WorldWideScience

Sample records for oil shale waste water

  1. Rapid estimation of organic nitrogen in oil shale waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting the sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a

  2. Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976

    Energy Technology Data Exchange (ETDEWEB)

    Routson, R.C.; Bean, R.M.

    1977-12-01

    This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

  3. Method for rendering harmless sulfur dioxide-carrying gases and sulfur-carrying waste water from pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aspegren, O E.A.; Eklund, A J

    1951-03-15

    A method is described for rendering harmless sulfur dioxide-carrying gases, which are formed in processes for the manufacture of solid, liquid, or gaseous products by pyrolysis of oil shale, and thereby to extract valuable products, characterized in that the sulfur dioxide-carrying gases are washed with a solution or sludge obtained by leaching wholly or partly burned-out residues from the pyrolysis.

  4. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  5. 78 FR 64905 - Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk

    Science.gov (United States)

    2013-10-30

    ...-ZA31 Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk AGENCY: Coast Guard... availability of a proposed policy letter concerning the carriage of shale gas extraction waste water in bulk... transport shale gas extraction waste water in bulk. The policy letter also defines the information the Coast...

  6. Shale oil. II. Gases from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil shale (from Colorado) was pyrolyzed, and the gaseous products obtained were studied. The organic material present in oil shale contains carboxyl groups that lose carbon dioxide during pyrolysis before the formation of soluble bitumen. Nitrogen was evolved as ammonia in two stages and was not continuous. The first evolution was from loosely combined nitrogen structures, whereas the second was from more stable forms. No hydrocarbons were present as such in the kerogen. The gaseous products from oil-shale pyrolysis were similar to those obtained by distillation of colophony, amber, coal, and wood. This places the kerogen of the oil shale in the same series of carbonaceous substances as those from which coals are formed. Kerogen appeared to be decomposed in three steps; namely, to insoluble bitumen, to soluble bitumen, and to oil (gas evolution accompanied each step). Its low solubility and the character of its pyrolytic gas indicated that kerogen is largely a resinous residue from vegetation of the past era and may have been formed by the tranportation of coal-forming organic debris to inland salty lakes or carried to the sea by clay-laden waters. The salt water and the natural settling action precipitated the clay and organic matter in an almost homogeneous deposit. Oil shales have existed to the present time because they have not been subjected to high pressures or elevated temperatures that would have changed them to petroleum.

  7. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  8. Treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Dolbear, S H

    1921-01-04

    Oil shale is treated for the separation of the valuable organic compounds, with a view to economy in subsequent destructive distillation, by grinding to powder, mixing with water to form a pulp, adding a small quantity of an oil liquid and aerating the mixture to form a froth containing the organic compounds. If the powdered shale contains sufficient free oil, the addition of oil to the pulp may be dispensed with. In some cases an electrolyte such as sulfuric acid may be added to the pulp.

  9. Chemical aspects of shale and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Hackford, J E

    1922-01-01

    To prove that the kerogen in oil shale is a form of bitumen, several experiments were made with oil shale and a heavy asphaltic oil mixed with fuller's earth. When distilled, both the oil shale and asphalt-impregnated fuller's earth yielded paraffin oil, wax, and hydrogen sulfide (if sulfur was present). Both yielded ammonia if nitrogen was present. The organic material in each was partly isolated by extraction with pyridine and appeared to be the same. Oil shale is a marl that was saturated with oil or through which oil has passed or filtered. The insolubilities of its organic compounds are due to a slightly elevated temperature for a prolonged period and to the retaining effect exerted by the finely divided marl. The marl exerted a selective action on the oil and absorbed the asphaltum, sulfur, and nitrogen compounds from the oil. The class of oil evolved from a shale depended on the nature of the original compounds absorbed. Asphaltenes obtained from crude oil by precipitation with ethyl ether produced distillation products of water, hydrogen sulfide, ammonia, oil, wax, and a carbonaceous residue. Water was formed by decomposition of oxyasphaltenes and hydrogen sulfide by decomposition of thioasphaltenes. Ammonia was evolved during decomposition if lime was present, but if there was not sufficient free lime present, pyridine and pyrrole derivatives were redistilled as such. The oil and wax that resulted from the dry distillation were true decomposition products and equaled about 60 weight-percent of the asphaltenes. The oil and wax content of the mixture varied between 8 and 10 percent. The carbonaceous residue, which represented approximately 40 percent of the original asphaltene, was a decomposition product of the asphaltenes. Geologic comparisons of oil-shale deposits and oil-well fields were also made.

  10. Shale oil combustion

    International Nuclear Information System (INIS)

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  11. Shale oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  12. Flow dependent water quality impacts of historic coal and oil shale mining in the Almond River catchment, Scotland

    International Nuclear Information System (INIS)

    Haunch, Simon; MacDonald, Alan M.; Brown, Neil; McDermott, Christopher I.

    2013-01-01

    Highlights: • A GIS map of coal and oil shale mining in the Almond basin was constructed. • Water quality data confirms the continued detrimental impact of historic mining. • Oil shale mining is confirmed as a contributor to poor surface water quality. • Surface water flow affects mine contaminant chemistry, behaviour and transport. • River bed iron precipitate is re-suspended and transported downstream at high flow. - Abstract: The Almond River catchment in Central Scotland has experienced extensive coal mining during the last 300 years and also provides an example of enduring pollution associated with historic unconventional hydrocarbon exploitation from oil shale. Detailed spatial analysis of the catchment has identified over 300 abandoned mine and mine waste sites, comprising a significant potential source of mine related contamination. River water quality data, collected over a 15 year period from 1994 to 2008, indicates that both the coal and oil shale mining areas detrimentally impact surface water quality long after mine abandonment, due to the continued release of Fe and SO 4 2- associated with pyrite oxidation at abandoned mine sites. Once in the surface water environment Fe and SO 4 2- display significant concentration-flow dependence: Fe increases at high flows due to the re-suspension of river bed Fe precipitates (Fe(OH) 3 ); SO 4 2- concentrations decrease with higher flow as a result of dilution. Further examination of Fe and SO 4 loading at low flows indicates a close correlation of Fe and SO 4 2- with mined areas; cumulative low flow load calculations indicate that coal and oil shale mining regions contribute 0.21 and 0.31 g/s of Fe, respectively, to the main Almond tributary. Decreases in Fe loading along some river sections demonstrate the deposition and storage of Fe within the river channel. This river bed Fe is re-suspended with increased flow resulting in significant transport of Fe downstream with load values of up to 50 g/s Fe

  13. Oil shale commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    Warner, M.M.

    1981-09-01

    Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

  14. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States)

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  15. Pyritic waste from precombustion coal cleaning: Amelioration with oil shale retort waste and sewage sludge for growth of soya beans

    International Nuclear Information System (INIS)

    Lewis, B.G.; Gnanapragasam, N.; Stevens, M.L.

    1994-01-01

    Solid residue from fossil fuel mining and utilization generally present little hazard to human health. However, because of the high volumes generated, they do pose unique disposal problems in terms of land use and potential degradation of soil and water. In the specific case of wastes from precombustion coal cleaning, the materials include sulfur compounds that undergo oxidation when exposed to normal atmospheric conditions and microbial action and then produce sulfuric acid. The wastes also contain compounds of metals and nonmetals at concentrations many times those present in the original raw coal. Additionally, the residues often contain coal particles and fragments that combust spontaneously if left exposed to the air, thus contributing to the air pollution that the coal cleaning process was designed to prevent. Federal and state efforts in the United States to ameliorate the thousands of hectares covered with these wastes have focused on neutralizing the acidity with limestone and covering the material with soil. The latter procedure creates additional degraded areas, which were originally farmland or wildlife habitat. It would seem preferable to reclaim the coal refuse areas without earth moving. The authors describe here experiments with neutralization of coal waste acidity using an alkaline waste derived from the extraction of oil from oil shale to grow soya beans (Glycine max. [L]) on a mixture of wastes and sewage sludge. Yield of plant material and content of nutrients an potentially toxic elements in the vegetation and in the growth mixtures were determined; results were compared with those for plants grown on an agricultural soil, with particular focus on boron

  16. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  17. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    Science.gov (United States)

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    Science.gov (United States)

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  19. Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Wilder, Joseph; Gadhamshetty, Venkataramana; Stone, James J

    2017-01-01

    Modern drilling techniques, notably horizontal drilling and hydraulic fracturing, have enabled unconventional oil production (UOP) from the previously inaccessible Bakken Shale Formation located throughout Montana, North Dakota (ND) and the Canadian province of Saskatchewan. The majority of UOP from the Bakken shale occurs in ND, strengthening its oil industry and businesses, job market, and its gross domestic product. However, similar to UOP from other low-permeability shales, UOP from the Bakken shale can result in environmental and human health effects. For example, UOP from the ND Bakken shale generates a voluminous amount of saline wastewater including produced and flowback water that are characterized by unusual levels of total dissolved solids (350 g/L) and elevated levels of toxic and radioactive substances. Currently, 95% of the saline wastewater is piped or trucked onsite prior to disposal into Class II injection wells. Oil and gas wastewater (OGW) spills that occur during transport to injection sites can potentially result in drinking water resource contamination. This study presents a critical review of potential water resource impacts due to deterministic (freshwater withdrawals and produced water management) and probabilistic events (spills due to leaking pipelines and truck accidents) related to UOP from the Bakken shale in ND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Shaft-retort for treating waste materials, like washery waste, bituminous shale, oil-bearing sands and the like

    Energy Technology Data Exchange (ETDEWEB)

    Koppers, H

    1916-10-29

    A shaft-retort for converting waste materials, like washery waste, bituminous shale, oil-bearing sands, brown coal and non-coking mineral coal to oil and tar by supplying heat through the shaft wall formed of an iron-sheet to the material, which is forced through a feeding member perforated for the removal of gases and vapors, and moved downward in a thin layer on the shaft wall; that is characterized by the fact that the iron heating sheet is made rotatable for the purpose of equalizing overheating of itself and the material to be treated.

  1. Oil shale technology

    International Nuclear Information System (INIS)

    Lee, S.

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail

  2. Recovering oil from shale

    Energy Technology Data Exchange (ETDEWEB)

    Leahey, T; Wilson, H

    1920-11-13

    To recover oil free from inorganic impurities and water, and utilize the oil vapor and tarry matter for the production of heat, shale is heated in a retort at a temperature of not less than 120/sup 0/C. The vapors pass by a pipe into a water jacketed condenser from which the condensate and gas pass through a pipe into a chamber and then by a pipe to a setting chamber from where the light oils are decanted through a pipe into a tank. The heavy oil is siphoned through a pipe into a tank, while the gas passes through a pipe into a scrubber and then into a drier, exhauster and pipe to the flue and ports, above the fire-bars, into the retort. Air is introduced through a pipe, flue, and ports.

  3. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States); Minnick, Matthew [Colorado School of Mines, Golden, CO (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States); Murray, Kyle [Colorado School of Mines, Golden, CO (United States); Mattson, Earl [Colorado School of Mines, Golden, CO (United States)

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  4. Origin of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, W G

    1923-01-01

    The theory by Jones was questioned. Oil shales do not contain partly decomposed vegetable matter, and, where particles of vegetation are identified, they do not prove that kerogen was formed in its place. Some shales do contain free oil that can be extracted with solvents.

  5. Oil shale activities in China

    International Nuclear Information System (INIS)

    Peng, D.; Jialin, Q.

    1991-01-01

    China has abundant oil shale resources, of the Early Silurian to Neogene age, the most important being the Tertiary period. The proved oil shale reserves in Fushun amount to 3.6 billion t, in Maoming 4.1 billion t. In Fushun, oil shale is produced by open-pit mining as a byproduct of coal, in Maoming it is also mined in open pits, but without coal. In China, scale oil has been produced from oil shale for 60 years. Annual production of crude shale oil amounts to about 200 000 t. The production costs of shale oil are lower than the price of crude petroleum on the world market. China has accumulated the experience and technologies of oil shale retorting. The Fushun type retort has been elaborated, in which the latent and sensible heat of shale coke is well utilized. But the capacity of such retort is relatively small, therefore it is suitable for use in small or medium oil plants. China has a policy of steadily developing shale oil industry. China is conducting oil shale research and developing oil shale processing technology. Much attention is being pay ed to the comprehensive utilization of oil shale, shale oil, and to environmental problems. In China, oil shale is mostly used for producing shale by retorting, attention will also be paid to direct combustion for power generation. Great achievements in oil shale research have been made in the eighties, and there will be a further development in the nineties. (author), 12 refs., 3 tabs

  6. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Fan, Yunlong; Yu, Zhaosheng; Fang, Shiwen; Lin, Yan; Lin, Yousheng; Liao, Yanfen; Ma, Xiaoqian

    2016-01-01

    Highlights: • Co-combustion of oil shale with municipal solid waste created significant changes. • Blending with municipal solid wastes could improve the combustion performance. • 10–30% of oil shale in the blends could be determined as the optimum ratio range. • Activation energy were calculated by the conversion rate and different proportion. - Abstract: The aim of this study is trying to reveal the thermal characteristics and kinetics of oil shale, municipal solid waste and their blends in the combustion process which are needed for efficient utilization. The combustion experiment is carried out in a thermogravimetric simultaneous thermal analyzer, where the temperature ranged from 110 °C to 900 °C at three different heating rates as 10 °C/min, 20 °C/min and 30 °C/min. Their kinetics were studied by Ozawa–Flynn–Wall and Friedmen methods. According to the data analysis, combustion characteristic index increased progressively with the increase of the proportion of municipal solid waste. And it’s suggested that there was certain interaction in the combustion process of oil shale and municipal solid waste. The average activation energy of the blends reached the minimum value, 177.7927 kJ/mol by Ozawa–Flynn–Wall method and 167.4234 kJ/mol by Friedmen method, when the proportion of MSW was 70%.

  7. Process for treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process for treating oil shale is characterized in that the shale is first finely ground, then heated in the presence of steam in a high-pressure retort at 1 to 50 atmospheres pressure at a temperature of 200/sup 0/ to 450/sup 0/C and then with large amounts of water with or without materials forming emulsions with water or with oil. Solution medium suitable for bitumen or paraffin is beaten up in a rapid hammer mill until all or most all of the oil or bitumen is emulsified. The emulsion is separated by filter-pressing and centrifuging from the solid shale residue and the oil or bitumen is again separated from the emulsion medium by heating, acidulating, standing, or centrifuging, and then in known ways is further separated, refined, and worked up.

  8. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  9. Process for extracting oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process is described for recovering bituminous material from oil shale, characterized in that the oil shale is extracted with wood spirits oil (byproduct of woodspirit rectification), if necessary in admixture with other solvents in the cold or the hot.

  10. Production and disposal of waste materials from gas and oil extraction from the Marcellus Shale Play in Pennsylvania

    Science.gov (United States)

    Maloney, Kelly O.; Yoxtheimer, David A.

    2012-01-01

    The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some

  11. Impact of oil shale mine water discharges on phytoplankton community of Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Rull, E.; Liblik, V.

    2002-01-01

    The multivariate relationship between phytoplankton abundance and different factors both natural and generated by oil shale mining in the Purtse catchment rivers (Purtse, Kohtla, and Ojamaa) in Augusts 1996-2000 was studied. Impact of oil shale mine water discharges, causing the input of sulfates and chlorides into the rivers, on phytoplankton abundance in river water was characterized by significant negative linear correlation. The amount of annual precipitation influenced positively the characteristics of phytoplankton abundance in river water. The complex of linear regression formulas was derived for characterising phytoplankton abundance in the lower course of the Purtse River using meteorological, hydrological and hydrogeological as well as geochemical data of water circulation. Closing the Sompa, Tammiku and Kohtla mines in 2000-2001 decreased essentially anthropogenic stress on ecological condition of the Purtse catchment rivers. (author)

  12. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Hasfurther, V.

    1992-01-01

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells

  13. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Reeves, T.L.; Skinner, Q.D.; Hasfurther, V.

    1992-11-01

    The scope of the original research program and of its continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large-scale testing sufficient to describe commercial-scale embankment behavior. The large-scale testing was accomplished by constructing five lysimeters, each 7.3x3.0x3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process (Schmalfield 1975). Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin near Rifle, Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was placed in the lysimeter cells. This report discusses and summarizes results from scientific efforts conducted between October 1991 and September 1992 for Fiscal Year 1992

  14. Oil shale highlights

    International Nuclear Information System (INIS)

    1994-01-01

    The low prices of crude oil have continued to retard the commercial development of oil shale and other syn fuels. Although research funds are more difficult to find, some R and D work by industry, academia, and governmental agencies continues in the United States and in other parts of the world. Improvements in retorting technology, upgrading oil-shale feedstock, and developing high-value niche-market products from shale oil are three notable areas of research that have been prominent for the past several years. Although the future prices of conventional crude cannot be predicted, it seems evident that diminishing supplies and a burgeoning world population will force us to turn to alternate fossil fuels as well as to cleaner sources of non-fossil energy. (author)

  15. Preparation of cement from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1922-08-24

    A process for preparing cement from oil shale is described. The simultaneous recovery of shale oil by heating the oil shale formed into briquets with finely ground lime or limestone in a stream of hot gases is characterized by the fact that live steam or fine drops of water as preserving and carbonization means is introduced into the furnace, at the place, where the temperature of the briquet reaches about 500 to 600/sup 0/ C.

  16. Treatment of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H L

    1922-07-04

    To distill oil shale in lump form, it is fed as a continuous charge through an axially rotating externally heated retorting chamber, where the exposed surfaces of the lumps are gradually decomposed by destructive distillation, and light physical shocks are continuously administered to them, due to their tumbling-over motion and their contact with the ribs, to knock off the decomposing surfaces and present fresh surfaces for distillation. The vapors are withdrawn through a conduit, and the partially distilled lumps are fed through a shoot into a plurality of rotating externally heated retorts, similar in character to the first retort, from whence the vapors pass through a conduit to condensing apparatus, from which the permanent gases are withdrawn, and used for fuel in the distillation zone, while the residue is discharged into a water well. An auxiliary heating conduit, having a burner discharging into it, may be employed, while in some cases steam may be used if required. In two modifications, different arrangements of the retorts are shown, as well as means within the retorts for breaking up the lumps of shale.

  17. Process for oil shale retorting

    Science.gov (United States)

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  18. Origin of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham-Craig, E H

    1915-01-01

    Kerogen was believed to be formed by the inspissation of petroleum. During this process nitrogen and sulfur compounds were concentrated in the most inspissated or weathered products. At a certain stage, reached gradually, the organic matter became insoluble in carbon-disulfide and ceased to be a bitumen. Oil shale was formed by the power of certain clays or shales to absorb inspissated petroleum, particularly unsaturated hydrocarbons. This adsorption apparently depended on the colloid content of the argillaceous rock. This rock retained these impregnated petroleum residues long after porous sandstones in the vicinity had lost all traces of petroleum by weathering and leaching.

  19. Distillation of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, G A

    1926-03-22

    To distill oil shales, cannel coals, and other carbonaceous materials for the extraction therefrom of hydrocarbons and volatile nitrogenous compounds, hard non-condensable gases from the condensers and scrubbers are withdrawn by blowers and admixed with burnt gases, obtained through conduits from the flues of heaters, and forced downwardly through horizontal chambers, connected by vertical conduits, of the heaters and delivered into the retort beneath the grate. Passing upwardly through the charge they vaporize the volatile substances in the shale, and a suction pump removes the vapors from the top of the retort. Immediately they are produced and at substantially the same temperature as that at which they emanate, thus preventing cracking of the oil vapors and condensation of the oil at the top of the retort. The amount of burnt flue gas admixed with the hard gases is regulated by two valves until a required uniform temperature is obtained. A generator supplies producer gas to a heater at the commencement of the retorting operation for circulation through the shale charge to initially produce oil vapors. The generator is connected by a pipe to the gas conduit leading to blowers.

  20. Water Use and Management in the Bakken Shale Oil Play in North Dakota.

    Science.gov (United States)

    Horner, R M; Harto, C B; Jackson, R B; Lowry, E R; Brandt, A R; Yeskoo, T W; Murphy, D J; Clark, C E

    2016-03-15

    Oil and natural gas development in the Bakken shale play of North Dakota has grown substantially since 2008. This study provides a comprehensive overview and analysis of water quantity and management impacts from this development by (1) estimating water demand for hydraulic fracturing in the Bakken from 2008 to 2012; (2) compiling volume estimates for maintenance water, or brine dilution water; (3) calculating water intensities normalized by the amount of oil produced, or estimated ultimate recovery (EUR); (4) estimating domestic water demand associated with the large oil services population; (5) analyzing the change in wastewater volumes from 2005 to 2012; and (6) examining existing water sources used to meet demand. Water use for hydraulic fracturing in the North Dakota Bakken grew 5-fold from 770 million gallons in 2008 to 4.3 billion gallons in 2012. First-year wastewater volumes grew in parallel, from an annual average of 1,135,000 gallons per well in 2008 to 2,905,000 gallons in 2012, exceeding the mean volume of water used in hydraulic fracturing and surpassing typical 4-year wastewater totals for the Barnett, Denver, and Marcellus basins. Surprisingly, domestic water demand from the temporary oilfield services population in the region may be comparable to the regional water demand from hydraulic fracturing activities. Existing groundwater resources are inadequate to meet the demand for hydraulic fracturing, but there appear to be adequate surface water resources, provided that access is available.

  1. Desulfurization of Jordanian oil shale

    International Nuclear Information System (INIS)

    Abu-Jdayil, B. M.

    1990-01-01

    Oxy desulfurization process and caustic treatment were applied in this work to remove sulfur from Jordanian oil shale. The oxy desulfurization process has been studied in a batch process using a high pressure autoclave, with constant stirring speed, and oxygen and water were used as desulfurizing reagents. Temperature, oxygen pressure, batch time, and particle size were found to be important process variables, while solid/liquid ratio was found to have no significant effect on the desulfurization process. The response of different types of oil shale to this process varied, and the effect of the process variables on the removal of total sulfur, pyritic sulfur, organic sulfur, total carbon, and organic carbon were studied. An optimum condition for oxy desulfurization of El-Lajjun oil shale, which gave maximum sulfur removal with low loss of carbon, was determined from the results of this work. The continuous reaction model was found to be valid, and the rate of oxidation for El-Lajjun oil shale was of the first order with respect to total sulfur, organic sulfur, total carbon, and organic carbon. For pyritic sulfur oxidation, the shrinking core model was found to hold and the rate of reaction controlled by diffusion through product ash layer. An activation energy of total sulfur, organic sulfur, pyritic sulfur, total carbon, and organic carbon oxidation was calculated for the temperature range of 130 -190 degrees celsius. In caustic treatment process, aqueous sodium hydroxide at 160 degrees celsius was used to remove the sulfur from El-Lajjun oil shale. The variables tested (sodium hydroxide concentration and treatment time) were found to have a significant effect. The carbon losses in this process were less than in the oxy desulfurization process. 51 refs., 64 figs., 121 tabs. (A.M.H.)

  2. Hydrogenation of Estonian oil shale and shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N; Kopwillem, J

    1932-01-01

    Kukersite was heated in an atmosphere of hydrogen, nitrogen, or water in three series of experiments. Shale samples were heated at 370/sup 0/ to 410/sup 0/C for 2 to 3/sup 1///sub 2/ hours in the presence of 106 to 287 kg/sq cm pressure of water, nitrogen, or hydrogen. In some experiments 5 percent of iron oxide was added to the shale. The amount of kerogen liquefied by hydrogenation was not greater than the amount of liquid products obtained by ordinary distillation. On hydrogenation, kukersite absorbed 1.8 weight-percent of hydrogen. Almost no hydrogenation took place below the decomposition point of kerogen, and the lighter decomposition products were mainly hydrogenated. Hydrogenation of the shale prevented coke formation. Heating kukersite or its crude oil at temperatures of 400/sup 0/ to 410/sup 0/C under 250 kg/sq cm hydrogen pressure produced paraffinic and naphthenic oils of lower boiling points. At higher temperatures and after long-continued heating, the formation of aromatic hydrocarbons was observed.

  3. Oil shale (in memoriam)

    International Nuclear Information System (INIS)

    Strandberg, Marek

    2000-01-01

    Plans for the continued use of oil shale may lead the development of this country into an impasse. To this day no plans have been made for transition from the use of energy based on fossil fuels to that based on renewable resources. Without having any clear strategic plan politicians have been comforting both themselves and the population with promises to tackle the problem when the right time comes. Today the only enterprise whose cash flows and capital would really make it possible to reform the power industry is the firm Eesti Energia (Estonian Energy). However, its sole present shareholder - the state - prefers the sale of the firm's shares to carrying out a radical reform. At the same time, local consumers are likely to rather be willing to pay for the expensive electric energy produced from renewable resources than for that produced from fossil fuels, the price of which will also remain high due to the pollution tax. Practically it is impossible to buy a globally balanced environment for money - pollution taxes are but punitive mechanisms. The investments made into the oil-shale industry will also reinforce the cultural distance of North-East Estonia from the rest of Estonia - the uniform and prevalently Russian-speaking industrial area will be preserved as long as capital will continue to flow into the oil shale industry concentrated there. The way out would be for industries to make wider use of ecological and ecosystemic technologies and for the state to enforce ecologically balanced economic and social policies. (author)

  4. Recovering valuable shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Engler, C

    1922-09-26

    A process is described for the recovery of valuable shale oils or tars, characterized in that the oil shale is heated to about 300/sup 0/C or a temperature not exceeding this essentially and then is treated with a solvent with utilization of this heat.

  5. Water resources and shale gas/oil production in the Appalachian Basin: critical issues and evolving developments

    Science.gov (United States)

    Kappel, William M.; Williams, John H.; Szabo, Zoltan

    2013-01-01

    Unconventional natural gas and oil resources in the United States are important components of a national energy program. While the Nation seeks greater energy independence and greener sources of energy, Federal agencies with environmental responsibilities, state and local regulators and water-resource agencies, and citizens throughout areas of unconventional shale gas development have concerns about the environmental effects of high volume hydraulic fracturing (HVHF), including those in the Appalachian Basin in the northeastern United States (fig. 1). Environmental concerns posing critical challenges include the availability and use of surface water and groundwater for hydraulic fracturing; the migration of stray gas and potential effects on overlying aquifers; the potential for flowback, formation fluids, and other wastes to contaminate surface water and groundwater; and the effects from drill pads, roads, and pipeline infrastructure on land disturbance in small watersheds and headwater streams (U.S. Government Printing Office, 2012). Federal, state, regional and local agencies, along with the gas industry, are striving to use the best science and technology to develop these unconventional resources in an environmentally safe manner. Some of these concerns were addressed in U.S. Geological Survey (USGS) Fact Sheet 2009–3032 (Soeder and Kappel, 2009) about potential critical effects on water resources associated with the development of gas extraction from the Marcellus Shale of the Hamilton Group (Ver Straeten and others, 1994). Since that time, (1) the extraction process has evolved, (2) environmental awareness related to high-volume hydraulic fracturing process has increased, (3) state regulations concerning gas well drilling have been modified, and (4) the practices used by industry to obtain, transport, recover, treat, recycle, and ultimately dispose of the spent fluids and solid waste materials have evolved. This report updates and expands on Fact Sheet 2009

  6. Distilling oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, R H

    1923-04-18

    In the fractional distillation of oils from oil shale and similar materials the charge is passed continuously through a vertical retort heated externally by hot combustion gases in flues and internally by the passage of these gases through flues passing through the retort so that zones of increasing temperature are maintained. A vapor trap is provided in each zone having an exit pipe leading through a dust trap to a condenser. The bottoms of the conical vapor traps are provided with annular passages perforated to permit of steam being sprayed into the charge to form screens which prevent the vapors in different zones from mingling, and steam may also be introduced through perforations in an annular steam box. Dampers are provided to control the passage of the heating gases through the flues independently.

  7. Environmental control costs for oil shale processes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

  8. Analysis of the kerogen of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Quass, F W; Down, A L

    1939-01-01

    Comments are given on the method developed by F. W. Quass for reducing the amount of mineral matter present in certain coals and oil shales (torbanites). The method consisted of grinding oil shale with water in a porcelain ball mill in the presence of oil. The oil formed a paste with the carbonaceous material, and a greater portion of the mineral matter remained suspended in the water and was separated. Ultimate analyses of the enriched samples indicated that the percent of carbon was higher, the percent of hydrogen and oxygen was lower, and the ratio of carbon to hydrogen and carbon to oxygen increased in the enriched samples.

  9. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures

    International Nuclear Information System (INIS)

    Niu, Mengting; Wang, Sha; Han, Xiangxin; Jiang, Xiumin

    2013-01-01

    Highlights: • The whole formation process of shale oil might be divided into four stages. • Higher ash/shale mass ratio intensified the cracking and coking of shale oil. • Ash/shale ratio of 1:2 was recommended for oil shale fluidized bed retort with fine oil-shale ash as solid heat carrier. - Abstract: For exploring and optimizing the oil shale fluidized bed retort with fine oil-shale ash as a solid heat carrier, retorting experiments of oil shale and fine oil-shale ash mixtures were conducted in a lab-scale retorting reactor to investigate the effects of fine oil-shale ash on shale oil. Oil shale samples were obtained from Dachengzi Mine, China, and mixed with fine oil-shale ash in the ash/shale mass ratios of 0:1, 1:4, 1:2, 1:1, 2:1 and 4:1. The experimental retorting temperature was enhanced from room temperature to 520 °C and the average heating rate was 12 °C min −1 . It was found that, with the increase of the oil-shale ash fraction, the shale oil yield first increased and then decreased obviously, whereas the gas yield appeared conversely. Shale oil was analyzed for the elemental analysis, presenting its atomic H/C ratio of 1.78–1.87. Further, extraction and simulated distillation of shale oil were also conducted to explore the quality of shale oil. As a result, the ash/shale mixing mass ratio of 1:2 was recommended only for the consideration of increasing the yield and quality of shale oil

  10. Process of recovering shale oil

    Energy Technology Data Exchange (ETDEWEB)

    1949-01-17

    A process is disclosed for recovering oil from shale rock by means of channels cut in the shale deposit, to which heat is carried for warming the shale mass and which are separated from the fume channels formed in the shale by parts of the shale rock, characterized in that heating elements are put down in the heating channels, which occupy less cross section than these channels, and in the so-formed space between the channel wall and the heating element a filling is placed, which facilitates heat transfer between the heating element and the shale and simultaneously prevents a streaming of the oily product gasified out of the shale from working into the heating element and stopping it.

  11. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  12. Hydrologic-information needs for oil-shale development, northwestern Colorado. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, O.J. (comp.)

    1982-04-01

    The Piceance basin of northwestern Colorado contains large reserves of oil shale. Expected development of oil shale will affect the regional hydrologic systems because most oil-shale mines will require drainage; industrial requirements for water may be large; and oil-shale mines, wastes, and retorts may affect the quantity and quality of surface water and ground water. In addition, the oil-shale industry may discharge particles and gases to the atmosphere that could alter the quality of high-altitude lakes and surface-water reservoirs. Hydrologic data need to be collected in order to plan for oil-shale development and to estimate the effects of development. Test-well drilling and aquifer testing are needed to provide a better understanding of the local and regional flow system, to furnish additional data for a model that simulates mine drainage, and to explore for water supplies in aquifers of Paleozoic and Mesozoic age. Much of the ground water in the bedrock aquifers discharges through springs, and a systematic study of the springs will help to predict the effects of mine drainage on spring discharge and quality. Surface runoff, dissolved and suspended loads in streams, and the aquatic environment in streams would be highly susceptible to the disruptions in the land surface and will require additional study in order to estimate the effects of development. A water-quality assessment is proposed for the White River basin because it is a possible source of water and a region likely to be affected by development. The effects of emissions to the atmosphere from oil-shale plants require study because these emissions may affect the quality of water in lakes downwind. Spoil piles of retorted oil shale may be very large and require study to anticipate any problems caused by leaching and erosion. Processing wastes resulting from in-situ retorts and other waste materials need to be studied in greater detail. 71 refs., 30 figs., 5 tabs.

  13. Migration through soil of organic solutes in an oil-shale process water

    Science.gov (United States)

    Leenheer, J.A.; Stuber, H.A.

    1981-01-01

    The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.

  14. Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale.

    Science.gov (United States)

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2018-06-01

    Unconventional oil production in North Dakota (ND) and other states in the United States uses large amounts of water for hydraulic fracturing to stimulate oil flow. Most of the water used returns to the surface as produced water (PW) containing different constituents. Some of these contents are total dissolved solids and radionuclides. The most predominant radionuclide in PW is radium-226 (Ra-226) of which level depends on several factors including the content of certain cations. A multivariate regression model was developed to predict Ra-226 in PW from the Bakken Shale based on the levels of barium, strontium, and calcium. The simulated Ra-226 activity concentration in PW was 535 pCi/L supporting extremely limited actual data based on three PW samples from the Bakken (527, 816, and 1210 pCi/L). The simulated activity concentration was further analyzed by studying its impact in the event of a PW spill reaching a surface water body that provides drinking water, irrigation water for crops, and recreational fishing. Using food transfer factors found in the literature, the final annual effective dose rate for an adult in ND was estimated. The global average annual effective dose rate via food and drinking water is 0.30 mSv, while the predicted dose rate in this study was 0.49 mSv indicating that there is potential risk to human health in ND due to Ra-226 in PW spills. This predicted dose rate is considered the best case scenario as it is based on the simulated Ra-226 activity concentration in PW of 535 pCi/L which is close to the low end actual activity concentration of 527 pCi/L. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Oil shale utilization in Israel

    International Nuclear Information System (INIS)

    Kaiser, A.

    1993-01-01

    Geological surveys have confirmed the existence of substantial Israeli oil shale reserves. The proven reserves contain approximately 12 billion tons of available ores, and the potential is deemed to be much higher. Economic studies conducted by PAMA indicate promising potential for power generation via Israel oil shale combustion. Electric power from oil shale appears competitive with power generated from coal fired power plants located along the coast. PAMA's demonstration power plant has been in operation since the end of 1989. Based on the successful results of the first year of operation, PAMA and IEC are now engaged in the pre-project program for a 1000 MW commercial oil shale fired power plant, based on eight 120 MW units; the first unit is scheduled to begin operation in 1996

  16. BLM Colorado Oil Shale Leases

    Data.gov (United States)

    Department of the Interior — KMZ file Format –This data set contains the Oil Shale Leases for the State of Colorado, derived from Legal Land Descriptions (LLD) contained in the US Bureau of Land...

  17. Production of oil from Israeli oil shale

    International Nuclear Information System (INIS)

    Givoni, D.

    1993-01-01

    Oil shale can be utilized in two-ways: direct combustion to generate steam and power or retorting to produce oil or gas. PAMA has been developing both direct combustion and retorting processes. Its main effort is in the combustion. An oil shale fired steam boiler was erected in the Rotem industrial complex for demonstration purposes. PAMA has also been looking into two alternative retorting concepts - slow heating of coarse particles and fast heating of fine particles. The present paper provides operating data of oil shale processing in the following scheme: (a) retorting in moving bed, pilot and bench scale units, and (b) retorting in a fluidized bed, bench scale units. (author)

  18. Relation of peat to oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Linker, S

    1924-01-01

    Samples of oil shale from the Green River formation and from Elko (Nev.), Brazil, Austria, and South Africa were examined, and several varieties of shale were found. Green River oil shale represents three of the more common types plus one less common type. These were: contorted shale with a velvety appearance, thin paper shale resembling the curled-up leaves of a book, massive black shale resembling a piece of rubber, and a less common type, which showed the bedding planes very clearly. The Elko (Nev.) shale was a light buff color; the shale from Brazil resembled a piece of petrified peat. When the shales were cut very thin, their colors ranged from yellow to reddish-brown. The composition, as seen under the microscope, was of well-preserved plant material such as spores, pollen grains, fragments of cell tissues, algae, fungi, bacteria, macerated organic residue, small pieces of resin, animal fossils, and translucent bodies. Oil shale was produced from organic material that accumulated in peat bogs, marshes, or swamps in fresh or salt waters. The organic matter was decomposed by bacterial action. Certain parts of the plants decayed more readily than others. Before lithification occurred, a chemical action took place that changed the softer tissues of the plant debris into a gel. This collodial matter penetrated and surrounded the more resistant fragments and preserved them from further decay. Certain bog waters contain a high percentage of humic acids in solution or collodial suspension and produce insoluble humates when neutralized. These humates are probably the so-called kerogen bodies.

  19. Preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for disposal of radioactive waste

    International Nuclear Information System (INIS)

    1975-05-01

    Results are presented of a preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for possible disposal of radioactive waste material. The objective of this study was to make a preliminary investigation and to obtain a broad overview of the physical and economic factors which would have an effect on the suitability of the oil shale formations for possible disposal of radioactive waste material. These physical and economic factors are discussed in sections on magnitude of the oil shales, waste disposal relations with oil mining, cavities requirements, hydrological aspects, and study requirements

  20. Carbon sequestration in depleted oil shale deposits

    Science.gov (United States)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  1. Refining shale-oil distillates

    Energy Technology Data Exchange (ETDEWEB)

    Altpeter, J

    1952-03-17

    A process is described for refining distillates from shale oil, brown coal, tar, and other tar products by extraction with selective solvents, such as lower alcohols, halogen-hydrins, dichlorodiethyl ether, liquid sulfur dioxide, and so forth, as well as treating with alkali solution, characterized in that the distillate is first treated with completely or almost completely recovered phenol or cresotate solution, the oil is separated from the phenolate with solvent, for example concentrated or adjusted to a determined water content of lower alcohol, furfural, halogen-hydrin, dichlorodiethyl ether, liquid sulfur dioxide, or the like, extracted, and the raffinate separated from the extract layer, if necessary after distillation or washing out of solvent, and freeing with alkali solution from residual phenol or creosol.

  2. Plan for addressing issues relating to oil shale plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  3. Oil. The revenge of shales

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2017-01-01

    This article comments the evolutions noticed during these past years as the USA started to exploit non conventional hydrocarbons (shale gas and oil), and thus reduced their supplies from the Middle East. In reaction, OPEC members provoked a massive oil price decrease. If shale oil exploitation in the USA has slowed down for a while, it starts again: the number of platforms and production are increasing. Moreover, the profitability threshold is strongly decreasing. Argentina and China are also developing this sector, and Great-Britain and South-Africa are about to start projects. The article outlines that, even though France decided not to exploit shale gas and oil, French industries are present on this market and technology. In an interview, a representative of the French sector of non conventional hydrocarbons comments these evolutions as well as the French decision and its possible evolutions

  4. Origin of Scottish oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Conacher, H R.J.

    1916-12-01

    Oil shales contain two distinct types of organic material, one is comparable to the woody material in coal and the other consists of yellow bodies. When distilled, the latter yields the liquid product typical of oil shale, whereas the woody material produces large amounts of ammonia. The yellow bodies have been described by various investigators as fossil algae, spores, or dried-up globules of petroleum. In this study it was concluded that the yellow bodies were fragments of resins set free by the decay and oxidation of the vegetable matter with which they were originally associated.

  5. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    International Nuclear Information System (INIS)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-01-01

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm 3 , weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  6. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  7. Radioactive contamination of oil produced from nuclear-broken shale

    International Nuclear Information System (INIS)

    Arnold, W.D.; Crouse, D.J.

    1970-01-01

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  8. Radioactive contamination of oil produced from nuclear-broken shale

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W D; Crouse, D J

    1970-05-15

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  9. Effects of pollution from oil shale mining in Estonia

    International Nuclear Information System (INIS)

    Vallner, L.; Sepp, K.

    1993-01-01

    The largest commercially exploited oil shale deposit in the world is in northeast Estonia. The accumulation of solid residues by oil shale mines and processing plants has resulted in numerous dumps and ash hills, which are polluting the environment. The groundwater and streams are highly polluted by sulphates, phenols and oil products. A dump hill of radioactive wastes poses a serious threat to the Baltic Sea. Local people suffer from diseases more often than in other regions of Estonia. (author)

  10. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  12. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  13. Assessment and control of water contamination associated with shale oil extraction and processing. Progress report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.J.; Henicksman, A.V.; Fox, J.P.; O' Rourke, J.A.; Wagner, P.

    1982-04-01

    The Los Alamos National Laboratory's research on assessment and control of water contamination associated with oil shale operations is directed toward the identification of potential water contamination problems and the evaluation of alternative control strategies for controlling contaminants released into the surface and underground water systems from oil-shale-related sources. Laboratory assessment activities have focused on the mineralogy, trace element concentrations in solids, and leaching characteristics of raw and spent shales from field operations and laboratory-generated spent shales. This report details the chemical, mineralogic, and solution behavior of major, minor, and trace elements in a variety of shale materials (spent shales from Occidental retort 3E at Logan Wash, raw shale from the Colony mine, and laboratory heat-treated shales generated from Colony mine raw shale). Control technology research activities have focused on the definition of control technology requirements based on assessment activities and the laboratory evaluation of alternative control strategies for mitigation of identified problems. Based on results obtained with Logan Wash materials, it appears that the overall impact of in situ processing on groundwater quality (leaching and aquifer bridging) may be less significant than previously believed. Most elements leached from MIS spent shales are already elevated in most groundwaters. Analysis indicates that solubility controls by major cations and anions will aid in mitigating water quality impacts. The exceptions include the trace elements vanadium, lead, and selenium. With respect to in situ retort leaching, process control and multistaged counterflow leaching are evaluated as alternative control strategies for mitigation of quality impacts. The results of these analyses are presented in this report.

  14. Impact of Unconventional Shale Gas Waste Water Disposal on Surficial Streams

    Science.gov (United States)

    Cozzarelli, I.; Akob, D.; Mumford, A. C.

    2014-12-01

    The development of unconventional natural gas resources has been rapidly increasing in recent years, however, the environmental impacts and risks are not yet well understood. A single well can generate up to 5 million L of produced water (PW) consisting of a blend of the injected fluid and brine from a shale formation. With thousands of wells completed in the past decade, the scope of the challenge posed in the management of this wastewater becomes apparent. The USGS Toxic Substances Hydrology Program is studying both intentional and unintentional releases of PW and waste solids. One method for the disposal of PW is underground injection; we are assessing the potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in the Wolf Creek watershed in WV. Disposal of PW via injection begun in 2002, with over 5.5 mil. L of PW injected to date. The facility consists of the injection well, a tank farm, and two former holding ponds (remediated in early 2014) and is bordered by two small tributaries of Wolf Creek. Water and sediments were acquired from these streams in June 2014, including sites upstream, within, and downstream from the facility. We are analyzing aqueous and solid phase geochemistry, mineralogy, hydrocarbon content, microbial community composition, and potential toxicity. Field measurements indicated that conductivity downstream (416 μS/cm) was elevated in comparison to upstream (74 μS/cm) waters. Preliminary data indicated elevated Cl- (115 mg/L) and Br- (0.88 mg/L) concentrations downstream, compared to 0.88 mg/L Cl- and impacting nearby streams. In addition, total Fe concentrations downstream were 8.1 mg/L, far in excess of the 0.13 mg/L found upstream from the facility, suggesting the potential for microbial Fe cycling. We are conducting a broad suite of experiments to assess the potential for microbial metabolism of the organic components of PW, and to determine the effects of this metabolism on the

  15. Shale oil. I. Genesis of oil shales and its relation to petroleum and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil-shale kerogen originated from resinous vegetation residues of past eras, whereas well petroleum was formed from oil shales by pressure and mild heat. Petroleum migrated to its present reservoir from neighboring oil-shale deposits, leaving a residue of black bituminous shales. The high carbon dioxide content of gases present in petroleum wells originated from kerogen, as it gives off carbon dioxide gas before producing soluble oil or bitumen.

  16. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  17. Changes in baseflow patterns in water-limited shale oil and gas regions: the Eagle Ford play

    Science.gov (United States)

    Arciniega, S.; Brena-Naranjo, J. A.; Hernández-Espriú, A.; Pedrozo-Acuña, A.

    2016-12-01

    Quantifying and analyzing the contribution of groundwater from shallow aquifers to rivers as baseflow is very important for water supply and riverine ecosystem health, especially in water-limited catchments. Baseflow depends on the water available (precipitation), vegetation (land use, water use), aquifer properties and water-table depth. In this context, human activities such as groundwater abstraction for multiple purposes can alter the relationship between aquifer storage and baseflow. In this study, we analyzed observed changes in baseflow patterns of 40 catchments located across the Eagle Ford shale gas/oil play (Texas) during the period 1986-2015. The Eagle Ford sedimentary formation is actually the largest shale oil producing region in the US with large production in shale gas. Intensive unconventional resources extraction in the Eagle Ford play started in 2009 and gas/oil production increased faster than in other plays, accompanied by a rise in groundwater consumption for HF purposes. Spatial and temporal impacts on baseflow at the Eagle Ford play derived from HF were assessed by means of different patterns such as baseflow hydrograph separation, flow-duration curves, empirical storage-discharge relationships and streamflow recession curve analysis. A comparison during different periods of water use for HF activities was performed: pre-development period (1986-2000); moderate period (2001-2008); and intensive period (2009-2015). The pre-development period was considered as a baseline and catchments located inside and outside the play area were separately analyzed. The results show negative changes on baseflow patterns during the intensive HF period that were not observed during the moderate period, especially in catchments located inside the play. These changes were also characterized by a decline on mean annual baseflow volume and shorter hydrograph recession times, that led to a shift in the streamflow regime in some catchments from perennial to

  18. The Resurgence of Shale Oil

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2017-09-01

    This study addresses the resilience factors of the American production of light tight oil, in particular regarding the evolution of the financial model, and the regulatory changes with the authorisation of exports for crude oil. The paper also evaluates the development perspectives of the production on the medium and long term. US production of light tight oil (LTO, commonly known as 'shale oil') experienced a spectacular expansion between 2010 and 2014, becoming the largest source of growth in world oil production. At the start of 2015, however, the sustainability of its business model became questionable. Oil prices had collapsed and uncertainty about future US production was at its height. The sharp drop in the number of drill holes as of January 2015 raised fears of a rapid fall in US petroleum output. The LTO business model, based largely on the use of debt, reinforced this projection. Independent producers were heavily indebted, and were no longer able to invest in new wells. LTO production would therefore run out of steam. Two years later, LTO has passed its first test successfully. While output of shale gas has clearly fallen, cuts have been modest and much less than had been feared, given the falls in capital spending (CAPEX) and the number of drill holes. Productivity improvements as well as cost reductions have permitted a halving of the LTO equilibrium price. Independent producers have refocused their activities on the most productive basins and sites. The essential role played by the Permian Basin should be stressed at this point. In two years, it has become a new El dorado. Despite the fall in drill holes through to May 2016, production has continued to rise and now amounts to a quarter of American oil output. Furthermore, independents have drawn extra value from their well inventories, which include drilled, but also uncompleted wells. Lastly, the impressive number of drilled wells prior to price cuts has allowed producers to maintain their output

  19. Conversion characteristics of 10 selected oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.

    1989-08-01

    The conversion behavior of 10 oil shale from seven foreign and three domestic deposits has been studied by combining solid- and liquid-state nuclear magnetic resonance (NMR) measurements with material balance Fischer assay conversion data. The extent of aromatization of aliphatic carbons was determined. Between zero and 42% of the raw shale aliphatic carbon formed aromatic carbon during Fischer assay. For three of the shales, there was more aromatic carbon in the residue after Fisher assay than in the raw shale. Between 10 and 20% of the raw shale aliphatic carbons ended up as aliphatic carbons on the spent shale. Good correlations were found between the raw shale aliphatic carbon and carbon in the oil and between the raw shale aromatic carbon and aromatic carbon on the spent shale. Simulated distillations and molecular weight determinations were performed on the shale oils. Greater than 50% of the oil consisted of the atmospheric and vacuum gas oil boiling fractions. 14 refs., 15 figs., 1 tab.

  20. Process for desulfurizing shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Escherich, F

    1922-12-17

    A process is described for the desulfurizing of shale oil or tar, with recovery of valuable oils and hydrocarbons, characterized in that the raw material is heated in an autoclave to a pressure of 100 atmospheres or more.

  1. Chemical kinetics and oil shale process design

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  2. Oil shales and the nuclear process heat

    International Nuclear Information System (INIS)

    Scarpinella, C.A.

    1974-01-01

    Two of the primary energy sources most dited as alternatives to the traditional fossil fuels are oil shales and nuclear energy. Several proposed processes for the extraction and utilization of oil and gas from shale are given. Possible efficient ways in which nuclear heat may be used in these processes are discussed [pt

  3. Process for recovering oil from shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-20

    A process is described for recovering oil from oil-shale and the like, by the direct action of the hot gases obtained by burning the carbonized shale residue. It is immediately carried out in separate adjacent chambers, through which the feed goes from one to the other intermittently, from the upper to the lower.

  4. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.

    1978-02-01

    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  5. Environmental control technology for shale oil wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Wakamiya, W.; Bell, N.E.; Mason, M.J.; Spencer, R.R.; English, C.J.; Riley, R.G.

    1982-09-01

    This report summarizes the results of studies conducted at Pacific Northwest Laboratory from 1976 to 1982 on environmental control technology for shale oil wastewaters. Experimental studies conducted during the course of the program were focused largely on the treatment and disposal of retort water, particularly water produced by in situ retorting of oil shale. Alternative methods were evaluated for the treatment and disposal of retort water and minewater. Treatment and disposal processes evaluated for retort water include evaporation for separation of water from both inorganic and organic pollutants; steam stripping for ammonia and volatile organics removal; activated sludge and anaerobic digestion for removal of biodegradable organics and other oxidizable substances; carbon adsorption for removal of nonbiodegradable organics; chemical coagulation for removal of suspended matter and heavy metals; wet air oxidation and solvent extraction for removal of organics; and land disposal and underground injection for disposal of retort water. Methods for the treatment of minewater include chemical processing and ion exchange for fluoride and boron removal. Preliminary cost estimates are given for several retort water treatment processes.

  6. Oil shale : could Shell's experimental oil shale technology be adapted to Alberta's bitumen carbonates?

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2006-07-01

    Although Shell has been trying to develop technologies to economically extract oil from shale containing kerogen for the last 25 years, the volume of oil Shell produced from its Mahogany Research Project in Colorado has added up to less than 2500 bbls in total, and the company has recently devoted $400 million to purchase leases on carbonate reservoirs in Alberta. This article examined whether or not the technologies developed by Shell for oil shales could be used to profitably extract bitumen from carbonates. Extracting bitumen from carbonates may be easier than producing oil from shale, as the resource in carbonates is already oil, whereas the oil in oil shale is actually kerogen, which needs to be chemically cracked at extremely high temperatures. Although the technical feasibility of an in situ cracking process has been proven, work remains to be done before Shell can invest in a commercial-scale oil shale project. Challenges to oil shale production include preventing groundwater from entering target zones and keeping produced fluids out of the groundwater. However, a freeze wall test has recently been designed where chilled liquid is circulated through a closed-loop pipe system to freeze formation water, sealing off an area about the size of a football field from the surrounding strata. The energy requirements of the process that Shell is testing to produce shale oil in Colorado remain unprofitably high, as higher temperatures are necessary for thermal cracking. Shell has yet to make a decision as to what energy sources it will use to make the production process economically viable. An energy conservation group in Colorado has claimed that production of 100,000 bbls of shale oil would require the largest power plant in Colorado history. 2 figs.

  7. Prospects for the exploitation of Jordan oil shale

    International Nuclear Information System (INIS)

    Jaber, J.O; Probert, S.D.; Badr, O.

    1997-01-01

    Oil shale is the major indigenous fossil-fuel in Jordan: its predicted reserves, of about 5·10 1 0 tonnes, should be sufficient to satisfy Jordan's energy requirements for several centuries. Jordanian oil shale has, on an average, a gross calorific value of between 5 and 7 MJ/kg, an oil yield of ∼ 10 %, and a sulfur content of approximately 3 % by weight of the raw shale (i.e. 7 to 9 % of the organic matter content). Using the oil shale as the input fuel, a multipurpose production process (i.e. retorting, electricity generation, thermal water-desalination, chemicals production as well as mineral extraction) could achieve high utilisation-factors of both its chemical and energy potentials. In the long-term, oil shale is the only indigenous energy resource that could reduce Jordan's dependence on imported crude oil and hence ease the pressure on the national economy. The conversion of oil shale into a liquid or gaseous fuel and raw materials will be of decisive importance in attempts to secure the future of energy supplies. So national efforts devoted to the exploration for, and harnessing more economically, this energy resource, while limiting the associated adverse environmental impacts, should be accelerated. (author)

  8. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  9. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    (March, 2012); Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development (May, 2012); Development of CFD-Based Simulation Tools for In Situ Thermal Processing of Oil Shale/Sands (February, 2012); Core-Based Integrated Sedimentologic, Stratigraphic, and Geochemical Analysis of the Oil Shale Bearing Green River Formation, Uinta Basin, Utah (April, 2011); Atomistic Modeling of Oil Shale Kerogens and Asphaltenes Along with their Interactions with the Inorganic Mineral Matrix (April, 2011); Pore Scale Analysis of Oil Shale/Sands Pyrolysis (March, 2011); Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies (January, 2011); Policy Analysis of Produced Water Issues Associated with In-Situ Thermal Technologies (January, 2011); and Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development (March, 2010)

  10. Method of recovering hydrocarbons from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.K.; Slusser, M.S.

    1970-11-24

    A method is described for recovering hydrocarbons from an oil-shale formation by in situ retorting. A well penetrating the formation is heated and gas is injected until a pressure buildup within the well is reached, due to a decrease in the conductivity of naturally occurring fissures within the formation. The well is then vented, in order to produce spalling of the walls. This results in the formation of an enlarged cavity containing rubberized oil shale. A hot gas then is passed through the rubberized oil shale in order to retort hydrocarbons and these hydrocarbons are recovered from the well. (11 claims)

  11. Shale: an overlooked option for US nuclear waste disposal

    Science.gov (United States)

    Neuzil, Christopher E.

    2014-01-01

    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  12. Rapid estimation of organic nitrogen in oil shale wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Harris, G.J.; Daughton, C.G.

    1984-03-01

    Many of the characteristics of oil shale process wastewaters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogen heterocycles and aromatic amines. For the frequent performance assessment of waste treatment procsses designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential.

  13. Shale gas: the water myth

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, Kerry [Dillon Consulting Limited (Canada)

    2010-07-01

    In recent years, due to the depletion of traditional fossil fuel resources and the rising price of energy, production from unconventional gas activities has increased. Large shale gas plays are available in Quebec but environmental concerns, mainly in terms of water resources, have been raised. The aim of this paper is to provide information on the impact of shale gas exploitation on water resources. It is shown herein that shale gas water use is not significant, the water use of 250 wells represents only 0.3% of the Quebec pulp and paper industry's water use, or 0.0004% of the flow of the St Lawrence. It is also shown that the environmental risk associated with fracking and drilling activities is low. This paper demonstrated that as long as industry practices conform to a well-designed regulatory framework, shale gas development in Quebec will have a low impact on water resources and the environment.

  14. Triterpene alcohol isolation from oil shale.

    Science.gov (United States)

    Albrecht, P; Ourisson, G

    1969-03-14

    Isoarborinol, an intact pentacyclic unsaturated alcohol, was isolated from the Messel oil shale (about 50 x 106 years old). Complex organic substances, even those very sensitive to oxidation, reduction, or acidic conditions, can thus survive without alteration for long periods.

  15. Chemical process for improved oil recovery from Bakken shale

    Energy Technology Data Exchange (ETDEWEB)

    Shuler, Patrick; Tang, Hongxin; Lu, Zayne [ChemEOR Inc (United States); Tang, Youngchun [Power Environmental Energy Research Institute (United States)

    2011-07-01

    This paper presents the new chemically-improved oil recovery process (IOR) process for Bakken formation reservoirs. A custom surfactant agent can be used in standard hydraulic fracturing treatments in the Bakken to increase oil recovery. The rock formation consists of three members: the lower shale, middle dolostone and the upper shale. The dolostone was deposited as a coastal carbonate during shallower water and the shales were deposited in a relatively deep marine condition. With the widespread advent of horizontal well drilling and large-volume hydraulic fracturing treatments, production from the Bakken has become very active. The experimental results exhibited that specialized surfactant formulations will interact with this mixed oil-wet low permeability middle member to produce more oil. It was also observed that oil recovery by spontaneous imbibition was fast and significant. The best surfactant found in this study is compatible with a common fracture fluid system.

  16. Preparation of hydraulic cement from oil-shale

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for the preparation of hydraulic cement from oil-shale or oil-shale residue is characterized in that, the oil-shale or shale-coke together with a slight amount of marl is burned under sintering conditions and the residue obtained is ground to a fine dust.

  17. Method of treating oil-bearing shale

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, N H

    1926-04-14

    The process is given for treating shale or other oil-bearing mineral which consists of the application of dry heat to render the oil soluble and subjects the product of the heat treatment to an operation to extract the soluble oils.

  18. Quantitative effects of the shale oil revolution

    International Nuclear Information System (INIS)

    Belu Mănescu, Cristiana; Nuño, Galo

    2015-01-01

    The aim of this paper is to analyze the impact of the so-called “shale oil revolution” on oil prices and economic growth. We employ a general equilibrium model of the world oil market in which Saudi Arabia is the dominant firm, with the rest of the producers as a competitive fringe. Our results suggest that most of the expected increase in US oil supply due to the shale oil revolution has already been incorporated into prices and that it will produce an additional increase of 0.2% in the GDP of oil importers in the period 2010–2018. We also employ the model to analyze the collapse in oil prices in the second half of 2014 and conclude that it was mainly due to positive unanticipated supply shocks. - Highlights: • We analyze the impact of the “shale oil revolution” on oil prices and economic growth. • We employ a general equilibrium model of the oil market in which Saudi Arabia is the dominant firm. • We find that most of the shale oil revolution is already priced in. • We also analyze the decline in oil prices in the second half of 2014. • We find that unanticipated supply shocks played the major role in the fall.

  19. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  20. Oil shale mines and their realizable production

    International Nuclear Information System (INIS)

    Habicht, K.

    1994-01-01

    The production of Estonian oil shale depends on its marketing opportunities. The realizable production is a function of the oil shale price, which in turn depends on production costs. The latter are dependent on which mines are producing oil shale and on the volume of production. The purpose of the present article is to analyze which mines should operate under various realizable production scenarios and what should be their annual output so that the total cost of oil shale production (including maintenance at idle mines) is minimized. This paper is also targeted at observing the change in the average production cost per ton of oil shale depending on the realizable output. The calculations are based on data for the first four months of 1993, as collected by N. Barabaner (Estonian Academy of Sciences, Institute of Economy). The data include the total production volume and production cost from the mines of RE 'Eesti Polevkivi' (State Enterprise 'Estonian Oil Shale'). They also project expenses from mine closings in case of conservation. The latter costs were allocated among mines in direct proportion to their respective number of employees. (author)

  1. Senate hearings whet interest in oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Remirez, R

    1967-06-05

    Recent oil shale hearings by the U.S. Senate disclosed the proposed leasing rules for federal oil-shale lands. In addition, Oil Shale Corp. announced that the first commercial shale-oil processing plant would be on stream in 1970. Both these announcements are expected to create a stronger interest in what is possibly the greatest untapped natural wealth in the U.S. According to the leasing rules, development leases would involve the following phases: (1) the contractor would have a 10-yr limit to conduct a research and development program on the leased territory; and (2) upon completion of a successful research program, the Interior Department will make available to lease at least enough land to sustain commercial operation. The terms that applicants will have to meet are included in this report. At the Senate hearing, discussions ranged from opinions indicating that development of oil shale recovery was not immediately necessary to opinions urging rapid development. This report is concluded with a state-of-the-art review of some of the oil shale recovery processes.

  2. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  3. Water Pollution, and Treatments Part III: Biodegradation of Oil in Refineries Waste Water and Oils Adsorbed in Agricultural Wastes by Selected Strains of Cyanobacteria

    International Nuclear Information System (INIS)

    El-Emary, M.M.; Ali, N.A.; Naguib, M.M.

    2011-01-01

    The main objective of this study is to determine the biological degradation of oil hydrocarbons and sulfur compounds of Marine Balayim crude oil and its refined products by selected indigenous Cyanobacteria strains. The oils used were Marine Balayim crude oil, skimmed oil and some refined products such as gasoline, kerosene, gas oil, fuel oil and petroleum coke. The selected organisms in the current study are the Blue-Green Algae Cyanobacteria, Oscillatoria limentica. This organism was collected from the hyper saline environment of the solar lake in Taba, Sinai, Egypt. The results obtained revealed that the utilization of such strains can be used for the bioremediation of oily waste water.

  4. Scoping of fusion-driven retorting of oil shale

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1979-11-01

    In the time frame beyond 2005, fusion reactors are likely to make their first appearance when the oil shale industry will probably be operating with 20% of the production derived from surface retorts operating on deep mined shale from in situ retorts and 80% from shale retorted within these in situ retorts using relatively fine shale uniformly rubblized by expensive mining methods. A process was developed where fusion reactors supply a 600 0 C mixture of nitrogen, carbon dioxide, and water vapor to both surface and in situ retorts. The in situ production is accomplished by inert gas retorting, without oxygen, avoiding the burning of oil released from the larger shale particles produced in a simpler mining method. These fusion reactor-heated gases retort the oil from four 50x50x200m in-situ rubble beds at high rate of 40m/d and high yield (i.e., 95% F.A.), which provided high return on investment around 20% for the syncrude selling at $20/bbl, or 30% if sold as $30/bbl for heating oil. The bed of 600 0 C retorted shale, or char, left behind was then burned by the admission of ambient air in order to recover all of the possible energy from the shale resource. The hot combustion gases, mostly nitrogen, carbon dioxide and water vapor are then heat-exchanged with fusion reactor blanket coolant flow to be sequentially introduced into the next rubble bed ready for retorting. The advantages of this fusion-driven retorting process concept are a cheaper mining method, high yield and higher production rate system, processing with shale grades down to 50 l/mg (12 gpt), improved resource recovery by complete char utilization and low energy losses by leaving behind a cold, spent bed

  5. Wet separation processes as method to separate limestone and oil shale

    Science.gov (United States)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  6. Naval Petroleum and Oil Shale Reserves

    International Nuclear Information System (INIS)

    1992-01-01

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming

  7. Shale gas development impacts on surface water quality in Pennsylvania

    Science.gov (United States)

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  8. Malignant human cell transformation of Marcellus shale gas drilling flow back water

    OpenAIRE

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation is known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these waste waters, flow back water from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of t...

  9. Gasification of oil shale by solar energy

    International Nuclear Information System (INIS)

    Ingel, Gil

    1992-04-01

    Gasification of oil shales followed by catalytic reforming can yield synthetic gas, which is easily transportable and may be used as a heat source or for producing liquid fuels. The aim of the present work was to study the gasification of oil shales by solar radiation, as a mean of combining these two energy resources. Such a combination results in maximizing the extractable fuel from the shale, as well as enabling us to store solar energy in a chemical bond. In this research special attention was focused upon the question of the possible enhancement of the gasification by direct solar irradiation of the solid carbonaceous feed stock. The oil shale served here as a model feedstock foe other resources such as coal, heavy fuels or biomass all of which can be gasified in the same manner. The experiments were performed at the Weizman institute's solar central receiver, using solar concentrated flux as an energy source for the gasification. The original contributions of this work are : 1) Experimental evidence is presented that concentrated sunlight can be used effectively to carry out highly endothermic chemical reactions in solid particles, which in turn forms an essential element in the open-loop solar chemical heat pipe; 2) The solar-driven gasification of oil shales can be executed with good conversion efficiencies, as well as high synthesis gas yields; 3)There was found substantial increase in deliverable energy compared to the conventional retorting of oil shales, and considerable reduction in the resulting spent shale. 5) A detailed computer model that incorporates all the principal optical and thermal components of the solar concentrator and the chemical reactor has been developed and compared favorably against experimental data. (author)

  10. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  11. Maceral and geochemical characteristics of oil shale 2 from the Huangxian Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhuang; Lin, Mingyue; Li, Haimei; Zhang, Hongjian; Li, Shifeng; Jin, Kankun [Hebei Architectural Science and Technology Inst., Handan, Hebei (China)

    2001-07-01

    Five samples of Oil Shale 2 from the Huangxian Basin have been analysed by coal petrographic and geochemical methods in order to study its formation environment. Higher alginite ratios and hopanes in Oil Shale 2 indicate a lower plants and anoxic environment. Two ternary diagrams of 'facies diagnostic' macerals and biomarkers were used to interpret the depositional environments of organic matter in Oil Shale 2. In both diagrams, Oil Shale 2 plots in a lower plant zone, and was deposited in a deeper water environment. (Author)

  12. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  13. Process of preparing artificial stone from oil-shale

    Energy Technology Data Exchange (ETDEWEB)

    1921-02-10

    A process for the preparation of artificial stone from oil-shale slag is characterized by the fact that the coarse part of the ground slag before working into artificial stone is saturated with water and serves as filler, while the fine part is milled to dust and forms the binding material.

  14. Preparing hydraulic cement from oil-shale slag

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-19

    A process for the preparation of hydraulic cementing material from oil shale or oil-shale slag according to Patent 411,584 is characterized by the fact that the oil-shale slag is added to burnt marl, blast-furnace slag, and the like, whereupon the mixture is milled to dust in the known way.

  15. Water Pollution and Treatments Part II: Utilization of Agricultural Wastes to Remove Petroleum Oils From Refineries Pollutants Present in Waste Water

    International Nuclear Information System (INIS)

    Ali, N.A.; El-Emary, M.M.

    2011-01-01

    Several natural agricultural wastes, of lignocellulose nature, such as Nile flower plant (ward El-Nil), milled green leaves, sugar cane wastes, palm tree leaves (carina), milled cotton stems, milled linseed stems, fine sawdust, coarse sawdust and palm tree cover were dried and then crushed to suitable size to be evaluated and utilized as adsorbents to remove oils floating or suspended in the waste water effluents from refineries and petroleum installations. The parameters investigated include effect of adsorbent type (adsorptive efficiency), adsorbate (type and concentration), mixing time, salinity of the water, adsorbent ratio to treated water, temperature, ph and stirring. Two different Egyptian crude oils varying in their properties and several refined products such as gasoline, kerosene, gas oil, diesel oil, fuel oil and lubricating oil were employed in this work in addition to the skimmed oil from the skim basin separator. Most of the agricultural wastes proved to be very effective in adsorbing oils from waste water effluents.

  16. Decontamination of water polluted with oil through the use of tanned solid wastes

    International Nuclear Information System (INIS)

    Gammoun, A.; Azzi, M.

    2007-01-01

    The ability of chrome shavings (CS) and buffing dusts of crust leather (BDCL) to remove oily wastes from demineralized water and natural seawater was investigated. The aim of the study was to discover environmentally friendly alternatives for the disposal of solid tannery wastes. The specific surface area of the CS and the BDCL were examined to determine ash content; chromium oxide; fat; and the pH of soluble matter. Scanning electron microscopy (SEM) was then used to examine the structure and morphology of the samples. Three types of oil were used in the experiment: diesel motor oil; premium motor oil; and used motor oil. Sorbent materials were added to a beaker containing 1000 ml of water and 5.5 g of oil. The amount of residual oil in the water was then extracted with petroleum ether. The amount of oil sorbed on the wastes was calculated by subtracting the amount of residual oil in water from the initial mass of oil added to the beakers. Results suggested that the tanned solid wastes efficiently removed the oil from the water. It was concluded that the waste materials were able to absorb many times their weight in oil. 21 refs., 4 tabs., 2 figs

  17. Evaluation of waste disposal by shale fracturing

    International Nuclear Information System (INIS)

    Weeren, H.O.

    1976-02-01

    The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation

  18. Process of distillation of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, A L

    1968-08-16

    In an oil-shale distillation apparatus with a single retort, in which separate zones of preheating, distillation, combustion, and cooling are maintained, the operation is conducted at a presssure higher than the atmospheric pressure, preferably at a gage pressure between about 0.35 and 7.0 bars. This permits increasing the capacity of the installation.

  19. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    International Nuclear Information System (INIS)

    Aji, Mahardika Prasetya; Wiguna, Pradita Ajeng; Susanto,; Rosita, Nita; Suciningtyas, Siti Aisyah; Sulhadi

    2016-01-01

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showed that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.

  20. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,; Rosita, Nita; Suciningtyas, Siti Aisyah; Sulhadi [Department of Physics, Faculty of Mathematics and Natural Science Universitas Negeri Semarang, Jalan Raya Sekaran Gunungpati 50229 Indonesia (Indonesia)

    2016-04-19

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showed that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.

  1. Anvil Points oil shale tailings management in Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, R.; Galli LaBerge, C.; McClurg, J. [Ecology and Environment Inc., Lancaster, NY (United States); Walsh Integrated, Lachine, PQ (Canada)

    2009-07-01

    This presentation summarized the oil shale tailings management program used at the Anvil Points mining site in Colorado. Decommissioning and reclamation of the site occurred between 1984 and 1986. The geology of the region is comprised of Tertiary bedrock sedimentary formations and Quaternary formations on the surface. Oil shales mined at the facility are from the Eocene Green River formation. While the site lies within big game winter ranges, the areas around the shale pile supports are not a significant nesting or feeding habitat for wildlife. No sensitive plants are located on the waste shale pile. The program currently includes revegetation test plots and the reclamation of an area where heating oil storage tanks were located. The dumping area is currently being monitored, and geophysical surveys are being conducted. Documents produced by mining activities are also being reviewed. Results of the study to date have indicated the presence of asbestos-containing materials, significant physical hazards, and significant cultural resources. An engineering evaluation and cost analysis has demonstrated that arsenic, beryllium, and iron exceed established soil screening levels. It was concluded that off-site removal actions will be conducted to prevent or reduce human exposure to the metals of concern. tabs., figs.

  2. Oil shales of the Lothians, Part III, the chemistry of the oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Steuart, D R

    1912-01-01

    Tests were performed whereby fuller's earth and lycopodium spore dust were heated to retorting temperatures and the crude oil examined. Oil shale may be composed of the following: Vegetable matter that has been macerated and preserved by combining with salts, spores, and other such material that has been protected from decay, and a proportion of animal matter. Generally, oil shale may be considered as a torbanite that contains a large proportion of inorganic matter, or it may be a torbanite that has deteriorated with age. This supposition is based on the fact that oil yield decreases and the yield of ammonia increases with age.

  3. Oil shales of the Lothians. Part III. Chemistry of the oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Steuart, D R

    1912-01-01

    Tests were performed whereby fuller's earth and lycopodium spore dust were heated to retorting temperatures and the crude oil examined. Oil shale may be composed of the following: vegetable matter that has been macerated and preserved by combining with salts, spores, and other such material that has been protected from decay, and a proportion of animal matter. Generally, oil shale may be considered as a torbanite that contains a large proportion of inorganic matter, or it may be a torbanite that has deteriorated with age. This supposition is based on the fact that oil yield decreases and the yield of ammonia increases with age.

  4. Safe Management of Waste Generated during Shale Gas Operations

    Science.gov (United States)

    Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga

    2017-04-01

    Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.

  5. Method of concentrating oil shale by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, M

    1941-01-28

    A method is described of concentrating oil shale by flotation. It is characterized by grinding the shale to a grain size which, roughly speaking, is less than 0.06 mm. and more conveniently should be less than 0.05 mm., and followed by flotation. During the process the brown foam formed is separated as concentrate, while the black-brown to all-black foam is separated as a middle product, ground fine again, and thereafter floated once more. The patent contains five additional claims.

  6. Is Estonian oil shale beneficial in the future?

    International Nuclear Information System (INIS)

    Reinsalu, Enno

    1998-01-01

    Oil shale mining production reached its maximum level of 31.35·10 6 tonnes per year in 1980. After the eighties there was a steady decline in mining. The first scientific prognoses of the inescapable decrease in oil shale mining were published in 1988. According to this, the Estonian oil shale industry would vanish in the third decade of the next century. From the beginning of the nineties, the consumption and export of electricity have dropped in Estonia. The minimum level of oil shale mining was 13.5·10 6 tonnes per year. This occurred in 1994/1995. Some increase in consumption of electric power and oil shale began at the end of 1995. Oil shale processing began to increase gradually in 1993. Oil shale is the most important fuel in Estonia today. In 1997, oil shale provided 76% of Estonia's primary energy supply and accounted for 57% of its economic value. Oil shale is the cheapest fuel in Estonia. Nowadays, oil shale provides an essential part of the fuel supply in Estonia because it is considerably cheaper than other fuels. Oil shale costs EEK 12.16 per G J. At the same time, coal costs EEK 23.41 per G J and peat costs EEK 14.80 per G J (year 1997). There are three important customers of oil shale: the electric power company Eesti Energia, the oil processing company Kiviter and the factory Kunda Nordic Cement. In 1995, the power company utilised 81% of the oil shale mass and 77% of its heating value. The state energy policy inhibits increases in the oil shale price even though the mining infrastructure is decaying. Government price policies subside oil shale processing. The energy of oil shale processing is 1.9 times cheaper than the heating value of raw oil shale for power stations. It could be considered as a state subsidisation of oil and cement export at the expense of electricity. The subsidy assigned to oil processing was of EEK 124·10 6 and to the cement industry of EEK 8.4·10 6 in year 1997 (based on heating value). State regulation of prices and

  7. Separation of motor oils, oily wastes and hydrocarbons from contaminated water by sorption on chrome shavings.

    Science.gov (United States)

    Gammoun, A; Tahiri, S; Albizane, A; Azzi, M; Moros, J; Garrigues, S; de la Guardia, M

    2007-06-25

    In this paper, the ability of chrome shavings to remove motor oils, oily wastes and hydrocarbons from water has been studied. To determine amount of hydrocarbons sorbed on tanned wastes, a FT-NIR methodology was used and a multivariate calibration based on partial least squares (PLS) was employed for data treatment. The light density, porous tanned waste granules float on the surface of water and remove hydrocarbons and oil films. Wastes fibers from tannery industry have high sorption capacity. These tanned solid wastes are capable of absorbing many times their weight in oil or hydrocarbons (6.5-7.6g of oil and 6.3g of hydrocarbons per gram of chrome shavings). The removal efficiency of the pollutants from water is complete. The sorption of pollutants is a quasi-instantaneous process.

  8. Apparatus for recovering oil from Posidonien shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-04-13

    Equipment for recovering oil from shale and the like, as well as the distilling of coal is characterized in that a number of chambers provided in a known way with upper and lower air supply are arranged open to the receiver of the oil vapors through removable domes which can be attached to the usual oil-vapor carry-off. Arrangement is characterized in that the domes are movable to the side, so that they can be interchangeably attached to the different chambers.

  9. Chemical and isotopic characterization of water-rock interactions in shales induced by the intrusion of a basaltic dike: A natural analogue for radioactive waste disposal

    International Nuclear Information System (INIS)

    Techer, Isabelle; Rousset, Davy; Clauer, Norbert; Lancelot, Joel; Boisson, Jean-Yves

    2006-01-01

    Disposal of nuclear waste in deep geological formations is expected to induce thermal fluxes for hundreds of years with maximum temperature reaching about 100-150 deg. C in the nearfield argillaceous environment. The long-term behavior of clays subjected to such thermal gradients needs to be perfectly understood in safety assessment considerations. In this respect, a Toarcian argillaceous unit thermally disturbed by the intrusion of a 1.1-m wide basaltic dike at the Perthus pass (Herault, France), was studied in detail as a natural analogue. The thermal imprint induced by the dike was evaluated by a mineralogical, chemical and K-Ar study of the <2 μm clay fraction of shale samples collected at increasing distance from the basalt. The data suggest that the mineral composition of the shales was not significantly disturbed when the temperature was below 100-150 deg. C. Closer to the dike at 150-300 deg. C, changes such as progressive dissolution of chlorite and kaolinite, increased content of the mixed layers illite-smectite with more illite layers, complete decalcification and subsequent increased content of quartz, were found. At the eastern contact with the dike, the mineral and chemical compositions of both the shales and the basalt suggest water-rock interactions subsequent to the intrusion with precipitation of palagonite and renewed but discrete deposition of carbonate. A pencil cleavage developed in the shales during the dike emplacement probably favored water circulation along the contact. Strontium isotopic data suggest that the fluids of probable meteoric origin, reacted with Bathonian and Bajocian limestones before entering the underlying Toarcian shales. By analogy with deep geological radioactive waste repositories, the results report discrete mineralogical variations of the clays when subjected to temperatures of 100-150 deg. C that are expected in deep storage conditions. Beyond 150 deg. C, significant mineralogical changes may alter the physical and

  10. Process for complete conversion of coal oils, shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, P

    1911-07-08

    A process is described for complete conversion of mineral coal oil, shale oil, and other similar oils in pitch, characterized by these oils being mixed with a nonvolatile substance with a boiling point on the average higher than the boiling point of the oil to be treated, and then being heated under pressure with the introduction of air, whereby the heating is interrupted if necessary on account of the known exothermic reaction and the conversion of the oil in the pitch or its distillation can be carried out without further heating.

  11. Organic material of the Messel oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, B.; Littke, R.

    1986-05-01

    According to chemism, the Messel oil shales belong to the Kerogen type II, formed by algae with additions of huminite detritus, i.e. residues of higher plants. This has been confirmed by the organo-petrographic studies reported. The oil shale deposits are characterised by their content of organic materials, the occurrence of a cream-coloured inertinite maceral, and of siderite. Hence, two facies can be clearly discriminated, the lower one containing relatively much organic material and the cream-coloured inertinite, but no siderite, and the upper facies exhibiting just the opposite. As the detritus is finely grained and quite uniform in content of huminite and silicate material, and only few spores and pollen have been found, there is reason to assume that the two facies represent sediments formed far from the border of the lake.

  12. Subsidence prediction in Estonia's oil shale mines

    International Nuclear Information System (INIS)

    Pastarus, J.R.; Toomik, A.

    2000-01-01

    This paper analysis the stability of the mining blocks in Estonian oil shale mines, where the room-and-pillar mining system is used. The pillars are arranged in a singular grid. The oil shale bed is embedded at the depth of 40-75 m. The processes in overburden rocks and pillars have caused the subsidence of the ground surface. The conditional thickness and sliding rectangle methods performed calculations. The results are presented by conditional thickness contours. Error does not exceed 4%. Model allows determining the parameters of spontaneous collapse of the pillars and surface subsidence. The surface subsidence parameters will be determined by conventional calculation scheme. Proposed method suits for stability analysis, failure prognosis and monitoring. 8 refs

  13. Isothermal decomposition of Baltic oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aarna, A Ya

    1955-01-01

    Heating oil shale at 300/sup 0/ to 440/sup 0/C yields a primary tar. Longer heating, regardless of temperature, results in the formation of heavier tar fractions. Higher temperatures tend to increase the middle and high-boiling fractions and to increase the concentration of unsaturated hydrocarbons at the expense of saturated hydrocarbons. Phenols appear, even at lower heating temperatures, indicating that aromatic structures are present or generated during the process.

  14. The method of purification of waste water of NPS from petroleum oil using UV-radiation

    International Nuclear Information System (INIS)

    Kulemin, V.V.; Kareta, V.I.

    1993-01-01

    The main methods of concentration and purification of radioactive waste water of russian NPS are distillation and ion exchange. When waste water containing petroleum oil and washing matter is distillated, part of petroleum and washing matters go to the condensate. The purification of this condensate leads to pollution of ion exchange resins by petroleum oil and reduction of the filter cycle number. The purification of condensate of Russian NPS from petroleum oil is carried out using active carbon and polymer filters, but this process is not effective and fails to give pure condensate. Therefore, the authors began to search for more effective methods of purification of waste water from petroleum oil. They found that UV-radiation makes it possible to purify water from petroleum matter to concentration of the organic phase less than 0.5 mg/dm3. In this process of purification the air, contained in the water phase, was used as an oxidant. When purification is carried out in the absence of sorbents, the quantity of radioactive solid waste, which have to be recovered, decreases. During the study of purification of waste water it was found that increasing of the temperature of the process increases the rate of UV-radiation-induced oxidation of organic phase. The increase in the initial concentration of petroleum products also increases the rate of petroleum oil decomposition. The content of ions in water phase decreases the purification rate. The investigations were carried out on the laboratory scale with water and condensate from Tver's NPS

  15. Suggestive evidence on the origin of petroleum and oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J C

    1923-01-01

    Oil shales and coals originated in fresh water muds that contained large amounts of spores, algae, and other nonwoody vegetable material. This organic debris was partly decomposed by bacterial action but not enough to increase the percentage of fats by removal of other plant substances. By contrast, petroleum was formed by thorough decomposition of nonfatty material in salt water. The main difference in bacterial action was due to differences in the saline content of the water in which the organic material was deposited. In fresh water, the amount of decay was small, whereas in salt water it was nearly complete.

  16. Technical-economic parameters of the new oil shale mining-chemical complex in Northeast Estonia

    International Nuclear Information System (INIS)

    Kuzmiv, I.; Fraiman, J.

    2006-01-01

    The history of oil shale mining in Estonia has reached its century mark. Three oil shale branches have been formed and have been working on the basis of Estonian oil shale deposits: the mining industry (underground and surface extraction), the power industry (heat and electric energy generation), and the chemical industry (gas and synthetic oils). The authors attempted to summarize the experience of the activities of these branches and to make into a whole the results of their research developments in the past years, as well as to form a notion about perspectives of oil shale in Estonia. Variants of the mining-chemical oil shale complex production and trade patterns differed from used ones. Mining methods, thermal processing of oil shale, and solid, liquid, and gas waste recovery have been studied, analyzed, and worked out up to the present. Setting up a flexible trade structure within the framework of that complex is considered the main economic mechanism capable of balancing production costs of such a complex with its earnings, which could respond properly to any, even peak, fluctuations of the market for final products processed from oil shale. Data of the working 'Estonia' oil shale mine were used as the basis of the analysis and practical conclusions. Information on the mine being projected in the region of Ojamaa in the northeast of Estonia was taken as the data of the worthwhile supplier. Oil shale processing chemical complex is considered in two structural alternatives: in technological chain with the 'Estonia' mine (the first variant), and the projected mine of a new technical level (the second variant). (author)

  17. Paraho oil shale module. Site development plan, Task 4

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    A management plan and schedule which covers all requirements for gaining access to the site and for conducting a Paraho Process demonstration program have been prepared. The oil shale available should represent a regional resource of suitable size and quality for commercial development. Discussed in this report are: proof of ownership; requirements for rights-of-way for access to the site; local zoning restrictions; water rights; site availability verification; and other legal requirements. (DMC)

  18. Process for recovering oil from shale and other bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    1918-08-23

    A process for recovering oil from shale and other bituminous minerals in rotary retorts heated from outside and flushed with water vapor or other oxygen-free gases is characterized by the fact that all kinds of minerals are carbonized, and that during the carbonization process the temperature of the superheated steam or gases is about 50/sup 0/ C higher than the temperature of the carbonized mineral.

  19. Producing electricity from Israel oil shale with PFBC technology

    International Nuclear Information System (INIS)

    Grinberg, A.; Keren, M.; Podshivalov, V.; Anderson, J.

    2000-01-01

    Results of Israeli oil shale combustion at atmospheric pressure in the AFBC commercial boiler manufactured by Foster Wheeler Energia Oy (Finland) and in the pressurized test facility of ABB Carbon AB (Finspong, Sweden) confirm suitability of fluidized-bed technologies in case of oil shale. The results approve possibility to use the PFBC technology in case of oil shale after solving of some problems connected with great amounts of fine fly ash. (author)

  20. Research and information needs for management of oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  1. Geology of the oil shales of Messel near Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Matthess, G.

    1966-07-25

    The oil shale, with a thickness of nearly 190 m, represents the middle part of the strata of Messel. Freshly mined, it consists of about 40% water and about 25% organic matter. The rest are clay minerals, chiefly montmorillonite. Kaolinite, messelite, vivianite, pyrites, markasite, siderite, and gypsum occur in small quantities. The organic components are kerogens which are extraordinary rich in oxygen. They are tied adsorptively to montmorillonite. The bitumina are supposed to be chiefly derived from algae, in a smaller extent from fungi and pollen. Plants as well as the large ganoid fishes and the crocodiles indicate a tropical to subtropical climate and a larger extent of the former water system. The oil shales of Messel are preserved in a tectonic graben that is 1,000 m long and up to 700 m wide. This graben is divided into 3 depressions. Both depressions are close together in the south and diverge northward. The ground water lifted in the open mining shows high degrees of total hardness and unusual high sulfate and phosphate contents. These matters can be derived from the weathering events in the exposed oil shale. (133 refs.)

  2. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  3. Introduction to special section: China shale gas and shale oil plays

    Science.gov (United States)

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    In the last 10 years, the success of shale gas and shale oil productions as a result of technological advances in horizontal drilling, hydraulic fracturing and nanoscale reservoir characterization have revolutionized the energy landscape in the United States. Resource assessment by the China Ministry of Land and Resources in 2010 and 2012 and by the U.S. Energy Information Administration in 2011 and 2013 indicates China’s shale gas resource is the largest in the world and shale oil resource in China is also potentially significant. Inspired by the success in the United States, China looks forward to replicating the U.S. experience to produce shale gas to power its economy and reduce greenhouse gas emissions. By 2014, China had drilled 400 wells targeting marine, lacustrine, and coastal swamp transitional shales spanning in age from the Precambrian to Cenozoic in the last five years. So far, China is the leading country outside of North America in the viable production of shale gas, with very promising prospects for shale gas and shale oil development, from the Lower Silurian Longmaxi marine shale in Fuling in the southeastern Sichuan Basin. Geological investigations by government and academic institutions as well as exploration and production activities from industry indicate that the tectonic framework, depositional settings, and geomechanical properties of most of the Chinese shales are more complex than many of the producing marine shales in the United States. These differences limit the applicability of geologic analogues from North America for use in Chinese shale oil and gas resource assessments, exploration strategies, reservoir characterization, and determination of optimal hydraulic fracturing techniques. Understanding the unique features of the geology, shale oil and gas resource potential, and reservoir characteristics is crucial for sweet spot identification, hydraulic fracturing optimization, and reservoir performance prediction.

  4. A review on technologies for oil shale surface retort

    International Nuclear Information System (INIS)

    Pan, Y.; Zhang, X.; Liu, S.; Yang, S.A.; Ren, N.

    2012-01-01

    In recent years, with the shortage of oil resources and the continuous increase in oil prices, oil shale has seized much more attention. Oil shale is a kind of important unconventional oil and gas resources. Oil shale resources are plentiful according to the proven reserves in places. And shale oil is far richer than crude oil in the world. Technology processing can be divided into two categories: surface retorting and in-situ technology. The process and equipment of surface retorting are more mature, and are still up to now, the main way to produce shale oil from oil shale. According to the variations of the particle size, the surface retorting technologies of oil shale can be notified and classified into two categories such as lump shale process and particulate shale process. The lump shale processes introduced in this article include the Fushun retorting technology, the Kiviter technology and the Petrosix technology; the particulate processes include the Gloter technology, the LR technology, the Tosco-II technology, the ATP (Alberta Taciuk Process) technology and the Enefit-280 technology. After the thorough comparison of these technologies, we can notice that, this article aim is to show off that : the particulate process that is environmentally friendly, with its low cost and high economic returns characteristics, will be the major development trend; Combined technologies of surface retorting technology and other oil producing technology should be developed; the comprehensive utilization of oil shale should be considered during the development of surface retorting technology, meanwhile the process should be harmless to the environment. (author)

  5. Western oil shale development: a technology assessment. Volume 7: an ecosystem simulation of perturbations applied to shale oil development

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    Progress is outlined on activities leading toward evaluation of ecological and agricultural impacts of shale oil development in the Piceance Creek Basin region of northwestern Colorado. After preliminary review of the problem, it was decided to use a model-based calculation approach in the evaluation. The general rationale and objectives of this approach are discussed. Previous studies were examined to characterize climate, soils, vegetation, animals, and ecosystem response units. System function was methodically defined by developing a master list of variables and flows, structuring a generalized system flow diagram, constructing a flow-effects matrix, and conceptualizing interactive spatial units through spatial matrices. The process of developing individual mathematical functions representing the flow of matter and energy through the various system variables in different submodels is discussed. The system model diagram identified 10 subsystems which separately account for flow of soil temperatures, soil water, herbaceous plant biomass, shrubby plant biomass, tree cover, litter biomass, shrub numbers, animal biomass, animal numbers, and land area. Among these coupled subsystems there are 45 unique kinds of state variables and 150 intra-subsystem flows. The model is generalizeable and canonical so that it can be expanded, if required, by disaggregating some of the system state variables and allowing for multiple ecological response units. It integrates information on climate, surface water, ecology, land reclamation, air quality, and solid waste as it is being developed by several other task groups.

  6. The effects of ex-situ oil shale mining on groundwater resources in Siwaqa area, southern Jordan, using DRASTIC index and hydrochemical water assessment

    Directory of Open Access Journals (Sweden)

    Alsharifa Hind Mohammad

    2016-01-01

    Full Text Available Energy resources in addition to water resources are the most limited resources in Jordan, being one of the fourth poorest countries in water resources, and limitation of surface water resources put huge pressure on groundwater which is the main resource there. High expenses and the increasing prices of oil over all worlds increase the feasibility to mining the oil shale that exists in southern Jordan area, Siwaqa. This study took place to clarify the possible effects of mining and energy production activities on the water resources in that area. Groundwater vulnerability mapping was done for many areas all over the country, including this part. The initiative of this work is to determine the vulnerability under the conditions of removing the bedrock of the oil shale which is described as a con ning layer. Results that are obtained by this work conclude that the oil shale area becomes highly vulnerable to the human activities because of the existing geological structures while it is small and medium vulnerable in the elds in which there are no geological structures. In addition to the structural features and adding the possibility of the oil shale mining from the outcropped areas which will decrease the depth to water table and hence will affect the vulnerability values.  Efectos en las fuentes de agua subterránea de la minería ex situ de esquistos bituminosos, en el área de Siwaqa, al sur de Jordania, a través del índice DRASTIC y la evaluación hidroquímica del agua  Resumen Las fuentes de energía y agua son las más limitadas en Jordania, uno de los cuatro países más pobres en recursos hídricos; además, las limitadas fuentes super ciales hacen de las aguas subterráneas las más importantes. Las ganancias y el precio del petróleo, por su parte, incrementan la viabilidad de la minería de esquistos bituminosos en el sur de Jordania, en la región de Siwaqa. Este estudio se realiza con el  n de establecer los

  7. The chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-02-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lake's lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which

  8. Chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-01-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which precipitated dawsonite and crystallized nahcolite in the sediment as a result of CO/sub 2/ production from organic matter. (JMT)

  9. Radiation-thermal purification of waste water from oil pollution

    International Nuclear Information System (INIS)

    Mustafaev, I.; Guliyeva, N.; Rzayev, R.; Yagubov, K.

    2004-01-01

    Full text: During the extraction, preparation, transportation and refining of oil the sewages containing oil contaminations are produced. The concentration of oil content in the water depends on used technology and may vary from a thousandths parts up to tens percents. There is a necessity of cleaning this pollution up to a permissible level. There are numerous methods (adsorption, mechanical, chemical and etc) of treating of waster water from oil contaminations. Radiation-chemical method is one of the effective among the above mentioned methods. The results of radiation-thermal decomposition of n-heptane micro-admixtures in water medium are adduced. The main parameters of radiolysis change within the intervals: temperature 20-400 o C, absorbed dose - 0†10.8 kGy at dose rate 3.6 kGy/h. The correlation of n-heptane concentration and water steam changed within [C 5 H 1 2]/[H 2 O] (1-100) 10-5. Total concentration of steam was about 10 20 molec/ml. As a product of decomposition are observed H 2 , CO, CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 8 , C 3 H 6 , C 4 H 8 , hydrocarbons C 5 , and C 6 . The changes of n-heptane concentration in the reactor also were established. The chain regime of n-heptane decomposition at high temperatures in the irradiated mixture is observed. The critical value of temperature and mixture ratio of components, under which the break of chain process of normal n-heptane occurs are defined. The mechanisms of proceeding radiation thermal processes in hydrocarbons-water system are discussed. At the temperatures higher than 300 o C the radiation-thermal decompositions of hydrocarbon micro-impurities in water into gas products occurs according a chain mechanism and the radiation-chemical yield of the decomposition exceeds 100 molec/100eV. This method can be used for purification of sewages from oil contaminations

  10. Oil shale research related to proposed nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, H C; Sohns, H W; Dinneen, G U [Laramie Petroleum Research Center, Bureau of Mines, Department of the Interior, Laramie, WY (United States)

    1970-05-15

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  11. Oil shale research related to proposed nuclear projects

    International Nuclear Information System (INIS)

    Carpenter, H.C.; Sohns, H.W.; Dinneen, G.U.

    1970-01-01

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  12. Oil shale mining and processing impact on landscapes in north-east Estonia

    International Nuclear Information System (INIS)

    Toomik, Arvi; Liblik, Valdo

    1998-01-01

    As the world's largest commercial oil shale reserve, the Estonian Oil Shale Deposit has been exploited since 1916. As a result of mining, storing of solid wastes from the oil shale separation, combustion in the power plants and its thermal processing, the landscape in northeastern Estonia has been essentially changed and the man-made landforms have developed: the new microreliefs of natural and artificial structure are formed, as well as 'mountainous' and hilly reliefs in the form of waste heaps, ash plateaus, coke-ash dumps etc. Deformed (stable) and undeformed (unstable) areas from underground mining currently cover about 220km 2 . About 90km 2 (80%) of the area damaged by open pits are recultivated and reformed as forested and agricultural (grassland) areas. The total area occupied by solid waste has reached up to 26km 2 . New technogenic landscape units, i.e. made by technical means, will essentially influence the environment

  13. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  14. Chemistry of the Estonian oil-shale kukersite

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N

    1931-01-01

    Estonian oil shale is one of the oldest and richest oil shales in the world. The deposits occur in the Middle-Ordovician strata having a total thickness of 2.2 meters. The ultimate composition of the kerogen varied within the following limits: carbon 76.5 to 76.7 percent, hydrogen 9.1 to 9.2 percent, nitrogen 0.2 to 0.4 percent, sulfur 1.6 to 2.2 percent, chlorine 0.5 to 0.7 percent, and oxygen (by difference) 11.2 to 12.2 percent. The composition of kukersite kerogen corresponds nearly to the empirical formula (C/sub 8/H/sub 11/O)n. One of the most significant differences between kukersite, coal, and lignite is the amount of alkali-soluble substances present. Kukersite has almost no humic acids. Samples of kukersite were brominated and chlorinated. The halogenated shales showed a solubility in absolute alcohol of 26 percent compared to only 0.31 percent for untreated shale. Enriched shale (4.5 percent ash) did not react with chlorine as much as did raw shale. Apparently the mineral matter acted catalytically during chlorination. The amount of soluble extract obtained by solvent treatment of kukersite ranged from 0.22 percent with chloroform to 2.20 percent with tetrachloroethane. Heat was the most effective agent for the depolymerization of kukersite kerogen. The percentage loss of weight due to drying in air was much less than in the presence of carbon dioxide. The results indicated that on drying in air, the powdered shale loses water and a volatile substance, probably the oxides of carbon, up to 80/sup 0/C. Carbon dioxide was also found to be present in the gases eliminated at the temperature of initial decomposition. Pulverized shale, heated for 6 hours at 220/sup 0/C, lost 2.6 percent of its weight; its solubility in carbon disulfide was 2.11 percent. Kukersite kerogen was formed from compounds that were resistent to bacteriological decomposition, such as waxes and resins, plus decomposition products of proteins, cellulose, and putrefaction products of

  15. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale

    International Nuclear Information System (INIS)

    Jiang, Haifeng; Deng, Sunhua; Chen, Jie; Zhang, Mingyue; Li, Shu; Shao, Yifei; Yang, Jiaqi; Li, Junfeng

    2017-01-01

    Highlights: • The maximum yield of pyrolysis oil is obtained at the pretreatment time of 2.0 h. • The higher H/C ratio of oil is obtained after hydrothermal pretreatment. • Hydrothermal treatment promotes the formation of aliphatic hydrocarbons in the oil. • Long pretreatment time causes the increase of heavier oil fraction in the oil. - Abstract: In this work, Huadian oil shale from China was treated by hydrothermal pretreatment at 200 °C with 1.0–2.5 h in order to investigate the effect of hydrothermal pretreatment on pyrolysis product distribution and characteristics of oil. The differences in the elemental composition and thermal behavior between the untreated and treated oil shale were analyzed and compared. The hydrothermal treatment process could decompose oxygen functional groups and remove some water soluble inorganics in oil shale, which decreased the formation of gas and water during the pyrolysis. However, hydrothermal pretreatment was conducive to increasing shale oil yield. The maximum of oil yield was obtained at the pretreatment time of 2.0 h. The enhancement of the free-radical reactions during the pyrolysis and the reduction of the secondary cracking reactions of the generated oil vapors were considered as the main reasons. The oil obtained by the treated oil shale had a higher H/C ratio, indicating it had high energy content. The analysis results of chemical compositions in oils showed that the relative content of aliphatic hydrocarbons significantly increased after hydrothermal pretreatment. The further analysis demonstrated that the increase in the pretreatment time caused the generated long chain hydrocarbons tended to be directly released from oil shale particles, and were condensed into the oil.

  16. Market analysis of shale oil co-products. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  17. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  18. Study on geochemical occurrences of REE in Wangqing oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Liu, Tong; Wei, Yan-zhen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Sequential chemical extraction experiment (SCEE) and Float- sink experiment (FSE) have been employed on oil shale research from Wangqing, Jilin province China, in order to determine the binding forms of rare earth elements (REE) in oil shale. The REE contents were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). Wangqing oil shale was screened into specific gravity density level: <1.5g/cm{sup 3}, 1.5-1.6g/cm{sup 3}, 1.6-2.0g/cm{sup 3}, 2.0-2.4g/cm{sup 3}, >2.4g/cm{sup 3}. The mode of occurrences of rare earth elements in Wangqing oil shale was studied by six-step SCEE. FSE results show that REEs in Wangqing oil shale exist mainly in inorganic minerals and more in excluded mineral, while SCEE results show that REEs of Wangqing oil shale is primarily occurred in minerals, including carbonate, Fe-Mn oxide, sulfide, and Si-minerals. FSE and SCEE results fully illustrate excluded mineral is mainly mode of occurrence of REEs in Wangqing oil shale, whereas inorganic minerals and organic matter is not that. The REE distribution pattern curves of FSE density and SCEE fraction products are similar with that of raw oil shale. The REE in different densities products has a close connection with terrigenous clastic rock, and the supply of terrestrial material is stable.

  19. Oil shale energy and some alternatives in Estonia

    International Nuclear Information System (INIS)

    Oepik, I.

    2002-01-01

    An academic lecture delivered by prof. Ilmar Oepik at the Thermal Engineering Department of Tallinn Technical University in Dec. 2000 to mark the 120 semesters since the cum laude diploma of a mechanical engineer discusses about ineffective utilization of oil shale and developing renewable resources as an alternative to oil shale

  20. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    Science.gov (United States)

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. Copyright © 2010 SETAC.

  1. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    International Nuclear Information System (INIS)

    Motlep, Riho; Sild, Terje; Puura, Erik; Kirsimaee, Kalle

    2010-01-01

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  2. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    Energy Technology Data Exchange (ETDEWEB)

    Motlep, Riho, E-mail: riho.motlep@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Sild, Terje, E-mail: terje.sild@maaamet.ee [Estonian Land Board, Mustamaee tee 51, 10621 Tallinn (Estonia); Puura, Erik, E-mail: erik.puura@ut.ee [Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu (Estonia); Kirsimaee, Kalle, E-mail: kalle.kirsimae@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  3. Shale oil specialty markets: Screening survey for United States applications

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    EG and G requested J. E. Sinor Consultants Inc. to carry out an initial screening study on the possibilities for producing specialty chemicals from oil shale. Raw shale oil is not an acceptable feedstock to refineries and there are not enough user of heavy fuel oil in the western oil shale region to provide a dependable market. The only alternatives are to hydrotreat the oil, or else ship it long distances to a larger market area. Either of these alternatives results in a cost penalty of several dollars per barrel. Instead of attempting to enter the large-volume petroleum products market, it was hypothesized that a small shale oil facility might be able to produce specialty chemicals with a high enough average value to absorb the high costs of shipping small quantities to distant markets and still provide a higher netback to the plant site than sales to the conventional petroleum products market. This approach, rather than attempting to refine shale oil or to modify its characteristics to satisfy the specifications for petroleum feedstocks or products, focuses instead on those particular characteristics which distinguish shale oil from petroleum, and attempts to identify applications which would justify a premium value for those distinctive characteristics. Because byproducts or specialty chemicals production has been a prominent feature of oil shale industries which have flourished for periods of time in various countries, a brief review of those industries provides a starting point for this study. 9 figs., 32 tabs.

  4. Shale as a radioactive waste repository: the importance of vermiculite

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S; Roy, D M; Pennsylvania State Univ., University Park; USA). Materials Research Labs.)

    1979-01-01

    Cesium sorption and fixation properties of thirty shale minerals and shales were investigated in search of a criterion for the suitability of shales for a radioactive waste repository. Shales and illites containing vermiculite fixed the largest proportion of total Cs sorbed (up to 91%) against displacement with 0.1 N KCl. For example, a slate sample fixed 33% of the total Cs sorbed while its weathered counterpart in which chlorite had altered to vermiculite fixed 89% of the total Cs sorbed. Since Cs is one of the most soluble and hazardous radioactive ions, its containment is of great importance in safe radioactive waste disposal. Presence of vermiculite in a shale body may therefore, serve as one criterion in the selection of a suitable shale for radioactive waste disposal if and when shales in geologically stable areas are selected for repositories.

  5. Simulation of the hydrogeologic effects of oil-shale mining on the neighbouring wetland water balance: case study in north-eastern Estonia

    Science.gov (United States)

    Marandi, Andres; Karro, Enn; Polikarpus, Maile; Jõeleht, Argo; Kohv, Marko; Hang, Tiit; Hiiemaa, Helen

    2013-11-01

    The water balance of wetlands plays an integral role in their function. Developments adjacent to wetlands can affect their water balance through impacts on groundwater flow and increased discharge in the area, and they can cause lowering of the wetland water table. A 430 km2 area was selected for groundwater modelling to asses the effect of underground mining on the water balance of wetlands in north-eastern Estonia. A nature conservation area (encompassing Selisoo bog) is within 3 km of an underground oil-shale mine. Two future mining scenarios with different areal extents of mining were modeled and compared to the present situation. Results show that the vertical hydraulic conductivity of the subsurface is of critical importance to potential wetland dewatering as a result of mining. Significant impact on the Selisoo bog water balance will be caused by the approaching mine but there will be only minor additional impacts from mining directly below the bog. The major impact will arise before that stage, when the underground mine extension reaches the border of the nature conservation area; since the restriction of activities in this area relates to the ground surface, the conservation area’s border is not sufficiently protective in relation to underground development.

  6. Chemical examination of the organic matter in oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J B

    1914-01-01

    The analyses of Broxburn (Scotland), Pumpherston (Scotland), Armadale (Scotland), Australian, and Knightsbridge oil shales were given. Also, the action of nitric acid and solvents on some of the oil shales was determined. Carbon-hydrogen ratios of the oil shales varied from 6 to more than 8, and the shales with the lowest ratio (most hydrogen per carbon) produced the largest amount of oil from a given amount of organic matter. There was little resinous material in the oil shales, and most of the organic matter was insoluble in organic solvents. Nitric acid oxidized Australian torbanite, Broxburn shale, New Battle cannel coal (Scotland), and Glenfullock peat to organic acids. The hydrogen content of the organic acids obtained by oxidizing the following materials increased from ordinary coal to cannel coal to peat to Broxburn shale to torbanite. The organic substance in oil shale is a decomposition product of vegetable matter similar to that found in peat and cannel coal, and it was produced by a definite combination of external conditions.

  7. Market analysis of shale oil co-products. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  8. Assessment of industry needs for oil shale research and development

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  9. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James [Texas Tech Univ., Lubbock, TX (United States); Li, Lei [Texas Tech Univ., Lubbock, TX (United States); Yu, Yang [Texas Tech Univ., Lubbock, TX (United States); Meng, Xingbang [Texas Tech Univ., Lubbock, TX (United States); Sharma, Sharanya [Texas Tech Univ., Lubbock, TX (United States); Huang, Siyuan [Texas Tech Univ., Lubbock, TX (United States); Shen, Ziqi [Texas Tech Univ., Lubbock, TX (United States); Zhang, Yao [Texas Tech Univ., Lubbock, TX (United States); Wang, Xiukun [Texas Tech Univ., Lubbock, TX (United States); Carey, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nguyen, Phong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porter, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jimenez-Martinez, Joaquin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mody, Fersheed [Apache Corp., Houston, TX (United States); Barnes, Warren [Apache Corp., Houston, TX (United States); Cook, Tim [Apache Corp., Houston, TX (United States); Griffith, Paul [Apache Corp., Houston, TX (United States)

    2017-11-17

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminated owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.

  10. Depositional Environment of the Sangkarewang Oil Shale, Ombilin Basin, Indonesia

    Directory of Open Access Journals (Sweden)

    Komang Anggayana

    2014-12-01

    Full Text Available Five samples from 56 m long drill core of lacustrine Sangkarewang oil shale have been studied by means of petrography and organic geochemistry to investigate the organic matter composition and depositional environments of the shale. The organic matter consists of abundant lamalginite (30%, v/v and very limited amount of vitrinite, suggesting aquatic depositional environments with minor terrestrial influence. Organic geochemical analysis exhibits the dominance of pristane, phytane, and generally n-alkanes compounds. These compounds might originate mostly from aquatic photosynthetic organisms. The oil shale was likely deposited in anoxic lake environments, suggested by the presence of framboidal pyrite (6%, v/v and preserved organic matter with total organic carbon (TOC about 4.9%. The pristane/phytane ratio is relatively high about 3.9 and thought as source sensitive rather than redox sensitive. Hopanoid and aryl isoprenoid compounds are present in minor amounts. The latter compounds are interpreted to be derived from green sulfur bacteria dwelling in anoxic and the presence of H2S in bottom water.

  11. Some problems of oil shale retorting in Estonia

    International Nuclear Information System (INIS)

    Oepik, I.

    1994-01-01

    Oil shale in Estonia will be competitive in the long term as a primary resource for power generating. The price of energy of Estonian oil shale is at present approximately 4 times lower than of coal. The price of electricity is anticipated to grow up to EEK 1.0/kWh in year 2020. The electricity price EEK 0.2/kWh at present in Estonia does not include capital costs needed for refurbishing of Estonian oil-shale-consuming power stations between the years 2000-2010. While all the prices and calculations of the enterprise are presented with no inflation adjustment, the other operation costs of oil shale retorting are anticipated for the prognosed period to remain at the present level: power consumption kWh 280/t crude oils and other operation costs (excluding labour, raw material and power consumption) EEK 100/t of oil

  12. Biotechnological Potential of Bacillus salmalaya 139SI: A Novel Strain for Remediating Water Polluted with Crude Oil Waste

    OpenAIRE

    Ismail, Salmah; Dadrasnia, Arezoo

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hy...

  13. Analysis of oil shale and oil shale products for certain minor elements

    International Nuclear Information System (INIS)

    Dickman, P.T.; Purdy, M.; Doerges, J.E.; Ryan, V.A.; Poulson, R.E.

    1977-01-01

    The University of Wyoming was contracted by the Department of Energy's Laramie Energy Research Center (LERC) to develop rapid, inexpensive, and simple methods of quantitative and qualitative elemental analysis for products used and generated in the simulated in-situ retorting of oil shale. Alpha particle spectrometry was used to determine the radioisotope content of the aqueous retort products. Alpha particles are mono-energetic and the spectrometry method employed had very low background levels (1 count per 2000 seconds). These factors allow for both the quantitative and qualitative analysis of natural radioisotopes at the 1 ppm level. Sample preparation does not require any chemical treatment. Energy dispersive x-ray fluorescence (XRF) was used for the multi-element analysis of the retort products. The XRF, integrated with a mini-computer, allows rapid analysis of several elements in multiple samples. XRF samples require minimal amounts of preparation and analytical results are highly reproducible. This paper presents the methods developed and preliminary analytical results from oil shale by-products. Results from the analysis of oil shale rocks are not yet ready for presentation

  14. Reception and treatment facilities for waste oils and oil-polluted waters from marine and industrial activities in Gothenburg, Sweden

    International Nuclear Information System (INIS)

    Andersson, K.; Lexen, S.I.; Hell, M.

    1992-01-01

    At the beginning of the 1980s, comprehensive solutions were found to problems associated with the handling of oil-polluted water from marine and industrial sources in the Gothenburg area. The treatment plant in the oil harbour has permission to treat 700,000 m 3 /yr of sludge, ballast, slops and other oil-contaminated waters. Following treatment by chemical flocculation, flotation and dual-media filtration, the treated water must not contain more than 5 ppm of oil. Work to improve treatment results has been carried out from the start, in close co-operation with environmental authorities and with the waste generators themselves. Through increased consciousness, improvements in control, and greater source separation, it will be possible to bring about a significantly lower concentration of pollutants in the incoming waste streams. Recent plans include separate treatment of waste streams containing aromatic compounds and heavily polluted waters. Complementary treatment methods, such as activated carbon and air stripping, are under evaluation. (author). 10 figs

  15. Characterization of some Jordanian oil shales by pyrolysis gas chromatography

    International Nuclear Information System (INIS)

    Jaradat, Q. M.

    1995-01-01

    Gas chromatography with flame ionization detector (GC-FID) was used to study pyrolysis of some Jordanian oil shale samples. Three sampls of different altitudes from El-Lajjun were studied. Pyrograms of solid sampls were studied at different temperature profiles. Solid-liquid extraction with water, methanol, or hexane allowed extraction of organics of different polarity. Hexane showed the highest extraction efficiency. Reproducibility of the pyrograms of the solid sample was evalualted. Relative standard deviation was 7.56%. (author). 7 refs., 8 figs

  16. Shale oil and gas: technical and environmental files

    International Nuclear Information System (INIS)

    Schilansky, Jean-Louis; Quehen, Audrey; Appert, Olivier; Aurengo, Andre; Candel, Sebastien; Chanin, Marie-Lise; Geoffron, Patrice; Goffe, Bruno; Marsily, Ghislain de; Pouzet, Andre; Schnapper, Dominique; Tardieu, Bernard

    2016-01-01

    This publication proposes information regarding technical and environmental issues related to shale oil and gas extraction and exploitation. It addresses various topics: hydraulic fracturing (techniques, quantity assessment, regulation), water consumption and management (problematic, quantity assessment, regulation), additives and management of production fluids (a necessary taking into account, quantity assessment, regulation), surface aquifers (surface sheets and exploration activity, quantity assessment, regulation), activity footprint (ground footprint and impact on landscape, quantity assessment, regulation), end of activity and site future (return to the initial condition, quantity assessment, regulation), seismicity (manageable seismic risks, quantity assessment, regulations), greenhouse gas emissions (development, quantity assessment, regulation), issues related to health aspects (general and specific risks, epidemiological studies)

  17. Hydrogen retorting of oil shales from Eastern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, Ontario (Canada)); Synnott, J.; Boorman, R.S.; Salter, R.S.

    1984-04-01

    The liquid production potential of thirty oil shale samples from Eastern Canada was determined by Fischer assay retort and pyrochem retort. For all shales, the presence of hydrogen during pyrochem retorting resulted in a significant increase in oil yields compared to Fischer assay yields. Ten oil shale samples were selected for detailed evaluation in the pyrochem retort in the presence of nitrogen and hydrogen. Besides increasing yields, the presence of hydrogen lowered the specific gravity of liquid products and the content of sulphur but increased the content of nitrogen. This was attributed to the stabilization of precursors to nitrogen compounds which prevented their polymerization. (J.H.K.)

  18. Technical and economic framework for market enhancement of shale oil

    International Nuclear Information System (INIS)

    Bunger, J.W.; Devineni, A.V.

    1992-01-01

    By now it is apparent that production of syncrude from shale oil will not be economically viable as long as there is a stable and reasonably-priced supply of petroleum. The costs and financial risks of producing syncrude from oil shale, in the face of price constraints imposed by petroleum markets, are too high to warrant private investment. A possible solution is to develop commodity and specialty products from shale oil which command a high market value. In this fashion, the economics are partially uncoupled from petroleum and an opportunity for a greater price/cost differential is provided

  19. Beneficiation-hydroretort processing of US oil shales: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-01-01

    This report has been divided into three volumes. Volume I describes the MRI beneficiation work. In addition, Volume I presents the results of joint beneficiation-hydroretorting studies and provides an economic analysis of the combined beneficiation-hydroretorting approach for processing Eastern oil shales. Volume II presents detailed results of hydroretorting tests made by HYCRUDE/IGT on raw and beneficiated oil shales prepared by MRI. Volume III comprises detailed engineering design drawings and supporting data developed by the Roberts and Schaefer Company, Engineers and Contractors, Salt Lake City, Utah, in support of the capital and operating costs for a conceptual beneficiation plant processing an Alabama oil shale.

  20. Validation Results for Core-Scale Oil Shale Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  1. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  2. Biotechnological potential of Bacillus salmalaya 139SI: a novel strain for remediating water polluted with crude oil waste.

    Science.gov (United States)

    Ismail, Salmah; Dadrasnia, Arezoo

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.

  3. Biotechnological potential of Bacillus salmalaya 139SI: a novel strain for remediating water polluted with crude oil waste.

    Directory of Open Access Journals (Sweden)

    Salmah Ismail

    Full Text Available Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.

  4. Preparing hydraulic cement from oil-shale residue

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for preparation of hydraulic cement from oil-shale residue is characterized in that, as flux is used, rich-in-lime poor-in-sulfur portland-cement clinker, by which the usual gypsum addition, is avoided.

  5. Combustion of Jordanian oil shale using circulating fluidized bed

    International Nuclear Information System (INIS)

    Hamdan, M.; Al-Azzam, S.

    1998-11-01

    this study re[resents design and manufacturing of a lab-scale circulating fluidized bed (C.F.B) to burn low grade fuel such as Jordanian oil shale. Hydrodynamic properties of C.F.B. were studied like minimum fluidization velocity, circulation flux and carryover rate. a hot run was firstly conducted by the combustion of L.P.G. to start up the combustion process. It proceeds until reaching the minimum burning temperature of oil shale particles, at which time the LPG supply was gradually reduced and oil shale feeding started. soon after reaching a self sustainable condition of oil shale particles, the LPG supply was cut off. The main combustion variables were investigated such as air to fuel ratios, temperature profiles across the bed, exhaust gas analysis and combustion efficiency. a combustion intensity of 859 kg/hr.m 2 and combustion efficiency of 96% were achieved. (authors). 19 refs., 9 tab., 18 fig

  6. Scale up risk of developing oil shale processing units

    International Nuclear Information System (INIS)

    Oepik, I.

    1991-01-01

    The experiences in oil shale processing in three large countries, China, the U.S.A. and the U.S.S.R. have demonstrated, that the relative scale up risk of developing oil shale processing units is related to the scale up factor. On the background of large programmes for developing the oil shale industry branch, i.e. the $30 billion investments in colorado and Utah or 50 million t/year oil shale processing in Estonia and Leningrad Region planned in the late seventies, the absolute scope of the scale up risk of developing single retorting plants, seems to be justified. But under the conditions of low crude oil prices, when the large-scale development of oil shale processing industry is stopped, the absolute scope of the scale up risk is to be divided between a small number of units. Therefore, it is reasonable to build the new commercial oil shale processing plants with a minimum scale up risk. For example, in Estonia a new oil shale processing plant with gas combustion retorts projected to start in the early nineties will be equipped with four units of 1500 t/day enriched oil shale throughput each, designed with scale up factor M=1.5 and with a minimum scale up risk, only r=2.5-4.5%. The oil shale retorting unit for the PAMA plant in Israel [1] is planned to develop in three steps, also with minimum scale up risk: feasibility studies in Colorado with Israel's shale at Paraho 250 t/day retort and other tests, demonstration retort of 700 t/day and M=2.8 in Israel, and commercial retorts in the early nineties with the capacity of about 1000 t/day with M=1.4. The scale up risk of the PAMA project r=2-4% is approximately the same as that in Estonia. the knowledge of the scope of the scale up risk of developing oil shale processing retorts assists on the calculation of production costs in erecting new units. (author). 9 refs., 2 tabs

  7. Assessment of potential unconventional lacustrine shale-oil and shale-gas resources, Phitsanulok Basin, Thailand, 2014

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.; Brownfield, Michael E.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed potential technically recoverable mean resources of 53 million barrels of shale oil and 320 billion cubic feet of shale gas in the Phitsanulok Basin, onshore Thailand.

  8. Parachute Creek Shale Oil Program Environmental Monitoring Program. Quarterly report, fourth quarter, October 1-December 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The document contains environmental compliance data collected in the fourth quarter of 1991, contents of reports on compliance data submitted to regulatory agencies, and supplemental analytical results from retorted shale pile runoff water collected following a storm event during the third quarter of 1991

  9. Energy Return on Investment (EROI of Oil Shale

    Directory of Open Access Journals (Sweden)

    Peter A. O’Connor

    2011-11-01

    Full Text Available The two methods of processing synthetic crude from organic marlstone in demonstration or small-scale commercial status in the U.S. are in situ extraction and surface retorting. The considerable uncertainty surrounding the technological characterization, resource characterization, and choice of the system boundary for oil shale operations indicate that oil shale is only a minor net energy producer if one includes internal energy (energy in the shale that is used during the process as an energy cost. The energy return on investment (EROI for either of these methods is roughly 1.5:1 for the final fuel product. The inclusions or omission of internal energy is a critical question. If only external energy (energy diverted from the economy to produce the fuel is considered, EROI appears to be much higher. In comparison, fuels produced from conventional petroleum show overall EROI of approximately 4.5:1. “At the wellhead” EROI is approximately 2:1 for shale oil (again, considering internal energy and 20:1 for petroleum. The low EROI for oil shale leads to a significant release of greenhouse gases. The large quantities of energy needed to process oil shale, combined with the thermochemistry of the retorting process, produce carbon dioxide and other greenhouse gas emissions. Oil shale unambiguously emits more greenhouse gases than conventional liquid fuels from crude oil feedstocks by a factor of 1.2 to 1.75. Much of the discussion regarding the EROI for oil shale should be regarded as preliminary or speculative due to the very small number of operating facilities that can be assessed.

  10. Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, B.; Pontecorvo, G.; Carfagna, M. [Univ. of Naples, Caserta (Italy). Inst. of Biology

    1997-12-31

    Waste water from olive oil processing may cause severe pollution in the Mediterranean area, since they have a high level of chemical oxygen demand (COD) (100-200 g/l) and contain other organic and inorganic compounds. In all olive oil producing countries, the reduction of pollution in olive oil mill waste waters at reasonable costs and using techniques suitable for most industrial applications is an unsolved problem. For this paper, the yeast Yarrowia lipolytica ATCC 20255 was grown on waste waters from an olive oil mill in a 3.5 l fermenter under batch culture conditions. The results showed that the yeast was capable of reducing the COD value by 80% in 24 h. In this way, a useful biomass of 22.45 g/l as single cell protein (SCP) and enzyme lipase were produced. During this process, most of the organic and inorganic substances were consumed, only aromatic pollutants were still present in the fermentation effluents. Therefore, we used a phenol degrader, namely Pseudomonas putida, to reduce phenolic compounds in the fermentation effluents after removing Yarrowia lipolytica cells. P. putida was effective in reducing phenols in only 12 h. (orig.)

  11. Conceptual design and techno-economic evaluation of efficient oil shale refinery processes ingratiated with oil and gas products upgradation

    International Nuclear Information System (INIS)

    Yang, Qingchun; Qian, Yu; Zhou, Huairong; Yang, Siyu

    2016-01-01

    Highlights: • Three integrated oil shale refinery processes are proposed. • Techno-economic performance of three proposed processes is conducted and compared. • Competitiveness of the three proposed processes is investigated at different scenarios. • A development direction for oil shale refinery industry is suggested. - Abstract: Compared with the petrochemical industry, oil shale refinery industry is still relatively backward and has many shortcomings, such as poor quality of shale oil, inefficient utilization of retorting gas, and the unsatisfactory economic performance. In the situation of the low oil price, many oil shale refinery plants are forced to stop or cut production. Thus, oil shale industry is facing a severe problem. How to relieve monetary loss or turn it into profits? This paper proposes three integrated oil shale refinery processes: an integrated with hydrogen production from retorting gas, an integrated with hydrogenation of shale oil, and an integrated with hydrogen production and oil hydrogenation. The techno-economic performance of the three different processes is conducted and compared with that of a conventional oil shale process. Results show the exergy destruction ratio of the oil shale process integrated with hydrogen production from retorting gas is the least, 41.6%, followed by the oil shale process integrated with hydrogen production and oil hydrogenation, 45.9%. Furthermore, these two proposed processes have the best economic performance. Especially they can turn losses of the conventional oil shale process into profits at the situation of low oil price. The oil shale process integrated with hydrogen production from retorting gas is recommended to the oil shale plants which use the oil shale with oil content lower than 12.9%, while the plants using oil shale with oil content higher than 12.9% are better to select the oil shale process integrated with hydrogen production and oil hydrogenation.

  12. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  13. Certified reference materials for the determination of mineral oil hydrocarbons in water, soil and waste

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Liebich, A.; Win, T.; Nehls, I.

    2005-07-01

    The international research project HYCREF, funded by the European Commission in the 5{sup th} Framework programme, aimed to develop methods to prepare homogeneous and stable water-, soil- and waste reference materials contaminated with mineral oil hydrocarbons and to test certify the mineral oil content by gas chromatographic methods. As mineral oil products are important sources for environmental contaminations a high need exists for certified reference materials for their determination using the new gas chromatographic methods (soil: ISO/FDIS 16703, waste: ENpr 14039, water: ISO 9377-2). The experimental conditions and results for preparation and characterisation of a total of nine reference materials (3 water, 3 soil- and 3 waste materials) are described and discussed. Target values for the reference materials were defined at the beginning of the project in order to have clear quality criteria, which could be compared with the achieved results at the end of the project. These target specifications were related to the maximum uncertainty from test certification exercises (<5% for soil/waste and <10% for water), the maximum inhomogeneity between bottles (<3%) and minimum requirements for stability (>5 years for soil/waste and >2 years for water). The feasibility studies showed that solid materials (soil, waste) could be prepared sufficiently homogeneous and stable. The test certified values of the 6 solid materials comprise a wide range of mineral oil content from about 200-9000 mg/kg with expanded uncertainties between 5.7-13.1% using a coverage factor k (k=2). The development of new water reference materials - the so-called ''spiking pills'' for an offshore- and a land-based discharge water represents one of the most innovative aspects of the project. The spiking pill technology facilitates the application and storage and improves the material stability compared with aqueous materials. Additional to the preparation and test certification of

  14. Shale Gas and Oil in Germany - Resources and Environmental Impacts

    Science.gov (United States)

    Ladage, Stefan; Blumenberg, Martin; Houben, Georg; Pfunt, Helena; Gestermann, Nicolai; Franke, Dieter; Erbacher, Jochen

    2017-04-01

    In light of the controversial debate on "unconventional" oil and gas resources and the environmental impacts of "fracking", the Federal Institute for Geosciences and Natural Resources (BGR) conducted a comprehensive resource assessment of shale gas and light tight oil in Germany and studied the potential environmental impacts of shale gas development and hydraulic fracturing from a geoscientific perspective. Here, we present our final results (BGR 2016), incorporating the majority of potential shale source rock formations in Germany. Besides shale gas, light tight oil has been assessed. According to our set of criteria - i.e. thermal maturity 0.6-1.2 %vitrinite reflectance (VR; oil) and >1.2 % VR (gas) respectively, organic carbon content > 2%, depth between 500/1000 m and 5000 m as well as a net thickness >20 m - seven potentially generative shale formations were indentified, the most important of them being the Lower Jurassic (Toarcian) Posidonia shale with both shale gas and tight oil potential. The North German basin is by far the most prolific basin. The resource assessment was carried out using a volumetric in-place approach. Variability inherent in the input parameters was accounted for using Monte-Carlo simulations. Technically recoverable resources (TRR) were estimated using recent, production-based recovery factors of North American shale plays and also employing Monte-Carlo simulations. In total, shale gas TRR range between 320 and 2030 bcm and tight oil TRR between 13 and 164 Mio. t in Germany. Tight oil potential is therefore considered minor, whereas the shale gas potential exceeds that of conventional resources by far. Furthermore an overview of numerical transport modelling approaches concerning environmental impacts of the hydraulic fracturing is given. These simulations are based on a representative lithostratigraphy model of the North-German basin, where major shale plays can be expected. Numerical hydrogeological modelling of frac fluid

  15. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-01-01

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  16. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-12-31

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  17. Emission from Estonian oil shale power plants

    International Nuclear Information System (INIS)

    Aunela, L.; Haesaenen, E.; Kinnunen, V.; Larjava, K.; Mehtonen, A.; Salmikangas, T.; Leskelae, J.; Loosaar, J.

    1995-01-01

    Flue gas emissions from pulverized oil shale fired boilers of Estonian and Baltic power plants have been studied. The concentrations of NO x , CO, C x H y , HCI, Hf and polycyclic aromatic hydrocarbons in flue gases have been found to be relatively low and acceptable according to German emission limits, for instance. Desulphurization degree of flue gases by SO 2 absorption with ash has been found to vary defending on boiler type and operation conditions. In spite of significant sulphur capture (average values for different boilers in the range between 68 and 77 % of the initial sulphur content of the fuel), SO 2 concentrations in flue gases remain still very high (up to 2600 mg/m 3 , 10% O 2 ). Very high concentrations of particles, especially at Estonian Power Plant (up o 6250 mg/m 3 , 10 % 0 2 ) have been detected. Heavy metal emissions were too high by the reason of particle control insufficiency as well. Yearly emission estimates of this study support the former Estonian ones within the range of 10-15 %. (author)

  18. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  19. Unocal Parachute Creek Shale Oil Program Environmental Monitoring Program. Annual report, October 1, 1990-December 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The report contains summaries of compliance and supplemental environmental and industrial hygiene and health surveillance monitoring conducted during the period; compliance permits, permit changes, and Notices of Violations discussions; statistical significance of Employee General Health information, medical histories, physical exams, pulmonary functions, clinical tests and demographics; independent audit reports; and a description of retorted shale disposal activities

  20. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  1. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  2. Evaluating possible industrial applications of combustible shales and shale ash wastes

    Directory of Open Access Journals (Sweden)

    Н. К. Кондрашева

    2016-08-01

    Full Text Available Today energy consumption is constantly growing while explored reserves of easily accessible oil are depleting, which is a reason why most countries tend to diversify their energy mix, develop non-hydrocarbon energy sources and use domestic types of fuel, including the low grade ones. Thereby interest is raised to such a source of hydrocarbons as combustible shales. Combustible shales appear to be one of the highest-potential types of organic raw materials, which may offset and in future even substitute oil products and gas. The paper is investigating behavior and structure of combustible shales during heat treatment in order to identify their possible industrial applications. A synchronous thermal analysis has been held, chemical composition of combustible shales’ mineral fraction and optimal conditions for shale fines briquetting have been determined.

  3. A photometric method for the estimation of the oil yield of oil shale

    Science.gov (United States)

    Cuttitta, Frank

    1951-01-01

    A method is presented for the distillation and photometric estimation of the oil yield of oil-bearing shales. The oil shale is distilled in a closed test tube and the oil extracted with toluene. The optical density of the toluene extract is used in the estimation of oil content and is converted to percentage of oil by reference to a standard curve. This curve is obtained by relating the oil yields determined by the Fischer assay method to the optical density of the toluene extract of the oil evolved by the new procedure. The new method gives results similar to those obtained by the Fischer assay method in a much shorter time. The applicability of the new method to oil-bearing shale and phosphatic shale has been tested.

  4. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G. J.

    1982-02-01

    coordinated human services and programs designed to relieve stress, to provide a sense of community, and to integrate newcomers into the community may alleviate some of the negative consequences of rapid social change. In Sec. VII, we examine the factors that lead to social disruption and other negative consequences of social change in western rural communities. The importance of policy as a variable affecting social impacts is also discussed. State and local governments have recognized the need to plan for growth although there continues to be much skepticism with regard to oil shale development. The planning activities of these governments are described in Sec. VIII. In addition to the development of comprehensive land use plans, local governments have developed mechanisms to define community needs. To prepare for growth that was forecasted for the late 1970s, local governments have obtained financial assistance from state and Federal programs to upgrade existing water and sewer systems, streets, schools, and other public facilities. Consequently, some of the communities in the region have excess capacity in their water and sewage treatment facilities and in their schools. There is a great reliance on external financial assistance for the construction of major public facilities that places heavy burdens of grantsmanship on local governments.

  5. Can shale safely host US nuclear waste?

    Science.gov (United States)

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  6. Volatile characteristic of trace elements during microwave pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Kong, Ling-wen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Oil shale is abundant in the world. Today, the industry of oil shale retorting for producing shale oil is developing owing to high price of oil in the world. In order to study migratory behavior of trace elements in oil shale at microwave pyrolysis, tests were performed in laboratory with oil shale of the Huadian deposit of China at different powers from 400 to 700 W. The trace elements As, Cd, Hg, Mo, Pb, Se, Cr, Cu, Ni, V, Zn, Ba, Co, Mn present in oil shale and shale char were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). By comparing the content of trace elements in oil shale and shale char, distribution characteristics of trace elements at retorting were studied. The overall trends of volatile ratio of trace elements are ascending with higher microwave power and higher than the conventional pyrolysis. The differences in the volatile ratio indicate that the trace elements investigated are bound with the oil shale kerogen and its mineral matter in different manner. So Float-sink experiments (FSE) were performed on oil shale. Huadian oil shale has more included mineral. The volatilization of organic matter is not the main reason for the volatilization of trace elements in oil shale. The trace elements combined with the mineral elements may be also certain volatility.

  7. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  8. Groundwater management for pollution control: a case study for oil shale mining in Northeast Estonia

    International Nuclear Information System (INIS)

    Erg, K.; Raukas, A.

    2001-01-01

    In Estonia oil shale is produced by underground and surface mining. The excavation methods used cause serious damage to the environment, especially to the topography, which hampers the further use of the mined-out areas. The oil shale mining has a serious impact on the environment also due to the pollution of surface and groundwater by polluted mine drainage waters, lowering of groundwater level, changing of soil properties and high air pollution rate. Decline in mining activities and the introduction of new technologies together with economic measures has improved the situation but much should be done during coming years. (author)

  9. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    Emission levels of selected trace metals from the Estonian oil shale fired power plant were studied. The plant is the largest single power plant in Estonia with an electricity production capacity of 1170 MWe (1995). Trace metals were sampled from the flue gases by a manual method incorporating...... in the flue gases of the studied oil shale plant contribute, however, to clearly higher total trace metal emission levels compared to modern coal fired power plants. Although the old electrostatic precipitators in the plant have been partly replaced by state-of-the-art electrostatic precipitators...... a two-fraction particle sampling and subsequent absorption of the gaseous fraction. The analyses were principally performed with ICP-MS techniques. The trace metal contents of Estonian oil shale were found to be in the same order of magnitude as of coal on average. The high total particle concentrations...

  10. Method of removing paraffin from mineral oils, shale oils, tar oils, and their fractions or residues

    Energy Technology Data Exchange (ETDEWEB)

    Palmquist, F T.E.

    1949-09-08

    A method is described for removing paraffin from mineral oils, shale oils, tar oils, and their fractions or residues by centrifuging in the presence of oil-dissolving and paraffin-precipitating solvents, by which the precipitated paraffin is made to pass through an indifferent auxiliary liquid, in which a removal of oil takes place, characterized in that as auxiliary liquid is used a liquid or mixture of liquids whose surface tension against the oil solution is sufficiently low for the paraffin to pass the layer of auxiliary liquid in the form of separate crystals.

  11. Method of recovering oils, etc. , from bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1921-05-23

    In the low-temperature distillation of bituminous shales or similar bituminous materials with high ash content for recovery of oil etc., steam or inert gases are introduced from outside through gas taps arranged in a circle in the retort. By the method used steam is introduced simultaneously in levels higher and lower than the one in which the gaseous and vaporized products are removed from the shale material and in such a manner that the zone of oil formation chiefly will be between the two places mentioned where vapors or steam are introduced into the retort. The patent has one additional claim.

  12. Oil shale research and coordination. Progress report, 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W R

    1981-01-01

    Purpose is to evaluate the environmental and health consequences of the release of toxic trace elements by an oil shale industry. Emphasis is on the five elements As, Mo, F, Se, and B. Results of four years' research are summarized and the research results over the past year are reported in this document. Reports by the task force are included as appendices, together with individual papers on various aspects of the subject topic. Separate abstracts were prepared for the eleven individual papers. A progress report on the IWG oil shale risk analysis is included at the end of this document. (DLC)

  13. Executive summary. Western oil shale developmet: a technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  14. 1170-MW(t) HTGR-PS/C plant application study report: shale oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    The US has large shale oil energy resources, and many companies have undertaken considerable effort to develop economical means to extract this oil within environmental constraints. The recoverable shale oil reserves in the US amount to 160 x 10 9 m 3 (1000 x 10 9 bbl) and are second in quantity only to coal. This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to a shale oil recovery process. Since the highest potential shale oil reserves lie in th Piceance Basin of Western Colorado, the study centers on exploiting shale oil in this region

  15. Analysis and characterization of trace elements in shale oil and shale oil products by instrumental neutron activation analysis. Master's thesis

    International Nuclear Information System (INIS)

    Shaw, P.

    1978-12-01

    Trace elements and their mobilization constitute an important consideration in the development of new fossil fuel technologies. Shale oil produced by in situ retorting of oil shale is an alternative fossil energy source. This study deals with the analysis of trace elements in various shale oil products using instrumental neutron activation analysis (INAA). INAA offers several advantages for those elements for which it is applicable. The greatest advantage is the lack of sample preparation prior to analysis, which greatly simplifies the process and prevents sample contamination. The elements for which analyses are reported in this study are aluminum, antimony, arsenic, bromine, cerium, chlorine, chromium, cobalt, copper, gallium, gold, iodine, iron, manganese, mercury, molybdenum, potassium, selenium, sodium, sulfur, tungsten, vanadium, and zinc

  16. Energy security of supply and oil shale resources

    International Nuclear Information System (INIS)

    Elkarmi, F.

    1994-01-01

    Jordan must utilize its huge oil shale deposits in order to increase domestic security of energy supply and benefit financially. Utilization processes will require large scale financial expenditures, beyond Jordan's means. Therefore, the BOT scheme seems to be the perfects solution. Since oil shale retorting technology will produce oil which can be traded to generate valuable foreign exchange revenues, it is more advantageous than direct burning technology which produces electricity limited to local consumption regardless of economics. Under the BOT scheme, the incentive, for the foreign sponsor is to return his investment via quantities of oil; for Jordan the aim is to meet local energy demand and acquire the plant infrastructure in the long term. Recent events in the more traditional oil fields of the region make such a project in Jordan more attractive. (author) 3 tabs. 2 figs

  17. Trace elements in oil shale. Progress report, 1976--1979

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W.R.

    1979-01-01

    The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements (As, B, F, Mo, Se) by shale oil production and use. Some of the particularly significant results are: The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. This implies that the number of analytical determinations required of processed shales is not large. Leachate studies show that significant amounts of B, F, And Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements ae not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Upon oxidation a drastic lowering in pH is observed. Preliminary data indicates that this oxidation is catalyzed by bacteria. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. These amounts depend upon the process and various site specific characteristics. In general, the amounts taken up decrease with increasing soil cover. On the other hand, we have not observed significant uptake of As, Se, and F into plants. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. In particular, most of the Cd, Se, and Cr in shale oil is associated with the organic fraction containing most of the nitrogen-containing compounds.

  18. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2017-06-01

    Full Text Available Air injection in light oil reservoirs has received considerable attention as an effective, improved oil recovery process, based primarily on the success of several projects within the Williston Basin in the United States. The main mechanism of air injection is the oxidation behavior between oxygen and crude oil in the reservoir. Air injection is a good option because of its wide availability and low cost. Whether air injection can be applied to shale is an interesting topic from both economic and technical perspectives. This paper initiates a comprehensive discussion on the feasibility and potential of air injection in shale oil reservoirs based on state-of-the-art literature review. Favorable and unfavorable effects of using air injection are discussed in an analogy analysis on geology, reservoir features, temperature, pressure, and petrophysical, mineral and crude oil properties of shale oil reservoirs. The available data comparison of the historically successful air injection projects with typical shale oil reservoirs in the U.S. is summarized in this paper. Some operation methods to improve air injection performance are recommended. This paper provides an avenue for us to make use of many of the favorable conditions of shale oil reservoirs for implementing air injection, or air huff ‘n’ puff injection, and the low cost of air has the potential to improve oil recovery in shale oil reservoirs. This analysis may stimulate further investigation.

  19. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    Science.gov (United States)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  20. A novel waste water cleanup, fines sequestration and consolidation technology for oil sands applications

    Energy Technology Data Exchange (ETDEWEB)

    Soane, D.; Ware, W.; Mahoney, R.; Kincaid, P. [Soane Energy LLC, Cambridge, MA (United States)

    2010-07-01

    This paper discussed a wastewater technology designed to rapidly sequester suspended fines and other pollutants from the tailings produced during oil sands processes. The technology can also be used to clarify existing tailings ponds, and is expected to help address growing environmental concerns over the remediation of oil sands tailings. The ATA system is comprised of the following 3 components: (1) an activator polymer, (2) a tether polymer, and (3) an anchor particle. A small dose of the activator polymer is added to the fine or mature tailings, which then causes the suspended clay fines to aggregate. The anchor particles are then coated with the tether polymer. The anchor particle is formed from sand derived from coarser tailings. The tether-bearing anchor particles bind to the aggregated clay fines in the activated tailings to form robust complexes that can easily be separated from the waste stream. Output streams from the ATA process include a clean water stream that can be reused in oil sands extraction processes; and a dewatered solid that can be used as landfill as well as in construction and reclamation applications. The sensible heat retained in the recycled water is expected to also reduce the energy requirements of the oil sands extraction process. 6 refs., 1 tab., 5 figs.

  1. Methane gas generation from waste water extraction process of crude palm oil in experimental digesters

    Science.gov (United States)

    Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.

    2015-12-01

    Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.

  2. 78 FR 18547 - Oil Shale Management-General

    Science.gov (United States)

    2013-03-27

    ... the future below the point at which oil shale production would be profitable (i.e., competitive with... competition, employment, investment, productivity, innovation, or on the ability of United States-based..., innovation, or on the ability of United States-based enterprises to compete with foreign- based enterprises...

  3. Fingerprinting Marcellus Shale waste products from Pb isotope and trace metal perspectives

    International Nuclear Information System (INIS)

    Johnson, Jason D.; Graney, Joseph R.

    2015-01-01

    Highlights: • Dry drilled, uncontaminated cuttings from Marcellus Shale and surrounding units. • Unoxidized and oxidized samples leached short and long term with H 2 O or dilute HCl. • Pb isotope ratios have distinctly different values from Marcellus Shale samples. • Mo and other trace metals can be used as Marcellus Shale environmental tracers. • Marcellus Shale leachate concentrations can exceed EPA contaminant screening levels. - Abstract: Drill cuttings generated during unconventional natural gas extraction from the Marcellus Shale, Appalachian Basin, U.S.A., generally contain a very large component of organic-rich black shale because of extensive lateral drilling into this target unit. In this study, element concentrations and Pb isotope ratios obtained from leached drill cuttings spanning 600 m of stratigraphic section were used to assess the potential for short and long term environmental impacts from Marcellus Shale waste materials, in comparison with material from surrounding formations. Leachates of the units above, below and within the Marcellus Shale yielded Cl/Br ratios of 100–150, similar to produced water values. Leachates from oxidized and unoxidized drill cuttings from the Marcellus Shale contain distinct suites of elevated trace metal concentrations, including Cd, Cu, Mo, Ni, Sb, U, V and Zn. The most elevated Mo, Ni, Sb, U, and V concentrations are found in leachates from the lower portion of the Marcellus Shale, the section typically exploited for natural gas production. In addition, lower 207 Pb/ 206 Pb ratios within the lower Marcellus Shale (0.661–0.733) provide a distinctive fingerprint from formations above (0.822–0.846) and below (0.796–0.810), reflecting 206 Pb produced as a result of in situ 238 U decay within this organic rich black shale. Trace metal concentrations from the Marcellus Shale leachates are similar to total metal concentrations from other black shales. These metal concentrations can exceed screening

  4. Apparatus for utilizing liquid hydrocarbons such as shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dorset, M

    1868-02-29

    The hydrocarbon liquids such as petroleum, shale oil, naphtha, cresol, coal tar, or other mineral, animal or vegetable oil are placed in a heater or special generator analogous to ordinary generators for vapors and to which the name vaporizer has been given in the description. This vaporizer is furnished with all kinds of safety devices, such as valves, manometer, float indicating the level, standard stopcock, etc., and is heated by the combustion of the vapors produced by it.

  5. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants

    International Nuclear Information System (INIS)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-01-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11–12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO 2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the 238 U ( 238 U, 226 Ra, 210 Pb) and 232 Th ( 232 Th, 228 Ra) family radionuclides as well as 40 K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in

  6. Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Joao Felipe G.; Lucena, Izabelly Larissa; Saboya, Rosana M. Alves; Rodrigues, Marcelo L.; Torres, Antonio Eurico B.; Fernandes, Fabiano A. Narciso; Cavalcante, Celio L. Jr. [Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus do Pici, Bl. 709, 60455-760, Fortaleza, CE (Brazil); Parente, Expedito Jose S. Jr. [Tecnologias Bioenergeticas (TECBIO), PARTEC, Rua Prof. Romulo Proenca, s/n, CEP 60455-700, Fortaleza, CE (Brazil)

    2010-11-15

    The production of biodiesel by esterification with ethanol using waste oil generated in the refining of coconut oil was investigated in this study. The reaction was performed with and without adsorption of water in order to verify the effect of removing water on the reaction conversion. Methanol was also evaluated as an esterification agent. For both ethanol and methanol, conversions over 99% mol were observed. Simultaneous water adsorption allowed the use of lower alcohol/oil molar ratios thus enabling better economics to a possible industrial process. (author)

  7. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  8. Future strategies for oil shale development as a new indigenous energy resource in Jordan

    International Nuclear Information System (INIS)

    Jaber, J.O.; Tarawneh, T.

    2011-01-01

    Indigenous oil shale deposits could satisfy Jordan's demand for liquid and gaseous fuels as well as electricity for many centuries. Markets also exist for raw and retorted oil shale, spent shale, and for sulfur recovered during the upgrading and refining of crude shale oil. Although the potential benefits of oil shale development are substantial, complex and expensive facilities would be required, and these have serious economic, environmental, and social implications for the Kingdom and its people. In January 2006, the United States Trade and Development Agency (USTDA) awarded a grant to the Jordanian Ministry of Planning and International Cooperation to support the analysis of current oil shale processing technologies and the application of international expertise to the development of a oil shale industry in Jordan. The goal of the technical assistance project was to help the Government of Jordan (GoJ) establish short and long-term strategies for oil shale development and to facilitate the commercial production of shale oil in the country. This paper discusses the results of the project. The Kingdom's current energy situation and its previous work on oil shale are summarized, and the incentives and restraints on oil shale commercialization are described. Impediments to development are identified, and possible governmental responses are assessed. (author)

  9. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  10. Preliminary analysis of surface mining options for Naval Oil Shale Reserve 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-20

    The study was undertaken to determine the economic viability of surface mining to exploit the reserves. It is based on resource information already developed for NOSR 1 and conceptual designs of mining systems compatible with this resource. Environmental considerations as they relate to surface mining have been addressed qualitatively. The conclusions on economic viability were based primarily on mining costs projected from other industries using surface mining. An analysis of surface mining for the NOSR 1 resource was performed based on its particular overburden thickness, oil shale thickness, oil shale grade, and topography. This evaluation considered reclamation of the surface as part of its design and cost estimate. The capital costs for mining 25 GPT and 30 GPT shale and the operating costs for mining 25 GPT, 30 GPT, and 35 GPT shale are presented. The relationship between operating cost and stripping ratio, and the break-even stripping ratio (BESR) for surface mining to be competitive with room-and-pillar mining, are shown. Identification of potential environmental impacts shows that environmental control procedures for surface mining are more difficult to implement than those for underground mining. The following three areas are of prime concern: maintenance of air quality standards by disruption, movement, and placement of large quantities of overburden; disruption or cutting of aquifers during the mining process which affect area water supplies; and potential mineral leaching from spent shales into the aquifers. Although it is an operational benefit to place spent shale in the open pit, leaching of the spent shales and contamination of the water is detrimental. It is therefore concluded that surface mining on NOSR 1 currently is neither economically desirable nor environmentally safe. Stringent mitigation measures would have to be implemented to overcome some of the potential environmental hazards.

  11. The Messel oil shale - an algae laminate. [A]. Der Messeler Oelschiefer - ein Algenlaminit

    Energy Technology Data Exchange (ETDEWEB)

    Goth, K. (Forschungsinstitut Senckenberg, Frankfurt am Main (Germany). Palaeontologische Sektion)

    1990-12-31

    The lacustrine sediment exposed at the former open cast mine 'Grube Messel', the Messel Oil Shale, consists of allochthonous, autochthonous and autigenous components. A low sedimentation rate (0,1-0,2 mm/a) and an increasing content of coarser clastic material towards the edges of the structure indicate that the Messel lake was small and deep, with a limited drainage basin. The high organic content of the oil shale is made up mainly by cell walls of the coccal green alga Tetraedron minimum. This alga bloomed once a year and caused the lamination of the sediment, which was achieved by sinking of the dead cells. Synsedimentary slumping and sliding of the uppermost sediment layers destroyed the varve pattern in several horizons. These turbidite-like layers often yield a higher amount of coarse grains than the laminations above and below. By counting the seasonal laminae, and taking into account of slumped sediments an age of one million years for the deposition of the Messel Oil Shale is suggested. In extant lakes varved sediments are usually deposited below a chemocline. Therefore a meromictic stratification of the Messel lake water column is suggested. Chemical analyses of Tetraedron minimum cell wall material revealed that it is composed of a highly aliphatic biopolymer. In the Messel Oil Shale this biopolymer forms the kerogen which is, in this case, a result of selective preservation, not of abiological random polymerization of monomers during diagnesis. (orig.) With 29 tabs., 27 figs.

  12. Simultaneous caving and surface restoration system for oil shale mining

    Energy Technology Data Exchange (ETDEWEB)

    Allsman, P.T.

    1968-10-01

    A modified caving method is introduced for mining oil shale and simultaneous restoration of the land surface by return of spent shale onto the subsided area. Other methods have been designed to mine the relatively thin richer beds occurring near outcrops in the Piceance Creek Basin of NW. Colorado. Since the discovery of the much thicker beds in the N.-central part of the basin, some attention has focused on in situ and open-pit methods of recovery. Although caving has been recognized as a possible means of mining shale, most people have been skeptical of its success. This stems from the unknown and salient factors of cavability and size of broken rock with caving. Wisdom would seem to dictate that serious evaluation of the caving method be made along with the other methods.

  13. Method of recovering oil from alum shales. [heating by electric currents

    Energy Technology Data Exchange (ETDEWEB)

    Wennerstrom, K G

    1918-06-04

    A method of treating alum shale and other bituminous shales in order to extract oil et cetera, is characterized by bringing the shale to a temperature at which it melts, and at which the necessary amount of heat is transferred to the molten shale to be distilled. The patent claim is characterized by heating the shale by means of electric current. The patent has one additional claim.

  14. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  15. Plan and justification for a Proof-of-Concept oil shale facility

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  16. Detachment of particulate iron sulfide during shale-water interaction

    Science.gov (United States)

    Emmanuel, S.; Kreisserman, Y.

    2017-12-01

    Hydraulic fracturing, a commonly used technique to extract oil and gas from shales, is controversial in part because of the threat it poses to water resources. The technique involves the injection into the subsurface of large amounts of fluid, which can become contaminated by fluid-rock interaction. The dissolution of pyrite is thought to be a primary pathway for the contamination of fracturing fluids with toxic elements, such as arsenic and lead. In this study, we use direct observations with atomic force microscopy to show that the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment of embedded pyrite grains. To simulate the way fluid interacts with a fractured shale surface, we also reacted rock samples in a flow-through cell, and used environmental scanning electron microscopy to compare the surfaces before and after interaction with water. Crucially, our results show that the flux of particulate iron sulfide into the fluid may be orders of magnitude higher than the flux of pyrite from chemical dissolution. This result suggests that mechanical detachment of pyrite grains could be the dominant mode by which arsenic and other inorganic elements are mobilized in the subsurface. Thus, during hydraulic fracturing operations and in groundwater systems containing pyrite, the transport of many toxic species may be controlled by the transport of colloidal iron sulfide particles.

  17. Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?

    Science.gov (United States)

    Hughes, J. D.

    2012-12-01

    as a new "Saudi Arabia" of oil. Growth in production has been spectacular, but currently amounts to just one million barrels per day which is less than 15 percent of US oil and other liquids production. Tight oil is offsetting declines in conventional crude oil production as well as contributing to a modest production increase from the 40-year US crude oil production low of 2008. The mantra that natural gas is a "transition fuel" to a low carbon future is false. The environmental costs of shale gas extraction have been documented in legions of anecdotal and scientific reports. Methane and fracture fluid contamination of groundwater, induced seismicity from fracture water injection, industrialized landscapes and air emissions, and the fact that near term emissions from shale gas generation of electricity are worse than coal. Tight oil also comes with environmental costs but has been a saviour in that it at least temporarily arrested a terminal decline in US oil production. A sane energy security strategy for America must focus on radically reducing energy consumption through investments in infrastructure that provides alternatives to our current high energy throughput. Shale gas and tight oil will be an important contributors to future energy requirements, given that other gas and oil sources are declining, but there is no free lunch.

  18. Method of refining mineral and shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    1950-12-06

    A method is described for refining mineral oils, shale oils, tar oil. The oil is preferably treated with concentrated sulphuric acid, of not less than 90% by weight concentration or with chloro-sulphonic acid in order to extract the more reactive components of the oil. The solution (extract phase) is separated from the treated oil (raffinate phase) by centrifuging, characterised by centrifugally separating the extract phase from the raffinate phase before any noticeable chemical reaction with subsequent solution of acid reaction products in the raffinate phase has taken place. The acid remaining in the raffinate phase is allowed to react chemically with the more reactive constituents. The sludge formed is removed from the raffinate phase by centrifuging.

  19. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  20. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    Science.gov (United States)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  1. Study the Growth of Microalgae in Palm Oil Mill Effluent Waste Water

    International Nuclear Information System (INIS)

    Selmani, Nabila; Mirghani, Mohamed E S; Alam, Md Zahangir

    2013-01-01

    This paper emphasizes mainly on the biomass productivity and lipids content of two microalgae strains known by their high lipids content namely: Botryoccoccus sudeticus and Chlorella vulgaris. These strains were first screened for the highest biomass and lipids content, then Plackett–Burman design was used to evaluate the significant media for the growth when using POME waste water as culture medium. Results show that Botryoccocus sudeticus contains high content of biomass and lipids yield. Moreover, all the three factors have positive effect on the biomass productivity, while using one nutrient factor gives much lower biomass. These results can be used further as an insight for optimizing the biomass and the oil productivity of the microalgae.

  2. Pyrolysis characteristics and kinetics of oil-based drilling cuttings in shale gas developing

    Science.gov (United States)

    Huang, Chuan; Li, Tong; Xu, Tengtun; Zeng, Yunmin; Song, Xue

    2018-03-01

    In this paper, the thermal behavior of waste oil-based drilling cuttings (from shale gas fields in Chongqing) was examined at different heating rates ranging from 5 to 15 °C min-1 in inert atmosphere using a sync analyzer of thermogravimetry (TG) and differential scanning calorimetry (DSC). Four methods were used to analyze the distributions and variations of kinetics parameter (active energy (E) and frequency gene (A)): Coats-Redfern and other three iso-conversion rate methods (Flynn-Wall-Ozawa, Vyazovkin and Friedman). The experimental results indicated that the process consists of three steps, i.e., water evaporation, volatilization of light oil component and heavy oil cracking. TG curves moved toward higher temperature zone caused by thermal hysteresis with the increase of temperature rising rate. For volatilization of lightweight components, the E calculated by three iso-conversion rate methods changed a little with conversion, and had almost the same results as the CR method (14.39˜20.08 kJ.mol-1). For reactions of heavy oil cracking with mixed mechanism, corresponding E rose gradually with the increase of reaction time. The CR method shows nonlinear trends and the reaction models and kinetic parameters cannot be extracted from CR curves. The results by three iso-conversion methods showed that apparent activation energy was given as 155.74˜561.10 kJ.mol-1, 141.06˜524.96 kJ.mol-1 and 74.37˜605.10 kJ.mol-1, respectively.

  3. [Purification of waste water from olive-oil pressing plants using hydrophytes. Preliminary study on the use of Eichornia crassipes].

    Science.gov (United States)

    Ferrara, L; Forgione, P; Schettino, O; Rullo, V

    1989-04-01

    The use of Eichornia crassipes has been tested in order to depurate the waste water from olive oil factories. The control of some parameter variations during the treatment, such as COD, total azote, dissolved oxygen and pH, has given encouraging results about the depurative efficacy of employed hydrophytae. Particularly indicative is, in this regard, COD rejection of about 60%.

  4. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  5. Centennial review-forecast--oil sands, shales spar for markets

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1967-09-01

    The relationship between possible developments of tar sands and oil shale deposits to the future of the oil and gas industry is examined. The Athabasca tar sands are estimated to contain 85 billion bbl of synthetic crude oil which can be exploited using currently available mining equipment and proven techniques. Another 240 billion bbl of synthetic crude are potentially available through in-situ extraction methods. Great Canadian Oil Sands Ltd. is using an extraction procedure which involves a surface mining operation, extraction and processing of the bitumen, and product shipments via a 266-mile pipeline. This procedure will be used to produce 45,000 bpd of synthetic crude and 300 ton per day of sulfur. Syncrude Canada Ltd. and Shell Canada Ltd. both have applied to the Alberta government for permission to operate 100,000-bpd operations. Syncrudes is a mining operation and Shell plans to use in-situ extraction. A number of companies have conducted research projects concerning shale oil recovery. The majority of these projects have been aimed at improving mining operations. In-situ retorting of kerogen and extraction of oil has also received consideration.

  6. Revegetation research on oil shale lands in the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Redente, E.F.; Cook, C.W.

    1981-02-01

    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Satisfactory stands of vegetation failed to establish on unleached retorted shale during two successive years of seeding. All seedings with soil over retorted shale were judged to be successful at the end of three growing seasons, but deep-rooted shrubs that depend upon subsoil moisture may have their growth hampered by the retorted shale substrate. Natural revegetation on areas with various degrees of disturbance shows that natural invasion and succession was slow at best. Invasion of species on disturbed topsoil plots showed that after three years introduced seed mixtures were more effective than native mixtures in occupying space and closing the community to invading species. Fertilizer appears to encourage the invasion of annual plants even after the third year following application. Long-term storage of topsoil without vegetation significantly decreases the mycorrhizal infection potential and, therefore, decreases the relative success of aboveground vegetation and subsequent succession. Ecotypic differentation related to growth and competitive ability, moisture stress tolerance, and reproductive potential have been found in five native shrub species. Germplasm sources of two grasses and two legumes, that have shown promise as revegetation species, have been collected and evaluated for the production of test seed. Fertilizer (nitrogen) when added to the soil at the time of planting may encourage competition from annual weeds to the detriment of seeded species.

  7. Method of distillation of shale. [addition of water to vertical retort

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, G H

    1915-09-11

    The method is characterized by adding water, finely distributed, to the warm shale being distilled in a vertical retort. By this procedure steam is generated which will drive out and protect the distilled oil vapors. The adding of finely distributed water, already mentioned, takes place in special chambers under the retort.

  8. Technogenic waterflows generated by oil shale mining: impact on Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Liblik, V.

    2000-01-01

    The correlation between natural (meteorological, hydrological) and technogenic (mining-technological, hydrogeological, hydrochemical) factors caused by oil shale mining in the Purtse catchment region in northeastern Estonia during 1990-1998 has been studied. As a result of a complex effect of these factors (correlation coefficients r = 0. 60-0.86), a so-called hydrogeological circulation of water has been formed in the catchment area. It totals 25-40 % from the whole amount of mine water pumped out at the present, but in the near future it will reach even up to 50-55 %. On the ground of average data, a conceptual balance scheme of water circulation (cycles) for the Purtse catchment landscape has been worked out. It shows that under the influence of technogenic waterflows a new, anthropogenic biogeochemical matter cycling from geological environment into hydrological one has been formed in this catchment area. Transition of the macro- and microelements existing in the composition of oil shale into the aqueous solution and their distribution in mine water are in a good harmony with the so-called arrangement of the elements by the electrode potentials. The technogenic hydrochemical conditions arising in the catchment rivers will not disappear even after finishing oil shale mining. (author)

  9. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    Science.gov (United States)

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  10. Oil and grease (O&G) removal from commercial kitchen waste water using carbonised grass as a key media

    OpenAIRE

    Rahmat Siti Nazahiyah; Mohd Ali Ahmad Zurisman; Wan Ibrahim Mohd Haziman; Alias Nur Azrena

    2017-01-01

    Oil and grease (O&G) are usually found in kitchen waste water. O&G are poorly soluble in water and can cause serious problems during the wastewater treatment. Adsorption is a fundamental process in the treatment of kitchen waste water and very economical. Activated carbon is the most effective adsorbent for this application. Therefore, the aim of the current study is to determine the potential of four materials (i.e. sand, gravel, carbonised grass (CG) and clay powder) as filter media for O&G...

  11. Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)

    Science.gov (United States)

    Shephard, L. E.; Oshikanlu, T.

    2013-12-01

    The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and

  12. Deep hydrotreating of middle distillates from crude and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Landau, M.V. [The Blechner Center for Industrial Catalysis and Process Development, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    1997-06-20

    The potential scientific and technological solutions to the problems that appear as a result of shifting the hydrotreating of crude oil middle distillates and shale oils from the `normal` to the `deep` mode are considered on the basis of the reactivities and transformation routes of the least-reactive sulfur-, nitrogen-, and oxygen-containing compounds. The efficiency of selecting the optimal feedstock, increasing the process severity, improving the catalysts activity, and using alternative catalytic routes are compared, taking into account the specific issues related to deep hydrodesulfurization/hydrodenitrogenation/hydrodeoxygenation, i.e., chemical aspects, kinetics and catalysts

  13. Characteristic of oil-shale in Achibo-Sombo area of Yayu coalfield in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Tang, Z. [Exploration Institute of Shandong Coal Geology Bureau, Taian (China)

    2001-02-01

    On the basis of introducing the location, condition of strata, and the development of the coal-bearing strata of Achibo-Sombo area of Yayu coal field in Ethiopia, the distributing regularities, thickness, physical and chemical characteristics of the oil-shale in this area which are of industrial utilization are studied. And the reserves of the oil-shale has been calculated. The various aspects of industrial utilization of oil-shale are outlined. 2 figs., 3 tabs.

  14. Technical considerations for Plowshare applications to oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, David B [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States); Bray, Bruce G [CER Geonuclear Corporation, Las Vegas, NV (United States); Sohns, Harold W [U. S. Bureau of Mines, Laramie, WY (United States)

    1970-05-15

    Nuclear explosions have been proposed for use in the recovery of oil from deep oil shale deposits. Before commercial feasibility can be established, a variety of technical problems must be examined. Some of these are related to nuclear explosion effects, others to the recovery of oil from the broken rock. Among the primary areas of interest are fracturing, chimney collapse, rubble size distribution, radioactivity, and retorting methods and variables. To test the concept, nuclear explosion experiments will be needed. One such experiment. Project Bronco, has been designed in detail, and is used here to illustrate a possible direction of development. The design is based on the following objectives: to evaluate the overall feasibility of nuclear breaking, followed by in situ retorting; to investigate the gross physical effects of a nuclear explosion in oil shale, and to assess the role of radioactivities in the production of oil by in situ retorting. The experimental plan provides for the accomplishment of these objectives by appropriate preshot studies, a postshot examination of explosion effects, and experimental retorting of the nuclear chimney. (author)

  15. Technical considerations for Plowshare applications to oil shale

    International Nuclear Information System (INIS)

    Lombard, David B.; Bray, Bruce G.; Sohns, Harold W.

    1970-01-01

    Nuclear explosions have been proposed for use in the recovery of oil from deep oil shale deposits. Before commercial feasibility can be established, a variety of technical problems must be examined. Some of these are related to nuclear explosion effects, others to the recovery of oil from the broken rock. Among the primary areas of interest are fracturing, chimney collapse, rubble size distribution, radioactivity, and retorting methods and variables. To test the concept, nuclear explosion experiments will be needed. One such experiment. Project Bronco, has been designed in detail, and is used here to illustrate a possible direction of development. The design is based on the following objectives: to evaluate the overall feasibility of nuclear breaking, followed by in situ retorting; to investigate the gross physical effects of a nuclear explosion in oil shale, and to assess the role of radioactivities in the production of oil by in situ retorting. The experimental plan provides for the accomplishment of these objectives by appropriate preshot studies, a postshot examination of explosion effects, and experimental retorting of the nuclear chimney. (author)

  16. Bats of the Colorado oil shale region

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.B. Jr.; Caire, W.; Wilhelm, D.E.

    1984-10-31

    New records for Myotis californicus, M. evotis, M. leibii, M. lucifugus, M. thysanodes, M. volans, M. yumanensis, Lasionycteris noctivagans, Pipistrellus hesperus, Eptesicus fuscus, Lasiurus cinereus, Plecotus townsendii, and Antrozous pallidus and their habitat occurrence in northwestern Colorado are reported. Mortality of 27 bats of six species trapped in an oil sludge pit is described. 7 references.

  17. Treating shale oil to obtain sulfonates

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, H

    1921-01-21

    The process shows as its principal characteristics: (1) treating the oil with chlorsulfonic acid at a temperature of about 100/sup 0/C; (2) the transformation of the sulfonic acid obtained into salts; (3) as new industrial products, the sulfonates obtained and their industrial application as disinfectants for hides and wood.

  18. Assessment of in-place oil shale resources of the Eocene Green River Formation, a foundation for calculating recoverable resources

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracy

    2011-01-01

    The recently completed assessment of in-place resources of the Eocene Green River Formation in the Piceance Basin, Colorado; the Uinta Basin, Utah and Colorado; and the Greater Green River Basin Wyoming, Colorado, and Utah and their accompanying ArcGIS projects will form the foundation for estimating technically-recoverable resources in those areas. Different estimates will be made for each of the various above-ground and in-situ recovery methodologies currently being developed. Information required for these estimates include but are not limited to (1) estimates of the amount of oil shale that exceeds various grades, (2) overburden calculations, (3) a better understanding of oil shale saline facies, and (4) a better understanding of the distribution of various oil shale mineral facies. Estimates for the first two are on-going, and some have been published. The present extent of the saline facies in all three basins is fairly well understood, however, their original extent prior to ground water leaching has not been studied in detail. These leached intervals, which have enhanced porosity and permeability due to vugs and fractures and contain significant ground water resources, are being studied from available core descriptions. A database of all available xray mineralogy data for the oil shale interval is being constructed to better determine the extents of the various mineral facies. Once these studies are finished, the amount of oil shale with various mineralogical and physical properties will be determined.

  19. Shale across Scales from the Depths of Sedimentary Basins to Soil and Water at Earth's Surface

    Science.gov (United States)

    Brantley, S. L.; Gu, X.

    2017-12-01

    Shale has become highly important on the world stage because it can host natural gas. In addition, shale is now targeted as a formation that can host repositories for disposal of radioactive waste. This newly recognized importance of shale has driven increased research into the nature of this unusual material. Much of this research incorporates characterization tools that probe shale at scales from nanometers to millimeters. Many of the talks in this Union session discuss these techniques and how scientists use them to understand how they impact the flow of fluids at larger scales. Another research avenue targets how material properties affect soil formation on this lithology and how water quality is affected in sedimentary basins where shale gas resources are under development. For example, minerals in shale are dominated by clays aligned along bedding. As the shales are exhumed and exposed at the surface during weathering, bedding planes open and fractures and microfractures form, allowing outfluxes or influxes of fluids. These phenomena result in specific patterns of fluid flow and, eventually, soil formation and landscape development. Specifically, in the Marcellus Formation gas play - the largest shale gas play in the U.S.A. - exposures of the shale at the surface result in deep oxidation of pyrite and organic matter, deep dissolution of carbonates, and relatively shallow alteration of clays. Micron-sized particles are also lost from all depths above the oxidation front. These characteristics result in deeply weathered and quickly eroded landscapes, and may also be related to patterns in water quality in shale gas plays. For example, across the entire Marcellus shale gas play in Pennsylvania, the single most common water quality issue is contamination by natural gas. This contamination is rare and is observed to be more prevalent in certain areas. These areas are likely related to shale material properties and geological structure. Specifically, natural gas

  20. Performance Assessments of Generic Nuclear Waste Repositories in Shale

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.

    2017-12-01

    Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National

  1. Extraction of essential oil from baby Java orange (Citrus sinensis) solid waste using water and steam distillation

    Science.gov (United States)

    Dewi, I. A.; Prastyo, A. M.; Wijana, S.

    2018-03-01

    Baby java orange (Citrus sinensis) is commonly consumed as juice. Processing of baby java orange leaves organic waste which consist of the mesocarp, exocarp, seed, and wall of the orange. Therefore, it is necessary to process baby java orange waste to be valuable products. The purpose of this study was to provide added value to unutilized baby java orange waste, and to find out the pretreatment of time-delay process that maximize the yield of essential oil produced. Essential oil processing can be done by water and steam distillation. The study used randomized block design with one factor namely distillation time-delay process by air drying consisted of 4 levels i.e. the distillation delay for 2, 4, 6, and 8 days. The best treatment was determined based on the yield. The best essential oil from baby java orange waste was obtained from the treatment of distillation delay-process of 8 days. This pretreatment generated yield value of 0.63% with moisture content of 24.21%. By estimating the price of essential oil showed that this effort not only reduced the bulky organic waste but also provided potential economical value.

  2. Scoping of oil shale retorting with nuclear fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1983-01-01

    An engineering scoping study was conducted at the U.S. Department of Energy's request to see if a feasible concept could be developed for using nuclear fusion heat to improve in situ extraction by retorting of underground oil shale. It was found that a fusion heated, oxygen-free inert gas could be used for driving modified, in situ retorts at a higher yield, using lower grade shale and producing less environmental problems than present-day processes. It was also found to be economically attractive with return on investments of 20 to 30%. Fusion blanket technology required was found to be reasonable at hot gas delivery temperatures of about650 0 C (920 K). The scale of a fusion reactor at 2.8 GW(thermal) producing 45 000 Mg/day (335 000 barrel/day) was also found to be reasonable

  3. The Hobbs Oil and Water Experimental Facility of the Waste-Management Education and Research Consortium

    International Nuclear Information System (INIS)

    Martin, F.D.; Bretz, R.E.; Bowman, R.S.; Kieft, T.L.; Cadena, F.

    1992-01-01

    The Hobbs Oil and Water Experimental (HOWE) Facility came on-line as a research component of the Waste-Management Education and Research Consortium (WERC) when funding for the Consortium became official in late February 1990. As a support facility for WERC, which was established to expand the ability of this nation to manage hazardous, radioactive, and solid wastes through a multidisciplinary approach, HOWE can tap into the expertise that resides at three major New Mexico universities, on Native American community college, and two national laboratories. The intention of the HOWE is to provide education, as well as research and development programs, that reflect concerns of the petroleum industry in the United States. Personnel work to solve environmental problems and assess the impact to the industry of regulatory actions pertaining to those problems. Leadership for the program is provided from the New Mexico Institute of Mining and Technology at Socorro, NM, by Technical Leaders F.D. Martin, Director of the Petroleum Recovery Research Center, and Dr. R.E. Bretz of the petroleum engineering faculty. The HOWE site is administered by Mike DeMarco, Director of the Petroleum Technology Program at the New Mexico Junior College in Hobbs, NM. Currently, the HOWE laboratory is being provided with state-of-the-art equipment to support research projects or field demonstration activities. Programs include research pertaining to groundwater pollution transport processes, slurry-phase bioremediation of oilfield production pit sludges, and treatment of produced brines or contaminated waters. This paper introduces the HOWE and discusses the research programs relevant to the petroleum industry that are presently underway or planned. Future collaborative efforts with industry that are presently underway or planned. Future collaborative efforts with industry groups are being encouraged

  4. Risks to Water Resources from Shale Gas Development and Hydraulic Fracturing in the United States

    Science.gov (United States)

    Vengosh, Avner; Jackson, Robert B.; Warner, Nathaniel; Darrah, Thomas H.; Kondash, Andrew

    2014-05-01

    The rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded oil and gas exploration in the USA. The rapid rate of shale gas exploration has triggered an intense public debate regarding the potential environmental and human health effects. A review of the updated literature has identified four potential risks for impacts on water resources: (1) stray gas contamination of shallow aquifers near shale gas sites; (2) contamination of surface water and shallow groundwater from spills, leaks, and disposal of inadequately treated wastewater or hydraulic fracturing fluids; (3) accumulation of toxic and radioactive residues in soil or stream sediments near disposal or spill sites; and (4) over-extraction of water resources for drilling and hydraulic fracturing that could induce water shortages and conflicts with other water users, particularly in water-scarce areas. As part of a long-term research on the potential water contamination associated with shale gas development, new geochemical and isotopic techniques have been developed for delineating the origin of gases and contaminants in water resource. In particular, multiple geochemical and isotopic (carbon isotopes in hydrocarbons, noble gas, strontium, boron, radium isotopes) tracers have been utilized to distinguish between naturally occurring dissolved gas and salts in water and contamination directly induced from shale gas drilling and hydraulic fracturing operations.

  5. Numerical Simulation of In Situ Combustion of Oil Shale

    Directory of Open Access Journals (Sweden)

    Huan Zheng

    2017-01-01

    Full Text Available This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.

  6. Method of enriching oil shale concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, M

    1942-02-14

    The method is characterized by producing one concentrate first and then this concentrate, in water solution using suitable apparatus, is separated by settling into one heavier bottom portion, rich in mineral matter, and into a lighter slime containing concentrated organic substance.

  7. Optimizing Degradation of Olive Oil Mill Waste Water Using Paecilomyces variotii

    International Nuclear Information System (INIS)

    Khatab, O.K.; El-Nasr, A.A.; Hassan, A.A.; Abdel El- Aziz, A.B.; Zaki, G.H.

    2013-01-01

    Twenty six microbial isolates (ten fungal, nine yeast and seven bacterial isolates) were isolated from the Olive Oil Mill Waste Water (OOMW) which was extracted from effluent of olive oil industry factory. All isolates were tested for its growth on media containing 10% OOMW as sole carbon source. It was found that (three fungal, two yeast and two bacterial isolates) had the ability to grow on this concentration. These isolates were identified as Paecilomyces variotii, Ascopus stercoraris, Aspergillus terrus, Yarowia lipolytica, Candida tropicalis, Lactobacillus curvatus and Bacillus brevis. The identified isolates were tested for the biodegradation of phenolic compounds at high concentration of OOMW (25%). Paecilomyces variotii was the best isolate as it degraded 10.40 % of the phenolic compounds. The maximum degradation of phenolic compounds and chemical oxygen demand (COD) decrease percentage was (68.14 and 59.12, respectively) obtained at 50% dilution of OOMW for 12 days at 37±1 degree C, ph 6, supplement the degradation media with 150 mg/l sucrose, 2.5 g/l yeast extract and 0.070 mmol/l CuSO 4 concentration in aerobic conditions with aeration rate 4:1 (v air: v media), shaking at 150 rpm and 6 g/l inoculums size. In addition, 0.25 kGy was the best dose as it led to increase the phenolic compounds biodegradation percent 8.7% than the optimum conditions previously mentioned. Finally, the bio treated OOMW was lower toxicity to environment than untreated one.

  8. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  9. Spectroscopic and chromatographic analysis of oil from an oil shale flash pyrolysis unit

    Energy Technology Data Exchange (ETDEWEB)

    Khraisha, V.H.; Irqsousi, N.A. [University of Jordan, Amman (Jordan). Dept. of Chemical Engineering; Shabib, I.M. [Applied Science Univ., Amman (Jordan). Dept. of Chemistry

    2003-01-01

    In this investigation, spectroscopic (FT-IR, UV-Vis, {sup 1}H NMR) and chromatographic (GC) techniques were used to analyze two Jordanian shale oils, Sultani and El-Lajjun. The oils were extracted at different pyrolysis temperatures (400-500{sup o}C) using a fluidized bed reactor. The spectroscopic and chromatographic analyses show that the variation of pyrolysis temperature has no significant effect on the composition of the produced oil. The {sup 1}H NMR results indicate that the protons of methyl and methelyene represent the bulk of the hydrogen ({approx}90%) in most shale oil samples. GC analysis reveals that the oil samples contain n-alkanes with a predominant proportion of n-C{sub 25}. (Author)

  10. Studies on the utilization of PETROSIX process pyrolysed oil shale for pozzolans production

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, M C; Souza Santos, P de; Schmal, M

    1984-08-01

    It was studied the possibility of utilization the PETROSIX Process pyrolised oil-shale as a raw material in the production of cementing materials emphasizing its use as pozzolan. Analysis of X-ray diffraction and spectrophotometry were used to determine the pozzolanic characteristics of the pyrolysed oil-shale. (Author).

  11. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    Science.gov (United States)

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  13. Change in mechanical properties of Antrim oil shale on retorting

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. P.; Hockings, W. A.; Kim, K.

    1979-01-01

    The decomposition of kerogen in oil shale and subsequent extraction of the decomposition products during the retorting process are known to alter the pore structure, resulting in changes in permeability, deformation and strength properties. Prediction of these changes is of fundamental importance in the design of in-situ retorting processes. This paper summarizes a comprehensive laboratory investigation on the changes in mechanical properties of Antrim oil shale on retorting at 500/sup 0/C. It was observed that kerogen plays an important role in the change of the properties on retorting. When subjected to heat, the degree of deformation, the extent of fracturing and the structural instability of the specimens appeared to be strongly dependent upon kerogen content. The values of elastic modulus, strength, and density decreased whereas maximum strain at failure increased on retorting. Significant increases in permeability and porosity also resulted from retorting. The most pronounced increase was observed in the permeability in the direction parallel to bedding which exceeded in some cases as much as 3 orders of magnitude. Microscopic observations of pore structures provided a qualitative support to data obtained in measurements of porosity and permeability.

  14. Scenarios for shale oil, syncrude and electricity production in Estonia in the interim 1995-2025

    International Nuclear Information System (INIS)

    Oepik, I.

    1992-01-01

    This paper is based on the author's pre-feasibility studies of oil shale utilization in oil production, electricity generation and cement industry. The electricity generation has been calculated on the basis of 1.4 and 1.6 GW oil shale power plants with pulverized fuel combustion today. The three scenarios OILMIN, OILMED and OILMAX differ by annual oil production and different investment costs. The investments in the oil shale processing industry seem to be more profitable than those in electricity generation. It is also important to take into account that the very high sensitivity of oil market to geopolitical aspects of resources and to sudden crises, makes the crude price a stochastic parameter, which loses its indicative character for long term economic choice. Therefore it will be very important to have the electric power plants with flexible combined oil shale and coal combustion. 4 figs., 4 tabs., 6 refs

  15. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  16. Characterization of raw and burnt oil shale from Dotternhausen: Petrographical and mineralogical evolution with temperature

    International Nuclear Information System (INIS)

    Thiéry, Vincent; Bourdot, Alexandra; Bulteel, David

    2015-01-01

    The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase. This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements

  17. The US Shale Gas Revolution and Its Externality on Crude Oil Prices: A Counterfactual Analysis

    Directory of Open Access Journals (Sweden)

    Hongxun Liu

    2018-03-01

    Full Text Available The expansion of shale gas production since the mid-2000s which is commonly referred to as “shale gas revolution” has had large impacts on global energy outlook. The impact is particularly substantial when it comes to the oil market because natural gas and oil are substitutes in consumption and complements and rivals in production. This paper investigates the price externality of shale gas revolution on crude oil. Applying a structural vector autoregressive model (VAR model, the effect of natural gas production on real oil price is identified in particular, and then based on the identification, counterfactuals of oil price without shale gas revolution are constructed. We find that after the expansion of shale gas production, the real West Texas Intermediate (WTI oil price is depressed by 10.22 USD/barrel on average from 2007 to 2017, and the magnitude seems to increase with time. In addition, the period before shale gas revolution is used as a “thought experiment” for placebo study. The results support the hypothesis that real WTI oil price can be reasonably reproduced by our models, and the estimated gap for oil price during 2007–2017 can be attributed to shale gas revolution. The methodology and framework can be applied to evaluate the economic impacts of other programs or policies.

  18. Assessment of industry needs for oil shale research and development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry`s view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R&D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  19. Lithium recovery from shale gas produced water using solvent extraction

    International Nuclear Information System (INIS)

    Jang, Eunyoung; Jang, Yunjai; Chung, Eunhyea

    2017-01-01

    Shale gas produced water is hypersaline wastewater generated after hydraulic fracturing. Since the produced water is a mixture of shale formation water and fracturing fluid, it contains various organic and inorganic components, including lithium, a useful resource for such industries as automobile and electronics. The produced water in the Marcellus shale area contains about 95 mg/L lithium on average. This study suggests a two-stage solvent extraction technique for lithium recovery from shale gas produced water, and determines the extraction mechanism of ions in each stage. All experiments were conducted using synthetic shale gas produced water. In the first-stage, which was designed for the removal of divalent cations, more than 94.4% of Ca"2"+, Mg"2"+, Sr"2"+, and Ba"2"+ ions were removed by using 1.0 M di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an extractant. In the second-stage, for lithium recovery, we could obtain a lithium extraction efficiency of 41.2% by using 1.5 M D2EHPA and 0.3 M tributyl phosphate (TBP). Lithium loss in the first-stage was 25.1%, and therefore, the total amount of lithium recovered at the end of the two-step extraction procedure was 30.8%. Through this study, lithium, one of the useful mineral resources, could be selectively recovered from the shale gas produced water and it would also reduce the wastewater treatment cost during the development of shale gas. - Highlights: • Lithium was extracted from shale gas produced water using an organic solvent. • Two-stage solvent extraction technique was applied. • Divalent cations were removed in the first stage by D2EHPA. • Lithium was selectively recovered in the second stage by using TBP with D2EHPA.

  20. Geological characteristics and resource potentials of oil shale in Ordos Basin, Center China

    Energy Technology Data Exchange (ETDEWEB)

    Yunlai, Bai; Yingcheng, Zhao; Long, Ma; Wu-jun, Wu; Yu-hu, Ma

    2010-09-15

    It has been shown that not only there are abundant oil, gas, coal, coal-bed gas, groundwater and giant uranium deposits but also there are abundant oil shale resources in Ordos basin. It has been shown also that the thickness of oil shale is, usually, 4-36m, oil-bearing 1.5%-13.7%, caloric value 1.66-20.98MJ/kg. The resource amount of oil shale with burial depth less than 2000 m is over 2000x108t (334). Within it, confirmed reserve is about 1x108t (121). Not only huge economic benefit but also precious experience in developing oil shale may be obtained in Ordos basin.

  1. A Simple Physics-Based Model Predicts Oil Production from Thousands of Horizontal Wells in Shales

    KAUST Repository

    Patzek, Tadeusz

    2017-10-18

    Over the last six years, crude oil production from shales and ultra-deep GOM in the United States has accounted for most of the net increase of global oil production. Therefore, it is important to have a good predictive model of oil production and ultimate recovery in shale wells. Here we introduce a simple model of producing oil and solution gas from the horizontal hydrofractured wells. This model is consistent with the basic physics and geometry of the extraction process. We then apply our model thousands of wells in the Eagle Ford shale. Given well geometry, we obtain a one-dimensional nonlinear pressure diffusion equation that governs flow of mostly oil and solution gas. In principle, solutions of this equation depend on many parameters, but in practice and within a given oil shale, all but three can be fixed at typical values, leading to a nonlinear diffusion problem we linearize and solve exactly with a scaling

  2. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2012-09-30

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  3. The deep processing of oil residues conjunction with shales

    Directory of Open Access Journals (Sweden)

    Anatoly Maloletnev

    2012-12-01

    Full Text Available The results of studies on the development of a new process of thermal cracking of tar oil as a slurry with crushed oil shale to obtain components of motor fuels. The results suggest doubtless advantages of the process before the industrial of thermo cracking, since the single-stage processing of raw materials in relatively in the mild conditions (5 MPa, 425ºC, volumetric feed rate 1.0 h-1 is achieved deep destruction of tar oil (the yield petrol fraction with a bp amounts to up to 180ºC - ~12 mass % of middle distillates with a bp 180-360ºC – 43-44 mass %, of raw material for catalytic cracking of a bp 360-520ºC – ~15-16%, based on the initial tar oil. Formed like coke products and raw materials contained in V and Ni is postponed on the mineral part of slate and removed from the reaction zone with the liquid products of the process.

  4. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK

    Science.gov (United States)

    Thomas, Merryn; Partridge, Tristan; Harthorn, Barbara Herr; Pidgeon, Nick

    2017-04-01

    Shale gas and oil production in the US has increased rapidly in the past decade, while interest in prospective development has also arisen in the UK. In both countries, shale resources and the method of their extraction (hydraulic fracturing, or 'fracking') have been met with opposition amid concerns about impacts on water, greenhouse gas emissions, and health effects. Here we report the findings of a qualitative, cross-national deliberation study of public perceptions of shale development in UK and US locations not yet subject to extensive shale development. When presented with a carefully calibrated range of risks and benefits, participants' discourse focused on risks or doubts about benefits, and potential impacts were viewed as inequitably distributed. Participants drew on direct, place-based experiences as well as national contexts in deliberating shale development. These findings suggest that shale gas development already evokes a similar 'signature' of risk across the US and UK.

  5. Innovative technologies for managing oil field waste

    International Nuclear Information System (INIS)

    Veil, J.A.

    2003-01-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  6. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  7. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Jacomini, V V

    1938-06-07

    To produce valuable oils from shale by continuous distillation it is preheated by a heated fluid and introduced into a distilling retort from which the oil vapours and spent material are separately removed and the vapours condensed to recover the oil. The shale is preheated to 400 to 500/sup 0/F in the hopper by combustion gases from a flue and is fed in measured quantities to a surge drum, a loading chamber and surge drum, the latter two being connected to a steam pipe which equalises the pressure thereon. The material passes by two screw conveyors to a retort with deflector bars to scatter the material so that lean hot cycling gas flowing through a pipe is spread out as it makes its way upwardly through the shale and heats the oil so that it is driven off as vapour, collected in the lean gas and carried off through an outlet pipe. A measuring valve is provided at the bottom of a retort and cutter knives cut the spent shale and distribute cooling water thereto. The gases travel through heat exchangers and a condenser to an accumulator where the cycling gas is separated from the vapours, passed to compression, and preheated in a gas exchanger and spiral coils before it is returned to the retort. The oil passes to a storage tank by way of a unit tank in which oil vapours are recovered. Water is collected by a pipe in the tank bottom and returned by shaft to a retort.

  8. Impact of shale gas development on water resources: a case study in northern poland.

    Science.gov (United States)

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86% of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  9. Impact of Shale Gas Development on Water Resources: A Case Study in Northern Poland

    Science.gov (United States)

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86 % of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  10. Water issues associated with heavy oil production.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  11. Simulation study of huff-n-puff air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available This paper is the first attempt to evaluate huff-n-puff air injection in a shale oil reservoir using a simulation approach. Recovery mechanisms and physical processes of huff-n-puff air injection in a shale oil reservoir are investigated through investigating production performance, thermal behavior, reservoir pressure and fluid saturation features. Air flooding is used as the basic case for a comparative study. The simulation study suggests that thermal drive is the main recovery mechanism for huff-n-puff air injection in the shale oil reservoir, but not for simple air flooding. The synergic recovery mechanism of air flooding in conventional light oil reservoirs can be replicated in shale oil reservoirs by using air huff-n-puff injection strategy. Reducing huff-n-puff time is better for performing the synergic recovery mechanism of air injection. O2 diffusion plays an important role in huff-n-puff air injection in shale oil reservoirs. Pressure transmissibility as well as reservoir pressure maintenance ability in huff-n-puff air injection is more pronounced than the simple air flooding after primary depletion stage. No obvious gas override is exhibited in both air flooding and air huff-n-puff injection scenarios in shale reservoirs. Huff-n-puff air injection has great potential to develop shale oil reservoirs. The results from this work may stimulate further investigations.

  12. Biological marker compounds as indicators of the depositional history of the Maoming oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Brassell, S.C.; Eglinton, G.; Mo, F.J.

    1986-01-01

    The Eocene Maoming oil shale from Guangdong Province occurs as a laterally uniform stratigraphic section, typically 20-25 m thick, from which the aliphatic hydrocarbon constituents of six representative samples were investigated using GC and C-GC-MS. The sediments evaluated included the basal lignite, a vitrinite lens from the overlying claystone, and four intervals from the massive oil shale bed. As expected, the lignite and vitrinite differ markedly from the oil shales. The lignite is dominated by bacterial hopanoids and components of higher plant origin, including C/sub 29/ steroids and triterpenoids such as oleanenes. Visually, the oil shale samples show corroded and degraded phytoclasts, spores, wispy particles of fluorescent organic material attributable to dinoflagellates and, especially in the uppermost sample, colonial algal bodies. The distributions of biological markers in the oil shales show many features in common, notably a dominance of dinoflagellate-derived 4-methylsteroids, and a significant proportion of higher-plant derived n-alkanes with marked odd-over-even carbon number predominance. Overall, they exhibit several features that resemble characteristics of the Messel shale. The hydrocarbons of the lowest shale horizon suggest that there may have been a gradual transition between deposition of the original peat and the subsequent oil shales. The aliphatic hydrocarbons of the uppermost shale are dominated by a number of C/sub 31/ and C/sub 33/ botryococcane homologues and other unusual branched alkanes possibly derived from green algae. All of the samples are immature. Overall, molecular and microscopic examination of the stratigraphic succession of the Maoming oil shale suggests a shallow, lacustrine environment within which peats were deposited. This lake subsequently deepened to support abundant algal populations, especially dinoflagellates, culminating in a dominance of botryococcoid algae.

  13. Preliminary geotechnical evaluation of deep borehole facilities for nuclear waste disposal in shales

    International Nuclear Information System (INIS)

    Nataraj, M.S.; New Orleans Univ., LA

    1991-01-01

    This study is concerned with a preliminary engineering evaluation of borehole facilities for nuclear waste disposal in shales. Some of the geotechnical properties of Pierre, Rhinestreet, and typical illite shale have been collected. The influence of a few geotechnical properties on strength and deformation of host material is briefly examined. It appears that Pierre shale is very unstable and requires support to prevent collapse. Typical illite shale is more stable than Rhinestreet shale, although it undergoes relatively more deformation. 16 refs., 5 figs., 3 tabs

  14. Determination of Vaporization Properties and Volatile Hazardous Components Relevant to Kukersite Oil Shale Derived Fuel Oil Handling

    Directory of Open Access Journals (Sweden)

    Ada TRAUMANN

    2014-09-01

    Full Text Available The aim of this study was to investigate vaporization properties of shale fuel oil in relation to inhalation exposure. The shale fuel oil was obtained from kukersite oil shale. The shale oil and its light fraction (5 % of the total fuel oil were characterized by vapor pressure curve, molecular weight distribution, elemental composition and functional groups based on FTIR spectra. The rate of vaporization from the total fuel oil at different temperatures was monitored as a function of time using thermogravimetric analysis (TGA. It is shown that despite its relatively low vapor pressure at room temperature a remarkable amount of oil vaporizes influencing air quality significantly. From the TGA data the changes in the vapor pressure during vaporization process were estimated. Although the shale fuel oil has a strong, unpleasant smell, the main hazards to workplace air quality depend on the vaporization rate of different toxic compounds, such as benzene, toluene, xylene or phenolic compounds. The presence of these hazardous substances in the vapor phase of shale fuel oil was monitored using headspace analysis coupled with selective ion monitoring (SIM and confirmed by the NIST Mass Spectral library and retention times of standards. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4549

  15. Thermodynamically consistent model of brittle oil shales under overpressure

    Science.gov (United States)

    Izvekov, Oleg

    2016-04-01

    The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.

  16. Tri- and tetraterpenoid hydrocarbons in the Messel oil shale

    Science.gov (United States)

    Kimble, B. J.; Maxwell, J. R.; Philp, R. P.; Eglinton, G.; Albrecht, P.; Ensminger, A.; Arpino, P.; Ourisson, G.

    1974-01-01

    The high-molecular-weight constituents of the branched and cyclic hydrocarbon fraction of the Messel oil shale (Eocene) have been examined by high-resolution gas chromatography and combined gas chromatography/mass spectrometry. The following compounds are present: perhydrolycopene, together with one or more unsaturated analogs with the same skeleton; a series of 4-methylsteranes in higher abundance than their 4-desmethyl analogs; two series of pentacyclic triterpanes, one series based on the hopane structure, and the other based on the 17 alpha-H hopane structure; and an intact triterpene hop-17(21)-ene. Only two additional triterpanes were detected in minor concentrations - namely, 30-normoretane and a C31 triterpane based on the hopane/lupane-type skeleton. The presence of these compounds suggests a significant microbial contribution to the forming sediment.

  17. Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue

    Science.gov (United States)

    Charlet, Laurent; Alt-Epping, Peter; Wersin, Paul; Gilbert, Benjamin

    2017-08-01

    Clay rocks are low permeability sedimentary formations that provide records of Earth history, influence the quality of water resources, and that are increasingly used for the extraction or storage of energy resources and the sequestration of waste materials. Informed use of clay rock formations to achieve low-carbon or carbon-free energy goals requires the ability to predict the rates of diffusive transport processes for chemically diverse dissolved and gaseous species over periods up to thousands of years. We survey the composition, properties and uses of clay rock and summarize fundamental science challenges in developing confident conceptual and quantitative gas and solute transport models.

  18. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  19. Multilayer geospatial analysis of water availability for shale resources development in Mexico

    Science.gov (United States)

    Galdeano, C.; Cook, M. A.; Webber, M. E.

    2017-08-01

    Mexico’s government enacted an energy reform in 2013 that aims to foster competitiveness and private investment throughout the energy sector value chain. As part of this reform, it is expected that extraction of oil and gas via hydraulic fracturing will increase in five shale basins (e.g. Burgos, Sabinas, Tampico, Tuxpan, and Veracruz). Because hydraulic fracturing is a water-intensive activity, it is relevant to assess the potential water availability for this activity in Mexico. This research aims to quantify the water availability for hydraulic fracturing in Mexico and identify its spatial distribution along the five shale basins. The methodology consisted of a multilayer geospatial analysis that overlays the water availability in the watersheds and aquifers with the different types of shale resources areas (e.g. oil and associated gas, wet gas and condensate, and dry gas) in the five shale basins. The aquifers and watersheds in Mexico are classified in four zones depending on average annual water availability. Three scenarios were examined based on different impact level on watersheds and aquifers from hydraulic fracturing. For the most conservative scenario analyzed, the results showed that the water available could be used to extract between 8.15 and 70.42 Quadrillion British thermal units (Quads) of energy in the typical 20-30 year lifetime of the hydraulic fracturing wells that could be supplied with the annual water availability overlaying the shale areas, with an average across estimates of around 18.05 Quads. However, geographic variation in water availability could represent a challenge for extracting the shale reserves. Most of the water available is located closer to the Gulf of Mexico, but the areas with the larger recoverable shale reserves coincide with less water availability in Northern Mexico. New water management techniques (such as recycling and re-use), more efficient fracturing methods, shifts in usage patterns, or other water sources need

  20. Hydrothermal Liquefaction Biocrude Compositions Compared to Petroleum Crude and Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Jacqueline M.; Billing, Justin M.; Hallen, Richard T.; Schmidt, Andrew J.; Schaub, Tanner M.

    2017-02-17

    We provide a direct and detailed comparison of the chemical composition of petroleum crude oil (from the Gulf of Mexico), shale oil, and three biocrudes (i.e., clean pine, microalgae Chlorella sp., and sewage sludge feedstocks) generated by hydrothermal liquefaction (HTL). Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that HTL biocrudes are compositionally more similar to shale oil than petroleum crude oil and that only a few heteroatom classes (e.g., N1, N2, N1O1, and O1) are common to organic sediment- and biomass-derived oils. All HTL biocrudes contain a diverse range of oxygen-containing compounds when compared to either petroleum crude or shale oil. Overall, petroleum crude and shale oil are compositionally dissimilar to HTL oils, and >85% of the elemental compositions identified within the positive-ion electrospray (ESI) mass spectra of the HTL biocrudes were not present in either the petroleum crude or shale oil (>43% for negative-ion ESI). Direct comparison of the heteroatom classes that are common to both organic sedimentand biomass-derived oils shows that HTL biocrudes generally contain species with both smaller core structures and a lower degree of alkylation relative to either the petroleum crude or the shale oil. Three-dimensional plots of carbon number versus molecular double bond equivalents (with observed abundance as the third dimension) for abundant molecular classes reveal the specific relationship of the composition of HTL biocrudes to petroleum and shale oils to inform the possible incorporation of these oils into refinery operations as a partial amendment to conventional petroleum feeds.

  1. Pressurized fluidized-bed hydroretorting of eastern oil shales. [Estimation of the cost of beneficiating Alabama shale

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  2. Measurement of water activity from shales through thermo hygrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Claudio [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo (GTEP)

    2004-07-01

    This paper presents a campaign of lab tests to obtain the water activity from shales and its pore fluid originated from offshore and onshore basin. The results of water activity from shales indicate that the values rang from 0.754 to 0.923 and for the pore fluid are between 0.987 and 0.940. The results show that the water activity of interstitial water can be obtained in 6 days and the rock in 10 days using the thermo hygrometer used. The degree of saturation, water content, kind and tenor of expansible and hydratable clay mineral, total and interconnected porosity, salinity of interstitial fluid and the capillary pressure of shale samples affected the results of water activity. (author)

  3. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1946-08-29

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors from the zone, mixing fresh cold shale with the hydrocarbon vapors to quench the same, whereby the fresh shale is preheated, recovering hydrocarbon vapors and product vapors from the mixture and withdrawing preheated shale from the mixture and charging it to a shale distillation zone.

  4. Production of portland cement using Moroccan oil shale and comparative study between conventional cement plant and cement plant using oil shale

    International Nuclear Information System (INIS)

    Doumbouya, M.; Kacemi, K.E.; Kitane, S.

    2012-01-01

    Like the use of coal ash from power plants as an addition to cement, oil shale are used for cement production on an industrial scale in Estonia, China, USA and Germany. Oil shale can be utilized in manufacturing the cement. In addition to the utilization of these by-products after combustion, it can also reduce the required temperature for the clinkering reactions during the production of Portland clinker. We performed a study on the Moroccan oil shale to maximize the use of oil shale ash in the manufacturing of Portland cement. We found that Moroccan oil shale ash can be used up to 30% with 70% Portland clinker without altering its principle properties. The corresponding temperature required to generate the required liquid for the clinkering reactions as well as the essential ingredients for clinker was found to be around 850 to 1000 deg. C. The operating temperatures for this optimized blend ratio were found to 1000 deg. C. The resulting Portland clinker from this ratio will need further testing in accordance with international standards for Portland cement to examine properties like strength and setting time. (author)

  5. Investigating oiled birds from oil field waste pits

    International Nuclear Information System (INIS)

    Gregory, D.G.; Edwards, W.C.

    1991-01-01

    Procedures and results of investigations concerning the oiling of inland raptors, migratory water-fowl and other birds are presented. Freon washings from the oiled birds and oil from the pits were analyzed by gas chromatography. In most instances the source of the oil could be established by chromatographic procedures. The numbers of birds involved (including many on the endangered species list) suggested the need for netting or closing oil field waste pits and mud disposal pits. Maintaining a proper chain of custody was important

  6. Purification of radioactive waste oil by a supercritical fluid

    International Nuclear Information System (INIS)

    Yoo, Jaeryong; Sung, Jinhyun; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon; Lim, Taeyoon; Yim, Sanghak; Yoon, Weonseob

    2006-01-01

    The radioactive waste oil from the nuclear industry is potentially hazardous due to its possibility to contaminate soil and underwater. Pollutants in waste oil are generally radioactive heavy metals or organo-metals. Radioactive waste oils are highly viscous fluids that are similar to used-motor oils. Several processes have been developed to regenerated used motor oil, such as acid clay treatment, chemical addition, vacuum distillation, thermal cracking and hydrofinishing. However, these technologies are difficult to apply to separating radioactive nuclides from radioactive waste oils. In recent years, our laboratory developed a membrane method for the regeneration of used motor oils. We applied supercritical Co2 (scCO2) as a viscosity reducing additive to waste oils at a lower process temperature in order to improve membrane permeability and thus the energy saving. However, the membrane cannot filter the contaminants in radioactive waste oil that are not particles, such as radioactive ions in impurity water in the oil. In this paper, we suggest a method extracting clean oil from the radioactive waste oil rather than filtering by a supercritical fluid. We selected R22, a refrigerant, as a solvent for extraction. R22 has a mild critical point - 96.1 .deg. and 49.9bar. Regeneration of waste oils by extracting clean oil using a supercritical fluid such as R22 is easy to handle and reduce secondary wastes. In this paper, we examine the feasibility of R22 in extracting clean oil from radioactive waste oils

  7. Oil and grease (O&G removal from commercial kitchen waste water using carbonised grass as a key media

    Directory of Open Access Journals (Sweden)

    Rahmat Siti Nazahiyah

    2017-01-01

    Full Text Available Oil and grease (O&G are usually found in kitchen waste water. O&G are poorly soluble in water and can cause serious problems during the wastewater treatment. Adsorption is a fundamental process in the treatment of kitchen waste water and very economical. Activated carbon is the most effective adsorbent for this application. Therefore, the aim of the current study is to determine the potential of four materials (i.e. sand, gravel, carbonised grass (CG and clay powder as filter media for O&G removal. The CGs were originated from “Elephant Grass” and it is a fast growing plant with significant potential as carbon. The clay acts as a magnet, drawing the oil molecules out of the water and causing them to attach to the surfaces of the clay. In the current study, two filters were developed with different media materials to get the best percentage removal. Filters 1 and 2 were filled with sand, gravel and CG, and sand, gravel, CG and powder clay, respectively. Three samples were taken during peak hour between April and May 2016. The initial O&G concentration varied from 101.37 mg/l to 248.30 mg/l and the final concentration varied from none to 22.57 mg/l for both filters. The percentage removal (% of O&G were between 90.9 and 97.3 (Filter 1 and between 94.3 and 100 (Filter 2. Overall, both filters could efficiently remove O&G in the waste water and the quality of the carbonised grass proved to be as good as carbon produced from other traditional sources.

  8. Predicted costs of environmental controls for a commercial oil shale industry. Volume 1. An engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nevens, T.D.; Culbertson, W.J. Jr.; Wallace, J.R.; Taylor, G.C.; Jovanovich, A.P.; Prien, C.H.; Hicks, R.E.; Probstein, R.F.; Domahidy, G.

    1979-07-01

    The pollution control costs for a commercial oil shale industry were determined in a joint effort by Denver Research Institute, Water Purification Associates of Cambridge, and Stone and Webster Engineering of Boston and Denver. Four commercial oil shale processes were considered. The results in terms of cost per barrel of syncrude oil are predicted to be as follows: Paraho Process, $0.67 to $1.01; TOSCO II Process, $1.43 to $1.91; MIS Process, $2.02 to $3.03; and MIS/Lurgi-Ruhrgas Process, $1.68 to $2.43. Alternative pollution control equipment and integrated pollution control strategies were considered and optimal systems selected for each full-scale plant. A detailed inventory of equipment (along with the rationale for selection), a detailed description of control strategies, itemized costs and predicted emission levels are presented for each process. Capital and operating cost data are converted to a cost per barrel basis using detailed economic evaluation procedures. Ranges of cost are determined using a subjective self-assessment of uncertainty approach. An accepted methodology for probability encoding was used, and cost ranges are presented as subjective probability distributions. Volume I presents the detailed engineering results. Volume II presents the detailed analysis of uncertainty in the predicted costs.

  9. Site evaluation for U.S. Bureau of Mines experimental oil-shale mine, Piceance Creek basin, Rio Blanco County, Colorado

    Science.gov (United States)

    Ege, John R.; Leavesley, G.H.; Steele, G.S.; Weeks, J.B.

    1978-01-01

    The U.S. Geological Survey is cooperating with the U.S. Bureau of Mines in the selection of a site for a shaft and experimental mine to be constructed in the Piceance Creek basin, Rio Blanco County, Colo. The Piceance Creek basin, an asymmetric, northwest-trending large structural downwarp, is located approximately 40 km (25 mi) west of the town of Meeker in Rio Blanco County, Colo. The oil-shale, dawsonite, nahcolite, and halite deposits of the Piceance Creek basin occur in the lacustrine Green River Formation of Eocene age. In the basin the Green River Formation comprises three members. In ascending order, they are the Douglas Creek, the Garden Gulch, and the Parachute Creek Members, Four sites are presented for consideration and evaluated on geology and hydrology with respect to shale-oil economics. Evaluated criteria include: (1) stratigraphy, (2) size of site, (3) oil-shale yield, (4) representative quantities of the saline minerals dawsonite and nahcolite, which must be present with a minimum amount of halite, (5) thickness of a 'leached' saline zone, (6) geologic structure, (7) engineering characteristics of rock, (8) representative surface and ground-water conditions, with emphasis on waste disposal and dewatering, and (9) environmental considerations. Serious construction and support problems are anticipated in sinking a deep shaft in the Piceance Creek basin. The two major concerns will be dealing with incompetent rock and large inflow of saline ground water, particularly in the leached zone. Engineering support problems will include stabilizing and hardening the rock from which a certain amount of ground water has been removed. The relative suitability of the four potential oil-shale experimental shaft sites in the Piceance Creek basin has been considered on the basis of all available geologic, hydrologic, and engineering data; site 2 is preferred to sites 1, 3, and 4, The units in this report are presented in the form: metric (English). Both units of

  10. Mining and oil. Oil shale's contribution to future oil supply; Bergbau und Oel. Der Beitrag des Oelschiefers zur Oelversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Eike von der [Linden Advisory, Dreieich (Germany)

    2012-05-15

    Crude oil contributes in Germany and globally approximately one third to the consumption of primary energies and actually is and in the foreseeable future will be the most important energy source. Recently shale oil as an unconventional oil has gained attention in public discussions. Depending on temperatures oil shale contains either already matured fluid shale oil or immature waxy kerogen. For determination of kerogen containing oil shale and shale oil common definitions for fluid hydrocarbons will be presented. Fluid hydrocarbons (molecular chains > C{sub 5}H{sub 12}) originate from animal substance which had been settled millions of years in sediments on sea- or lakebeds under anaerobic conditions. High pressure and high temperatures effect conversion to hydrocarbons. With sufficient permeability the liquid hydrocarbons migrate from the sediment as the source rock and get assembled in porous rocks under the cover of an impermeable rock strata, in so called entrapment structures. In case there is no impermeable rock strate the hydrocarbons will diffuse into the atmosphere. The hydrocarbons in entrapment structures are called conventional oil and are extracted by drilling wells. The extractable oil as part of the oil in place depends on the viscosity of the oil, the permeability of the host rock and applied exploitation methods which can affect pressure, viscosity and permeability. The exploitation achieves 30 to 50% of the oil in place. When the source rock consisting of strata hundreds of meters thick is not sufficiently permeable the matured hydrocarbons remain at its place of origination. These hydrocarbons are called shale oil and belong to the unconventional oil resources. For exploitation of shale oil by wells the source rock must be treated by intensive energy input, amongst others, by fracking which creates artificial permeability and by pressure which affects migration of the hydrocarbons to the well. The exploitation methods for shale oil do not

  11. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Utilization of oil shale in power plants and environmental protection; Polevkivienergeetika ja keskkonna saastumine

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A [Tallinn Technical Univ. (Estonia)

    1994-04-01

    Estonia n oil shale was first used as a power fuel in 1924 at the Tallinn Power Plant. The first pulverized oil-shale-fired steam boilers were used in the end of forties. A new period in the utilization of the Estonia n oil shale began in the years of 1959-1960, when the first power units were applied at the Baltic Thermal Power Plant. The project capacity of the plant was 1600 MW. In the 1973 the Estonia n thermal Power Plant was put into operation with the capacity of 1610 MW. The output of the electric power generated by oil.shale power plants in 1989, was 17.4 TWh; the maximum output was achieved in 1979 - 19.1 TWh. In 1989, the amount of the Estonia n oil shale consumed to generate electric power was equal to 22.3{center_dot}10{sup 6}t. On burning oil shale the main atmospheric pollutants are the following: nitrogen oxides, sulphur oxides, and fly ash. The concentration of nitrogen oxide in the oil-shale flue gas leaving the chimney, expressed as nitrogen dioxide by an excess air factor 1.5, is in the range of 0.15-0.20 g/m{sup 3.} The total emission of nitrogen oxide into the atmosphere is approximately 15-20 thousand ton per year. the concentration of sulphur dioxide in the oil-shale flue gas leaving the boiler by an excess air factor 1.5 in the range of 1.0-1.8 g/m{sup 3.} the total emission of sulphur dioxide into atmosphere is in range of 140-160 thousand per year. As the oil-shale ash contains a large amount of the components capable of combining with sulphur in furnace and in boiler gas passes, the sulphur binding effect from ash is high, and it is in the range of 0.75-0.85. The boilers in oil-shale power plants are equipped with two-stage ash separation systems: cyclone and electrostatic al precipitators. The fly ash concentration in oil shale flue gas after electrostatic al precipitators by excess air factor 1.5 is 1-2 g/m{sup 3.} (author).

  13. Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1981-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

  14. Effects of oil sands waste water on the wood frog (rana sylvatica)

    Energy Technology Data Exchange (ETDEWEB)

    Hersikorn, B.; Smits, J.E. [Saskatchewan Univ., Regina, SK (Canada)

    2007-07-01

    The sustainability of various reclamation strategies can be determined by the growth and health of indigenous amphibians (Wood Frogs). This paper referred to the large quantities of tailings water that are generated by oil sand extraction activities. It presented the results of a study that was conducted in the spring and summer of 2006 and 2007 on reclaimed formation wetlands comprising tailings water. The objective was to understand the impact of these wetlands on native amphibians. Frogs were exposed to wetlands containing oil sands process affected water (OSPW) and reference water (no OSPW). Six experimental trenches were made at one site in the first year. Each trench had 3 enclosures with 50 tadpoles. In the second year, there were 13 sites, including 6 reference and 7 OSPW affected sites, which were classified as old (more than 8 yrs) or young (less than 7 yrs). Four enclosures, with 50 tadpoles each, were placed in each wetland. The study involved the evaluation of growth rate, survival, time to metamorphosis, thyroid hormone concentrations, liver EROD activity, and tissue retinol concentrations. In addition, stable isotopes were used to track carbon flow from primary production plants, through the food chain, to tadpoles and frogs which represent intermediate and higher trophic levels in reclaimed wetlands.

  15. Environmental effects of disposal of intermediate-level wastes by shale fracturing

    International Nuclear Information System (INIS)

    Weeren, H.O.

    1978-01-01

    Shale fracturing is a process currently being used at the Oak Ridge National Laboratory for the permanent disposal of locally generated, intermediate-level waste solutions. In this process, the waste is mixed with a solids blend of cement and other additives; the resulting grout is then injected into an impermeable shale formation at a depth of 700 to 1000 ft. A few hours after completion of the injection, the grout sets and the radioactive waste are fixed in the shale formation. An analysis of environmental effects of normal operation and possible accident situations is discussed

  16. Characteristic fly-ash particles from oil-shale combustion found in lake sediments

    International Nuclear Information System (INIS)

    Alliksaar, T.; Hoerstedt, P.; Renberg, I.

    1998-01-01

    Fly-ash particles accumulate in sediments and can be used to assess spatial distribution and temporal trends of atmospheric deposition of pollutants derived from high temperature combustion of fossil fuels. Previous work has concerned fly-ash derived from oil and coal. Oil-shale is the main fossil fuel used in Estonia and a major source of atmospheric pollution in the Baltic states. To assess if oil-shale power plants produce specific fly-ash particles scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to compare fly-ash particles from oil-shale combustion with particles from oil and coal combustion. Two types were analysed, large black (10-30μm) and small glassy (< 5 μm) spheroidal particles. Although article morphology to some extent is indicative of the fuel burnt, morphological characters are not sufficient to differentiate between particles of different origin. However, the results indicate that with EDX analysis the fly-ash from oil-shale can be distinguished form oil and coal derived particles in environmental samples. Concentrations of large black and small glassy spheroidal fly-ash particles in a sediment core from an Estonian lake showed similar trends to oil-shale combustion statistics from Estonian power plants. 27 refs., 6 figs., 2 tabs

  17. Underground fires in oil shale mines: special traits of their spreading, extinguishing and liquidating of consequences

    International Nuclear Information System (INIS)

    Parakhonsky, E.

    1995-01-01

    Danger of catching fire in oil shale underground mines has considerably increased lately because of essential increase in mechanization level and frequent violation of fire-safety regulations. The largest underground fire in Estonia took place in the most mechanized mine 'Estonia' in the end of 1988 and lasted 81 days. The fire started in one of the conveyor drifts where two belt-conveyors with rubber-rope belts and a fire pipeline were installed. At the start of the fire and beginning of extinguishing work this pipeline contained no water. Driving heads of these conveyors were installed with automatic extinguishing equipment and with different primary means against fire. When the first group of the Johvi military mine-rescue squad reached the mine they established that the conveyor drift, pillars and a part of rail drift between them were caught by fire. The conveyor belt, oil shale and feeds of conveyor drives were burning. The flame had propagated about 350 metres along the rail and conveyor drifts but the smoke had spread 4 kilometres already. Air temperature near the burning area was about 40-60 deg C, rocks from the roof supported by pillars had crashed down. The mine air was polluted by combustion products. The fire caused a noticeable pollution of mine and surface waters with phenols formed at oil shale combustion. Their limit concentration was exceeded for more than 400 times. To decrease this number, an intensive saturation of waters with atmosphere air was started. For this purpose special dams were constructed on water-diversion ditches ensuring a 0.5-0.7 m difference in water levels. Nevertheless, the phenol concentration in Rannapungerya River and Lake Peipsi still exceeded the normal level 5-6 times. However, the actual maximum concentration of phenols was considerably lower than the lethal doses for fish and other water organisms. Their mass extinction in the river or in the lake was observed neither during nor after the fire. One may conclude the

  18. De-oiled two-phase olive mill waste may reduce water contamination by metribuzin.

    Science.gov (United States)

    Peña, David; López-Piñeiro, Antonio; Albarrán, Ángel; Rato-Nunes, José Manuel; Sánchez-Llerena, Javier; Becerra, Daniel; Ramírez, Manuel

    2016-01-15

    The impact of de-oiled two-phase olive mill waste (DW) on the behavior of metribuzin in Mediterranean agricultural soils is evaluated, and the effects of the transformation of organic matter from this waste under field conditions are assessed. Four soils were selected and amended in the laboratory with DW at the rates of 2.5% and 5%. One of these soils was also amended in the field with 27 and 54 Mg ha(-1) of DW for 9 years. Significant increases in metribuzin sorption were observed in all the amended soils. In the laboratory, the 5% DW application rate increased the t1/2 values of metribuzin from 22.9, 35.8, 29.1, and 20.0 d for the original soils to 59.2, 51.1, 45.7, and 29.4d, respectively. This was attributable mainly to the inhibitory effect of the amendment on microbial activity. However, the addition of DW transformed naturally under field conditions decreased the persistence down to 3.93 d at the greater application rate. Both amendments (fresh and field-aged DW) significantly reduced the amount of metribuzin leached. This study showed that DW amendment may be an effective and sustainable management practice for controlling groundwater contamination by metribuzin. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. On possibilities to decrease influence of oxidation processes on oil yield at oil shale retorting

    International Nuclear Information System (INIS)

    Yefimov, V.; Loeoeper, R.; Doilov, S.; Kundel, H.

    1993-01-01

    At the present technical level retorting is carried out so that an increase in specific air consumption results in an increase of oxygen ingress into the semi coking shaft. At the same time a direct relationship between the degree of volatiles pyrolysis and specific air consumption was observed. This regularity enables to assume that within the reaction volume there occurs most likely the thermo oxidative pyrolysis of volatile products, not the oxidation of oil shale as it is considered traditionally. The main source of oxygen ingress ed into the semi coking shaft at processing oil shale in retorts is the process of spent shale. This process is not fully elaborated for utilization in commercial scale and can not be arranged so that the ingress of oxygen into the smacking chamber could be eliminated. In case of a slower semi coke gasification process and reduced specific air consumption for gasification the absolute amount of oxygen ingress ed into the semi coking shaft also decreases. One of the efficient methods to decrease specific air consumption is to build furnaces into the semi coking chamber to obtain additional amount of heat carrier by combusting generator gas. The maximum effect is reached when steam-and-air blow is completely replaced by recycle gas: specific air consumption is reduced whereas recycle gas is deoxygenated in the cooling zone while passing through spent shale bed which has the temperature of about 500 deg C. Another possible source of oxygen to the semi coking shaft with heat carrier is production of flue gases by combusting recycle gas in burners built in retorts. We consider the recycle gas employed upon processing oil shale in retorts hardly to be an appreciable source of the oxygen ingress into the semi coking shaft. Additional amounts of residual oxygen containing in recycle gas fed into both cooling zone and furnaces are practically totally consumed at gas combusting and passing across the bed of semi coke heated up to approximately

  20. Effect of water on the mechanical behaviour of shales

    International Nuclear Information System (INIS)

    Wakim, J.; Hadj-Hassen, F.; Tijani, M.; Noirel, J.F.

    2005-01-01

    This paper aims to presenting the results of a research conducted in order to study the effect of water on the mechanical behaviour of the Lorraine Basin Colliery shale. The work performed can be divided into four main parts. The first part is dedicated to classical tests and it includes geological and mineralogical analysis as well as mechanical laboratory tests. The second part is devoted to the phenomenon of shale swelling under water effect. New procedures and equipment of testing were set up in order to characterise this swelling behaviour and to determine its model parameters. The tests performed in this second part are allowed to develop a phenomenological model which describes the elasto-visco-plastic behaviour of shales before and after saturation. The last phase of the work is dedicated to implement the new model in the finite element code VIPLEF in order to apply in tunnel excavated in swelling anisotropic rocks. (authors)

  1. Synthesis of nucleated glass-ceramics using oil shale fly ash

    International Nuclear Information System (INIS)

    Luan Jingde; Li Aimin; Su Tong; Cui Xiaobo

    2010-01-01

    Nucleated glass-ceramics materials were produced from oil shale fly ash obtained from Huadian thermal power plant in China with the addition of analytic reagent CaO. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of two parent glass samples with different alkalinity (Ak=m CaO /m SiO 2 ) were identified as Tn 1 = 810 deg. C, Tc 1 = 956 deg. C and Tn 2 = 824 o C, Tc 2 = 966 deg. C, respectively. X-ray diffraction (XRD) analysis of the produced nucleated glass-ceramics materials revealed that there was a coexistence phenomenon of multi-crystalline phase and the main crystalline phase was anorthite ([Ca,Na][AI,Si] 2 Si 2 O 8 ). The microstructure of the glass-ceramics materials was examined by scanning electron microscope (SEM). SEM observation indicated that there was an increase in the quantity of sphere-shaped crystals when crystallization time increased. Furthermore, the increase of alkalinity caused more amorphous phase occurring in glass-ceramics materials. Through the tests of physical and mechanical properties, the glass-ceramics materials with more crystalline phase and fine microstructure had high density, fine performance of resisting compression (328.92 MPa) and negligible water absorption. Through chemical resistance tests, the glass-ceramics samples showed strong corrosion resistance. Overall results indicated that it was a feasible attempt to produce nucleated glass-ceramics materials for building and decorative materials from oil shale fly ash.

  2. Microstructural and mineralogical characterization of selected shales in support of nuclear waste repository studies

    International Nuclear Information System (INIS)

    Lee, S.Y.; Hyder, L.K.; Alley, P.D.

    1988-01-01

    Five shales were examined as part of the Sedimentary Rock Program evaluation of this medium as a potential host for a US civilian nuclear waste repository. The units selected for characterization were the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. The micromorphology and structure of the shales were examined by petrographic, scanning electron, and high-resolution transmission electron microscopy. Chemical and mineralogical compositions were studied through the use of energy-dispersive x-ray, neutron activation, atomic absorption, thermal, and x-ray diffraction analysis techniques. 18 refs., 12 figs., 2 tabs

  3. Photocatalytic Desulfurization of Waste Tire Pyrolysis Oil

    Directory of Open Access Journals (Sweden)

    Napida Hinchiranan

    2011-11-01

    Full Text Available Waste tire pyrolysis oil has high potential to replace conventional fossil liquid fuels due to its high calorific heating value. However, the large amounts of sulfurous compounds in this oil hinders its application. Thus, the aim of this research was to investigate the possibility to apply the photo-assisted oxidation catalyzed by titanium dioxide (TiO2, Degussa P-25 to partially remove sulfurous compounds in the waste tire pyrolysis oil under milder reaction conditions without hydrogen consumption. A waste tire pyrolysis oil with 0.84% (w/w of sulfurous content containing suspended TiO2 was irradiated by using a high-pressure mercury lamp for 7 h. The oxidized sulfur compounds were then migrated into the solvent-extraction phase. A maximum % sulfur removal of 43.6% was achieved when 7 g/L of TiO2 was loaded into a 1/4 (v/v mixture of pyrolysis waste tire oil/acetonitrile at 50 °C in the presence of air. Chromatographic analysis confirmed that the photo-oxidized sulfurous compounds presented in the waste tire pyrolysis oil had higher polarity, which were readily dissolved and separated in distilled water. The properties of the photoxidized product were also reported and compared to those of crude oil.

  4. Waste vegetable oil survey report

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, R. [Science enterprise Algoma seA, Sault Ste. Marie, ON (Canada)

    2009-02-06

    This study was conducted to estimate potential sources of feedstock waste oils for biodiesel production in the Sault Ste. Marie region of Ontario. Two feedstocks were investigated over a period of several months, notably cooking oil and waste vegetable oil. The study was conducted to examine oil throughput, collection practices, and to gauge interest in local initiatives. A distribution list of commercial restaurant listings was developed, and surveys were conducted with members of private enterprises, city government, and non-profit stakeholders in the region. Average volumes of waste vegetable oil were presented for different types of restaurants. The various types of oil used in the restaurants were also quantified. Results of the study showed a positive public response to the idea of a local biodiesel initiative. Steak house, fast food, and Italian establishments generated the largest portion of waste vegetable oil amongst survey respondents. However, the highest response rates came from establishments with little or no oil consumption. Many franchise fast food restaurants are already in contracts with waste oil removal companies. 3 tabs., 3 figs.

  5. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  6. Radioactive Waste in Oil Exploration

    International Nuclear Information System (INIS)

    Landsberger, S.; Graham, G.

    2014-01-01

    radioactivity and demand even higher degrees of separation from the general populace. Very low levels of NORM can be dispersed along the surface, but higher concentrations require containment in abandoned wells or salt domes1. 222Rn a product of the decay of 226Ra is also a major component of dose to oil and gas workers from NORM1. Radon buildup is particularly hazardous in places where air ventilation is limited, such as underground mining operations. In the oil and gas industry, radon tends to preferentially follow gas lines, and thus is a major concern in the extraction of natural gas where concentrations of 5 - 200,000 Bq/m3 can be reached8. US EPA has also placed the set rules for contaminated soil to be at 1.11 Bq/g (30 pCi/g). The obvious concern is that any elevated concentrations in radionuclides in soil may eventually leach into the ground water. Enviroklean Product Development, Inc. (EPDI) and the Nuclear Engineering Teaching Lab have been involved in the cleanup and identification of NORM wastes in west Texas

  7. Sulphation of oil shale ash under atmospheric and pressurized combustion conditions

    International Nuclear Information System (INIS)

    Kuelaots, I.; Yrjas, P.; Hupa, M.; Ots, A.

    1995-01-01

    One of the main problems in conventional combustion boilers firing pulverized oil shale is the corrosion and fouling of heating surfaces, which is caused by sulphur compounds. Another major problem, from the environmental point of view, are the high SO 2 emissions. Consequently, the amount of sulphur in flue gases must be reduced. One alternative to lower the SO 2 , concentration is the use of new technologies, such as pressurized fluidized bed combustion (PFBC). In FBC processes, the sulphur components are usually removed by the addition of limestone (CaCO 3 ) or dolomite (CaCO 3 x MgCO 3 ) into the bed. The calcium in these absorbents react with SO 2 , producing solid CaSO 4 . However, when burning oil shale, there would be no need to add limestone or dolomite into the bed, due to the initially high limestone content in the fuel (molar ratio Ca/S =10). The capture of sulphur by oil shale ashes has been studied using a pressurized thermogravimetric apparatus (PTGA). The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. Four different materials were tested - one cyclone ash from an Estonian oil shale boiler, two size fractions of Estonian oil shale and, one fraction of Israeli oil shale. The cyclone ash was found to be the poorest sulphur absorbent. In general, the results from the sulphur capture experiments under both atmospheric and pressurized fluidized bed conditions showed that the oil shale can capture not only its own sulphur but also significant amounts of additional sulphur from another fuel if the fuels are mixed together. (author)

  8. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  9. Characterization of oil shale residue and rejects from Irati Formation by Electron Paramagnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, S.L.; Brinatti, A.M.; Saab, S.C. [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Fisica; Simoes, M.L.; Martin-Neto, L. [Embrapa Instrumentacao Agropecuaria, Sao Carlos, SP (Brazil); Rosa, J.A. [IAPAR - Unidade Regional de Pesquisa, Ponta Grossa, PR (Brazil); Mascarenhas, Y. P. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2009-03-15

    In this study, sedimentary organic matter of oil shale rejects, calschist, shale fine and the so called retorted shale from Irati formation was characterized. EPR was used to analyse the samples regarding loss of signal in g = 2:003 associated to the organic free radical with the calcined samples and washing with hydrogen peroxide. The radical signal was detected in all samples, however, for the calschist and shale fine samples another signal was identified at g = 2:000 which disappeared when the sample was heated at 400 deg C. Hydrogen peroxide washing was also performed and it was noted that after washing the signal appeared around g = 2:000 for all samples, including retorted shale, which might be due to the quartz E1 defect. (author)

  10. Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays?

    International Nuclear Information System (INIS)

    Scanlon, Bridget R; Reedy, Robert C; Philippe Nicot, Jean

    2014-01-01

    There is increasing concern about water constraints limiting oil and gas production using hydraulic fracturing (HF) in shale plays, particularly in semiarid regions and during droughts. Here we evaluate HF vulnerability by comparing HF water demand with supply in the semiarid Texas Eagle Ford play, the largest shale oil producer globally. Current HF water demand (18 billion gallons, bgal; 68 billion liters, bL in 2013) equates to ∼16% of total water consumption in the play area. Projected HF water demand of ∼330 bgal with ∼62 000 additional wells over the next 20 years equates to ∼10% of historic groundwater depletion from regional irrigation. Estimated potential freshwater supplies include ∼1000 bgal over 20 yr from recharge and ∼10 000 bgal from aquifer storage, with land-owner lease agreements often stipulating purchase of freshwater. However, pumpage has resulted in excessive drawdown locally with estimated declines of ∼100–200 ft in ∼6% of the western play area since HF began in 2009–2013. Non-freshwater sources include initial flowback water, which is ≤5% of HF water demand, limiting reuse/recycling. Operators report shifting to brackish groundwater with estimated groundwater storage of 80 000 bgal. Comparison with other semiarid plays indicates increasing brackish groundwater and produced water use in the Permian Basin and large surface water inputs from the Missouri River in the Bakken play. The variety of water sources in semiarid regions, with projected HF water demand representing ∼3% of fresh and ∼1% of brackish water storage in the Eagle Ford footprint indicates that, with appropriate management, water availability should not physically limit future shale energy production. (letter)

  11. Organic Pollutants in Shale Gas Flowback and Produced Waters

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A.E.; Rijnaarts, Huub H.M.; Wezel, van Annemarie P.

    2017-01-01

    Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses

  12. Removal of organic compounds from shale gas flowback water

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P.; Rijnaarts, Huub H M

    2018-01-01

    Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback

  13. Impact of oil shale mining and mine closures on hydrological conditions of North-East Estonian rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Liblik, V.

    2004-01-01

    The attention is focused on the formation of hydrological and hydrogeological interconnections between the catchment areas of Purtse, Rannapungerja, Puhajoe and Vasavere rivers after closing (in 1997-2002) and flooding the Ahtme, Tammiku, Sompa and Kohtla oil shale underground mines. The multivariate relationship between the changes in mine water amounts directed into the rivers, annual runoff due to mine water inlets, groundwater underground flow, outflow module and other factors (as variables) were studied. A complex of linear regression formulas was derived to calculate the amounts of mine water outputs into the rivers and water distribution in order to regulate the hydrological regime of investigated rivers. (author)

  14. UNOCAL Parachute Creek Shale Oil Program. Environmental Monitoring Plan - supplemental environmental. Volume 1. Trip 2 report. Rept. for 1988-90

    International Nuclear Information System (INIS)

    1991-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The report contains results of three years of supplemental environmental sampling (Trial Trip, 1988; Trip 1, 1989; and Trip 2, 1990); Trip 2 sampling and analytical methods; quality assurance and quality control procedures; sampling and analytical methods; and corrected data from 1988 and 1989 gas and particulate concentrations

  15. Unocal Parachute Creek Shale Oil Program. Environmental Monitoring Plan quarterly report. Fourth quarter, 1989. Rept. for 1 Oct-31 Dec 89

    International Nuclear Information System (INIS)

    1990-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commerical-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The report contains environmental compliance data reports, results of industrial hygiene compliance monitoring, and independent audits. Table 2-1 shows 14 of the 20 supplemental monitoring sites sampled during the quarter

  16. Geohydrology, water quality, and simulation of ground-water flow in the vicinity of a former waste-oil refinery near Westville, Indiana, 1997-2000

    Science.gov (United States)

    Duwelius, Richard F.; Yeskis, Douglas J.; Wilson, John T.; Robinson, Bret A.

    2002-01-01

    Geohydrologic and water-quality data collected during 1997 through 2000 in the vicinity of a former waste-oil refinery near Westville, Indiana, define a plume of 1,4-dioxane in ground water that extends to the southwest approximately 0.8 miles from the refinery site. Concentrations of 1,4-dioxane in the plume ranged from 3 to 31,000 micrograms per liter. Ground water containing 1,4-dioxane is discharged to Crumpacker Ditch, approximately one-half mile west of the refinery site. Concentrations of 1,4-dioxane detected in surface water ranged from 8 to 140 micrograms per liter; 1,4-dioxane also is transported in ground water beneath the ditch.

  17. Investigation of the Geokinetics horizontal in situ oil-shale-retorting process. Fourth annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L. (ed.)

    1981-03-01

    The Geokinetics in situ shale oil project is a cooperative venture between Geokinetics Inc. and the US Department of Energy. The objective is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is being conducted at a field site, Kamp Kerogen, located 70 miles south of Vernal, Utah. This Fourth Annual Report covers work completed during the calendar year 1980. During 1980 one full-size retort was blasted. Two retorts, blasted the previous year, were burned. A total of 4891 barrels of oil was produced during the year.

  18. Converting of oil shale and biomass into liquid hydrocarbons via pyrolysis

    International Nuclear Information System (INIS)

    Kılıç, Murat; Pütün, Ayşe Eren; Uzun, Başak Burcu; Pütün, Ersan

    2014-01-01

    Highlights: • Co-processing of oil shale with an arid land biomass for hydrocarbon production. • Co-pyrolysis in TGA and fixed-bed reactor. • Characterization of oil and char. - Abstract: In this study, co-pyrolytic behaviors of oil shale and Euphorbia rigida were investigated at different temperatures in a fixed bed reactor at 450, 500, and 550 °C with a heating rate of 10 °C/min in the presence of nitrogen atmosphere. The obtained solid product (char) and liquid product (tar) were analyzed by using different types of characterization techniques. Experimental results showed co-pyrolysis of oil shale and biomass could be an environmental friendly way for the transformation of these precursors into valuable products such as chemicals or fuels

  19. Geochemical and petrographic investigation of Himmetoglu oil shale field, Goynuk, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Sener, M.; Gundogdu, M.N. [General Directorate of Mineral Research and Exploration, Ankara (Turkey)

    1996-09-01

    The Himmetoglu field is a good example of oil shale fields in Turkey. Mineral and maceral types show that the huminite and liptinite groups tend to be associated with smectite, clinoptilolite and calcite in Himmetoglu oil shale, while the liptinite group is accompanied by analcime and dolomite in bituminous laminated marl. The pH value increases from bottom (pH {lt} 9) to top (pH {gt} 9) in the Himmetoglu formation and volcanogenic materials have played a very important role in deposition of organic matter. The negative correlation between trace elements and organic carbon suggests absence of enrichment of trace elements in oil shales. The results of g.c.-m.s. and carbon isotope analysis show that there is a decrease in the amount of terrestrial organic matter and a relative decrease in maturity of the organic matter in the vertical succession from Himmetoglu oil shape up to the bituminous laminated marl. 8 refs., 6 figs., 5 tabs.

  20. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  1. Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview

    Science.gov (United States)

    Soua, Mohamed

    2014-12-01

    During these last years, considerable attention has been given to unconventional oil and gas shale in northern Africa where the most productive Paleozoic basins are located (e.g. Berkine, Illizi, Kufra, Murzuk, Tindouf, Ahnet, Oued Mya, Mouydir, etc.). In most petroleum systems, which characterize these basins, the Silurian played the main role in hydrocarbon generation with two main 'hot' shale levels distributed in different locations (basins) and their deposition was restricted to the Rhuddanian (Lllandovery: early Silurian) and the Ludlow-Pridoli (late Silurian). A third major hot shale level had been identified in the Frasnian (Upper Devonian). Southern Tunisia is characterized by three main Paleozoic sedimentary basins, which are from North to South, the southern Chotts, Jeffara and Berkine Basin. They are separated by a major roughly E-W trending lower Paleozoic structural high, which encompass the Mehrez-Oued Hamous uplift to the West (Algeria) and the Nefusa uplift to the East (Libya), passing by the Touggourt-Talemzane-PGA-Bou Namcha (TTPB) structure close to southern Tunisia. The forementioned major source rocks in southern Tunisia are defined by hot shales with elevated Gamma ray values often exceeding 1400 API (in Hayatt-1 well), deposited in deep water environments during short lived (c. 2 Ma) periods of anoxia. In the course of this review, thickness, distribution and maturity maps have been established for each hot shale level using data for more than 70 wells located in both Tunisia and Algeria. Mineralogical modeling was achieved using Spectral Gamma Ray data (U, Th, K), SopectroLith logs (to acquire data for Fe, Si and Ti) and Elemental Capture Spectroscopy (ECS). The latter technique provided data for quartz, pyrite, carbonate, clay and Sulfur. In addition to this, the Gamma Ray (GR), Neutron Porosity (ΦN), deep Resistivity (Rt) and Bulk Density (ρb) logs were used to model bulk mineralogy and lithology. Biostratigraphic and complete

  2. Radioactivity in wastes generated from shale gas exploration and production - North-Eastern Poland.

    Science.gov (United States)

    Jodłowski, Paweł; Macuda, Jan; Nowak, Jakub; Nguyen Dinh, Chau

    2017-09-01

    In the present study, the K-40, U-238, Ra-226, Pb-210, Ra-228 and Th-228 activity concentrations were measured in 64 samples of wastes generated from shale gas exploration in North-Eastern Poland. The measured samples consist of drill cuttings, solid phase of waste drilling muds, fracking fluids, return fracking fluids and waste proppants. The measured activity concentrations in solid samples vary in a wide range from 116 to around 1100 Bq/kg for K-40, from 14 to 393 Bq/kg for U-238, from 15 to 415 Bq/kg for Ra-226, from 12 to 391 Bq/kg for Pb-210, from a few Bq/kg to 516 Bq/kg for Ra-228 and from a few Bq/kg to 515 Bq/kg for Th-228. Excluding the waste proppants, the measured activity concentrations in solid samples oscillate around their worldwide average values in soil. In the case of the waste proppants, the activity concentrations of radionuclides from uranium and thorium decay series are significantly elevated and equal to several hundreds of Bq/kg but it is connected with the mineralogical composition of proppants. The significant enhancement of Ra-226 and Ra-228 activity concentrations after fracking process was observed in the case of return fracking fluids, but the radium isotopes content in these fluids is comparable with that in waste waters from copper and coal mines in Poland. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of new estimation method for CO2 evolved from oil shale

    International Nuclear Information System (INIS)

    Sato, S.; Enomoto, M.

    1997-01-01

    The quality of fossil fuels tends to be evaluated by amounts of CO 2 emissions. For the evaluation of an oil shale from this point, an on-line thermogravimetric-gas chromatographic system was used to measure CO 2 evolution profiles on temperature with a small oil shale sample. This method makes it possible to estimate the amounts of CO 2 evolved from kerogen and carbonates in retorting and those from carbonates in combustion, respectively. These results will be basic data for a novel oil shale retorting process for the control of CO 2 emissions. The profiles for Thai and Colorado oil shales have shown CO 2 mainly evolved by the pyrolysis of kerogen below 550 degree C, and that evolved by the decomposition of carbonates above that temperature. On the other hand, the profile for Condor oil shale showed that most carbonates decomposed below 550 degree C, while only small amounts of carbonates decomposed above this temperature. 14 refs., 2 figs., 3 tabs

  4. Detailed description of oil shale organic and mineralogical heterogeneity via fourier transform infrared mircoscopy

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando

    2015-01-01

    Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.

  5. Role of spent shale in oil shale processing and the management of environmental residues. Final technical report, January 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hines, A.L.

    1980-08-15

    The adsorption of hydrogen sulfide on retorted oil shale was studied at 10, 25, and 60/sup 0/C using a packed bed method. Equilibrium isotherms were calculated from the adsorption data and were modeled by the Langmuir, Freundlich, and Polanyi equations. The isosteric heat of adsorption was calculated at three adsorbent loadings and was found to increase with increased loading. A calculated heat of adsorption less than the heat of condensation indicated that the adsorption was primarily due to Van der Waals' forces. Adsorption capacities were also found as a function of oil shale retorting temperature with the maximum uptake occurring on shale that was retorted at 750/sup 0/C.

  6. Shale gas operator violations in the Marcellus and what they tell us about water resource risks

    International Nuclear Information System (INIS)

    Rahm, Brian G.; Vedachalam, Sridhar; Bertoia, Lara R.; Mehta, Dhaval; Vanka, Veeravenkata Sandeep; Riha, Susan J.

    2015-01-01

    Development of shale gas entails environmental risk, particularly with respect to water resources, and stakeholders are keen to assess such risks before making development decisions. We focus on Pennsylvania, USA and the Marcellus Shale, the most productive shale play in the country. We examine compliance data recorded by the state regulatory agency in order to assess environmental risks and their trends and drivers over time. Overall, we track 3267 shale gas violations, noting that environmental violation rates increase from 2007 to 2009, remain high through 2010, and then drop in 2011 and thereafter. Violations related to spills and erosion were most commonly issued. A single change in policy resulted in a 45% decrease in environmental violation rates. Furthermore, for every 1% increase in wells drilled per inspections conducted, there was a 0.56% decrease in environmental violation rates. Similar effects were not found for administrative violations. Operator identity, price of gas, and other major policies were not significantly correlated with violation rates. In comparing conventional and shale gas extraction compliance we found that shale gas development entails more risk related to spills and solid waste management, while conventional development entails more risk associated with cementing and casing issues, and site restoration. -- Highlights: •We examine trends in violations issued to natural gas operators over 6.5 years. •Analyzed 3267 unconventional and 9784 conventional violations. •Decreased unconventional violation rates after 2011. •Decrease best explained by shifting regulatory policy and inspector productivity. •Differences in risks associated with conventional and unconventional development

  7. The U.S. Shale Oil and Gas Resource - a Multi-Scale Analysis of Productivity

    Science.gov (United States)

    O'sullivan, F.

    2014-12-01

    Over the past decade, the large-scale production of natural gas, and more recently oil, from U.S. shale formations has had a transformative impact on the energy industry. The emergence of shale oil and gas as recoverable resources has altered perceptions regarding both the future abundance and cost of hydrocarbons, and has shifted the balance of global energy geopolitics. However, despite the excitement, shale is a resource in its nascency, and many challenges surrounding its exploitation remain. One of the most significant of these is the dramatic variation in resource productivity across multiple length scales, which is a feature of all of today's shale plays. This paper will describe the results of work that has looked to characterize the spatial and temporal variations in the productivity of the contemporary shale resource. Analysis will be presented that shows there is a strong stochastic element to observed shale well productivity in all the major plays. It will be shown that the nature of this stochasticity is consistent regardless of specific play being considered. A characterization of this stochasticity will be proposed. As a parallel to the discussion of productivity, the paper will also address the issue of "learning" in shale development. It will be shown that "creaming" trends are observable and that although "absolute" well productivity levels have increased, "specific" productivity levels (i.e. considering well and stimulation size) have actually falling markedly in many plays. The paper will also show that among individual operators' well ensembles, normalized well-to-well performance distributions are almost identical, and have remained consistent year-to-year. This result suggests little if any systematic learning regarding the effective management of well-to-well performance variability has taken place. The paper will conclude with an articulation of how the productivity characteristics of the shale resource are impacting on the resources

  8. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe

    NARCIS (Netherlands)

    Song, J.; Littke, R.; Weniger, P.; Ostertag-Henning, C.; Nelskamp, S.

    2015-01-01

    A suite of drilling cores and outcrop samples of the Lower Toarcian Posidonia Shale (PS) were collected from multiple locations including the Swabian Alb and Franconian Alb of Southwest-Germany, Runswick Bay of UK and Loon op Zand well (LOZ-1) of the West Netherlands Basin. In order to assess the

  9. Determination of Heating Value of Estonian Oil Shale by Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Aints

    2018-01-01

    Full Text Available The laser-induced breakdown spectroscopy (LIBS combined with multivariate regression analysis of measured data were utilised for determination of the heating value and the chemical composition of pellets made from Estonian oil shale samples with different heating values. The study is the first where the oil shale heating value is determined on the basis of LIBS spectra. The method for selecting the optimal number of spectral lines for ordinary multivariate least squares regression model is presented. The correlation coefficient between the heating value predicted by the regression model, and that measured by calorimetric bomb, was R2=0.98. The standard deviation of prediction was 0.24 MJ/kg. Concentrations of oil shale components predicted by the regression model were compared with those measured by ordinary methods.

  10. The investigation for attaining the optimal yield of oil shale by integrating high temperature reactors

    International Nuclear Information System (INIS)

    Bhattacharyya, A.T.

    1984-03-01

    This work presents a systemanalytical investigation and shows how far a high temperature reactor can be integrated for achieving the optimal yield of kerogen from oil shale. About 1/3 of the produced components must be burnt out in order to have the required high temperature process heat. The works of IGT show that the hydrogen gasification of oil shale enables not only to reach oil shale of higher quality but also allows to achieve a higher extraction quantity. For this reason a hydro-gasification process has been calculated in this work in which not only hydrogen is used as the gasification medium but also two high temperature reactors are integrated as the source of high temperature heat. (orig.) [de

  11. Shale oil value enhancement research. Quarterly report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The first year of this effort was focussed on the following broad objectives: (1) Analyze the molecular types present in shale oil (as a function of molecular weight distribution); (2) Determine the behavior of these molecular types in liquid-liquid extraction; (3) Develop the analytical tools needed to systematize the process development; (4) Survey the markets to assure that these have high value uses for the types found in shale oil; (5) Explore selective process means for extracting/converting shale oil components into concentrates of potentially marketable components; (6) Compile overview of the venture development strategy and begin implementation of that strategy. Each of these tasks has been completed in sufficient detail that we can now focus on filling in the knowledge gaps evident from the overview.

  12. Western oil shale development: a technology assessment. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The general goal of this study is to present the prospects of shale oil within the context of (1) environmental constraints, (2) available natural and economic resources, and (3) the characteristics of existing and emerging technology. The objectives are: to review shale oil technologies objectively as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  13. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    Science.gov (United States)

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  14. Application of the High Temperature Gas Cooled Reactor to oil shale recovery

    International Nuclear Information System (INIS)

    Wadekamper, D.C.; Arcilla, N.T.; Impellezzeri, J.R.; Taylor, I.N.

    1983-01-01

    Current oil shale recovery processes combust some portion of the products to provide energy for the recovery process. In an attempt to maximize the petroleum products produced during recovery, the potentials for substituting nuclear process heat for energy generated by combustion of petroleum were evaluated. Twelve oil shale recovery processes were reviewed and their potentials for application of nuclear process heat assessed. The High Temperature Gas Cooled Reactor-Reformer/Thermochemical Pipeline (HTGR-R/TCP) was selected for interfacing process heat technology with selected oil shale recovery processes. Utilization of these coupling concepts increases the shale oil product output of a conventional recovery facility from 6 to 30 percent with the same raw shale feed rate. An additional benefit of the HTGR-R/TCP system was up to an 80 percent decrease in emission levels. A detailed coupling design for a typical counter gravity feed indirect heated retorting and upgrading process were described. Economic comparisons prepared by Bechtel Group Incorporated for both the conventional and HTGR-R/TCP recovery facility were summarized

  15. Modelling of underground geomechanical characteristics for electrophysical conversion of oil shale

    International Nuclear Information System (INIS)

    Bukharkin, A A; Koryashov, I A; Martemyanov, S M; Ivanov, A A

    2015-01-01

    Oil shale energy extraction is an urgent issue for modern science and technique. With the help of electrical discharge phenomena it is possible to create a new efficient technology for underground conversion of oil shale to shale gas and oil. This method is based on Joule heat in the rock volume. During the laboratory experiments the problem has arisen, when the significant part of a shale fragment is being heated, but the further heating is impossible due to specimen cracking. It leads to disruption in current flow and heat exchange. Evidently, in the underground conditions these failure processes will not proceed. Cement, clay and glass fiber/epoxy resin armature have been used for modelling of geomechanical underground conditions. Experiments have shown that the use of a reinforcing jacket makes it possible to convert a full rock fragment. Also, a thermal field extends radially from the centre of a tree-type structure, and it has an elliptic cross section shape. It is explained by the oil shale anisotropy connected with a rock laminar structure. Therefore, heat propagation is faster along the layers than across ones. (paper)

  16. Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis

    Science.gov (United States)

    Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.

    2017-12-01

    The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.

  17. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  18. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquire water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation

  19. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  20. Mason’s equation application for prediction of voltage of oil shale treeing breakdown

    Science.gov (United States)

    Martemyanov, S. M.

    2017-05-01

    The application of the formula, which is used to calculate the maximum field at the tip of the pin-plane electrode system was proposed to describe the process of electrical treeing and treeing breakdown in an oil shale. An analytical expression for the calculation of the treeing breakdown voltage in the oil shale, as a function of the inter-electrode distance, was taken. A high accuracy of the correspondence of the model to the experimental data in the range of inter-electrode distances from 0.03 to 0.5 m was taken.

  1. Ecological problems of oil wastes

    International Nuclear Information System (INIS)

    Mohsun, R.

    2004-01-01

    Full text : Pollution of the environment with different wastes is one the main problems in the world. So that is why this article is devoted to consideration of questions, related to oil and its industry. During oil production (extraction, transportation, refining) different wastes (homogeneous and solid wastes) are taken out from a place of production to the environment and after this environment undergoes the pollution because of these wastes. These wastes contain first of all harmful for environment radioactive elements, then different groups of metals, non-metals and other combinations. All these forms technical pollution zones and can cause serious danger for health of people. So taking into consideration all mentioned above we must make all efforts in order to prevent such accidents

  2. Preliminary organic geochemical investigation of the Kimmeridgian oil shales. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P F.V.; Douglas, A G

    1980-01-01

    The Kimmeridge oil shales have assumed renewed significance because of their role as the prime source-rock for North Sea oil, and because of the need to assess their potential as a possible future supply of shale oil. This paper presents the results of a preliminary investigation of selected Kimmeridge oil shales. The immature shales are rich in organic matter with a dominantly marine type II kerogen showing evidence of algal contributions and a general sparsity of land-derived, higher plant detritus. Column chromatographic and capillary column gas chromatographic examinations of bitumens, pyrolysates and pyrolysis gas chromatograms of kerogen isolates show a predominance of aromatics in the hydrocarbon fractions, with bitumen n-alkane gas chromatograms showing evidence of algal-derived organic matter with n-alkane maxima in the n-C/sub 17/ region. Possible contributions from lower land plants are indicated by a second n-alkane maximum at n-C/sub 23/, whilst higher land plant detritus makes only a limited contribution. Reflected light microscopic examination of the shales also shows a general sparsity of recognizable land-derived woody or herbaceous material. Shale oil compositions reflect their pyrolytic origin, with unsaturates forming a large part of the aliphatic hydrocarbon fraction, together with significant amounts of isoprenoid alkanes; organic sulphur compounds are also prominent in the hydrocarbon fractions. Finally, considerable amounts of sterane and pentacyclic triterpane hydrocarbons have been found in the bitumen aliphatic hydrocarbon fractions, their distributions allowing Blackstone samples to be differentiated from those of lower stratigraphic levels.

  3. Use of oil shale ash in road construction: results of follow-up environmental monitoring.

    Science.gov (United States)

    Reinik, Janek; Irha, Natalya; Koroljova, Arina; Meriste, Tõnis

    2018-01-05

    Oil shale ash (OSA) was used for road construction in a pristine swamp area in East-Estonia during 2013-2014. OSA was used as a binder both in mass stabilization of soft peat soil and in the upper layer. Use of OSA in civil engineering always raises questions about the environmental safety of such activities. Post-construction environmental monitoring of the pilot section was carried out in 2014 and 2015. The monitoring program involved surface water and soil sampling campaigns. Samples were analyzed for selected constituents and parameters of environmental concern. The paper gives data for assessing the environmental impact and evaluation of potential risks associated with construction of roads using OSA. Leaching of hazardous compounds from the pilot section to surrounding aqueous environment was not observed during the monitoring program. Still, the road construction affected the concentration of sulfates in surrounding surface water. Also, the water-soluble content of barium in surface water correlated significantly with the concentrations of chloride and sulfate ion and electric conductivity of the surface water. Therefore, it is recommended to monitor the electric conductivity, concentrations of sulfates, chlorides, and barium in nearby surface water when OSA is used in road construction.

  4. The revolution of shale oils in the United States. The business model is being tested

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2015-01-01

    This report proposes an overview of LTO (Light Tight Oil or shale oil) production in the USA, and examines the consequences of oil price fall on its future level. The first part gives an assessment of five years of this revolution which follows the shale gas revolution. It addresses the most remarkable evolutions: spectacular development of production, decrease of oil imports, increase of oil product exports, and a move towards oil independence. The second part highlights some peculiarities of shale oils and of the resulting business model which is much different from the Exploration/Production model for conventional oil. It analyses the LTO economy and breakeven prices required for a continued investment. Technological advances which are at the basis of this revolution are addressed, and expected improvements on a short or medium term are described. The main financial indicators are then presented as the financial situation of LTO producers is a crucial factor for future investment levels. The last chapter reports the study of the impact of price decrease on capital expenditures (CAPEX) of American producers, and on the drilling activity. It seems that LTO production will resist to price decrease

  5. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim [Faculty of Graduate Studies, Jordan University, Queen Rania Street, Amman, 11942 (Jordan); Haddadin, Jamal [Faculty of Agriculture, Mutah University, P.O. Box 59, Mutah 61710 (Jordan)

    2009-04-15

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K{sub 2}HPO{sub 4} to KH{sub 2}PO{sub 4} ratio, temperature, pH, and agitation speeds were 2:1, 37 C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre-treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale. (author)

  6. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    International Nuclear Information System (INIS)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim; Haddadin, Jamal

    2009-01-01

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K 2 HPO 4 to KH 2 PO 4 ratio, temperature, pH, and agitation speeds were 2:1, 37 deg. C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre- treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale

  7. Removal of calcium and magnesium ions from shale gas flowback water by chemically activated zeolite.

    Science.gov (United States)

    Chang, Haiqing; Liu, Teng; He, Qiping; Li, Duo; Crittenden, John; Liu, Baicang

    2017-07-01

    Shale gas has become a new sweet spot of global oil and gas exploration, and the large amount of flowback water produced during shale gas extraction is attracting increased attention. Internal recycling of flowback water for future hydraulic fracturing is currently the most effective, and it is necessary to decrease the content of divalent cations for eliminating scaling and maintaining effectiveness of friction reducer. Zeolite has been widely used as a sorbent to remove cations from wastewater. This work was carried out to investigate the effects of zeolite type, zeolite form, activation chemical, activation condition, and sorption condition on removal of Ca 2+ and Mg 2+ from shale gas flowback water. Results showed that low removal of Ca 2+ and Mg 2+ was found for raw zeolite 4A and zeolite 13X, and the efficiency of the mixture of both zeolites was slightly higher. Compared with the raw zeolites, the zeolites after activation using NaOH and NaCl greatly improved the sorption performance, and there was no significant difference between dynamic activation and static activation. Dynamic sorption outperformed static sorption, the difference exceeding 40% and 7-70% for removal of Ca 2+ and Mg 2+ , respectively. Moreover, powdered zeolites outperformed granulated zeolites in divalent cation removal.

  8. Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind. Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.

  9. Waste oil management at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Bird, J.C.; Shank, K.E.; Kelley, B.A.; Harrison, L.L.; Clark, B.R.; Rogers, W.F.

    1980-01-01

    It is the policy of the Oak Ridge National Laboratory (ORNL) to require that oily substances be handled and disposed of in a manner that protects the environment and personnel from harm. Federal regulations prohibit the discharge of oil into navigable waters, with stiff penalties possible to violators. A strict waste oil management program has been developed and implemented because of the potential for oil problems resulting from the large and varied uses of oil at the Laboratory. Also, past records of improper discharges of oil have mandated immediate corrective actions. In order to resolve the problems of waste oil at the Laboratory, the ORNL Waste Oil Investigation Committee was formed on March 14, 1979. The work of the committee included a survey of every building and area of the Laboratory to locate the presence of oil and the pathways of oil discharges to the environment. The committee also provided a basis for the development of oil spill procedures and waste oil disposal. The Department of Environmental Management (DEM) of the Industrial Safety and Applied Health Physics Division at ORNL has the responsibility of developing environmental protection procedures for the handling and disposal of oil. It approves storage and collection facilities, disposal methods, and disposal sites for oil-containing wastes. The DEM has developed and implemented an ORNL Environmental Protection Procedure for oils and an oil spill prevention and countermeasure plan. In order to familiarize ORNL personnel with the problems and procedures of waste oil, the DEM has held seminars on the subject. This report reviews the findings of the Waste Oil Investigation Committee and the actions of the laboratory management and the DEM in dealing with the waste oil problem at ORNL

  10. Removal of oil from water by bentonite

    International Nuclear Information System (INIS)

    Moazed, H.; Viraraghavan, T.

    1999-01-01

    Many materials, included activated carbon, peat, coal, fiberglass, polypropylene, organoclay and bentonite have been used for removing oils and grease from water. However, bentonite has been used only rarely for this purpose. In this study Na-bentonite was used to remove oil from oil-in-water emulsions of various kinds such as standard mineral oil, cutting oils, refinery effluent and produced water from production wells at Estevan, Saskatchewan. Removal efficiencies obtained were 85 to 96 per cent for cutting oils, 84 to 86 per cent for produced water and 54 to 87 per cent for refinery effluent. Bentonite proved to be more effective in the removal of oil from oil-in-water emulsions than from actual waste waters; up to 96 percent from oil-in-water emulsions to only 87 per cent from actual waste water. The percentage of oil removed was found to be a function of the amount of bentonite added and the adsorption time up to the equilibrium time. Result also showed that the Langmuir, Freundlich and BET isotherms are well suited to describe the adsorption of oil by bentonite from the various oily waters employed in this study. 15 refs

  11. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1948-08-03

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described, which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors containing shale fines from the zone, mixing sufficient fresh cold shale with the hydrocarbon vapors to quench the same and to cause condensation of the higher boiling constituents thereof, charging the mixture of vapors, condensate, and cold shale to a separation zone where the shale is maintained in a fluidized condition by the upward movement of the hydrocarbon vapors, withdrawing condensate from the separation zone and recycling a portion of the condensate to the top of the separation zone where it flows countercurrent to the vapors passing therethrough and causes shale fines to be removed from the vapors by the scrubbing action of the condensate, recovering hydrocarbon vapors and product vapors from the separation zone, withdrawing preheated shale from the separation zone and charging it to a shale distillation zone.

  12. Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado.

    Science.gov (United States)

    Goodwin, Stephen; Carlson, Ken; Knox, Ken; Douglas, Caleb; Rein, Luke

    2014-05-20

    Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. As the population increases and agriculture and energy needs continue to rise, the pressure on water and other natural resources is expected to intensify. Recent advances in technology have stimulated growth in oil and gas development, as well as increasing the industry's need for water resources. This study provides an analysis of how efficiently water resources are used for unconventional shale development in Northeastern Colorado. The study is focused on the Wattenberg Field in the Denver-Julesberg Basin. The 2000 square mile field located in a semiarid climate with competing agriculture, municipal, and industrial water demands was one of the first fields where widespread use of hydraulic fracturing was implemented. The consumptive water intensity is measured using a ratio of the net water consumption and the net energy recovery and is used to measure how efficiently water is used for energy extraction. The water and energy use as well as energy recovery data were collected from 200 Noble Energy Inc. wells to estimate the consumptive water intensity. The consumptive water intensity of unconventional shale in the Wattenberg is compared with the consumptive water intensity for extraction of other fuels for other energy sources including coal, natural gas, oil, nuclear, and renewables. 1.4 to 7.5 million gallons is required to drill and hydraulically fracture horizontal wells before energy is extracted in the Wattenberg Field. However, when the large short-term total freshwater-water use is normalized to the amount of energy produced over the lifespan of a well, the consumptive water intensity is estimated to be between 1.8 and 2.7 gal/MMBtu and is similar to surface coal mining.

  13. Shale gas. Shale gas formation and extraction

    International Nuclear Information System (INIS)

    Renard, Francois; Artru, Philippe

    2015-10-01

    A first article recalls the origin of shale gases and technological breakthroughs which allowed their exploitation, describes the development of shale gas exploitation in the USA during the 2000's and the consequences for the gas and electricity markets, and discusses the various environmental impacts (risks of pollution of aquifers, risks of induced seismicity, use and processing of drilling and production waters). The second article describes the formation of shale gas: presence of organic matter in sediments, early evolution with the biogenic gas, burrowing, diagenesis and oil formation, thermal generation of gas (condensates and methane). The author indicates the location of gas within the rock, and the main sites of shale oils and shale gases in the World. In the next part, the author describes the various phases of shale gas extraction: exploration, oriented drillings, well preparation for hydraulic fracturing, fracturing, processing of fracturing fluids, flow-back, gas production and transport, aquifer protection. He finally gives a brief overview of technical evolution and of shale gas economy

  14. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  15. A lithology identification method for continental shale oil reservoir based on BP neural network

    Science.gov (United States)

    Han, Luo; Fuqiang, Lai; Zheng, Dong; Weixu, Xia

    2018-06-01

    The Dongying Depression and Jiyang Depression of the Bohai Bay Basin consist of continental sedimentary facies with a variable sedimentary environment and the shale layer system has a variety of lithologies and strong heterogeneity. It is difficult to accurately identify the lithologies with traditional lithology identification methods. The back propagation (BP) neural network was used to predict the lithology of continental shale oil reservoirs. Based on the rock slice identification, x-ray diffraction bulk rock mineral analysis, scanning electron microscope analysis, and the data of well logging and logging, the lithology was divided with carbonate, clay and felsic as end-member minerals. According to the core-electrical relationship, the frequency histogram was then used to calculate the logging response range of each lithology. The lithology-sensitive curves selected from 23 logging curves (GR, AC, CNL, DEN, etc) were chosen as the input variables. Finally, the BP neural network training model was established to predict the lithology. The lithology in the study area can be divided into four types: mudstone, lime mudstone, lime oil-mudstone, and lime argillaceous oil-shale. The logging responses of lithology were complicated and characterized by the low values of four indicators and medium values of two indicators. By comparing the number of hidden nodes and the number of training times, we found that the number of 15 hidden nodes and 1000 times of training yielded the best training results. The optimal neural network training model was established based on the above results. The lithology prediction results of BP neural network of well XX-1 showed that the accuracy rate was over 80%, indicating that the method was suitable for lithology identification of continental shale stratigraphy. The study provided the basis for the reservoir quality and oily evaluation of continental shale reservoirs and was of great significance to shale oil and gas exploration.

  16. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    Science.gov (United States)

    1983-12-01

    10-9. GROWTH RATINGS OF CLADOSPORIUM RESINAE AT VARIOUS INCUBATION STAGES ......................... 10-25 S 0 xv - LIST OF TABLES (Continued) TABLE 10...test_nC are sho’ T, in Trbl]e .3 d :: ab ffr stead..--staoe zerfrrmance was noted wcrh the snale fel. Wh’le a ..6 :o:n: = in Scecifiz Fuel Consumption...both shale DFM and shale JP-5 support heavy growth of Cladosporium resinae . Short-term engine performance tests were conducted on two gas turbine

  17. Cuttings and waste injection, shale fracturing pressure decline, and domain mapping

    Energy Technology Data Exchange (ETDEWEB)

    Shokanov, T.; Ronderos, J. [M-I SWACO, a Schlumberger company (United States)

    2011-07-01

    Cuttings and waste injection surfaced as an innovative waste management technique in the early 1990s. It is a practical application of drilling and hydraulic fracturing techniques to the problem of waste disposal in remote and environmentally sensitive regions. In recent years this method has been favored for waste management in many parts of the world. This paper presents an overview of the historical evolution of the waste disposal domain from early developments, the drill cuttings experiment at Mounds, Oklahoma, to the current understanding that derives from microseismic observations of fracturing in the Barnett, Haynesville and Marcellus shale formations. The presence of fissures in shale formations and their impact on refracture initiation and an alternative assessment of the disposal domain based on microseismic observations are also discussed. The study demonstrates that high levels of assurance and risk control can be achieved in cuttings and waste injection disposal through accurate mapping of the fracture.

  18. A Simple Physics-Based Model Predicts Oil Production from Thousands of Horizontal Wells in Shales

    KAUST Repository

    Patzek, Tadeusz; Saputra, Wardana; Kirati, Wissem

    2017-01-01

    and ultimate recovery in shale wells. Here we introduce a simple model of producing oil and solution gas from the horizontal hydrofractured wells. This model is consistent with the basic physics and geometry of the extraction process. We then apply our model

  19. Assessment of shale-oil resources of the Central Sumatra Basin, Indonesia, 2015

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.

    2015-11-12

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 459 million barrels of shale oil, 275 billion cubic feet of associated gas, and 23 million barrels of natural gas liquids in the Central Sumatra Basin, Indonesia.

  20. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, S M

    1994-12-31

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of `LPG` in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs.

  1. Origin and microfossils of the oil shale of the Green River Formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins, the Piceance Creek basin in northwestern Colorado and the Uinta basin in northwestern Utah. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. Microgranular calcite and dolomite are the predominant mineral constituents of most of the oil shale. The microflora of the Green River formation consist of two forms that have been referred to as bacteria and many fungi spores. Two kinds of organic matter are seen in thin sections of the oil shale; one is massive and structureless and is the matrix of the other, which has definite form and consists of organisms or fragments of organisms. Most structureless organic matter is isotropic (there are two anisotropic varieties) and makes up the greater part of the total organic material.

  2. Free and sulphurized hopanoids and highly branched isoprenoids in immature lacustrine oil shales

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Grimalt, J.O.; Lopez, J.F.; Albaiges, J.; Leeuw, J.W. de

    1997-01-01

    A study of the solvent extracts of four samples from two immature oil shales from Tertiary lacustrine basins, Ribesalbes and Campins (southern European rift system), deposited under reducing conditions, has allowed the identification of S-containing hopanoids and novel highly branched isoprenoids

  3. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    International Nuclear Information System (INIS)

    Azzam, S.M.

    1993-01-01

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of 'LPG' in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs

  4. Porphyrin metabolism in lymphocytes of miners exposed to diesel exhaust at oil shale mine.

    NARCIS (Netherlands)

    Muzyka, V.; Scheepers, P.T.J.; Bogovski, S.; Lang, I.; Schmidt, N.; Ryazanov, V.; Veidebaum, T.

    2004-01-01

    The present study was carried out on the evaluation and application of new biomarkers for populations exposed to occupational diesel exhaust at oil shale mines. Since not only genotoxic effects may play an important role in the generation of tumors, the level of porphyrin metabolism was proposed as

  5. Geological settings of the protected Selisoo mire (northeastern Estonia threatened by oil shale mining

    Directory of Open Access Journals (Sweden)

    Helen Hiiemaa

    2014-05-01

    Full Text Available The protected Selisoo mire in northeastern Estonia is located above valuable oil shale resources, partly in the permitted mining area. We describe in detail the geomorphology and geological setting of the mire to understand the natural preconditions for its formation, development and preservation. We used the LiDAR-based digital elevation model for relief analysis, mapped the peat thickness with ground-penetrating radar and described the Quaternary cover through corings. Ridges, oriented perpendicular to the generally southward-sloping terrain, and shallow depressions at the surface of mineral soil have influenced mire formation and its spatio-temporal dynamics. The Quaternary cover under the mire is thin and highly variable. Therefore the mire is hydro­geologically insufficiently isolated from the limestone bedrock that is drained by the nearby oil shale mine and consequently the mining activities approaching the mire may have a negative influence on the wetland and proposed Natura 2000 site. Natura 2000 type wetlands, both protected or currently outside the nature reserves, cover a significant portion of the prospective oil shale mining areas. The distribution and resilience of those sites may significantly influence further utilization of oil shale resources.

  6. Organic constituents in sour condensates from shale-oil and petroleum-crude runs at Sohio's Toledo refinery: identification and wastewater-control-technology considerations

    Energy Technology Data Exchange (ETDEWEB)

    Wingender, R J; Harrison, W; Raphaelian, L A

    1981-02-01

    Samples of sour condensate generated from the continuous processing of both crude shale oil and petroleum crude were collected and extracted with methylene chloride. The extracts were analyzed using capillary-column gas chromatography/mass spectrometry at Argonne National Laboratory and Radian Corporation. Qualitatively, the predominant types of organic compounds present in the shale-oil sour condensate were pyridines and anilines; semiquantitatively, these compounds were present at a concentration of 5.7 ppM, or about 78% of the total concentration of components detected. In contrast, straight-chain alkanes were the predominant types of compounds found in the sour condensate produced during isocracking of conventional crude oil. The approximate concentration of straight-chain alkanes, 8.3 ppM, and of other branched and/or unsaturated hydrocarbons, 6.8 ppM, amounted to 88% of the total concentration of components detected in the sour condensate from the petroleum-crude run. Nitrogen compounds in the shale-oil sour condensate may necessitate alterations of the sour water and refinery wastewater-treatment facilities to provide for organics degradation and to accommodate the potentially greater ammonia loadings. This would include use of larger amounts of caustic to enhance ammonia removal by steam stripping. Possible problems associated with biological removal of organic-nitrogen compounds should be investigated in future experimental shale-oil refining runs.

  7. Shale fabric and velocity anisotropy : a study from Pikes Peak Waseca Oil Pool, Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Newrick, R.T.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    The stratigraphic sequence of the Pikes Peaks region in west-central Saskatchewan consists of a thick sequence of shale overlying interbedded sandstones, shale and coal from the Mannville Group. Hydrocarbons exist in the Waseca, Sparky and General Petroleum Formations in the Pikes Peak region. The primary objective of this study was to examine the layering of clay minerals in the shale and to find similarities or differences between samples that may be associated with velocity anisotropy. Anisotropy is of key concern in areas with thick shale sequences. Several processing algorithms include corrections for velocity anisotropy in order for seismic images to be well focused and laterally positioned. This study also estimated the Thomsen parameters of anisotropy through field studies. The relationship between the shale fabric and anisotropy was determined by photographic core samples from Pike Peak using a scanning electron microscope. Shale from two wells in the Waseca Oil Pool demonstrated highly variable fabric over a limited vertical extent. No layering of clay minerals was noted at the sub-centimetre scale. Transverse isotropy of the stratigraphy was therefore considered to be mainly intrinsic. 7 refs., 3 tabs., 9 figs.

  8. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993

    International Nuclear Information System (INIS)

    1993-01-01

    During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program's oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994

  9. Recovery of very viscous lubricating oils from shale-tar, etc

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, E

    1918-01-22

    A process is disclosed for the recovery of very viscous lubricating oils from brown-coal tar and shale tar, consisting in driving off from the crude tar or the tar freed from volatile constituents after removal of paraffin by precipitation with a volatile solvent such as acetone or one of its homologs, the light oils more or less completely with superheated steam from about 200 to 250/sup 0/C without any outside heating over a free flame.

  10. Shale oil value enhancement research. Quarterly report, March 1 - May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Activities during this quarter focused on integrating the various tasks and elements. During Phase-1, substantial effort was placed on designing and automating the identification of molecular types present in shale oil. The ability to know the molecular composition and to track a given ``target`` species through the initial concentration steps was deemed critically important to the ultimate success of the three-phase project. It has been this molecular tracking ability that clearly distinguishes the JWBA work from prior shale oil research. The major software and hardware tasks are not in place to rapidly perform these analytical efforts. Software improvements are expected as new questions arise. The existence of the major nitrogen and oxygen types in shale oil has been confirmed. Most importantly, the ability to convert higher molecular weight types to lower molecular weight types was preliminarily confirmed in the present quarter. This is significant because it confirms earlier hypothesis that values are found though out the boiling range. Potential yields of extremely high value chemicals, e.g., $1000/bbl of up to 10% by weight of the barrel remain a feasible objective. Market and economic assessment continue to show encouraging results. Markets for specialty and fine chemicals containing a nitrogen atom are expanding both in type and application. Initial discussions with pharmaceutical and agrochemical industries show a strong interest in nitrogen-based compounds. Major progress was made during this quarter in completing agreements with industry for testing of shale oil components for biological activity. Positive results of such testing will add to the previously known applications of shale oil components as pure compounds and concentrates. During this quarter, we will formulate the pilot plant strategy for Phase-11(a).

  11. Kinetics of selenium release in mine waste from the Meade Peak Phosphatic Shale, Phosphoria Formation, Wooley Valley, Idaho, USA

    Science.gov (United States)

    Stillings, Lisa L.; Amacher, Michael C.

    2010-01-01

    Phosphorite from the Meade Peak Phosphatic Shale member of the Permian Phosphoria Formation has been mined in southeastern Idaho since 1906. Dumps of waste rock from mining operations contain high concentrations of Se which readily leach into nearby streams and wetlands. While the most common mineralogical residence of Se in the phosphatic shale is elemental Se, Se(0), Se is also an integral component of sulfide phases (pyrite, sphalerite and vaesite–pyritess) in the waste rock. It may also be present as adsorbed selenate and/or selenite, and FeSe2 and organo-selenides.Se release from the waste rock has been observed in field and laboratory experiments. Release rates calculated from waste rock dump and column leachate solutions describe the net, overall Se release from all of the possible sources of Se listed above. In field studies, Se concentration in seepage water (pH 7.4–7.8) from the Wooley Valley Unit 4 dump ranges from 3600 µg/L in May to 10 µg/L by Sept. Surface water flow, Q, from the seep also declines over the summer, from 2 L/s in May to 0.03 L/s in Sept. Se flux ([Se] ⁎ Q) reaches a steady-state of Laboratory experiments were performed with the waste shale in packed bed reactors; residence time varied from 0.09 to 400 h and outlet pH ∼ 7.5. Here, Se concentration increased with increasing residence time and release was modeled with a first order reaction with k = 2.19e−3 h− 1 (19.2 yr− 1).Rate constants reported here fall within an order of magnitude of reported rate constants for oxidation of Se(0) formed by bacterial precipitation. This similarity among rate constants from both field and laboratory studies combined with the direct observation of Se(0) in waste shales of the Phosphoria Formation suggests that oxidation of Se(0) may control steady-state Se concentration in water draining the Wooley Valley waste dump.

  12. Pressurized fluidized-bed hydroretorting of eastern oil shales. Progress report, September 1992--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  13. Oil troubles waters

    International Nuclear Information System (INIS)

    Bravo, E.

    1998-01-01

    The sea provides a vast array of natural resources for thousands of local communities in the tropics. But the presence of the oil industry has significant social and environmental impacts, both from accidents and from routine activities like seismic exploration, drilling and the generation of polluting wastes. When accidents occur, sessile life (species attached to surface such as rocks or the seabed) is the first to be affected; its mortality increases as oil accumulates, although certain organisms, like gastropods, tolerate it better

  14. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yixin [Department of Epidemiology, Shanghai Jiaotong University School of Public Health (China); Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Chen, Tingting [School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Shen, Steven S. [Biochemistry and Molecular Pharmaceutical, New York University School of Medicine (United States); Niu, Yingmei; DesMarais, Thomas L.; Linn, Reka; Saunders, Eric; Fan, Zhihua [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Lioy, Paul [Robert Wood Johnson Medical School Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kluz, Thomas; Chen, Lung-Chi [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Wu, Zhuangchun, E-mail: wuzhuangchun@mail.njust.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Costa, Max, E-mail: max.costa@nyumc.org [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States)

    2015-10-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC{sub 50} values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.

  15. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    International Nuclear Information System (INIS)

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L.; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC 50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.

  16. Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Hall, V.S. (comp.)

    1980-06-01

    This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

  17. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  18. Total lead (Pb) concentration in oil shale ash samples based on correlation to isotope Pb-210 gamma-spectrometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaasma, T.; Kiisk, M.; Tkaczyk, A.H. [University of Tartu (Estonia); Bitjukova, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    Estonian oil shale consists of organic matter and mineral material and contains various amounts of heavy metals as well as natural radionuclides (from the U-238 and Th-232 series and K-40). Previous research has shown that burning oil shale in the large power plants causes these radionuclides to become enriched in different ash fractions and be partially emitted to the atmosphere via fly ash and flue gases. The activity concentrations (Bq/kg) of these nuclides in different oil shale ash fractions vary significantly. This is influenced by the boiler parameters and combustion conditions - prevailing temperatures, pressure, ash circulating mechanisms, fly ash particle size, chemical composition of ash and coexistence of macro and micro components. As with radionuclides, various heavy metals remain concentrated in the ash fractions and are released to the atmosphere (over 20 tons of Pb per year from Estonian oil shale power plants). Lead is a heavy metal with toxic influence on the nervous system, reproductive system and different organs in human body. Depending on the exposure pathways, lead could pose a long term health hazard. Ash samples are highly heterogeneous and exhibit great variability in composition and particle size. Determining the lead concentration in ash samples by modern methods like inductively coupled plasma mass spectroscopy (ICP-MS), flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectroscopy (GFAAS) and other techniques often requires time consuming, multistage and complex chemical sample preparation. The list of possible methods to use is lengthy, but it is a challenge to choose a suitable one to meet measurement needs and practical considerations. The detection limits, capital costs and maintenance expenses vary between the instruments. This work presents the development of an alternative measurement technique for our oil shale ash samples. Oil shale ash was collected from different boilers using pulverized fuel

  19. Eo-Oligocene Oil Shales of the Talawi, Lubuktaruk, and Kiliranjao Areas, West Sumatra: Are they potential source rocks?

    Directory of Open Access Journals (Sweden)

    M. Iqbal

    2014-12-01

    Full Text Available DOI:10.17014/ijog.v1i3.198To anticipate the increasing energy demand, additional data and information covering unconventional fossil fuels such as oil shale must be acquired to promote the usage of alternative energy sources to crude oil. The Talawi and Lubuktaruk regions situated within intra-montane Ombilin Basin, and the Kiliranjao assumed to be a small intra montane basin are occupied by Eo-Oligocene sediments of Sangkarewang and Kiliran Formations, respectively. Field activity, geochemical screening techniques, and organic petrographic analysis, supported by SEM mode, are methods used. Most of the oil shale sequence is typically of an organically rich-succession comprising predominantly well-bedded, laminated and fissile, brownish to dark grey organic-rich shale and mudstone rocks. The exinite macerals within oil shale comprise mainly Pediastrum-lamalginite with minor cutinite, resinite, liptodetrinite, sporinite, bituminite, and rare Botryococcus-telalginite. Therefore; the oil shale deposits can be described as “lamosites”. Minor vitrinite maceral is also recognized. TOC analysis on selected shale samples corresponds to a fair up to excellent category of source rock characterization. The hydrogen index (HI for all samples shows a range of values from 207 - 864, and pyrolysis yield (PY ranges from 2.67 to 79.72 mg HC/g rock. The kerogen is suggested to be of mixed Type II and Type I autochthonous materials such as alginite, with minor allochthonous substances. Oil samples collected appear to be positioned within more oil prone rather than gas prone. Thermal maturity of the oil shales gained from Tmax value and production index (PI tends to show immature to marginally/early mature stage. A consistency in the thermal maturity level results by using both Tmax and vitrinite reflectance value is recognized. On the basis of  SEM analysis, the oil shale has undergone a late eodiagenetic process. Thereby, overall, vitrinite reflectance

  20. Separating oil from water

    Energy Technology Data Exchange (ETDEWEB)

    Webb, C

    1991-04-11

    The technology available to deal with oil spills has assumed many new faces in recent years. Methods of dealing with small-scale pollution in the process industries and vast oil slicks such as that in the Gulf have developed in parallel. The progress being made in finding new means of separating oil from water is reported and the relative merits of bioremediation, hydrocylones, horizontal separators and gas flotation are discussed. (author).

  1. Biodiesel production from waste soybean oil biomass as renewable ...

    African Journals Online (AJOL)

    USER

    2010-07-05

    Jul 5, 2010 ... biodegradable, produced from renewable sources and contributes a minimal amount of net green house gases .... Later, the waste cooking oil was filtered by filter paper to ... the alcoxide from absorbing water from the air.

  2. Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction

    OpenAIRE

    Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin

    2016-01-01

    The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/supe...

  3. Characterization of clay minerals and organic matter in shales: Application to high-level nuclear waste isolation

    International Nuclear Information System (INIS)

    Gueven, N.; Landis, C.R.; Jacobs, G.K.

    1988-10-01

    The objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory is to conduct investigations to assess the potential for shale to serve as a host medium for the isolation of high-level nuclear wastes. The emphasis on shale is a result of screening major sedimentary rock types (shale, sandstone, carbonate , anhydrite, and chalk) for a variety of attributes that affect the performance of repositories. The retardation of radionuclides was recognized as one of the potentially favorable features of shale. Because shale contains both clay minerals and organic matter, phases that may provide significant sorption of radioelement, the characterization of these phases is essential. In addition, the organic matter in shale has been identified as a critical area for study because of its potential to play either a favorable (reductant) or deleterious (organic ligands) role in the performance of a repository sited in shale. 36 refs., 36 figs., 10 tabs

  4. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  5. Generation and migration of Bitumen and oil from the oil shale interval of the Eocene Green River formation, Uinta Basin, Utah

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.

    2016-01-01

    The results from the recent U.S. Geological Survey assessment of in-place oil shale resources of the Eocene Green River Formation, based primarily on the Fischer assay method, are applied herein to define areas where the oil shale interval is depleted of some of its petroleum-generating potential along the deep structural trough of the basin and to make: (1) a general estimates of the amount of this depletion, and (2) estimate the total volume of petroleum generated. Oil yields (gallons of oil per ton of rock, GPT) and in-place oil (barrels of oil per acre, BPA) decrease toward the structural trough of the basin, which represents an offshore lacustrine area that is believed to have originally contained greater petroleum-generating potential than is currently indicated by measured Fischer assay oil yields. Although this interval is considered to be largely immature for oil generation based on vitrinite reflectance measurements, the oil shale interval is a likely source for the gilsonite deposits and much of the tar sands in the basin. Early expulsion of petroleum may have occurred due to the very high organic carbon content and oil-prone nature of the Type I kerogen present in Green River oil shale. In order to examine the possible sources and migration pathways for the tar sands and gilsonite deposits, we have created paleogeographic reconstructions of several oil shale zones in the basin as part of this study.

  6. Polar constituents isolated from Green River oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Anders, D.E.; Doolittle, F.G.; Robinson, W.E.

    1975-01-01

    The mass spectrometric, ir absorption, and NMR data were interpreted for 22 compounds obtained from a polar fraction of Green River shale. The major constituents analyzed are believed to be of the following compositional types: C/sub n/H/sub 2n/O (cyclohexanols and chain isoprenoid ketones), C/sub n/H/sub 2n-10/O (tetralones and indanones), C/sub n/H/sub 2n-7/N (tetrahydroquinolines), C/sub n/H/sub 2n-11/N(quinolines), C/sub n/H/sub 2n-1/NO (alkoxypyrrolines), C/sub n/H/sub 2n-5/NO/sub 2/ (maleimides), C/sub n/H/sub 2n-8/ (tetralins), C/sub n/H/sub 2n-12/ (naphthalenes) and C/sub n/H/sub 2n-14/ (benzylbenzenes). This work expands the present information about nitrogen, oxygen and aromatic constituents indigenous to Green River shale.

  7. Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States

    International Nuclear Information System (INIS)

    Jenner, Steffen; Lamadrid, Alberto J.

    2013-01-01

    The aim of this paper is to examine the major environmental impacts of shale gas, conventional gas and coal on air, water, and land in the United States. These factors decisively affect the quality of life (public health and safety) as well as local and global environmental protection. Comparing various lifecycle assessments, this paper will suggest that a shift from coal to shale gas would benefit public health, the safety of workers, local environmental protection, water consumption, and the land surface. Most likely, shale gas also comes with a smaller GHG footprint than coal. However, shale gas extraction can affect water safety. This paper also discusses related aspects that exemplify how shale gas can be more beneficial in the short and long term. First, there are technical solutions readily available to fix the most crucial problems of shale gas extraction, such as methane leakages and other geo-hazards. Second, shale gas is best equipped to smoothen the transition to an age of renewable energy. Finally, this paper will recommend hybrid policy regulations. - Highlights: ► We examine the impacts of (un)conventional gas and coal on air, water, and land. ► A shift from coal to shale gas would benefit public health. ► Shale gas extraction can affect water safety. ► We discuss technical solutions to fix the most crucial problems of shale gas extraction. ► We recommend hybrid regulations.

  8. Treatment of fuel oil contaminated waste water from liquid fuel processing plants associated to thermal power plants or heat and power cogeneration plants

    International Nuclear Information System (INIS)

    Petrescu, S.

    1996-01-01

    According to the statistical data presented in the most important European and world meetings on environmental protection, the oil product amounts which pollute the surface water is estimated to be of about 6 mill. tones yearly out of which 35 %, 10 %, and 1 % come from oil tanks, natural sources, and offshore drilling, respectively, while 54 % reach seas and oceans trough rivers, rains a.o. Among the water consumers and users of Romania, the thermal power plants, belonging to RENEL (Romanian Electricity Authority), are the greatest. A part of the water with modified chemical-physical parameters, used for different technological processes, have to be discharged from the user precinct directly towards natural agents or indirectly through public sewage networks as domestic and industrial waste water. These waste waters need an adequate treatment before discharging as to meet the requirements imposed by the norms and regulations related to environment protection. For this purpose, before discharging, after using, the water must be circulated through the treatment plants designed and operated as to ensure the correction of the inadequate values of the residual water parameters. The paper presents the activities developed in the Institute for Power Studies and Design concerning the environmental protection against pollution produced by the entire power generation circuit, from the design phase up to product supplying. (author). 1 tab., 2 refs

  9. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  10. Shale disposal of U.S. high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

    2010-05-01

    This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within

  11. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization.

    Science.gov (United States)

    Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo

    Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.

  12. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas.

    Science.gov (United States)

    Murali Mohan, Arvind; Hartsock, Angela; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa γ-proteobacteria, α-proteobacteria, δ-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the α-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, δ-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  14. The challenge of shale to the post-oil dreams of the Arab Gulf

    International Nuclear Information System (INIS)

    Sultan, Nabil

    2013-01-01

    Growth patterns in the Gulf Cooperation Council (GCC) countries suggest that demand for energy in this region is likely to increase in the years to come and this situation ultimately means that more of the region’s natural resources will need to be devoted to meeting this demand. For some of the GCC countries, the option to meet future power demands through alternative sources of energy such as nuclear power was deemed an attractive proposition. Furthermore, real investments and plans to use other alternative energy sources such as solar, wind, hydrogen and geothermal are also gaining momentum in the region. However, relatively recent developments in the technology used for extracting gas and oil from shale rock formations places a big question mark on the GCC countries’ energy plans including those relating to alternative and renewable sources of energy. This article examines the GCC’s new energy drive and explores the economic and political motivations behind it. Furthermore, the article also examines the potential impact of shale gas and oil extraction on this region’s abundant fossil-based resources and the ramifications of such impact (if it materialises) for the GCC countries’ alternative energy plans, future wealth and their political stability. - Highlights: • Shale gas (and oil) could potentially affect future oil prices. • Gas could be the future transport fuel. • Arab Gulf countries could be the victims

  15. Hydraulic fracturing in shales: the spark that created an oil and gas boom

    Science.gov (United States)

    Olson, J. E.

    2017-12-01

    In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better

  16. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  17. Hydrogeology and geochemistry of low-permeability oil-shales - Case study from HaShfela sub-basin, Israel

    Science.gov (United States)

    Burg, Avihu; Gersman, Ronen

    2016-09-01

    Low permeability rocks are of great importance given their potential role in protecting underlying aquifers from surface and buried contaminants. Nevertheless, only limited data for these rocks is available. New appraisal wells drilled into the oil shale unit (OSU) of the Mt. Scopus Group in the HaShfela sub-basin, Central Israel, provided a one-time opportunity for detailed study of the hydrogeology and geochemistry of this very low permeability unit. Methods used include: slug tests, electrical logs, televiewer imaging, porosity and permeability measurements on core samples, chemical analyses of the rock column and groundwater analyses. Slug tests yielded primary indication to the low permeability of the OSU despite its high porosity (30-40%). Hydraulic conductivities as low as 10-10-10-12 m/s were calculated, using both the Hvorslev and Cooper-Bredehoeft-Papadopulos decoding methods. These low conductivities were confirmed by direct measurements of permeability in cores, and from calculations based on the Kozeny-Carman approach. Storativity was found to be 1 · 10-6 and specific storage - 3.8 · 10-9 m-1. Nevertheless, the very limited water flow in the OSU is argued to be driven gravitationally. The extremely slow recovery rates as well as the independent recovery of two adjacent wells, despite their initial large head difference of 214 m, indicate that the natural fractures are tight and are impermeable due to the confining stress at depth. Laboratory measured permeability is similar or even higher than the field-measured values, thereby confirming that fractures and bedding planes do not form continuous flow paths. The vertical permeability along the OSU is highly variable, implying hydraulic stratification and extremely low vertical hydraulic conductivity. The high salinity of the groundwater (6300-8000 mgCl/L) within the OSU and its chemical and isotopic compositions are explained by the limited water flow, suggesting long residence time of the water

  18. Chemical composition, antioxidant potential and phenolic profile of oil mill waste water from Tunisian olive varieties (Chetoui and Chemlali

    Directory of Open Access Journals (Sweden)

    Maissa Khemakhem Sellami

    2016-07-01

    Full Text Available Oil mill waste water (OMWW is of great interest due to the presence of valuable resources such as biophenols that can be recovered as food additives and pharmaceuticals. The aim of this study is to investigate the variation of physicochemical composition of OMWW from Chetoui and Chemlali varieties, to evaluate phenolic composition, antioxidant potential and phenolic profile of OMWW extracts under native and acidified conditions. Liquid-liquid extraction was performed for the extraction of polyphenols. Antioxidant activity was investigated by DPPH•, ABTS•+ and FRAP tests. Phenolic compounds content was determined by HPLC-DAD method. OMWW from Chetoui variety has been shown to contain an important amount of K, Ca and Na whereas Chemlali cultivar was rich in Mg. Phenolic extract from Chetoui fruit (COCt has been  shown to contain the highest amount of polyphenols (2.48 ± 0.21 g L-1 as well as an appreciable content of flavonoids (9.39 ± 0.32 g L-1. However, phenolic extract from Chemlali fruit (COCm has been shown to have the highest content of proanthocyanidins (0.39 ± 0.00 g L-1. Acidification treatment improved polyphenol recovery of extracts from both varieties. COCt was more active using DPPH (EC50 of 7.5 mg L-1 and FRAP tests. However, COCt and COCm exhibited the same activity using ABTS test. In general, acidification treatment decreased antioxidant activity of extracts. COCt has been shown to contain higher amount of hydroxytyrosol when compared to COCm (157.16 ± 0.820 and 23.440 ± 0.440 mg g-1 D.W. of extract, respectively as revealed by HPLC-DAD analysis. 

  19. Enrichment of {sup 210}Po and {sup 210}Pb in ash samples from oil shale-fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, B. [University of Tartu, Institute of Physics/Ege University, Institute of Nuclear Sciences (Estonia); Vaasma, T.; Kiisk, M.; Suursoo, S.; Tkaczyk, A.H. [University of Tartu,Institute of Physics (Estonia)

    2014-07-01

    Energy production in Estonia is largely dependent on the oil shale industry. Oil shale is a fossil fuel typically characterized by relatively high mineral composition, modest organic fraction (varying between 10 and 65%), high ash content (usually 45% to 50%), and average lower heating value of 8.4 MJ/kg{sup -1}. Oil shale-fired power plants account for 85% of Estonian electricity production and produce up to 6 million tons of oil shale ash annually. This ash contains elevated amounts of natural radionuclides (from the {sup 238}U and {sup 232}Th series and {sup 40}K), which were bound to oil shale during its formation. These radionuclides become enriched in ash fractions during the combustion process and are partially emitted to the atmosphere via fly ash and flue gases. Oil shale-fired electricity production is foreseen to remain a dominant trend in Estonia, suggesting that the radionuclide emissions to the atmosphere will continue in the future. The natural radionuclides {sup 210}Po and {sup 210}Pb, with half-lives of 138 days and 22.3 years respectively, originate from the radioactive decay of radionuclides of {sup 238}U series present in the earth's crust. These radionuclides are also built up artificially in the environment due to waste discharge from phosphate, oil, and gas industries, combustion of fossil fuels and other energy production as technically enhanced natural radionuclides. There are few studies on oil shale power plants influence on the levels of natural radioactivity in the surrounding areas. Realo, et al. reported that the annual doses from fly ash depositions over a 30 year period are in the range 90 - 200 μSv a{sup -1}. A study previously initiated by the University of Tartu, Institute of Physics (IPh) evaluated enrichment in the activity concentrations of {sup 238}U, {sup 226}Ra, {sup 210}Pb, {sup 232}Th, {sup 228}Ra and {sup 40}K in ash samples collected from Eesti Power Plant's circulating fluidized bed (CFB) boiler. According

  20. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H.; Klevtsov, I. [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1998-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  1. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H; Klevtsov, I [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1999-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  2. Preparation of nano-sized α-Al2O3 from oil shale ash

    International Nuclear Information System (INIS)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan

    2010-01-01

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized α-Al 2 O 3 . Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of α-Al 2 O 3 . The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO 2 ), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles.

  3. Fracture lines: will Canada's water be protected in the rush to develop shale gas?

    Energy Technology Data Exchange (ETDEWEB)

    Parfitt, Ben [Munk School of Global Affairs at the University of Toronto (Canada)

    2010-10-15

    By combining hydraulic fracking with horizontal drilling, the gas industry has been able to unlock significant amounts of natural gas trapped inside deep and densely packed shale rock. The exploitation of shale gas has been a remarkable revolution in the last decade, going from hardly any production in 2000 to 20% of the United States' gas production in 2010. This cheap and abundant resource has been referred to as a game changer by North American industries and governments. However concerns about water usage and groundwater contamination have been raised. Indeed, the shale gas industry is responsible for the contamination of about 1,000 water wells and has been criticized for its important water withdrawals. This report intends to present the effects of shale gas production on the water supplies in Canada. It reviews the state of groundwater mapping in shale rich regions and reviews regulatory frameworks to determine if they are sufficient to protect water resources.

  4. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Justice, P M

    1917-09-19

    Light paraffin oils and other oils for motors are obtained from shale, and benzene, toluene, and solvent naphtha are obtained from coal by a process in which the coal or shale is preferably powered to pass through a mesh of 64 to the inch and is heated with a mixture of finely ground carbonate or the like which under the action of heat gives off carbonic acid, and with small iron scrap or its equivalent which is adapted to increase the volume of hydrocarbons evolved. The temperature of the retort is maintained between 175 and 800/sup 0/C., and after all the vapors are given off at the higher temperature a fine jet of water may be injected into the retort and the temperature increased. The produced oil is condensed and purified by fractional distillation, and the gas formed is stored after passing it through a tower packed with coke saturated with a non-volatile oil with recovery of an oil of light specific gravity which is condensed in the tower. The residuum from the still in which the produced oil is fractionated may be treated with carbonate and iron, as in the first stage of the process, and the distillate therefrom passed to a second retort containing manganese dioxide and iron scrap preferably in the proportion of one part or two. The mixture, e.g., one containing shale or oil with six to thirteen percent of oxygen, to which is added three to eight per cent of carbonate, and from one and a half to four per cent of scrap iron, is conveyed by belts and an overhead skip to a hopper of a retort in a furnace heated by burners supplied with producer gas. The retort is fitted with a detachable lid and the vapors formed are led by a pipe to a vertical water-cooled condenser with a drain-cock which leads the condensed oils to a tank, from which a pipe leads to a packed tower for removing light oils and from which the gas passes to a holder.

  5. Kinetics of selenium release in mine waste from the Meade Peak Phosphatic Shale, Phosphoria Formation, Wooley Valley, Idaho, USA

    Science.gov (United States)

    Lisa L. Stillings; Michael C. Amacher

    2010-01-01

    Phosphorite from the Meade Peak Phosphatic Shale member of the Permian Phosphoria Formation has been mined in southeastern Idaho since 1906. Dumps of waste rock from mining operations contain high concentrations of Se which readily leach into nearby streams and wetlands. While the most common mineralogical residence of Se in the phosphatic shale is elemental Se, Se(0...

  6. Impact of shale gas development on regional water quality.

    Science.gov (United States)

    Vidic, R D; Brantley, S L; Vandenbossche, J M; Yoxtheimer, D; Abad, J D

    2013-05-17

    Unconventional natural gas resources offer an opportunity to access a relatively clean fossil fuel that could potentially lead to energy independence for some countries. Horizontal drilling and hydraulic fracturing make the extraction of tightly bound natural gas from shale formations economically feasible. These technologies are not free from environmental risks, however, especially those related to regional water quality, such as gas migration, contaminant transport through induced and natural fractures, wastewater discharge, and accidental spills. We review the current understanding of environmental issues associated with unconventional gas extraction. Improved understanding of the fate and transport of contaminants of concern and increased long-term monitoring and data dissemination will help manage these water-quality risks today and in the future.

  7. BX in-situ oil-shale project. Quarterly technical progress report, June 1, 1981-August 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Dougan, P.M.

    1981-09-20

    June 1, 1981-August 31, 1981 was the third consecutive quarter of superheated steam injection at the BX In Situ Oil Shale Project. Injection was continuous except for the period of July 14th to August 1st when the injection was suspended during the drilling of core hole BX-37. During the quarter, 99,760 barrels of water as superheated steam were injected into Project injection wells at an average well head temperature of 752/sup 0/F and an average wellhead pressure of 1312 PSIG. During the same period, 135,469 barrels of fluid were produced from the Project production wells for a produced to injected fluid ratio of 1.36 to 1.0. Net oil production during the quarter was 38 barrels.

  8. 40 CFR 61.347 - Standards: Oil-water separators.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards: Oil-water separators. 61.347... Waste Operations § 61.347 Standards: Oil-water separators. (a) Except as provided in § 61.352 of this subpart, the owner or operator shall meet the following standards for each oil-water separator in which...

  9. Carbon Isotope Analyses of Individual Hydrocarbon Molecules in Bituminous Coal, Oil Shale and Murchison Meteorite

    Directory of Open Access Journals (Sweden)

    Kyoungsook Kim

    1998-06-01

    Full Text Available To study the origin of organic matter in meteorite, terrestrial rocks which contain organic compounds similar to the ones found in carbonaceous chondrites are studied and compared with Murchison meteorite. Hydrocarbon molecules were extracted by benzene and methanol from bituminous coal and oil shale and the extracts were partitioned into aliphatic, aromatic, and polar fractions by silica gel column chromatography. Carbon isotopic ratios in each fractions were analysed by GC-C-IRMS. Molecular compound identifications were carried by GC-MS Engine. Bituminous coal and oil shale show the organic compound composition similar to that of meteorite. Oil shale has a wide range of δ(13C, -20.1%_0 - -54.4%_0 compared to bituminous coal, -25.2%_0 - -34.3%_0. Delta values of several molecular compounds in two terrestrial samples are different. They show several distinct distributions in isotopic ratios compared to those of meteorite; Murchison meteorite has a range of δ(13C from -13%_0 to +30%_0. These results provide interpretation for the source and the formation condition of each rock, in particular alteration and migration processes of organic matter. Especially, they show an important clue whether some hydrocarbon molecules observed in meteorite are indigenous or not.

  10. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    International Nuclear Information System (INIS)

    Jaber, J.O.; Probert, S.D.; Williams, P.T.

    1998-01-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e. the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oil shale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  11. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, J.O.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). School of Mechanical Engineering; Williams, P.T. [Leeds University (United Kingdom). Dept. of Fuel and Energy

    1998-02-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e. the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oil shale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  12. Mud Lake, a modern analog of oil shale deposition in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, J.D.

    1987-01-01

    Mud Lake in north-central Florida was identified by Bradley as an analog of oil shale-type kerogen deposition. This lake supports an abundant diatom and algal flora which is unique in that the accumulating algal ooze does not decay as long as it stays oxygenated. This same material does not nutritionally support many invertebrates, owing to its flocculent consistency and apparent indigestibility, although fish are abundant and an occasional crocodile is found in the lake. Accumulation of the algal ooze is very slow at roughly 1 foot per 52,000 years based on radiocarbon dates. An understanding of oil shale depositional conditions could be translated into a predictive model for location and recognition of hydrocarbon generating source rocks. When oil shales are mentioned the first association is likely to be that with the Eocene Green River Formation of the Western US. Conditions leading to deposition and preservation of this massive quantity of organic debris is difficult to comprehend, but recognition of modern analogs provide an available area for study and comparison.

  13. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  14. Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.

  15. Naturally occurring radionuclides in brown coal and copper shale mining waste and its impact on landscape mitigation

    International Nuclear Information System (INIS)

    Schneider, P.; Neitzel, P.L.; Hurst, S.; Osenbrueck, K.

    2001-01-01

    Full text: Extensive uranium mining and processing was widely spread in the former socialist European countries, especially former G.D.R., Romania, Hungary and Bulgaria. The exploration and the use of other radioactive contaminated mining products for energetic purposes, e.g. hard coal for uranium extraction in Eastern Germany and highly radium contaminated coal in Upper Silesia (Poland) was also a common practice. Besides uranium and coal mining activities naturally occurring radioactivity was also observed in copper shale mining. All these mining activities led to the accumulation of vast amounts of wastes and to the contamination of large areas. The wastes usually contain not only elevated concentrations of radionuclides like uranium, thorium and the relevant daughter nuclides but also other toxic chemical elements. Now these polluted areas are a permanent source of ground and surface water contamination in the mining districts. For reasons of environmental security and to avoid the uncontrolled spread of radioactive pollution, a permanent cost effective monitoring of the pollution levels is necessary as long as the wastes are deposited in interim disposal sites. With regard to the new German Radiation Protection Law established in August 2001, new waste management concepts based on in-situ mitigation are needed for these normally low radioactive contaminated wastes. Besides improved management concepts the in-situ treatment of contaminated waters is of major importance. Passive water treatment systems are possible methods for a long term cost effective treatment of waters from mine sites with naturally occurring radioactivity. For the treatment of surface waters internationally mainly constructed wetlands are in practice worldwide. On the other hand a few groundwater contaminations have been equipped with permeable walls consisting of zero valent iron. Hydrogeochemical and biogeochemical research on reactive materials is restricted on laboratory scale and there

  16. Khadum Formation of Pre-Caucasus region as potential source of oil shales: geology and geochemistry

    Directory of Open Access Journals (Sweden)

    N.Sh. Yandarbiev1

    2017-05-01

    Full Text Available One of the main modern aim for oil industry is the development of hydrocarbon extraction technologies from «oil shale». In Russia there are kerogen-saturated carbonate-clayey-siliceous deposits of the Bazhenov Formation, carbonate rocks of the Volga-Ural and Timan-Pechora oil and gas bearing basins and clayey Maikop series of Pre-Caucasus region. The Khadum Formation is lower part of the Maikop series represented by carbonate-clay and clayey deposits. On the basis of long-term field and laboratory investigation conducted by specialists of the Oil and Gas Department from Geological Faculty of the Lomonosov Moscow State University. a comprehensive study of the lithological composition, structure, geochemical, hydrogeological and hydrodynamic characteristics of the Paleogene section and monitoring of the drilled wells, the prospects of the oil and gas potential of the Khadum deposits of the Oligocene in the Eastern Pre-Caucasus oil and gas bearing basin were estimated. 11 gas and 19 oil deposits are discovered within the Khadum deposits, and they are confined to the sand layers and lenses, but most of the Khadum section belongs to «unconventional» sources of hydrocarbons. Based on the integrated approach, a map of oil and gas potential prospects for the Khadum deposits was constructed. Highly prospective territories for drilling for oil, areas with small and medium perspectives, and gas prospecting areas have been singled out. Recommendations are given for drilling and technology for the development of the Pre-Caucasus oil shales, based on the world experience in the development of such formations.

  17. Water quality of groundwater and stream base flow in the Marcellus Shale Gas Field of the Monongahela River Basin, West Virginia, 2011-12

    Science.gov (United States)

    Chambers, Douglas B.; Kozar, Mark D.; Messinger, Terence; Mulder, Michon L.; Pelak, Adam J.; White , Jeremy S.

    2015-01-01

    The Marcellus Shale gas field underlies portions of New York, Pennsylvania, Ohio, Virginia, Maryland, Tennessee, and West Virginia. Development of hydraulic fracturing and horizontal drilling technology led to extensive development of gas from the Marcellus Shale beginning about 2007. The need to identify and monitor changes in water-quality conditions related to development of the Marcellus Shale gas field prompted the U.S. Geological Survey, in cooperation with the West Virginia Department of Environmental Protection, Division of Water and Waste Management, to document water quality for comparison with water quality in samples collected at a future date. The identification of change in water-quality conditions over time is more difficult if baseline water-quality conditions have not been documented.

  18. Impact of Shale Gas Development on Water Resource in Fuling, China

    Science.gov (United States)

    Yang, Hong; Huang, Xianjin; Yang, Qinyuan; Tu, Jianjun

    2015-04-01

    As a low-carbon energy, shale gas rapidly developed in U.S. in last years due to the innovation of the technique of hydraulic fracture, or fracking. Shale gas boom produces more gas with low price and reduced the reliance on fuel import. To follow the American shale gas success, China made an ambitious plan of shale gas extraction, 6.5 billion m3 by 2015. To extract shale gas, huge amount water is needed to inject into each gas well. This will intensify the competition of water use between industry, agricultural and domestic sectors. It may finally exacerbate the water scarcity in China. After the extraction, some water was returned to the ground. Without adequate treatment, the flowback water can introduce heavy metal, acids, pesticides, and other toxic material into water and land. This may inevitably worsen the water and land contamination. This study analysed the potential water consumption and wastewater generation in shale gas development in Fuling, Southwest China. The survey found the average water consumption is 30,000 cubic meter for one well, higher than shale well in U.S. Some 2%-20% water flowed back to the ground. The water quality monitoring showed the Total Suspended Solid (TSS) and Chemical Oxygen Demand (COD) were the main factors above those specified by China's water regulation. Shale gas is a lower-carbon energy, but it is important to recognize the water consuming and environmental pollution during the fracking. Strict monitoring and good coordination during the shale gas exploitation is urgently needed for the balance of economic development, energy demand and environmental protection.

  19. Bioremediation of cooking oil waste using lipases from wastes.

    Directory of Open Access Journals (Sweden)

    Clarissa Hamaio Okino-Delgado

    Full Text Available Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  20. Non-woven Textile Materials from Waste Fibers for Cleanup of Waters Polluted with Petroleum and Oil Products

    Science.gov (United States)

    Neznakomova, Margarita; Boteva, Silvena; Tzankov, Luben; Elhag, Mohamed

    2018-04-01

    The aim of this work was to investigate the possibility of using non-woven materials (NWM) from waste fibers for oil spill cleanup and their subsequent recovery. Manufacture of textile and readymade products generates a significant amount of solid waste. A major part of it is deposited in landfills or disposed of uncontrollably. This slowly degradable waste causes environmental problems. In the present study are used two types of NWM obtained by methods where waste fibers are utilized. Thus, real textile products are produced (blankets) with which spills are covered and removed by adsorption. These products are produced by two methods: the strengthening of the covering from recovered fibers is made by entanglement when needles of special design pass through layers (needle-punching) or by stitching with thread (technology Maliwatt). Regardless of the random nature of the fiber mixture, the investigated products are good adsorbents of petroleum products. The nature of their structure (a significant void volume and developed surface) leads to a rapid recovery of the spilled petroleum products without sinking of the fiber layer for the sampled times. The used NWM can be burned under special conditions.

  1. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future

  2. Preliminary evaluation of fuel oil produced from pyrolysis of waste ...

    African Journals Online (AJOL)

    It could be refined further to produce domestic kerosene and gasoline. The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water ...

  3. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    Science.gov (United States)

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  4. Utilização de zeólitas sintetizadas a partir de xisto retortado na remoção de arsênio em águas contaminadas Use of zeolites synthesized from oil shale ash for arsenic removal from polluted water

    Directory of Open Access Journals (Sweden)

    Nádia Regina Camargo Fernandes-Machado

    2007-10-01

    Full Text Available The solid by-product of the oil shale processing (PETROBRAS - Brazil was used as raw material to synthesize zeolites A and faujasite. Alkaline fusion followed by hydrothermal treatment was the synthesis procedure used, and five different starting material compositions were obtained. The more crystalline zeolite-type materials synthesized, the pretreated oil shale ash and commercial zeolites were used as adsorbents in the purification of pollutant solutions with arsenic. The zeolite-type material composed of a mixture of zeolite A (42.6% and faujasite (52.9% presented an ion exchange capacity comparable to the pure zeolites A and faujasite, much better than the pretreated ash.

  5. Life cycle greenhouse gas emissions, consumptive water use and levelized costs of unconventional oil in North America

    Science.gov (United States)

    Mangmeechai, Aweewan

    Conventional petroleum production in many countries that supply U.S. crude oil as well as domestic production has declined in recent years. Along with instability in the world oil market, this has stimulated the discussion of developing unconventional oil production, e.g., oil sands and oil shale. Expanding the U.S. energy mix to include oil sands and oil shale may be an important component in diversifying and securing the U.S. energy supply. At the same time, life cycle GHG emissions of these energy sources and consumptive water use are a concern. In this study, consumptive water use includes not only fresh water use but entire consumptive use including brackish water and seawater. The goal of this study is to determine the life cycle greenhouse gas (GHG) emissions and consumptive water use of synthetic crude oil (SCO) derived from Canadian oil sands and U.S. oil shale to be compared with U.S. domestic crude oil, U.S. imported crude oil, and coal-to-liquid (CTL). Levelized costs of SCO derived from Canadian oil sands and U.S. oil shale were also estimated. The results of this study suggest that CTL with no carbon capture and sequestration (CCS) and current electricity grid mix is the worst while crude oil imported from United Kingdom is the best in GHG emissions. The life cycle GHG emissions of oil shale surface mining, oil shale in-situ process, oil sands surface mining, and oil sands in-situ process are 43% to 62%, 13% to 32%, 5% to 22%, and 11% to 13% higher than those of U.S. domestic crude oil. Oil shale in-situ process has the largest consumptive water use among alternative fuels, evaluated due to consumptive water use in electricity generation. Life cycle consumptive water use of oil sands in-situ process is the lowest. Specifically, fresh water consumption in the production processes is the most concern given its scarcity. However, disaggregated data on fresh water consumption in the total water consumption of each fuel production process is not available

  6. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S

    1909-11-29

    Mineral, shale, and like oils are treated successively with sulfuric acid, milk of lime, and a mixture of calcium oxide, sodium chloride, and water, and finally a solution of naphthalene in toluene is added. The product is suitable for lighting, and for use as a motor fuel; for the latter purpose, it is mixed with a light spirit.

  7. Trace metal distribution and mobility in drill cuttings and produced waters from Marcellus Shale gas extraction: Uranium, arsenic, barium

    International Nuclear Information System (INIS)

    Phan, Thai T.; Capo, Rosemary C.; Stewart, Brian W.; Graney, Joseph R.; Johnson, Jason D.; Sharma, Shikha; Toro, Jaime

    2015-01-01

    Highlights: • Distributions of U, As, and Ba in Marcellus Shale were determined. • As is primarily associated with sulfide minerals, Ba with exchange sites. • Most U is in the silicate minerals, but up to 20% is partitioned into carbonate. • Low [U] and [As] in produced water are consistent with reducing downhole conditions. • Proper waste management should account for potential mobilization of U and As. - Abstract: Development of unconventional shale gas wells can generate significant quantities of drilling waste, including trace metal-rich black shale from the lateral portion of the drillhole. We carried out sequential extractions on 15 samples of dry-drilled cuttings and core material from the gas-producing Middle Devonian Marcellus Shale and surrounding units to identify the host phases and evaluate the mobility of selected trace elements during cuttings disposal. Maximum whole rock concentrations of uranium (U), arsenic (As), and barium (Ba) were 47, 90, and 3333 mg kg −1 , respectively. Sequential chemical extractions suggest that although silicate minerals are the primary host for U, as much as 20% can be present in carbonate minerals. Up to 74% of the Ba in shale was extracted from exchangeable sites in the shale, while As is primarily associated with organic matter and sulfide minerals that could be mobilized by oxidation. For comparison, U and As concentrations were also measured in 43 produced water samples returned from Marcellus Shale gas wells. Low U concentrations in produced water (<0.084–3.26 μg L −1 ) are consistent with low-oxygen conditions in the wellbore, in which U would be in its reduced, immobile form. Arsenic was below detection in all produced water samples, which is also consistent with reducing conditions in the wellbore minimizing oxidation of As-bearing sulfide minerals. Geochemical modeling to determine mobility under surface storage and disposal conditions indicates that oxidation and/or dissolution of U

  8. Landscape Disturbance from Unconventional and Conventional Oil and Gas Development in the Marcellus Shale Region of Pennsylvania, USA

    Directory of Open Access Journals (Sweden)

    E. Terrence Slonecker

    2015-06-01

    Full Text Available The spatial footprint of unconventional (hydraulic fracturing and conventional oil and gas development in the Marcellus Shale region of the State of Pennsylvania was digitized from high-resolution, ortho-rectified, digital aerial photography, from 2004 to 2010. We used these data to measure the spatial extent of oil and gas development and to assess the exposure of the extant natural resources across the landscape of the watersheds in the study area. We found that either form of development: (1 occurred in ~50% of the 930 watersheds that defined the study area; (2 was closer to streams than the recommended safe distance in ~50% of the watersheds; (3 was in some places closer to impaired streams and state-defined wildland trout streams than the recommended safe distance; (4 was within 10 upstream kilometers of surface drinking water intakes in ~45% of the watersheds that had surface drinking water intakes; (5 occurred in ~10% of state-defined exceptional value watersheds; (6 occurred in ~30% of the watersheds with resident populations defined as disproportionately exposed to pollutants; (7 tended to occur at interior forest locations; and (8 had >100 residents within 3 km for ~30% of the unconventional oil and gas development sites. Further, we found that exposure to the potential effects of landscape disturbance attributable to conventional oil and gas development was more prevalent than its unconventional counterpart.

  9. Tomatoes in oil recovery. [Plant waste additives improve yield

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The waste from processing tomato, squash and pepper stalks found unexpected use in recovery of oil. Even a negligible amount thereof in an aqueous solution pumped into an oil-bearing formation turned out to be sufficient to increase the yield. Substances of plant origin, which improve dramatically the oil-flushing properties of water, not only increase the recovery of oil, but reduce the volume of fluid to be pumped into the stratum. The staff of the Institute of Deep Oil and Gas Deposits of the Azerbaijan Academy of Sciences, who proved the technological and economical advantages of using the waste from plant processing, transmitted their findings to the oil workers of Baku. The scientists have concluded that there is a good raw material base in this republic for utilizing this method on oil-bearing formations.

  10. Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis

    International Nuclear Information System (INIS)

    Chen, Bin; Han, Xiangxin; Li, Qingyou; Jiang, Xiumin

    2016-01-01

    Highlights: • Long-chain alkenes’ formation needs less energy than short ones. • The rupture tends to happen at the middle position of long alkyl chains first. • Cycloparaffins tend to be cracked rather than to be dehydrogenated. - Abstract: The essence of kerogen decomposition in retorting process is organic carbon conversion. FTIR and GC-MS methods were employed in analyzing the conversion process of “kerogen → bitumen” and “bitumen → shale oil” in this paper. To achieve a deeper investigation of thermochemical transformation of organic carbon during the oil shale retorting, a set of physical models of carbon chains were constructed and analyzed using the transition state theory (TST) of quantum chemistry with gauss03 package. According to the results, the main reactions in the transformation of kerogen to bitumen are the re-integration of macromolecular structure and the breakup of oxygen-bridged bonds. Long alkyl chains containing functional groups decompose and transform to shorter alkanes, alkenes and aliphatic free radicals. The rupture of alkanes happens first at the middle position of long carbon chains. Alkyl free radicals further convert to alkanes, alkenes or aromatic rings. The alkanes take the highest content in shale oil.

  11. Evidence for polar porphyrins of bacterial and algal origin in oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, R.; Callot, H.J.; Albrecht, P.

    1986-04-01

    The major part of the porphyrins of the immature Messel oil shale is composed of monocarboxylic acids (C/sub 30/-C/sub 36/) essentially complexed with nickel. These acids were separated as methyl esters by reverse phase h.p.l.c. and nine components characterized by mass and NMR spectroscopy. Structural assignments were supported by synthesis of several members and nuclear Overhauser effect experiments. Besides a major component of the DPEP series, this fraction contained other members belonging to the phyllo- and etioporphyrin series, as well as to a novel chlorophyll C derived series typical of algae. Furthermore the identification of several higher homologues (C/sub 34/-C/sub 36/) of the DPEP series, structurally related to the bacteriochlorophylls, reflects the bacterial input. The characterization of a series of petroporphyrinic acids from the polar fraction of the Messel oil shale confirms the chlorophyllic (a+b,c) origin of these porphyrins. It furthermore implies that most of the characterized petroporphyrins and the survival of carboxylic functions in this class of compounds under mild diagenetic conditions. It furthermore implies that most of the characterized petroporphyrins in Messel shale originate from photosynthetic bacteria and microscopic algae.

  12. Mineralogy and organic petrology of oil shales in the Sangkarewang Formation, Ombilin Basin, West Sumatra, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052 (Australia)]|[Centre for Geological Resources, Department of Mines and Energy, Jalan Soekarno Hatta No. 444, Bandung 40254 (Indonesia); Ward, Colin R. [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052 (Australia)

    2009-01-31

    The Ombilin Basin is filled by late Eocene to early Oligocene marginal fan deposits (Brani Formation) and lacustrine shales (Sangkarewang Formation), unconformably overlain by a late Oligocene to early Miocene fluvial sequence (Sawahlunto and Sawahtambang Formations) and capped by an early to mid-Miocene marine sequence (Ombilin Formation). Significant oil shale deposits occur in the Sangkarewang Formation, intercalated with thin laminated greenish-grey calcareous sandstones. X-ray diffraction shows that the sediments consist mainly of quartz, feldspar, carbonates and a range of clay minerals, together in some cases with minor proportions of sulphides, evaporites and zeolites. Feldspar and non-kaolinite clay minerals decrease up the sequence, relative to kaolinite, suggesting a changing sediment source as the basin was filled. Calcite, thought to be mainly of authigenic origin, is also more abundant in the middle and upper parts of the sequence. The organic matter in the oil shales of the sequence is dominated by liptinite macerals, particularly alginite (mainly lamalginite) and sporinite. Cutinite also occurs in some samples, along with resinite and traces of bituminite. The dominance of lamalginite in the liptinite components suggests that the material can be described as a lamosite. Samples from the Sangkarewang Formation have vitrinite reflectance values ranging between 0.37% and 0.55%. These are markedly lower than the vitrinite reflectance for coal from the overlying Sawahlunto Formation (0.68%), possibly due to suppression associated with the abundant liptinite in the oil shales. Fischer assay data on outcrop samples indicate that the oil yield is related to the organic carbon content. Correlations with XRD data show that, with one exception, the oil yield and organic carbon can also be correlated directly to the abundance of carbonate (calcite) and inversely to the abundance of quartz plus feldspar. This suggests that the abundance of algal material in the

  13. Eagle Ford Shale BTEX and NOx concentrations are dominated by oil and gas industry emissions

    Science.gov (United States)

    Schade, G. W.; Roest, G. S.

    2017-12-01

    US shale oil and gas exploration has been identified as a major source of greenhouse gases and non-methane hydrocarbon (NMHC) emissions to the atmosphere. Here, we present a detailed analysis of 2015 air quality data acquired by the Texas Commission on Environmental Quality (TCEQ) at an air quality monitoring station in Karnes County, TX, central to Texas' Eagle Ford shale area. Data include time series of hourly measured NMHCs, nitrogen oxides (NOx), and hydrogen sulfide (H2S) alongside meteorological measurements. The monitor was located in Karnes City, and thus affected by various anthropogenic emissions, including traffic and oil and gas exploration sources. Highest mixing ratios measured in 2015 included nearly 1 ppm ethane, 0.8 ppm propane, alongside 4 ppb benzene. A least-squares minimization non-negative matrix factorization (NMF) analysis, tested with prior data analyzed using standard PMF-2 software, showed six major emission sources: an evaporative and fugitive source, a flaring source, a traffic source, an oil field source, a diesel source, and an industrial manufacturing source, together accounting for more than 95% of data set variability, and interpreted using NMHC composition and meteorological data. Factor scores strongly suggest that NOx emissions are dominated by flaring and associated sources, such as diesel compressor engines, likely at midstream facilities, while traffic in this rural area is a minor NOx source. The results support, but exceed existing 2012 emission inventories estimating that local traffic emitted seven times fewer NOx than oil and gas exploration sources in the county. Sources of air toxics such as the BTEX compounds are also dominated by oil and gas exploration sources, but are more equally distributed between the associated factors. Benzene abundance is only 20-40% associated with traffic sources, and may thus be 2.5-5 times higher now than prior to the shale boom in this area. Although the monitor was located relatively

  14. Fundamentals of gas flow in shale; What the unconventional reservoir industry can learn from the radioactive waste industry

    Science.gov (United States)

    Cuss, Robert; Harrington, Jon; Graham, Caroline

    2013-04-01

    Tight formations, such as shale, have a wide range of potential usage; this includes shale gas exploitation, hydrocarbon sealing, carbon capture & storage and radioactive waste disposal. Considerable research effort has been conducted over the last 20 years on the fundamental controls on gas flow in a range of clay-rich materials at the British Geological Survey (BGS) mainly focused on radioactive waste disposal; including French Callovo-Oxfordian claystone, Belgian Boom Clay, Swiss Opalinus Clay, British Oxford Clay, as well as engineered barrier material such as bentonite and concrete. Recent work has concentrated on the underlying physics governing fluid flow, with evidence of dilatancy controlled advective flow demonstrated in Callovo-Oxfordian claystone. This has resulted in a review of how advective gas flow is dealt with in Performance Assessment and the applicability of numerical codes. Dilatancy flow has been shown in Boom clay using nano-particles and is seen in bentonite by the strong hydro-mechanical coupling displayed at the onset of gas flow. As well as observations made at BGS, dilatancy flow has been shown by other workers on shale (Cuss et al., 2012; Angeli et al. 2009). As well as experimental studies using cores of intact material, fractured material has been investigated in bespoke shear apparatus. Experimental results have shown that the transmission of gas by fractures is highly localised, dependent on normal stress, varies with shear, is strongly linked with stress history, is highly temporal in nature, and shows a clear correlation with fracture angle. Several orders of magnitude variation in fracture transmissivity is seen during individual tests. Flow experiments have been conducted using gas and water, showing remarkably different behaviour. The radioactive waste industry has also noted a number of important features related to sample preservation. Differences in gas entry pressure have been shown across many laboratories and these may be

  15. Life cycle water consumption for shale gas and conventional natural gas.

    Science.gov (United States)

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  16. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 6. Baseline rock properties-shale

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM36/6 Baseline Rock Properties--Shale, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. The report is a result of a literature survey of the rock properties of shales occurring in the United States. Firstly, data were collected from a wide variety of sources in order to obtain a feel for the range of properties encountered. Secondly, some typical shales were selected for detailed review and these are written up as separate chapters in this report. Owing to the wide variability in lithology and properties of shales occurring in the United States, it became necessary to focus the study on consolidated illite shales. Using the specific information already generated, a consistent set of intact properties for a typical, consolidated illite shale was obtained. Correction factors, largely based on geological considerations, were then applied to the intact data in order to yield typical rock mass properties for this type of shale. Lastly, excavation problems in shale formations were reviewed and three tunnel jobs were written up as case histories

  17. Water use competition scenarios during the upcoming development of shale gas reserves across the Mexican Eagle Ford play Image already added

    Science.gov (United States)

    Arciniega, S.; Breña-Naranjo, J. A.; Hernaández Espriú, A.; Pedrozo-Acuña, A.

    2017-12-01

    Mexico has significant shale oil and gas resources mainly contained within the Mexican part of the Eagle Ford play (Mex-EF), in the Burgos Basin located in northern Mexico. Over the last years, concerns about the water use associated to shale gas development using hydraulic fracturing (HF) have been increasing in the United States and Canada. In Mexico, the recent approval of a new energy bill allows the exploration, development and production of shale gas reserves. However, several of the Mexican shale gas resources are located in water-limited environments, such as the Mex-EF. The lack of climate and hydrological gauging stations across this region constrains information about how much freshwater from surface and groundwater sources is available and whether its interannual water availability is sufficient to satisfy the water demand by other users (agricultural, urban) of the region This work projects the water availability across the Mex-EF and its water use derived from the expansion of unconventional gas developments over the next 15 years. Water availability is estimated using a water balance approach, where the irrigation's groundwater withdrawals time series were reconstructed using remote sensing products (vegetation index and hydrological outputs from LSMs) and validated with in situ observed water use at three different irrigation districts of the region. Water use for HF is inferred using type curves of gas production, flowback and produced (FP) water and curves of drilled wells per year from the US experience, mainly from the Texas-EF play. Scenarios that combine freshwater use and FP water use for HF are developed and the spatial distribution of HF well pads is projected using random samples with a range of wells' horizontal length. This proposed methodology can be applied in other shale formations of the world under water stress and it also helps to determine whether water scarcity can be a limiting factor for the shale gas industry over the next

  18. effect of petroleum waste water on new calabar river and its ...

    African Journals Online (AJOL)

    BARTH EKWUEME

    Petroleum waste water is the water produced from oil during or after drilling. During drilling the ensuing fluid is a water-oil-gas mixture since oil and gas reservoirs have a natural water layer which is petroleum waste water, which lies under the hydrocarbons. In some cases, additional water is usually injected into the.

  19. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    International Nuclear Information System (INIS)

    Morea, Michael F.

    1999-01-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field

  20. Development and application of a permit information system for shale oil (PERMISSO). Final report appendix: summary sheets of regulations required for oil shale development, June 1978--May 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This appendix is comprised of summaries of various governmental permits, licenses and other approvals required for oil shale development. The summaries were completed during the period June--October 1978, and are current as of July 1, 1978, although more recent authority was cited in some cases. One of the major purposes of Phase II of the project will be to update these summaries as statutes and regulations are added, changed or eliminated. This updating will be particularly important in the case of environmental permits and approvals. Many legislative and regulatory changes affecting environmental requirements are pending at this time and will alter many of the summaries herein. In addition, many regulatory proposals have been or likely will be challenged in the courts. When such conflicts are resolved further changes may be in order.

  1. Geochemical Variability and the Potential for Beneficial Use of Waste Water Coproduced with Oil from Permian Basin of the Southwest USA

    Science.gov (United States)

    Khan, N. A.; Holguin, F. O.; Xu, P.; Engle, M.; Dungan, B.; Hunter, B.; Carroll, K. C.

    2014-12-01

    The U.S. generates 21 billion barrels/year of coproduced water from oil and gas exploration, which is generally considered waste water. Growth in unconventional oil and gas production has spurred interest in beneficial uses of produced water, especially in arid regions such as the Permian Basin of Texas and New Mexico, the largest U.S. tight oil producer. Produced waters have variable chemistries, but generally contain high levels of organics and salts. In order to evaluate the environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of produced water. In the present study, produced water samples were collected from 12 wells across the Permian Basin. Compositional analyses including coupled gas chromatography-time of flight-mass spectrometry and inductively coupled plasma-optical emission spectroscopy were conducted. The samples show elevated benzene, ethylbenzene, toluene, xylene, alkyl benzenes, propyl-benzene, and naphthalene compared to other heteroaromatics; they also contain complex hydrocarbon compounds containing oxygen, nitrogen, and sulfur. Van Krevelen diagrams show an increase in the concentration of heteroaromatic hydrocarbons with increasing well depth. The salinity, dominated by sodium-chloride, also increases with depth, ranging from 37-150 g/L TDS. Depth of wells (or producing formation) is a primary control on predicting water quality for treatment and beneficial use. Our results suggest that partial treatment by removing suspended solids and organic contaminants would support some beneficial uses such as onsite reuse, bioenergy production, and other industrial uses. Due to the high salinity, conventional desalination processes are not applicable or very costly, making beneficial uses requiring low salinity not feasible.

  2. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Yang, Yu; Lu, Xiaofeng; Wang, Quanhai

    2017-01-01

    Highlights: • The co-combustion characteristic parameters were studied. • The co-combustion of oil shale and semi-coke could be expressed roughly by the addition of individual components. • Activation energy was calculated by Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. - Abstract: In the present work, thermogravimetric analysis was employed to investigate co-combustion behaviors of Fushun low calorific oil shale and its semi-coke. The synergy effect was estimated by using the interaction coefficient and the relative error of mean square root. In addition, activation energy was also calculated by means of Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. Results indicated that with the increase of oil shale mass fraction and oxygen concentration, combustion characteristics of the samples were improved. And some little interaction did occur during the co-combustion process, but it was relatively slight. Consequently, the co-combustion of oil shale and semi-coke still could be expressed roughly by the addition of individual components of the mixtures. Furthermore, activation energy of the samples decreased slowly at the initial stage attributed to the minerals’ catalytic effects, and in the final stage, it jumped to a high value, suggesting that the burnout of the samples was difficult. Besides, the mix proportion of oil shale which was added to stabilize the combustion in the circulating fluidized bed was also theoretically calculated.

  3. Oil water laboratory

    International Nuclear Information System (INIS)

    P Junior, Oswaldo A.; Verli, Fernando; Lopes, Humberto E.

    2000-01-01

    Usually, the oily water effluent from petroleum processes needs to be treated prior to its environment discard and/or reuse. The synthesis of such water effluent residues in an Oily Water Laboratory - equipped with Water Treatment Pilot Scale Units - is fundamental to the study and effectiveness comparison among the typical industrial water treatment processes. The Oily Water Laboratory will allow the reproduction - in a small scale - of any oily water effluent produced in the industrial PETROBRAS units - such reproduction can be obtained by using the same fluids, oily concentration, salinity, process temperature, particle size distribution etc. Such Laboratory also allows the performance analysis of typical industrial equipment used throughout the water treatment schemes (e.g., hydro-cyclones), resulting in design and/or operational guidelines for these industrial scale schemes. In the particular niche of very small diameter oil droplet removal, more efficient and non-conventional schemes - such as centrifuges and/or membrane filtration - will be also studied in the Laboratory. In addition, the Laboratory shall be used in the certification of in-line oily water analyzers (e.g., TOC - Total Organic Carbon and OWC - Oil Wax Content). This paper describes the characteristics of such Laboratory and its main operational philosophy. (author)

  4. Combating oil spill problem using plastic waste

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Junaid, E-mail: junaidupm@gmail.com [Department of Chemical Engineering, University of Karachi (Pakistan); Ning, Chao; Barford, John [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); McKay, Gordon [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  5. Combating oil spill problem using plastic waste

    International Nuclear Information System (INIS)

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-01-01

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy

  6. Palm Oil Milling Wastes and Sustainable Development

    OpenAIRE

    A. C. Er; Abd. R.M. Nor; Katiman Rostam

    2011-01-01

    Problem statement: Palm oil milling generates solid wastes, effluent and gaseous emissions. The aim of this study is to assess the progress made in waste management by the Malaysian palm oil milling sector towards the path of sustainable development. Sustainable development is defined as the utilization of renewable resources in harmony with ecological systems. Inclusive in this definition is the transition from low value-added to higher value-added transformation of waste...

  7. Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sonia; Ghandi, Abbas; Scanlon, Bridget R.; Brandt, Adam R.; Cai, Hao; Wang, Michael Q.; Vafi, Kourosh; Reedy, Robert C.

    2017-01-30

    A rapid increase in horizontal drilling and hydraulic fracturing in shale and “tight” formations that began around 2000 has resulted in record increases in oil and natural gas production in the U.S. This study examines energy consumption and greenhouse gas (GHG) emissions from crude oil and natural gas produced from ~8,200 wells in the Eagle Ford Shale in southern Texas from 2009 to 2013. Our system boundary includes processes from primary exploration wells to the refinery entrance gate (henceforth well-to-refinery or WTR). The Eagle Ford includes four distinct production zones—black oil (BO), volatile oil (VO), condensate (C), and dry gas (G) zones—with average monthly gas-to-liquids ratios (thousand cubic feet per barrel—Mcf/bbl) varying from 0.91 in the BO zone to 13.9 in the G zone. Total energy consumed in drilling, extracting, processing, and operating an Eagle Ford well is ~1.5% of the energy content of the produced crude and gas in the BO and VO zones, compared with 2.2% in the C and G zones. On average, the WTR GHG emissions of gasoline, diesel, and jet fuel derived from crude oil produced in the BO and VO zones in the Eagle Ford play are 4.3, 5.0, and 5.1 gCO2e/MJ, respectively. Comparing with other known conventional and unconventional crude production where upstream GHG emissions are in the range 5.9–30 gCO2e/MJ, oil production in the Eagle Ford has lower WTR GHG emissions.

  8. Stabilization of gasoline from shale

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, L

    1929-03-14

    A process is described of stabilizing gasoline from shale, consisting in treating by agitating the gasoline freshly distilled from shale oil with 1.5 percent of its weight of sulfuric acid diluted to more than 10 times its volume, after which separating the pyridine, then treating by agitating with sulfuric acid which treatment separates the unsaturated hydrocarbons and finally treating by agitating with 1.5 percent of its weight of saturated caustic soda solution and washing with water.

  9. Leaching of PAHs from agricultural soils treated with oil shale combustion ash: an experimental study.

    Science.gov (United States)

    Jefimova, Jekaterina; Adamson, Jasper; Reinik, Janek; Irha, Natalya

    2016-10-01

    The present study focuses on the fate of polycyclic aromatic hydrocarbons (PAHs) in soils amended with oil shale ash (OSA). Leachability studies to assess the release of PAHs to the environment are essential before the application of OSA in agriculture. A quantitative estimation of the leaching of PAHs from two types of soil and two types of OSA was undertaken in this study. Two leaching approaches were chosen: (1) a traditional one step leaching scheme and (2) a leaching scheme with pretreatment, i.e.., incubation of the material in wet conditions imitating the field conditions, followed by a traditional leaching procedure keeping the total amount of water constant. The total amount of PAHs leached from soil/OSA mixtures was in the range of 15 to 48 μg/kg. The amount of total PAHs leached was higher for the incubation method, compared to the traditional leaching method, particularly for Podzolic Gleysols soil. This suggests that for the incubation method, the content of organic matter and clay minerals of the soil influence the fate of PAHs more strongly compared to the traditional leaching scheme. The amount of PAHs leached from OSA samples is higher than from soil/OSA mixtures, which suggests soils to inhibit the release of PAHs. Calculated amount of PAHs from experimental soil and OSA leaching experiments differed considerably from real values. Thus, it is not possible to estimate the amount of PAHs leached from soil/OSA mixtures based on the knowledge of the amount of PAHs leached from soil and OSA samples separately.

  10. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification

    NARCIS (Netherlands)

    Kasteren, van J.M.N.; Nisworo, A.P.

    2007-01-01

    This paper describes the conceptual design of a production process in which waste cooking oil is converted via supercritical transesterification with methanol to methyl esters (biodiesel). Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great

  11. Gas chromatograph study of bitumen from oil shale of Amman Formation (upper cretaceous), NW Jordan

    International Nuclear Information System (INIS)

    Darwish, H.; Mustafa, H.

    1997-01-01

    The extractable organic matter of seven outcrop samples of Amman Formation Oil Shale have been analysed by Gas Chromatography (GC). The bitumen is rich in heterocompounds contents (> 60 wt%). Gas chromatograms show a predominance of iosprenoids, specially phytane over n-alkanes, and low carbon preference index (CPI). This indicates that the organic matter is immature, and its origin is mainly of marine organisms. These rocks could be possible source rocks due to the high content of hydrocarbon. (authors). 22 refs., 4 figs. 3 tabs

  12. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  13. New adsorbents from oil shales. Preparation, characterization and U, Th isotope adsorption tests

    International Nuclear Information System (INIS)

    Khouya, E.; Andres, Y.; Naslain, R.; Pailler, R.; Nourredine, A.

    2004-01-01

    New activated adsorbents for radionuclides have been produced from Moroccan oil shales by pyrolysis of the natural material at 550 deg C flowed by a KMnO 4 activation. The texture and composition of the native rock and the adsorbents w