khavrus, Vyacheslav O., E-mail: V.Khavrus@ifw-dresden.de; Ibrahim, E. M. M.; Bachmatiuk, Alicja; Ruemmeli, Mark H.; Wolter, A. U. B.; Hampel, Silke; Leonhardt, Albrecht [IFW Dresden (Germany)

    2012-06-15

    We report on the high-pressure catalytic chemical vapor deposition (CCVD) of ruthenium nanoparticles (NPs) and single-walled carbon nanotubes (SWCNTs) by means of gas-phase decomposition of acetonitrile and ruthenocene in a tubular quartz flow reactor at 950 Degree-Sign C and at elevated pressures (between 2 and 8 bar). The deposited material consists of Ru metal cores with sizes ranging between 1 and 3 nm surrounded by a carbon matrix. The high-pressure CCVD seems to be an effective route to obtain composite materials containing metallic NPs, Ru in this work, inside a nanostructured carbon matrix protecting them from oxidation in ambient air. We find that in contradiction to the weak paramagnetic properties characterizing bulk ruthenium, the synthesized samples are ferromagnetic as predicted for nanosized particles of nonmagnetic materials. At low pressure, the very small ruthenium catalyst particles are able to catalyze growth of SWCNTs. Their yield decreases with increasing reaction pressure. Transmission electron microscopy, selected area energy-dispersive X-ray analysis, Raman spectroscopy, and magnetic measurements were used to analyze and confirm properties of the synthesized NPs and nanotubes. A discussion on the growth mechanism of the Ru-containing nanostructures is presented.

  7. Domestic Preparedness: Phase 2 Sarin Vapor Challenge and Corn Oil Protection Factor (PF) Testing of Commercial Powered Air Purifying Respirator (PAPR) Systems and Cartridges

    National Research Council Canada - National Science Library

    Campbell, Lee E; Lins, Ray; Pappas, Alex G

    2002-01-01

    .... Results indicate that cartridges provide complete penetration resistance against 200 mg/m3 GB challenge concentrations for 60 minutes, but that unacceptably high levels of GB vapor and corn oil...

  8. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    Science.gov (United States)

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  9. Mapping reactor operating regimes for heavy gas oil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Munteanu, Mugurel Catalin; Chen, Jinwen [CanmetENERGY, Natural Resources Canada (Canada)

    2011-07-01

    Hydrotreating (HDT) is used in oil refineries at temperatures of 350-400 degree C and pressure of 50-100 bars in a fixed bed to improve the quality of distillate fraction. HDT operates as a gas-liquid-solid process, trickle bed. Efforts have been made to model it but volatilization of liquid oil is often ignored. The aim of this paper is to predict vapor-liquid equilibrium (VLE) for a typical heavy distillate feed in pilot plant hydrotreaters. The study was conducted under various operating conditions and a flash calculation program calibrated in-house was used to predict VLE. VLE values were found and results showed that higher pressure, lower gas/oil ratio and temperature should be used to maintain the desired operating regimes when hydrotreating heavy distillate feed. This study determined the operating conditions for maintaining the desired operating regimes and these findings could be useful for operators.

  10. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  11. Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes.

    Science.gov (United States)

    Santos, Ana Filipa L O M; Oliveira, Juliana A S A; Ribeiro da Silva, Maria D M C; Monte, Manuel J S

    2016-03-01

    This work reports the experimental determination of relevant thermodynamic properties and the characterization of luminescence properties of the following polycyclic aromatic hydrocarbons (PAHs): 2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene. The standard (p(o) = 0.1 MPa) molar enthalpies of combustion, ΔcHm(o), of the three compounds were determined using static bomb combustion calorimetry. The vapor pressures of the crystalline phase of 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene were measured at different temperatures using the Knudsen effusion method and the vapor pressures of both liquid and crystalline phases of 2,6-diethylnaphthalene were measured by means of a static method. The temperatures and the molar enthalpies of fusion of the three compounds were determined using differential scanning calorimetry. The gas-phase molar heat capacities and absolute entropies of the three 2,6-dialkylnaphthalenes studied were determined computationally. The thermodynamic stability of the compounds in both the crystalline and gaseous phases was evaluated by the determination of the Gibbs energies of formation and compared with the ones reported in the literature for 2,6-dimethylnaphthalene. From fluorescence spectroscopy measurements, the optical properties of the compounds studied and of naphthalene were evaluated in solution and in the solid state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Hermoso J.

    2014-12-01

    Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.

  13. Temperature/pressure and water vapor sounding with microwave spectroscopy

    Science.gov (United States)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  14. Correlation of the vapor pressure isotope effect with molecular force fields in the liquid state

    International Nuclear Information System (INIS)

    Pollin, J.S.; Ishida, T.

    1976-07-01

    The present work is concerned with the development and application of a new model for condensed phase interactions with which the vapor pressure isotope effect (vpie) may be related to molecular forces and structure. The model considers the condensed phase as being represented by a cluster of regularly arranged molecules consisting of a central molecule and a variable number of molecules in the first coordination shell. The methods of normal coordinate analysis are used to determine the modes of vibration of the condensed phase cluster from which, in turn, the isotopic reduced partition function can be calculated. Using the medium cluster model, the observed vpie for a series of methane isotopes has been successfully reproduced with better agreement with experiment than has been possible using the simple cell model. We conclude, however, that insofar as the medium cluster model provides a reasonable picture of the liquid state, the vpie is not sufficiently sensitive to molecular orientation to permit an experimental determination of intermolecular configuration in the condensed phase through measurement of isotopic pressure ratios. The virtual independence of vapor pressure isotope effects on molecular orientation at large cluster sizes is a demonstration of the general acceptability of the cell model assumptions for vpie calculations

  15. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    Science.gov (United States)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  16. Volatilization of multicomponent mixtures in soil vapor extraction applications

    International Nuclear Information System (INIS)

    Bass, D.H.

    1995-01-01

    In soil vapor extraction (SVE) applications involving multicomponent mixtures, prediction of mass removal by volatilization as a function remediation extent is required to estimate remediation time and to size offgas treatment equipment. SVE is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination adsorbed to vadose zone soils. SVE is often applied at sites contaminated with petroleum products, which are usually mixtures of many different compounds with vapor pressures spanning several orders of magnitude. The most volatile components are removed first, so the vapor pressure of the remaining contaminant continually decreases over the course of the remediation. A method for assessing how vapor pressure, and hence the rate of volatilization, of a multicomponent mixture changes over the course of a vapor extraction remedy has been developed. Each component is listed, alone, with its mass fraction in the mixture, in decreasing order of pure component vapor pressure (where component analyses are unavailable, model compounds can be used), For most petroleum distillates, the vapor pressure for each component plotted against the cumulative mass fraction of the component in the mixture on semilog coordinates will produce a straight line with a high correlation coefficient. This regression can be integrated to produce an expression for vapor pressure of the overall mixture as a function of extent or remediation

  17. Robust design for shape parameters of high pressure thermal vapor compressor by numerical analysis

    International Nuclear Information System (INIS)

    Park, Il Seouk

    2008-01-01

    A high motive pressure Thermal Vapor Compressor(TVC) for a commercial Multi-Effect Desalination(MED) plant is designed to have a high entraining performance and its robustness is also considered in the respect of operating stability at the abrupt change of the operating pressures like the motive and suction steam pressure which can be easily fluctuated by the external disturbance. The TVC having a good entraining performance of more than entrainment ratio 6.0 is designed through the iterative CFD analysis for the various primary nozzle diameter, mixing tube diameter and mixing tube length. And then for a couple of TVC having a similar entrainment ratio, the changes of the entrainment ratio are checked along the motive and suction pressure change. The system stability is diagnosed through the analyzing the changing pattern of the entrainment ratio

  18. Experimental study on vapor explosion induced by pressure pulse in coarse mixing of hot molten metal and water

    International Nuclear Information System (INIS)

    Inoue, A.; Tobita, Y.; Aritomi, M.; Takahashi, M.; Matsuzaki, M.

    2004-01-01

    An experimental study was done to investigate characteristics of metal-water interaction, when a mount of hot liquid metal is injected into the water. The test section is a vertical shock tube of 60mm in inner diameter and 1200mm in length. A special injector which is designed to inject hot metal of controlled volume and flow rate is attached at the top of the tube. When the hot metal is injected in the water and comes down at a position of the test vessel, a trigger pressure pulse is generated at the bottom of the test tube. Local transient pressures along the tube are measured by piezo pressure transducers. The following items were investigated in the experiment; 1) The criteria to cause a vapor explosion, 2) Transient behaviors and propagation characteristics of pressure wave in the mixing region. 3) Effects of triggering pulse, injection temperature and mass of hot molten metal on the peak pressure. The probability of the vapor explosion jumped when the interface temperature at the molten metal-water direct contact is higher than the homogeneous nucleation temperature of water and the triggering pulse becomes larger than 0.9MPa. Two types of the pressure propagation modes are observed, one is the detonative mode with a sharp rise and other is usual pressure mode with a mild rise. (author)

  19. Warming of olive oil processed by high hydrostatic pressure

    Czech Academy of Sciences Publication Activity Database

    Houška, M.; Kubásek, M.; Strohalm, J.; Landfeld, A.; Kamarád, Jiří

    2004-01-01

    Roč. 24, č. 2 (2004), s. 303-308 ISSN 0895-7959 R&D Projects: GA MZe EP9026 Keywords : olive oil * food processing * high pressure * warming Subject RIV: GM - Food Processing Impact factor: 0.504, year: 2004

  20. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol

    International Nuclear Information System (INIS)

    Safarov, Javid T.

    2005-01-01

    Vapor pressure p of LiNO 3 + CH 3 OH solutions at T = (298.15 to 323.15) K was reported, osmotic φ and activity coefficients γ; and activity of solvent a s have been evaluated. The experiments were carried out in molality range m = (0.18032 to 5.2369) mol . kg -1 . The Antoine equation was used for the empiric description of experimental vapor pressure results. The Pitzer-Mayorga model with inclusion of Archer's ionic strength dependence of the third virial coefficient was used for the description of calculated osmotic coefficients. The parameters of Archer extended Pitzer model were used for evaluation of activity coefficients

  1. Study on Oil Pressure Characteristics and Trajectory Tracking Control in Shift Process of Wet-Clutch for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Junqiu Li

    2016-01-01

    Full Text Available Accurate control of oil pressure of wet-clutch is of great importance for improving shift quality. Based on dynamic models of two-gear planetary transmission and hydraulic control system, a trajectory tracking model of oil pressure was built by sliding mode control method. An experiment was designed to verify the validity of hydraulic control system, through which the relationship between duty cycle of on-off valve and oil pressure of clutch was determined. The tracking effect was analyzed by simulation. Results showed that oil pressure could follow well the optimal trajectory and the shift quality was effectively improved.

  2. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Huber, George W.; Upadhye, Aniruddha A.; Ford, David M.; Bhatia, Surita R.; Badger, Phillip C.

    2012-10-19

    This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8m were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments

  3. Pressure (Or No Royal Road)

    Science.gov (United States)

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  4. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  5. Dispersed oil decreases the ability of a model fish (Dicentrarchus labrax) to cope with hydrostatic pressure.

    Science.gov (United States)

    Dussauze, Matthieu; Pichavant-Rafini, Karine; Belhomme, Marc; Buzzacott, Peter; Privat, Killian; Le Floch, Stéphane; Lemaire, Philippe; Theron, Michaël

    2017-01-01

    Data on the biological impact of oil dispersion in deep-sea environment are scarce. Hence, the aim of this study was to evaluate the potential interest of a pressure challenge as a new experimental approach for the assessment of consequences of chemically dispersed oil, followed by a high hydrostatic pressure challenge. This work was conducted on a model fish: juvenile Dicentrarchus labrax. Seabass were exposed for 48 h to dispersant alone (nominal concentration (NC) = 4 mg L -1 ), mechanically dispersed oil (NC = 80 mg L -1 ), two chemically dispersed types of oil (NC = 50 and 80 mg L -1 with a dispersant/oil ratio of 1/20), or kept in clean seawater. Fish were then exposed for 30 min at a simulated depth of 1350 m, corresponding to pressure of 136 absolute atmospheres (ATA). The probability of fish exhibiting normal activity after the pressure challenge significantly increased from 0.40 to 0.55 when they were exposed to the dispersant but decreased to 0.26 and 0.11 in the case of chemical dispersion of oil (at 50 and 80 mg L -1 , respectively). The chemical dispersion at 80 mg L -1 also induced an increase in probability of death after the pressure challenge (from 0.08 to 0.26). This study clearly demonstrates the ability of a pressure challenge test to give evidence of the effects of a contaminant on the capacity of fish to face hydrostatic pressure. It opens new perspectives on the analysis of the biological impact of chemical dispersion of oil at depth, especially on marine species performing vertical migrations.

  6. Vapor pressures of (3-(Dimethylamino)propyl)dimethylindium, (tert-Butylimino)bis(diethylamino)cyclopentadienyltantalum, and (tert-Butylimino)tris(ethylmethylamino)tantalum

    Czech Academy of Sciences Publication Activity Database

    Morávek, Pavel; Pangrác, Jiří; Fulem, Michal; Hulicius, Eduard; Růžička, K.

    2014-01-01

    Roč. 59, č. 12 (2014), s. 4179-4183 ISSN 0021-9568 Institutional support: RVO:68378271 Keywords : vapor pressure * static method * organometallics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.037, year: 2014

  7. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  8. Investigating the influence of pressure and temperature on malaysian crude oil density and viscosity for improved recovery

    International Nuclear Information System (INIS)

    Zahoor, M.K.; Derahman, M.N.

    2012-01-01

    Malaysia has great potential as a crude oil or fossil fuel producing country. To increase oil production, behavior of Malaysian Crude Oil has been analyzed with reference to temperature and pressure variations. The effect of these parameters on crude oil density and viscosity has been observed, to select the methodology to be adopted for increases recovery by implementing enhanced oil recovery (EOR) project. Based on this study it has been decided to further explore the feasibility of increasing reservoir pressure. (author)

  9. Distillation of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, G A

    1926-03-22

    To distill oil shales, cannel coals, and other carbonaceous materials for the extraction therefrom of hydrocarbons and volatile nitrogenous compounds, hard non-condensable gases from the condensers and scrubbers are withdrawn by blowers and admixed with burnt gases, obtained through conduits from the flues of heaters, and forced downwardly through horizontal chambers, connected by vertical conduits, of the heaters and delivered into the retort beneath the grate. Passing upwardly through the charge they vaporize the volatile substances in the shale, and a suction pump removes the vapors from the top of the retort. Immediately they are produced and at substantially the same temperature as that at which they emanate, thus preventing cracking of the oil vapors and condensation of the oil at the top of the retort. The amount of burnt flue gas admixed with the hard gases is regulated by two valves until a required uniform temperature is obtained. A generator supplies producer gas to a heater at the commencement of the retorting operation for circulation through the shale charge to initially produce oil vapors. The generator is connected by a pipe to the gas conduit leading to blowers.

  10. Vapor pressures and isopiestic molalities of concentrated CaCl2(aq), CaBr2(aq), and NaCl(aq) to T = 523 K

    International Nuclear Information System (INIS)

    Gruszkiewicz, Miroslaw S.; Simonson, John M.

    2005-01-01

    The Oak Ridge National Laboratory high-temperature isopiestic apparatus was outfitted with precise pressure gauges to allow for direct vapor pressure measurements. Vapor pressures over concentrated solutions of CaCl 2 (aq), and CaBr 2 (aq) were measured at temperatures between (380.15 and 523.15) K in the range of water activities between 0.2 and 0.85. Isopiestic molalities were used to determine osmotic coefficients at the conditions where NaCl reference standard solutions remained undersaturated. The main goal of this work was to improve the accuracy of isopiestic comparisons based on the calcium chloride reference standard. Osmotic coefficients for CaCl 2 (aq) and CaBr 2 (aq) calculated from both isopiestic and direct vapor pressure results were combined with the literature data and used to build general thermodynamic models based on a variant of extended Pitzer ion-interaction equations and valid at the saturation pressure of water. While these empirical models approach the accuracy of the experimental data in a wider range of concentrations and temperatures than any previously published equations, considerable amounts of accurate data and a substantial effort are required in order to obtain a satisfactory representation using power series-based virial equations. The effect of experimental uncertainties on the accuracy of the direct vapor pressure results is discussed, including in particular the error caused by the presence in the apparatus of a small amount of CO 2 . The substantial decrease of the solubility product of CaCO 3 in concentrated chloride solutions at temperatures above 423 K is a serious defect of calcium chloride as a water activity reference standard

  11. Water vapor pressure over molten KH2PO4 and demonstration of water electrolysis at ∼300ºC

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nikiforov, Aleksey Valerievich; Petrushina, Irina

    2016-01-01

    A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH2PO4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH2PO4 was found to dissociate into H2O gas in equilibrium with a melt mixture of KH2PO4—K2H2P2O7—KPO3...... of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells...... with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH2PO4 can be split by electrolysis via the reaction 2H2O...

  12. Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process.

    Science.gov (United States)

    Li, Ming-Hsien; Yeh, Hung-Hsiang; Chiang, Yu-Hsien; Jeng, U-Ser; Su, Chun-Jen; Shiu, Hung-Wei; Hsu, Yao-Jane; Kosugi, Nobuhiro; Ohigashi, Takuji; Chen, Yu-An; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2018-06-08

    The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI 2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI 2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA 2 MA n -1 Pb n I 3 n +1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI 2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI 3 perovskite grain to benefit MAPbI 3 grain growth. The device employing perovskite with PEAI/PbI 2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm -2 , and a remarkable fill factor of 80.36%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Normal coordinate treatment of liquid water and calculation of vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Gellai, B.; Van Hook, W.A.

    1983-01-01

    A vibrational analysis of liquid water is reported, assuming a completely hydrogen-bonded network with continuously varying strengths of the hydrogen bonds. Frequency distribution calculations are made for intramolecular stretching and bending modes and for the intramolecular frequency region. The calculated distributions are compared with the experimental spectroscopic ones. As another test, vapor pressure isotope effects are calculated from the theoretical distributions for some isotopic water molecules. Results are compared with those of other authors obtained from a mixture model. (author)

  14. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol

    Energy Technology Data Exchange (ETDEWEB)

    Safarov, Javid T. [Heat and Refrigeration Techniques, Azerbaijan Technical University, Huseyn Javid Avn. 25, AZ1073 Baku (Azerbaijan)]. E-mail: javids@azdata.net

    2005-12-15

    Vapor pressure p of LiNO{sub 3} + CH{sub 3}OH solutions at T = (298.15 to 323.15) K was reported, osmotic {phi} and activity coefficients {gamma}; and activity of solvent a {sub s} have been evaluated. The experiments were carried out in molality range m = (0.18032 to 5.2369) mol . kg{sup -1}. The Antoine equation was used for the empiric description of experimental vapor pressure results. The Pitzer-Mayorga model with inclusion of Archer's ionic strength dependence of the third virial coefficient was used for the description of calculated osmotic coefficients. The parameters of Archer extended Pitzer model were used for evaluation of activity coefficients.

  15. Investigation of the vapor pressure p of zinc bromide or zinc chloride solutions with methanol by static method

    International Nuclear Information System (INIS)

    Safarov, Javid T.

    2006-01-01

    Vapor pressures p of ZnBr 2 + CH 3 OH and ZnCl 2 + CH 3 OH solutions at T (298.15 to 323.15) K were measured, activity of solvent a s and osmotic φ coefficients have been evaluated. The experiments were carried out for the ZnBr 2 + CH 3 OH solutions in the molality range m = (0.19972 to 11.05142) mol . kg -1 and for the ZnCl 2 + CH 3 OH solutions in the molality range m (0.42094 to 8.25534) mol . kg -1 . The Antoine equation for the empirical description of the experimental vapor pressure results and the Pitzer-Mayorga model with inclusion of ionic strength dependence of the third virial coefficient for the description of calculated osmotic coefficients were used. The parameters of Pitzer-Mayorga model were used for evaluation of activity coefficients

  16. The effect of halogen hetero-atoms on the vapor pressures and thermodynamics of polycyclic aromatic compounds measured via the Knudsen effusion technique

    International Nuclear Information System (INIS)

    Goldfarb, Jillian L.; Suuberg, Eric M.

    2008-01-01

    Knowledge of vapor pressures of high molar mass organics is essential to predicting their behavior in combustion systems as well as their fate and transport within the environment. This study involved polycyclic aromatic compounds (PACs) containing halogen hetero-atoms, including bromine and chlorine. The vapor pressures of eight PACs, ranging in molar mass from (212 to 336) g . mol -1 , were measured using the isothermal Knudsen effusion technique over the temperature range of (296 to 408) K. These compounds included those with few or no data available in the literature, namely: 1,4-dibromonaphthalene, 5-bromoacenaphthene, 9-bromoanthracene, 1,5-dibromoanthracene, 9,10-dibromoanthracene, 2-chloroanthracene, 9,10-dichloroanthracene, and 1-bromopyrene. Enthalpies of sublimation of these compounds were determined via application of the Clausius-Clapeyron equation. An analysis is presented on the effects of the addition of halogen hetero-atoms to pure polycyclic aromatic hydrocarbons using these data as well as available literature data. As expected, the addition of halogens onto these PACs increases their enthalpies of sublimation and decreases their vapor pressures as compared to the parent compounds

  17. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  18. Analysis of organic vapors with laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nozari, Hadi; Tavassoli, Seyed Hassan [Laser and Plasma Research Institute, Shahid Beheshti University, G. C, 1983963113 Evin, Tehran (Iran, Islamic Republic of); Rezaei, Fatemeh, E-mail: fatemehrezaei@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, 15875-4416 Shariati, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  19. Analysis of organic vapors with laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-01-01

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor

  20. FY 2000 report on the basic survey to promote Joint Implementation, etc. Prevention of emissions of gasoline vapor from oil depots in Indonesia; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Indonesia sekiyu kichi nado kara no gasoline joki hoshutsu no boshi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A field survey was conducted of oil shipment depots in Java and Bali islands owned by Indonesia's state-run oil company to study measures for reduction in greenhouse effect gas emissions. Studies were made on the grasp of the amount of the hydrocarbon vapor emitted into the air, the amount of the gasoline recovered in case of adopting the vapor emission preventive technology, equipment cost/operational cost, etc. Concretely, the following three were studied: change of the gasoline storage tank to the inner floating roof type, and prevention of evaporation loss at the time of receiving and breathing loss caused by temperature changes; replacement with the vapor recovery type loading arm to recover gasoline vapor generated at the time of shipment/filling, and installation of the vapor recovery unit to recover vapor as gasoline; vapor balance system to recover in underground tank the gasoline vapor generated at the time of filling gasoline at gas station. As a result of the study, the recovered gasoline amount was 66,393 Kl/y and the CO2 reduction amount was 14,474 t/y at oil shipment depots and approximately 650 gasoline stations in Jakarta and Surabaya. (NEDO)

  1. Correlation of chemical evaporation rate with vapor pressure.

    Science.gov (United States)

    Mackay, Donald; van Wesenbeeck, Ian

    2014-09-02

    A new one-parameter correlation is developed for the evaporation rate (ER) of chemicals as a function of molar mass (M) and vapor pressure (P) that is simpler than existing correlations. It applies only to liquid surfaces that are unaffected by the underlying solid substrate as occurs in the standard ASTM evaporation rate test and to quiescent liquid pools. The relationship has a sounder theoretical basis than previous correlations because ER is correctly correlated with PM rather than P alone. The inclusion of M increases the slope of previous log ER versus log P regressions to a value close to 1.0 and yields a simpler one-parameter correlation, namely, ER (μg m(-1) h(-1)) = 1464P (Pa) × M (g mol(-1)). Applications are discussed for the screening level assessment and ranking of chemicals for evaporation rate, such as pesticides, fumigants, and hydrocarbon carrier fluids used in pesticide formulations, liquid consumer products used indoors, and accidental spills of liquids. The mechanistic significance of the single parameter as a mass-transfer coefficient or velocity is discussed.

  2. GOZCARDS Merged Data for Water Vapor Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Water Vapor Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpH2O) contains zonal means and related...

  3. Method for Hot Real-Time Analysis of Pyrolysis Vapors at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    Pyrolysis oils contain more than 400 compounds, up to 60% of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during quenching and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors at the pilot scale, many challenges must be overcome.

  4. Pressure suppressing device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1980-01-01

    Purpose: To prevent the pressure in the reactor container from excessively increasing even when vapor leaks from the dry well to a space of the suppression chamber, without passing though the suppression pool at the time of loss of coolant accident. Constitution: When vapor of a high temperature and a high pressure at the time of loss of coolant accident flows from the dry well to the suppression chamber without passing through suppression pool water, vapor dose not condense with pool water, and therefore the pressure within the chamber abnormally increases. For this reason, this abnormal pressure is detected by a pressure detector thereby to start the operations of a blower and a pump. By starting the blower, the pressure in the dry well becomes lower than the pressure in the chamber, and vapor entirely passes through the pool water and entirely condenses with the pool water. By starting the pump, the pool water is sprayed over the space of the chamber, and vapor in the space is condensed. (Yoshino, Y.)

  5. Extraction of essential oils from Algerian myrtle leaves using instant controlled pressure drop technology.

    Science.gov (United States)

    Berka-Zougali, Baya; Hassani, Aicha; Besombes, Colette; Allaf, Karim

    2010-10-01

    In the present work, the new extraction process of Détente Instantanée Contrôlée DIC (French, for instant controlled pressure drop) was studied, developed, quantitatively and qualitatively compared to the conventional hydrodistillation method for the extraction of essential oils from Algerian myrtle leaves. DIC was used as a thermomechanical treatment, DIC subjecting the product to a high-pressure saturated steam. The DIC cycle ends with an abrupt pressure drop towards vacuum, and this instantly leads to an autovaporization of myrtle volatile compounds. An immediate condensation in the vacuum tank produced a micro-emulsion of water and essential oils. Thus, an ultra-rapid cooling of residual leaves occurred, precluding any thermal degradation. An experimental protocol was designed with 3 independent variables: saturated steam pressure between 0.1 and 0.6 MPa, resulting in a temperature between 100 and 160°C, a total thermal processing time between 19 and 221 s, and between 2 and 6 DIC cycles. The essential oils yield was defined as the main dependent variable. This direct extraction gave high yields and high quality essential oil, as revealed by composition and antioxidant activity (results not shown). After this treatment, the myrtle leaves were recovered and hydrodistilled in order to quantify the essential oil content in residual DIC-treated samples. Scanning electron microscope (SEM) showed some modification of the structure with a slight destruction of cell walls after DIC treatment. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Vapor-liquid Phase Equilibria for CO2+Tertpentanol Binary System at Elevated Pressures

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO Jian-cheng; YANG Hao; CHEN Kai-xun

    2011-01-01

    Vapor-liquid phase equilibrium data of tertpentanol in carbon dioxide were measured at temperatures of 313.4,323.4,333.5 and 343.5 K and in the pressure range of 4.56-11.44 MPa.The phase equilibium apparatus used in the work was a variable-volume high-pressure cell.The experimental data were reasonably correlated with Peng-Robinson equation of state(PR-EOS) together with van der Waals-2 two-parameter mixing rules.Henry's Law constants and partial molar volumes of CO2 at infinite dilution were estimated with Krichevsky-Kasarnovsky equation,and Henry's Law constants increase with increasing temperature,however,partial molar volumes of CO2 at infinite dilution are negative whose magnitudes decrease with temperature.Partial molar volumes of CO2 and tertpentanol in liquid phase at equilibrium were calculated.

  7. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    Science.gov (United States)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  8. Full Characterization of CO2-Oil Properties On-Chip: Solubility, Diffusivity, Extraction Pressure, Miscibility, and Contact Angle.

    Science.gov (United States)

    Sharbatian, Atena; Abedini, Ali; Qi, ZhenBang; Sinton, David

    2018-02-20

    Carbon capture, storage, and utilization technologies target a reduction in net CO 2 emissions to mitigate greenhouse gas effects. The largest such projects worldwide involve storing CO 2 through enhanced oil recovery-a technologically and economically feasible approach that combines both storage and oil recovery. Successful implementation relies on detailed measurements of CO 2 -oil properties at relevant reservoir conditions (P = 2.0-13.0 MPa and T = 23 and 50 °C). In this paper, we demonstrate a microfluidic method to quantify the comprehensive suite of mutual properties of a CO 2 and crude oil mixture including solubility, diffusivity, extraction pressure, minimum miscibility pressure (MMP), and contact angle. The time-lapse oil swelling/extraction in response to CO 2 exposure under stepwise increasing pressure was quantified via fluorescence microscopy, using the inherent fluorescence property of the oil. The CO 2 solubilities and diffusion coefficients were determined from the swelling process with measurements in strong agreement with previous results. The CO 2 -oil MMP was determined from the subsequent oil extraction process with measurements within 5% of previous values. In addition, the oil-CO 2 -silicon contact angle was measured throughout the process, with contact angle increasing with pressure. In contrast with conventional methods, which require days and ∼500 mL of fluid sample, the approach here provides a comprehensive suite of measurements, 100-fold faster with less than 1 μL of sample, and an opportunity to better inform large-scale CO 2 projects.

  9. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Li, B.-L.

    2013-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power - this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  10. Ammonia IR Absorbance Measurements with an Equilibrium Vapor Cell

    National Research Council Canada - National Science Library

    Field, Paul

    2004-01-01

    Infrared (IR) absorbance spectra were acquired for 18 ammonia vapor pressures. The vapor pressures were generated with 15 gravimetrically prepared aqueous solutions and three commercial aqueous solutions using a dynamic method I.E...

  11. Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe

    Science.gov (United States)

    Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.

    2018-03-01

    The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.

  12. The Effect of Hydrostatic Pressure on Enrichments of Hydrocarbon Degrading Microbes From the Gulf of Mexico Following the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Marietou, Angeliki; Chastain, Roger; Beulig, Felix; Scoma, Alberto; Hazen, Terry C; Bartlett, Douglas H

    2018-01-01

    The Deepwater Horizon oil spill was one of the largest and deepest oil spills recorded. The wellhead was located at approximately 1500 m below the sea where low temperature and high pressure are key environmental characteristics. Using cells collected 4 months following the Deepwater Horizon oil spill at the Gulf of Mexico, we set up Macondo crude oil enrichments at wellhead temperature and different pressures to determine the effect of increasing depth/pressure to the in situ microbial community and their ability to degrade oil. We observed oil degradation under all pressure conditions tested [0.1, 15, and 30 megapascals (MPa)], although oil degradation profiles, cell numbers, and hydrocarbon degradation gene abundances indicated greatest activity at atmospheric pressure. Under all incubations the growth of psychrophilic bacteria was promoted. Bacteria closely related to Oleispira antarctica RB-8 dominated the communities at all pressures. At 30 MPa we observed a shift toward Photobacterium , a genus that includes piezophiles. Alphaproteobacterial members of the Sulfitobacter , previously associated with oil-degradation, were also highly abundant at 0.1 MPa. Our results suggest that pressure acts synergistically with low temperature to slow microbial growth and thus oil degradation in deep-sea environments.

  13. Measurement and analysis of transient vaporization in oxide fuel materials

    International Nuclear Information System (INIS)

    Gorham-Bergeron, E.; Benson, D.A.

    1978-01-01

    A series of experiments is described in which samples are heated to produce high vapor pressure states in times of 10 -6 to 10 -3 seconds. Experimental measurements of vapor pressures over fresh UO 2 from the pulsed electron beam and pulsed reactor heating tests are presented and compared with other high temperature data. The interpretation of the vapor pressures measured in the tests is discussed in detail. Effects of original sample stoichiometry, chemical interactions with the container and non-equilibrium evaporation due to induced temperature gradients are discussed. Special attention is given to dynamic behavior in rapid heating and vaporization of the oxide due to chemical nonequilibrium. Finally, similar projected reactor experiments on irradiated fuel are described and vapor pressure predictions made using available equilibrium models. A discussion of information accessible from such future tests and its importance is presented

  14. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    Science.gov (United States)

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  15. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation

    KAUST Repository

    Imran, Ali

    2016-03-11

    Bio-oil produced from conventional flash pyrolysis has poor quality and requires expensive upgrading before it can be used as a transportation fuel. In this work, a high quality bio-oil has been produced using a novel approach where flash pyrolysis, catalysis and fractionation of pyrolysis vapors using two stage condensation are combined in a single process unit. A bench scale unit of 1 kg/h feedstock capacity is used for catalytic pyrolysis in an entrained down-flow reactor system equipped with two-staged condensation of the pyrolysis vapor. Zeolite-based catalysts are investigated to study the effect of varying acidities of faujasite Y zeolites, zeolite structures (ZSM5), different catalyst to biomass ratios and different catalytic pyrolysis temperatures. Low catalyst/biomass ratios did not show any significant improvements in the bio-oil quality, while high catalyst/biomass ratios showed an effective deoxygenation of the bio-oil. The application of zeolites decreased the organic liquid yield due to the increased production of non-condensables, primarily hydrocarbons. The catalytically produced bio-oil was less viscous and zeolites were effective at cracking heavy molecular weight compounds in the bio-oil. Acidic zeolites, H-Y and H-ZSM5, increased the desirable chemical compounds in the bio-oil such as phenols, furans and hydrocarbon, and reduced the undesired compounds such as acids. On the other hand reducing the acidity of zeolites reduced some of the undesired compounds in the bio-oil such as ketones and aldehydes. The performance of H-Y was superior to that of the rest of zeolites studied: bio-oil of high chemical and calorific value was produced with a high organic liquid yield and low oxygen content. H-ZSM5 was a close competitor to H-Y in performance but with a lower yield of bio-oil. Online fractionation of catalytic pyrolysis vapors was employed by controlling the condenser temperature and proved to be a successful process parameter to tailor the

  16. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Science.gov (United States)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  17. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    Science.gov (United States)

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. Copyright © 2015. Published by Elsevier B.V.

  18. Measurement and analysis of transient vaporization in oxide fuel materials

    International Nuclear Information System (INIS)

    Benson, D.A.; Bergeron, E.G.

    1979-01-01

    This paper describes a series of experiments in which samples are heated to produce high vapor pressure states in times of 10 -6 to 10 -3 seconds. Experimental measurements of vapor pressures over fresh UO 2 from the pulsed electron beam and pulsed reactor heating tests are presented and compared with other high temperature data. The interpretation of the vapor pressure measured in the tests is discussed in detail. Effects of original sample stoichiometry, chemical interactions with the container and non-equilibrium evaporation due to induced temperature gradients are discussed. Special attention is given to dynamic behavior in rapid heating and vaporization of the oxide due to chemical non-equilibrium. Finally, similar projected reactor experiments on irradiated fuel are described and vapor pressure predictions made using available equilibrium models. A discussion of information accessible from such future tests and its importance is presented. (orig.) [de

  19. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    Science.gov (United States)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  20. Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces

    Science.gov (United States)

    De Waard, H.; De Koning, W. L.

    1990-03-01

    In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.

  1. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    Science.gov (United States)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.

    2002-01-01

    Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.

  2. Vapor pressures and isopiestic molalities of concentrated CaCl{sub 2}(aq), CaBr{sub 2}(aq), and NaCl(aq) to T = 523 K

    Energy Technology Data Exchange (ETDEWEB)

    Gruszkiewicz, Miroslaw S. [Oak Ridge National Laboratory, Chemical Sciences Division, P.O. Box 2008, Building 4500S MS-6110, Oak Ridge, TN 37831-6110 (United States)]. E-mail: gruszkiewicz@ornl.gov; Simonson, John M. [Oak Ridge National Laboratory, Chemical Sciences Division, P.O. Box 2008, Building 4500S MS-6110, Oak Ridge, TN 37831-6110 (United States)]. E-mail: simonsonjm@ornl.gov

    2005-09-15

    The Oak Ridge National Laboratory high-temperature isopiestic apparatus was outfitted with precise pressure gauges to allow for direct vapor pressure measurements. Vapor pressures over concentrated solutions of CaCl{sub 2}(aq), and CaBr{sub 2}(aq) were measured at temperatures between (380.15 and 523.15) K in the range of water activities between 0.2 and 0.85. Isopiestic molalities were used to determine osmotic coefficients at the conditions where NaCl reference standard solutions remained undersaturated. The main goal of this work was to improve the accuracy of isopiestic comparisons based on the calcium chloride reference standard. Osmotic coefficients for CaCl{sub 2}(aq) and CaBr{sub 2}(aq) calculated from both isopiestic and direct vapor pressure results were combined with the literature data and used to build general thermodynamic models based on a variant of extended Pitzer ion-interaction equations and valid at the saturation pressure of water. While these empirical models approach the accuracy of the experimental data in a wider range of concentrations and temperatures than any previously published equations, considerable amounts of accurate data and a substantial effort are required in order to obtain a satisfactory representation using power series-based virial equations. The effect of experimental uncertainties on the accuracy of the direct vapor pressure results is discussed, including in particular the error caused by the presence in the apparatus of a small amount of CO{sub 2}. The substantial decrease of the solubility product of CaCO{sub 3} in concentrated chloride solutions at temperatures above 423 K is a serious defect of calcium chloride as a water activity reference standard.

  3. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    Directory of Open Access Journals (Sweden)

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  4. Investigation of the vapor pressure p of zinc bromide or zinc chloride solutions with methanol by static method

    Energy Technology Data Exchange (ETDEWEB)

    Safarov, Javid T. [Heat and Refrigeration Techniques, Azerbaijan Technical University, H. Javid Avn. 25, AZ1073 Baku (Azerbaijan)]. E-mail: javids@azdata.net

    2006-03-15

    Vapor pressures p of ZnBr{sub 2} + CH{sub 3}OH and ZnCl{sub 2} + CH{sub 3}OH solutions at T (298.15 to 323.15) K were measured, activity of solvent a {sub s} and osmotic {phi} coefficients have been evaluated. The experiments were carried out for the ZnBr{sub 2} + CH{sub 3}OH solutions in the molality range m = (0.19972 to 11.05142) mol . kg{sup -1} and for the ZnCl{sub 2} + CH{sub 3}OH solutions in the molality range m (0.42094 to 8.25534) mol . kg{sup -1}. The Antoine equation for the empirical description of the experimental vapor pressure results and the Pitzer-Mayorga model with inclusion of ionic strength dependence of the third virial coefficient for the description of calculated osmotic coefficients were used. The parameters of Pitzer-Mayorga model were used for evaluation of activity coefficients.

  5. Experimental determination of cesium saturated vapor pressure in the 483/642 deg K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gushchin, G I; Subbotin, V A; Khachaturov, Eh Kh [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Obninsk. Fiziko-Ehnergeticheskij Inst.

    1975-07-01

    Test results of saturated cesium vapour pressure in the temperature range of 483.13-642 deg K and pressure range of 15.77-1.389 N/m/sup 2/ by direct static method are presented. The testing system comprises a differential bellows-type pressure sensor, a thermostatic unit and a gas system with V-shaped oil manometer used for argon-assisted sensor calibration. The static sensor characteristic approaches linearity in the pressure range of 10-600 N/m/sup 2/. The greatest non-linearity is observed at low pressures (10-40 N/m/sup 2/) and does not exceed 3-4%. Sensor sensitivity is 0.39 mV/N/m/sup 2/ in this pressure range. The characteristic hysteresis is 0.5% and below. With pressures greater than 600 N/m/sup 2/, the sensor sensitivity gradually decreases by 12% while the characteristic hysteresis increases to 2-3%. A brief description of the experimental procedure is offered. The present results are compared with other authors' data.

  6. Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis

    Science.gov (United States)

    Lawrence D. Garrett

    1977-01-01

    A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...

  7. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    Science.gov (United States)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  8. In-situ epitaxial growth of heavily phosphorus doped SiGe by low pressure chemical vapor deposition

    CERN Document Server

    Lee, C J

    1998-01-01

    We have studied epitaxial crystal growth of Si sub 1 sub - sub x Ge sub x films on silicon substrates at 550 .deg. C by low pressure chemical vapor deposition. In a low PH sub 3 partial pressure region such as below 1.25x10 sup - sup 3 Pa, both the phosphorus and carrier concentrations increased with increasing PH sub 3 partial pressure, but the deposition rate and the Ge fraction remained constant. In a higher PH sub 3 partial pressure region, the deposition rate, the phosphorus concentration, and the carrier concentration decreased, while the Ge fraction increased. These suggest that high surface coverage of phosphorus suppresses both SiH sub 4 and GeH sub 4 adsorption/reactions on the surfaces, and its suppression effect on SiH sub 4 is actually much stronger than on GeH sub 4. In particular, epitaxial crystal growth is largely controlled by surface coverage effect of phosphorus in a higher PH sub 3 partial pressure region.

  9. Olive oil-induced reduction of oxidative damage and inflammation promotes wound healing of pressure ulcers in mice.

    Science.gov (United States)

    Donato-Trancoso, Aline; Monte-Alto-Costa, Andréa; Romana-Souza, Bruna

    2016-07-01

    The overproduction of reactive oxygen species (ROS) and exacerbated inflammatory response are the main events that impair healing of pressure ulcers. Therefore, olive oil may be a good alternative to improve the healing of these chronic lesions due to its anti-inflammatory and antioxidant properties. This study investigated the effect of olive oil administration on wound healing of pressure ulcers in mice. Male Swiss mice were daily treated with olive oil or water until euthanasia. One day after the beginning of treatment, two cycles of ischemia-reperfusion by external application of two magnetic plates were performed in skin to induced pressure ulcer formation. The olive oil administration accelerated ROS and nitric oxide (NO) synthesis and reduced oxidative damage in proteins and lipids when compared to water group. The inflammatory cell infiltration, gene tumor necrosis factor-α (TNF-α) expression and protein neutrophil elastase expression were reduced by olive oil administration when compared to water group. The re-epithelialization and blood vessel number were higher in the olive oil group than in the water group. The olive oil administration accelerated protein expression of TNF-α, active transforming growth factor-β1 and vascular endothelial growth factor-A when compared to water group. The collagen deposition, myofibroblastic differentiation and wound contraction were accelerated by olive oil administration when compared to water group. Olive oil administration improves cutaneous wound healing of pressure ulcers in mice through the acceleration of the ROS and NO synthesis, which reduces oxidative damage and inflammation and promotes dermal reconstruction and wound closure. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Reduced-pressure chemical vapor deposition of boron-doped Si and Ge layers

    International Nuclear Information System (INIS)

    Bogumilowicz, Y.; Hartmann, J.M.

    2014-01-01

    We have studied the in-situ boron (B) doping of germanium (Ge) and silicon (Si) in Reduced Pressure-Chemical Vapor Deposition. Three growth temperatures have been investigated for the B-doping of Ge: 400, 600 and 750 °C at a constant growth pressure of 13300 Pa (i.e. 100 Torr). The B concentration in the Ge:B epilayer increases linearly with the diborane concentration in the gaseous phase. Single-crystalline Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. For the in-situ B doping of Si at 850 °C, two dichlorosilane mass flow ratios (MFR) have been assessed: F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0025 and F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0113 at a growth pressure of 2660 Pa (i.e. 20 Torr). Linear boron incorporation with the diborane concentration in the gas phase has been observed and doping levels in-between 3.5 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. We almost kept the same ratio of B versus Si atoms in the gas phase and in the Si epilayer. By contrast, roughly half of the B atoms present in the gas phase were incorporated in the Ge:B layers irrespective of the growth temperature. X-Ray Diffraction (XRD) allowed us to extract from the angular position of the Ge:B layer diffraction peak the substitutional B concentration. Values close to the B concentrations obtained by 4-probe resistivity measurements were obtained. Ge:B layers were smooth (< 1 m root mean square roughness associated with 20 × 20 μm 2 Atomic Force Microscopy images). Only for high F[B 2 H 6 ]/F[GeH 4 ] MFR (3.2 10 −3 ) did the Ge:B layers became rough; they were however still mono-crystalline (XRD). Above this MFR value, Ge:B layers became polycrystalline. - Highlights: • Boron doping of germanium and silicon in Reduced Pressure-Chemical Vapor Deposition • Linear boron incorporation in Ge:B and Si:B with the diborane flow • Single-crystal Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 • Single-crystal Si

  11. Automatic crude oil handling through a pressurized system from the wellhead to the refinery

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.B.; Truman, P.W.; Groeneman, A.R.

    1967-01-01

    Production from 51 wells completed in the 3 unitized formations of the Lost Soldier Field, Sweetwater Co., Wyoming, is brought to a central point through individual flow lines. Here the fluids are directed through separate automatic well testing and oil treating facilities, one for each formation. After separation of oil, gas and water, the oil goes to pressurized surge tanks and then to lease automatic custody transfer units. There is one surge tank and one LACT unit for each formation. The oil is automatically transferred to the Sinclair Pipe Line Co. for delivery to Sinclair's refinery at Sinclair, Wyoming, through a closed pipe line system. A central console provides: (1) supervisory control from the wellheads through the LACT units, (2) well test and production data logging, and (3) monitoring by activating alarms for abnormal conditions of flow, liquid levels, temperatures and pressures.

  12. Influence of Oil on Refrigerant Evaporator Performance

    Science.gov (United States)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  13. Reid Vapor Pressure (RVP) of Gasoline Spreadsheet Example Key for Requirements at 40 CFR 80.47(g) and 80.47(l)

    Science.gov (United States)

    This guidance deals with the self-qualification of analytical test methods at a testing facility for measuring Reid Vapor Pressure (RVP) of gasoline to meet precision requirements codified in regulations.

  14. Vortex-Induced Vapor Explosion during Drop Impact on a Superheated Pool

    KAUST Repository

    Alchalabi, M.A.

    2017-04-18

    Ultra high-speed imaging is used to investigate the vapor explosion when a drop impacts onto a high-temperature pool. The two liquids are immiscible, a low boiling-temperature perfluorohexane drop, at room temperature, which impacts a high boiling-temperature soybean-oil pool, which is heated well above the boiling temperature of the drop. We observe different regimes: weak and strong nucleate boiling, film boiling or Leidenfrost regime and entrainment followed by vapor explosion. The vapor explosions were seen to depend on the formation of a rotational flow at the edge of the impact crater, near the pool surface, which resembles a vortex ring. This rotational motion entrains a thin sheet of the drop liquid, to become surrounded by the oil. In that region, the vapor explosion starts at a point after which it propagates azimuthally along the entire periphery at high speed.

  15. Vortex-Induced Vapor Explosion during Drop Impact on a Superheated Pool

    KAUST Repository

    Alchalabi, M.A.; Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Ultra high-speed imaging is used to investigate the vapor explosion when a drop impacts onto a high-temperature pool. The two liquids are immiscible, a low boiling-temperature perfluorohexane drop, at room temperature, which impacts a high boiling-temperature soybean-oil pool, which is heated well above the boiling temperature of the drop. We observe different regimes: weak and strong nucleate boiling, film boiling or Leidenfrost regime and entrainment followed by vapor explosion. The vapor explosions were seen to depend on the formation of a rotational flow at the edge of the impact crater, near the pool surface, which resembles a vortex ring. This rotational motion entrains a thin sheet of the drop liquid, to become surrounded by the oil. In that region, the vapor explosion starts at a point after which it propagates azimuthally along the entire periphery at high speed.

  16. Comparative X-ray photoelectron spectroscopy study of plasma enhanced chemical vapor deposition and micro pressure chemical vapor deposition of phosphorus silicate glass layers after rapid thermal annealing

    International Nuclear Information System (INIS)

    Beshkov, G.; Krastev, V.; Gogova, D.; Talik, E.; Adamies, M.

    2008-01-01

    In this paper the bonding state of Phosphorus Silicate Glass (PSG) layers obtained by two different technological approaches, i.e. in two types of reactors: Plasma Enhanced Chemical Vapor Deposition (PECVD) and Micro Pressure Chemical Vapor Deposition (MPCVD) are investigated employing XPS and AES. The PSG layers are deposited at 380 0 C and 420 0 C in corresponding reactors. XPS and AES analyses show that Si2p peak recorded from PECVD layers are not as expected at their position characteristics of silicon dioxide but instead they are at the characteristic of elemental silicon. Plasma enhancement during deposition leads to less oxidized and more inhomogeneous layer. After rapid thermal annealing the Si2p peak is situated at position characteristic of silicon dioxide. (authors)

  17. Orange oil/water nanoemulsions prepared by high pressure homogenizer

    International Nuclear Information System (INIS)

    Kourniatis, Loretta R.; Spinelli, Luciana S.; Mansur, Claudia R.E.

    2010-01-01

    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  18. Deodorizing petroleum oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Haller, A

    1906-06-14

    A process of purifying and deodorizing petroleum oils, gasolines, ethers, benzines, shale oils, resins, and similar products, consisting essentially in passing the vapors of the liquids with a current of hydrogen or of gases high in hydrogen over divided metals, such as nickel, copper, cobalt, iron, platinum, etc., heated to a temperature between 100/sup 0/C and 350/sup 0/C, the vapors passing before entering the apparatus through a column of copper heated to above 350/sup 0/C.

  19. Effect of trichloroethylene enhancement on deposition rate of low-temperature silicon oxide films by silicone oil and ozone

    Science.gov (United States)

    Horita, Susumu; Jain, Puneet

    2017-08-01

    A low-temperature silcon oxide film was deposited at 160 to 220 °C using an atmospheric pressure CVD system with silicone oil vapor and ozone gases. It was found that the deposition rate is markedly increased by adding trichloroethylene (TCE) vapor, which is generated by bubbling TCE solution with N2 gas flow. The increase is more than 3 times that observed without TCE, and any contamination due to TCE is hardly observed in the deposited Si oxide films from Fourier transform infrared spectra.

  20. The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, J.D. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry; Universidade Estadual de Campinas (Brazil). Dept. Fisica Aplicada; Luengo, C.A. [Universidade Estadual de Campinas (Brazil). Dept. Fisica Aplicada; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1999-07-01

    The primary oils obtained in high yields from fast (fluidised-bed) pyrolysis of biomass generally have high oxygen contents (ca. 40% w/w). The scope for using pyrolysis under hydrogen pressure (hydropyrolysis), to give oils with much lower oxygen contents compared to normal pyrolysis has been investigated. Fixed-bed hydropyrolysis tests have been conducted on cellulose, sugar cane bagasse and eucalyptus wood using hydrogen pressures up to 10 MPa, with heating rates of 5 and 300{sup o}C min{sup -1}. A colloidal FeS catalyst was used in some tests (Fe loading of 5%, w/w) to increase overall conversions. Further, the attractive option of using a two-stage reactor in which the primary oil vapors are passed though a bed of hydrotreating catalyst is also described. Raising the hydrogen pressure from atmospheric to 10 MPa reduced the oxygen content of the primary oil by over 10% to below 20% w/w. The addition of a dispersed iron sulphide catalyst gave conversions close to 100% for all three biomass samples investigated at 10 MPa under conditions in the fixed-bed reactor where significant diffusional resistances existed and reduced the oxygen content of the bio-oil by a further 10%. Although NMR indicated that the oils became increasingly aromatic as more oxygen was removed, the increase in hydrogen pressure decreased the extent of overall aromatisation that occurs primarily due to the lower char yields obtained. In two-stage tests for cellulose, using a commercial sulphided Ni/Mo {gamma}-Al{sub 2}O{sub 3} catalyst at 400{sup o}C, increasing the hydrogen pressure from 2.5 to 10 MPa decreased the oxygen content of the oil by over 20% to 10% w/w. The H/C ratios were higher and O/C ratios smaller for the two-stage bio-oils compared to their single stage counterparts. However, the differences in the O/C ratios between the single and two-stage bio-oils increase with pressure. (author)

  1. Distilling oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, R H

    1923-04-18

    In the fractional distillation of oils from oil shale and similar materials the charge is passed continuously through a vertical retort heated externally by hot combustion gases in flues and internally by the passage of these gases through flues passing through the retort so that zones of increasing temperature are maintained. A vapor trap is provided in each zone having an exit pipe leading through a dust trap to a condenser. The bottoms of the conical vapor traps are provided with annular passages perforated to permit of steam being sprayed into the charge to form screens which prevent the vapors in different zones from mingling, and steam may also be introduced through perforations in an annular steam box. Dampers are provided to control the passage of the heating gases through the flues independently.

  2. Altered Potassium Ion Channel Function as a Possible Mechanism of Increased Blood Pressure in Rats Fed Thermally Oxidized Palm Oil Diets.

    Science.gov (United States)

    Nkanu, Etah E; Owu, Daniel U; Osim, Eme E

    2017-12-27

    Intake of thermally oxidized palm oil leads to cytotoxicity and alteration of the potassium ion channel function. This study investigated the effects of fresh and thermally oxidized palm oil diets on blood pressure and potassium ion channel function in blood pressure regulation. Male Wistar rats were randomly divided into three groups of eight rats. Control group received normal feed; fresh palm oil (FPO) and thermally oxidized palm oil (TPO) groups were fed a diet mixed with 15% (weight/weight) fresh palm oil and five times heated palm oil, respectively, for 16 weeks. Blood pressure was measured; blood samples, hearts, and aortas were collected for biochemical and histological analyses. Thermally oxidized palm oil significantly elevated basal mean arterial pressure (MAP). Glibenclamide (10 -5 mmol/L) and tetraethylammonium (TEA; 10 -3 mmol/L) significantly raised blood pressure in TPO compared with FPO and control groups. Levcromakalim (10 -6 mmol/L) significantly (p palm oil increases MAP probably due to the attenuation of adenosine triphosphate-sensitive potassium (K ATP ) and large-conductance calcium-dependent potassium (BK Ca ) channels, tissue peroxidation, and altered histological structures of the heart and blood vessels.

  3. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas

    2008-07-01

    The main conclusions drawn from this thesis are; 7 scientific papers are published on a broad variety of subjects, and describes in detail the experiments and research treated in this thesis. Scientific research has been performed, investigating the subjects of capillary pressure and capillary heterogeneities from different angles. This thesis discusses the findings in this study and aims to illustrate the benefits of the results obtained for further development of other experiments, and/or even the industrial benefits in field development. The methods for wettability alteration have developed throughout the work. From producing heterogeneous wettability alterations, the methods have improved to giving both radial and lateral uniform wettability alterations, which also remains unaltered throughout the duration of the experimental work. The alteration of wettability is dependent on initial water saturation, flow rate, aging time and crude oil composition. Capillary pressure and relative permeability curves have been measured for core plugs at different wettabilities using conventional centrifuge methods. The trends observed are mostly consistent with theory. The production mechanisms of strongly and moderately water wet chalk has been investigated. At strongly water wet conditions in fractured chalk; the flow is governed by capillary forces, showing strong impact from the fractures. At moderately water wet conditions, the impact of the fractures are absent, and a dispersed water front is observed during the displacement. The oil recovery is about the same, at the two wettabilities. Fracture crossing mechanisms at the same wettability conditions have been mapped. And the observations are consistent with those of the water floods. During strongly water wet displacement, the fracture crossing is occurring once the inlet core has reached endpoint of spontaneous imbibition. At moderately water wet conditions the fracture crossing is less abrupt, and creation of wetting

  4. Recovering oil from shale

    Energy Technology Data Exchange (ETDEWEB)

    Leahey, T; Wilson, H

    1920-11-13

    To recover oil free from inorganic impurities and water, and utilize the oil vapor and tarry matter for the production of heat, shale is heated in a retort at a temperature of not less than 120/sup 0/C. The vapors pass by a pipe into a water jacketed condenser from which the condensate and gas pass through a pipe into a chamber and then by a pipe to a setting chamber from where the light oils are decanted through a pipe into a tank. The heavy oil is siphoned through a pipe into a tank, while the gas passes through a pipe into a scrubber and then into a drier, exhauster and pipe to the flue and ports, above the fire-bars, into the retort. Air is introduced through a pipe, flue, and ports.

  5. Involvement of Inflammation and Adverse Vascular Remodelling in the Blood Pressure Raising Effect of Repeatedly Heated Palm Oil in Rats

    Directory of Open Access Journals (Sweden)

    Chun-Yi Ng

    2012-01-01

    Full Text Available Oil thermoxidation during deep frying generates harmful oxidative free radicals that induce inflammation and increase the risk of hypertension. This study aimed to investigate the effect of repeatedly heated palm oil on blood pressure, aortic morphometry, and vascular cell adhesion molecule-1 (VCAM-1 expression in rats. Male Sprague-Dawley rats were divided into five groups: control, fresh palm oil (FPO, one-time-heated palm oil (1HPO, five-time-heated palm oil (5HPO, or ten-time-heated palm oil (10HPO. Feeding duration was six months. Blood pressure was measured at baseline and monthly using tail-cuff method. After six months, the rats were sacrificed and the aortic arches were dissected for morphometric and immunohistochemical analyses. FPO group showed significantly lower blood pressure than all other groups. Blood pressure was increased significantly in 5HPO and 10HPO groups. The aortae of 5HPO and 10HPO groups showed significantly increased thickness and area of intima-media, circumferential wall tension, and VCAM-1 than other groups. Elastic lamellae were disorganised and fragmented in 5HPO- and 10HPO-treated rats. VCAM-1 expression showed a significant positive correlation with blood pressure. In conclusion, prolonged consumption of repeatedly heated palm oil causes blood pressure elevation, adverse remodelling, and increased VCAM-1, which suggests a possible involvement of inflammation.

  6. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis.

    Science.gov (United States)

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P; De Geest, Bart

    2017-07-18

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher ( p coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold ( p coconut oil mice than in standard chow mice. Myocardial capillary density ( p coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold ( p coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower ( p coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  7. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  8. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D 2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  9. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    Science.gov (United States)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  10. Apparatus for utilizing liquid hydrocarbons such as shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dorset, M

    1868-02-29

    The hydrocarbon liquids such as petroleum, shale oil, naphtha, cresol, coal tar, or other mineral, animal or vegetable oil are placed in a heater or special generator analogous to ordinary generators for vapors and to which the name vaporizer has been given in the description. This vaporizer is furnished with all kinds of safety devices, such as valves, manometer, float indicating the level, standard stopcock, etc., and is heated by the combustion of the vapors produced by it.

  11. Influence of asphaltene aggregation and pressure on crude oil emulsion stability

    Energy Technology Data Exchange (ETDEWEB)

    Auflem, Inge Harald

    2002-07-01

    Water-in-crude oil emulsions stabilised by various surface-active components are one of the major problems in relation to petroleum production. This thesis presents results from high-pressure separation experiments on ''live'' crude oil and model oil emulsions, as well as studies of Interactions between various indigenous stabilising materials in crude oil. A high-pressure separation rig was used to study the influence of gas and gas bubbles on the separation of water-in-crude oil emulsions. The results were interpreted as a flotation effect from rising gas bubbles, which led to increased separation efficiency. The separation properties of a ''live'' crude oil were compared to crude oil samples recombined with various gases. The results showed that water-in-oil emulsions produced from the ''live'' crude oil samples, generally separated faster and more complete, than emulsions based on recombined samples of the same crude oil. Adsorption of asphaltenes and resins onto a hydrophilic surface from solutions with varying aromatic/aliphatic character was investigated by a quarts crystal microbalance. The results showed that asphaltenes adsorbed to a larger degree than the resins. The resins were unable to desorb pre-adsorbed asphaltenes from the surface, and neither did they adsorb onto the asphaltene-coated surface. In solutions of both of resins and asphaltenes the two constituents associated in bulk liquid and adsorbed to the surface in the form of mixed aggregates. Near infrared spectroscopy and pulsed field gradient spin echo nuclear magnetic resonance were used to study asphaltene aggregation and the influence of various amphiphiles on the asphaltene aggregate size. The results showed Interactions between the asphaltenes and various chemicals, which were proposed to be due to acid-base interactions. Among the chemicals used were various naphthenic acids. Synthesised monodisperse acids gave a reduction of size of the asphaltene aggregates, whereas polydisperse

  12. Influence of asphaltene aggregation and pressure on crude oil emulsion stability

    Energy Technology Data Exchange (ETDEWEB)

    Auflem, Inge Harald

    2002-07-01

    Water-in-crude oil emulsions stabilised by various surface-active components are one of the major problems in relation to petroleum production. This thesis presents results from high-pressure separation experiments on ''live'' crude oil and model oil emulsions, as well as studies of Interactions between various indigenous stabilising materials in crude oil. A high-pressure separation rig was used to study the influence of gas and gas bubbles on the separation of water-in-crude oil emulsions. The results were interpreted as a flotation effect from rising gas bubbles, which led to increased separation efficiency. The separation properties of a ''live'' crude oil were compared to crude oil samples recombined with various gases. The results showed that water-in-oil emulsions produced from the ''live'' crude oil samples, generally separated faster and more complete, than emulsions based on recombined samples of the same crude oil. Adsorption of asphaltenes and resins onto a hydrophilic surface from solutions with varying aromatic/aliphatic character was investigated by a quarts crystal microbalance. The results showed that asphaltenes adsorbed to a larger degree than the resins. The resins were unable to desorb pre-adsorbed asphaltenes from the surface, and neither did they adsorb onto the asphaltene-coated surface. In solutions of both of resins and asphaltenes the two constituents associated in bulk liquid and adsorbed to the surface in the form of mixed aggregates. Near infrared spectroscopy and pulsed field gradient spin echo nuclear magnetic resonance were used to study asphaltene aggregation and the influence of various amphiphiles on the asphaltene aggregate size. The results showed Interactions between the asphaltenes and various chemicals, which were proposed to be due to acid-base interactions. Among the chemicals used were various naphthenic acids. Synthesised monodisperse acids gave a reduction of

  13. An Integrated Approach to Introducing Biofuels, Flash Point, and Vapor Pressure Concepts into an Introductory College Chemistry Lab

    Science.gov (United States)

    Hoffman, Adam R.; Britton, Stephanie L.; Cadwell, Katie D.; Walz, Kenneth A.

    2011-01-01

    Students explore the fundamental chemical concepts of vapor pressure and flash point in a real-world technical context, while gaining insight into the contemporary societal issue of biofuels. Lab activities were developed using a closed-cup instrument to measure the flash point of various biodiesel samples. Pre- and post-tests revealed that the…

  14. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  15. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smolenskij, V.V.; Moskalenko, N.I.

    2004-01-01

    Volatilities of GaCl 3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl 3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl 3 ; their variation permits altering parameters of GaCl 3 distillation from the salt melt in a wide range [ru

  16. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  17. Apparatus for recovering oil from Posidonien shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-04-13

    Equipment for recovering oil from shale and the like, as well as the distilling of coal is characterized in that a number of chambers provided in a known way with upper and lower air supply are arranged open to the receiver of the oil vapors through removable domes which can be attached to the usual oil-vapor carry-off. Arrangement is characterized in that the domes are movable to the side, so that they can be interchangeably attached to the different chambers.

  18. Analysis of the Effect of Injection Pressure on Ignition Delay and Combustion Process of Biodiesel from Palm Oil, Algae and Waste Cooking Oil

    Science.gov (United States)

    Irham Anas, Mohd; Khalid, Amir; Hakim Zulkifli, Fathul; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin

    2017-10-01

    Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant grease for use in diesel engines. The objective of this research is investigation the effects of the variant injection pressure on ignition delay and emission for different biodiesel using rapid compression machine. Rapid Compression Machine (RCM) is used to simulate a single compression stroke of an internal combustion engine as a real engine. Four types of biodiesel which are waste cooking oil, crude palm oil, algae and jatropha were tested at injection pressure of 80 MPa, 90 MPa and 130 MPa under constant ambient temperature at 950 K. Increased in injection pressure resulted shorter ignition delay proven by WCO5 which decreased from 1.3 ms at 80 MPa to 0.7 ms at 130 MPa. Meanwhile, emission for CO2 increased due to better fuel atomization for fuel-air mixture formation lead to completed combustion.

  19. Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A

    NARCIS (Netherlands)

    Matheis, Jan; Hickel, S.

    2018-01-01

    We present and evaluate a two-phase model for Eulerian large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model is based on cubic equations of state and vapor-liquid equilibrium calculations and can represent the coexistence of supercritical states and

  20. High pressure changes of the castor oil viscosity by ultrasonic method

    International Nuclear Information System (INIS)

    Rostocki, A J; Siegoczynski, R M; Kielczynski, P; Szalewski, M

    2008-01-01

    The pressure change of viscosity of castor oil have been measured by ultrasonic method within the range of pressure up to 0.9 GPa. For the measurement, the authors have applied a new ultrasonic method based on Bleustein-Gulyaev (B-G) waves. For the lower pressures (up to 0.3 GPa) the results have been compared with earlier results obtained by falling body method, whereas for the higher pressure range results were compared with those obtained by the flow type viscometer. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.4 GPa according to the Barus formula. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. The decomposition of the high pressure phase during the decompression process have shown very large hysteresis of viscosity on pressure. 4. After the decompression process the viscosity lasts higher then a initial value for several hours

  1. Similarities and differences in vapor explosion criteria

    International Nuclear Information System (INIS)

    Cronenberg, A.W.

    1978-01-01

    An overview of recent ideas pertaining to vapor explosion criteria indicates that in general sense, a consensus of opinion is emerging on the conditions applicable to explosive vaporization. Experimental and theoretical work has lead a number of investigators to the formulation of such conditions which are quite similar in many respects, although the quantitative details of the model formulation of such conditions are somewhat different. All model concepts are consistent in that an initial period of stable film boiling, separating molten fuel from coolant, is considered necessary (at least for large-scale interactions and efficient intermixing), with subsequent breakdown of film boiling due to pressure and/or thermal effects, followed by intimate fuel-coolant contact and a rapid vaporization process which is sufficient to cause shock pressurization. Although differences arise as to the conditions for and the energetics associated with film boiling destabilization and the mode and energetics of fragmentation and intermixing. However, the principal area of difference seems to be the question of what constitutes the requisite condition(s) for rapid vapor production to cause shock pressurization

  2. Vaporization study on vanadium-oxygen solid solution by mass spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over vanadium-oxygen solid solution (0.001 ≤ O/V ≤ 0.145) were measured by mass-spectrometric method in the temperature range of 1,855 ∼ 2,117 K. The main vapor species were observed to be V(g) and VO(g). The vapor pressure of V(g) is higher than that of VO(g) over the solid solutions with all O/V ratios except for O/V = 0.145. The vapor pressure of V(g) is nearly independent of O/V ratio. The vapor pressure of VO(g) decreases with decreasing O/V ratio. The oxygen partial pressure was calculated as a function of temperature and O/V ratio from the vapor pressures of V(g) and VO(g), from which the partial molar enthalpy and entropy of oxygen in the solid solution were determined. The partial molar enthalpy of oxygen was observed to be independent of composition, suggesting the presence of very weak interaction between interstitial oxygens. The compositional dependence of the partial molar entropy of oxygen can be explained by assuming the occupation of the octahedral site in bcc vanadium lattice by the interstitial oxygens. The excess partial molar entropy of oxygen was compared with the value derived from the sum of the contributions from the volume expansion, electronic heat capacity and vibrational terms. (author)

  3. 40 CFR 52.787 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  4. Randomized controlled trial for Salvia sclarea or Lavandula angustifolia: differential effects on blood pressure in female patients with urinary incontinence undergoing urodynamic examination.

    Science.gov (United States)

    Seol, Geun Hee; Lee, Yun Hee; Kang, Purum; You, Ji Hye; Park, Mira; Min, Sun Seek

    2013-07-01

    The aim of this study was to investigate the effect of inhalation of Salvia sclarea (clary sage; clary) or Lavandula angustifolia (lavender) essential oil vapors on autonomic nervous system activity in female patients with urinary incontinence undergoing urodynamic assessment. STUDY DESIGN, LOCATION, AND SUBJECTS: This study was a double-blind, randomized, controlled trial carried out in 34 female patients with urinary incontinence. The subjects were randomized to inhale lavender, clary, or almond (control) oil at concentrations of 5% (vol/vol) each. Systolic blood pressure, diastolic blood pressure, pulse rate, respiratory rate, and salivary cortisol were measured before and after inhalation of these odors for 60 minutes. The clary oil group experienced a significant decrease in systolic blood pressure compared with the control (p=0.048) and lavender oil (p=0.026) groups, a significant decrease in diastolic blood pressure compared with the lavender oil group (p=0.034) and a significant decrease in respiratory rate compared with the control group (p<0.001). In contrast, the lavender oil group tended to increase systolic and diastolic blood pressure compared with the control group. Compared with the control group, inhalation of lavender oil (p=0.045) and clary oil (p<0.001) resulted in statistically significant reductions in respiratory rate. These results suggest that lavender oil inhalation may be inappropriate in lowering stress during urodynamic examinations, despite its antistress effects, while clary oil inhalation may be useful in inducing relaxation in female urinary incontinence patients undergoing urodynamic assessments.

  5. Pequi fruit (Caryocar brasiliense Camb.) pulp oil reduces exercise-induced inflammatory markers and blood pressure of male and female runners.

    Science.gov (United States)

    Miranda-Vilela, Ana L; Pereira, Luiz C S; Gonçalves, Carlos A; Grisolia, Cesar K

    2009-12-01

    The objective of this study was to investigate the anti-inflammatory properties of pequi (Caryocar brasiliense) fruit oil and its effects on the postprandial lipidemia and arterial blood pressure of male and female athletes. These athletes were evaluated after races in the same environment and under the same type, intensity, and length of weekly training conditions, both before and after ingestion of 400 mg pequi oil capsules for 14 days. Pequi fruit contains several antioxidants, and its oil has been associated with anti-inflammatory properties in other pequi species. Because the oil of pequi is mostly composed of oleic and palmitic fatty acids, the oil may alter the ratio of triglyceride to cholesterol in postprandial lipidemia. Epidemiologic studies suggest that an increased intake of monounsaturated fatty acids (such as oleic acid) is inversely related to blood pressure. Thus, we hypothesize that pequi oil could reduce exercise-induced inflammation and blood pressure, and modulate postprandial lipidemia in runners. To test this hypothesis, arterial blood pressures were checked before races; blood samples were taken after the races and submitted for analysis of leukocytes and platelets analysis, high-sensitivity C-reactive protein values, and postprandial lipids. Pequi oil resulted in anti-inflammatory effects and reduced the total cholesterol and low-density lipoprotein in the age group older than 45 years, mainly for men. The results showed a general trend for reduced arterial pressure, suggesting that pequi oil may have a hypotensive effect. However, this finding needs additional investigation. Thus, pequi oil, besides possessing many nutritional properties, may be a good candidate supplement for athletes.

  6. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  7. Iron exclusion in rice genotypes as affected by different vapor pressure deficit conditions

    Directory of Open Access Journals (Sweden)

    Ram Kumar Shrestha

    2015-08-01

    Full Text Available Root iron (Fe exclusion capacity of four lowland rice genotypes were evaluated in increasing rate of Fe2+ stresses (0, 500, 1000 and 1500 mg/L in growing medium under the conditions of low and high vapor pressure deficit. Rice root excluded significantly higher amount of iron under dry atmospheric condition (655 mg Fe/g root dry matter than moist atmospheric condition (118 mg Fe/g root dry matter. But their iron exclusion capacity reduced when they were gradually exposed to the higher levels of Fe stress. Tolerant genotype such as TOX3107 excluded more iron when they were exposed to dry atmospheric condition.

  8. Phosphorus atomic layer doping in SiGe using reduced pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Yamamoto, Yuji; Heinemann, Bernd; Murota, Junichi; Tillack, Bernd

    2014-01-01

    Phosphorus (P) atomic layer doping in SiGe is investigated at temperatures between 100 °C to 600 °C using a single wafer reduced pressure chemical vapor deposition system. SiGe(100) surface is exposed to PH 3 at different PH 3 partial pressures by interrupting SiGe growth. The impact of the SiGe buffer/cap growth condition (total pressure/SiGe deposition precursors) on P adsorption, incorporation, and segregation are investigated. In the case of SiH 4 -GeH 4 -H 2 gas system, steeper P spikes due to lower segregation are observed by SiGe cap deposition at atmospheric (ATM) pressure compared with reduced pressure (RP). The steepness of P spike of ∼ 5.7 nm/dec is obtained for ATM pressure without reducing deposition temperature. This result may be due to the shift of equilibrium of P adsorption/desorption to desorption direction by higher H 2 pressure. Using Si 2 H 6 -GeH 4 -H 2 gas system for SiGe cap deposition in RP, lowering the SiGe growth temperature is possible, resulting in higher P incorporation and steeper P profile due to reduced desorption and segregation. In the case of Si 2 H 6 -GeH 4 -H 2 gas system, the P dose could be simulated assuming a Langmuir-type kinetics model. Incorporated P shows high electrical activity, indicating P is adsorbed mostly in lattice position. - Highlights: • Phosphorus (P) atomic layer doping in SiGe (100) is investigated using CVD. • P adsorption is suppressed by the hydrogen termination of Ge surface. • By SiGe cap deposition at atmospheric pressure, P segregation was suppressed. • By using Si 2 H 6 -based SiGe cap, P segregation was also suppressed. • The P adsorption process is self-limited and follows Langmuir-type kinetics model

  9. 40 CFR 52.255 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  10. The role of fragmentation mechanism in large-scale vapor explosions

    International Nuclear Information System (INIS)

    Liu, Jie

    2003-01-01

    A non-equilibrium, multi-phase, multi-component code PROVER-I is developed for propagation phase of vapor explosion. Two fragmentation models are used. The hydrodynamic fragmentation model is the same as Fletcher's one. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The role of fragmentation mechanisms is investigated by the simulations of the pressure wave propagation and energy conversion ratio of ex-vessel vapor explosion. The spontaneous nucleation fragmentation results in a much higher pressure peak and a larger energy conversion ratio than hydrodynamic fragmentation. The instant fragmentation gives a slightly larger energy conversion ratio than spontaneous nucleation fragmentation, and the normal boiling fragmentation results in a smaller energy conversion ratio. The detailed analysis of the structure of pressure wave makes it clear that thermal detonation exists only under the thermal fragmentation circumstance. The high energy conversion ratio is obtained in a small vapor volume fraction. However, in larger vapor volume fraction conditions, the vapor explosion is weak. In a large-scale vapor explosion, the hydrodynamic fragmentation is essential when the pressure wave becomes strong, so a small energy conversion ratio is expected. (author)

  11. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  12. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  13. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  14. Changes in the composition and properties of Ashalchinskoye bitumen-saturated sandstones when exposed to water vapor

    Science.gov (United States)

    Korolev, E.; Eskin, A.; Kolchugin, A.; Morozov, V.; Khramchenkov, M.; Gabdelvalieva, R.

    2018-05-01

    Ashalchinskoye bitumen deposit is an experimental platform for testing technology of high-viscosity oil extraction from reservoir rocks. Last time for enhanced of oil recovery in reservoir used pressurization a water vapor with a temperature of ∼ 180 ° C (SAGD technology). However, what happens in sandstone reservoir is little known. We did a study of the effects of water vapor on the structural components of bitumen saturated sandstone. In paper were studied the rock samples at base condition and after one week exposure by water vapour. The thermal analysis showed that steaming helps to removes light and middle oil fractions with a boiling point up to 360 ° C from oil saturated sandstones. Content of heavy oil fractions virtually unchanged. Studying the composition of water extractions of samples showed that the process of aquathermolysis of oil is accompanied by a lowering of the pH of the pore solution from 7.4 to 6.5 and rise content in several times of mobile cations Ca2+, Mg2+ and HCO3 -, SO4 2- anions. Follows from this that the thermal steam effect by bitumen saturated sandstones leads to partial oxidation of hydrocarbons with to form a carbon dioxide. The source of sulfate ions were oxidized pyrite aggregates. Due to the increasing acidity of condensed water, which fills the pore space of samples, pore fluid becomes aggressive to calcite and dolomite cement of bitumen saturated sandstones. As a result of the dissolution of carbonate cement the pore fluid enriched by calcium and magnesium cations. Clearly, that the process is accompanied by reduction of contact strength between fragments of minerals and rocks. Resulting part of compounds is separated from the outer side of samples and falls to bottom of water vapor container. Decreasing the amount of calcite and dolomite anions in samples in a steam-treated influence is confirmed by X-Ray analysis. X-Ray analysis data of study adscititious component of rocks showed that when influenced of water vapor to

  15. Muonium formation and the 'missing fraction' in vapors

    International Nuclear Information System (INIS)

    Fleming, D.G.; Arseneau, D.J.; Garner, D.M.; Senba, M.; Mikula, R.J.

    1983-06-01

    The vapor phase fractional polarizations of positive muons thermalizing as the muonium atom (Psub(M)) and in diamagnetic environments (Psub(D)) has been measured in H 2 O, CH 3 OH, C 6 H 14 , C 6 H 12 , CCl 4 , CHCl 3 , CH 2 Cl 2 and TMS, in order to compare with the corresponding fractions measured in the condensed phases. There is a marked contrast in every case, with the vapor phase results being largely understandable in terms of a charge exchange/hot atom model. Unlike the situation in the corresponding liquids, there is no permanent lost fraction in the vapor phase in the limit of even moderately high pressures (approximately 1 atm); at lower pressures, depolarization is due to hyperfine mixing and is believed to be well understood. For vapor phase CH 3 OH, C 6 H 14 , C 6 H 12 , and TMS the relative fractions are found to be pressure dependent, suggesting the importance of termolecular hot atom (or ion) reactions in the slowing-down process. For vapor phase H 2 O and the chloromethanes, the relative fractions are pressure independent. For CCl 4 , Psub(M) = Psub(D) approximately 0.5 in the vapor phase vs. Psub(D) = 1.0 in the liquid phase; fast thermal reactions of Mu likely contribute significantly to this difference in the liquid phase. For H 2 O, Psub(M) approximately 0.9 and Psub(D) approximately 0.1 in the vapor phase vs. Psub(D) approximately 0.6 and Psub(M) approximately 0.2 in the liquid phase. Water appears to be the one unequivocal case where the basic charge exchange/hot atom model is inappropriate in the condensed phase, suggesting, therefore, that radiation-induced 'spur' effects play a major role

  16. Buoyancy-Driven Heat Transfer During Application of a Thermal Gradient for the Study of Vapor Deposition at Low Pressure Using and Ideal Gas

    Science.gov (United States)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.

    1996-01-01

    A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is

  17. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  18. HIGH PRESSURE PHASE EQUILIBRIUM: PREDICTION OF ESSENTIAL OIL SOLUBILITY

    Directory of Open Access Journals (Sweden)

    Lúcio CARDOZO-FILHO

    1997-12-01

    Full Text Available This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.Este trabalho descreve uma metodologia para o cálculo da solubilidade de óleos essenciais em dióxido de carbono a altas pressões baseada na formulação proposta em 1979 por Asselineau, Bogdanic e Vidal. Foram utilizadas as equações cúbicas de estado de Peng-Robinson e Soave-Redlich-Kwong com regras de mistura de van der Waals com dois parâmetros de interação. O cálculo da solubilidade do óleo essencial de laranja em dióxido de carbono pressurizado foi usado para validação do método. A solubilidade calculada a 308,15 K para pressões entre 50 e 70 bar variou entre 1,5 e 4,1 mg/g. Valores experimentais para as mesmas condições variam entre 1,7± 0.1 a 3,6± 0.1 mg/g. Os valores preditos não são muito sensíveis à composição inicial do óleo essencial.

  19. Determination of antioxidants in new and used lubricant oils by headspace-programmed temperature vaporization-gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nogal Sanchez, Miguel del; Perez Pavon, Jose Luis; Garcia Pinto, Carmelo; Moreno Cordero, Bernardo [Universidad de Salamanca, Departamento de Quimica Analitica, Nutricion y Bromatologia, Salamanca (Spain); Glanzer, Paul [University of Vienna, Department of Analytical Chemistry, Vienna (Austria)

    2010-12-15

    A sensitive method is presented to determine antioxidants (2-, 3-, and 4-tert-butylphenol, 2,6-di-tert-butylphenol, 3-tert-butyl-4-hydroxyanisol, 2,6-di-tert-butyl-4-methylphenol, 1-naphthol, and diphenylamine) in new and used lubricant oil samples. Research was carried out on a GC device equipped with a headspace sampler, a programmed temperature vaporizer, and an MS detector unit. The proposed method does not require sample treatment prior to analyses, hence eliminating possible errors occurring in this step. Sample preparation is reduced when placing the oil sample (2.0 g) in the vial and adding propyl acetate (20 {mu}L). Solvent vent injection mode permits a pre-concentration of the compounds of interest in the liner filled with Tenax-TA {sup registered}, while venting other species present in the headspace. Thereby, both the life of the liner and the capillary column is prolonged, and unnecessary contamination of the detector unit is avoided. Calibration was performed by adding different concentrations of analytes to a new oil which did not contain any of the studied compounds. Limits of detection as low as 0.57 {mu}g/L (2-tert-butylphenol) with a precision lower or equal to 5.3% were achieved. Prediction of the antioxidants in new oil samples of different viscosities (5W40, 10W40, and 15W40) was accomplished with the previous calibration, and the results were highly satisfactory. To determine antioxidants in used engine oils, standard addition method was used due to the matrix effect. (orig.)

  20. Calculational model for condensation of water vapor during an underground nuclear detonation

    International Nuclear Information System (INIS)

    Knox, R.J.

    1975-01-01

    An empirally derived mathematical model was developed to calculate the pressure and temperature history during condensation of water vapor in an underground-nuclear-explosion cavity. The condensation process is non-isothermal. Use has been made of the Clapeyron-Clausius equation as a basis for development of the model. Analytic fits to the vapor pressure and the latent heat of vaporization for saturated-water vapor, together with an estimated value for the heat-transfer coefficient, have been used to describe the phenomena. The calculated pressure-history during condensation has been determined to be exponential, with a time constant somewhat less than that observed during the cooling of the superheated steam from the explosion. The behavior of the calculated condensation-pressure compares well with the observed-pressure record (until just prior to cavity collapse) for a particular nuclear-detonation event for which data is available

  1. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  2. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairhumiditynucleation theory or molecular simulations (Pcav=-140 to -180 MPa). To determine the cause of the disparity between the observed and predicted stability limit, we examine experimentally the likelihood of several nonhomogeneous mechanisms of nucleation: (i) heterogeneous nucleation caused by hydrophobic patches on void walls, (ii) nucleation caused by the presence of dissolved solute, (iii) nucleation caused by the presence of pre-existing vapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude that, of these possibilities, (i) and (ii) cannot be discounted, whereas (iii) and (iv) are unlikely to play a role in determining the stability limit.

  3. Vapor-transport of tungsten and its geologic application

    Energy Technology Data Exchange (ETDEWEB)

    Shibue, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan)

    1988-11-10

    The volatility of tungsten in a hydrous system at elevated temperatures and pressures was examined, and a tentative model for the enrichment of tungsten in hydrothermal solutions for the deposits related to granitic activities was proposed. To produce vapor-saturated solution, 17 or 15ml of 20wt% NaCl solution was introduced into an autoclave. Ca(OH){sub 2} for tungsten and H{sub 2}WO{sub 4} for base metals were used as vapor-captures, and run products were identified by X-ray powder diffractometry. The results suggested that the ratio of tungsten to base metals was higher in a vapor phase than in a liquid phase, and more enrichment of tungsten in the vapor phase occurred at higher temperature and pressure under the coexistence of the vapor and liquid phase. The tentative model emphasizing the vapor-transport of tungsten could explain the presence of tungsten deposits without large mineralization of base metals. Geological schematic model for the generation of the hydrothermal solution enriched in tungsten compared with base metals was illustrated based on above mentioned results. 21 refs., 3 figs.

  4. SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

    Directory of Open Access Journals (Sweden)

    J. F. Pankow

    2008-05-01

    Full Text Available The SIMPOL.1 group contribution method is developed for predicting the liquid vapor pressure poL (atm and enthalpy of vaporization Δ Hvap (kJ mol-1 of organic compounds as functions of temperature (T. For each compound i, the method assumes log10poL,i (T=∑kνk,ibk(T where νk,i is the number of groups of type k, and bk (T is the contribution to log10poL,i (T by each group of type k. A zeroeth group is included that uses b0 (T with ν0,i=1 for all i. A total of 30 structural groups are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary, aromatic amine, amide (primary, secondary, and tertiary, peroxide, hydroperoxide, peroxy acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester, aromatic rings, non-aromatic rings, C=C–C=O in a non-aromatic ring, and carbon on the acid-side of an amide. The T dependence in each of the bk (T is assumed to follow b(T=B1/T+B2+B3T+B4ln T. Values of the B coefficients are fit using an initial basis set of 272 compounds for which experimentally based functions po L,i=fi (T are available. The range of vapor pressure considered spans fourteen orders of magnitude. The ability of the initially fitted B coefficients to predict poL values is examined using a test set of 184 compounds and a T range that is as wide as 273

  5. A demonstration experiment for studying the properties of saturated vapor

    Science.gov (United States)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  6. Distilling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C

    1917-11-23

    In the fractional or destructive distillation of hydrocarbon oils or other liquids, the pressure in the still is raised and lowered alternately. The still is closed to raise the pressure, and is opened to lower the pressure rapidly solely by expansion of the vapors. The operation is effected without intermittent cooling, except such as may occur during the lowering of the pressure. In distilling hydrocarbon oil, pressure steam is blown into the oil until the pressure reaches 5 lb/in./sup 2/. The vapor outlet is then opened until the pressure falls to 2 lb/in./sup 2/, whereupon the vapor outlet is closed and steam is again admitted. The operation is continued until the steam, which is of 20 lb pressure, no longer effects distillation; after this stage, superheated steam is used.

  7. Starch inclusion complex to emulsify cedarwood oil and pressure treat wood

    Science.gov (United States)

    Previously, we have demonstrated that CO2-derived cedarwood oil has a range of bioactivities, including insect repellency and toxicity as well as conferring resistance to both termites and wood-rot fungi. In the earlier pressure treatment work, ethanol was used as the diluent/carrier. However, it is...

  8. Experimental study on methanol recovery through flashing vaporation in continuous production of biodiesel via supercritical methanol

    International Nuclear Information System (INIS)

    Wang Cunwen; Chen Wen; Wang Weiguo; Wu Yuanxin; Chi Ruan; Tang Zhengjiao

    2011-01-01

    To improve the oil conversion, high methanol/oil molar ratio is required in the continuous production of biodiesel via supercritical methanol transesterification in tubular reactor. And thus the subsequent excess methanol recovery needs high energy consumption. Based on the feature of high temperature and high pressure in supercritical methanol transesterification, excess methanol recovery in reaction system by flashing vaporation is conducted and the effect of reaction temperature, reaction pressure and flashing pressure on methanol recovery and methanol concentration in gas phase is discussed in detail in this article. Results show that at the reaction pressure of 9-15 MPa and the reaction temperature of 240-300 o C, flashing pressure has significant influence on methanol recovery and methanol content in gas phase, which can be effectively improved by reducing flashing pressure. At the same time, reaction temperature and reaction pressure also have an important effect on methanol recovery and methanol content in gas phase. At volume flow of biodiesel and methanol 1:2, tubular reactor pressure 15 MPa, tubular reactor temperature 300 o C and the flashing pressure 0.4 MPa, methanol recovery is more than 85% and methanol concentration of gas phase (mass fraction) is close to 99% after adiabatic braising; therefore, the condensate liquid of gas phase can be injected directly into methanol feedstock tank to be recycled. Research abstracts: Biodiesel is an important alternative energy, and supercritical methanol transesterification is a new and green technology to prepare biodiesel with some obvious advantages. But it also exists some problems: high reaction temperature, high reaction pressure and large molar ratio of methanol/oil will cause large energy consumption which restricts supercritical methanol for the industrial application of biodiesel. So a set of tubular reactor-coupled flashing apparatus is established for continuous preparing biodiesel in supercritical

  9. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  10. Investigating the effects of water vaporization on the production of ...

    African Journals Online (AJOL)

    The simulations show that water vaporization increases productivity of well by increasing gas saturation and relative permeability near the well walls and improving the mobility of gas; and this effect is stronger in rich gas condensate reservoir than the lean ones. Keywords: Well, Gas, Pressure Drop, Vapor pressure of water ...

  11. Water vapor-nitrogen absorption at CO2 laser frequencies

    Science.gov (United States)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  12. A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Mandadige Samintha Anne Perera

    2016-06-01

    Full Text Available This paper reports on a comprehensive study of the CO2-EOR (Enhanced oil recovery process, a detailed literature review and a numerical modelling study. According to past studies, CO2 injection can recover additional oil from reservoirs by reservoir pressure increment, oil swelling, the reduction of oil viscosity and density and the vaporization of oil hydrocarbons. Therefore, CO2-EOR can be used to enhance the two major oil recovery mechanisms in the field: miscible and immiscible oil recovery, which can be further increased by increasing the amount of CO2 injected, applying innovative flood design and well placement, improving the mobility ratio, extending miscibility, and controlling reservoir depth and temperature. A 3-D numerical model was developed using the CO2-Prophet simulator to examine the effective factors in the CO2-EOR process. According to that, in pure CO2 injection, oil production generally exhibits increasing trends with increasing CO2 injection rate and volume (in HCPV (Hydrocarbon pore volume and reservoir temperature. In the WAG (Water alternating gas process, oil production generally increases with increasing CO2 and water injection rates, the total amount of flood injected in HCPV and the distance between the injection wells, and reduces with WAG flood ratio and initial reservoir pressure. Compared to other factors, the water injection rate creates the minimum influence on oil production, and the CO2 injection rate, flood volume and distance between the flood wells have almost equally important influence on oil production.

  13. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  14. Liquid-liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials

  15. In-situ water vaporization improves bitumen production during electrothermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Calgary Univ., AB (Canada); McGee, B. [E-T Energy, Calgary, AB (Canada); Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Electro-thermal processes are now being considered as an alternative or complementary process to steam injection processes. This study used an in situ vaporized water process to optimize electrothermal processes for steam injection enhanced oil recovery (EOR). A simulation tool was used to model electro-thermal processes in an Athabasca oil sands reservoir. Incremental oil recovery was estimated based on a 3-block conceptual model. A field scale model was then used to investigate the effects of electrode spacing, water injection rates, and electrical heating rates on bitumen recovery. Results of the simulation studies were then analyzed using a statistical tool in order to determine optimal conditions for maximizing bitumen production. Results of the study showed that incremental recovery using the water vaporization technique resulted in oil recovery rates of 25 per cent original oil in place (OOIP). Sensitivity analyses showed that medium electrical heating rates, low water injection rates, and small spacings between electrodes maximized bitumen production rates. It was concluded that the technique can be used alone or combined with other methods to economically produce bitumens. 2 refs., 7 tabs., 9 figs.

  16. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis

    Directory of Open Access Journals (Sweden)

    Ilayaraja Muthuramu

    2017-07-01

    Full Text Available Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05 in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64 during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold (p < 0.01 higher in coconut oil mice than in standard chow mice. Myocardial capillary density (p < 0.001 was decreased, interstitial fibrosis was 1.88-fold (p < 0.001 higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold (p < 0.001 higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower (p < 0.05 in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  17. Quantitative liquid and vapor distribution measurements in evaporating fuel sprays using laser-induced exciplex fluorescence

    International Nuclear Information System (INIS)

    Fansler, Todd D; Drake, Michael C; Gajdeczko, Boguslaw; Düwel, Isabell; Koban, Wieland; Zimmermann, Frank P; Schulz, Christof

    2009-01-01

    Fully quantitative two-dimensional measurements of liquid- and vapor-phase fuel distributions (mass per unit volume) from high-pressure direct-injection gasoline injectors are reported for conditions of both slow and rapid vaporization in a heated, high-pressure spray chamber. The measurements employ the coevaporative gasoline-like fluorobenzene (FB)/diethylmethylamine (DEMA)/hexane exciplex tracer/fuel system. In contrast to most previous laser-induced exciplex-fluorescence (LIEF) experiments, the quantitative results here include regions in which liquid and vapor fuel coexist (e.g. near the injector exit). A unique aspect is evaluation of both vapor- and liquid-phase distributions at varying temperature and pressure using only in situ vapor-phase fluorescence calibration measurements at room temperature and atmospheric pressure. This approach draws on recent extensive measurements of the temperature-dependent spectroscopic properties of the FB–DEMA exciplex system, in particular on knowledge of the quantum efficiencies of the vapor-phase and liquid-phase (exciplex) fluorescence. In addition to procedures necessary for quantitative measurements, we discuss corrections for liquid–vapor crosstalk (liquid fluorescence that overlaps the vapor-fluorescence bandpass), the unknown local temperature due to vaporization-induced cooling, and laser-sheet attenuation by scattering and absorption

  18. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starch – starch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  19. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  20. Thermal diffusivity estimation of the olive oil during its high-pressure treatment

    Czech Academy of Sciences Publication Activity Database

    Kubásek, M.; Houška, M.; Landfeld, A.; Strohalm, J.; Kamarád, Jiří; Žitný, R.

    2006-01-01

    Roč. 74, - (2006), s. 286-291 ISSN 0260-8774 R&D Projects: GA MZe QF3287 Institutional research plan: CEZ:AV0Z10100521 Keywords : olive oil * food processing * high pressure * thermal diffusivity Subject RIV: GM - Food Processing Impact factor: 1.696, year: 2006

  1. Solidago canadensis L. Essential Oil Vapor Effectively Inhibits Botrytis cinerea Growth and Preserves Postharvest Quality of Strawberry as a Food Model System.

    Science.gov (United States)

    Liu, Shumin; Shao, Xingfeng; Wei, Yanzhen; Li, Yonghua; Xu, Feng; Wang, Hongfei

    2016-01-01

    This study investigated the anti-fungal properties of Solidago canadensis L. essential oil (SCLEO) against Botrytis cinerea in vitro, and its ability to control gray mold and maintain quality in strawberry fruits. SCLEO exhibited dose-dependent antifungal activity against B. cinerea and profoundly altered mycelial morphology, cellular ultrastructure, and membrane permeability as evaluated by scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. SCLEO vapor at 0.1 mL/L maintained higher sensory acceptance and reduced decay of fresh strawberry fruit, and also reduced gray mold in artificially inoculated fruit. SCLEO treatment did not, however, stimulate phenylalanin ammonia-lyase, polyphenol oxidase, or chitinase, enzymes related to disease resistance. This suggests that SCLEO reduces gray mold by direct inhibition of pathogen growth. SCLEO vapor may provide a new and effective strategy for controlling postharvest disease and maintaining quality in strawberries.

  2. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    Science.gov (United States)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  3. Double throat pressure pulsation dampener for oil-free screw compressors

    Science.gov (United States)

    Lucas, Michael J.

    2005-09-01

    This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.

  4. Mathematical Modeling of HC Emissions Released by Oil Film for Gasoline and Alcohol Fuels

    Directory of Open Access Journals (Sweden)

    M. İhsan KARAMANGİL

    2013-04-01

    Full Text Available Oil film on cylinder liner has been suggested as a major source of engine-out hydrocarbon emissions. So in the present study, the rate of absorption/desorption of the fuel in the oil film has been investigated numerically in a spark ignition engine by using gasoline, ethanol and methanol fuels. To aim this purpose, a thermodynamic cycle model has been developed and then a mathematical modeling for the rate of absorption/desorption of the fuel in the oil film has been developed and adapted for this thermodynamic cycle model.It was seen that the absorption/desorption mechanism of ethanol and methanol into the oil film were lower than gasoline. It was determined that the most dominant parameter of this difference was Henry’s constant, which was related to solubility. As interaction time of oil filmfuel vapor was longer at low engine speeds, the quantities of HC absorbed/desorbed increased. The quantities of HC absorbed/desorbed increased with increasing inlet pressure and compression ratio

  5. Linseed oil increases HDL3 cholesterol and decreases blood pressure in patients diagnosed with mild hypercholesterolemia.

    Science.gov (United States)

    Skoczyńska, Anna H; Gluza, Ewa; Wojakowska, Anna; Turczyn, Barbara; Skoczyńska, Marta

    2018-04-24

    Linseed oil has cardio-protective effects. However, its antihypertensive action has not yet been well characterized. The primary purpose of the study was to evaluate the effect of short-term dietary supplementation with linseed oil on blood pressure (BP) and lipid metabolism in patients with mild hypercholesterolemia. The secondary aim was to evaluate the effect of linseed oil on nitric oxide pathway and selected serum trace metals. 150 volunteers: 43 men (49.9±11.5 years) and 107 women (53.2±10.3 years), diagnosed with mild hypercholesterolemia, were assessed prospectively for BP and lipids' levels, before and after lipid-lowering diet plus linseed oil supplementation at a dose of 15 ml daily for 4 weeks (study groups) or 4-weekly lipid-lowering diet (control group). The multivariate logistic regression analysis model was used to determine the effect of linseed oil on BP after adjustment for age, gender, height, body weight, BMI, smoking and alcohol consumption. The supplementation with linseed oil significantly decreased LDL- and non-HDL cholesterol, and increased HDL- and HDL₃- cholesterol levels. Additionally, linseed oil decreased diastolic BP in men (CI:-6.0;-1.1, poil reduced (poil consumption was associated with a decrease in mean BP (aOR 3.85, 95%CI 1.32-11.33). Our findings confirm the benefit of short-term linseed oil use in mild hypercholesterolemia, in particular in patients with increased blood pressure.

  6. Modelling of Outer and Inner Film Oil Pressure for Floating Ring Bearing Clearance in Turbochargers

    International Nuclear Information System (INIS)

    Zhang Hao; Shi Zhanqun; Gu Fengshou; Ball, Andrew

    2011-01-01

    Floating ring bearing is widely used in turbochargers to undertake the extreme condition of high rotating speed and high operating temperature. It is also the most concerned by the designers and users alike due to its high failure rate and high maintenance cost. Any little clearance change may result in oil leakage, which in turn cause blue smoke or black smoke according to leakage types. However, there is no condition monitoring of this bearing because it is almost impossible to measure the clearance especially the inner clearance, in which the inner oil film directly bears the high speed rotation. In stead of measuring clearance directly, this paper has proposed a method that uses film pressure as a measure to monitor the bearing clearance and its variation. A non-linear mathematical model is developed by using Reynolds equations with non-linear oil film pressure. A full description of the outer and inner film is provided along both axial and radial directions. A numerical simulation is immediately carried out. Variable clearance changes are investigated using the mathematical model. Results show the relationship between clearance and film pressure.

  7. Review of technical issues related to the failure of Rosemount pressure transmitters due to fill oil loss. Final report

    International Nuclear Information System (INIS)

    James, R.W.; Gaertner, J.P.; Burns, E.T.; Horn, A.; Lee, L.K.

    1994-08-01

    Rosemount pressure transmitters are extensively used in both safety and non-safety applications in US nuclear power plants. They are used to measure pressure, flow, and water level. Rosemount pressure transmitter models 1151, 1152, 1153A, 1153, and 1154 use a fill oil to hydraulically transmit process pressure exerted on outer isolating diaphragms to internal diaphragms. The resulting deflection of the internal diaphragms changes the distance between them and a central diaphragm separating the transmitter interior into two volumes. The change in distance is measured as a change in electrical capacitance between the isolating diaphragms and the central diaphragm and can be related to differential pressure. The fill oil also functions as a dielectric. It has been well established that this fill oil can potentially leak over time, decreasing transmitter accuracy and increasing transmitter response time. Ultimately, the transmitter can fail. An extensive effort has been expended by the nuclear power industry collectively to analyze this issue and develop technically sound and reasonable requirements to mitigate the effects of oil loss in Rosemount pressure transmitters. Despite this, technical concerns have still been raised regarding the technical validity of the past analyses of this problem and its scope. In May 1993, the NRC created an internal group to comprehensively review the Rosemount issue and the NRC's action in addressing it to ensure that all available technical information has been considered. Because this issue remains of active technical interest and because the past work on this subject has been done by many different groups and organizations, EPRI has prepared this report to thoroughly document the current technical understanding of this issue, to perform additional analysis, and to identify any appropriate additional technical research activities regarding oil loss in Rosemount pressure transmitters

  8. Recommended reference materials for realization of physicochemical properties pressure-volume-temperature relationships

    CERN Document Server

    Herington, E F G

    1977-01-01

    Recommended Reference Materials for Realization of Physicochemical Properties presents recommendations of reference materials for use in measurements involving physicochemical properties, namely, vapor pressure; liquid-vapor critical temperature and critical pressure; orthobaric volumes of liquid and vapor; pressure-volume-temperature properties of the unsaturated vapor or gas; and pressure-volume-temperature properties of the compressed liquid. This monograph focuses on reference materials for vapor pressures at temperatures up to 770 K, as well as critical temperatures and critical pressures

  9. Method for Hot Real-Time Sampling of Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    Biomass Pyrolysis has been an increasing topic of research, in particular as a replacement for crude oil. This process utilizes moderate temperatures to thermally deconstruct the biomass which is then condensed into a mixture of liquid oxygenates to be used as fuel precursors. Pyrolysis oils contain more than 400 compounds, up to 60 percent of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during the condensation and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors, many challenges must be overcome. Sampling must occur within a narrow range of temperatures to reduce product composition changes from overheating or partial condensation or plugging of lines from condensed products. Residence times must be kept at a minimum to reduce further reaction chemistries. Pyrolysis vapors also form aerosols that are carried far downstream and can pass through filters resulting in build-up in downstream locations. The co-produced bio-char and ash from the pyrolysis process can lead to plugging of the sample lines, and must be filtered out at temperature, even with the use of cyclonic separators. A practical approach for considerations and sampling system design, as well as lessons learned are integrated into the hot analytical sampling system of the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU) to provide industrially relevant demonstrations of thermochemical transformations of biomass feedstocks at the pilot scale.

  10. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  11. Lithium vapor/aerosol studies. Interim summary report

    International Nuclear Information System (INIS)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.; Wilson, W.L.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538 0 C (1000 0 F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases in lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation

  12. Evaluation of corrosion behaviour of tantalum coating obtained by low pressure chemical vapor deposition using electrochemical polarization

    Science.gov (United States)

    Levesque, A.; Bouteville, A.; de Baynast, H.; Laveissière, B.

    2002-06-01

    antalum coatings are elaborated on titanium substrates through Low Pressure Chemical Vapor Deposition from tantalum pentachloride-hydrogen gaseous phase at a deposition temperature of 800 °C and a total pressure of 3.3 mbar. The aim of this paper is to evaluate the effectiveness of this tantalum coating in corrosive solution. Optical Microscopy and Scanning Electron Microscopy observations reveal that deposits are of 1.7 μm in thickness and conformal. The corrosion resistance of tantalum coated titanium substrates is quantified through standard potentiodynamic polarization method. Even for tantalum coatings exhibiting some defects as pores, the corrosion current density is as low as 0.25 mA/cm^2.in very agressive solutions like kroll reagent (HN03/HF).

  13. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  14. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi

    2000-01-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  15. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    OpenAIRE

    Aceves-Mijares, M.; González-Fernández, A. A.; López-Estopier, R.; Luna-López, A.; Berman-Mendoza, D.; Morales, A.; Falcony, C.; Domínguez, C.; Murphy-Arteaga, R.

    2012-01-01

    Silicon Rich Oxide (SRO) has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD). In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept th...

  16. Influence of extra virgin olive oil on blood pressure and kidney angiotensinase activities in spontaneously hypertensive rats.

    Science.gov (United States)

    Villarejo, Ana Belén; Ramírez-Sánchez, Manuel; Segarra, Ana Belén; Martínez-Cañamero, Magdalena; Prieto, Isabel

    2015-06-01

    High-fat diets are associated with the development of cardiovascular diseases. The efficacy of the current strategies of treatment is still not entirely satisfactory, and new approaches are being considered. To analyze the beneficial effects of extra virgin olive oil as a major component of the Mediterranean diet, we studied systolic blood pressure and angiotensinase activities, since this enzyme is involved in the metabolism of angiotensins, in the kidney of hypertensive rats fed during 12 weeks with a diet enriched with extra virgin olive oil compared with a standard diet. As a reflex of oxidative stress, 8-isoprostanes and nitric oxide were quantified in urine. Results demonstrated a progressive increase in systolic blood pressure until the end of the feeding period in both groups. However, this increase was delayed in the extra virgin olive oil group until week six, with the systolic blood pressure being always lower in this group. Nitric oxide and 8-isoprostanes were lower in the extra virgin olive oil group. While we can deduce a higher formation of angiotensin 2-10 in the renal cortex, a higher availability of angiotensin II may be presumed in the renal medulla of animals fed an extra virgin olive oil diet than in animals fed a standard diet. Our results support the beneficial influence of extra virgin olive oil on cardiovascular function and suggest that the Mediterranean diet may be beneficial in itself but it may also be an effective tool in the treatment of hypertension. Georg Thieme Verlag KG Stuttgart · New York.

  17. Thermodynamics of the vaporization of uranium tetrabromide

    International Nuclear Information System (INIS)

    Singh, Z.; Prasad, R.; Venugopal, P.V.; Roy, K.N.; Sood, D.D.

    1981-01-01

    Vapour pressures of solid and liquid uranium tetrabromide have been measured in the temperature range of 696 to 805 K and 805 to 1003 K respectively by transpiration and evaporation-temperature techniques. The vapour pressures obtained by the two techniques are in good agreement and have been combined to give the reported vapour-pressure equations for solid and liquid uranium tetrabromide. The melting temperature, the normal boiling temperature, the standard enthalpy of vaporization ΔH 0 (vap, 298.15 K), and the standard entropy of vaporization ΔS 0 (vap, 298.15 K) are reported. The enthalpy of fusion ΔH 0 (fus, 802 K) is also reported. The thermodynamic quantities from the present study are compared with those in the literature and critically analysed. (author)

  18. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  19. Development of Y-BA-CU-O Coated Conductor Using Metal Organic Chemical Vapor Deposition

    National Research Council Canada - National Science Library

    Selvamanickam, V

    2003-01-01

    .... The program includes a study of the a) influence of MOCVD processing conditions such as the flow rate of precursor vapors, precursor vaporization temperatures, oxygen partial pressure, reactor pressure, and the deposition temperature...

  20. Solidago canadensis L essential oil vapor effectively inhibits Botrytis cinerea growth and preserves postharvest quality of strawberry as a food model system

    Directory of Open Access Journals (Sweden)

    Shumin Liu

    2016-08-01

    Full Text Available This study investigated the anti-fungal properties of Solidago canadensis L essential oil (SCLEO against Botrytis cinerea in vitro, and its ability to control gray mold and maintain quality in strawberry fruits. SCLEO exhibited dose-dependent antifungal activity against B. cinerea and profoundly altered mycelial morphology, cellular ultrastructure, and membrane permeability as evaluated by scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. SCLEO vapor at 0.1 mL/L maintained higher sensory acceptance and reduced decay of fresh strawberry fruit, and also reduced gray mold in artificially inoculated fruit. SCLEO treatment did not however, stimulate phenylalanin ammonia-lyase (PAL, polyphenol oxidase (POD, or chitinase (CHI, enzymes related to disease resistance. This suggests that SCLEO reduces gray mold by direct inhibition of pathogen growth. SCLEO vapor may provide a new and effective strategy for controlling postharvest disease and maintaining quality in strawberries.

  1. Development of an arsenic trioxide vapor and arsine sampling train

    International Nuclear Information System (INIS)

    Crecelius, E.A.; Sanders, R.W.

    1980-01-01

    A sampling train was evaluated using 76 As tracer for the measurement of particulate arsenic, arsine, and arsenic trioxide vapor in air and industrial process gas streams. In this train, a demister was used to remove droplets of water and oil, and particulates were removed by a filter. Vapor arsenic trioxide was collected in an impinger solution, and arsine gas was collected on silvered quartz beads. Hydrogen sulfide gas did not reduce the arsine trapping efficiency of the silvered beads, and charcoal proved to be an effective trap for both arsine and arsenic trioxide vapor. 1 figure, 2 tables

  2. Thermally stable, transparent, pressure-sensitive adhesives from epoxidized and dihydroxyl soybean oil.

    Science.gov (United States)

    Ahn, B Kollbe; Kraft, Stefan; Wang, D; Sun, X Susan

    2011-05-09

    Thermal stability and optical transparency are important factors for flexible electronics and heat-related applications of pressure-sensitive adhesives (PSAs). However, current acryl- and rubber-based PSAs cannot attain the required thermal stability, and silicon-based PSAs are much more expensive than the alternatives. Oleo-chemicals including functionalized plant oils have great potential to replace petrochemicals. In this study, novel biobased PSAs from soybean oils were developed with excellent thermal stability and transparency as well as peel strength comparable to current PSAs. In addition, the fast curing (drying) property of newly developed biobased PSAs is essential for industrial applications. The results show that soybean oil-based PSA films and tapes have great potential to replace petro-based PSAs for a broad range of applications including flexible electronics and medical devices because of their thermal stability, transparency, chemical resistance, and potential biodegradability from triglycerides.

  3. Control of waste well casing vent gas from a thermal enhanced oil recovery operation

    International Nuclear Information System (INIS)

    Peavy, M.A.; Braun, J.E.

    1991-01-01

    This paper presents an overview of a waste gas treatment system designed to control emissions from thermally enhanced oil recovery wells. This case study discusses the need, design, installation and operations of the system. Oryx Energy Company (Oryx) operates approximately 940 wells in the Midway-Sunset (MWSS) field under casing vapor recovery systems. The emissions collected from well casing vent gas cotaining hydrocarbons and hydrogen sulfide that are collected and processed through casing vapor recovery skids. These skids are composed of condensers, compressors, and pumps that separate fluids from the waste gas stream. The non-condensible gas is then disposed of in incinerators that reduce the hydrocarbon and sulfur emissions into the atmosphere. Approximately 91,000 lbs/day of hydrocarbon and 10,116 lbs/day of sulfur dioxide are removed from the atmosphere from wells contained within these systems operated by Oryx. These hydrocarbons yield approximately 550 barrels of oil per day (BOPD). The system helps manage the pressure differential from the reservoir into each wellbore and contributes to improved ambient air quality in Kern County, California

  4. Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, M.-A.

    1990-01-01

    The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)

  5. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  6. Fermilab satellite refrigerator compressors with the oil- and moisture-removal systems

    International Nuclear Information System (INIS)

    Satti, J.A.; Andrews, R.A.

    1983-08-01

    We have designed and tested a helium purification system for the Energy Doubler and the experimental areas. A purification system is installed after each screw compressor in the satellite refrigerators. The purification system removes oil mist, oil vapor, water vapor, and particulate from the compressed helium. The units were designed with consideration of modularity and necessary redundancy (i.e., guard purification). Test results which led to the final configuration are presented, along with achieved performance of the oil removal in the operating system

  7. Effect of Al_2O_3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol

    Science.gov (United States)

    Zhelezny, Vitaly; Geller, Vladimir; Semenyuk, Yury; Nikulin, Artem; Lukianov, Nikolai; Lozovsky, Taras; Shymchuk, Mykola

    2018-03-01

    This paper presents results of an experimental study of the density, saturated vapor pressure, surface tension and viscosity of Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. Studies of the thermophysical properties of nanofluids were performed at various temperatures and concentrations of Al_2O_3 nanoparticles. The paper gives considerable attention to a turbidimetric analysis of the stability of nanofluid samples. Samples of nanofluids remained stable over the range of parameters of the experiments, ensuring the reliability of the thermophysical property data for the Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. The studies show that the addition of Al_2O_3 nanoparticles leads to an increase of the density, saturated vapor pressure and viscosity, as well as a decrease for the surface tension of isopropyl alcohol. The information reported in this paper on the various thermophysical properties for the isopropyl alcohol/Al_2O_3 nanoparticle model system is useful for the development of thermodynamically consistent models for predicting properties of nanofluids and correct modeling of the heat exchange processes.

  8. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  9. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas

    2007-04-04

    Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.

  10. Forecasting of reservoir pressures of oil and gas bearing complexes in northern part of West Siberia for safety oil and gas deposits exploration and development

    Science.gov (United States)

    Gorbunov, P. A.; Vorobyov, S. V.

    2017-10-01

    In the paper the features of reservoir pressures changes in the northern part of West Siberian oil-and gas province are described. This research is based on the results of hydrodynamic studies in prospecting and explorating wells in Yamal-Nenets Autonomous District. In the Cenomanian, Albian, Aptian and in the top of Neocomian deposits, according to the research, reservoir pressure is usually equal to hydrostatic pressure. At the bottom of the Neocomian and Jurassic deposits zones with abnormally high reservoir pressures (AHRP) are distinguished within Gydan and Yamal Peninsula and in the Nadym-Pur-Taz interfluve. Authors performed the unique zoning of the territory of the Yamal-Nenets Autonomous District according to the patterns of changes of reservoir pressures in the section of the sedimentary cover. The performed zoning and structural modeling allow authors to create a set of the initial reservoir pressures maps for the main oil and gas bearing complexes of the northern part of West Siberia. The results of the survey should improve the efficiency of exploration drilling by preventing complications and accidents during this operation in zones with abnormally high reservoir pressures. In addition, the results of the study can be used to estimate gas resources within prospective areas of Yamal-Nenets Autonomous District.

  11. Combined effects of high pressure processing and addition of soy sauce and olive oil on safety and quality characteristics of chicken breast meat.

    Science.gov (United States)

    Kruk, Zbigniew A; Kim, Hyun Joo; Kim, Yun Ji; Rutley, David L; Jung, Samooel; Lee, Soo Kee; Jo, Cheorun

    2014-02-01

    This study was conducted to evaluate the combined effect of high pressure (HP) with the addition of soy sauce and/or olive oil on the quality and safety of chicken breast meats. Samples were cut into 100 g pieces and 10% (w/w) of soy sauce (SS), 10% (w/w) of olive oil (OO), and a mixture of both 5% of soy sauce and 5% olive oil (w/w) (SO) were pressurized into meat with high pressure at 300 or 600 MPa. Cooking loss was lower in OO samples than SS samples. With increased pressure to 600 MPa, the oleic acid content of OO samples increased. The total unsaturated fatty acids were the highest in SO and OO 600 MPa samples. Lipid oxidation was retarded by addition of olive oil combined with HP. The addition of olive oil and soy sauce followed by HP decreased the amount of volatile basic nitrogen during storage and reduced the population of pathogens. Sensory evaluation indicated that the addition of olive oil enhanced the overall acceptance and willingness to buy. In conclusion, the combination of HP with the addition of soy sauce and/or olive oil is an effective technology that can improve chemical, health, sensory qualities and safety of chicken breast.

  12. Combined Effects of High Pressure Processing and Addition of Soy Sauce and Olive Oil on Safety and Quality Characteristics of Chicken Breast Meat

    Directory of Open Access Journals (Sweden)

    Zbigniew A. Kruk

    2014-02-01

    Full Text Available This study was conducted to evaluate the combined effect of high pressure (HP with the addition of soy sauce and/or olive oil on the quality and safety of chicken breast meats. Samples were cut into 100 g pieces and 10% (w/w of soy sauce (SS, 10% (w/w of olive oil (OO, and a mixture of both 5% of soy sauce and 5% olive oil (w/w (SO were pressurized into meat with high pressure at 300 or 600 MPa. Cooking loss was lower in OO samples than SS samples. With increased pressure to 600 MPa, the oleic acid content of OO samples increased. The total unsaturated fatty acids were the highest in SO and OO 600 MPa samples. Lipid oxidation was retarded by addition of olive oil combined with HP. The addition of olive oil and soy sauce followed by HP decreased the amount of volatile basic nitrogen during storage and reduced the population of pathogens. Sensory evaluation indicated that the addition of olive oil enhanced the overall acceptance and willingness to buy. In conclusion, the combination of HP with the addition of soy sauce and/or olive oil is an effective technology that can improve chemical, health, sensory qualities and safety of chicken breast.

  13. Process of extracting oil from stones and sands. [heating below cracking temperature and above boiling point of oil

    Energy Technology Data Exchange (ETDEWEB)

    Bergfeld, K

    1935-03-09

    A process of extracting oil from stones or sands bearing oils is characterized by the stones and sands being heated in a suitable furnace to a temperature below that of cracking and preferably slightly higher than the boiling-point of the oils. The oily vapors are removed from the treating chamber by means of flushing gas.

  14. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    KAUST Repository

    Scoma, Alberto

    2016-03-29

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  15. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Science.gov (United States)

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-01-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential. PMID:27020120

  16. Vaporization study on vanadium monoxide and two-phase mixture of vanadium and vanadium monoxide by mass-spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over single phase vanadium monoxide VO 1.022 (s) and the two-phase mixture of vanadium metal (β phase) and vanadium monoxide were measured by mass-spectrometric method in the temperature range of 1,803 ∼ 1,990 and 1,703 ∼ 1,884 K, respectively. The main gas species over both systems were found to be VO(g) and V(g). The vapor pressure of VO(g) over the two-phase mixture of V(s) and VO(s) was a little lower than that over single phase VO(s). The vapor pressure of V(g) over the two-phase mixture was nearly equal to that over single phase. From the vapor pressure data, the enthalpies of vaporization, the enthalpies of formation for VO(g) and V(g) and the dissociation energy of VO(g) were determined. The oxygen partial pressure was calculated as a function of temperature from the vapor pressures of VO(g) and V(g), from which the partial molar enthalpies and entropies of oxygen in both systems were obtained. (author)

  17. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

    Directory of Open Access Journals (Sweden)

    A. J. Komkoua Mbienda

    2013-01-01

    Lee and Kesler (LK, and Ambrose-Walton (AW methods for estimating vapor pressures ( are tested against experimental data for a set of volatile organic compounds (VOC. required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species. It is found that the best method for each VOC depends on its functionality.

  18. Radioactive contamination of oil produced from nuclear-broken shale

    International Nuclear Information System (INIS)

    Arnold, W.D.; Crouse, D.J.

    1970-01-01

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  19. Radioactive contamination of oil produced from nuclear-broken shale

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W D; Crouse, D J

    1970-05-15

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  20. Effect of impact angle on vaporization

    Science.gov (United States)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  1. Uranium/water vapor reactions in gaseous atmospheres

    International Nuclear Information System (INIS)

    Jackson, R.L.; Condon, J.B.; Steckel, L.M.

    1977-07-01

    Experiments have been performed to determine the effect of varying humidities, gaseous atmospheres, and temperatures on the uranium/water vapor reaction. A balance, which allowed continuous in-system weighings, was used to determine the rates of the uranium/water vapor reactions at water vapor pressures of 383, 1586, and 2853 Pa and at temperatures of 80, 100, and 150 0 C in atmospheres of hydrogen, argon, or argon/oxygen mixtures. Based on rate data, the reactions were characterized as hydriding or nonhydriding. Hydriding reactions were found to be preferred in moist hydrogen systems at the higher temperatures and the lower humidities. The presence of hydrogen in hydriding systems was found to initially inhibit the reaction, but causes an acceleration of the rate in the final stages. In general, reaction rates of hydriding systems approached the hydriding rates calculated and observed in dry hydrogen. Hydriding and nonhydriding reaction rates showed a positive correlation to temperature and water vapor pressure. Final reaction rates in moist argon/oxygen mixtures of 1.93, 4.57, and 9.08 mole percent oxygen were greater than the rates observed in moist hydrogen or argon. Final reaction rates were negatively correlated to the oxygen concentration

  2. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  3. Vapor Explosions with Subcooled Freon

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.; McUmber, L.M.

    1976-01-01

    Explosive vapor formation accompanied by destructive shock waves, can be produced when two liquids, at much different temperatures, are brought into intimate contact. A proposed analytical model states that the interface temperature upon contact between the two liquid systems, gust be greater than or equal to the spontaneous nucleation temperature of that liquid-liquid system and that the thermal boundary layer must be sufficiently developed to support a critical size cavity. For time scales greater than 10-12 sec, the interface temperature upon contact of two semi-infinite masses, with constant thermal properties, can be related to the initial liquid temperatures. The spontaneous nucleation behavior at the interface can either be heterogeneous or homogeneous in nature. In either case, the critical size cavities, which initiate the vaporization process, are produced by local density fluctuations within the cold liquid. For homogeneous conditions, the two liquids present a well-wetted system and the vapor embryos are produced entirely within the cold liquid. For heterogeneous conditions, which result from poor, or imperfect wetting, at the liquid-liquid interface, the critical sized cavities are created at the interface at somewhat lower temperatures. A sequence of experiments, using Freon-22 and water, Freon-22 and mineral oil, and Freon-12 and mineral oil have been performed to test this spontaneous nucleation premise. For Freon-22 at its normal boiling point, the interface temperature of the water must be at least 77 deg. C before the interface temperature equals or exceeds the minimum homogeneous nucleation value of 54 deg. C and 84 deg. C before the interface temperature equals 60 deg. C where the homogeneous nucleation rate becomes truly explosive. The Freon-water test demonstrated explosive interactions for water temperatures considerably lower than this value and this was attributed to the heterogeneous nucleation characteristics of that particular system

  4. Purifying mineral oils

    Energy Technology Data Exchange (ETDEWEB)

    Hood, J J

    1919-02-24

    A natural or an uncracked oil is desulfurized by vaporizing it and bringing the vapor into contact with granular alumina or ignited magnesite at a temperature below the boiling-point of sulfur. The alumina may be prepared from the trihydrate or bauxite. Sulfuretted hydrogen resulting from the dissociation of the sulfur compounds may be absorbed in oxide of iron, Weldon mud, or the like. Specifications 5,208/83, 14,405/92, 7,272/14, and 109,077 are referred to.

  5. Thermodynamic and transport properties of sodium liquid and vapor

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed

  6. Recent advances towards a lithium vapor box divertor

    Directory of Open Access Journals (Sweden)

    R.J. Goldston

    2017-08-01

    Full Text Available Fusion power plants are likely to require near complete detachment of the divertor plasma from the divertor target plates, in order to have both acceptable heat flux at the target to avoid prompt damage and also acceptable plasma temperature at the target surface, to minimize long-term erosion. However hydrogenic and impurity puffing experiments show that detached operation leads easily to x-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize low-Z gas-phase material that absorbs the plasma heat flux and so achieve detachment while avoiding these difficulties. The vapor localization has been confirmed using preliminary Navier–Stokes calculations. We use ADAS calculations of εcool, the plasma energy lost per injected lithium atom, to estimate the lithium vapor pressure, and so temperature, required for detachment, taking into account power balance. We also develop a simple model of detachment to evaluate the required upstream density, based on further taking into account dynamic pressure balance. A remarkable general result is found, not just for lithium-vapor-induced detachment, that the upstream density divided by the Greenwald-limit density scales as nup/nGW ∝ (P5/8/B3/8 Tdet1/2/(εcool+γTdet, with no explicit size scaling. Tdet is the temperature just before strong pressure loss, assumed to be ∼ ½ of the ionization potential of the dominant recycling species, and γ is the sheath heat transmission factor.

  7. EFFECT OF INJECTOR OPENING PRESSURE ON PERFORMANCE AND EMISSION OF LPG - METHYL ESTER OF MAHUA OIL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2017-11-01

    Full Text Available One of variables, which affect the performance and emission of dual fuel engine is injection pressure. Hence in the present work, effect of Injector opening pressure on the performance of the engine was studied.  A four stroke single cylinder engine was modified to work in dual fuel mode. Three injector opening pressures (180 bar, 200 bar and 220 bar were considered for the present work. Methyl ester of mahua oil was used as pilot fuel and LPG was used as primary fuel.    From the test results, it was observed that the injector opening pressure of 200 bar results in higher brake thermal efficiency. The higher injector opening pressure results in better atomization and peneatration of methyl ester of mahua oil. The exhaust emissions such as Smoke, unburnt hydro carbon and carbon monoxide of 200 bar is lower than other pressures.

  8. Feasibility study on reduction of gasoline emissions from oil depots and gasoline stations in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A field survey was conducted of oil shipment depots in Java and Bali islands owned by Indonesia's state-run oil company to study measures for reduction in greenhouse effect gas emissions. Studies were made on the grasp of the amount of the hydrocarbon vapor emitted into the air, the amount of the gasoline recovered in case of adopting the vapor emission preventive technology, equipment cost/operational cost, etc. Concretely, the following three were studied: change of the gasoline storage tank to the inner floating roof type, and prevention of evaporation loss at the time of receiving and breathing loss caused by temperature changes; replacement with the vapor recovery type loading arm to recover gasoline vapor generated at the time of shipment/filling, and installation of the vapor recovery unit to recover vapor as gasoline; vapor balance system to recover in underground tank the gasoline vapor generated at the time of filling gasoline at gas station. As a result of the study, the recovered gasoline amount was 66,393 Kl/y and the CO2 reduction amount was 14,474 t/y at oil shipment depots and approximately 650 gasoline stations in Jakarta and Surabaya. (NEDO)

  9. Delayed coking studies on Athabasca bitumen and Cold Lake heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Govindhakannan, J.; Khulbe, C. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    This poster highlighted the results of a study that quantified the delayed coking product yields of Athabasca bitumen and Cold Lake heavy oil. It also investigated the effect of operating pressure and feed rates on product yield and quality. The effect of pressure on conversion of sulphur and nitrogen was also examined. Experimental results revealed that the yield of liquid products decreases and the yields of coke and gases increase as the operating pressure increases. Sulphur and nitrogen conversions increase with increasing pressure. In this study, the yield and quality of delayed coking products were not influenced by the variation in feed rates. It was concluded that feed rate changes do not significantly affect the yield and quality of delayed coking products because the residual liquid and coke trapped in the coker drum reside there for a duration that approaches infinity, compared to much smaller average residence time for vapor-phase compounds. tabs., figs.

  10. Molecular composition of vapor in the NaF-ZrF4 system

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Sidorov, L.N.; Rykov, A.N.; Novoselova, A.V.

    1980-01-01

    The NaF-ZrF 4 system is studied. It is established that Na 2 ZrF 6 , NaZrF 5 , (NaZrF 5 ) 2 , NaZr 2 F 9 complex molecules are present in the saturated vapor alongside with pure components. Partial pressures of all vapor components are determined. The values of partial pressure and evaporation heat have been used to calculate the vapor composition above the system; T-x and P-T projections of the phase diagram of the NaF-ZrF 4 system are plotted

  11. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  12. A heated vapor cell unit for DAVLL in atomic rubidium

    OpenAIRE

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field...

  13. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  14. The importance of subsample preparation practices in the analysis of crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, K.S.; Iorio, S.M.B.M. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas], e-mail: katiapereira@petrobras.com.br; Marques, M.L.S.P. [Fundacao Gorceix, Ouro Preto, MG (Brazil)

    2011-01-15

    There have been many subsample preparation practices proposed to reduce sources of error in analyses of crude oils. Optimal subsample preparation allows keeping the degree of representativity of the final aliquot going into the laboratory analyzer. The objective of this work was to discuss some experiences in order to understand the importance of sampling practices to obtain representative subsamples of crude oils and petroleum products, and measurements with minimized uncertainty whenever possible. Specific practices, whose effectiveness was tested by experiments, are discussed in this work. The analysis of variance showed that the subsamples should not be used in vapor pressure tests unless in case of interlaboratory cross check, and have to be considered as the first test from the bottle subsample. Sometimes long periods of crude oils samples storage are necessary for a complete evaluation, but because of the effect of this storage time it was observed a trend in the reducing of acidity and sulfur content. (author)

  15. Application of molecular sieves in the fractionation of lemongrass oil from high-pressure carbon dioxide extraction

    Directory of Open Access Journals (Sweden)

    L. Paviani

    2006-06-01

    Full Text Available The aim of this work was to study the feasibility of simultaneous process of high-pressure extraction and fractionation of lemongrass essential oil using molecular sieves. For this purpose, a high-pressure laboratory-scale extraction unit coupled with a column with four different stationary phases for fractionation: ZSM5 zeolite, MCM-41 mesoporous material, alumina and silica was employed. Additionally, the effect of carbon dioxide extraction variables on the global yield and chemical composition of the essential oil was also studied in a temperature range of 293 to 313 K and a pressure range of 100 to 200 bar. The volatile organic compounds of the extracts were identified by a gas chromatograph coupled with a mass spectrometer detector (GC/MS. The results indicated that the extraction process variables and the stationary phase exerted an effect on both the extraction yield and the chemical composition of the extracts.

  16. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  17. OPTIMIZACIÓN DEL RENDIMIENTO Y CONTENIDO DE TIMOL DE ACEITE ESENCIAL DE ORÉGANO SILVESTRE OBTENIDO POR ARRASTRE CON VAPOR OPTIMIZAÇÃO DO RENDIMENTO E CONTEÚDO DE TIMOL DO ÓLEO ESSENCIAL DO ORÉGANO SELVAGEM OBTIDO POR ARRASTRE À VAPOR OPTIMIZATION OF YIELD AND THYMOL CONTENT OF WILD OREGANO ESSENTIAL OIL OBTAINED BY STEAM DISTILLATION PROCESS

    Directory of Open Access Journals (Sweden)

    OSCAR ARANGO B

    2012-12-01

    Full Text Available Se estudió el proceso de extracción por arrastre con vapor a escala de planta piloto del aceite esencial de orégano silvestre (Lippia origanoides H.B.K de la región del Alto Patía (Colombia utilizando la metodología de superficie de respuesta. Los factores estudiados fueron el tiempo de extracción (1-3 horas, la densidad del lecho (60-100 g/L y la presión de extracción (1-3 psi. Las variables de respuesta fueron el rendimiento de extracción y el contenido de timol del aceite esencial. La composición de los aceites esenciales fue determinada mediante cromatografía de gases. Con respecto al rendimiento se obtuvo que solamente la densidad del lecho presentó un efecto estadísticamente significativo (PO processo de extração do óleo essencial de orégano silvestre (Lippia origanoides H.B.K por arraste a vapor foi estudado a escala piloto na região do Alto Patía (Colômbia, utilizando a metodologia de superfície resposta. Os fatores estudados foram o tempo de extração (1-3 horas, a densidade do leito (60-100 g/L e a pressão de extração (1-3 psi. As variáveis de resposta foram: o rendimento da extração e o conteúdo de timol do óleo essencial. A composição dos óleos essenciais foi determinada mediante cromatografia de gases. Com respeito ao rendimento, foi obtido que somente a densidade do leito apresentou um efeito estatisticamente significativo (PThe extraction process by steam distillation on pilot plant of essential oil from wild oregano (Lippia origanoides H.B.K from Alto Patía region (Colombia was studied using surface response methodology. Factors studied were the extraction time (1-3 hours, the density of the bed (60-100 g/L and the extraction pressure (1-3 psi. The response variables were the extraction yield and the content of thymol in the essential oil. The composition of essential oils was determined by gas chromatography. Regarding yield only the bed density presented a statistically significant effect (P

  18. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    Science.gov (United States)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  19. Vapor pressures and standard molar enthalpies, entropies and Gibbs energies of sublimation of two hexachloro herbicides using a TG unit

    International Nuclear Information System (INIS)

    Vecchio, Stefano

    2010-01-01

    The vapor pressures above the solid hexachlorobenzene (HCB) and above both the solid and liquid 1,2,3,4,5,6-hexachlorocyclohexane (lindane) were determined in the ranges 332-450 K and 347-429 K, respectively, by measuring the mass loss rates recorded by thermogravimetry under both isothermal and nonisothermal conditions. The results obtained were compared with those taken from literature. From the temperature dependence of vapor pressure derived by the experimental thermogravimetry data the molar enthalpies of sublimation Δ cr g H m o ( ) were selected for HCB and lindane as well as the molar enthalpy of vaporization Δ l g H m o ( ) for lindane only, at the middle of the respective temperature intervals. The melting temperatures and the molar enthalpies of fusion Δ cr l H m o (T fus ) of lindane were measured by differential scanning calorimetry. Finally, the standard molar enthalpies of sublimation Δ cr g H m o (298.15 K) were obtained for both chlorinated compounds at the reference temperature of 298.15 K using the Δ cr g H m o ( ), Δ l g H m o ( ) and Δ cr l H m o (T fus ) values, as well as the heat capacity differences between gas and liquid and the heat capacity differences between gas and solid, Δ l g C p,m o and Δ cr g C p,m o , respectively, both estimated by applying a group additivity procedure. Therefore, the averages of the standard (p o = 0.1 MPa) molar enthalpies, entropies and Gibbs energies of sublimation at 298.15 K, have been derived.

  20. Auxiliary Electrodes for Chromium Vapor Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    2018-05-15

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establish a sodium activity.

  1. HIGH PRESSURE VAPOR-LIQUID EQUILIBRIA OF PALM FATTY ACIDS DISTILLATES-CARBON DIOXIDE SYSTEM

    Directory of Open Access Journals (Sweden)

    Nélio T. MACHADO

    1997-12-01

    Full Text Available Vapor-Liquid equilibria of palm fatty acids distillates/carbon dioxide system has been investigated experimentally at temperatures of 333, 353, and 373 K and pressures of 20, 23, 26, and 29 MPa using the static method. Experimental data for the quasi-binary system palm fatty acids distillates/carbon dioxide has been correlated with Redlich-Kwong-Aspen equation of state. Modeling shows good agreement with experimental data. Selectivity obtained indicates that supercritical carbon dioxide is a reasonable solvent for separating saturated (palmitic acid and unsaturated (oleic+linoleic acids fatty acids from palm fatty acids distillates in a continuous multistage countercurrent column.Foi investigado experimentalmente o equilíbrio líquido-vapor para o sistema Destilado Ácido de Óleo de Palma (PFAD/Dióxido de Carbono, nas temperaturas de 333, 353 e 373 K e pressões de 20, 23, 26 e 29 MPa, usando-se o método estático. Os dados experimentais do sistema pseudo-binário PFAD/CO2 foram correlacionados com a equação de estado de Redlich-Kwong do pacote computacional ASPEN. O modelo reproduz bem os resultados experimentais. A seletividade obtida indica que o CO2 supercrítico é um solvente razoável para a separação em coluna multi-estágio e contínua, do ácido graxo saturado (ácido palmítico daqueles insaturados (ácido oleico e ácido linoleico contidos no PFAD.

  2. Application of Ocimum basilicum Essential Oil as Vapor on Postharvest Storage of Plum Fruit cv. ‘Golden Drop’

    Directory of Open Access Journals (Sweden)

    Zahra FAKHAR

    2014-12-01

    Full Text Available Increased interest in theuse of natural compounds instead of chemicals is due to concerns about the effect of synthetic ingredients on humans’ health and over environment. Therefore, in this study essential oil from Ocimum basilicum as a natural and safe compound, was applied at three levels (100, 200 and 300 μl/l as vapor and its effects on postharvest quality and storage life of ‘Golden Drop’ plums was evaluated. After application of treatments, the fruits were stored at +1 °C and 80-85% relative humidity for 42 days. During the storage period, samplings were carried out every week and to simulate market condition, they were kept at room temperate for 24 h. Then some of the qualitative and quantitative traits, such as total soluble solids (TSS, titrable acidity (TA, TSS/TA ratio, weight loss, firmness, ascorbic acid, total antioxidants, as well as color (L*,  hue angle were measured. Results showed that the basil essential oil contributed to a better maintenance of

  3. Oxygen source-oriented control of atmospheric pressure chemical vapor deposition of VO2 for capacitive applications

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2016-06-01

    Full Text Available Vanadium dioxides of different crystalline orientation planes have successfully been fabricated by chemical vapor deposition at atmospheric pressure using propanol, ethanol and O2 gas as oxygen sources. The thick a-axis textured monoclinic vanadium dioxide obtained through propanol presented the best electrochemical response in terms of the highest specific discharge capacity of 459 mAh g-1 with a capacitance retention of 97 % after 1000 scans under constant specific current of 2 A g-1. Finally, the electrochemical impedance spectroscopy indicated that the charge transfer of Li+ through the vanadium dioxide / electrolyte interface was easier for this sample enhancing significantly its capacitance performance.

  4. Microspectroscopic imaging of solution plasma: How do its physical properties and chemical species evolve in atmospheric-pressure water vapor bubbles?

    Science.gov (United States)

    Yui, Hiroharu; Banno, Motohiro

    2018-01-01

    In this article, we review the development of scientific instruments for obtaining information on the evolution of physical properties and chemical species of solution plasma (SP). When a pulsed high voltage is applied between electrodes immersed in an aqueous solution, SP is formed in water vapor bubbles transiently generated in the solution under atmospheric pressure. To clarify how SP emerges in water vapor bubbles and is sustained in solutions, an instrument with micrometer spatial resolution and nanosecond temporal resolution is required. To meet these requirements, a microscopic system with a custom-made optical discharge cell was newly developed, where the working distance between the SP and the microscopic objective lens was minimized. A hollow electrode equipped in the discharge cell also enabled us to control the chemical composition in water vapor bubbles. To study the spatial and temporal evolutions of chemical species in micrometer and nano- to microsecond regions, a streak camera with a spectrometer and a CCD detector with a time-gated electronic device were combined with the microscope system. The developed instrument is expected to contribute to providing a new means of developing new schemes for chemical reactions and material syntheses.

  5. GPU-Based Computation of Formation Pressure for Multistage Hydraulically Fractured Horizontal Wells in Tight Oil and Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Rongwang Yin

    2018-01-01

    Full Text Available A mathematical model for multistage hydraulically fractured horizontal wells (MFHWs in tight oil and gas reservoirs was derived by considering the variations in the permeability and porosity of tight oil and gas reservoirs that depend on formation pressure and mixed fluid properties and introducing the pseudo-pressure; analytical solutions were presented using the Newman superposition principle. The CPU-GPU asynchronous computing model was designed based on the CUDA platform, and the analytic solution was decomposed into infinite summation and integral forms for parallel computation. Implementation of this algorithm on an Intel i5 4590 CPU and NVIDIA GT 730 GPU demonstrates that computation speed increased by almost 80 times, which meets the requirement for real-time calculation of the formation pressure of MFHWs.

  6. Boundary vapor contentsin an annular channel

    International Nuclear Information System (INIS)

    Remizov, O.V.; Shurkin, N.G.; Podgornyj, K.K.; Gal'chenko, Eh.F.; Bukhteev, I.S.

    1978-01-01

    The work is aimed at the experimental investigation of the worsening of the heat transfer in an annular channel. The experiments have been carried out on the annular channel 32x28x3000 mm with the even distribution of the heat flux along the length at pressures of 6.9-19.6 MPa, flow rate of 350-1000 kg/m 2 s, and specific heat fluxes from 0.18 up to 0.6 MW/m 2 . Heating is external, oneside. Water monodistillate of the following composition has been used as a coolant: pH 9; dry residue - 0.8-1.2 mg/kg, oxygen -10-15 mg/kg. It is found out that the change character of the temperature field of the heating surface of the annular channel at the regime with the worsen of heat emission depends on the ratio of regime parameters. At pressures of 6.9-13.7 MPa and flow rate of 350-500 kg/m 2 s the channel wall temperature rises monotoneously, never reaching its maximum. With pressure rise > 13.7 MPa and mass velocity > 500 kg/m 2 s the temperature of the heat emitting surface reaches its maximum, and then slowly falls. At pressures of 6.9-11.8 MPa the boundary vapor content value within the whole range of mass velocities does not depend on the specific heat flux q. At pressures higher than 13.7 MPa and mass velocities of 350-1000 kg/m 2 s the boundary vapor content depends on q. The heating of the external or internal surface of the annular channel affects the value of the boundary vapor content within the whole range of regime parameters' change under investigation

  7. Using CO2 Prophet to estimate recovery factors for carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Attanasi, Emil D.

    2017-07-17

    IntroductionThe Oil and Gas Journal’s enhanced oil recovery (EOR) survey for 2014 (Koottungal, 2014) showed that gas injection is the most frequently applied method of EOR in the United States and that carbon dioxide (CO2 ) is the most commonly used injection fluid for miscible operations. The CO2-EOR process typically follows primary and secondary (waterflood) phases of oil reservoir development. The common objective of implementing a CO2-EOR program is to produce oil that remains after the economic limit of waterflood recovery is reached. Under conditions of miscibility or multicontact miscibility, the injected CO2 partitions between the gas and liquid CO2 phases, swells the oil, and reduces the viscosity of the residual oil so that the lighter fractions of the oil vaporize and mix with the CO2 gas phase (Teletzke and others, 2005). Miscibility occurs when the reservoir pressure is at least at the minimum miscibility pressure (MMP). The MMP depends, in turn, on oil composition, impurities of the CO2 injection stream, and reservoir temperature. At pressures below the MMP, component partitioning, oil swelling, and viscosity reduction occur, but the efficiency is increasingly reduced as the pressure falls farther below the MMP. CO2-EOR processes are applied at the reservoir level, where a reservoir is defined as an underground formation containing an individual and separate pool of producible hydrocarbons that is confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field may consist of a single reservoir or multiple reservoirs that are not in communication but which may be associated with or related to a single structural or stratigraphic feature (U.S. Energy Information Administration [EIA], 2000). The purpose of modeling the CO2-EOR process is discussed along with the potential CO2-EOR predictive models. The data demands of models and the scope of the assessments require tradeoffs between reservoir

  8. Treating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R; MacIvor, W

    1869-09-01

    The treatment of hydrocarbon oils, such as coal or shale oils, paraffin oils, and petroleum, either in the crude or more or less refined state has the object of reducing the specific gravity and otherwise improving the qualities of such oils. The oil to be treated is put into any ordinary still and distilled. The vapor escaping during the distillation is passed through one or more heating vessels or chambers and exposed to the heat necessary to produce the change. The heating vessels or chambers may be made of metal, clay, or any other material adapted to endure heat, and they may be made of any desired form, or they may be constituted of a coil of metal pipes or a series of tubes such as are used for heating air for blast furnaces.

  9. Mass spectrometric study of vaporization of (U,Pu)O2 fuel simulating high burnup

    International Nuclear Information System (INIS)

    Maeda, Atsushi; Ohmichi, Toshihiko; Fukushima, Susumu; Handa, Muneo

    1985-08-01

    The vaporization behavior of (U,Pu)O 2 fuel simulatig high burnup was studied in the temperature range of 1,573 -- 2,173 K by high temperature mass spectrometry. The phases in the simulated fuel were examined by X-ray microprobe analysis. The relationship between chemical form and vaporization behavior of simulated fission product elements was discussed. Pd, Sr, Ba, Ce and actinide-bearing vapor species were observed, and it was clarified that Pd vapor originated from metallic inclusion and Sr and Ce vapors, from mixed oxide fuel matrix. The vaporization behavior of the actinide elements was somewhat similar to that of hypostoichiometric mixed oxide fuel. The behavior of Ba-bearing vapor species changed markedly over about 2,000 K. From the determination of BaO vapor pressures over simulated fuel and BaZrO 3 , it was revealed thermodynamically that the transformation of the chemical form of Ba about 2,000 K, i.e., dissolution of BaZrO 3 phase into fuel matrix, might be the reason of the observed vapor pressure change. (author)

  10. Dynamics of vapor bubbles in nitrogen tetroxide in conditions of pipeline seal failure

    International Nuclear Information System (INIS)

    Karpova, T.A.; Kolesnikov, P.M.

    1988-01-01

    A numerical study has been made of cavitation processe ocurring in liquid nitrogen tetroxide with an abrupt liquid pressure drop in a temperature range from 300 to 333 K. An influence of the initial process temperature and pressure drop on dynamics of vapor bubbles with regard for heat transfer processes and phase transition liquid-vapor has been investigated

  11. Ceramic pore channels with inducted carbon nanotubes for removing oil from water.

    Science.gov (United States)

    Chen, Xinwei; Hong, Liang; Xu, Yanfang; Ong, Zheng Wei

    2012-04-01

    Water contaminated with tiny oil emulsions is costly and difficult to treat because of the colloidal stability and deformable nature of emulsified oil. This work utilizes carbon nanotubes (CNTs) in macro/mesopore channels of ceramic membrane to remove tiny oil droplets from water. The CNTs were implanted into the porous ceramic channels by means of chemical vapor deposition. Being hydrophobic in nature and possessing an interfacial curvature at nanoscale, CNTs enabled tiny oil emulsion in submicrometer and nano scales to be entrapped while permeating through the CNTs implanted pore channels. Optimizing the growth condition of the CNTs resulted in a uniform distribution of CNT grids, which allowed the development of lipophilic layers during filtration. These lipo-layers drastically enhanced the separation performance. The filtration capability of CNT-ceramic membrane was assessed by the purification of a dilute oil-in-water (o/w) emulsion containing ca. 210 ppm mineral oil 1600 ppm emulsifier, and a trace amount of dye, a proxy polluted water source. The best CNT-tailored ceramic membrane, prepared under the optimized CNT growth condition, claimed 100% oil rejection rate and a permeation flux of 0.6 L m(-2) min(-1), driven by a pressure drop of ca. 1 bar for 3 days on the basis of UV measurement. The CNT-sustained adsorption complements the size-exclusion mechanism in removing soluble oil.

  12. Injection halos of hydrocarbons above oil-gas fields with super-high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.

    1979-09-01

    We studied the origin of injection halos of hydrocarbons above oil-gas fields with anomalously high formation pressures (AHFP). Using fields in Azerbaydzhan and Chechen-Ingushetiya as an example, we demonstrate the effect of certain factors (in particular, faults and zones of increased macro- and micro-jointing) on the morpholoy of the halos. The intensity of micro-jointing (jointing permeability, three-dimensional density of micro-jointing) is directly connected with vertical dimensions of the halos. We measured halos based on transverse profiles across the Khayan-Kort field and studied the distribution of bitumen saturation within the injection halo. Discovery of injection halos during drilling has enabled us to improve the technology of wiring deep-seated exploratory wells for oil and gas in regions with development of AHFP.

  13. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  14. Palm Oil

    Science.gov (United States)

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  15. Effects of high-pressure process on kinetics of leaching oil from soybean powder using hexane in batch systems.

    Science.gov (United States)

    Uhm, Joo Tae; Yoon, Won Byong

    2011-08-01

    Mass transfer models of leaching oil from soybean (Glycine max) flour with hexane after high-pressure process (HPP) treatment were developed. High pressure (450 MPa) was applied to the soybean flour (mean diameter of flour particle: 365 μm) for 30 min before leaching the oil components in the solvent. The ratio of solvent (volume, mL) to soybean flour (mass, g), such as 1:10 and 1:20, was employed to characterize the effect of solvent ratio on the leaching rate in the batch type of extraction process. Ultraviolet absorbance at 300 nm was used to monitor the extraction rate. Saturation solubility (C(AS)) was determined to be 21.73 kg/m³. The mass transfer coefficients (k) were determined based on the 1st- and 2nd-order kinetic models. The 2nd kinetic model showed better fit. The HPP treatment showed a higher extraction rate and yield compared to the control, while the amount of solvent did not affect the extraction rate and yield. The scanning electron microscope showed that HPP-treated soybean particles included more pores than the untreated. The pores observed in the HPP-treated soybean flours might help increase the mass transfer rate of solvent and solute in the solid matrix. High-pressure processing can help increase the extraction rate of oil from the soybean flour operated in batch systems. The conventional solid to solvent ratio (1:20) used to extract oil composition from the plant seed did not help increase the amount of oil extracted from the soybean flour. © 2011 Institute of Food Technologists®

  16. Growth of GaN layers using Ga2O vapor obtained from Ga and H2O vapor

    International Nuclear Information System (INIS)

    Sumi, Tomoaki; Taniyama, Yuuki; Takatsu, Hiroaki; Juta, Masami; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Isemura, Masashi

    2015-01-01

    In this study, we performed growth of GaN layers using Ga 2 O vapor synthesized from Ga and H 2 O vapor. In this process, we employed H 2 O vapor instead of HCl gas in hydride vapor phase epitaxy (HVPE) to synthesize Ga source gas. In the synthesis reaction of Ga 2 O, a Ga 2 O 3 whisker formed and covered Ga, which impeded the synthesis reaction of Ga 2 O. The formation of the Ga 2 O 3 whisker was suppressed in H 2 ambient at high temperatures. Then, we adopted this process to supply a group III precursor and obtained an epitaxial layer. X-ray diffraction (XRD) measurement revealed that the epitaxial layer was single-crystalline GaN. Growth rate increased linearly with Ga 2 O partial pressure and reached 104 µm/h. (author)

  17. Investigation on energetics of ex-vessel vapor explosion based on spontaneous nucleation fragmentation

    International Nuclear Information System (INIS)

    Liu, Jie; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A computer code PROVER-I is developed for propagation phase of vapor explosion. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The energetics of ex-vessel vapor explosion is investigated based on different fragmentation models. A higher pressure peak and a larger mechanical energy conversion ratio are obtained by spontaneous nucleation fragmentation. A smaller energy conversion ratio results from normal boiling fragmentation. When the delay time in thermal fragmentation model is near 0.0 ms, the pressure propagation behavior tends to be analogous with that in hydrodynamic fragmentation. If the delay time is longer, pressure attenuation occurs at the shock front. The high energy conversion ratio (>4%) is obtained in a small vapor volume fraction together with spontaneous nucleation fragmentation. These results are consistent with fuel-coolant interaction experiments with alumina melt. However, in larger vapor volume fraction conditions (α υ >0.3), the vapor explosion is weak. For corium melt, a coarse mixture with void fraction of more than 30% can be generated in the pre-mixing process because of its physical properties. In the mixture with such a high void fraction the energetic vapor explosion hardly takes place. (author)

  18. Effects of selected thermophilic microorganisms on crude oils at elevated temperatures and pressures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Lin, M.S.

    1995-07-01

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At the Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Particular attention was paid to heavy crude oils from Venezuela, California, Alabama, Arkansas, Wyoming, Alaska, and other oil producing areas. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between {open_quotes}biodegraded{close_quotes} and {open_quotes}biotreated{close_quotes} oils. Preliminary results indicate the introduced microorganisms may become the dominant species in the bioconversion of oils. These studies also indicate the biochemical interactions between crude oils and microorganisms follow distinct trends, characterized by a group of chemical markers. Core-flooding experiments have shown significant additional crude oil recoveries are achievable with thermophilic microorganisms at elevated temperatures similar to those found in oil reservoirs. In addition, the biochemical treatment of crude oils has technological applications in downstream processing of crude oils such as in upgrading of low grade oils and the production of hydrocarbon based detergents.

  19. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    Science.gov (United States)

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  20. Purifying and regenerating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1931-11-19

    Hydrocarbons are freed from sulfur-containing compounds, colloidal asphaltic bodies and unstable unsaturated substances by treatment with a small amount of dilute sulfuric acid and a salt of a trivalent cation, such as ferric chloride or sulfate. Hydrocarbons specified are petroleum, crude benzol, low temperature tars, shale oil or vapor-phase cracked spirit. Motor spirit or lubricating oil distillates are refined and finally distilled. The acid reagent may be regenerated by filtering through sand or asbestos. Used lubricating oils may be treated similarly and after removal of refining agent, the oil is heated with an adsorbent and decolorizing material and then filtered.

  1. Recommended sublimation pressure and enthalpy of benzene

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Červinka, C.

    2014-01-01

    Roč. 68, Jan (2014), s. 40-47 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : benzene * vapor pressure * heat capacity * ideal - gas thermodynamic properties * sublimation enthalpy * recommended vapor pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  2. Distilling oils

    Energy Technology Data Exchange (ETDEWEB)

    Leffer, L G

    1912-01-29

    In a process for converting heavy hydrocarbons, such as petroleum or shale oil, into light hydrocarbons by distilling under the pressure of an inert gas, the operation is conducted at a temperature not exceeding 410/sup 0/C and under an accurately regulated pressure, the gas being circulated through the still and the condenser by means of a pump. The oil in the still may be agitated by stirring vanes or by blowing the gas through it. Hydrogen, nitrogen, carbon dioxide, methane, or gases generated in the distillation may be used as pressure media; the gas is heated before its admission to the still. A pressure of from 11 to 12 atmospheres is used in treating gas oil. Specification 10,277/89 is referred to.

  3. Microstructure of vapor deposited coatings on curved substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-09-15

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness.

  4. Microstructure of vapor deposited coatings on curved substrates

    International Nuclear Information System (INIS)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G.

    2015-01-01

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness

  5. Binding Energy, Vapor Pressure and Melting Point of Semiconductor Nanoparticles

    International Nuclear Information System (INIS)

    H. H. Farrell; C. D. Van Siclen

    2007-01-01

    Current models for the cohesive energy of nanoparticles generally predict a linear dependence on the inverse particle diameter for spherical clusters, or, equivalently, on the inverse of the cube root of the number of atoms in the cluster. Although this is generally true for metals, we find that for the group IV semiconductors, C, Si and Ge, this linear dependence does not hold. Instead, using first principles, density functional theory calculations to calculate the binding energy of these materials, we find a quadratic dependence on the inverse of the particle size. Similar results have also been obtained for the metallic group IV elements Sn and Pb. This is in direct contradiction to current assumptions. Further, as a consequence of this quadratic behavior, the vapor pressure of semiconductor nanoparticles rises more slowly with decreasing size than would be expected. In addition, the melting point of these nanoparticles will experience less suppression than experienced by metal nanoparticles with comparable bulk binding energies. This non-linearity also affects sintering or Ostwald ripening behavior of these nanoparticles as well as other physical properties that depend on the nanoparticle binding energy. The reason for this variation in size dependence involves the covalent nature of the bonding in semiconductors, and even in the 'poor' metals. Therefore, it is expected that this result will hold for compound semiconductors as well as the elemental semiconductors

  6. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  7. Adsorption of radon and water vapor on commercial activated carbons

    International Nuclear Information System (INIS)

    Hassan, N.M.; Ghosh, T.K.; Hines, A.L.; Loyalka, S.K.

    1995-01-01

    Equilibrium adsorption isotherms are reported for radon and water vapor on two commercial activated carbons: coconut shell Type PCB and hardwood Type BD. The isotherms of the water vapor were measured gravimetrically at 298 K. The isotherms of radon from dry nitrogen were obtained at 293, 298, and 308 K while the data for the mixture of radon and water vapor were measured at 298 K. The concentrations of radon in the gas and solid phases were measured simultaneously, once the adsorption equilibrium and the radioactive equilibrium between the radon and its daughter products were established. The shape of the isotherms was of Type III for the radon and Type V for the water vapor, according to Brunauer's classification. The adsorption mechanism was similar for both the radon and the water vapor, being physical adsorption on the macropore surface area in the low pressure region and micropore filling near saturation pressure. The uptake capacity of radon decreased both with increasing temperature and relative humidity. The heat of adsorption data indicated that the PCB- and the BD-activated carbons provided a heterogeneous surface for radon adsorption. The equilibrium data for radon were correlated with a modified Freundlich equation

  8. High-Pressure Water-Vapor Annealing for Enhancement of a-Si:H Film Passivation of Silicon Surface

    International Nuclear Information System (INIS)

    Guo Chun-Lin; Wang Lei; Zhang Yan-Rong; Zhou Hai-Feng; Liang Feng; Yang Zhen-Hui; Yang De-Ren

    2014-01-01

    We investigate the effect of amorphous hydrogenated silicon (a-Si:H) films passivated on silicon surfaces based on high-pressure water-vapor annealing (HWA). The effective carrier lifetime of samples reaches the maximum value after 210°C, 90min HWA. Capacitance-voltage measurement reveals that the HWA not only greatly reduces the density of interface states (D it ), but also decreases the fixed charges (Q fixed ) mainly caused by bulk defects. The change of hydrogen and oxygen in the film is measured by a spectroscopic ellipsometer and a Fourier-transform infrared (FTIR) spectrometer. All these results show that HWA is a useful method to improve the passivation effect of a-Si:H films deposited on silicon surfaces

  9. Method of recovering oils, etc. , from bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1921-05-23

    In the low-temperature distillation of bituminous shales or similar bituminous materials with high ash content for recovery of oil etc., steam or inert gases are introduced from outside through gas taps arranged in a circle in the retort. By the method used steam is introduced simultaneously in levels higher and lower than the one in which the gaseous and vaporized products are removed from the shale material and in such a manner that the zone of oil formation chiefly will be between the two places mentioned where vapors or steam are introduced into the retort. The patent has one additional claim.

  10. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques

    2016-01-01

    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  11. Domestic Preparedness Program: Sarin Vapor Challenge and Corn Oil Protection Factor (PF) Testing of Commercial Air-Purifying Negative Pressure Respirators

    National Research Council Canada - National Science Library

    Campbell, Lee

    2003-01-01

    ...) corn-oil protection factor determinations of NPR systems using human subjects. Results indicate that cartridges provide adequate resistance to GB breakthrough against high-concentration challenges...

  12. Response of Aspergillus niger Inoculated on Tomatoes Exposed to Vapor Phase Mustard Essential Oil for Short or Long Periods and Sensory Evaluation of Treated Tomatoes

    Directory of Open Access Journals (Sweden)

    Ana Elena Aguilar-González

    2017-01-01

    Full Text Available The inhibitory effect of mustard essential oil (EO in vapor phase against Aspergillus niger was evaluated in vitro and in vivo (in tomatoes. Mold response in tomatoes exposed for short or long periods to selected concentrations of mustard EO was also evaluated. Furthermore, a sensory evaluation was also performed among treated tomatoes and compared with nontreated ones. Minimum inhibitory concentration (MIC for the studied EO was determined by the inverted Petri dish method. MIC for the in vitro and in vivo tests for mustard EO was of 3.08 μL/Lair. In vitro and in vivo results demonstrate the effectiveness of vapors of mustard EO against A. niger. The studied EO contains highly volatile organic compounds with strong inhibitory effects, even when applied for short periods, and can consequently be considered a good alternative to traditional synthetic antimicrobials without detriment of selected sensory attributes.

  13. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  14. Satellite refrigerator compressors with the oil and moisture removal systems

    International Nuclear Information System (INIS)

    Satti, J.A.

    1983-08-01

    There are twenty-eight compressors installed around the Main Accelerator Ring in seven locations. Drawing 9140-ME-129720 shows the piping and the components schematic for four Mycom compressor skids per building with each having an independent oil and moisture removal system. The Mycom skids each consist of an oil injected screw compressor of 750 SCFM capacity with a 350 hp motor, oil pump, oil cooler, and oil separator. Helium gas returning from the heat exchanger train is compressed from 1 atm to 20 atm in the compressor. The compressed gas is then passed through the three coalescer de-mister where oil mist is separated from the helium gas. The helium gas then flows through the charcoal adsorber and molecular sieve where any residual oil vapor and water vapor are removed. The final stage of purification is the final filter which removes any remaining particulates from the compressed helium gas. The end product of this system is compressed and purified helium gas ready to be cooled down to cryogenic temperatures

  15. The Activity and Enthalpy of Vaporization of Nicotine from Tobacco at Moderate Temperatures

    Directory of Open Access Journals (Sweden)

    St.Charles F. Kelley

    2016-01-01

    Full Text Available The vapor pressure of nicotine has been reported for unprotonated nicotine and for nicotine-water solutions. Yet no published values exist for nicotine in any commercially relevant matrix or for protonated forms (e.g., tobacco, smoke, electronic cigarette solutions, nicotine replacement products, nicotine salts. Therefore a methodology was developed to measure nicotine activity (defined as the vapor pressure from a matrix divided by the vapor pressure of pure nicotine. The headspace concentration of nicotine was measured for pure nicotine and tobacco stored at 23, 30, and 40 °C which allowed for conversion to vapor pressure and nicotine activity and for the estimation of enthalpy of vaporization. Burley, Flue-cured, Oriental, and cigarette blends were tested. Experiments were conducted with pure nicotine initially until the storage and sampling techniques were validated by comparison with previously published values. We found that the nicotine activity from tobacco was less than 1% with Burley > Flue-cured > Oriental. At 23 °C the nicotine vapor pressure averaged by tobacco type was 0.45 mPa for Oriental tobacco, 1.8 mPa for Flue-cured, 13 mPa for Burley while pure nicotine was 2.95 Pa. In general, the nicotine activity increased as the (calculated unprotonated nicotine concentration increased. The nicotine enthalpy of vaporization from tobacco ranged from 77 kJ/mol to 92 kJ/mol with no obvious trends with regard to tobacco origin, type, stalk position or even the wide range of nicotine activity. The mean value for all tobacco types was 86.7 kJ/mol with a relative standard deviation of 6.5% indicating that this was an intrinsic property of the nicotine form in tobacco rather than the specific tobacco properties. This value was about 30 kJ/mol greater than that of pure nicotine and is similar to the energy needed to remove a proton from monoprotonated nicotine.

  16. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  17. Measurement and correlation of (vapor + liquid) equilibrium data for {α-pinene + p-cymene + (S)-(−)-limonene} ternary system at atmospheric pressure

    International Nuclear Information System (INIS)

    Sun, Lixia; Liao, Dankui; Yang, Zhengyu; Chen, Xiaopeng; Tong, Zhangfa

    2013-01-01

    Highlights: ► The VLE data of (α-pinene + p-cymene) and (α-pinene + p-cymene + (S)-(−)-limonene) at atmospheric pressure were measured. ► The VLE data of binary system were correlated by four activity coefficient models. ► The ternary VLE data were predicted from binary parameters of the Liebermann–Fried model. ► The constant G 123 E counters plotted on the Roozeboom diagrams. -- Abstract: (Vapor + liquid) equilibrium (VLE) data for binary system of (α-pinene + p-cymene) and ternary system of {α-pinene + p-cymene + (S)-(−)-limonene} were measured at 100.7 kPa using the modified Ellis equilibrium still. The VLE data are thermodynamically consistent. Parameters of the binary system for the four solution models — Liebermann–Fried, Wilson, NRTL, and UNIQUAC — were calculated by referencing least squares method to minimize an objective function based on the total pressure. The ternary system data were predicted with the parameters of Liebermann–Fried model obtained from the pertinent binary systems. The predicted bubble-point temperature and the vapor composition for the ternary system were in good agreement with the experimental results. Smooth representations of the results are used to construct constant excess Gibbs free energy contours on Roozeboom diagrams

  18. The Effect of Pressure and Solvent on the Supercritical Fluid Chromatography Separation of Tocol Analogs in Palm Oil

    Directory of Open Access Journals (Sweden)

    Mei Han Ng

    2017-08-01

    Full Text Available There are six tocol analogs present in palm oil, namely α-tocopherol (α-T, α-tocomonoenol (α-T1, α-tocotrienol (α-T3, γ-tocotrienol (γ-T3, β-tocotrioenol (β-T3 and δ-tocotrienol (δ-T3. These analogs were difficult to separate chromatographically due to their similar structures, physical and chemical properties. This paper reports on the effect of pressure and injection solvent on the separation of the tocol analogs in palm oil. Supercritical CO2 modified with ethanol was used as the mobile phase. Both total elution time and resolution of the tocol analogs decreased with increased pressure. Ethanol as an injection solvent resulted in peak broadening of the analogs within the entire pressure range studied. Solvents with an eluent strength of 3.4 or less were more suitable for use as injecting solvents.

  19. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    Energy Technology Data Exchange (ETDEWEB)

    David O. Ogbe; Tao Zhu

    2004-01-01

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  20. Development of halide copper vapor laser (the characteristics of using Cul)

    International Nuclear Information System (INIS)

    Oouti, Kazumi; Wada, Yukio; Sasao, Nobuyuki

    1990-01-01

    We are developing halide copper vapor laser that is high efficiency and high reputation rate visible laser. Halide copper vapor laser uses halide copper of copper vapor source. It melts low temperature in comporison with metal copper, because laser tube structure is very simple and it can operate easy. This time, we experiment to use Cul for copper vapor source. We resulted maximum output energy 17.8 (W) and maximum efficiency 0.78 (%) when operate condition was reputation rate 30 (kHz), gas pressure 90 (Torr), charging voltage 13 (kV). (author)

  1. Using comprehensive two-dimensional gas chromatography to explore the geochemistry of the Santa Barbara oil seeps

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Christopher; Nelson, Robert

    2013-03-27

    The development of comprehensive two-dimensional gas chromatography (GC x GC) has expanded the analytical window for studying complex mixtures like oil. Compared to traditional gas chromatography, this technology separates and resolves at least an order of magnitude more compounds, has a much larger signal to noise ratio, and sorts compounds based on their chemical class; hence, providing highly refined inventories of petroleum hydrocarbons in geochemical samples that was previously unattainable. In addition to the increased resolution afforded by GC x GC, the resulting chromatograms have been used to estimate the liquid vapor pressures, aqueous solubilities, octanol-water partition coefficients, and vaporization enthalpies of petroleum hydrocarbons. With these relationships, powerful and incisive analyses of phase-transfer processes affecting petroleum hydrocarbon mixtures in the environment are available. For example, GC x GC retention data has been used to quantitatively deconvolve the effects of phase transfer processes such as water washing and evaporation. In short, the positive attributes of GC x GC-analysis have led to a methodology that has revolutionized the analysis of petroleum hydrocarbons. Overall, this research has opened numerous fields of study on the biogeochemical "genetics" (referred to as petroleomics) of petroleum samples in both subsurface and surface environments. Furthermore, these new findings have already been applied to the behavior of oil at other seeps as well, for petroleum exploration and oil spill studies.

  2. High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor

    Science.gov (United States)

    Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.

  3. Vaporization of structural materials in severe accidents

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1982-01-01

    Vaporized structural materials form the bulk of aerosol particles that can transport fission products in severe LWR accidents. As part of the Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory, a model has been developed based on a mass transport coefficient to describe the transport of materials from the surface of a molten pool. In many accident scenarios, the coefficient can be calculated from existing correlations for mass transfer by natural convection. Data from SASCHA fuel melting tests (Karlsruhe, Germany) show that the partial pressures of many of the melt components (Fe, Cr, Co, Mn, Sn) required for the model can be calculated from the vapor pressures of the pure species and Raoult's law. These calculations indicate much lower aerosol concentrations than reported in previous studies

  4. Analysis of vapor extraction data from applications in Europe

    International Nuclear Information System (INIS)

    Hiller, D.; Gudemann, H.

    1989-01-01

    This paper discusses vapor extraction, an in-situ process to remove volatile organic compounds (VOC) from soils of the vadose zone, applied in Europe since the early 1980s. In a vapor extraction well a negative differential pressure is created by a blower or similar device. The differential pressure generates a steady flow of soil gas towards the extraction well and thus provides a flushing of the soil with air undersaturated in respect to the contaminant concentration. Contaminants will evaporate into the gaseous phase both form the liquid phase and form the soil. Differential pressures applied range from 15 inches - 350 inches of water. The contaminated discharge air can be treated by activated carbon or other suitable methods. The effective radius of vapor extraction systems (VES) ranges typically form 20 feet to 150 feet underneath non-sealed - and up to 300 feet underneath sealed surfaces. Contamination from volatile organic compounds (VOC) have turned out to be widespread due to their almost ubiquitous presence in industrial processes. Specifically, VOC include halogenated hydrocarbons like TCE, PCE or TCA, aromatic hydrocarbons like benzene, toluene, xylene and volatile fuels like gasoline

  5. Vaporization of liquid Pb-Li eutectic alloy from 1000K to 1200K - A high temperature mass spectrometric study

    Science.gov (United States)

    Jain, U.; Mukherjee, A.; Dey, G. K.

    2017-09-01

    Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.

  6. Predictors of Adult E-Cigarette Users Vaporizing Cannabis Using E-Cigarettes and Vape-Pens.

    Science.gov (United States)

    Morean, Meghan E; Lipshie, Noah; Josephson, Margo; Foster, Dawn

    2017-07-03

    Given limited extant research, we assessed the use of portable, battery-powered cannabis vaporizers by adult e-cigarette users. 522 adult vapers completed an online survey. Demographics; lifetime and past-month cannabis vaporization via e-cigarettes/vape-pens; preferences for hash oil, D-9-tetrahydrocannabinol (THC) wax, or dried buds; and cannabis vaporization beliefs and motives were examined. Demographics, age of e-cigarette onset, e-cigarette use frequency, state-level legal status of cannabis, cannabis vaping beliefs/motives, and impulsivity were examined as predictors of lifetime cannabis vaporization, past-month cannabis vaporization, and cannabis vaping frequency. E-cigarette users reported lifetime (17.8%) and past-month (11.5%) cannabis vaporization. Vapers preferred hash oil (LT/PM 45.5/47.5%), THC wax (15.2/32.2%), and dried buds (39.4/35.6%). Motivations to vape cannabis included: it tastes better (39.3/37.9%), is healthier (42.9/39.7%), is easier to conceal/hide (35.7/46.6%), does not smell as strong (42.9/39.7%), is more convenient (42.9/27.6%), and produces a stronger/better high (58.1/40.7%) than smoking cannabis. Lifetime and past-month cannabis vaporization, respectively, were associated with initiating e-cigarette use at an earlier age (odds ratio (OR) = 0.09/0.88), being impulsive (OR = 2.25/3.23), having poor self-control (OR = 2.23/1.85), and vaporizing cannabis because it is easier to conceal/hide (OR = 2.45/2.48) or is more convenient than smoking cannabis (OR = 5.02/2.83). Frequency of vaping cannabis was associated with heavier e-cigarette use (η p 2 = 0.10) and impulsivity (η p 2 = 0.09). Adult e-cigarette users are vaporizing cannabis using e-cigarettes/vape-pens. Efforts to curb cannabis vaporization may benefit from targeting impulsivity in users and regulating device features that facilitate or promote convenient, inconspicuous cannabis use.

  7. THE INHIBITORY EFFECT OF ESSENTIAL OILS ON THE GROWTH OF GENUS PENICILLIUM ISOLATED FROM PEANUTS BY CONTACT VAPOR

    Directory of Open Access Journals (Sweden)

    Miroslava Císarová

    2015-02-01

    Full Text Available The aim of this study was evaluation of the antifungal activity of 5 essential oils (EOs. We used concretely thyme, clove, basil, jasmine and rosemary EOs by vapor contact against the fungal species, namely Penicillium citrinum (P1 – P2, P. crustosum (P3 – P4 and P. expansum (P5 – P6 and their ability to affect production of mycotoxins. Each fungus was inoculated in the center on Czapek Yeast Autolysate Agar (CYA dishes. Dishes were tightly sealed with parafilm and incubated for fourteen days at 25 ± 1 °C (three replicates were used for each treatment. Volatile phase effect of 50 μl of the essential oils was found to inhibit on growth of Penicillium spp.. Fungicidal and fungistatic concentracions (MFC were determined by microathmosphere method. Complete growth inhibition of the isolates by EOs of thyme and clove was observed. The most sensitive isolate was P. crustosum (P4 (P < 0.05 The essential oils (EOs of basil and rosemary had antifungal effect on growth of P. citrinum (P1 – P2 after 3 day of the incubation at concentration 100 % of EOs. The most resistant isolates were P. expansum (P5 – P6. Growth of these isolates was inhibited by thyme and clove EOs (100 %, like each other tested isolates, but with effective MFC concentration of 30 % (30/70; v/v after all days of cultivation. Data were evaluated statistically by 95.0 % Tukey HSD test. In this stud, we also tested potential effect of EOs to affect production of mycotoxins of tested Penicillium isolates which are potential toxigenic fungi. After 14 days of incubation with EOs (100 % with control sets, they were screened for a production of mycotoxins by TLC chromatography. Oils exhibited a various spectrum of fungal toxicity inhibit all tested species except the jasmine EO. The present study demonstrated the potential food preservative ability of the thyme, clove, basil, jasmine and rosemary EOs. The jasmine EO has none antifungal or anti – toxic activity.

  8. Application of GC–MS chromatography for the analysis of the oil fractions extracted by supercritical CO2 at high pressure

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Spirov, Pavel; Søgaard, Erik Gydesen

    2013-01-01

    GC–MS chromatographic analysis has been applied for the investigation of the fractions of oil extracted by supercritical carbon dioxide at a temperature of 60 °C and at pressure values ranging from 22 to 56 MPa. The observations revealed, that the whole extraction process is clearly reflected...... in the chromatograms, demonstrating how the heavier hydrocarbon fractions were gradually involved in the extraction process. The shape of the chromatograms alters with increasing pressure from triangle to trapezoid, approaching the shape of the chromatogram of the crude oil. The observation of the fingerprints...

  9. Biochemically enhanced oil recovery and oil treatment

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  10. Mutual Solubility Study in Supercritical Fluid Extraction of Tocopherols from Crude Palm Oil Using CO2 Solvent

    Directory of Open Access Journals (Sweden)

    Suhairi A. Sata

    2010-09-01

    Full Text Available In this article, the mutual solubility of tocopherols from crude palm oil was studied using carbon dioxide as a solvent at the temperatures of 80, 100 and 120 ºC. Each sample from the phase equilibrium unit contained two parts. The liquid part was analyzed by gas chromatography (GC in order to measure the tocopherol composition and, on the other hand, the vapor phase was conducted in an expansion vessel in order to measure the pressure increment during the expansion process. Two phase equilibrium data was calculated using the liquid phase composition and pressure increments during the expansion process. Results showed that the maximum solubility of tocopherols was around 2.27% at a temperature of 120 ºC and at pressure of 5.44 MPa.

  11. Halogenated methyl-phenyl ethers (anisoles) in the environment: determination of vapor pressures, aqueous solubilities, Henry's law constants, and gas/water- (Kgw), n-octanol/water- (Kow) and gas/n-octanol (Kgo) partition coefficients.

    Science.gov (United States)

    Pfeifer, O; Lohmann, U; Ballschmiter, K

    2001-11-01

    Halogenated methyl-phenyl ethers (methoxybenzenes, anisoles) are ubiquitous organics in the environment although they are not produced in industrial quantities. Modelling the fate of organic pollutants such as halogenated anisoles requires a knowledge of the fundamental physico-chemical properties of these compounds. The isomer-specific separation and detection of 60 of the 134 possible congeners allowing an environmental fingerprinting are reported in this study. The vapor pressure p0(L) of more than 60 and further physico-chemical properties of 26 available congeners are given. Vapor pressures p0(L), water solubilities S(L)W, and n-octanol/water partition coefficients Kow were determined by capillary HR-GC (High Resolution Gas Chromatography) on a non-polar phase and by RP-HPLC (Reversed Phase High Performance Liquid Chromatography) on a C18 phase with chlorobenzenes as reference standards. From these experimental data the Henry's law constants H, and the gas/water Kgw and gas/n-octanol Kgo partition coefficients were calculated. We found that vapor pressures, water solubilities, and n-octanol/water partition coefficients of the halogenated anisoles are close to those of the chlorobenzenes. A similar environmental fate of both groups can, therefore, be predicted.

  12. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  13. Renoprotective effect of virgin coconut oil in heated palm oil diet-induced hypertensive rats.

    Science.gov (United States)

    Kamisah, Yusof; Ang, Shu-Min; Othman, Faizah; Nurul-Iman, Badlishah Sham; Qodriyah, Hj Mohd Saad

    2016-10-01

    Virgin coconut oil, rich in antioxidants, was shown to attenuate hypertension. This study aimed to investigate the effects of virgin coconut oil on blood pressure and related parameters in kidneys in rats fed with 5-times-heated palm oil (5HPO). Thirty-two male Sprague-Dawley rats were divided into 4 groups. Two groups were fed 5HPO (15%) diet and the second group was also given virgin coconut oil (1.42 mL/kg, oral) daily for 16 weeks. The other 2 groups were given basal diet without (control) and with virgin coconut oil. Systolic blood pressure was measured pre- and post-treatment. After 16 weeks, the rats were sacrificed and kidneys were harvested. Dietary 5HPO increased blood pressure, renal thiobarbituric acid reactive substance (TBARS), and nitric oxide contents, but decreased heme oxygenase activity. Virgin coconut oil prevented increase in 5HPO-induced blood pressure and renal nitric oxide content as well as the decrease in renal heme oxygenase activity. The virgin coconut oil also reduced the elevation of renal TBARS induced by the heated oil. However, neither dietary 5HPO nor virgin coconut oil affected renal histomorphometry. In conclusion, virgin coconut oil has a potential to reduce the development of hypertension and renal injury induced by dietary heated oil, possibly via its antioxidant protective effects on the kidneys.

  14. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy

    2017-02-01

    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  15. Integration of thermo-vapor compressor with multiple-effect evaporator

    International Nuclear Information System (INIS)

    Sharan, Prashant; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Energy integration of thermo-vapor compressor with multiple-effect evaporator. • Proposed a new methodology for optimal placement of thermo-vapor compressor. • Extended Pinch Analysis for overall energy conservation. • Obtained simultaneous reduction in evaporator area requirement and energy consumption with optimal integration. - Abstract: Thermo-vapor compressor (TVC) is used for compressing the low-pressure vapor with the help of the high-pressure motive steam, to produce the medium pressure vapor. A substantial portion of energy may be conserved by integrating TVC with the multiple-effect evaporator (MEE). The common practice in desalination industry is to compress the vapor produced in the last effect of a MEE using TVC to reduce the overall motive steam requirement. Such integration does not necessarily guarantee energy optimality. The objective of the present work is to optimally integrate TVC with a MEE system to maximize the gain output ratio (GOR). GOR is defined as the ratio of the mass flow rate of vapor produced in MEE to the mass flow rate of the motive steam supplied to TVC. GOR is the measure of the energy efficiency of MEE system. Using the principles of Pinch Analysis and techniques of mathematical optimization, a new methodology for integration of TVC with MEE is proposed in this paper. This is the first analytical methodology to optimally integrate TVC with MEE, avoiding multiple simulations of the overall system. A Theorem is proposed to directly calculate the optimal location of TVC suction position. The proposed methodology gives the designer the freedom to design an MEE-TVC with minimum energy consumption and without carrying out the detailed simulation of the entire system. The methodology is demonstrated through the illustrative case studies for concentrating corn glucose, and freshwater production through thermal desalination. In the case of corn glucose, the optimal integration of TVC with 2-effect MEE resulted in

  16. Vaporization of niobium dioxide by mass-effusion and mass-spectrometric methods

    International Nuclear Information System (INIS)

    Kamegashira, N.; Matsui, T.; Harada, M.; Naito, K.

    1981-01-01

    The congruence of the vaporization process of NbO, NbO 2 , Nb 12 O 29 and Nb 2 O 5 in the niobium-oxygen system was investigated from the phase change of the solid residue after vaporization, and it was observed that only the NbO 2 phase vaporizes congruently. The vapor pressures over NbO 2 (s) were measured by means of a combination of mass-effusion (weight loss measurement) and mass-spectrometric methods in the temperature range 1953-2323 K. By applying the second and the third law treatments of thermodynamics to the partial pressures of the gaseous species NbO 2 (g), NbO(g) and O(g), the enthalpies of vaporization for the reactions NbO 2 (s,1)=NbO 2 (g) and NbO 2 (s,1)=NbO(g)+O(g), were calculated. From these data the enthalpies of formation and the dissociation energies of NbO 2 (g) and NbO(g) were also determined. The uncertainties included in the third law treatment were discussed, and the results calculated by the third law treatment using the most reliable data available at present were presented. (orig.)

  17. Vapor Phase Growth of High-Quality Bi-Te Compounds Using Elemental Bi and Te Sources: A Comparison Between High Vacuum and Atmospheric Pressure

    Science.gov (United States)

    Concepción, O.; Escobosa, A.; de Melo, O.

    2018-03-01

    Bismuth telluride (Bi2Te3), traditionally used in the industry as thermoelectric material, has deserved much attention recently due to its properties as a topological insulator, a kind of material that might have relevant applications in spintronics or quantum computing, among other innovative uses. The preparation of high-quality material has become a very important technological task. Here, we compare the preparation of Bi2Te3 by physical vapor transport from the evaporation of elemental Bi and Te sources, under either low pressure or atmospheric pressure. The layers were characterized by different techniques to evaluate its structural properties. As a result, it is concluded that, as a consequence of the different transport regimes, films grown at atmospheric pressure present better crystal quality.

  18. Molecular dynamics study of the vaporization of an ionic drop

    Science.gov (United States)

    Galamba, N.

    2010-09-01

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (NanCln)n=2-4. The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  19. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate

    KAUST Repository

    Imran, Ali

    2014-11-01

    Performance of a novel alumina-supported sodium carbonate catalyst was studied to produce a valuable bio-oil from catalytic flash pyrolysis of lignocellulosic biomass. Post treatment of biomass pyrolysis vapor was investigated in a catalyst fixed bed reactor at the downstream of the pyrolysis reactor. In-situ catalytic upgrading of biomass pyrolysis vapor was conducted in an entrained flow pyrolysis reactor by feeding a premixed feedstock of the catalyst and biomass. Na2CO3/gamma-Al2O3 was very effective for de-oxygenation of the pyrolysis liquid and oxygen content of the bio-oil was decreased from 47.5 wt.% to 16.4 wt.%. An organic rich bio-oil was obtained with 5.8 wt.% water content and a higher heating value of 36.1 MJ/kg. Carboxylic acids were completely removed and the bio-oil had almost a neutral pH. This bio-oil of high calorific low, low water and oxygen content may be an attractive fuel precursor. In-situ catalytic upgrading of biomass pyrolysis vapor produced a very similar quality bio-oil compared to post treatment of pyrolysis vapors, and shows the possible application of Na2CO3/gamma-Al2O3 in a commercial type reactor system such as a fluidized bed reactor. (C) 2014 Elsevier B.V. All rights reserved.

  20. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    Science.gov (United States)

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...